ON THE ALGEBRAIC FUNDAMENTAL GROUP OF SURFACES WITH $K^{2} \leq 3 \chi$

Margarida Mendes Lopes \& Rita Pardini

Abstract

Let S be a minimal complex surface of general type with $q(S)=$ 0 . We prove the following statements concerning the algebraic fundamental group $\pi_{1}^{\text {alg }}(S)$: - Assume that $K_{S}^{2} \leq 3 \chi(S)$. Then S has an irregular étale cover if and only if S has a free pencil of hyperelliptic curves of genus 3 with at least 4 double fibres. - If $K_{S}^{2}=3$ and $\chi(S)=1$, then S has no irregular étale cover. - If $K_{S}^{2}<3 \chi(S)$ and S does not have any irregular étale cover, then $\left|\pi_{1}^{\text {alg }}(S)\right| \leq 9$. If $\left|\pi_{1}^{\text {alg }}(S)\right|=9$, then $K_{S}^{2}=2, \chi(S)=1$.

1. Introduction

Every minimal surface S of general type satisfies the Noether inequality:

$$
K_{S}^{2} \geq 2 \chi(S)-6
$$

It has been clear for a long time that the closer a surface is to the Noether line $K^{2}=2 \chi-6$, the simpler its algebraic fundamental group is. In fact, Reid has conjectured that for $K^{2}<4 \chi$ the algebraic fundamental group of S is either finite or it coincides, up to finite group extensions, with the fundamental group of a curve of genus $g \geq 1$, i.e., it is commensurable with the fundamental group of a curve, ([Re1, Conjecture 4], see also [BHPV], p. 294).

In the case of irregular surfaces or of regular surfaces having an irregular étale cover, Reid's conjecture follows from the Severi inequality, recently proved in $[\mathbf{P a}]$, which states that the Albanese map of an irregular surface with $K^{2}<4 \chi$ is a pencil.

Indeed, let S be an irregular surface satisfying $K^{2}<4 \chi$, let $a: S \rightarrow B$ be the Albanese pencil of S and F a general fibre of a. The inclusion

[^0]$F \hookrightarrow S$ induces a map $\psi: \pi_{1}^{\text {alg }}(F) \rightarrow \pi_{1}^{\text {alg }}(S)$. By [X3, Theorem 1] the image H of ψ is either 0 or \mathbb{Z}_{2}, and $H=\mathbb{Z}_{2}$ is possible only if F is hyperelliptic. The cokernel of ψ is the so-called orbifold fundamental group of the fibration a (cf. [CKO], [Ca, Lemma 4.2]). If a has no multiple fibres, then we have an exact sequence:
\[

$$
\begin{equation*}
1 \rightarrow H \rightarrow \pi_{1}^{\mathrm{alg}}(S) \rightarrow \pi_{1}^{\mathrm{alg}}(B) \rightarrow 1 \tag{1.1}
\end{equation*}
$$

\]

If a has multiple fibres, then it is possible to find a Galois cover $B^{\prime} \rightarrow B$ such that the fibration $a^{\prime}: S^{\prime} \rightarrow B^{\prime}$ obtained from a by base change and normalization has no multiple fibres and the map $S^{\prime} \rightarrow S$ is étale. Since $\pi_{1}^{\text {alg }}\left(S^{\prime}\right)$ is a normal subgroup of $\pi_{1}^{\text {alg }}(S)$ of finite index, it follows that in any case the algebraic fundamental group of an irregular surface satisfying $K^{2}<4 \chi$ is commensurable with the fundamental group of a curve. Of course the same is true for a regular surface satisfying $K^{2}<4 \chi$ and having an irregular étale cover.

