J. DIFFERENTIAL GEOMETRY

77 (2007) 189-199

ON THE ALGEBRAIC FUNDAMENTAL GROUP OF SURFACES WITH $K^2 < 3\chi$

MARGARIDA MENDES LOPES & RITA PARDINI

Abstract

Let S be a minimal complex surface of general type with q(S) =0. We prove the following statements concerning the algebraic fundamental group $\pi_1^{\text{alg}}(S)$: • Assume that $K_S^2 \leq 3\chi(S)$. Then S has an irregular étale cover

- if and only if S has a free pencil of hyperelliptic curves of genus 3 with at least 4 double fibres.
- If K²_S = 3 and χ(S) = 1, then S has no irregular étale cover.
 If K²_S < 3χ(S) and S does not have any irregular étale cover, then |π^{alg}₁(S)| ≤ 9. If |π^{alg}₁(S)| = 9, then K²_S = 2, χ(S) = 1.

1. Introduction

Every minimal surface S of general type satisfies the Noether inequality:

$$K_S^2 \ge 2\chi(S) - 6.$$

It has been clear for a long time that the closer a surface is to the Noether line $K^2 = 2\chi - 6$, the simpler its algebraic fundamental group is. In fact, Reid has conjectured that for $K^2 < 4\chi$ the algebraic fundamental group of S is either finite or it coincides, up to finite group extensions, with the fundamental group of a curve of genus $g \ge 1$, i.e., it is *commensurable* with the fundamental group of a curve, ([Re1, Conjecture 4], see also $[\mathbf{BHPV}]$, p. 294).

In the case of irregular surfaces or of regular surfaces having an irregular étale cover, Reid's conjecture follows from the Severi inequality, recently proved in [Pa], which states that the Albanese map of an irregular surface with $K^2 < 4\chi$ is a pencil.

Indeed, let S be an irregular surface satisfying $K^2 < 4\chi$, let $a: S \to B$ be the Albanese pencil of S and F a general fibre of a. The inclusion

The first author is a member of the Center for Mathematical Analysis, Geometry and Dynamical Systems, IST TULisbon, and the second author is a member of G.N.S.A.G.A.-I.N.d.A.M. This research was partially supported by the Italian project "Geometria sulle varietà algebriche" (PRIN COFIN 2004) and by FCT (Portugal) through program POCTI/FEDER and Project POCTI/MAT/44068/2002.

Received 01/02/2006.

 $F \hookrightarrow S$ induces a map $\psi \colon \pi_1^{\text{alg}}(F) \to \pi_1^{\text{alg}}(S)$. By [**X3**, Theorem 1] the image H of ψ is either 0 or \mathbb{Z}_2 , and $H = \mathbb{Z}_2$ is possible only if F is hyperelliptic. The cokernel of ψ is the so-called *orbifold fundamental group* of the fibration a (cf. [**CKO**], [**Ca**, Lemma 4.2]). If a has no multiple fibres, then we have an exact sequence:

(1.1)
$$1 \to H \to \pi_1^{\mathrm{alg}}(S) \to \pi_1^{\mathrm{alg}}(B) \to 1.$$

If a has multiple fibres, then it is possible to find a Galois cover $B' \to B$ such that the fibration $a' \colon S' \to B'$ obtained from a by base change and normalization has no multiple fibres and the map $S' \to S$ is étale. Since $\pi_1^{\text{alg}}(S')$ is a normal subgroup of $\pi_1^{\text{alg}}(S)$ of finite index, it follows that in any case the algebraic fundamental group of an irregular surface satisfying $K^2 < 4\chi$ is commensurable with the fundamental group of a curve. Of course the same is true for a regular surface satisfying $K^2 < 4\chi$ and having an irregular étale cover.

