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J. AMORÓS, F. BOGOMOLOV, L. KATZARKOV & T. PANTEV 

Abstract 
In this paper we give an explicit construction of a symplectic Lefschetz fi-
bration whose total space is a smooth compact four dimensional manifold 
with a prescribed fundamental group. We also study the numerical proper­
ties of the sections in symplectic Lefschetz fibrations and their relation to 
the structure of the monodromy group. 

1. Introduction 

In this paper we give an explicit construction of a symplectic Lef­
schetz fibration whose total space is a smooth compact four dimensional 
manifold with a prescribed fundamental group. The existence of such 
a fibration is also a consequence of the remarkable recent work of Don­
aldson [5] (see also [1]) who proved the existence of a Lefschetz pencil 
structure on any symplectic 4-manifold and the results of Gompf [9], 
who proved that any finitely presentable group can be realized as the 
fundamental group of a symplectic 4-manifold. 

Since Donaldson's proof is non-constructive, as an alternative we 
present a direct purely topological construction of symplectic Lefschetz 
fibrations which is effective and allows an explicit control on the number 
of singular fibers. The construction is based on an algebraic geometric 
method for creating positive relations among right-handed Dehn twists. 
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The ubiquity of such relations combined with a simple group theoretic 
characterization of symplectic Lefschetz fibrations due to Gompf (see 
Proposition 2.3) turns out to be sufficient for the construction. 

Before we can state our main theorem we need to introduce some 
notation. For any integer n > 0 denote by 7r„ the fundamental group 
of a compact Riemann surface of genus n. As usual a group G is called 
finitely presentable if it can be written as a quotient of a free group 
on finitely many generators by a subgroup generated by the conjugacy 
classes of finitely many elements. By a finite presentation of a group 
G we mean a surjective homomorphism A -» G from some finitely 
presentable group A onto G so that ker[j4 —> G] is generated as a normal 
subgroup by finitely many elements in A. 

T h e o r e m A . LetT be a finitely presentable group with a given finite 
presentation a : ng -» T. Then there exists a surjective homomorphism 
b : iTh —> ng for some h > g and a symplectic Lefschetz fibration f : 
X —> S2 such that 

(i) the regular fiber of f is of genus h, 

(ii) m(X) = T, 

(iii) the natural surjection of the fundamental group of the fiber of f 
onto the fundamental group of X coincides with a ob. 

Note that any finitely presentable group Y admits a finite presen­
tation of the form ng -» T since Trg surjects onto a free group on g 
generators. 

The map b in the above theorem is not arbitrary. It factors as 

where the surface of genus e is obtained form the surface of genus g by 
adding handles and the surface of genus h is obtained from the surface 
of genus e as a ramified finite covering. 

Our second theorem concerns symplectic fibrations of Lefschetz type 
over curves of higher genus. 

T h e o r e m B . Let T be a finitely presentable group with a given 
presentation a : ng -» T. Then there exist a surjective homomorphism 
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7Te —> TTg and a symplectic Lefschetz fibration f : X —> Ck over some 
smooth surface C^ of genus k so that 

(i) the regular fiber of f is of genus e, 

(ii) / has a unique singular fiber, 

(iii) the fundamental group of X fits in a short exact sequence 

l - > r - > 7 r i p O - > 7 r * - H , 

(iv) the natural surjective map from the fundamental group of the fiber 
of f to T coincides with the composition 7re —> ng —> F. 

This work is an elaboration on a discussion at the end of [3]. We 
describe in details an enhancement of the general technique for con­
structing examples of symplectic fibrations used in [3]. Our proof is 
based on exploiting the correspondence between subgroups of the map­
ping class group and graphs of vanishing cycles. 

In general it is expected that every smooth four-dimensional man­
ifold is diffeomorphic to an achiral Lefschetz fibration possibly after 
some stabilization. The purpose of this paper is to study what other 
conditions besides chirality determine the SLF (Symplectic Lefschetz 
Fibration) among all fibrations. 

The paper is organized as follows: In section two we give some pre­
liminaries on subgroups of mapping class groups generated by Dehn 
twists and recall an important result of Gompf which characterizes sym­
plectic Lefschetz fibrations via their monodromy representations. In 
section three we explain the general construction and prove Theorems 
A and B. In section four we give an explicit example of a symplectic 
Lefschetz fibration whose total space has a fundamental group isomor­
phic to Z. All this demonstrates the flexibility of the construction for 
obtaining interesting examples. 

The construction is similar in spirit to a computation done by Don­
aldson in which he represented Thurston's example as a symplectic Lef­
schetz fibration of genus three Riemann surfaces. A whole series of 
examples of the same flavor was constructed independently in [25] and 
[28], [29]. 

In the last section we apply the group theoretic part of the con­
struction to the study of the numerical properties of sections in sym­
plectic Lefschetz fibrations. Finally Appendix A, written by Ivan Smith, 
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presents a short proof of the non-existence of SLF with monodromy con­
tained in the Torelli group. 
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Nota t ion and terminology 

Cg a smooth compact oriented surface of genus g. 

A an analytic disk. 

r a finitely presentable group. 

Map9(—) the subsemigroup in Map s generated by the right Dehn twists. 

Mapg the mapping class group of a smooth genus g surface with n 
punctures. 

Mapg r the mapping class group of a smooth genus g surface with n 
punctures and r boundary components. 

Map Ä the subgroup of the mapping class group Map 9 generated by the 
Dehn twists tr,r G R. 

MapÄ(—) the subsemigroup in Map Ä generated by all conjugates of 
tr,r G R within Map Ä . 

Mon the geometric monodromy group of a TLF (Topological Lefschetz 
Fibration), i.e., the image Mon := m o r i v i («S2 \ {qi,..., qß}, o)) of 
the geometric monodromy representation. 
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mon the geometric monodromy representation associated with a TLF 
of genus g, i.e., 

mon : KI(S2 \ {qi,... ,qß}, o) ->• Mapff . 

ß the number of singular fibers in a TLF or a SLF. 

o a base point in S2 \ {qi,..., qß}. 

öy the structure sheaf of an algebraic variety V. 

CV(1) a very ample line bundle on an algebraic variety V. 

f : X —>• S2 a topological or symplectic Lefschetz fibration (TLF or 
SLF). 

/ : X —>• Ck a symplectic fibration of Lefschetz type over a higher genus 
surface. 

7T™ the fundamental group of a smooth genus g surface with n punctures. 

•Kg the fundamental group of a smooth complete surface of genus g. 

•Kg -» r a finite presentation of T, i.e., a surjective homomorphism whose 
kernel is finitely generated normal subgroup. 

Qi a critical point of a topological or symplectic Lefschetz fibration. 

qi a critical value of a topological or symplectic Lefschetz fibration. 

R C Cg a graph connected collection of circles on the surface Cg. 

s C Cg a circle in Cg or in other words a smooth connected one dimen­
sional submanifold in Cg. 

E a smooth projective algebraic curve. 

Ts a right-handed Dehn twist diffeomorphism associated with a circle 
s £ Cg. In other words for any s C Cg one chooses an orienta­
tion preserving identification of a tubular neighborhood of s with 
the oriented cylinder [0,1] x S 1 C l x C and then defines Ts G 
Diff+(CÖ) as the diffeomorphism that acts a (t,z) H- (t, e2mtz) on 
the cylinder and as identity everywhere else. 

ts the mapping class of a right-handed Dehn twist Ts. The element 
ts G Map s depends only on the isotopy class of Ts. 
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Ui a small neighborhood of a critical value of a TLF or SLF. 

UQÌ a small neighborhood of a critical point in a TLF or SLF. 

Xi the singular fiber of a TLF or a SLF corresponding to the critical 
value <7J. 

X0 a regular fiber of a TLF or a SLF. 

2. Symplectic Lefschetz fibrations 

First we recall some basic definitions and results. For more details 
the reader may wish to consult [27, Section 3.2.7] and [14]. 

Definition 2.1. Let X be a smooth compact 4-manifold equipped 
with a smooth surjective map / : X —> S2. We shall call it a topological 
Lefschetz fibration (TLF) if the following conditions hold: 

(i) The differential df is surjective outside a finite subset of points 
{Qi,...,Qß}cX. 

(ii) Whenever p £ S2 \ { / (Qi) , . . . , f{Qß)} the fiber f-l{p) is a 
smooth orientable Riemann surface of a given genus g. 

(iii) The images qi := f{Qj) are different for different Qi. 

(iv) Let Xi denote the fiber of / containing Qi. Then for any i there 
are small disks qi G Ui and Qi C Uqi C X with / : UQÌ —> Ui being 
a complex Morse function in some complex coordinates (x, y) on 
UQi and z on Ui, i.e., z = f(x, y) = x2 + y2. 

A topological Lefschetz fibration / : X —>• S"2 will be called orientable 
(or chiral) if there exists an orientation on X so that the complex co­
ordinates in (iv) above can be chosen in a way compatible with the 
orientations on X and S2. Note that the definition of a topological 
Lefschetz fibration is designed in such a way that the function | / | 2 is 
a Morse function near the singular fibers Xj. The Morse flow gives a 
handle body decomposition of X and in particular one gets standard 
retractions cri '• f~l{U.{) —> Xi. Fix a base point o G S2 which is a reg­
ular value of / and choose arcs a i , . . . , aß in S2 \ (U,t/,) which connect 
o with some point on dUi, % = 1, • • • ,/J, as in Figure 2.1 
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Figure 2.1: An arc system for / : X —> S2. 

Such a collection of arcs and discs is called an arc system for the TLF. 
A choice of an arc system gives a presentation of the fundamental group 
ofS2\{qi,...,qß}: 

•Ki(S2\{qi,...,qß},o) = {ci,...,cß\ci • ... • cß = 1), 

where geometrically Cj is represented by the o-based loop in 
S2 \ {qi,... ,qß} obtained by tracing Oj followed by tracing dUi coun­
terclockwise and then tracing back Oj in the opposite direction. 

Since the family / : X —> S2 is locally trivial when restricted to 
each a, we get well defined retractions of X0 onto each of the singular 
fibers JQ. By abuse of notation these retractions will be denoted by cri 
as well. Each cri : X0 —> X;b contracts a smooth circle s;b C X0 - the 
geometric vanishing cycle. The boundary of f~l{Uj) is diffeomorphic 
to a smooth fiber bundle over the circle dU-i with X0 as a fiber. This 
fiber bundle is determined by a gluing diffeomorphism TSi : X0 —> X0 

which is the usual Dehn twist along the circle Sj. More precisely TSi is 
the right-handed Dehn twist along s, with respect to the orientation on 
X0 compatible with the orientation on UQÌ given by the complex coor­
dinates around Qi. The circles Si and the Dehn twists TSi are uniquely 
determined up to a smooth isotopy and thus give well defined elements 
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ti G Diff+ (X 0 ) /Diff+(X 0 ) = : Map 9 C Out(7n(X0)) - the group of map­
ping classes of an oriented surface of genus g. The homomorphism 
mon : TTI(S2 \ {qi,... ,qß},o) —> Map s , mon(cj) = ij is called the geo­
metric monodromy representation of / : X —> S2 and its image is called 
the geometric monodromy group of the TLF. It is known [14, Theo­
rem 2.4] that if / : X —>• S2 is an orientable TLF of genus g > 2, then 
the geometric monodromy representation of / uniquely determines the 
diffeomorphism type of / . 

Note that if Cg is an oriented surface and s C Cg is a smoothly 
embedded, homotopically non-trivial circle one can perform both the 
right-handed Dehn twist Ts : Cg —>• Cg and the left-handed Dehn 
twist T~l : Cg ^ Cg. If however / : X ->• S2 is an orientable TLF 
and Cg = X0 is given the induced orientation from X, then all of the 
geometric monodromy transformations {TSl,... ,TSß} are right-handed 
Dehn twists. This property actually characterizes the orientable TLF 
completely. 

We also consider topological Lefschetz fibrations which are compat­
ible with an additional closed non-degenerate 2-form w on X. 

Defini t ion 2 .2 . Assume that / : X ->• S2 is a TLF and that (X, w) 
is a symplectic manifold. We say that ( / : X —> S2;w) is a symplectic 
Lefschetz fibration (SLF) if for any p G S2 the form w is non-degenerate 
on the fiber Xp at p in the sense that the smooth locus of Xp is a 
symplectic submanifold in X and for every i the symplectic form WQÌ is 
non-degenerate on each of the two planes contained in the tangent cone 
of Xi at Qi. 

Gompf [8] had shown that under some mild restrictions the SLF can 
also be characterized in purely topological terms. For the convenience 
of the reader we recall the proof of this very useful fact. Different proofs 
can be found in [8, Theorem 10.2.18] or [30]. 

Propos i t i on 2.3 (R.Gompf). A topological Lefschetz fibration 
f : X —>• S2 of curves of genus g > 2 admits a symplectic structure 
if and only if it is orientable. 

Proof. We will only prove the "if" part of the Proposition. The 
"only if" part is not used anywhere in the paper and is left as an exercise. 

Let / : X —> S2 be an orientable TLF with singular values q\,..., qß. 
Take a topologically simple cover of S2 by open disks {Da}, such that 
it includes a disk Ui centered at every singular value <&, and qi 0 Ua if 
a ^ i. We will put symplectic structures on the families over the disks 
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Ua first, and then glue them by adapting an argument of Thurston (see 
[18, Theorem 6.3]) for symplectic fibrations. 

For every disk Di containing a singular value of / , take the trivial 
family Cg x U —> U, endowed with a symplectic form uifiber © 'Wbasei 
the summands being symplectic forms on the factors. By identifying Cg 

with a regular fiber of / i / - ^ and choosing an arc from the basepoint 
regular value to the singular value of the fibration we get a vanishing 
loop Si C Cg that determine the diffeomorphism type of the pencil / 
over Di. We will perform symplectic surgery on the trivial family Cg x U 
to make it difTeomorphic to / . 

