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A SURGERY FOR GENERALIZED COMPLEX

STRUCTURES ON 4-MANIFOLDS
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Abstract

We introduce a surgery for generalized complex manifolds whose
input is a symplectic 4-manifold containing a symplectic 2-torus
with trivial normal bundle and whose output is a 4-manifold en-
dowed with a generalized complex structure exhibiting type change
along a 2-torus. Performing this surgery on a K3 surface, we ob-
tain a generalized complex structure on 3CP 2#19CP 2, which has
vanishing Seiberg–Witten invariants and hence does not admit
complex or symplectic structures.

Introduction

Generalized complex structures, introduced by Hitchin [3] and devel-
oped by the second author in [2], are a simultaneous generalization of
complex and symplectic structures. In this paper we answer, in the affir-
mative, the question of whether there exist manifolds which are neither
complex nor symplectic yet do admit a generalized complex structure.

Since generalized complex manifolds must be almost complex, this
question becomes nontrivial first in dimension 4, where we are fortu-
nate to have obstructions to the existence of complex and symplectic
structures coming from Seiberg–Witten theory. For example, a simply-
connected complex or symplectic 4-manifold with b+ ≥ 3 must have a
nonzero Seiberg–Witten invariant [7].

Each tangent space of a generalized complex manifold has a distin-
guished subspace equipped with a symplectic form and a transverse
complex structure; the transverse complex dimension is called the type,
a local invariant of the geometry which may vary along the manifold.
We show that in 4 dimensions, a connected and nondegenerate type
change locus must be a smooth 2-torus, which also inherits a complex
structure, i.e. it must be a nonsingular elliptic curve.

We then introduce a surgery for generalized complex manifolds which
is a particular case of the C∞ logarithmic transformation introduced
by Gompf and Mrowka [1]. This surgery modifies a neighbourhood
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of a symplectic 2-torus with trivial normal bundle in a symplectic 4-
manifold, producing a new manifold endowed with a generalized com-
plex structure with type change along a 2-torus. Performing this surgery
along a fiber of an elliptic K3 surface, we obtain a generalized complex
structure on 3CP 2#19CP 2, a manifold with vanishing Seiberg–Witten
invariants [9, 7].

We thank Tomasz Mrowka for advice which led to our final example.
We also thank Nigel Hitchin for helpful conversations.

1. Generalized complex structures

In this section we recall the definition and basic examples of general-
ized complex structures, following [2].

Given a closed 3-form H on a manifold M , we define the Courant

bracket of sections of the sum T ⊕ T ∗ of the tangent and cotangent
bundles by

[X + ξ, Y + η]H = [X, Y ] + LXη − LY ξ −
1

2
d(η(X) − ξ(Y )) + iY iXH.

The bundle T ⊕T ∗ is also endowed with a natural symmetric pairing of
signature (n, n):

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )).

Definition. A generalized complex structure on a manifold with
closed 3-form (M, H) is a complex structure on the bundle T ⊕T ∗ which
preserves the natural pairing and whose +i-eigenspace, L ⊂ TC ⊕ T ∗

C
, is

closed under the Courant bracket.

A generalized complex structure can be fully described in terms of
its +i-eigenspace L, which is a maximal isotropic subspace of TC ⊕
T ∗

C
satisfying L ∩ L = {0}. Alternatively, it can be described using

differential forms. Recall that the exterior algebra ∧•T ∗ carries a natural
spin representation for the metric bundle T ⊕ T ∗; the Clifford action of
X + ξ ∈ T ⊕ T ∗ on ρ ∈ ∧•T ∗ is

(X + ξ) · ρ = iXρ + ξ ∧ ρ.

The subspace L ⊂ TC ⊕ T ∗
C

annihilating a spinor ρ ∈ ∧•T ∗
C

is always
isotropic. If L is maximal isotropic, then ρ is called a pure spinor and
it must have the following algebraic form at every point:

(1.1) ρ = eB+iω ∧ Ω,

where B and ω are real 2-forms and Ω is a decomposable complex form.
Pure spinors annihilating the same space must be equal up to rescaling,
hence a maximal isotropic L ⊂ TC ⊕ T ∗

C
may be uniquely described by

a line bundle K ⊂ ∧•T ∗
C
.
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Definition. Given a generalized complex structure J , the line sub-
bundle K ⊂ ∧•T ∗

C
annihilating its +i-eigenspace is the canonical bundle

of J .

Note that the condition L ∩ L = {0} at E over a point p ∈ M , is
equivalent to the requirement that

(1.2) Ω ∧ Ω ∧ ωn−k 6= 0

for any generator ρ = eB+iω∧Ω of K over p, where k = deg(Ω) and 2n =
dim(M). Therefore at each point of a generalized complex manifold, the
real subspace kerΩ∧Ω ⊂ T inherits a symplectic structure from ω, and
the annihilator of Ω defines the +i-eigenspace of a complex structure
on T/ kerΩ ∧ Ω, i.e., a transverse complex structure.