Reid's conjecture is still open for surfaces not having an irregular cover. However, for surfaces satisfying $K^2 < 3\chi$, not only Reid's conjecture is true ([**Re1**] and [**Ho**]), but work by several authors gives more precise results on the algebraic fundamental group (cf. [**Bo**], [**Ho**], [**Re1**], [**Re2**], [**X2**], [**X3**]). The picture that emerges from their work is the following:

- (I) If $K_S^2 < 2\chi(S)$, then S is regular and $\pi_1^{\text{alg}}(S)$ is finite.
- (II) If $K_S^2 < \frac{8}{3}\chi(S)$ and S is irregular, then the Albanese map of S is a pencil of curves of genus 2. If $K_S^2 < \frac{8}{3}\chi(S)$ and S is regular, then $\pi_1^{\text{alg}}(S)$ is finite.
- (III) If $K_S^2 < 3\chi(S)$ and S is irregular, then the Albanese map of S is a pencil of hyperelliptic curves of genus 2 or 3. If S is regular, then either $\pi_1^{\text{alg}}(S)$ is finite or there exists an irregular étale cover $X \to S$. The Albanese map of X is a pencil of hyperelliptic curves of genus 3, which induces on S a free pencil of hyperelliptic curves of genus 3 with at least 4 double fibres. Conversely, if S has such a pencil, then it admits an irregular étale cover.

These results give a good understanding of the algebraic fundamental group of a surface S with $K^2 < 3\chi$ and infinite $\pi_1^{\text{alg}}(S)$.

In fact, if S is irregular and the Albanese map $a: S \to B$ has multiple fibres, then by statement (III) and by the adjunction formula we have g = 3 and the multiple fibres are double fibres. Then there is a Galois cover $B' \to B$ with Galois group G such that the G-cover $S' \to S$ obtained by base change and normalization is étale and the induced fibration $a': S' \to B'$ has no multiple fibres. One can show that G can be chosen to be a quotient of the dihedral group of order 8. So we have an exact sequence:

$$1 \to \pi_1^{\mathrm{alg}}(S') \to \pi_1^{\mathrm{alg}}(S) \to G \to 1$$

and the group $\pi_1^{\text{alg}}(S')$ is described by sequence (1.1).

If S is a regular surface such that $K_S^2 < 3\chi(S)$ and $\pi_1^{\text{alg}}(S)$ is infinite, then using (III), one constructs an irregular étale Galois cover $X \to S$ with Galois group \mathbb{Z}_2 or \mathbb{Z}_2^2 whose Albanese map is a pencil of curves of genus 3 without multiple fibres (more precisely, we have \mathbb{Z}_2 if the number k of double fibres of a is even and \mathbb{Z}_2^2 if k is odd). Then the group $\pi_1^{\text{alg}}(X)$ is a normal subgroup of $\pi_1^{\text{alg}}(S)$ of index 2 or 4 which can be described as explained above.

However, if the algebraic fundamental group of S is finite, then the above results give no additional information.

In this paper we give two improvements of the above results. We first extend part of (III) to surfaces on the line $K^2 = 3\chi$:

Theorem 1.1. Let S be a minimal complex surface of general type with q(S) = 0 and $K_S^2 \leq 3\chi(S)$.

Then S has an irregular étale cover if and only if there exists a fibration $f: S \to \mathbb{P}^1$ such that:

(i) the general fibre F of f is hyperelliptic of genus 3;

(ii) f has at least 4 double fibres.

This improvement is made possible by the Severi inequality. In the case $p_a(S) = 0$, Theorem 1.1 can be made more precise:

Theorem 1.2. Let S be a smooth minimal surface of general type with $p_q(S) = 0$, $K_S^2 = 3$.

Then S has no irregular étale cover.

Theorem 1.2 is sharp in a sense, since there are examples, due to Keum and Naie (cf. [Na]), of surfaces with $K^2 = 4$ and $p_g = 0$ that have an irregular cover.

On the other hand, it remains an open question whether the algebraic fundamental group of a surface with $K^2 = 3$ and $p_g = 0$ is finite or more generally whether the algebraic fundamental group of a surface with $K^2 = 3\chi$ that has no étale irregular cover is finite.

In even greater generality one would like to know whether the algebraic fundamental group of a surface with $K^2 < 4\chi$ that has no étale irregular cover is finite, deciding thus Reid's conjecture. This is a very challenging problem, which however does not seem possible to resolve with the methods of the present paper.