Let q : C2 —> C be the standard quadratic map q{xJy) = x2 + y2. 
Take a small ball B centered at (0,0) G C2 , a disk D C q{B). The 
restricted family q\B : B —>• D has a single quadratic singular fiber BQ 
over O e D c C . 

Let s C Cg be one of the vanishing simple loops of the fibration X. 
Consider the normalization BQ —> BQ and let o\ and 02 be the preimages 
of the singular point (0,0) G BQ C B in BQ. Choose small analytic discs 
in BQ centered at o\ and 02 respectively and let A i , A2 denote their 
images in BQ. 

Select two open annuii A I C A i \ { ( 0 , 0 ) } and A2 C A 2 \ { ( 0 , 0 ) } such 
that the point (0,0) does not lie in the closure A\ U A\ (see Figure 2.2). 
Using Moser's characterization of symplectic type of surfaces by volume, 
we may choose also two open cylinders C\,C2 on the opposite sides of 
a bicollar neighborhood of c, such that both C\, C% are retracts of the 
bicollar neighborhood, their adherence C\ U Ö2 does not intersect c, and 
they are symplectomorphic to A\^A2 respectively. 

The annuii A\, A2, C\, C2 are embedded in their respective total 
spaces with trivial normal bundle, so by Weinstein's symplectic neigh­
borhood theorem [9, Lemma 2.1], theorem exists an e > 0 and open 
neighborhoods Wi of Ai in B, Vj of Cj in Cg x S2 for i,j = 1,2 such 
that the Wi, Vj are symplectomorphic to Ai x D £ ) Cj x D£ respectively. 
Shrinking D if necessary, we may now perform a surgery by inserting 
the Dehn twist of q\B : B —> D by the identifications Wi = Vi. The 
symplectic structures on B and Cg x Di define a symplectic structure 
on / over Di in this way. 

We repeat this surgery over all the critical values of / , rescaling the 
obtained symplectic structures uji,...,ujß so that they induce the same 
symplectic structure [a] on the regular fibers of the pencil. Through 
diffeomorphisms with trivial families we may also endow the restrictions 
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Figure 2.2: The cylinders Ai and Ci, i = 1,2. 

of / over the regular disks Ua with symplectic structures L0a inducing 
the same symplectic structure [a] on the regular fiber of the pencil as 
the twist families over the singular values. 

Let now TO G Vt2(X) be a closed 2-form such that its restriction 
to the fibers represents the cohomology class [a]. Such a form exists 
due to the assumption g > 2. Indeed, consider the differential map 
df : TX ->• f*TS2. Over the open set X \ {Qu ..., Qß] the map df 
is a surjective morphism of vector bundles and so its kernel is a well 
defined rank two real vector bundle on X \ {Qi , . . . , Qß}- On the other 
hand by the definition of a TLF we can find local charts ft E (7j C 5 2 , 
Qi £ UQ{ C X and complex coordinates z;b on £/", and {xi,yi) on UQÌ 

so that f((xi,yi)) = xiyi Zi. Since WQ, is an algebraic map we can 
interptret the restriction df\u as a morphism between the holomorphic 
tangent bundles of UQÌ and Ui respectively. Explicitly 

( d d \ d 
df\uQi [a^y^-d^.+h^y^-dy~j = (via + xih)•-Q^.-

In particular the kernel of the algebraic map df\u is the coherent sheaf 
on UQÌ corresponding to the C[a;,,yj]-module 

( d d \ d d 
c[xi,yi\ • [xi-Q— + y'i~ß~ c C[xi^yi\ • ~ß— ®cixi,yi] • -Q-

and is therefore an invertible sheaf on UQÌ . In other words the real rank 
two vector bundle ker(dfx\{qlt...,q }) glues with the real rank two vector 
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bundles underlying the invertible sheaves ker(df\u ) to a global rank 
two vector bundle Tf on X. Moreover the orientability assumption on 
the TLF implies that Tf is an orientable real rank two vector bundle 
and so Tf admits an almost complex structure. Finally by construction 
Tf restricts to the tangent bundle of the general fiber of / and so c\ (Tf) 
restricts to the first Chern class of the tangent bundle of the general 
fiber. But the fibers of / are assumed to have genus g > 2 and so 
the first Chern class of the general fiber of / is c[o~] for some non-zero 
constant c. Hence c~lc\(Tf) G H2(X,M) is a cohomology class that 
restricts to [a] on the general fiber of / . If all the vanishing cycles 
of / are non-separating, the only closed surfaces in X contained in 
fibers of / are the fibers themselves. Therefore c~lc\(Tf) will restrict 
to [a] on every fiber of / and so we may take TO to be a closed 2-form 
representing the cohomology class c~lc\(Tf). If however the fibration / 
has separating vanishing cycles one needs to modify the class c~lc\(Tf) 
further so that it restricts to a non-trivial cohomology class on every 
closed surface contained in a fiber of / . This can be easily achieved 
by adding to c~lc\(Tf) suitable (rational) multiples of Poincaré duals 
to the closed surfaces contained in the singular fibers of / (see also [8, 
Solution to Exercise 10.2.19]). 

Let TO be a closed 2-form representing the modification of the co­
homology class c~lci(Tf). Over every disk Da we have that TO and 
the symplectic form u)a are cohomologous, thus we may select 1-forms 

Xa^^Hf'HDa)) SO that 

Wn - T0 = d\a. 

Choose now a partition of unity {pa : Da —> [0,1]} subordinate to the 
cover {Ua} and such that for every critical value q-i the function pi has 
constant value 1 on its neighborhood. Define r G Vt2(X) by 

T = T0 + ^d{{pa Æ / ) A Q ) . 
a 

This is a closed form, cohomologous to TO, restricting to the class [a] 
in every fiber and equal to the previously found symplectic LUÌ m neigh­
borhoods of the singular fibers. As in the case of smooth symplectic 
fibrations, this form T is nondegenerate on the tangent spaces to the 
fibers, and as it is defined on the compact total space, if we select a 
symplectic form ß G Q2(S2) the forms 

LÜK = T + Kf*ß 
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are nondegenerate for sufficiently large K. q.e.d. 

3. The main construction 

3.1 Posi t ive relations among right D e h n twists 

Let g be a nonnegative integer. Fix a compact oriented reference sur­
face Cg of genus g and an infinite sequence of distinct points XQ,X\, 

...,xn,... £ Cg. Put 7T™ := ^(CgXixi,... ,xn},x0) and let Diff+(C9)™ 
denote the group of all orientation preserving diffeomorphisms of Cg 

that fix the points x\, X2, • • •, xn+r and induce the identity on the tan­
gent spaces TXi Cg for i = n + 1 , . . . , n + r. For any triple of non-negative 
integers (g, n, r) such that Ig — 2 + n + 2r > 0 define the mapping class 
group Map" as the group of connected components of Diff+ (C 5 ) n , i.e., 

Map£ r :=7ro(Diff+(C f l)?) . 

As usual we will skip the labels n and r if they happen to be equal to 
zero. 

By definition the mapping class group Map™ acts by outer automor­
phisms on 7Tg . In fact this action identifies [10] Map s with the index two 
subgroup of Out(-7T9) consisting of outer automorphisms acting trivially 
on H2(iTg,Z) = H2(Cg,Z). Similarly one can interpret the group MapJ 
as the group of all automorphisms of -Kg acting trivially on H2(irg,Z). 
The group Map™ is generated by the right-handed Dehn twists along 
all (unoriented) non separating loops c C Cg\ {xi,..., xn+r}. 

R e m a r k 3 . 1 . For any g,n the natural forgetful map Map 9 n —> 
Mapg is surjective and has a central kernel which can be identified with 
the free abelian group generated by the Dehn twists along simple loops 
around the punctures. 

For future reference define Map™(—) C Map" to be the subsemi-
group of Mapg r generated by (the images of) all right-handed Dehn 
twists. 

The first step in the construction is the following simple observation. 

L e m m a 3 .2 . Let s\,..., sm C Cg be free simple closed loops (not 
necessarily distinct) and lett\,...,tm be the corresponding right-handed 
Dehn twists. Suppose that there exist integers { n , } ^ so that the t-i's 
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satisfy the relation f\i t™1 = 1 in the mapping class group Map f f. Then 
there exists a TLF f : X —>• S2 with the following properties: 

(a) The regular fiber of f can be identified with Cg so that the 
vanishing cycles of f are precisely the Si 's. 

(b) The geometric monodromy group Mon( / ) of f is just the sub­
group of the mapping class group generated by the ti 's. 

(c) The fundamental group of X is isomorphic to the quotient of 
irg by the normal subgroup generated by all the Si's. 

(d) If all the n-i 's are positive, then f is a SIF. 

Proof. To construct the fibration / : X —>• S2 start with the direct 
product Do x Cg where Do C C is a small disk around zero. Next attach 
|rij|-copies of small discs Dj , i = 1 , . . . ,n , along the boundary of Do-
Over each D;b choose a standard holomorphic Lefschetz fibration Uxi —> 
Di with a unique singular fiber X;b at the center so that the vanishing 
cycle is exactly s,. The union of Do x Cg and the fibrations U(X,{) 
(each appearing |rij|-times respectively) has a structure of a topological 
Lefschetz fibration u : U —> D over a larger disc D . By construction the 
Lefschetz fibration u has a regular fiber isomorphic to Cg and vanishing 
cycles si,..., sm. Moreover the geometric monodromy transformation 
mon(ôD) G Map 9 for u is precisely the product I L ^ - Since the latter 
is equal to identity in Map^ and a posteriori in Map 9 we get that U\dD 

is homotopy equivalent (and hence diffeomorphic) to a product Cgx Sl. 
In particular we can extend u to a TLF over S2. 

The conditions (a) and (b) are satisfied by construction. Let / ' : 
XÜ —y S^ denote the fibration obtained from / by removing the singular 
fibers. Now / ' is a fiber bundle by construction. Also the condition that 
i l i ^l% = f is equivalent to requiring that / ' admits a topological section. 
Consequently we can identify the fundamental group n\ (X») with the 
semidirect product n\{S^) x m o n 7T(i where mon : TT\ (SU) ->• Aut(TTg) is 
the monodromy representation. Now the Seifert-van Kämpen theorem 
implies that 7ri (X) is isomorphic to the quotient of itg by the normal 
subgroup generated by the orbits of the vanishing loops {s\,... ,sm} 
under the monodromy group Mon of / . On the other hand any Dehn 
twist ts is uniquely characterized by the property that the maximal 
quotient of itg on which ts acts as the identity is the quotient of -Kg 

by the normal subgroup generated by s. In particular for any 7 G -Kg 
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the element 7 _ 1 t s ( 7 ) is a product of conjugates of s and so the normal 
subgroup of irg generated by the Mon-orbits of s\,..., sm coincides with 
the normal subgroup generated by s\,..., sm only which proves part (c) 
of the Lemma. 

Finally the fact that condition (d) holds for / is a consequence of 
Proposition 2.3. The Lemma is proven. q.e.d. 

R e m a r k 3 .3 . (i) If the condition [7^ i f = 1 £ Map* in the hypoth­
esis of Lemma 3.2 is replaced by the milder condition FĴ  ("' = 1 G Map 9 , 
the assertions of the lemma are still true provided that the center of the 
quotient of Trg by the normal subgroup generated by the s,'s is a torsion 
group. 

Indeed the construction of the TLF / : X —>• S2 described in the 
proof of Lemma 3.2 requires only that FĴ  f"' = 1 G Mapf l. In particular 
exactly as in Lemma 3.2 we have a topological Lefschetz fibration u : 
U —>• D over a disk D so that 3U is diffeomorphic to the product 
Cg x 3D. The full TLF / : X ->• S2 is again the gluing of U and the 
product Cg x DQO (where D^ is a small disk around oo £ S2) along 
the boundary 3U = Cg x S1 = d(Cg x D«,) . Next by the Seifert-
van Kampen theorem we can identify the fundamental group 7ri(?7) of 
the manifold with boundary U exactly with the quotient of 7rö by the 
normal subgroup generated by the Sj's. Furthermore the quotient map 
h : -Kg -» 7Ti(?7) is induced from the inclusion Cg "—^ U as one of the 
smooth fibers of u. On the other hand the homomorphism h extends 
naturally to a homomorphism hd : irg x Z —> n\{U) induced from the 
inclusion Cg x 3D = 3U >—>• U of the boundary. Let c G -Kg x Z be one of 
the two standard generators of {llïg} x Z. In other words c is represented 
by a loop which projects homeomorphically to 3D. Since g > 2 we see 
that c generates the center of irg x Z and so /tö(c) G 7ri(Lr) is a central 
element. The gluing of Cg x flM to [/" adds exactly one more relation 
to 7Ti([/"), namely the relation /i9(c) = 1. Therefore 7ri(X) = TTI(U)/C 

where C C 7ri(?7) is the cyclic central group generated by hd(c). In 
particular if the center of 7TI(?7) is trivial we get iri(X) = iri(U) as 
desired. 

If Z(-KI(U)) is only torsion we have to modify the construction. In 
this case C = Z / r a for some integer m and we can remedy the situation 
by gluing m copies of X along smooth fibers. Clearly the resulting TLF 
will satisfy assertions (a), (b) and (d) of Lemma 3.2. To see that it will 
also satisfy (c) one can argue as follows. Observe first that the image of 
the edge homomorphism -ÏÏ2(U,3U) —> iri(dU) is precisely ker(hd). In 
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particular, the natural projection (u,u^u) : (U,dU) —> (D,dD) induces 
an isomorphism im[-K2(U, dU) —> ni(dU)]/ker(h) —> iri(dD) = Z and 
hence every element in -K2(U,dU) that maps with degree one on the 
disk D goes to an element of the coset c + ker(h) C ker(hd). It is 
now clear that if we glue two copies of U along a smooth fiber of u we 
similarly obtain elements in the coset 2c + kei(h). Thus after takling 
the connected sum of m copies of U we will get a new TLF / : Y —>• S2 

for which 7ri(y) = TTi{U)/{hd{cm)) = m(U). 

