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GINZBURG-WEINSTEIN VIA GELFAND-ZEITLIN

A. Alekseev & E. Meinrenken

Abstract

Let U(n) be the unitary group, and u(n)∗ the dual of its Lie al-
gebra, equipped with the Kirillov Poisson structure. In their 1983
paper, Guillemin-Sternberg introduced a densely defined Hamil-
tonian action of a torus of dimension (n−1)n/2 on u(n)∗, with mo-
ment map given by the Gelfand-Zeitlin coordinates. A few years
later, Flaschka-Ratiu described a similar, ‘multiplicative’ Gelfand-
Zeitlin system for the Poisson Lie group U(n)∗.

By the Ginzburg-Weinstein theorem, U(n)∗ is isomorphic to
u(n)∗ as a Poisson manifold. Flaschka-Ratiu conjectured that
one can choose the Ginzburg-Weinstein diffeomorphism in such
a way that it intertwines the linear and nonlinear Gelfand-Zeitlin
systems. Our main result gives a proof of this conjecture, and
produces a canonical Ginzburg-Weinstein diffeomorphism.

1. Introduction and statement of results

A theorem of Ginzburg-Weinstein [14] states that for any compact
Lie group K with its standard Poisson structure, the dual Poisson Lie
group K∗ is Poisson diffeomorphic to the dual of the Lie algebra k∗, with
the Kirillov Poisson structure. The result of [14] does not, however, give
a constructive way for obtaining such a diffeomorphism. For the case of
the unitary group K = U(n), Flaschka-Ratiu [13] (see also their preprint
[12]) suggested the existence of a distinguished Ginzburg-Weinstein dif-
feomorphism, intertwining Gelfand-Zeitlin systems on u(n)∗ and U(n)∗,
respectively. In this paper, we will give a proof of the Flaschka-Ratiu
conjecture. The main result has the following ‘linear algebra’ implica-
tions, which may be stated with no reference to Poisson geometry.

Let Sym(n) denote the space of real symmetric n × n matrices. For

k ≤ n let A(k) ∈ Sym(k) denote the kth principal submatrix (upper left

k× k corner) of A ∈ Sym(n), and λ
(k)
i (A) its ordered set of eigenvalues,

λ
(k)
1 (A) ≤ · · · ≤ λ

(k)
k (A). The map

(1) λ : Sym(n) → R
n(n+1)

2 ,
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taking A to the collection of numbers λ
(k)
i (A) for 1 ≤ i ≤ k ≤ n,

is a continuous map called the Gelfand-Zeitlin map. Its image is the
Gelfand-Zeitlin cone C(n), cut out by the ‘interlacing’ inequalities,

(2) λ
(k+1)
i ≤ λ

(k)
i ≤ λ

(k+1)
i+1 , 1 ≤ i ≤ k ≤ n − 1.

Now let Sym+(n) ⊂ Sym(n) denote the subset of positive definite sym-
metric matrices, and define a logarithmic Gelfand-Zeitlin map

(3) µ : Sym+(n) → R
n(n+1)

2 ,

taking A to the collection of numbers µ
(k)
i (A) = log(λ

(k)
i (A)). Then µ

is a continuous map from Sym+(n) onto C(n).

Theorem 1.1. There is a unique continuous map ψ : Sym(n) →
SO(n), with ψ(0) = I, such that the map

(4) γ = exp ◦Adψ : Sym(n) → Sym+(n), Adψ(A) ≡ Adψ(A) A

intertwines the Gelfand-Zeitlin maps λ and µ. In fact, ψ is smooth and
γ is a diffeomorphism.

Remark. For a general real semi-simple Lie group G with Cartan
decomposition G = KP , Duistermaat [10] proved the existence of a
smooth map ψ : p → K such that the map γ = exp ◦Adψ : p → P inter-
twines the ‘diagonal projection’ with the ‘Iwasawa projection’. Theorem
1.1 gives canonical maps with this property for the case G = SL(n, R).