Finally, we bound the cardinality of $\pi_1^{\text{alg}}(S)$ in the case when it is a finite group:

Theorem 1.3. Let S be a minimal surface of general type such that $K_S^2 < 3\chi(S)$. If S has no irregular étale cover, then $\pi_1^{\text{alg}}(S)$ is a finite group of order ≤ 9 .

Moreover, if $\pi_1^{\text{alg}}(S)$ has order 9, then $\chi(S) = 1$ and $K_S^2 = 2$, namely S is a numerical Campedelli surface.

This bound is sharp, since there are examples of surfaces with $p_g = 0$, $K^2 = 2$ and $\pi_1^{\text{alg}}(S) = \mathbb{Z}_9$, \mathbb{Z}_3^2 (cf. **[X1**, Ex. 4.11], **[MP1]**). By this theorem only a very short list of finite groups can occur as

By this theorem only a very short list of finite groups can occur as the algebraic fundamental groups of surfaces with $K^2 \leq 3\chi - 1$. The list is even more restricted if $K^2 \leq 3\chi - 2$: in [**MP2**] it is shown that in this case $|\pi_1^{\text{alg}}(S)| \leq 5$, with equality holding only for surfaces with $K_S^2 = 1$ and $p_g(S) = 0$. Moreover $|\pi_1^{\text{alg}}(S)| = 3$ is possible only for $2 \leq \chi(S) \leq 4$ and $K^2 = 3\chi - 3$.

Notation and conventions. We work over the complex numbers. All varieties are projective algebraic. We denote by χ or $\chi(S)$ the holomorphic Euler characteristic of the structure sheaf of the surface S.

2. The proof of Theorem 1.1

In this section we assume that S is a minimal complex surface of general type with q(S) = 0 and $K_S^2 \leq 3\chi(S)$. In order to prove Theorem 1.1 we need some intermediate steps.

Lemma 2.1. Let $\rho: Z \to S$ be an étale cover such that q(Z) > 0.

Then the Albanese pencil $a: Z \to A$ induces a fibration $f: S \to \mathbb{P}^1$ such that:

- (i) the general fibre F of f is a curve of genus 3;
- (ii) f has at least 4 double fibres.

Moreover, all irregular étale covers of S induce the same fibration $f: S \to \mathbb{P}^1$.

Proof. If $\rho: Z \to S$ is an irregular étale cover, then the Galois closure of ρ is an irregular Galois étale cover. We denote by $\pi: Y \to S$ a minimal element of the set of irregular Galois étale covers of S.

Denote by d the degree of π . The surface S is minimal of general type with $K_Y^2 = dK_S^2$, $\chi(Y) = d\chi(S)$. Hence $K_Y^2 \leq 3\chi(Y) < 4\chi(Y)$ and therefore, by the Severi inequality ([**Pa**]), the image of the Albanese map of Y is a curve. Write $a: Y \to B$ for the Albanese pencil, and let b be the genus of B and g the genus of the general fibre F of a. The Galois group G of π acts on the curve B. This action is effective by the assumption that π is minimal among the irregular étale covers of S. Hence we have a commutative diagram:

$$\begin{array}{cccc}
Y & \xrightarrow{\pi} & S \\
a & & & \downarrow_f \\
B & \xrightarrow{\bar{\pi}} & \mathbb{P}^1
\end{array}$$

192

The map $\bar{\pi}$ is a Galois cover with group G and the general fibre of f is also equal to F. Since the map π is obtained from f by taking base change with $\bar{\pi}$ and normalizing, the fibre of f over a point x of \mathbb{P}^1 has multiplicity equal to the ramification order of $\bar{\pi}$ over x. Notice that, since \mathbb{P}^1 is simply connected, the branch divisor of $\bar{\pi}$ is nonempty and therefore the fibration f always has multiple fibres. Notice also that, since S is of general type, the existence of multiple fibres implies $g \geq 3$.