(ii) It is possible to find relations \\i ("' = 1 É Map s for which 
hd{c) ^ 1. The following example was suggested to us by the referee. 

Fix an integer m > 1 and a generic TLF of degree m in CP 2 . Delete 
a 4-ball around each of the m? points in the base locus. Now double the 
resulting manifold with boundary (i.e., cross with [0,1] and take the re­
sulting boundary), to obtain a TLF structure on X = C P 2 # G P 2 # ( m 2 — 
l)(Sl x S"3). The general fiber F of X has genus (m — l ) (m — 2) + m 2 — 1 
and is m-divisible in the homology of X. In particular hd{c) correspond­
ing to the TLF X \ F is of order m. 

The previous lemma shows that the construction of symplectic Lef-
schetz fibrations reduces to the problem of finding relations in the semi­
group Mapg(—) C MapJ. In order to find such relations and to be able 
to modify them we will need to study certain configurations of embedded 
circles in Cg. 

Recall [13] that given two isotopy classes p and a of smooth circles in 
Cg one defines the geometric intersection number i(p, a) as the minimum 
number of points of r fl s over all representatives r of p and s of a. A 
finite set R of smooth circles in Cg is said to be in minimal position if 
every two elements r, s G R intersect transversally in exactly i([r], [s]) 
points and the inersection of every three distinct elements in R is empty. 
It is well known that any finite collection of circles on a surface can be 
isotoped to minimal position. 

Let GR be the unique graph which is dual to the one dimensional 
cell complex U{r|r G R} C Cg, and has no multiple edges. In other 
words the graph GR has vertices labeled by the elements of R and two 
vertices s,r G R are connected by an edge if and only if the two loops 
s and r in Cg intersect at a unique point. 
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Defini t ion 3 .4 . 

(a) Two loops s,r G R will be called adjacent if they intersect 
transversally at a single point, i.e., if the vertices s and r in GR 
are connected by a single edge. 

(b) Two circles s,r G R will be called graph connected if the cor­
responding vertices are connected by a path of edges in GR. In 
other words s,r G R are graph connected if there exist a sequence 
of circles si,..., sm G R so that s = s i , r = sm and s, is adjacent 
to s,_|_i for a l i i = 1 , . . . , m — 1. 

fcj Let R and S" be two finite sets of circles in Cg so that R U S is 
in minimal position. We will say that i? is graph connected to S 
if for any loop r G R there exists a loop s £ S so that r and s are 
graph connected in R U S". 

R e m a r k 3.5 .The adjacency condition in part (b) of Definition 3.4 
is imposed only on two consecutive loops in the sequence si,...,sm. In 
particular, non-consecutive loops may intersect in an arbitrary trans­
verse fashion. 

For any pair of smooth circles a, b C Cg intersecting at exactly one 
point one can find a neighborhood Ca^ of a U b in Cg diffeomorphic to 
a torus with one hole as depicted on Figure 3.1. 

Figure 3.1: A handle determined by two adjacent cycles. 

Thus we obtain a homomorphism ha^ : Map 1 ; 1 —> Map s defined by 
the handle Ca^ C Cg. 

For a set R of circles in minimal position denote by Map Ä the 
subgroup of MapJ generated by the right Dehn twists { i r } r e # . Let 
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MapÄ(—) denote the subsemigroup in Map Ä generated by the right 
twists {tr}ren and all of their conjugates in Map^ . Note that Map^(—) 
is contained in MapJ(—) as a subsemigroup since for every (j> G Map J 
and every isotopy class p of circles on Cg one has <j>otpo <fi~l = t^py 
Moreover by definition the semigroup Map^(—) C M a p ^ is invariant 
under conjugation in Map^ . 

The next two lemmas give a topological characterization of the ex­
istence of relations in Map^(—). 

L e m m a 3.6. Let L be a finite set of circles in minimal position in 

Cg. Then Map^(—) = Map^ if and only if there exists a finite relation 

a = 1 where a is a product of only positive powers of t^m 's with l G L, 

4> G Map^ and each t[,l G L occurs at least once in a. 

Proof. For the proof of the "if" part consider a relation a = 1 
as in the statement of the lemma. By hypothesis there exist a positive 
integer ß and a map I : {1, 2 , . . . , / / } —>• {<j>{x) \x G L, (j> G Map^} so that 
im(Z) D L and 

ß 1 = « = n %) 
in Map^. If we multiply both sides of the above relation by tZ^ on the 
left we get that 

ß 
tT(l) = HtKi) eMapiR-

i=2 

Since the relation is cyclic this implies that tZ^ G Map^(—) for all % = 
1 , . . . , k. Combining this with the surjectivity of I yields the inclusion 
{iZ^ieL C M a p ^ ( - ) and hence M a p ^ ( - ) = Map^. 

To prove the "only if" part of the lemma note that the assumption 
M a p ^ ( - ) = Map^ implies that tZ1 G M a p ^ ( - ) for a lH G L. In other 
words each tZ can be written as a product of finitely many of the right 
Dehn twists {t(f,(s)}seL ^Map1 • ^et n o w m ^>e the cardinality of L and 
let li,..., lm be an ordering of L. Next take the obvious relation 

1 = ti,t, ti„t, .. .tit, 

and then replace each of the left Dehn twists tZ. G Map^ = Mapx(—) 
with the corresponding product of right Dehn twists. The resulting 
right-hand side will be a word a with the desired property. q.e.d. 
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The next lemma gives a convenient criterion guaranteeing the exis­
tence of positive relations among right Dehn twists. 

L e m m a 3.7. Let R and S be two sets of circles in minimal position. 
Assume that R is graph connected to S and that Map^(—) = Map^. 
Then M a p ^ u 5 ( - ) = M a p ^ u 5 . 

Proof. By definition Mapl
RuS(—) is the subsemigroup in Map* gen­

erated by t^(c), 4> G Map^yg, c G R U S. Therefore we need to show 

that for any <f> G Map^U i S and C É R U S the left twist £7,N also belongs 

to Map^UiS(—). Since £^(c) = <f> ° tc o cf)~l and Map^UiS(—) is conjuga­

tion invariant in Map^U i S , it suffices to check that t~x G Map^UiS(—) 

whenever c G R\J S. 

If c G S then by assumption t~x G Map^( —) C Map^UiS( —). If 
c G i?, then by the hypothesis of the lemma c is graph connected in GRUS 

with some element d G S. On the other hand according to Lemma 5.1 
(b) for any pair a,b of adjacent cycles on Cg the right twists ta, £& 
are conjugate in hayfi(Map1 x) C M a p ^ u 5 . In particular t~x and £7 
belong to the same conjugacy class in MapÄ U i S . Since by assumption 
t~j. G Map^(—) C Map^ u 5(—) and due to the conjugation invariance 
of Map^ u 5(—) in Map^yg we conclude that t~x G Map^ u 5 (—) as well, 
which concludes the proof of the lemma. q.e.d. 

Let now T be a finitely presentable group and let a : -Kg -» F be a 
given presentation. As we can see from the previous lemmas the con­
struction of a SLF whose total space has fundamental group F reduces 
to finding a graph connected system of circles R so that R generates 
ker(a) as a normal subgroup and the right Dehn twists about some 
subsystem of S satisfy a positive relation in Map*. 

To achieve this we will have to modify the presentation a and in 
particular enlarge the genus g. This will be done in two steps which are 
explained in the next two sections. 

3.2 Geometr ic presentat ions 

The first step is purely topological. Starting with a presentation a : 
irg -» F we show how to add handles to Cg to obtain a new presentation 
ip : 7Te -» F for which the cycles generating ker(^) are nicely situated on 
Ce. 

We begin with the following definition: 
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Definit ion 3 .8 . Let T be a finitely presentable group. A geometric 
presentation of T is a surjective homomorphism \b : ne —> F, where ne 

is the fundamental group of a compact Riemann surface Ce of genus e 
such that : 

(a) The group of relations ker (•*/>) is generated as a normal subgroup 
by finitely many simple closed loops n , . . . , rm C Ce. 

(b) Every two of the loops r\,..., rm intersect transversally at most 
at one point and the subspace U^r, C Ce is connected. 

As we will see in the next section the geometrically presented groups 
are well suited for algebraic geometric manipulations. Thus it is impor­
tant to find a procedure for constructing geometric presentations of 
finitely presentable groups. We have the following 

L e m m a 3.9 . Let a : irg -» F be a given presentation. Then there 
exists a surjective homomorphism ne -» irg so that the composition ne —> 
•Kg —>• r is a geometric presentation. 

Proof. Let R C ker(a) be a finite subset of elements which generates 
ker(a) as a normal subgroup (such a set exists since by assumption 
a is a finite presentation of F). Represent each element r G R by 
a free immersed loop cr C Cg so that the one dimensional simplicial 
subcomplex M := U r e # c r C Cg is connected and has only ordinary 
double points as singularities. Such a collection of immersed loops cr can 
be easily found as a small perturbation of a standard representation of 
the elements in R as immersed loops based at some fixed point xo G Cg. 

For each singular point p G M choose a small disk p G Dp C Cg 

which doesn't contain any other singularity of M. Now for each p G 
Sing(M) delete from Dp a smaller disk centered at p and glue a handle 
Cp to Cg along the inner rim of the resulting annulus. The two branches 
of M n Dp meeting at p can be then completed to two smooth disjoint 
curves on Cp as shown on Figure 3.2. 

In this way we obtain a new smooth surface 

Ce := (Cg \ Sing(M)) U (Upe 

of genus e = g + # (S ing(M)) and a system of smooth disjoint circles 
cr C Ce, r G R. Next for every p G Sing(M) we choose standard 
generators ap,bp C Cp C Ce of the fundamental group of Cp as on 
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Figure 3.2: Gluing the handle Cp to Dp \ {p}. 

Figure 3.2. By construction T is isomorphic to the quotient of 7re by the 
normal subgroup N < ne generated by the finite set of elements 

{cr}r£R U (Up eSing(M){ap)^p}) C 7Te. 

But we have glued the handles in such a way that the cr's are disjoint 
from each other, (ap U bp) fl (aq U bq) ^ 0 only if p = q and each ap 

or bp intersects exactly one of the cr 's transversally at a single point. 
Finally since every ap intersects bp at one point we conclude that the 
union of all these cycles is connected in Ce and hence 7re —> ne/N = V 
is a geometric presentation. q.e.d. 

3.3 The proof of Theorem A 

Assume now that T is a group with a fixed geometric presentation ip : 
7Te —> T. Let R = { r i , . . . , rm} be a set of circles in minimal position in 
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Ce so that R generates ker(^) as a normal subgroup as in Definition 3.8. 
Note that without a loss of generality we may assume that R contains a 
non-separating circle s G R. Indeed, if ker(^) happens to be contained 
in [7Te,7re] we can always glue an extra handle to Ce and add to R the 
three standard generators of the first homology of the handle (plus some 
extra loops if required). 

Let S be a smooth projective algebraic curve of genus e which we 
have identified as a C°° manifold with Ce. Fix a point p £ s C T, which 
does not lie on any of the circles in R \ {s} and let p G A C S be a 
small analytic disc which is disjoint from all the circles in R \ {s}. 

Let V = S x F 1 and let D C V be a very ample divisor such 
that D = ^i Di with each Dj C V being a section for the projection 
PY, '• V —> S. By replacing Oy(D) by its third power if necessary we may 
further assume that the degree of D on P 1 (= the number of sections 
Di) is divisible by three. 

Let pi, Aj and Si denote the preimages in D;b of p, A and s re­
spectively. Similarly let Ri be the set of circles in Di consisting of the 
preimages of the circles in R via the projection PY,\DÌ '• Di —>• S. When 
Oy(D) is chosen to be suÆciently ample and the divisor D is chosen to 
be a generic deformation of a set of sections of PY, which pass through a 
given point lying over p e S w e may easily arrange that all intersections 
of the Di s are transverse and that for every pair of indices % ^ j we 
have Aj n Aj / 0 (see Figure 3.3 below). 

For any i ^ j pick a point pij G Aj n A j . Choose arcs d\ • C Aj 
connecting pi with pij which meet only at pi and do not intersect Sj at 
any other point (see Figure 3.4). 

R e m a r k 3 .10 . For each i and j only one point is chosen in Ajfl A j . 
Therefore the set of points {pij} will be only a subset in U J < J ( D J n Dj) 
in general. 

Consider a generic pencil in the linear system \D\ which contains 
D as a member and has a smooth general member. After blowing up 
the base points of this pencil on V we obtain a smooth surface V and 
a projective morphism v : V —> GP1 having D as a fiber over some 
point d G CF1 and a smooth connected general fiber. Let V0 be a 
smooth fiber of v over some reference point o G CF1 which is close to 
d. Then we have (once we choose an arc system for v) a well defined 
deformation retraction from a tubular neighborhood of D in V onto D. 
Let cr : V0 —> D denote the restriction of this retraction to the curve 
V0. The continuous map cr collapses certain smooth circles on V0 to the 
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V 

p 

Figure 3.3: The divisors Dj. 

points in the finite set U J < J ( D J CiDj). Note that via the map cr we may 
view the Aj \ {PÌJ}J^Ì as punctured discs on the smooth curve V0, the 
set UiRi as a set of circles in minimal position on V0 and the arcs a\ • 
as arcs on V0. 

In particular we see that the points pij G D correspond to vanish­
ing cycles Cij C V0 for the pencil v which are disjoint from Si C V0. 
Moreover by a slight perturbation within each Aj we can arrange that 
for each pair of indices i ^ j the circs ci^ j, ci^ j G V0 join smoothly at a 
point on the circle Cij (see Figure 3.5). 