Example. The case n = 2 can be worked out by hand (see also [13,
Example 3.27]). Even in this case, smoothness of the map γ is not
entirely obvious. Since γ(A + tI) = etγ(A), it is enough to consider
trace-free matrices,

A =

(

a b
b −a

)

.

The matrix A has Gelfand-Zeitlin variables

λ
(2)
1 (A) = −r, λ

(2)
2 (A) = r, λ

(1)
1 (A) = a

with r :=
√

a2 + b2. Hence, the matrix γ(A) should have eigenvalues
e−r, er and upper left entry ea. This gives

γ(A) =

(

ã b̃

b̃ c̃

)

with

ã = ea, b̃ = ±
√

2ea cosh(r) − e2a − 1, c̃ = 2 cosh(r) − ea.

To obtain a continuous map, one has to take the sign of b̃ equal to the
sign of b. The matrix ψ(A) ∈ SO(2) is a rotation matrix by some angle
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θ(A). A calculation gives

cos(2θ(A)) =
a

r
±

√

1 −
(

ea − cosh(r)

sinh(r)

)2

.

One can consider similar questions for the space Herm(n) of complex
Hermitian n × n-matrices, and its subset Herm+(n) of positive definite
matrices. Define surjective maps

λ : Herm(n) → C(n), µ : Herm+(n) → C(n)

in terms of eigenvalues of principal submatrices, as before. Let

Herm0(n) = λ−1(C0(n))

denote the subset where all of the eigenvalue inequalities (2) are strict.
The k-torus T (k) ⊂ U(k) of diagonal matrices acts on Herm0(n) as
follows

(5) t • A = AdU−1tU A, t ∈ T (k), A ∈ Herm0(n).

Here U ∈ U(k) ⊂ U(n) is a unitary matrix such that AdU A(k) is diag-

onal, with entries λ
(k)
1 , . . . , λ

(k)
k . The action is well-defined since U−1tU

does not depend on the choice of U , and preserves the Gelfand-Zeitlin
map (1). The actions of the various T (k)’s commute, hence they define
an action of the Gelfand-Zeitlin torus

T (n − 1) × · · · × T (1) ∼= U(1)(n−1)n/2.

Here the torus T (n) is excluded, since the action (5) is trivial for k = n.
Let Herm+

0 (n), Sym0(n) and Sym+
0 (n) denote the intersections of

Herm0(n) with Herm+(n), Sym(n) and Sym+(n). Thus Herm+
0 (n) =

µ−1(C0(n)).

Theorem 1.2. There is a unique continuous map

γ : Herm(n) → Herm+(n)

with the following three properties:

a) γ intertwines the Gelfand-Zeitlin maps: µ ◦ γ = λ.
b) γ intertwines the Gelfand-Zeitlin torus actions on Herm0(n) and

Herm+
0 (n).

c) For any connected component S of Sym0(n) ⊂ Herm(n), γ(S) ⊂ S.

In fact, γ is a diffeomorphism, and has the following additional proper-
ties:

d) γ is equivariant for the conjugation action of T (n) ⊂ U(n),
e) γ(A + uI) = euγ(A),

f) γ(A) = γ(A) (where the bar denotes complex conjugation).
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g) For k ≤ n, the following diagram commutes:

Herm(n) −−−−→ Herm(k) −−−−→ Herm(n)




y

γ





y

γ





y

γ

Herm+(n) −−−−→ Herm+(k) −−−−→ Herm+(n).

Here the left horizontal maps take a matrix to its kth princi-
pal submatrix, while the right horizontal maps are the obvious in-
clusions as the upper left corner, extended by 0’s, respectively 1’s,
along the diagonal.