Definition. Let J be a generalized complex structure and eB+iω ∧Ω
a generator of its canonical bundle at a point p. The type of J at p is
the degree of Ω.

We remark that while the type of a generalized complex structure
may jump along loci in the manifold, the parity of the type must remain
constant on connected components of M (see [2]).

Finally, the Courant integrability of L is equivalent to the requirement
that, for any local generator ρ ∈ C∞(K), one has

(1.3) dρ + H ∧ ρ = v · ρ

for some section v ∈ C∞(TC ⊕ T ∗
C
). In summary, a generalized complex

structure may be specified by a line sub-bundle K ⊂ ∧•T ∗
C

whose local
generators satisfy (1.1), (1.2) and (1.3).

Example 1.1. Let (M2n, I) be a complex manifold. Then the fol-
lowing operator on T ⊕ T ∗ is a generalized complex structure:

J I =

(

−I 0
0 I∗

)

.

The +i-eigenspace of J I is T 0,1⊕T ∗1,0, which annihilates the canonical
bundle K = ∧n,0T ∗ and is therefore of type n.

Example 1.2. Let (M, ω) be a symplectic manifold. Then

J ω =

(

0 −ω−1

ω 0

)

is a generalized complex structure with +i-eigenspace {X − iω(X) :
X ∈ TCM} and canonical bundle generated by the differential form eiω.
Symplectic structures, therefore, have type zero.

Example 1.3. A real closed 2-form B gives rise to an orthogonal
transformation of T⊕T ∗ via X+ξ 7→ X+ξ+iXB. This transformation,
called a B-field transform, preserves the Courant bracket, and hence it
acts by conjugation on any given generalized complex structure J on
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M , producing a new one. The induced action on the canonical bundle
is simply K 7→ eB ∧ K.

If B is not closed, then it induces an isomophism between the H-
Courant bracket and the H + dB-Courant bracket. In particular, if
[H] = 0 ∈ H3(M, R), the bracket [, ]H is isomorphic to [, ]0 by the
action of a nonclosed 2-form.

In the next example, we demonstrate that the type of a generalized
complex structure may not be constant; it jumps from type 0 to type 2
along a codimension 2 submanifold.

Example 1.4 (Local model). Consider C
2 with complex coordinates

z1, z2. The differential form

ρ = z1 + dz1 ∧ dz2

is equal to dz1 ∧ dz2 along the locus z1 = 0, while away from this locus
it can be written as

(1.4) ρ = z1 exp(dz1∧dz2

z1
).

Since it also satisfies dρ = −∂2 · ρ, we see that it generates a canonical
bundle K for a generalized complex structure which has type 2 along
z1 = 0 and type 0 elsewhere.

Observe that this structure is invariant under translations in the z2

direction, hence we can take a quotient by the standard Z
2 action to

obtain a generalized complex structure on the torus fibration D2 × T 2,
where D2 is the unit disc in the z1-plane. Using polar coordinates,
z1 = re2πiθ1 , the canonical bundle is generated, away from the central
fibre, by

exp(B + iω)

= exp(d log r + idθ1) ∧ (dθ2 + idθ3)

= exp(d log r ∧ dθ2 − dθ1 ∧ dθ3 + i(d log r ∧ dθ3 + dθ1 ∧ dθ2)),

where θ2 and θ3 are coordinates for the 2-torus with unit periods. Away
from r = 0, therefore, the structure is a B-field transform of a symplectic
structure ω, where

B = d log r ∧ dθ2 − dθ1 ∧ dθ3(1.5)

ω = d log r ∧ dθ3 + dθ1 ∧ dθ2.

The type jumps from 0 to 2 along the central fibre r = 0, inducing a
complex structure on the restricted tangent bundle, for which the tan-
gent bundle to the fibre is a complex sub-bundle. Hence the type change
locus inherits the structure of a smooth elliptic curve with Teichmüller
parameter τ = i.
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Example 1.5. Endow D2 × T 2 with the generalized complex struc-
ture of Example 1.4 and consider the action of Zm given in polar coor-
dinates by

(r, θ1, θ2, θ3) 7→ (r, θ1 + 1/m, θ2 + k/m, θ3),

where k is co-prime with m. This action extends to the fiber over r = 0,
has no fixed points and preserves the generalized complex structure.
Hence the quotient, which is a singular T 2 fibration with multiple central
fibre, has a generalized complex structure. Away from the central fibre,
the coordinates (r′, θ′1, θ

′
2, θ

′
3) = (rm, mθ1, θ2 − kθ1, θ3) are well-defined,

and the generalized complex structure is generated by exp(B + iω),
where

B = d log r′ ∧ (dθ′2 + k
mdθ′1) −

1

mdθ′1 ∧ dθ′3(1.6)

ω = 1

m(d log r′ ∧ dθ′3 + dθ′1 ∧ dθ′2).