For each triple of distinct indices i,j,k denote by lij,k the smooth 
unoriented circle in V0 obtained by tracing the segments a%y, {x,y} C 
{i,j,k} in the following order (see Figure 3.5) 

k,hk = akk,i ° 4,j ° a3j,k ° äii ° alj ° «!,*> 

where we have adopted the convention, that (fxy is oriented from px to 
pXjy and ax is oriented from px>y to px. 

By construction, the kjk's are free loops representing elements in the 
kernel of the natural surjection (ps|y0)* : ^liYo) ~* v"i(S). 

Before we state the main result of this section we need to introduce 
some notation. Let h be the genus of V0 and let S C ^ (V^) be the set 
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Figure 3.4: The system of arcs in Aj. 

of geometric vanishing cycles for the algebraic pencil v. We have the 
following: 

Propos i t i on 3 .11 . Let L be the set of circles in minimal position 
on C/j defined as 

L := (UiRi) U S U {l123,h5(i, • • •}• 

Then there exists a SLF f : X —>• S2 of genus h such that: 

• The set of vanishing cycles of f is exactly L. 

• The fundamental group of X is canonically isomorphic to F. 

• The identifications ni (X) = F and V0 = C^ can be chosen so that 
the natural epimorphism -K\h —> ni (X) (induced from the inclusion 
of C/j in X as a regular fiber of f) becomes the composition 

(PsivJ* i> 
Kh = T^iyVo) ^ ^ 1 ( 2 , ) = 7Te ä-1 . 
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Figure 3.5: Retraction of V0 onto D. 

Proof. Let t : V0 <—^ V be the natural inclusion of the divisor 
V0 in the surface V. Consider the induced map t* : ni(V0) —> ni(V). 
Since V0 is the regular fiber of the algebraic Lefschetz fibration v : 
V —> F1 we conclude by Lemma 3.2 (c) that ker(t*) is the normal 
subgroup generated by the circles in S. On the other hand since ps* 
identifies 7ri(V) with 7ri(E) we have that ker(t*) = ker((pEiyo)*) and 
so lijk G ker(t*) for all triples of indices i,j,k. Due to this observation 
the normal subgroup in ^(V^) = n^ generated by the elements in L 
actually coincides with the normal subgroup generated by the elements 
in (Uji?j) U S. Moreover by the handle body decomposition for the 
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Lefschetz pencil v we have a commutative diagram 

and hence each set Ri C ^(V^) = 7r/j is mapped bijectively to the set 
R C 7Te by the map t*. This shows that 1/ C ker(^ o /,*) and that 
moreover 1/ generates ker(^ ot,) as a normal subgroup in 717̂  Therefore 
By Lemma 3.2 the proposition will be proven if we can find a positive 
relation in Map„ among the right Dehn twists corresponding to elements 
in L. 

The set of circles S is the set of vanishing cycles in an algebraic 
Lefschetz pencil corresponding to an ample line bundle. In particular 
this algebraic pencil has a base point and so we have a positive relation 
in Map* among the Dehn twists corresponding to elements in S as in 
Lemma 3.2. Thus Map^(—) = Map^ by the "if" part of Lemma 3.6. 

Put R := UjRj, U {/i23, ̂ 456? • • •}• By the geometric presentation as­
sumption we know that each Ri is graph connected. Also by construc­
tion lijk is graph connected to the circles Si £ Ri, Sj G Rj and s^ G R^ 
and to the vanishing cycles CÌJ^CJ^^CÌ^ G S. Therefore R is graph con­
nected to S and so by Lemma 3.7 we have Mapl

RuS(—) = Map^UiS. Now 
we can apply the "only if" part of Lemma 3.6 to the set L = RUS which 
concludes the proof of the proposition. q.e.d. 

Granted the previous proposition Theorem A now becomes a tau­
tology: 

Proof of Theorem A. Given a finite presentation a : irg —> F of T 
first use Lemma 3.9 to obtain a geometric presentation ip : 7re —> F and 
then apply Proposition 3.11 to obtain a SLF with fundamental group 
r . q.e.d. 

3.4 Symplectic fibrations over bases of higher genus 

The construction explained in the two previous sections can be easily 
modified to produce examples of symplectic Lefschetz fibrations over 
surfaces of genus bigger than zero (see Remark 3.12 for an explanation 
of the terminology). Moreover in that case the algebraic geometric part 
of the construction becomes superfluous and the resulting fibrations 
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have monodromy groups generated essentially by the Dehn twists with 
respect to the circles giving the relations in some geometric presentation. 
This phenomenon is illustrated in Theorem B which we prove below. 

R e m a r k 3 .12 . Before we prove the theorem a terminological re­
mark is in order. Note that the notion of a symplectic Lefschetz fibra-
tion introduced in Definition 2.2 makes sense without the assumptions 
that the base of the fibratkm is a sphere and that the total space is 
four dimensional. In fact the whole setup of Definition 2.2 easily gen­
eralizes to fibrations of even dimensional manifolds over a base of even 
dimension. 

In view of this we will adopt a slightly different terminology for 
the remainder of this section. Namely a symplectic Lefschetz fibratkm 
will mean a map / : X —>• C from a smooth 4-fold X to a smooth 
compact Riemann surface C which satisfies all the conditions (i)-(iv) 
from Definition 2.1 but with S2 replaced by C. 

This abuse of terminology should not cause any confusion since sym­
plectic Lefschetz fibrations like that will be considered only in this sec­
tion. 

We can now state the main result of this section. 

Propos i t i on 3 .13 . LetF be a finitely presentable group with a given 

presentation a : -Kg -» F. Then there exist a geometric presentation 

7Te —> irg —> F and a symplectic Lefschetz fibration f : X —>• C% for some 

k > > 0 so that 

• the regular fiber of f is of genus e, 

• the fundamental group of X fits in a short exact sequence 

l - > r - > 7 T l p O - > 7 r f c - H , 

• the natural surjective map from the fundamental group of the fiber 
of f to F coincides with the composition ne —> irg —> F. 

Proof. Let ip : n^ —> irg —> F be a geometric presentation as 
in Lemma 3.9. Let R be a generating set of circles for ker(^) as in 
Definition 3.8. Even though the circles in R need not satisfy a positive 
relation in Map^ the subsemigroup Map^(—) is very close to being the 
whole group M a p ^ as the following arguments show. 

L e m m a 3 .14 . The abelianization of Mapl
R is a cyclic group. 
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Proof. Fix a reference element c G R. The group MapÄ is gener­
ated as a normal subgroup in Map* by the Dehn twists {i s} s e#. Since 
by definition any two circles in R are graph connected we conclude as 
in the proof of Lemma 3.7 that all generators of Map^ are conjugate 
to each other. Therefore any character Map^ —> S1 is defined by its 
value on tc and so the quotient Map^/[Map^, Map^] is generated by 
£c[Map^, Map^]. The lemma is proven. q.e.d. 

The previous lemma shows that if we can find an integer n such that 
i" G [Map^j, Map^j] for any s G R, then the abelianization of MapÄ is of 
order at most n. In fact the same statement holds for any subgroup G 
of the mapping class group G C Map^ which is contained in the normal 
closure of Map^ in Map^. 

For the next step in the proof we will need to assume that the set R 
is big enough. More precisely let r, s G R be two adjacent circles on C^ 
and let Cr>s C Cd be the corresponding handle. Let p be the intersection 
point of r and s. By deleting a small disk Dp C C^ centered at p and 
gluing a handle Cp in its place as in the proof of Lemma 3.9 we obtain 
a new surface Ce of genus e = d + 1. The two open curves r,s C Ca\ Dp 

can be completed to smooth circles by adding arcs in Cr>s as shown on 
Figure 3.6. Furthermore, we can enlarge the set of relations R to a new 
set of circles S = {q} U R U {a, 6} where q C CTiS is a circle isotopie 
to r such that q n Dp = 0 and a, b are the standard generators of the 
fundamental group of Cp (see Figure 3.6). 

By construction we have a geometric presentation 7re —> F whose 
kernel is generated as a normal subgroup by the elements of S. By 
Lemma 3.14 the abelianization of the group Map \ is cyclic. In fact 
since we have ensured that S is big enough we have the following: 

Lemma 3.15. The abelianization of Map^ is a finite cyclic group 
of order dividing 10. 

Proof. The union (Cj.)S \ Dp) U Cp is a genus two handle on Ce 

and therefore the inclusion (CrjS \ Dp) U Cp C Ce induces a natural 
homomorphism h : Map2 i —> Map^. Moreover by construction the 
subgroup /i(Map2i) C Map^ contains a non-trivial Dehn twist - e.g. 
the twist along the circle a C Ce. Therefore we conclude as in the proof 
of Lemma 3.14 that the group Map \ is generated by conjugates of the 
element ta G /i(Map2 i) C Map^. 

On the other hand it is known (see e.g. [32]) that the group Map2 i 
has a presentation with several relations of degree zero and one relation 
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Figure 3.6: Enlarging a geometric presentation. 

Map 2,1 i l , . . . , £5 tj ti 
3\ 1, tflj 

The braid relations titjt 

of degree ten. More precisely one has 

if \i - j \ + 1 and ( i i i 2 i 3 ) 4 = . 

Ì5(Ì4Ì3Ì2Ì1Ì2Ì3Ì4)~ Ì5*4Ì3*2ÌiÌ2Ì3*4 

itj for \i — j \ = 1 in this presentation 
show that any homomorphism from Map2 i to an abelian group G will 
have to map all ij's to the same element g G G. Moreover the degree 
ten relation in the presentation implies that g10 = 1 G G and so the 
abelianization of Map2 i is isomorphic to Z/10. 

Due to this we see that the tenth power of any generator of Map^ 
will be conjugate to i^° and so will belong to the commutator subgroup 
[Map_5, Map s ] . Thus by the remark after the proof of Lemma 3.14 the 
abelianization of Map^ will be a cyclic group of order dividing ten. The 
lemma is proven q.e.d. 

Now we can finish the proof of the proposition. Let m be the cardi­
nality of S and let s\,..., sm be an ordering of the elements in S. By 
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Lemma 3.15 we can find elements £1,77$ G Map 5 , i = 1 , . . . , k such that 
the relation 

m k 

(3.1) IR° = II[^] 
j=l i=l 

holds in Map^. 

For every i = l,...,k choose diffeomorphisms Hj,i£j G Diff+(Ce) 
representing the mapping classes £j,r?j. Let i f be a Riemann surface of 
genus k with one boundary component. The fundamental group ~ÏÏ\{K) 

is generated by 2A; + 1 simple closed curves « i , ßi,..., a^, ßk, c satisfying 
the only relation 

k 

J\[außi] =c, 
i=l 

and so we can construct a representation n\{K) —> Diff+(Ce) given by 
ai H- Hj, /3j H- Ei, c H- rjfSjjE'j]. Moreover since we have the free­
dom of changing the diffeomorphisms Sj and £", up to isotopy we may 
assume without a loss of generality that all the Sj's and E^'s preserve 
a given symplectic form on Ce. Wi th this choice the group ni(K) acts 
symplectically and freely on the product K x Ce of the universal cover 
of K and Ce, and by passing to the quotient of this action we obtain 
a smooth symplectic fibration Y —> K with fiber Ce. The restriction 
of this fibration over the boundary circle c of K is a smooth C e fibra­
tion over Sl corresponding to the element I l i f ó ' ^ ] *= Map e . On the 
other hand exactly as in the proof of Lemma 3.2 we can construct a 
symplectic Lefschetz fibration u : U —>• D whose restriction ?7|aB to 
the boundary circle is a principal C e fibration over Sl corresponding 
to the element n ? ^ } ° - Due to the relation (3.1) this implies that the 
restrictions of Y and U to c C K and dD C D respectively are isomor­
phic Ce bundles over a circle and so we can glue Y and U along their 
boundaries to obtain a smooth orientable compact fourfold X which 
fibers over the genus k curve C^ = K Uc=d£> D with a regular fiber of 
genus e. Since Proposition 2.3 is true for abitrary base surfaces (see 
[8, Theorem 10.2.18] for a proof) we conclude that the projection map 
/ : X —> Ck is a symplectic Lefschetz fibration with 10m singular fibers 
and vanishing cycles s\,..., sm. In particular ker[7ri(X) —> 7ri(Cfc)] is 
isomorphic to the quotient of ne by the normal subgroup generated by 
the Sj's and so the proposition is proven. q.e.d. 
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R e m a r k 3.16. It is clear from the proof of Proposition 3.13 that 
with a little extra care one can control effectively the genus of the fibers 
of / and the number of singular fibers of / but not the genus of the base 

Cfc-
The trick of enlarging the geometric presentation by creating a genus 

two handle seems to be really necessary since a priori one can guarantee 
only the existence of a non-trivial homomorphism from Map 1 x to Maprf 

which is not enough since the abelianization of Map} x is Z as explained 
in the proof of Corollary 5.2. On the other hand it is known that the 
group Mapfl r is perfect for g > 3, r > 0 [26]. Hence same argument 
as in the proof of Proposition 3.13 shows that we can glue in an extra 
handle to Ce to obtain a non-trivial homomorphism Map 3 1 —> M a p d + 2 i 
and a geometric presentation ird+2 —> T whose kernel is generated as a 
normal subgroup by a connected graph of circles P with cardinality 
#P = #R + 5 = m + 2. In this case already the Dehn twists ts, s G P 
themselves will be products of commutators in Mapp and so we will get 
a SLF with m + 2 singular fibers. 