Reid's conjecture is still open for surfaces not having an irregular cover. However, for surfaces satisfying $K^{2}<3 \chi$, not only Reid's conjecture is true ($[\mathbf{R e} \mathbf{1}]$ and $[\mathbf{H o}]$), but work by several authors gives more precise results on the algebraic fundamental group (cf. $[\mathbf{B o}],[\mathbf{H o}]$, $[\mathbf{R e} 1],[\mathbf{R e} 2],[\mathbf{X 2}],[\mathbf{X 3}])$. The picture that emerges from their work is the following:
(I) If $K_{S}^{2}<2 \chi(S)$, then S is regular and $\pi_{1}^{\text {alg }}(S)$ is finite.
(II) If $K_{S}^{2}<\frac{8}{3} \chi(S)$ and S is irregular, then the Albanese map of S is a pencil of curves of genus 2 . If $K_{S}^{2}<\frac{8}{3} \chi(S)$ and S is regular, then $\pi_{1}^{\mathrm{alg}}(S)$ is finite.
(III) If $K_{S}^{2}<3 \chi(S)$ and S is irregular, then the Albanese map of S is a pencil of hyperelliptic curves of genus 2 or 3 . If S is regular, then either $\pi_{1}^{\mathrm{alg}}(S)$ is finite or there exists an irregular étale cover $X \rightarrow S$. The Albanese map of X is a pencil of hyperelliptic curves of genus 3, which induces on S a free pencil of hyperelliptic curves of genus 3 with at least 4 double fibres. Conversely, if S has such a pencil, then it admits an irregular étale cover.
These results give a good understanding of the algebraic fundamental group of a surface S with $K^{2}<3 \chi$ and infinite $\pi_{1}^{\text {alg }}(S)$.

In fact, if S is irregular and the Albanese map $a: S \rightarrow B$ has multiple fibres, then by statement (III) and by the adjunction formula we have $g=3$ and the multiple fibres are double fibres. Then there is a Galois cover $B^{\prime} \rightarrow B$ with Galois group G such that the G-cover $S^{\prime} \rightarrow S$ obtained by base change and normalization is étale and the induced fibration $a^{\prime}: S^{\prime} \rightarrow B^{\prime}$ has no multiple fibres. One can show that G can be chosen to be a quotient of the dihedral group of order 8 . So we have an exact sequence:

$$
1 \rightarrow \pi_{1}^{\mathrm{alg}}\left(S^{\prime}\right) \rightarrow \pi_{1}^{\mathrm{alg}}(S) \rightarrow G \rightarrow 1
$$

and the group $\pi_{1}^{\text {alg }}\left(S^{\prime}\right)$ is described by sequence (1.1).
If S is a regular surface such that $K_{S}^{2}<3 \chi(S)$ and $\pi_{1}^{\text {alg }}(S)$ is infinite, then using (III), one constructs an irregular étale Galois cover $X \rightarrow S$ with Galois group \mathbb{Z}_{2} or \mathbb{Z}_{2}^{2} whose Albanese map is a pencil of curves of genus 3 without multiple fibres (more precisely, we have \mathbb{Z}_{2} if the number k of double fibres of a is even and \mathbb{Z}_{2}^{2} if k is odd). Then the group $\pi_{1}^{\text {alg }}(X)$ is a normal subgroup of $\pi_{1}^{\text {alg }}(S)$ of index 2 or 4 which can be described as explained above.

However, if the algebraic fundamental group of S is finite, then the above results give no additional information.

In this paper we give two improvements of the above results.
We first extend part of (III) to surfaces on the line $K^{2}=3 \chi$:
Theorem 1.1. Let S be a minimal complex surface of general type with $q(S)=0$ and $K_{S}^{2} \leq 3 \chi(S)$.

Then S has an irregular étale cover if and only if there exists a fibration $f: S \rightarrow \mathbb{P}^{1}$ such that:
(i) the general fibre F of f is hyperelliptic of genus 3;
(ii) f has at least 4 double fibres.

This improvement is made possible by the Severi inequality.
In the case $p_{g}(S)=0$, Theorem 1.1 can be made more precise:
Theorem 1.2. Let S be a smooth minimal surface of general type with $p_{g}(S)=0, K_{S}^{2}=3$.

Then S has no irregular étale cover.
Theorem 1.2 is sharp in a sense, since there are examples, due to Keum and Naie (cf. [Na]), of surfaces with $K^{2}=4$ and $p_{g}=0$ that have an irregular cover.

On the other hand, it remains an open question whether the algebraic fundamental group of a surface with $K^{2}=3$ and $p_{g}=0$ is finite or more generally whether the algebraic fundamental group of a surface with $K^{2}=3 \chi$ that has no étale irregular cover is finite.

In even greater generality one would like to know whether the algebraic fundamental group of a surface with $K^{2}<4 \chi$ that has no étale irregular cover is finite, deciding thus Reid's conjecture. This is a very challenging problem, which however does not seem possible to resolve with the methods of the present paper.