Similar to the statement for real symmetric matrices, Theorem 1.1,
the map γ can be written in the form γ = exp ◦Adψ for a suitable
map ψ : Herm(n) → SU(n). To fix the choice of ψ, we have to im-
pose an equivariance condition under the Gelfand-Zeitlin torus action.
Given A ∈ Herm0(n), let Uk ∈ U(k) be matrices diagonalizing A(k),

and Vk ∈ U(k) matrices diagonalizing γ(A)(k) = γ(A(k)). Then the
Gelfand-Zeitlin action of t = (tn−1, . . . , t1) ∈ T (n − 1) × · · · × T (1) is
given by

t • A = Adχ(t,A) A, t • γ(A) = Adχ̃(t,A) γ(A)

where

χ(t, A) = U−1
1 t1U1 · · ·U−1

n−1tn−1Un−1,

χ̃(t, A) = V −1
1 t1V1 · · ·V −1

n−1tn−1Vn−1.

Note that χ(t, A), χ̃(t, A) are independent of the choice of Ui, Vi.

Theorem 1.3. The map ψ : Sym(n) → SO(n), ψ(0) = I from
Theorem 1.1 extends uniquely to a continuous (in fact, smooth) map
ψ : Herm(n) → SU(n) with the equivariance property

(6) ψ(t • A) = χ̃(t, A)ψ(A)χ(t, A)−1

for all A ∈ Herm0(n), t ∈ T (n − 1) × · · · × T (1). The map γ from
Theorem 1.2 is expressed in terms of ψ as γ = exp ◦Adψ. Furthermore,

a) ψ is equivariant for the conjugation action of T (n) ⊂ U(n).

b) ψ(A) = ψ(A).
c) For all k ≤ n, the following diagram commutes,

Herm(k) −−−−→ Herm(n)




y

ψ





y

ψ

SU(k) −−−−→ SU(n).

Note that the equivariance property (6) of ψ implies the equivariance
of γ:

γ(t • A) = exp(Adψ(t•A)χ(t,A) A) = exp(Adχ̃(t,A)ψ(A) A) = t • γ(A).
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Let us now place these results into the context of Poisson geome-
try. Let u(n) be the Lie algebra of U(n), consisting of skew-Hermitian
matrices, and identify

Herm(n) ∼= u(n)∗,

using the pairing 〈A, ξ〉 = 2 Im(trAξ). Then Herm(n) inherits a Poisson
structure from the Kirillov-Poisson structure on u(n)∗. It was proved by
Guillemin-Sternberg in [15] that the action of each T (k) on Herm0(n)
is Hamiltonian, with moment map the corresponding Gelfand-Zeitlin

variables, (λ
(k)
1 , . . . , λ

(k)
k ). On the other hand, the unitary group U(n)

carries a standard structure as a Poisson Lie group, with dual Pois-
son Lie group U(n)∗ the group of complex upper triangular matrices
with strictly positive diagonal entries. U(n)∗ may be identified with
Herm+(n), by the map taking the upper triangular matrix X ∈ U(n)∗

to the positive Hermitian matrix (X∗X)1/2 ∈ Herm+(n). Flaschka-
Ratiu [12] proved that the T (k) action on Herm+

0 (n) is Hamiltonian
for the Poisson structure induced from U(n)∗, with moment map the

logarithmic Gelfand-Zeitlin variables (µ
(k)
1 , . . . , µ

(k)
k ).

Theorem 1.4. The map γ : u(n)∗ → U(n)∗ described in Theorem 1.2
is a Poisson diffeomorphism.

That is, for the group K = U(n) we have found a fairly explicit
description of a Ginzburg-Weinstein diffeomorphism, in Gelfand-Zeitlin
coordinates. By contrast, no coordinate expressions are known for the
Ginzburg-Weinstein maps constructed in [14, 1, 4, 11].

Remark. A recent paper of Kostant-Wallach [17] studies in detail
the holomorphic (i.e., complexified) Gelfand-Zeitlin system, for the full
space gl(n, C). It may be interesting to consider a nonlinear version of
the holomorphic system, and to generalize our results to that setting.

Acknowledgment. We would like to thank Henrique Bursztyn for help-
ful discussions.