In fact by further enlarging the genus of the base one can modify 
the fibration described in Remark 3.16 to obtain a proof of Theorem B. 
Actually we have the following precise version of Theorem B: 

Corollary 3 .17. Let T be a finitely presentable group with a given 
geometric presentation a : n^ —> T. Then there exist a geometric presen­
tation 7r<2+2 —> i^d —> r and a symplectic Lefschetz fibration f : Y —>• C 
over a smooth compact Riemann surface C so that 

• the regular fiber of f is diffeomorphic to C^+2; 

• f has a unique singular fiber, 

• the fundamental group of X fits in a short exact sequence 

l ^ r ^ T T l ( X ) -^TTl(C) ->• 1, 

• the natural surjective map from the fundamental group of the fiber 

of f to r coincides with the composition itd+2 —> ^d —> T. 

Proof. We will use the notation of Remark 3.16. As a first ap­
proximation to / : X —> C we will use the genus d + 2 SLF constructed 
in Remark 3.16. By construction the homomorphism iTd+2 -> T is a 
geometric presentation whose kernel is generated as a normal subgroup 
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by a connected graph of circles P. Observe that since each ts, s G P is 
a product of commutators in Mapp similarly to the proof of Theorem B 
we can replace a tubular neighborhood of the singular fiber at which 
the circle s vanishes with a smooth Cd+2 fibration over a high genus 
Riemann surface corresponding to a representation of ts as a product 
of commutators. If we do this for all elements in S but one we will get 
a symplectic Lefschetz fibration with one singular fiber and the same 
monodromy group as that of the original fibration. Let / : X —> C be 
this fibration and let q G C be the only critical value of / . Let r G P be 
the cycle vanishing at q. The map / induces a surjection on fundamental 
groups /* : 7Ti(X) —> 7ri(C) and the kernel ker(/*) is naturally a quotient 
of the fundamental group itd+2 of the regular fiber of / . To calculate 
ker(/*) note that we have a natural surjection ni(X \ f~l(q)) —> vri(X) 
which restricts to the quotient map itd+2 ~* ker(/*). Using this map one 
can identify ker[7Td+2 -» ker(/*)] with the subgroup in ni(X \ f~l(q)) 
which is generated as normal subgroup (in iri(X \ f~1{q))) by the cycle 
r G ~ïï(i+2 C •Ki(X\f~1(q)). Indeed, let / : X —> A be a SLF over a disk 
A of genus d + 2. If f : X —> A has a section we can use Seifert-van 
Kampen theorem in the same way as in the proof of Lemma 3.2 to argue 
that 7Ti(X) is the quotient of 71̂ +2 by the normal subgroup generated 
by all vanishing cycles. Now if we take / : X —> A to be the pullback of 
/ : X —> C to the universal cover A of C it follows that ker(/*) = ni(X) 
and so ker[7rd+2 ~» ker(/*)] is generated as a normal subgroup by the 
vanishing cycles of / . But by construction the set of vanishing cycles of 
/ is simply the set {hrh~1}fie7Tl(c)i i-e-? ker[7Trf_|_2 -» ker(/*)] is generated 
by r as a normal subgroup. 

On the other hand the fact that X\f~1(q) —> C\{q} is a smooth fi­
bration identifies ni(X \ f~l(q)) with the semidirect product 
TTi(C\{q}) XmonTTrf+2 where mon : 7Ti(C\{ç}) ->• Aut(7Trf+2) is the mon­
odromy representation. By the definition of a semidirect product the 
subgroup 7Ti(C\{g}) C 7 r i ( X \ / _ 1 ( ç ) ) normalizes 7rrf+2 C 7 r i ( X \ / _ 1 ( g ) ) 
and the inner action of 7ri (C \ {q}) on 71̂ +2 coincides with the represen­
tation mon. Consequently ker[7Trf_|_2 ~» ker(/*)] is the subgroup of itd+2 
which is generated as a normal subgroup (in ^ + 2 ) by the orbit of the 
vanishing cycle r G itd+2 under the monodromy group of / . 

The next step is to recall that by construction the monodromy group 
of / is exactly Mapp. Moreover since P is a set of relations in a geomet­
ric presentation, we know that the Dehn twists about any two circles 
in P are conjugate and hence for any s G P there exists an element 
4> G Mapp for which ts = (f> o tr o cf)~l = t^y However we have argued 
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above that (f)(r) G ker(/*) for any (f> G Mapp and hence ker/* contains 
a circle which induces the same Dehn twist as s. To finish the proof we 
only need to observe that for any surface Cg and any circle c C Cg the 
Dehn twist tc is uniquely characterized by the property that the max­
imal quotient of irg on which it induces the identity is the quotient of 
irg by the normal subgroup generated by c. Thus if we have two circles 
inducing the same Dehn twist the normal subgroups in irg generated by 
those circles coincide. In combination with the above discussion this 
implies that P C ker(/*) and so ker(/*) coincides with the quotient 
of 7r<2+2 by the normal subgroup generated by the elements in P. The 
corollary is proven. q.e.d. 

R e m a r k 3.18. Observe that even though there are no obvious re­
strictions for the Lefschetz fibrations constructed in Proposition 3.13 
to be Kahler it will be very hard to construct projective examples like 
that . In general the algebraic Lefschetz fibrations have much bigger 
monodromies and as a result the fundamental group of an algebraic 
family / : X —> C as above is an extension of 7ri(C) with a rather small 
(in general trivial) group. The reason for this phenomenon is that as it 
follows from the above argument the only condition for the existence of 
a symplectic Lefschetz pencil with a given fundamental group is some 
equation in the mapping class group. On the other hand Hodge theory 
imposes many other restrictions in the algebraic situation - for example 
it is shown in [15] that if the first Betti number of X is trivial, then the 
monodromy group of an algebraic Lefschetz pencil of big enough degree 
cannot fix any loop on the fiber. An interesting question to investigate 
is if this restriction exists for SLP. 

4. A n e x a m p l e of a SLF w i t h n\(X) = Z 

In this section we will use a slight modification of the proof of Propo­
sition 3.11 to construct an example of a symplectic Lefschetz fibration 
with fundamental group equal to Z. 

Let E be an elliptic curve. Consider the complex projective surface 
V := E x P 1 and let PE '• V —> E be the natural projection. Let 
Du C V be the section of PE given by the graph of the natural degree 
two covering v : E —> F 1 . Fix a point p G P 1 which is not a branch point 
for the covering v : E —> P 1 and let Dp = E x {p} be the corresponding 
section of PE-
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Consider a divisor D = Dp + Dv. By construction D is a strict nor­
mal crossing curve with exactly two singular points {pi,P2} = Dp C\DU. 
Suppose that the linear system \D\ contains a smooth divisor Y. We 
will assume that Y is close enough to D in \D\ so that there is a well 
defined map cr : Y —>• D coming from a deformation retraction of a 
tubular neighborhood of D onto D. The curve Y is of genus 3 and the 
natural map PE\Y '-Y^Eisa, two sheeted covering branched at four 
points which get glued in pairs to the points PE(PI) and PE(P2) respec­
tively when we deform Y to D. Let seg12 be a contractible segment 
in E connecting PE(PI) and PE{P2) and let s C E be a nonseparating 
circle intersecting seg12 at a single point (see Figure 4.1). Denote by S 
the set of geometric vanishing cycles for an algebraic pencil P 1 C \D\ 
containing both Y and D. As in the proof of Proposition 3.11 consider 
the system of circles in minimal position 

L := {li2,Sp,su} US C Y 

where lu := _P^iy(seg12) is the double cover of seg12 and sp and su are 
the preimages of s in Ep and Eu respectively, viewed as cycles on Y via 
cr (see Figure 4.1). By definition the set S contains two cycles v\ and 
V2 corresponding to p\ and p 2 respectively (i.e., the cycles contracted 
by cr) and so L is graph connected to S. 

Figure 4.1: The covering PE\Y -Y—>E. 
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The same argument as in the proof of Proposition 3.11 shows that 
the quotient T of ni(Y) by the normal subgroup generated by the circles 
in L is isomorphic to the quotient of ni(E) by the normal subgroup 
generated by s, i.e., is isomorphic to Z. Furthermore since L is graph 
connected to S the combination of Lemma 3.2 and the "only if" part of 
Lemma 3.6 a yields a SLF with monodromy group Map^, regular fiber 
isomorphic to Y and fundamental group T. 

Therefore in order to finish the construction we only need to show 
that the linear system |D| contains a smooth divisor. Let Fo := P 1 x P 1 

and let a := v x id : V —> ¥Q be the double cover induced from v. 
As usually Ow0 (

mJn) will denote the line bundle p\ö^i(m) (g>P20Pi(n) 
where pi : ¥Q —> P 1 , % = 1, 2 are the projections on the first and sec­
ond factors respectively. By definition we have Dp G |a*ÖFo(0,1)| and 
Dv G |a*ÖF0 (1)1)1- Thus D G |a*ÖF0( l ,2) | and so we need to find a 
smooth divisor in the linear system |a*ÖF0 (1, 2) |. But the double cover 
a : V —> Fo is a root cover branched along a section of O F 0 (4,0) and 
hence a*Ov = 0® O ( - 2 , 0 ) . This yields 

tf0(F,a*ÖF0(l,2))=tf0(F0,a*a*ÖF0(l,2)) 

= H°(¥0, O¥o (1, 2) ® (OF0 © O F 0 ( - 2 , 0))) 

= tf°(F0,öFo(l,2)), 

and so every member of the linear system \D\ is a pullback of a divisor 
in | Ö F 0 ( 1 , 2 ) | . Finally since Ö F 0 ( 1 , 2 ) is obviously base point free, the 
general point in the five dimensional projective space | Ö F 0 ( 1 , 2 ) | will 
represent a smooth rational curve on Fo, which is a double cover of 
P 1 via the projection pi, and intersects the branch divisor of a in eight 
distinct points. Therefore the preimage of such a curve in F is a smooth 
curve Y of genus three which finishes the construction. 

R e m a r k 4 .1 . The family / : X —>• S2 just constructed is an ex­
ample of a symplectic Lefschetz fibration whose monodromy group does 
not act semi simply on the first cohomology of the fiber. This can be 
seen directly from the explicit description of the Dehn twists tm, tu and 
tv given above. In fact it is proven in [15] that as long as the total space 
of a SLF has an odd first Betti number the monodromy action on the 
first cohomology of the fiber has a non-trivial unipotent radical. 

R e m a r k 4 .2 . Explicit examples of symplectic Lefschetz fibrations 
with prescribed first homology were also constructed by Ivan Smith [30]. 
In particular he shows that any abelian group which is a quotient of a 



SYMPLECTIC LEFSCHETZ FIBRATIONS 523 

free group on g generators can be realized as the first homology of a 
SLF with fiber genus 2g. 

Remark 4.3. As an alternative to the previous construction one 
can use our main theorem in the following way. Start with a finitely 
presentable group T and let a\ : -Kg -» T and a^ : itg -» T be two 
presentations. Use Theorem A to construct two SLF j \ : X\ —> S2 and 
J2 : X2 —> S2 of the same genus h > g so that 7ri(JQ) = T and the 
natural maps from the fundamental groups of the general fibers of fi 
onto r factor as 7r/j —> -Kg -V T for i = f, 2. If we now glue the two pencils 
Xi and X2 along a regular fiber we obtain a new SLF / : X —>• S2 

of genus h which by van Kampen's theorem has fundamental group 
7T9/(ker(ai) * ker(a2)). In particular by gluing two genus two pencils 
with fundamental groups Z2 one can get a genus two Lefschetz pencil 
with fundamental group Z. In fact this procedure is the baby version 
of a sophisticated technique employed by Ivan Smith [28] who showed 
that every quotient of Z®2 can be realized as the fundamental group of 
a symplectic Lefschetz fibration. 

Similar series of very elegant examples of genus two SLF with fun­
damental groups Z © Z/n was constructed in [25]. 

Remark 4.4. It was pointed out to us by Ron Stern that similarly 
to [25] and [28] the examples with a fundamental group Z and òi = 1 
we construct above are all not even homotopic to complex surfaces. 
Indeed from the classification of complex surfaces it follows that if the 
above surfaces are complex they are either secondary Kodaira surfaces, 
class VII surfaces or elliptic surfaces. The fact that our examples are 
symplectic excludes the first two possibilities. The third possibility is 
ruled out by the observation that if this is an elliptic fibration then it 
should be over S2. But then 61 7̂  1 as it follows from [6, Section 2.2]. 
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5. Sect ions in symplec t i c Lefschetz fibrations 

In this section we study the relation between numerical properties 
of the sections in a symplectic Lefschetz fibration / : X —>• S2 and the 
geometric monodromy of / . 

5.1 M a p p i n g c l a s s g r o u p s in g e n u s o n e 

First we recall some well known facts on the structure of the mapping 
class groups in genus one (see e.g. [2, 7]). 

Since any translation on a torus is nomotopic to the identity, the 
natural map Map} —> Mapx is an isomorphism. Furthermore Map} = 
£1/(2, Z) and coincides with the group of linear automorphisms of the 
two-dimensional torus. The group Map} x is naturally identified with 
the mapping class group of a two-dimensional torus with one hole. As in 
Remark 3.1 the natural forgetful map Mapx t —> Map} realizes Mapx 1 

as a central extension 

(5.2) 0 ->• Z ->• Map1 ; 1 ->• 51,(2, Z) ->• 1, 

where the kernel Z is generated by the right twist tc along the boundary 
circle c of the hole. 

On the other hand the group Mapx 1 admits a presentation 

(5.3) Map1;1 = (ta,tb\tatbta = tbtatb), 

with generators ta and tb corresponding to the Dehn twist along a 
standard symplectic basis of cycles i ? i ( C i , Z ) = Za © Z6) on the non-
punctured torus C\. In particular under the natural map Mapx t —> 
£1/(2, Z) we have 

*»-•(£ î ) ^ ( _ \ Î)-
From this it is clear that the element (ia£&)3 is central and maps to 
- 1 G 5X(2 ,Z) . Thus (tatbf generates Z = ker[Map l t l ->• S ,L(2,Z)], 
i.e., (tati,)6 = tc (see also [13, Theorem 4.3]). 