Finally, we bound the cardinality of $\pi_{1}^{\text {alg }}(S)$ in the case when it is a finite group:

Theorem 1.3. Let S be a minimal surface of general type such that $K_{S}^{2}<3 \chi(S)$. If S has no irregular étale cover, then $\pi_{1}^{\mathrm{alg}}(S)$ is a finite group of order ≤ 9.

Moreover, if $\pi_{1}^{\text {alg }}(S)$ has order 9, then $\chi(S)=1$ and $K_{S}^{2}=2$, namely S is a numerical Campedelli surface.

This bound is sharp, since there are examples of surfaces with $p_{g}=0$, $K^{2}=2$ and $\pi_{1}^{\text {alg }}(S)=\mathbb{Z}_{9}, \mathbb{Z}_{3}^{2}$ (cf. [X1, Ex. 4.11], [MP1]).

By this theorem only a very short list of finite groups can occur as the algebraic fundamental groups of surfaces with $K^{2} \leq 3 \chi-1$. The list is even more restricted if $K^{2} \leq 3 \chi-2$: in [MP2] it is shown that in this case $\left|\pi_{1}^{\text {alg }}(S)\right| \leq 5$, with equality holding only for surfaces with $K_{S}^{2}=1$ and $p_{g}(S)=0$. Moreover $\left|\pi_{1}^{\text {alg }}(S)\right|=3$ is possible only for $2 \leq \chi(S) \leq 4$ and $K^{2}=3 \chi-3$.

Notation and conventions. We work over the complex numbers. All varieties are projective algebraic. We denote by χ or $\chi(S)$ the holomorphic Euler characteristic of the structure sheaf of the surface S.

2. The proof of Theorem 1.1

In this section we assume that S is a minimal complex surface of general type with $q(S)=0$ and $K_{S}^{2} \leq 3 \chi(S)$. In order to prove Theorem 1.1 we need some intermediate steps.

Lemma 2.1. Let $\rho: Z \rightarrow S$ be an étale cover such that $q(Z)>0$.
Then the Albanese pencil $a: Z \rightarrow A$ induces a fibration $f: S \rightarrow \mathbb{P}^{1}$ such that:
(i) the general fibre F of f is a curve of genus 3;
(ii) f has at least 4 double fibres.

Moreover, all irregular étale covers of S induce the same fibration $f: S$ $\rightarrow \mathbb{P}^{1}$.

Proof. If $\rho: Z \rightarrow S$ is an irregular étale cover, then the Galois closure of ρ is an irregular Galois étale cover. We denote by $\pi: Y \rightarrow S$ a minimal element of the set of irregular Galois étale covers of S.

Denote by d the degree of π. The surface S is minimal of general type with $K_{Y}^{2}=d K_{S}^{2}, \chi(Y)=d \chi(S)$. Hence $K_{Y}^{2} \leq 3 \chi(Y)<4 \chi(Y)$ and therefore, by the Severi inequality $([\mathbf{P a}])$, the image of the Albanese map of Y is a curve. Write $a: Y \rightarrow B$ for the Albanese pencil, and let b be the genus of B and g the genus of the general fibre F of a. The Galois group G of π acts on the curve B. This action is effective by the assumption that π is minimal among the irregular étale covers of S. Hence we have a commutative diagram:

The map $\bar{\pi}$ is a Galois cover with group G and the general fibre of f is also equal to F. Since the map π is obtained from f by taking base change with $\bar{\pi}$ and normalizing, the fibre of f over a point x of \mathbb{P}^{1} has multiplicity equal to the ramification order of $\bar{\pi}$ over x. Notice that, since \mathbb{P}^{1} is simply connected, the branch divisor of $\bar{\pi}$ is nonempty and therefore the fibration f always has multiple fibres. Notice also that, since S is of general type, the existence of multiple fibres implies $g \geq 3$.