We remark that the fibration a is not smooth and isotrivial. In fact, if this were the case then Y would be a free quotient of a product of curves, hence it would satisfy $K_Y^2 = 8\chi(Y)$. Hence we may define the slope of a (cf. **[X3]**):

$$\lambda(a) := \frac{K_Y^2 - 8(b-1)(g-1)}{\chi(Y) - (b-1)(g-1)}.$$

The slope inequality ([X3], cf. also [CH], [St]) gives

(2.2)
$$4(g-1)/g \le \lambda(a) \le K_Y^2/\chi(Y) = K_S^2/\chi(S) \le 3.$$

where the second inequality is a consequence of b > 0. Hence we get g = 3 or g = 4.

Assume g = 4. In this case (2.2) becomes:

$$3 \le \lambda(a) \le K_S^2/\chi(S) \le 3.$$

It follows that the slope inequality is sharp in this case and $K_S^2 = 3\chi(S)$. By [**Ko2**, Prop. 2.6], this implies that F is hyperelliptic. Let σ be the involution of S induced by the hyperelliptic involution on the fibres of f. The divisorial part R of the fixed locus of σ satisfies FR = 10. As remarked above, f has at least a fibre of multiplicity m > 1, that we denote by mA. Since g = 4, by the adjunction formula $\frac{6}{m}$ is divisible by 2, yielding m = 3. Hence 3AR = 10, a contradiction. So we have proved g = 3.

Using the adjunction formula again, we see that the multiple fibres of f are double fibres, hence all the branch points of $\bar{\pi}$ have ramification order equal to 2. Let k be the number of branch points of $\bar{\pi}$. By applying the Hurwitz formula to $\bar{\pi}$, we get $k \geq 4$.

Given an irregular étale cover $\rho: Z \to S$, we can always find an étale cover $W \to S$ which dominates both Z and Y. The Albanese pencil of W is a pullback both from Y and from Z, hence the fibrations induced on S by the Albanese pencils of Z, W and Y are the same. q.e.d.

We introduce some more notation. Assume that $f: S \to \mathbb{P}^1$ is the fibration defined in Lemma 2.1. Let $\bar{\pi}: B \to \mathbb{P}^1$ be the double cover branched on 4 points corresponding to double fibres $2F_1, \ldots, 2F_4$ of f and $\pi: Y \to S$ the étale double cover obtained by base change with $\bar{\pi}$ and normalization, as in diagram (2.1). Then $K_Y^2 = 2K_S^2, \chi(Y) = 2\chi(S)$

and q(Y) = 1. We write $\eta := F_1 + F_2 - F_3 - F_4$. Clearly, η has order 2 in Pic(S) and π is the étale double cover corresponding to η .

Lemma 2.2. The general fibre F of f is hyperelliptic.

Proof. Assume by contradiction that F is not hyperelliptic and consider the pencil $a: Y \to B$, whose general fibre is also equal to F. Set $\mathcal{E} := a_* \omega_Y$ and denote by $\psi: Y \to \mathbb{P}(\mathcal{E})$ the relative canonical map, which is a morphism by Remark 2.4 of [**Ko2**]. Let V be the image of ψ . The surface V is a relative quartic in $\mathbb{P}(\mathcal{E})$ and, by Lemma 3.1 and Theorem 3.2 of [**Ko2**], its singularities are at most rational double points. The map ψ is birational and it contracts precisely the nodal curves of Y, which are all vertical since B has genus 1. Hence V is the canonical model of Y.

Let ι be the involution associated to the cover $Y \to S$. This involution induces automorphisms of B, \mathcal{E} , $\mathbb{P}(E)$ and V (that we denote again by ι) compatible with a, ψ and the inclusion $V \subset \mathbb{P}(\mathcal{E})$. Given $b \in B$, write \mathbb{P}_b^2 for the fiber of $\mathbb{P}(\mathcal{E})$ over b and $V_b := V \cap \mathbb{P}_b^2$. The curve V_b is a plane quartic inside \mathbb{P}_b^2 . For every $b \in B$, the map ι induces a projective isomorphism between \mathbb{P}_b^2 and $\mathbb{P}_{\iota(b)}^2$ that restricts to an isomorphism of V_b with $V_{\iota(b)}$. In particular, if b is one of the four fixed points of ι on B, then ι induces an involution of \mathbb{P}_b^2 that preserves the quartic V_b . Since the fixed locus of an involution of the plane contains a line, it follows that ι has at least a fixed point on V_b . In particular, the action of ι on V is not free.