Note that the symplectic form is a rescaling of that in Equation (1.5). As
in the previous example, the central fibre obtains a complex structure.

2. The type-changing locus

In the last two examples, the type of the generalized complex struc-
ture jumped from 0 to 2 along a 2-torus, which then inherited a complex
structure. We now show that this happens generically in four dimen-
sions.

Recall that a generalized complex manifold has a canonical bundle
K ⊂ ∧•T ∗

C
, so the projection from ∧•T ∗

C
onto ∧0T ∗

C
= C determines a

canonical section s of K∗. For a 4-dimensional manifold, the type of
a generalized complex structure jumps from 0 to 2 precisely when this
section vanishes.

Definition. A point p in the type-changing locus of a generalized
complex structure on a 4-manifold is nondegenerate if it is a nondegen-
erate zero of s ∈ C∞(K∗).

Theorem 2.1. The following hold for a 4-dimensional generalized

complex manifold:

1) A nondegenerate point in the type-changing locus has a neighbour-

hood in which the type changes along a smooth 2-manifold with an

induced complex structure.

2) A compact connected component of the type-changing locus whose

points are nondegenerate must be a smooth elliptic curve.

Proof. To prove the first claim, let ρ = ρ0 +ρ2 +ρ4, with deg(ρi) = i,
be a nonvanishing local section of K around a type-changing point p.
Then s(ρ) = ρ0 and nondegeneracy implies that dρ0 : TpM −→ C is
onto. The implicit function theorem implies that the zeros of ρ0 near
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p form a 2 dimensional manifold. According to Equations (1.1) and
(1.2), ρ2 induces a complex structure on TpM for which it generates the
canonical line ∧2,0T ∗

p M . The integrability condition (1.3) states that

dρ0 = iXρ2 ∈ T ∗1,0
p M,

for some X ∈ C∞(TCM). Therefore dρ0(T
0,1
p M) = 0, showing that the

zero set of ρ0 has a complex structure.
For 2), we mimic the proof that a smooth anticanonical divisor of a

complex manifold has trivial canonical bundle. Let Σ −→ M be a com-
pact connected component of the type-changing locus with its induced
complex structure. Then, since ds ∈ C∞(T ∗

C
M |Σ ⊗ K∗|Σ) vanishes

on vectors tangent to Σ, nondegeneracy implies that ds is a nowhere
vanishing section of N∗ ⊗ K|∗

Σ
, where N∗ is the conormal bundle. In

particular, N∗ ∼= K|Σ. Since J is complex over Σ, we have an adjunc-
tion formula relating the canonical bundle KΣ of the complex curve Σ,
with the canonical bundle K restricted to Σ:

K|Σ ∼= KΣ ⊗ N∗,

showing that KΣ is trivial and Σ is an elliptic curve, as required. q.e.d.

3. The surgery

In this section we introduce a surgery for 4-manifolds with generalized
complex structures which removes a neighborhood of a symplectic 2-
torus and replaces it by a neighborhood of a torus where the generalized
complex structure changes type, as in Example 1.4. This surgery is an
example of a C∞ logarithmic transformation as defined by Gompf and
Mrowka [1], which we now recall.

Let T →֒ M be a 2-torus with trivial normal bundle in a 4-manifold,
and let U ∼= D2 × T 2 be a tubular neighborhood. A C∞ logarithmic

transform of M is a manifold M̃ obtained by removing U and replacing
it with D2 × T 2, glued in by a diffeomorphism ψ : S1 × T 2 −→ ∂U :

M̃ = (M\U) ∪ψ (D2 × T 2).

The multiplicity of this transformation is the degree of the map π ◦ ψ :
S1 × point −→ ∂D2, where π : U −→ D2 is the first projection.

Theorem 3.1. Let (M, σ) be a symplectic 4-manifold, T →֒ M be a

symplectic 2-torus with trivial normal bundle and tubular neighbourhood

U . Let ψ : S1 × T 2 −→ ∂U ∼= S1 × T 2 be the map given on standard

coordinates by

ψ(θ1, θ2, θ3) = (θ3, θ2,−θ1).

Then the multiplicity zero C∞ logarithmic transform of M along T ,

M̃ = M\U ∪ψ D2 × T 2,
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admits a generalized complex structure with type change along a 2-torus,

and which is integrable with respect to a 3-form H, such that [H] is

the Poincaré dual to the circle in S1 × T 2 preserved by ψ. If M is

simply connected and [T ] ∈ H2(M, Z) is k times a primitive class, then

π1(M̃) = Zk.