We remark that the fibration a is not smooth and isotrivial. In fact, if this were the case then Y would be a free quotient of a product of curves, hence it would satisfy $K_{Y}^{2}=8 \chi(Y)$. Hence we may define the slope of a (cf. [X3]):

$$
\lambda(a):=\frac{K_{Y}^{2}-8(b-1)(g-1)}{\chi(Y)-(b-1)(g-1)} .
$$

The slope inequality ([X3], cf. also $[\mathbf{C H}],[\mathbf{S t}]$) gives

$$
\begin{equation*}
4(g-1) / g \leq \lambda(a) \leq K_{Y}^{2} / \chi(Y)=K_{S}^{2} / \chi(S) \leq 3, \tag{2.2}
\end{equation*}
$$

where the second inequality is a consequence of $b>0$. Hence we get $g=3$ or $g=4$.

Assume $g=4$. In this case (2.2) becomes:

$$
3 \leq \lambda(a) \leq K_{S}^{2} / \chi(S) \leq 3
$$

It follows that the slope inequality is sharp in this case and $K_{S}^{2}=3 \chi(S)$. By [Ko2, Prop. 2.6], this implies that F is hyperelliptic. Let σ be the involution of S induced by the hyperelliptic involution on the fibres of f. The divisorial part R of the fixed locus of σ satisfies $F R=10$. As remarked above, f has at least a fibre of multiplicity $m>1$, that we denote by $m A$. Since $g=4$, by the adjunction formula $\frac{6}{m}$ is divisible by 2 , yielding $m=3$. Hence $3 A R=10$, a contradiction. So we have proved $g=3$.

Using the adjunction formula again, we see that the multiple fibres of f are double fibres, hence all the branch points of $\bar{\pi}$ have ramification order equal to 2 . Let k be the number of branch points of $\bar{\pi}$. By applying the Hurwitz formula to $\bar{\pi}$, we get $k \geq 4$.

Given an irregular étale cover $\rho: Z \rightarrow S$, we can always find an étale cover $W \rightarrow S$ which dominates both Z and Y. The Albanese pencil of W is a pullback both from Y and from Z, hence the fibrations induced on S by the Albanese pencils of Z, W and Y are the same. q.e.d.

We introduce some more notation. Assume that $f: S \rightarrow \mathbb{P}^{1}$ is the fibration defined in Lemma 2.1. Let $\bar{\pi}: B \rightarrow \mathbb{P}^{1}$ be the double cover branched on 4 points corresponding to double fibres $2 F_{1}, \ldots, 2 F_{4}$ of f and $\pi: Y \rightarrow S$ the étale double cover obtained by base change with $\bar{\pi}$ and normalization, as in diagram (2.1). Then $K_{Y}^{2}=2 K_{S}^{2}, \chi(Y)=2 \chi(S)$
and $q(Y)=1$. We write $\eta:=F_{1}+F_{2}-F_{3}-F_{4}$. Clearly, η has order 2 in $\operatorname{Pic}(S)$ and π is the étale double cover corresponding to η.

Lemma 2.2. The general fibre F of f is hyperelliptic.
Proof. Assume by contradiction that F is not hyperelliptic and consider the pencil $a: Y \rightarrow B$, whose general fibre is also equal to F. Set $\mathcal{E}:=a_{*} \omega_{Y}$ and denote by $\psi: Y \rightarrow \mathbb{P}(\mathcal{E})$ the relative canonical map, which is a morphism by Remark 2.4 of $[\mathbf{K o z} \mathbf{2}]$. Let V be the image of ψ. The surface V is a relative quartic in $\mathbb{P}(\mathcal{E})$ and, by Lemma 3.1 and Theorem 3.2 of $[\mathbf{K o 2}]$, its singularities are at most rational double points. The map ψ is birational and it contracts precisely the nodal curves of Y, which are all vertical since B has genus 1. Hence V is the canonical model of Y.

Let ι be the involution associated to the cover $Y \rightarrow S$. This involution induces automorphisms of $B, \mathcal{E}, \mathbb{P}(E)$ and V (that we denote again by ८) compatible with a, ψ and the inclusion $V \subset \mathbb{P}(\mathcal{E})$. Given $b \in B$, write \mathbb{P}_{b}^{2} for the fiber of $\mathbb{P}(\mathcal{E})$ over b and $V_{b}:=V \cap \mathbb{P}_{b}^{2}$. The curve V_{b} is a plane quartic inside \mathbb{P}_{b}^{2}. For every $b \in B$, the map ι induces a projective isomorphism between \mathbb{P}_{b}^{2} and $\mathbb{P}_{\iota(b)}^{2}$ that restricts to an isomorphism of V_{b} with $V_{\iota(b)}$. In particular, if b is one of the four fixed points of ι on B, then ι induces an involution of \mathbb{P}_{b}^{2} that preserves the quartic V_{b}. Since the fixed locus of an involution of the plane contains a line, it follows that ι has at least a fixed point on V_{b}. In particular, the action of ι on V is not free.