On the other hand, one checks that a fixed point free automorphism of a minimal surface of general type induces a fixed point free automorphism of the canonical model. So we have a contradiction. q.e.d.

We can now give:

Proof of Theorem 1.1. The "if" part is a consequence of Lemma 2.1 and Lemma 2.2. Conversely, if S has a fibration with 4 double fibres $2F_1, \ldots, 2F_4$ then the étale double cover associated with $\eta := F_1 + F_2 - F_3 - F_4$ has irregularity equal to 1. q.e.d.

3. The proof of Theorem 1.2

In this section we let S denote a smooth minimal surface of general type with $p_g(S) = 0$, $K_S^2 = 3$. To prove Theorem 1.2 we argue by contradiction.

Thus assume that S has an irregular étale cover. Then by Theorem 1.1 there exists a fibration $f: S \to \mathbb{P}^1$ whose general fibre is hyperelliptic of genus 3 and with at least 4 double fibres $2F_1, \ldots, 2F_4$. As before, denote by $\pi: Y \to S$ the étale double cover given by $\eta = F_1 + F_2 - F_3 - F_4$ and by ι the involution associated with π . The invariants of Y are: $q(Y) = 1, p_g(Y) = 2, K_Y^2 = 6.$ The hyperelliptic involution on the fibres of $a: Y \to B$ and $f: S \to Y$ induces involutions τ of Y and σ of S. By construction, these involutions are compatible with the map $\pi: Y \to S$; namely, we have $\pi \circ \tau = \sigma \circ \pi$. We denote by $p: S \to \Sigma := S/\sigma$ the quotient map.

Lemma 3.1. The involutions τ and ι of Y commute.

Proof. Denote by h the composite map $Y \to S \to \Sigma$. By construction, both ι and τ belong to the Galois group G of h. Since h has degree 4 and ι and τ are involutions, the group G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ and ι and τ commute. q.e.d.

Lemma 3.2. The involution $\iota \tau$ has at least 16 isolated fixed points on Y.

Proof. Let $q: Y \to Z := Y/\iota\tau$ be the quotient map. The surface Z is nodal. The regular 1-forms and 2-forms of Z correspond to the elements of $H^0(Y, \Omega_Y^1)$, respectively $H^0(Y, \omega_Y)$, that are invariant under the action of $\iota\tau$. By the same argument, since $p_g(S) = p_g(Y/\tau) = 0$, both ι and τ act on $H^0(Y, \omega_Y)$ as multiplication by -1. It follows that $\iota\tau$ acts trivially on $H^0(Y, \omega_Y)$ and $p_g(Z) = 2$. Since ι acts on B as an involution with quotient \mathbb{P}^1 and τ acts trivially on B, it follows that the action of $\iota\tau$ on B is equal to the action of ι and that q(Z) = 0.

Let *D* be the divisorial part of the fixed locus of $\iota \tau$ on *Y* and let *k* be the number of isolated fixed points of $\iota \tau$. We recall the Holomorphic Fixed Point formula (see [**AS**], p. 566):

$$\sum_{i} (-1)^{i} \operatorname{Tr}(\iota \tau | H^{i}(Y, \mathcal{O}_{Y})) = (k - K_{Y}D)/4.$$

By the above considerations, this can be rewritten as:

$$k = 16 + K_Y D.$$

The statement now follows from the fact that K_Y is nef. q.e.d.

Proof of Theorem 1.2. By Lemma 3.1, the involution $\iota\tau$ of Y induces σ on S. By Lemma 3.2, $\iota\tau$ has at least 16 isolated fixed points. Since the images on S of these points are isolated fixed points of σ , the involution σ has at least 8 isolated fixed points. On the other hand, by [CCM, Prop. 3.3] there are at most $K_S^2 + 4 = 7$ isolated fixed points of σ . So we have a contradiction, and thus S has no irregular étale cover. q.e.d.