The central extension (5.2) corresponds to an element 
r G H2(SL(2,Z),Z). Since SL(2,Z) can be identified with the fun­
damental group of the moduli stack Al} of elliptic curves, the ele­
ment T can be interpreted as the first Chern class of a line bundle 
on Ai\. In fact Mumford had shown [23, Main Theorem] that r gener­
ates Pic(.M}) = Z/12 and that r corresponds to the line bundle on Ai\ 
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which to every flat family p : E —> S of elliptic curves associates the 
element üif G Pic(S') where oof is the pullback of the relative dualizing 
sheaf of / via the zero section. 

More algebraically the central extension (5.2) can be described as 

follows. Consider the universal covering SL(2,R) —> SL(2,R). Since 

•KI(SL(2,R)) = Z is a central subgroup in SL(2,R), we can take the 

preimage <SX(2,Z) of <SX(2,Z) in SL(2,R). By construction there is a 

natural central extension 

(5.4) 0 - • Z - • SL(2, Z) - • SL(2, Z) ->• 1. 

One has the following simple but somewhat tedious lemma: 

L e m m a 5 .1 . 

(a) The group M a p 1 1 is isomorphic to <SX(2,Z). 

(b) The elements ta,t{, G Mapx 1 are conjugate in Mapx 1 . 

As an immediate corollary we get 

Corollary 5 .2 . The subsemigroup of Mapx i generated by the con­
jugates of the element ta does not contain the identity element. 

The proofs of these statements will be given in Sections 5.2 and 
5.3 respectively. The proof of Lemma 5.1 is based on the standard 
description [16, Section 1.8-1.9] of the universal cover of SL(2,M) which 
we recall next. 

5.2 U n i v e r s a l c o v e r s o f s y m p l e c t i c g r o u p s 

Let F be a two dimensional real vector space with basis p,q G V and 
coordinate functions x,y £ Vv. The group SL(2,M) is naturally iden­
tified with the group of linear automorphisms of V preserving the stan­
dard symplectic form w := x A y G A2VV. Let A denote the Grass-
manian of all Lagrangian subspaces in V. Since d imu(F) = 2 we have 
A = Gr(l,V) = MP1 = S1. In fact any line £ C V is uniquely deter­
mined by the angle (6 mod -n) where 9 is the angle t forms with the 
a>axis. If we identify V = C via (x, y) H- x + iy, then the identification 
u : A^S1 is given explicitly as u(£) = e2%e, where £ = M.elSp. The sym­
plectic group SL(2,R) acts on A and this action lifts to a well defined 
continuous action of SL(2, ffi) on the universal cover A = R of A which 
essentially determines SL(2,M) 



526 J. AMORÓS, F. BOGOMOLOV, L. KATZARKOV & T. PANTEV 

Explicitly the group SL(2,R) can be described in terms of the 
SL(2,M) action on A by means of the Maslov index [4, 16]. Recall 
[16, Section 1.5] that for a real symplectic vector space (V,w) with 
a Lagrangian Grassmanian A, the corresponding Maslov index is the 
function T : A3 —> Z defined as follows. For each triple (^1,^2,^3) of 
Lagrangian subspaces of V consider the quadratic form Qe1e2e3(x) on 
the vector space £\ © £2 © £3 given by 

Qe^hixi ®x2 ®x3) =w(xi,x2) + w(x2,x3) + w(x3,xi). 

Next put T(£\,£2,£3) •= the signature of Qe1e2e3- By construction the 
function r is antisymmetric in the three arguments and is invariant 
under the diagonal action of Sp(V,w) on A3. Moreover if £ G A is a 
fixed Lagrangian subspace of V, then the Z-valued function 

re • Sp(V, w) x Sp(V, w) ^ Z 

(g,h) >T(£,g£,gh£), 

satisfies (see [16, Lemma 1.6.13]) 

Te(gig2,93) + n{gug2) = n{gi,g2g3) + Te(g2,g3). 

Thus TI is a cocycle for the group Sp(V, w) with coefficients in the trivial 
module Z and so determines a central extension 

(5.5) 0 - • Z - • Gt -> Sp(V, w) -+ 1. 

As a set Gi = Sp(V, i » ) x Z with the group structure being given by 

(5.6) (#1,m) • {g2,n2) = (gig2,n1 +n2 + T£(gi,g2)). 

The group Gi acts naturally on the universal cover A of A. It turns 
out [16, Section 1.9] that there is a unique topology on Gi for which 
this action becomes continuous, and so Gi has a natural structure of 
a Lie group. Furthermore the universal covering group SP(V, w) of 
Sp(V,w) is naturally identified with the identity component of G a. In 
fact there is a canonical character s : G$ —> S1 of order four so that 
S P ( V » =ker(s). 

This description of SP(V, w) can be made completely explicit for 
the case of a two dimensional symplectic vector space (V, w) considered 
above. Indeed the Maslov index map r admits a very concrete descrip­
tion in this case. The natural (counterclockwise) orientation of Sl C M2 
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gives a cyclic ordering for any triple of points in S1. Let ^1,^2,^3 G A 
be three lines in V. Then the Masloiv index T(£I,Ì2,Ì3) is given by 

{ 0 if l\, £2 , £3 are not all distinct 
1 if u(£-2) is between u(£\) and u(£3) 

— 1 if u(£-2) is between 14(̂ 3) and u{£\) 

Geometrically this just means that T(£I,£2,£3) = 1 if £2 is inside the 
angle ( mod n) formed by £\ and £3 and r ^ i , ^ , ^ ) = —1 if £2 is 
outside that angle. 

Choose £ := Wp and consider the central extension (5.5). The func­
tion s : Gì —> S1 defined by 

e d ' sgn(a)in if c = 0 

is a character of Gg. and SL(2,M) = ker(s). In other words we have 
(5.7) 

If c = 0, then n is even 

a n) G SL(2,R) x Z SL(2, 
c d 

and sgn(a) = ( - 1 ) " / 2 , I 
and if c 7̂  0, then n is odd | 
and sgn(c) = (-l)(n+1)/2 J 

with a group law given by the formula (5.6). 

Using this explicit description we can prove Lemma 5.1. 

Proof of Lemma 5.1. Put 

Since B = JAJ~l it suffices to check that there exist lifts A^B^J G 
SL(2,R) of A, B and J respectively so that: 

• B = JA!'1, 

• 151 = 515, 
• {ÄBf generates Z = ker[SL(2,Z) ->• 51,(2, Z)]. 

Let A; G Z. In terms of the description (5.7) choose 

5 f c=jlj-1= (Yj^ JV4Ä + I 
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Using the group law (5.6) one calculates 

AkBk=((^1 ^^k + 1 + T (Rp,Rp,Rq)\ = ((^\ j , 8 * + 1 

Similarly we have 

AkBkAk = I ( ^ J J , 12k + 1 + r (Rp, Rq, Rq) 

and 

BkAkBk = °x
 l

0,l2k + 2 + T(Rp, R{p - q),Rq) 

°, J ,12* + l . 

Thus AkBkAk = BkAkBk as required. Furthermore we have 

(AkBkAk){BkAkBk) = Q _°J , 24A; + 2 + r (Kp, M9, Mp) 

"Q1 _ ° 1 , 2 4 A ; + 2 

and hence 

(AkBkf= I J ,48*+ 4 

In addition from the description (5.7) we see that 

ker[SL(2,Z) -• SL(2,Z)] = J J , 4 f t |ft e 

and so (AkBk)
6 will generate ker[5Z(2,Z) ->• SL(2,Z)} if k = 0. The 

Lemma is proven. q.e.d. 
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R e m a r k 5 .3 . From the description (5.7) it is clear that the element 
Ak is the most general lift of A. Since any two lifts of J differ by a 
central element in SL(2, Z) , it follows that the pair (A/., B^) used in the 
proof of Lemma 5.1 represents the most general way to lift A and B 
to elements in SL(2,Z) so that that they still remain conjugate. The 
choice of k = 0 guaranteeing the identification of M a p 1 1 with SL(2, Z) 
has the following simple geometric interpretation. 

The natural action of SL(2,R) on the Lagrangian Grassmanian 
A = Sl lifts to a non-trivial action of the universal covering group 
SL(2,R) on the universal cover A = M of A. The group Z 
= ker[5'L(2,M) —> SL(2,R)] acts discretely on A with a fundamental 
domain isomorphic to an interval of length 2ir, and the action of k G Z 
on L is by translation by 2kn. In particular for a point £ G A = R 
and an element g G SL(2,R) we can define the displacement angle oî g 
at £ as the real number (g£ — £) mod 2-KZ. For example if we identify 
the universal cover U(l) = R with a subgroup of SL(2,R), then the 
elements in U(l) = R have displacement angles that are independent of 
the choice of the point £ and thus act as translations on A = K. 

If now 1 ^ g G SL(2,R) is a nilpotent element, then g has a fixed 
point on A, and hence among all lifts of g in SL(2, R) there is a unique 
one having a periodic sequence of fixed points in A with period n. 

The lifts AQ and BQ are characterized uniquely (see the explana­
tion below) as the lifts of A and B having periodic sequences of fixed 
points in A. In fact, granted this characterization, one can easily prove 
Lemma 5.1. Indeed, the matrix AB G SL(2,R) is conjugate to a rota­
tion by — 7r/3, and so the displacement angle of any element in SL(2, R) 
lifting AB at any point in A will be exactly —7r/3. On the other hand 
since AQ and BQ each have a sequence of fixed points which is periodic 
with period n we see that the displacement angles of AQ and BQ can not 
be smaller than — n. Thus both AQBQAQ and BQAQBQ have displacement 
angles which are strictly bigger than — 2ir, and since they lift the same 
element ,4-5,4 = BAB G SL(2,R) we must have^40jB0À) = BQÄQBQ. 

To justify the characterization of AQ and BQ as lifts of A and B 
having fixed points one proceeds as follows. Note that similarly to (5.7) 
the space A can be identified [16, Section 1.9] as a set with 

À = {(£, k) G A x Z\k = 1 + diniR^ n £Q) mod 2}. 

Under this identification the action of (g,n) G SL(2,R) on A is given 
by (g,n) • (£,k) = (g£,n + k + r(£Q,g£Q,g£)), and we immediately see 
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that A fixes each of the points {(Mp,2k)}kez and that B fixes each of 
the points {(ffig, 2k + l)}kez-

R e m a r k 5.4. Lemma 5.1 (a) easily implies Mumford's theorem 
asserting that Pic(Al}) is a cyclic group of order 12. Indeed due to 
Lemma 5.1 (a) we only need to check that the group of central exten­
sions i î 2 (S ' I / (2 ,Z) ,Z) is isomorphic to Z/12 and is generated by the 
class of (5.4). Recall that SL(2,Z) = (Z/6) * ( z / 2 ) (Z/4) where the 
cyclic subgroups Z / 6 and Z / 4 are generated by the matrices AB and 
ABA respectively. The commutator subgroup of ,51/(2, Z) is a free sub­
group $ on two generators, namely $ is the subgroup generated by 
[-B,A|] and [_B,A-1]. Hence SL(2,Z) fits in a short exact sequence 
0 ->• $ ->• 51,(2, Z) ->• Z/12 ->• 0, and we have the Hochschild-Serre 
spectral sequence 

(5.8) E$q := i?P(Z/12, # « ( $ , Z)) =*• HP+i(SL(2, Z) , Z) 

abutt ing to the cohomology of SL(2, Z) . This is a first quadrant spectral 
sequence, and since $ is of cohomological dimension one only the first 
two rows of (5.8) are non-trivial. In particular (5.8) degenerates in the 
E^-term and so E°% = Ef = 0, E£ = kerd^1 , E™ = Ef. Also since Z 
is the trivial SL(2, Z) module we have 

Ef = H2(Z/12, fT°($, Z)) = H2(Z/12, (Z)*) = H2(Z/12, Z) , 

£ 2
n = fT1(Z/12, f T 1 ^ , Z)) = fT1(Z/12, H o m z ( $ , Z)) 

= fT 1(Z/12,Z 2) = Hom z (Z /12 ,Z 2 ) = 0. 

In particular we have an isomorphism 

H2(SL(2, Z) , Z) = H2(SL(2, Z ) / $ , Z) = H2(Z/12, Z) . 

On the other hand the pullback of the canonical central extension 

0 ->• Z ->• Q ->• Q/Z ->• 0 

via any homomorphism Z/12 —> Q /Z gives an identification H2(Z/12, Z) 
= H o m z ( Z / 1 2 , Q / Z ) = Z/12 . 

Finally since both AB and ABA are conjugate to rotations of finite 
order we can find maximal compact subgroups U',U" C SL(2,M) so 
that AB G U' and ABA G [/"". Furthermore since the inclusions U' C 
SL(2,M) and [/" C 5'L(2,M) are homotopy equivalences and since U' 
and U" are both isomorphic to R /Z we see that the pull backs of the 
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extension (5.4) by the inclusions Z / 6 C 5X(2,Z) and Z / 4 C 5X(2,Z) 
are just the standard extensions 

0 ->• Z A Z ->• Z / 6 ->• 0 and 0 -> Z 4 Z ->• Z / 4 ->• 0 

respectively. In particular the extension (5.4) is the pullback of 

0 ->• Z 4 Z ->• Z/12 ->• 0 

via the homomorphism SL(2, Z) = (Z/6) *(z/2) (Z/4) -» Z/12 and hence 
corresponds to the generator of Honiz(Z/12, Q/Z) . 

5.3 Sections in ell iptic symplect ic fibrations 

Now we apply the above considerations to the study of symplectic Lef-
schetz fibrations of genus one. 