On the other hand, one checks that a fixed point free automorphism of a minimal surface of general type induces a fixed point free automorphism of the canonical model. So we have a contradiction. q.e.d.

We can now give:
Proof of Theorem 1.1. The "if" part is a consequence of Lemma 2.1 and Lemma 2.2. Conversely, if S has a fibration with 4 double fibres $2 F_{1}, \ldots, 2 F_{4}$ then the étale double cover associated with $\eta:=F_{1}+F_{2}-$ $F_{3}-F_{4}$ has irregularity equal to 1 .
q.e.d.

3. The proof of Theorem 1.2

In this section we let S denote a smooth minimal surface of general type with $p_{g}(S)=0, K_{S}^{2}=3$. To prove Theorem 1.2 we argue by contradiction.

Thus assume that S has an irregular étale cover. Then by Theorem 1.1 there exists a fibration $f: S \rightarrow \mathbb{P}^{1}$ whose general fibre is hyperelliptic of genus 3 and with at least 4 double fibres $2 F_{1}, \ldots, 2 F_{4}$. As before, denote by $\pi: Y \rightarrow S$ the étale double cover given by $\eta=F_{1}+F_{2}-F_{3}-F_{4}$ and by ι the involution associated with π. The invariants of Y are: $q(Y)=1, p_{g}(Y)=2, K_{Y}^{2}=6$.

The hyperelliptic involution on the fibres of $a: Y \rightarrow B$ and $f: S \rightarrow Y$ induces involutions τ of Y and σ of S. By construction, these involutions are compatible with the map $\pi: Y \rightarrow S$; namely, we have $\pi \circ \tau=\sigma \circ \pi$. We denote by $p: S \rightarrow \Sigma:=S / \sigma$ the quotient map.

Lemma 3.1. The involutions τ and ι of Y commute.
Proof. Denote by h the composite map $Y \rightarrow S \rightarrow \Sigma$. By construction, both ι and τ belong to the Galois group G of h. Since h has degree 4 and ι and τ are involutions, the group G is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and ι and τ commute.

Abstract

q.e.d.

Lemma 3.2. The involution $\iota \tau$ has at least 16 isolated fixed points on Y.

Proof. Let $q: Y \rightarrow Z:=Y / \iota \tau$ be the quotient map. The surface Z is nodal. The regular 1 -forms and 2 -forms of Z correspond to the elements of $H^{0}\left(Y, \Omega_{Y}^{1}\right)$, respectively $H^{0}\left(Y, \omega_{Y}\right)$, that are invariant under the action of $\iota \tau$. By the same argument, since $p_{g}(S)=p_{g}(Y / \tau)=0$, both ι and τ act on $H^{0}\left(Y, \omega_{Y}\right)$ as multiplication by -1 . It follows that $\iota \tau$ acts trivially on $H^{0}\left(Y, \omega_{Y}\right)$ and $p_{g}(Z)=2$. Since ι acts on B as an involution with quotient \mathbb{P}^{1} and τ acts trivially on B, it follows that the action of $\iota \tau$ on B is equal to the action of ι and that $q(Z)=0$.

Let D be the divisorial part of the fixed locus of $\iota \tau$ on Y and let k be the number of isolated fixed points of $\iota \tau$. We recall the Holomorphic Fixed Point formula (see [AS], p. 566):

$$
\sum_{i}(-1)^{i} \operatorname{Tr}\left(\iota \tau \mid H^{i}\left(Y, \mathcal{O}_{Y}\right)\right)=\left(k-K_{Y} D\right) / 4
$$

By the above considerations, this can be rewritten as:

$$
k=16+K_{Y} D
$$

The statement now follows from the fact that K_{Y} is nef. q.e.d.

Proof of Theorem 1.2. By Lemma 3.1, the involution $\iota \tau$ of Y induces σ on S. By Lemma 3.2, $\iota \tau$ has at least 16 isolated fixed points. Since the images on S of these points are isolated fixed points of σ, the involution σ has at least 8 isolated fixed points. On the other hand, by $[\mathbf{C C M}$, Prop. 3.3] there are at most $K_{S}^{2}+4=7$ isolated fixed points of σ. So we have a contradiction, and thus S has no irregular étale cover. q.e.d.