2. Uniqueness of the map γ

In this section, we construct a map γ over the open dense subset
Herm0(n) = λ−1(C0(n)), satisfying all the properties listed in Theorem
1.2. The existence of a smooth extension to Herm(n) will be proved in
the subsequent sections. We denote by TR(k) = T (k) ∩ O(k) ∼= (Z2)

k

the ‘real part’ of the torus. The action of the Gelfand-Zeitlin torus on
Herm0(n) restricts to an action of TR(n−1)×· · ·TR(1) ∼= (Z2)

(n−1)n/2 on
Sym+(n). The following facts concerning the Gelfand-Zeitlin map are
standard; we include the proof since we are not aware of a convenient
reference.
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Proposition 2.1. The restriction of the Gelfand–Zeitlin map to
Herm0(n) defines a principal bundle

(7) λ : Herm0(n) → C0(n)

with structure group the Gelfand-Zeitlin torus T (n− 1)× · · · × T (1). It
further restricts to a principal bundle

(8) λ : Sym0(n) → C0(n)

with structure group TR(n − 1) × · · · × TR(1). Similarly for the restric-
tion of the logarithmic Gelfand-Zeitlin map µ : Herm+(n) → C(n) to
Herm+

0 (n) and Sym+
0 (n).

Proof. Consider the commutative diagram

(9)

Herm0(n) −−−−→ C0(n)




y





y

Herm0(n − 1) −−−−→ C0(n − 1)

where the horizontal maps are the Gelfand-Zeitlin maps, the left vertical
map is A 7→ A(n−1), and the right vertical map C0(n) → C0(n−1) is the

obvious projection, forgetting the variables λ
(n)
i . The Gelfand-Zeitlin

map Herm0(n) → C0(n) factorizes as

(10) Herm0(n) → Herm0(n − 1) ×C0(n−1) C0(n) → C0(n),

where the middle term is the fiber product. By induction, we may
assume that the map Herm0(n − 1) → C0(n − 1), and hence the last
map in (10), is a principal bundle for the action of the Gelfand-Zeitlin
torus T (n−2)×· · ·×T (1). Hence, it suffices to show that the first map
in (10) is a principal T (n − 1) bundle for the Gelfand-Zeitlin action.

Thus, let λ
(k)
i , 1 ≤ i ≤ k ≤ n be the components of a given point

λ ∈ C0(n), and let A(n−1) ∈ Herm0(n − 1) be a matrix with Gelfand-

Zeitlin parameters λ
(k)
i for 1 ≤ i ≤ k ≤ n − 1. Let us try to find

b1, . . . , bn−1 ∈ C and c ∈ R such that the matrix

(11) A =

(

A(n−1) b
b∗ c

)

has eigenvalues λ
(n)
i . (Here b denotes the (n−1)×1-matrix with entries

bi.) Choose U ∈ U(n − 1) such that the matrix Λ(n−1) = UA(n−1)U−1

is diagonal, with entries λ
(n−1)
i down the diagonal. Then

UAU−1 =

(

Λ(n−1) b̃

b̃∗ c

)

where b̃ = U b. (As before, we think of U(k) for k ≤ n as a subgroup of
U(n), using the inclusion as the upper left corner.) The characteristic
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polynomial det(A − uI) is therefore given by

det(A − uI) = (c − u)
∏

j

(λ
(n−1)
j − u) −

∑

i

|b̃i|2
∏

j 6=i

(λ
(n−1)
j − u).

Setting this equal to det(A − uI) =
∏

r(λ
(n)
r − u), and evaluating at

u = λ
(n−1)
i and at u = λ

(n)
n , one finds

|b̃i|2 = −
∏

r(λ
(n)
r − λ

(n−1)
i )

∏

j 6=i(λ
(n−1)
j − λ

(n−1)
i )

, c = λ(n)
n −

∑

i

∏

r 6=n(λ
(n)
r − λ

(n−1)
i )

∏

j 6=i(λ
(n−1)
j − λ

(n−1)
i )

.

The eigenvalue inequalities ensure that the right hand side of the ex-
pression for |b̃i|2 is > 0. This shows that the first map in (10) is onto.