Consider a relatively minimal symplectic Lefschetz fibration / : X —> 
S2 of genus one which corresponds to a relation 

(5.9) t " 1 ^ 2 • • • C m = 1. w i t h ni > 0 for a l i i = 1 , . . . , m, 

m Map! = 5L(2 ,Z) as in Lemma 3.2. To avoid pathologies we will 
assume that / has a continuous section and that at least one of the 
Dehn twists ti is a twist along a non-separating cycle. In that case it is 
known [19, Theorem 9] [14, Theorem 2.4] that the relation determines 
/ : X —> S2 up to a diffeomorphism. Let a be a smooth section of / . 
We would like to find the relationship between a2 and the numbers n-i 
(see Corollary 5.5). 

The Dehn twists ti correspond to a sequence of smooth circles 
si,...,sm in the generic fiber X0 = C\ of / . Since the twisting dif-
feomorphisms TSi are nontrivial only in small neighborhoods of si in 
Ci , we may assume without loss of generality that there is point p £ X0 

and a small disc p G A C X0 so that all TSi act identically on A. Recall 
(Lemma 3.2) that the fibration / was reconstructed from the relation 
(5.9) in two steps. We produce first a SLF u : U —>• D over a disc D with 
a boundary monodromy transformation 0?^«"* : Ci —>• Ci . Next, since 
by assumption JT^ T"* is homotopic to the identity we can complete the 
resulting fibration into an elliptic fibration over S2 by gluing the trivial 
genus one family along the boundary of D. 

Now we can construct one section where the computation of the 
square can be made explicitly. Indeed the fibration u : U —>• D has 
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a section D x {p} by construction. Also the fiber bundle u\u-itdD\ : 
u~1(dD) —T- dD is diffeomorphic by a fiber-preserving diffeomorphism to 
dDxX0. Since Map^ = Mapx we may choose this homotopy equivalence 
so that it stabilizes the point p G X0 and thus glue the section D x {p} 
with the constant section through p in the trivial family we are gluing 
to D in order to complete w to / . Let a denote the resulting section. 

As we have just seen the right twists ti can be viewed as elements 
of the group Map} x which is the group of classes of maps stabilizing 
A C X0 = C\. Then from the handle body decomposition described in 
Lemma 3.2 we conclude that there is a non-negative integer n so that 

n *?'=*", 
where c is the boundary circle of C\ \ A. In particular the degree of the 
normal bundle to a in X is exactly —n. 

As a corollary from this observation one can obtain a symplectic 
version of a well known result of L. Szpiro [31] who proved that for any 
jacobian elliptic fibration (elliptic fibration with a holomorphic section) 
over F 1 with only multiplicative fibers we have an inequality between 
the number D of singular fibers and the number N of irreducible com­
ponents of the singular fibers. More precisely he showed that N < 6D. 

Since in the monodromy group the multiplicative fiber with m com­
ponents corresponds to the element tm for some right Dehn twist t we 
see that the following Corollary is a straightforward generalization of 
Szpiro's result to the symplectic category. 

Corollary 5.5. Assume that in M a p 1 1 = SL(2,Z) we have a re­

lation n^Li ^i% = C ^th ni > 0- Then ^rn = Yin and m > In. 

Proof. From the standard presentation (5.3) of M a p 1 1 we see that 
there exists a unique homomorphism x '• Mapx 1 —> Z characterized by 
the property that x(ta) = 1 and x(tb) = 1- Alternatively by Remark 5.4 
the pushout of the extension (5.2) via the multiplication map multi2 : 
Z —> Z is a split extension and so we can choose for x the composition 
of multi2 with a splitting of this extension. Since tc = ( t a 4 ) 6 we have 
that x(tc) = 12 and that 

m 

5 > = x(IK') = x(£) = 12n-
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Furthermore as explained in Remark 5.3 the transformation i" trans­
lates every point in R = A by — 2mr. On the other hand i"' projects to 
a nilpotent transformation in SL(2,Z) and so has a displacement angle 
at least — n at any point in A. Hence m > 2n. q.e.d. 

We are now in a position to prove Corollary 5.2. 

Proof of Corollary 5.2. If the subsemigroup in SL(2,Z) generated 
by the conjugates of ta contains the identity element, then we can find a 
relation of the form (5.9) in Map 1 x. Hence there exist a SLF / : X —> S2 

where the section corresponding to the puncture p has a trivial tubular 
neighborhood and normal bundle. By the above calculation this yields 
0 = a2 = — ^ Hi, i.e., Hi = 0 for all i. This proves the corollary. q.e.d. 

R e m a r k 5.6. (i) It is very tempting to try to extend this purely 
group theoretic proof of Szpiro's result to the elliptic curves over number 
fields. It is expected that the analogue of Szpiro's inequality with any 
constant instead of 6 will lead to a solution of the ABC-conjecture. 

(ii) S. Zhang pointed out to us that the same reasoning as in the 
proof of Corollary 5.5 proves the inequality N < 6D + 6k for an elliptic 
Lefschetz fibration / : X —>• C% over a smooth surface of genus k. 

Indeed the fibration / in this case is determined by right-handed 
Dehn twists {ti}™=l, {aj,bj}k,=1 satisfying the monodromy relation 

m k 

IK* UNA-] = i 
i=l j=l 

in SL(2,Z). Again a choice of a continuous section of / determines a 

natural lifting of all ij's, Oj's and ftj's to elements in M a p 1 1 = SL(2, Z) 

satisfying the relation n^Li ^T Y\j=\[aj^j\ = C- But a natural lifting 
of a commutator is also a commutator and hence is contained in the 
kernel of the character x '• SL(2,Z) —> Z. In particular each of the 
commutators [a,j,bj] G ,51/(2, Z) has invariant points when acting on A 
and so is a hyperbolic transformation. Therefore the displacement angle 
for every commutator [a,j, bj] will be at least — n. This yields m + k > 2n 
or equivalent ly 6m + 6 A; > ^ rij. 

5 .4 S y m p l e c t i c fibrations w i t h fibers of h i g h e r g e n u s 

Some of the features of Mapx 1 that allowed us to restrict the numerical 
properties of the sections in a genus one SLF carry over to the case of 
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SLF of higher genus. Here we outline an approach to the study of the 
numerical behavior of the sections in a higher genus SLF. 

The main ingredient in the discussion in the previous section was the 
existence of a natural action of Mapx 1 on the universal cover A = R of 
the Lagrangian Grassmanian A and the notion of a displacement angle. 

There is a similar action of M a p s l which we proceed to describe. 
For more details the reader may wish to consult the excellent exposition 
of S. Morita [22]. 

As explained in Remark 3.1 the group Map 9 ; 1 is a central extension 

(5.10) 0 ->• Z ->• Map 9 ; 1 ->• Map* ->• 1 

of Map* by an infinite cyclic group generated by the Dehn twist around 
the puncture. 

This central extension has many remarkable properties but we want 
to emphasize the ones which are reflected in the structure of the semi­
group Mapgi(—) C MapS ) 1 generated by all right-handed Dehn twists. 

Let e G If2 (Map*), Z) denote the class of the central extension 
(5.10). The class e is dubbed the Euler class by Morita and admits 
the following simple description [22]. As in the beginning of Section 3.1 
we will view the elements in Map1, as isotopy classes of orientation pre­
serving diffeomorphisms of Cg that preserve the point x\ G Cg. 

Fix an isomorphism of the universal covering of Cg with the unit 
disk D C C, e.g. by fixing a point j in the Teichmüller space Tg. 
Let v : D —>• Cg be the corresponding covering map. Any orientation 
preserving diffeomorphism $ : Cg —> Cg with $(xi) = x\ defines a quasi-
conformal map /i* : D ->• D which preserves the preimage v 1(x\) of x\ 
in D. This map extends to an orientation preserving homeomorphism 
/ i | : S1 —> Sl of the boundary 3D = S1 of D. Modulo isometries of 
D the homeomorphism hg is uniquely defined by the isotopy class of $ 
relative to p. If in addition we require that the isomorphism j : Cg^D 
sends a marked point x\ G u~l(x\) to 0 G D and the differential dj 
induces a fixed isomorphism of the tangent spaces T%xCg and Toi?, then 
the element hg G Homeo+(S'1) is uniquely determined by the mapping 
class [$] G Mapg of $ . 

Therefore we obtain a natural action p : MapJ —> Homeo+(5'1) given 
by p([^]) = hg. The group Homeo+(5 '1) has a natural central exten­
sion by an infinite cyclic group which is the group Homeoper(lR) of 2n-
periodic orientation preserving homeomorphisms of the line ffi (here as 
before one should view the line ffi as the universal cover of the circle 
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S1). One can check [20] that the central extension (5.10) is just the 
pullback of the extension 0 —> Z —> Homeope r(R) —> Homeo+(5'1) —> 1 
by the homomorphism p. In particular we have a natural homomor-
phism p p e r : M a p s l —> Homeoper(M) and so in the same way as in 
Remark 5.3 we can define the displacement angle associated with any 
pair ( ^ ! ) , ^ , ^ i a s the real number {fper\<j>){i) - i) mod 2vrZ. 

We propose the following conjectural characterization of the semi­
group MapS)1( —) which generalizes Remark 5.3: 

Conjecture 5.7. The subsemigroup Map s l (—) C Map 9 ; 1 consists 
of mapping classes whose displacement angle is non-negative at every 
point in R. 

Before we give some evidence for the validity of this conjecture we 
need to recall Morita's analysis of the Euler class e. 

Similarly to the genus one case we can view the Euler class e as an 
element of Picard group of the moduli space Ml

g of smooth curves of 
genus g with one marked point. As such e can be written explicitly 
[12], [21] as a linear combination with Q-coefficients of two cocycles of 
geometric origin: e\ and c. The cocycle e\ is just the first Mumford-
Miller-Morita class and is proportional to the generator of the Picard 
group of the moduli space M.g of smooth curves of genus g. Also as in the 
genus one case the cocycle e\ is induced from a cocycle for Sp(H\(Cgi Z)) 
via the natural homomorphism Map^ —> Map 9 —> Sp(Hi(Cg,Z)). The 
cocycle c is somewhat more mysterious. Geometrically it can be defined 
as follows. Let 0 denote the pullback of the first Chern class of the 
relative theta line bundle on the universal degree g — 1 Jacobian J9~l —> 
M.g via the canonical Abel-Jacobi map from the universal curve M.lg —> 
Mg to J9-1 —> Mg defined by the point x\ : Mg —> M}g. Then it can 
be shown that c = 8 0 — e i / 3 [21, (1.7)] and [11, Proposition 2]. 

Observe that these geometric definitions of the classes e\ and c make 
sense in the genus one case as well. However it follows from the proof 
of Mumford's result [23, Main Theorem] discussed in Section 5.1 that 
in the genus one case the two classes e\ and c coincide and so we are 
not getting anything new for the group Mapx = SL(2,Z). In contrast 
for g > 2 the classes e\ and c are linearly independent in if2(Mapg, Q) 
and are related to the class e by the following explicit formula (see e.g. 
[21]) 

Algebraically the classes e\ and c can be interpreted as follows. Consider 
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the lattice H := Hi(Cg,Z) together with its natural symplectic form 9 
given by the intersection pairing. Morita has shown (see e.g. [20]) that 
there exists a two-step nilpotent group U equipped with a Sp(H, en­
action and a homomorphism K : Map* —> Sp(H, 9) x (U (g) Q) so that 
the classes ei and c are pullbacks of natural cohomology classes on 
Sp(H,6) x (U <g) Q). More precisely U is a Sp(H, #)-invariant central 
extension of A3 H by a certain Sp(H, ö)-module of finite rank and ei is 
a pullback of a cohomology class of Sp(H, 9) and c is a pullback of a 
cohomology class of Sp(H, 9) x ^ A3 H via the natural maps 

(5.11) Map* ^Sp(H, 9) x (W ® Q) - • Sp(fl", Ö), 

(5.12) Map* ^Sp(H, 9) x (W ® Q) - • Sp(fl", Ö) x ( A 3 # <g> Q) 

respectively. 
To identify the element in H2(Sp(H,9),Z) that pulls back to ei 

consider the 2g-dimensional vector space H^_ := H (g> M. The symplec­
tic group Sp(Hs_, 9) is homotopy equivalent to its maximal compact 
subgroup which in turn is isomorphic to the unitary group U(g). In 
particular ni(Sp(Hi&,6)) = ni(U(g)) = Z and so the universal cover 
Sp(Hs_, 9) of Sp(H^, 9) is naturally a central extension of Sp(H^_, 9) by 
an infinite cyclic group. By pulling back this extension by the natural 
inclusion Sp(H, 9) C Sp(H^_, 9) we get a central extension 

(5.13) O - > Z - > S p ( f T , 0 ) - > S p ( f r , 0 ) - > l . 

From the geometric description of ei given above it is clear that ei is 
proportional to the pullback of the extension class (5.13) . 

To identify the element in H2(Sp(H, 9) x \ A3if, Z) that pulls back to 
c notice that the contraction with 9 gives a well defined homomorphism 
of Sp(H, ö)-modules C : A3 H —> H. Consider the Heisenberg central 
extension 0—> Z —> H. —> H —> 0 corresponding to the class 9 G 
H2(H,Z). Since by definition 9 is Sp(H, ö)-invariant the pullback of 
the Heisenberg extension via the map C will also be Sp(H, ö)-invariant 
and will so determine an element H2(Sp(H,9) x ^ A3 H,Z). In [20, 
Theorem 3.1] Morita shows that this element pulls back to c via the 
homomorphism (5.12). 