4. The proof of Theorem 1.3

To prove Theorem 1.3 we will use the following two results proved in [**Be**, Cor. 5.8], although not stated explicitly.

Proposition 4.1. Let Y be a surface of general type such that the canonical map of Y has degree 2 onto a rational surface. If G is a group that acts freely on Y, then $G = \mathbb{Z}_2^r$, for some r.

Proof. The group G is finite, since a surface of general type has finitely many automorphisms.

Let T be the quotient of Y by the canonical involution. The surface T is rational, with canonical singularities, and G acts on T.

Since T is rational, each element $g \in G$ acts with fixed points. The argument in the proof of [**Be**, Cor. 5.8] shows that each g has order 2, hence $G = \mathbb{Z}_2^r$. q.e.d.

Corollary 4.2. Let S be a minimal surface of general type such that $K_S^2 < 3\chi(S)$, and S has no irregular étale cover. If $Y \to S$ is an étale G-cover, then either $|G| \leq 10$ or $G = \mathbb{Z}_2^r$, for some $r \geq 4$.

Proof. Let $\pi: Y \to S$ be an étale G-cover of degree d > 10. By assumption we have q(Y) = 0 and $K_Y^2 < 3p_g(Y) - 7$, and therefore the canonical map of Y is 2-to-1 onto a rational surface by [**Be**, Theorem 5.5]. Hence $G = \mathbb{Z}_2^r$ for some $r \ge 4$ by Proposition 4.1. q.e.d.

For related statements see the results of [X2] on hyperelliptic surfaces and the results of [AK] and [Ko1].

We remark that the next result is well known for the cases $\chi(S) = 1$ and $K_S^2 = 1$ or 2 ([**Re2**]).

Proposition 4.3. Let S be a minimal surface of general type with $K_S^2 < 3\chi(S)$. If S has no irregular étale cover, then $|\pi_1^{\text{alg}}(S)| \leq 9$.

Proof. Let $Y \to S$ be an étale G-cover. By Corollary 4.2, it is enough to exclude the following possibilities: a) $G = \mathbb{Z}_2^r$ for some $r \ge 4$, and b) |G| = 10.

Consider case a) and assume by contradiction that $\pi: Y \to S$ is a Galois étale cover with Galois group $G = \mathbb{Z}_2^4$. By $[\mathbf{Miy}], \chi(S) \ge 2$. We have $\chi(Y) = 16\chi(S) \ge 32$ and $K_Y^2 < 3(\chi(Y) - 5)$. Notice that, since $K_Y^2 < 3\chi(Y) - 10$, by [**Be**, Theorem 5.5] the surface Y has a pencil of hyperelliptic curves. Hence Y satisfies the assumptions of $[\mathbf{X2}, \text{Theorem 1}]$ and there exists a unique free pencil |F| of hyperelliptic curves of genus $g \le 3$ on Y. The action of G preserves |F| by the uniqueness of |F|. Since $\operatorname{Aut}(\mathbb{P}^1)$ does not contain a subgroup isomorphic to \mathbb{Z}_2^3 , there is a subgroup H < G of order ≥ 4 that maps every curve of |F| to itself. Since the action of G on Y is free, this implies that g - 1 is divisible by 4, contradicting $g \le 3$ and S of general type.

Consider now case b) and assume by contradiction that $\pi: Y \to S$ is a Galois cover with Galois group G of order 10. For $K_S^2 < 3\chi(S) - 1$, we have $K_Y^2 < 3\chi(Y) - 10$ and, as in the proof of Corollary 4.2, G is of the form \mathbb{Z}_2^a , a contradiction. So we have $K_S^2 = 3\chi(S) - 1$, $K_Y^2 = 3\chi(Y) - 10$, q(Y) = 0 and so, by $[\mathbf{AK}]$, the canonical map of Y is either birational or 2-to-1 onto a rational surface. By Proposition 4.1, the last possibility does not occur, since G has order 10.