Proof. By Moser’s theorem, symplectic structures with the same vol-
ume on an oriented compact surface are isomorphic. Hence, after rescal-
ing, we can assume that T is endowed with its standard symplectic
structure. Therefore, by Weinstein’s neighbourhood theorem [8], the
neighborhood U is symplectomorphic to D2 × T 2 with standard sym-
pletic form:

σ =
1

2
dr̃2 ∧ dθ̃1 + dθ̃2 ∧ dθ̃3.

Now consider the symplectic form ω on D2\{0}×T 2 from Example 1.4:

ω = d log r ∧ dθ3 + dθ1 ∧ dθ2.

The map ψ : (D2\D2

1/
√

e
× T 2, ω) −→ (D2\{0} × T 2, σ) given by

ψ(r, θ1, θ2, θ3) = (
√

log er2, θ3, θ2,−θ1)

is a symplectomorphism.
Let B be the 2-form defined by (1.5) on D2\D2

1/
√

e
×T 2, and choose an

extension B̃ of ψ−1∗B to M\T . Therefore (M\T, B̃+iσ) is a generalized

complex manifold of type 0, integrable with respect to the dB̃-Courant
bracket.

Now the surgery M̃ = M\T ∪ψ D2×T 2 obtains a generalized complex

structure since the gluing map ψ satisfies ψ∗(B̃+iσ) = B+iω, therefore
identifying the generalized complex structures on M\T and D2×T 2 over
the annulus where they are glued together. Therefore, the resulting
generalized complex structure exhibits type change along the 2-torus
coming from the central fibre of D2 × T 2. This structure is integrable
with respect to H = dB̃, which is a globally defined closed 3-form on
M̃ .

The 2-form B̃ can be chosen so that it vanishes outside a larger tubu-
lar neighbourhood U ′ of T , so that H = dB̃ has support in U ′\U and
has the form

H = f ′(r)dr ∧ dθ1 ∧ dθ3,

for a smooth bump function f such that f |U = 1 and vanishes outside
U ′. Therefore, we see that H represents the Poincaré dual of the circle
parametrized by θ2, as required.

The last claim is a consequence of van Kampen’s theorem and that
H2(M, Z) is spherical, as M is simply connected. q.e.d.
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Corollary 1. Since B̃ can be chosen to have support in a neighbour-

hood of the symplectic 2-torus T , the surgery above may be performed

simultaneously on a collection of disjoint symplectic 2-tori in M .

Observe that the crucial property of the type-changing generalized
complex structure on D2 × T 2 which allows us to perform the surgery
is the behaviour of its symplectic form. As we saw, this is the same
symplectic form, up to rescaling, as in Example 1.5. Hence we could,
alternatively, use the generalized complex structure on (D2 × T 2)/Zm

described there as a model for the piece being glued in.

4. Examples

Example 4.1. Consider a symplectic 4-manifold M = Σ×T 2, where
Σ is a symplectic surface and T 2 a symplectic 2-torus. Performing the
surgery from Theorem 3.1 along one of the T 2 fibers, we obtain a type-
changing generalized complex structure on X3 × S1, where X3 is the
twisted connected sum of the S1-bundles Σ × S1 and S2 × S1, in the
language of [5].

For example, if Σ = S2, we obtain a generalized complex structure on
S3 ×S1, integrable with respect to a 3-form H representing a generator
for H3(S3, Z). Note that this manifold does not admit any symplectic
structure.

In the final example, we produce a generalized complex 4-manifold
which admits neither symplectic nor complex structures. The non-
existence of a symplectic structure follows from a result in Seiberg–
Witten theory.

Example 4.2 (A generalized complex structure on 3CP 2#19CP 2).
Consider an elliptically fibred K3 surface M . Any smooth elliptic fibre
is a symplectic 2-torus with respect to a Kähler symplectic form, and
has trivial normal bundle. Therefore we may perform our surgery along
such a fiber to obtain a generalized complex manifold.

The effect of C∞ logarithmic transformations on the K3 surface was
studied by Gompf and Mrowka in [1]. Using a trick of Moishezon [6],
they show that, if the fibration contains a cusp fiber, the differentiable
manifold obtained through a transformation of multiplicity zero is M̃ =
3CP 2#19CP 2. Since H3(M̃) = {0}, the generalized complex structure

on M̃ given by Theorem 3.1 has [H] = 0.

Since 3CP 2#19CP 2 can be expressed as a connected sum of terms
whose intersection forms are not negative definite, its Seiberg–Witten
invariants vanish [9]. Therefore Taubes’ theorem implies it does not
admit any symplectic structure [7]. This, in turn, obstructs the exis-
tence of a complex structure, since Kodaira’s theorem [4] states that
any complex surface with even first Betti number is a deformation of an
algebraic surface.
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