Furthermore, since c is uniquely determined while b̃i are determined
up to a phase, this map defines a principal T (n − 1) bundle. Since

left matrix multiplication of b̃ by an element of T (n − 1) is exactly the
Gelfand-Zeitlin action, the proof for Herm0(n) is complete. The proof
for Sym0(n) is similar, considering only matrices with entries in R. The
parallel statements for the map µ are a direct consequence of the state-
ments for λ. q.e.d.

Lemma 2.2. There exists a unique continuous map γ : Herm0(n) →
Herm+

0 (n), satisfying (a)–(c) from Theorem 1.2. Furthermore, this map
also has the properties (d)–(g) from Theorem 1.2.

Proof. The choice of a connected component S ⊂ Sym0(n) defines a
cross-section, hence a trivialization, of the principal bundle λ : Herm0(n)
→ C0(n). The intersection

S+ = S ∩ Sym+
0 (n)

is a connected component of Sym+
0 (n), which likewise trivializes the

bundle µ : Herm+
0 (n) → C0(n). Thus, we obtain a unique map γ sat-

isfying (a)–(b), with γ(S) = S+ for the given S. By equivariance, the
property γ(S) = S+ holds true for all components S ⊂ Sym0(n), which
gives (c). We claim that property (d) follows from (b). Indeed, the
Gelfand-Zeitlin action of any element in tk ∈ Z(U(k)) ⊂ T (k) ⊂ T (n)
coincides with the conjugation action, since the functions χ, χ̃ in (6)
are simply χ(tk, A) = χ̃(tk, A) = tk. The collection of these subgroups
Z(U(k)) ∼= U(1) of T (n), together with the center Z(U(n)) (which acts
trivially) generate T (n), proving the claim. Properties (e) and (f) follow
from the uniqueness, since the maps

A 7→ e−uγ(A + uI), A → γ(A)
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satisfy (a)–(c). Finally (g) holds by the commutativity of the diagram

Herm(n) −−−−→ Herm(k) −−−−→ Herm(n)




y
λ





y
λ





y
λ

C(n) −−−−→ C(k) −−−−→ C(n)

and of the similar diagram for map µ. q.e.d.

Lemma 2.3. There is a continuous function ψ : Sym0(n) → SO(n),
with the property that the map γ = exp ◦Adψ : Sym0(n) → Sym+

0 (n) in-
tertwines the Gelfand-Zeitlin maps. The map ψ is uniquely determined
by the additional condition ψ(uA) → I for u → 0.

Proof. We have seen above that there is a unique continuous map
γ : Sym0(n) → Sym+

0 (n) which intertwines the Gelfand-Zeitlin maps
and satisfies γ(S) = S+ for any component S ⊂ Sym0(n). Since γ(A)
and exp(A) have the same eigenvalues, and since S ∼= C0 is contractible,
one can always choose a continuous map ψ : Sym0(n) → SO(n) with
γ = exp ◦Adψ.

Conversely, suppose ψ : Sym0(n) → SO(n) is a continuous map, such
that γ = exp ◦Adψ intertwines the Gelfand-Zeitlin maps. Suppose
ψ(uA) → I for u → 0. We will show that (i) the map γ has the
property γ(S) = S+ for any connected component S, and (ii) the map
ψ with these properties is unique. Proof of (i): It suffices to show that
the restriction of γ to Sym0(n) is homotopic to the identity map of
Sym0(n). Define

[0, 1] × Sym0(n) → Sym0(n),

(u, A) 7→ Au =

{

A for u = 0
1
u(γ(uA) − I) + uI for 0 < u ≤ 1.

This is a well-defined continuous map since

lim
u→0

(1

u
(γ(uA) − I) + uI

)

= lim
u→0

(1

u

(

exp(Adψ(uA) A) − I
)

)

= A.