The surface Y satisfies $p_g(Y) = 10\chi(S) - 1 \ge 9$. Surfaces on the Castelnuovo line $K^2 = 3\chi - 10$ with birational canonical map are classified (cf. [Ha], [Mir] and [AK]): for $p_g(Y) \ge 8$, the canonical model V of Y is a relative quartic inside a \mathbb{P}^2 -bundle

$$\mathbb{P} := \operatorname{Proj}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b) \oplus \mathcal{O}_{\mathbb{P}^1}(c)),$$

where $0 \le a \le b \le c$ and $a + b + c = p_g(Y) + 3$.

If the Galois group G preserves the fibration $f: V \to \mathbb{P}^1$ induced by the projection $\mathbb{P} \to \mathbb{P}^1$, then, as in Lemma 2.2, we obtain a contradiction by considering the action on V of an element of order 2 of G.

So, to conclude the proof we just have to show that G preserves f. Let W be the image of \mathbb{P} via the tautological linear system. By the results of $[\mathbf{AK}]$, $[\mathbf{Ha}]$, $[\mathbf{Mir}]$, the threefold W is the intersection of all the quadrics that contain the canonical image of Y and therefore it is preserved by the automorphisms of V. One checks that W has a unique ruling by planes which induces the fibration f on V. Therefore every automorphism of V preserves the fibration f. q.e.d.

To obtain the statement of Theorem 1.3 we now show the following:

Proposition 4.4. Let S be a minimal surface of general type with $K_S^2 < 3\chi(S)$. If $|\pi_1^{\text{alg}}(S)| = 9$, then $\chi(S) = 1$ and $K_S^2 = 2$, namely S is a numerical Campedelli surface.

Proof. Suppose that $|\pi_1^{\text{alg}}(S)| = 9$ and $\chi(S) \ge 2$. The argument in the proof of Proposition 4.3 shows that $K_S^2 = 3\chi(S) - 1$. Let $\pi: Y \to S$ be the universal cover. We have $K_Y^2 = 3p_g(Y) - 6$, $p_g(Y) = 9\chi(Y) - 1 \ge 17$. By [Ko1, Lem. 2.2] the bicanonical map of Y has degree 1 or 2. Arguing as in the proof of Proposition 4.3, one shows that the bicanonical map of Y is birational. Then, since $p_g(Y) \ge 11$, by the results of [Ko1] the situation is analogous to the case of a surface with $K^2 = 3p_q - 7$ and birational canonical map. Namely, the intersection of all the quadrics through the canonical image of Y is a threefold W, which is the image of a \mathbb{P}^2 -bundle $\mathbb{P} := \operatorname{Proj}(\mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b) \oplus \mathcal{O}_{\mathbb{P}^1}(c))$ via the tautological linear system, and Y is birational to a relative quartic of \mathbb{P} . In particular, there is a fibration $f: Y \to \mathbb{P}^1$ with general fibre a nonhyperelliptic curve of genus 3. One can show as above that the Galois group $G = \pi_1^{\text{alg}}(S)$ of π preserves f. Then we obtain a contradiction, since the multiple fibres of a genus 3 fibration are double fibres and a smooth genus 3 curve does not admit a free action of a group of order 9. q.e.d.

Remark. Numerical Campedelli surfaces with fundamental group \mathbb{Z}_9 and \mathbb{Z}_3^2 do exist (cf. [X1, Ex. 4.11], [MP1]).