4. The proof of Theorem 1.3

To prove Theorem 1.3 we will use the following two results proved in [Be, Cor. 5.8], although not stated explicitly.

Proposition 4.1. Let Y be a surface of general type such that the canonical map of Y has degree 2 onto a rational surface. If G is a group that acts freely on Y, then $G=\mathbb{Z}_{2}^{r}$, for some r.

Proof. The group G is finite, since a surface of general type has finitely many automorphisms.

Let T be the quotient of Y by the canonical involution. The surface T is rational, with canonical singularities, and G acts on T.

Since T is rational, each element $g \in G$ acts with fixed points. The argument in the proof of $[\mathbf{B e}$, Cor. 5.8] shows that each g has order 2, hence $G=\mathbb{Z}_{2}^{r}$.
q.e.d.

Corollary 4.2. Let S be a minimal surface of general type such that $K_{S}^{2}<3 \chi(S)$, and S has no irregular étale cover. If $Y \rightarrow S$ is an étale G-cover, then either $|G| \leq 10$ or $G=\mathbb{Z}_{2}^{r}$, for some $r \geq 4$.

Proof. Let $\pi: Y \rightarrow S$ be an étale G-cover of degree $d>10$. By assumption we have $q(Y)=0$ and $K_{Y}^{2}<3 p_{g}(Y)-7$, and therefore the canonical map of Y is 2 -to- 1 onto a rational surface by $[\mathbf{B e}$, Theorem 5.5]. Hence $G=\mathbb{Z}_{2}^{r}$ for some $r \geq 4$ by Proposition 4.1. q.e.d.

For related statements see the results of [$\mathbf{X 2}$] on hyperelliptic surfaces and the results of $[\mathbf{A K}]$ and $[\mathbf{K o 1}]$.

We remark that the next result is well known for the cases $\chi(S)=1$ and $K_{S}^{2}=1$ or $2([\mathbf{R e} \mathbf{2}])$.

Proposition 4.3. Let S be a minimal surface of general type with $K_{S}^{2}<3 \chi(S)$. If S has no irregular étale cover, then $\left|\pi_{1}^{\text {alg }}(S)\right| \leq 9$.

Proof. Let $Y \rightarrow S$ be an étale G-cover. By Corollary 4.2, it is enough to exclude the following possibilities: a) $G=\mathbb{Z}_{2}^{r}$ for some $r \geq 4$, and b) $|G|=10$.

Consider case a) and assume by contradiction that $\pi: Y \rightarrow S$ is a Galois étale cover with Galois group $G=\mathbb{Z}_{2}^{4}$. By [Miy], $\chi(S) \geq 2$. We have $\chi(Y)=16 \chi(S) \geq 32$ and $K_{Y}^{2}<3(\chi(Y)-5)$. Notice that, since $K_{Y}^{2}<3 \chi(Y)-10$, by [Be, Theorem 5.5] the surface Y has a pencil of hyperelliptic curves. Hence Y satisfies the assumptions of [X2, Theorem 1] and there exists a unique free pencil $|F|$ of hyperelliptic curves of genus $g \leq 3$ on Y. The action of G preserves $|F|$ by the uniqueness of $|F|$. Since $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ does not contain a subgroup isomorphic to \mathbb{Z}_{2}^{3}, there is a subgroup $H<G$ of order ≥ 4 that maps every curve of $|F|$ to itself. Since the action of G on Y is free, this implies that $g-1$ is divisible by 4 , contradicting $g \leq 3$ and S of general type.

Consider now case b) and assume by contradiction that $\pi: Y \rightarrow S$ is a Galois cover with Galois group G of order 10 . For $K_{S}^{2}<3 \chi(S)-1$, we have $K_{Y}^{2}<3 \chi(Y)-10$ and, as in the proof of Corollary 4.2, G is of the form \mathbb{Z}_{2}^{a}, a contradiction. So we have $K_{S}^{2}=3 \chi(S)-1, K_{Y}^{2}=3 \chi(Y)-10$,
$q(Y)=0$ and so, by [AK], the canonical map of Y is either birational or 2-to-1 onto a rational surface. By Proposition 4.1, the last possibility does not occur, since G has order 10 .