In fact it was pointed out to us by R. Hain that the extension class (5.13) deter­
mines the universal central extension of Sp(H, 9) and so with the correct choice of 
the orientation of the fiber must be equal to the pullback of the determinant of the 
pushforward of the relative cotangent bundle on the universal abelian variety or in 
other words to ei/12. 
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It is not hard to see that the above interpretation of c gives rise 
to a representation of M a p s l into a covering of a different symplectic 
group. Indeed, let us fix a symplectic basis of H and identify Sp(H, 6) 
with the group Sp(2g,Z). Denote by ASp(2g,Z) the subgroup of the 
group Sp(2g + 2, Z) which stabilizes the orthogonal complement of the 
element bg+i of the standard symplectic basis a\, & i , . . . , a 9 +i , &9+i of 
Z2»+2. The natural map ASp{2g,Z) ->• GL(2# + 1,Z), X ^ X . e 

maps the group ASp(2 9 , Z) onto Sp(2#, Z) x Z2^ and so ASp(2 9 , Z) fits 
into a central extension 

(5.14) 0 ->• Z ->• ASp(20, Z) ->• 5p(2^, Z) x Z2ff -> 1 

which is clearly isomorphic to the central extension of Sp(H, 9) x H 
considered above. 

The fact that e is proportional to e\ + c combined with the above dis­
cussion implies that the group Map 9 ; 1 has a well defined homomorphism 

ö : MapS ) 1 —> ASp(2g, Z ) / Z where ASp(2g, Z) is the the universal cover 

of ASp(2g, Z) and Z C ASp(2g, Z) is generated by an element propor­

tional to the difference of the extension classes (5.13) and (5.14). 

On the other hand it is clear from the construction that ASp(2g, Z) 
is also isomorphic to the preimage of ASp(2g, Z) into the universal cover 
of Sp(2g + 2, M). The choice of an inclusion U{g + 2) C Sp(2g + 2, R) 
induces an isomorphism of the Lagrangian Grassmanian A of W2g+2 with 
the quotient U{g + l)/0{2g + 2). Since 0 ( 2 ^ + 2) C SU{g + \) we have a 
well defined map det : A —> U(g + l)/SU(g + 1) = S1 and in particular 
a well defined map of the universal covers det : A —> M. Sm.ce the group 
Sp(2g + 2, R) acts naturally on A we can use the map det to define a 
displacement angle for any element A G Sp(2g + 2, M) and any l e i . 

Since the homomorphism ö : Map s>1 —> ASp(2g,Z)/Z is essentially 
given by the class e it is reasonable to expect that for any <j> and any t G 
IR the displacement angles of (pper((f)), £) and (ô((/)), £) will have the same 
sign. If this is the case, then the validity of Conjecture 5.7 will easily 
follow since similarly to the genus one case we can split the all unipotent 
elements in ASp(2g, Z) into two classes according to their displacement 
angle. That is - unipotent elements whose lifts in ASp(2g, Z) have a 
periodic sequence of points with displacement angle zero and unipotent 
elements elements whose lifts in ASp(2g, Z) do not have points with 
displacement angle zero. 

Since the Dehn twists obviously belong to the first class and since the 
elements in the first class will generate the subsemigroup in ASp(2g, Z) 

http://Sm.ce
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consisting of elements with non-positive displacement angle this argu­
ment will prove Conjecture 5.7. 

Similar arguments should also lead to a proof of the following theo­
rem, which is obviously correct in the case of projective Lefschetz pen­
cils. 

Theorem 5.8 (I.Smith). There are no non-trivial SLF whose 
monodromy group is contained in the Torelli group. 

A special case of the above theorem was originally proven by B.Ozbagci 
[24, Corollary 7] who showed that hyperelliptic SLF (and in particu­
lar all Lefschetz fibrations of fiber genus two) cannot have monodromy 
contained in the Torelli group. The general statement of Theorem 5.8 
appeared as a conjecture in a preliminary version of the present paper. 
The conjecture was settled affirmatively by Ivan Smith who graciously 
provided us with the proof appearing in Appendix 5.4 below. 

In this direction we would like to ask a couple of questions: 
Let £ ->• Mg be the Hodge line bundle and let ci(£) G CT?"1 (M, , Q) 

denote the natural extension of the first Chern class of £ to the Deligne-
Mumford compactification of M.g. 

Question 5.9. Let f : X —>• C be a symplectic Lefschetz fibration 
of fiber genus g over an arbitrary Riemann surface C. Is it true that 

( C l (£) , [C])>0? 

This question has an affermative answer (see Corollary A.6) when­
ever C is of genus zero. 

Question 5.10. Let f : X —>• C be a symplectic Lefschetz fibration 
of fiber genus g over an arbitrary Riemann surface C. Is it true that 

(89 + 4 ) ( C l ( £ ) , [ C ] ) - 9 - / / > 0 ? 

Here as usual ß denotes the number of the singular fibers in the 
fibration f : X -> C. 

The last question is a symplectic version of the Moriwaki inequality 
and was suggested by R. Hain. If the answers of the above questions are 
positive we get additional restrictions on the words in the mapping class 
group defining SLF. Some analogues of Corollary 5.5 for high genus SLF 
can be expected as well. 
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R e m a r k 5 .11 . It is sometimes profitable to consider other central 

extensions of Map*. For example we can pullback the central extension 

(5.13) via the natural map Map* —> Spfö^ö). The resulting group IT 

is an extension of Map1, corresponding to the extension class e i /12 and 

is the exact analogue of the group <SX(2,Z) from the genus one case. 
Even though the group II is not directly related to Map 9 ; 1 and does not 
have any geometric interpretation in general, one might be able to use 
IT in concrete geometric situations. For example since the classes e\ and 
e become proportional when restricted to the Torelli group one might 
hope to use the group IT for studying SLF over a base of high genus 
whose monodromy group is contained in the Torelli group. 

The advantantage of working with IT is that it has a simpler struc­
ture than Map9 ; 1 . In particular by definition IT comes equipped with a 
surjective homomorphism to Sp(2g, Z) and hence with an action on the 
universal cover of the Lagrangian Grassmanian A := U(g)/0(g). As 
before we can use the map det : A —> R to define a displacement angle 
for any element in Sp(2g, R) and by composition with IT —> Sp(2g, Z) 
for all elements in IT. 

Note that the unipotent matrices u G Sp(2g, M) with rank(u — id) = 
1 split into two conjugacy classes in Sp(2g,R). One of these classes 
corresponds to the images of the right-handed Dehn twists in Map 1 and 
the other to the images of the left Dehn twists. In particular the lifts 
of all u G Sp(2g, R) with rank(w — id) = 1 to elements in Sp(2g, M) 
generate a subgroup of Sp(2g, R) which contains the image of IT. 

Consider now the action of u G Sp(2g, M) with rank(w — id) = 1 
on A = U(g)/0(g). It stabilizes a subvariety of Lagrangian subspaces 
which have a trivial projection on the first coordinate line. If in addition 
u(A) ^ A for some A G A, then the closure of the orbit of (u) • A in A 
is a circle which maps isomorphically onto Sl under the natural map 
det : A^ S1. 

Indeed if W = R 2 ö _ 1 is the kernel of u — id, then any subspace of 
W is invariant under u, and hence any Lagrangian subspace L C ! ? 9 

is either invariant under u or contains a w-invariant subspace L' C L of 
codimension 1. Let L be the subspace corresponding to the point A G A 
and let l G L be a vector which is transversal to L'. Then the linear 
span of I and u(I) is a two-dimensional subspace S = R2 in R2fl and 
all Lagrangian subspaces £ G (u) • L C A are contained in L' © S. The 
rank of symplectic form on L' © S is 2 and in fact the form on L' © S 
is pulled back from S. Consequently the orbit (u) • A is the same as for 
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the standard action of SX(2,M) and so the restriction of det to (u) • A 
is an isomorphism. 

With all of this said we see that the elements of II that project to 
right-handed Dehn twists in MapJ are all contained in the subsemigroup 
n(—) C i l consisting of all elements in IT with a non-negative displace­
ment angle. In fact the matrices u G Sp(2g, R) with rank(u—id) = 1 and 
such that u belongs to the right-handed conjugacy class lift to elements 
in Sp(2g,M) which generate a subsemigroup Sp(2g,R)(—) C Sp(2g,R). 

By construction the semigroup Sp(2g,R)( — ) consists of group elements 
a G II satisfying det (a • x) > det (2;) for all I E A . This semigroup con­
tains a discrete subsemigroup corresponding to the elements Sp(2g, Z) as 
well as the image of II(—). The geometry of the semigroup Sp(2g, ffi)(—) 
played a crucial role in our analysis of the genus one case and we expect 
it to play an extremely important role in general. 

A p p e n d i x A (by Ivan Smi th) Torelli fibrations 

The purpose of this Appendix is to present a short proof of Theo­
rem 5.8. 

Suppose / : X —> S2 is a SLF whose monodromy is contained in the 
Torelli group. The SLF / induces a sphere S = S2 in the compactified 
moduli space of genus g curves. Indeed let us choose an almost complex 
structure on X compatible with the symplectic form. The restriction of 
the almost complex structure on each smooth fiber is integrable and so 
one obtains a map u of a punctured sphere into M.g. By assumption the 
map / has a local complex model near the singular points, and it is easy 
to see that this gives an integrable almost complex structure in an entire 
neighborhood of the singular fibers. Thus we can extend u smoothly 
to a map of the closed sphere into the compactified moduli space. The 
isotopy class of this map is independent of the choices of almost complex 
structures on X and in the neighborhoods of the singular fibers. 

Let £ ->• Mg be the Hodge line bundle and let c i (£) G C^ÇMg, Q) 
denote the natural extension of the first Chern class of £ to the Deligne-
Mumford compactification of M.g. We will need the following two pre­
liminary lemmas: 

L e m m a A . l . For any symplectic Lefschetz fibration, 

signpO=4(C l (£),[£]>-//, 
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where /z is the number of the singular fibers of f and sign(X) is the 
signature of X. 

Proof. See [30]. q.e.d. 

L e m m a A . 2 . For a fibration with only separating vanishing cycles, 
sign(X) = - / i . 

Proof. See [24]. q.e.d. 

As a consequence of the above two lemmas we get that for a symplec-
tic Lefschetz fibration with monodromy group contained in the Torelli 
group: 

(c1(C),[S\) = 0. 

Therefore Theorem 5.8 will be proven if we know the following: 

L e m m a A . 3 . Let X be a symplectic Lefschetz fibration with mon­
odromy group contained in the Torelli group. Then: 

(c1(C),[S\)>0. 

R e m a r k A . 4 . We need base S2 for this entire argument. There 
are fibrations over T2 with monodromy group in the Torelli group and 
no singular fibres. 

Proof. Let n denote the number of exceptional (—f)-spheres in 
the space X and let e : X —> Xm\n denote the contraction of all the 
(—1) spheres. Clearly since each new exceptional sphere contributes a 
homology class, we know that n is bounded above by the second Betti 
number &2p0- In fact without a loss of generality we may assume that 
n < &2p0 since any symplectic manifold satisfies & 2 p 0 + > 0. 

Furthermore we may assume that Xm{n is not symplectomorphic 
to an irrational ruled surface. Indeed if n : Xm{n —> C is a sphere 
bundle over a surface C of genus > 1, then H\{C,'L) = i ? i (X m i n ,Z ) = 
Hi(X,1i). On the other hand since the geometric monodromy of / is 
contained in the Torelli group it follows that i ? i ( X s , Z ) = H\{X, Z) for 
all smooth fibers Xs C X of / . In particular g(C) = g(Xs) = g and 
so 7T|xs : Xs —> C must be a homotopy equivalence for all s, i.e., the 
fibration / must have a trivial monodromy, which is a case we exclude. 

Since X is a symplectic Lefschetz fibration of fiber genus g one has 
c2 (X) = 4 - Ag + ß. Also observe that c2 {X) = euler(X) = 2 - 2&i (X) + 
&2p0 and h\(X) = Ig since all vanishing cycles are by assumption 
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null-homologous. So we get the estimate: 

n< b2(X) =2 + /i, 

Now c\ (X) + c2(X) = c\(Xmin)— n+C2(X) and using the above estimate 
on n, we see that 

c((X) + c2(X) > c?(Xm i n) + 2 - Ag > 2 - Ag. 

The last inequality follows from a powerful theorem of A.K.Liu [17] 
asserting that for any minimal symplectic four-manifold Y which is not 
irrational ruled one has c{{Y) > 0. 

On the other hand the signature formula in Lemma A.l gives 

^ [ c ? ( X ) + c 2 ( X ) ] = l [s ign(X) + C 2(X)] 

= ^[A(c1(C)i[S})-ß + A(l-g)+ß] 

= (c1(C),[S\) + l - g 

and hence 

i.e., (c i (£) , [S]) > 0 as long as g > 1. This proves the lemma since the 
case g = 1 is clear. q.e.d. 

As a consequence of Theorem 5.8 we get 

L e m m a A . 5 . Let X be an arbitrary symplectic Lefshetz fibration. 
Then 

sign(X) + \i > 0. 

Proof. As it follows from Theorem 5.8 there always exists a van­
ishing cycle non-homologous to zero. By applying the local signature 
formula of [24] we see that the contribution of this singular fiber to 
sign(X) is either zero or one. The latter implies the lemma. q.e.d. 

As corollary we get: 

Corollary A . 6 . Let X be an arbitrary symplectic Lefshetz fibration. 
Then: 

< C l ( £ ) , [ S ] ) > 0 . 

R e m a r k A . 7 . The above lemmas puts many restrictions on the 
possible monodromies for hyperelliptic families (see [24]). 
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R e m a r k A . 8 . The proof of Theorem 5.8 is related to a question 
of Gompf who asked whether C2(X) is positive for symplectic four-
manifolds which are not irrational ruled. In particular it is an inter­
esting question if the minimal number of the singular fibers in a SLF is 
at least 4(g — 1) if X is not irrational ruled symplectic four-manifold. 

IVAN S M I T H , N E W C O L L E G E , O X F O R D U N I V E R S I T Y 
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