Furthermore Au ∈ Sym0(n), since Sym0(n) is invariant under scalar
multiplication by nonzero numbers, as well as under addition of a scalar
multiple of the identity matrix. Clearly A1 = γ(A). Proof of (ii): Sup-
pose ψ′ : Sym0(n) → SO(n) is another map with γ(A) = exp(Adψ′(A) A)
and limu→0 ψ′(uA) = I. Then ψ′(A) = ψ(A)χ(A) where χ(A) central-
izes A and limu→0 χ(uA) = I. Since the centralizer subgroup O(n)A

of any A ∈ Sym0(n) is discrete, and O(n)A = O(n)uA for u > 0, we
have χ(A) = χ(uA) −−−→

u→0
I. Thus χ(A) = I, proving uniqueness of

ψ : Sym0(n) → SO(n). q.e.d.

Note that we have not yet shown that it is actually possible to satisfy
the normalization condition limu→0 ψ(uA) = I. This can be proved ‘by
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hand’, but will in any case be automatic for the map constructed below
(cf. Section 5.3).

Lemma 2.4. The map ψ : Sym0(n) → SO(n), limu→0 ψ(uA) = I
described in Lemma 2.3 admits a unique extension ψ : Herm0(n) →
SU(n) with the equivariance property (6). The composition γ =
exp ◦Adψ : Herm0(n) → Herm+

0 (n) coincides with the map described
in Lemma 2.2. Furthermore, this map also has the properties (a)–(c)
described in Theorem 1.3.

Proof. By construction, the map γ : Sym0(n) → Sym+
0 (n) has the

equivariance property γ(t•A) = t•γ(A) for all t ∈ TR(n−1)×· · ·×TR(1).
This implies the equivariance property (6) for the map ψ : Sym0(n) →
SO(n), using the uniqueness part of Lemma 2.3. Hence, ψ admits a
unique T (n−1)×· · ·×T (1)-equivariant extension to a map Herm0(n) →
SU(n), and the property γ = exp ◦Adψ follows by equivariance. Let us
now check the additional properties from Theorem 1.3.

(a) As mentioned above, the Gelfand-Zeitlin action of Z(U(k)) ⊂
T (k) ⊂ T (n) for k < n coincides with the action by conjugation. Hence,
(6) gives ψ(Adtk A) = Adtk ψ(A) for tk ∈ Z(U(k)). Since the collection
of these subgroups, together with Z(U(n)), generates T (n), it follows
that ψ is T (n)-equivariant.

(b) ψ(A) = ψ(A) follows from the uniqueness properties, since both

ψ and A → ψ(A) are T (n−1)×· · ·×T (1)-equivariant extensions of the
given map over Sym0(n).

(c) Let ψ(k) : Herm(k) → SU(k) denote the analogue of the map ψ, for
given k < n. Since ψ is equivariant for the conjugation by T (n), it is in
particular equivariant for the subgroup T (n−k) embedded as the lower
right corner. Since Herm0(k) (as the upper left corner) is fixed under
this action, it follows that the restriction of ψ takes values in S(U(k) ×
T (n−k)). Similarly, the restriction to Sym0(k) takes values in S(O(k)×
TR(n− k)). Since TR(n− k) is discrete, the property limu→0 ψ(uA) = I
implies that ψ|Sym0(k) must take values in SO(k). From the uniqueness

properties, it therefore follows that it coincides with ψ(k)|Sym0(k). The

more general statement ψ|Herm0(k) = ψ(k)|Herm0(k) now follows by
equivariance under the Gelfand-Zeitlin action of T (k − 1) × · · · × T (1).

q.e.d.

To complete the proof of Theorems 1.1, 1.2, and 1.3, it suffices to
find a smooth map ψ : Herm(n) → SU(n), ψ(0) = I with the following
properties:

(i) ψ(A) = ψ(A),
(ii) γ = exp ◦Adψ is a diffeomorphism intertwining the Gelfand-Zeitlin

maps and the Gelfand-Zeitlin torus actions,
(iii) ψ has the equivariance property (6).
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The construction of a map ψ with these properties, using Poisson-
geometric techniques, will be finished in Section 5.3.

3. Poisson-geometric techniques

In this section we discuss various tools that are needed for our con-
struction of Ginzburg-Weinstein diffeomorphisms.