The surface Y satisfies $p_{g}(Y)=10 \chi(S)-1 \geq 9$. Surfaces on the Castelnuovo line $K^{2}=3 \chi-10$ with birational canonical map are classified (cf. [Ha], [Mir] and $[\mathbf{A K}])$: for $p_{g}(Y) \geq 8$, the canonical model V of Y is a relative quartic inside a \mathbb{P}^{2}-bundle

$$
\mathbb{P}:=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right),
$$

where $0 \leq a \leq b \leq c$ and $a+b+c=p_{g}(Y)+3$.
If the Galois group G preserves the fibration $f: V \rightarrow \mathbb{P}^{1}$ induced by the projection $\mathbb{P} \rightarrow \mathbb{P}^{1}$, then, as in Lemma 2.2, we obtain a contradiction by considering the action on V of an element of order 2 of G.

So, to conclude the proof we just have to show that G preserves f. Let W be the image of \mathbb{P} via the tautological linear system. By the results of $[\mathbf{A K}],[\mathbf{H a}],[\mathbf{M i r}]$, the threefold W is the intersection of all the quadrics that contain the canonical image of Y and therefore it is preserved by the automorphisms of V. One checks that W has a unique ruling by planes which induces the fibration f on V. Therefore every automorphism of V preserves the fibration f. q.e.d.

To obtain the statement of Theorem 1.3 we now show the following:
Proposition 4.4. Let S be a minimal surface of general type with $K_{S}^{2}<3 \chi(S)$. If $\left|\pi_{1}^{\text {alg }}(S)\right|=9$, then $\chi(S)=1$ and $K_{S}^{2}=2$, namely S is a numerical Campedelli surface.

Proof. Suppose that $\left|\pi_{1}^{\text {alg }}(S)\right|=9$ and $\chi(S) \geq 2$. The argument in the proof of Proposition 4.3 shows that $K_{S}^{2}=3 \chi(S)-1$. Let $\pi: Y \rightarrow S$ be the universal cover. We have $K_{Y}^{2}=3 p_{g}(Y)-6, p_{g}(Y)=9 \chi(Y)-1 \geq 17$. By [Ko1, Lem. 2.2] the bicanonical map of Y has degree 1 or 2. Arguing as in the proof of Proposition 4.3, one shows that the bicanonical map of Y is birational. Then, since $p_{g}(Y) \geq 11$, by the results of [Ko1] the situation is analogous to the case of a surface with $K^{2}=3 p_{g}-7$ and birational canonical map. Namely, the intersection of all the quadrics through the canonical image of Y is a threefold W, which is the image of a \mathbb{P}^{2}-bundle $\mathbb{P}:=\operatorname{Proj}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right)$ via the tautological linear system, and Y is birational to a relative quartic of \mathbb{P}. In particular, there is a fibration $f: Y \rightarrow \mathbb{P}^{1}$ with general fibre a nonhyperelliptic curve of genus 3. One can show as above that the Galois group $G=\pi_{1}^{\text {alg }}(S)$ of π preserves f. Then we obtain a contradiction, since the multiple fibres of a genus 3 fibration are double fibres and a smooth genus 3 curve does not admit a free action of a group of order 9 . q.e.d.

Remark. Numerical Campedelli surfaces with fundamental group \mathbb{Z}_{9} and \mathbb{Z}_{3}^{2} do exist (cf. [X1, Ex. 4.11], [MP1]).