References

- [AK] T. Ashikaga & K. Konno, Algebraic surfaces of general type with $c_1^2 = 3p_g 7$, Tohoku Math. J. (2) **42**(**4**) (1990) 517–536, MR 1076174, Zbl 0735.14026.
- [AS] M.F. Atiyah & I.M. Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968) 546–604, MR 0236952, Zbl 0164.24301.
- [BHPV] W. Barth, K. Hulek, C. Peters, & A. Van de Ven, Compact complex surfaces, 2nd edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, Band 4, Springer 2004, MR 2030225, Zbl 1036.14016.
- [Be] A. Beauville, L'application canonique pour les surfaces de type général, Inv. Math. 55 (1979) 121–140, MR 0553705, Zbl 0403.14006.
- [Bo] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973) 171–219, MR 0318163, Zbl 0259.14005.
- [CCM] A. Calabri, C. Ciliberto, & M. Mendes Lopes, Numerical Godeaux surfaces with an involution, Trans. Amer. Math. Soc. 359 (2007) 1605–1632.
- [Ca] F. Catanese, Fibred Kähler and quasi-projective groups, Adv. Geom., Special issue dedicated to Adriano Barlotti, suppl. 2003, S13–S27, MR 2028385, Zbl 1051.32013.
- [CKO] F. Catanese, J. Keum, & K. Oguiso, Some remarks on the universal cover of an open K3 surface, Math. Ann. 325(2) (2003) 279–286, MR 1962049, Zbl 1073.14535.
- [CH] M. Cornalba & J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21(3) (1988) 455–475, MR 0974412, Zbl 0674.14006.
- [Ha] J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1) (1981) 35–68, MR 0616900, Zbl 0467.14005.
- [Ho] E. Horikawa, Algebraic surfaces of general type with small c_1^2 , V, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **28**(**3**) (1981) 745–755, MR 0656051, Zbl 0505.14028.
- [Ko1] K. Konno, Algebraic surfaces of general type with $c_1^2 = 3p_g 6$, Math. Ann. **290(1)** (1991) 77–107, MR 1107664, Zbl 0711.14021.
- [Ko2] _____, Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 20 (1993) 575– 595, MR 1267600, Zbl 0822.14009.
- [Miy] Y. Miyaoka, On numerical Campedelli surfaces, Complex Anal. Algebr. Geom., Collect. Pap. dedic. K. Kodaira, 1977, 113–118, MR 0447258, Zbl 0365.14007.
- [MP1] M. Mendes Lopes & R. Pardini, Numerical Campedelli surfaces with fundamental group of order 9, J.E.M.S., to appear, math.AG/0602633.
- [MP2] _____, The order of finite algebraic fundamental groups of surfaces with $K^2 \leq 3\chi 2$, in 'Algebraic geometry and Topology', Suurikaiseki kenkyusho Koukyuuroku, **1490** (2006) 69–75, math.AG/0605733.
- [Mir] R. Miranda, On canonical surfaces of general type with $K^2 = 3\chi 10$, Math. Z. **198(1)** (1988) 83–93, MR 0938031, Zbl 0622.14028.
- [Na] D. Naie, Surfaces d'Enriques et une construction de surfaces de type général avec $p_g = 0$, Math. Z. **215**(2) (1994) 269–280, MR 1259462, Zbl 0791.14016.

- [Pa] R. Pardini, The Severi inequality $K^2 \ge 4\chi$ for surfaces of maximal Albanese dimension, Invent. Math. **159(3)** (2005) 669–672, MR 2125737, Zbl 1082.14041.
- [Re1] M. Reid, π_1 for surfaces with small K^2 , Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), 534–544, Lecture Notes in Math., **732**, Springer-Verlag, Berlin, 1979, MR 0555716, Zbl 0423.14021.
- [Re2] _____, Surfaces with $p_g = 0$, $K_S^2 = 2$, preprint available at http://www.maths.warwick.ac.uk/~miles/surf/
- [St] L. Stoppino, *Slope inequalities via GIT*, preprint, math.AG/0411639.
- [X1] G. Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, 1137, Springer-Verlag, Berlin, 1985, MR 0872271, Zbl 0579.14028.
- [X2] _____, Hyperelliptic surfaces of general type with $K^2 < 4\chi$, Manuscripta Math. 57 (1987) 125–148, MR 0871627, Zbl 0615.14022.
- [X3] _____, Fibered algebraic surfaces with low slope, Math. Ann. 276(3) (1987) 449–466, MR 0875340, Zbl 0596.14028.

Departamento de Matemática Instituto Superior Técnico Universidade Técnica de Lisboa Av. Rovisco Pais 1049-001 Lisboa, Portugal *E-mail address*: mmlopes@math.ist.utl.pt

> DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI PISA LARGO B. PONTECORVO, 5 56127 PISA, ITALY *E-mail address*: pardini@dm.unipi.it