3.1. Bisections. Suppose

(12) A : K → Diff(M)

is an action of a Lie group K on a manifold M . We will often write
k.x := A(k)(x) for k ∈ K, x ∈ M . Consider the action groupoid

K × M ⇉ M

with face maps ∂0(k, x) = x and ∂1(k, x) = k.x. A bisection [7, Chapter
15] of K ×M ⇉ M is a submanifold N ⊂ K ×M such that both maps
∂i restrict to diffeomorphisms N → M . Any bisection has the form
N = {(x, ψ(x))|x ∈ M} where ψ ∈ C∞(M, K) is a map such that

A(ψ)(x) := A(ψ(x))(x)

defines a diffeomorphism A(ψ) ∈ Diff(M). Henceforth, we will refer to
the map ψ itself as a bisection. 1 Let Γ(M, K) ⊂ C∞(M, K) denote
the set of bisections. The map

(13) Γ(M, K) → Diff(M), ψ 7→ A(ψ)

is a group homomorphism for the following product on Γ(M, K),

(ψ1 ⊙ ψ2)(x) = ψ1(A(ψ2)(x))ψ2(x).

The inverse of a bisection ψ for this product is given by

ψ−1(x) = ψ(A(ψ)−1(x))−1.

The group homomorphism (13) extends the action (12) of K, and has
kernel the bisections satisfying ψ(x) ∈ Kx for all x ∈ M . For later
reference we note the following easy fact:

Lemma 3.1. Suppose ψ ∈ Γ(M, K)K is an equivariant bisection
(that is, k ⊙ ψ = ψ ⊙ k for all k ∈ K). Then ψ ⊙ φ = φ ⊙ ψ for
all bisections φ satisfying A(ψ)∗φ = φ. Furthermore, (φ ⊙ ψ)(x) =
φ(x)ψ(x).

1It can be shown that a smooth map ψ : M → K is a bisection, if and only if for
all x ∈ M , the map k 7→ ψ(k.x)k is a diffeomorphism of K. In this case, ψ−1(x) =: h

is obtained as the unique solution of ψ(h.x)h = 1.
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Proof. Since A(ψ)∗φ = φ, the product (φ ⊙ ψ)(x) coincides with
the pointwise product φ(x)ψ(x). On the other hand, since ψ is K-
equivariant,

(ψ ⊙ φ)(x) = ψ(A(φ)(x))φ(x) = Adφ(x)(ψ(x))φ(x) = φ(x)ψ(x).

q.e.d.

The Lie algebra Γ(M, k) corresponding to Γ(M, K) may be described
as follows. Let

(14) k → X(M), ξ 7→ A(ξ)

denote the infinitesimal generators of the K-action, i.e., A(ξ) is the
vector field with flow 2 Ft = A(exp(tξ)). Then (14) is a homomorphism
of Lie algebras. For β ∈ C∞(M, k) let A(β) ∈ X(M) be the vector
field A(β)(x) = A(β(x))(x). The map β 7→ A(β) is a Lie algebra
homomorphism for the ‘action algebroid’ [7] Lie bracket

(15) [β1, β2](x) = [β1(x), β2(x)] + (LA(β1)β2)(x) − (LA(β2)β1)(x)

on C∞(M, k). Let Γ(M, k) denote the space C∞(M, k) with this Lie
bracket.

To see more clearly how Γ(M, k) is the infinitesimal counterpart of
Γ(M, K), it is useful to realize Γ(M, K) as a group of diffeomorphisms
of K × M . Define two commuting actions on K × M , by setting

Ã(k)(h, x) = (hk−1, k.x), Ã′(k)(h, x) = (kh, x).

Then the map

Γ(M, K) →֒ Diff(K × M), ψ 7→ Ã(∂∗
0ψ)

identifies Γ(M, K) with the group of diffeomorphism of K × M which

commute with the action Ã′ and preserve the Ã-orbits. Similarly,

Γ(M, k) →֒ X(K × M), β 7→ Ã(∂∗
0β)

identifies Γ(M, k) with the Lie algebra of vector fields on K ×M which

are invariant under the action Ã′ and are tangent to the Ã-orbits.
Let us now assume for simplicity that K is compact. For any β ∈

Γ(M, k), the vector field Ã(∂∗
0β) is complete, since it is tangent to orbits.