References

[AK] T. Ashikaga \& K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-7$, Tohoku Math. J. (2) 42(4) (1990) 517-536, MR 1076174, Zbl 0735.14026.
[AS] M.F. Atiyah \& I.M. Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968) 546-604, MR 0236952, Zbl 0164.24301.
[BHPV] W. Barth, K. Hulek, C. Peters, \& A. Van de Ven, Compact complex surfaces, 2nd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 4, Springer 2004, MR 2030225, Zbl 1036.14016.
[Be] A. Beauville, L'application canonique pour les surfaces de type général, Inv. Math. 55 (1979) 121-140, MR 0553705, Zbl 0403.14006.
[Bo] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973) 171-219, MR 0318163, Zbl 0259.14005.
[CCM] A. Calabri, C. Ciliberto, \& M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007) 1605-1632.
[Ca] F. Catanese, Fibred Kähler and quasi-projective groups, Adv. Geom., Special issue dedicated to Adriano Barlotti, suppl. 2003, S13-S27, MR 2028385, Zbl 1051.32013.
[CKO] F. Catanese, J. Keum, \& K. Oguiso, Some remarks on the universal cover of an open K3 surface, Math. Ann. 325(2) (2003) 279-286, MR 1962049, Zbl 1073.14535.
[CH] M. Cornalba \& J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21(3) (1988) 455-475, MR 0974412, Zbl 0674.14006.
[Ha] J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1) (1981) 35-68, MR 0616900, Zbl 0467.14005.
[Ho] E. Horikawa, Algebraic surfaces of general type with small c_{1}^{2}, V, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981) 745-755, MR 0656051, Zbl 0505.14028.
[Ko1] K. Konno, Algebraic surfaces of general type with $c_{1}^{2}=3 p_{g}-6$, Math. Ann. 290(1) (1991) 77-107, MR 1107664, Zbl 0711.14021.
[Ko2] , Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 20 (1993) 575595, MR 1267600, Zbl 0822.14009.
[Miy] Y. Miyaoka, On numerical Campedelli surfaces, Complex Anal. Algebr. Geom., Collect. Pap. dedic. K. Kodaira, 1977, 113-118, MR 0447258, Zbl 0365.14007.
[MP1] M. Mendes Lopes \& R. Pardini, Numerical Campedelli surfaces with fundamental group of order 9, J.E.M.S., to appear, math.AG/0602633.
[MP2] , The order of finite algebraic fundamental groups of surfaces with $K^{2} \leq 3 \chi-2$, in 'Algebraic geometry and Topology', Suurikaiseki kenkyusho Koukyuuroku, 1490 (2006) 69-75, math.AG/0605733.
[Mir] R. Miranda, On canonical surfaces of general type with $K^{2}=3 \chi-10$, Math. Z. 198(1) (1988) 83-93, MR 0938031, Zbl 0622.14028.
[Na] D. Naie, Surfaces d'Enriques et une construction de surfaces de type général avec $p_{g}=0$, Math. Z. 215(2) (1994) 269-280, MR 1259462, Zbl 0791.14016.
[Pa] R. Pardini, The Severi inequality $K^{2} \geq 4 \chi$ for surfaces of maximal Albanese dimension, Invent. Math. 159(3) (2005) 669-672, MR 2125737, Zbl 1082.14041.
[Re1] M. Reid, π_{1} for surfaces with small K^{2}, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 534-544, Lecture Notes in Math., 732, Springer-Verlag, Berlin, 1979, MR 0555716, Zbl 0423.14021.
$[\operatorname{Re} 2]$, Surfaces with $p_{g}=0, K_{S}^{2}=2$, preprint available at http:// www.maths.warwick.ac.uk/~miles/surf/
[St] L. Stoppino, Slope inequalities via GIT, preprint, math.AG/0411639.
[X1] G. Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, 1137, Springer-Verlag, Berlin, 1985, MR 0872271, Zbl 0579.14028.
[X2] , Hyperelliptic surfaces of general type with $K^{2}<4 \chi$, Manuscripta Math. 57 (1987) 125-148, MR 0871627, Zbl 0615.14022.
[X3] , Fibered algebraic surfaces with low slope, Math. Ann. 276(3) (1987) 449-466, MR 0875340, Zbl 0596.14028.

Departamento de Matemática
Instituto Superior Técnico
Universidade Técnica de Lisboa
Av. Rovisco Pais
1049-001 Lisboa, Portugal
E-mail address: mmlopes@math.ist.utl.pt
Dipartimento di Matematica
Università di Pisa
Largo B. Pontecorvo, 5 56127 Pisa, Italy
E-mail address: pardini@dm.unipi.it

[^0]: The first author is a member of the Center for Mathematical Analysis, Geometry and Dynamical Systems, IST TULisbon, and the second author is a member of G.N.S.A.G.A.-I.N.d.A.M. This research was partially supported by the Italian project "Geometria sulle varietà algebriche" (PRIN COFIN 2004) and by FCT (Portugal) through program POCTI/FEDER and Project POCTI/MAT/44068/2002.

 Received 01/02/2006.