Hence, its time one flow exists, and defines an element of Γ(M, K). We
have thus extended the exponential map exp: k → K to a map

exp: Γ(M, k) → Γ(M, K),

where ψ = exp(β) is the unique element such that Ã(∂∗
0ψ) is the time

one flow of Ã(∂∗
0β).

2In this paper, we follow the convention that the flow Ft of a (possibly time depen-
dent) vector field Xt is defined in terms of its action on functions by (Xtf)(F−1

t (x)) =
∂
∂t

f(F−1
t (x)). The Lie derivative LXt

on differential forms is then characterized by

F ∗

t ◦ LXt
= −

∂
∂t

F ∗

t .
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More generally, one can ‘integrate’ families of maps βt ∈ Γ(M, k) to
families of bisections ψt, by viewing βt as a time dependent vector field
Ã(∂∗

0βt) on K × M and identifying ψt with the corresponding flow F̃t

on K × M . Equivalently, let Ft be the flow of the vector field A(βt) on
M . Then Ft = A(ψt), where the bisection ψt ∈ Γ(M, K) is the solution
of the ordinary differential equation on K,

(16) βt(Ft(x)) =
∂ψt(x)

∂t
ψt(x)−1, ψ0(x) = 1.

3.2. Gauge transformations of Poisson structures. Let M be a
Poisson manifold, with Poisson bivector field π. The group of Poisson
diffeomorphisms of (M, π) will be denoted Diffπ(M), and the group of
Poisson vector fields by Xπ(M). Let σ ∈ Ω2(M) be a closed 2-form,
with the property that the bundle map

(17) 1 + σ♭ ◦ π♯ : T ∗M → T ∗M

is invertible everywhere on M . (Here σ♭ : TM → T ∗M and π♯ : T ∗M →
TM are the bundle maps defined by a 2-form σ and bivector field π,
respectively.) Then the formula

(18) π♯
σ := π♯ ◦ (1 + σ♭ ◦ π♯)−1

defines a new Poisson structure πσ on M , called the gauge transforma-
tion of π by σ [20, 5]. The symplectic leaves of πσ coincide with those
of π, while the leafwise symplectic forms change by the pull-back of σ.

Gauge transformations of Poisson structures arise in the context of
Hamiltonian group actions. A Poisson action A : K → Diffπ(M) is
called Hamiltonian, if there exists a moment map Φ: M → k∗, equi-
variant relative to the coadjoint action on k∗, such that the generating
vector fields for the action are

(19) A(ξ) = −π♯ 〈dΦ, ξ〉 .

The moment map condition (19) shows in particular that Hamiltonian
actions preserve the symplectic leaves. From the equivariance condi-
tion, it follows that Φ is a Poisson map. Conversely, any Poisson map
Φ: M → k∗ defines a Lie algebra action by Equation (19). If K is con-
nected, and if the infinitesimal k-action integrates to a K-action, then
the latter is Hamiltonian with Φ as its moment map.

Proposition 3.2. Let (M, π) be a Hamiltonian K-manifold with mo-
ment map Φ. For any bisection ψ ∈ Γ(M, K) let

(20) σψ = −d
〈

Φ, (ψ−1)∗θL
〉

,

where θL ∈ Ω1(K) ⊗ k denotes the left-invariant Maurer-Cartan form.
Then σψ defines a gauge transformation of π, and

A(ψ)∗π = πσψ
.
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Proof. Since it suffices to prove this identity leafwise, we may assume
that π is the inverse of a symplectic form ω. The moment map condition
(19) translates into ι(A(ξ))ω + 〈dΦ, ξ〉 = 0. We will show

(21) A(ψ−1)∗ω = ω + σψ,

thus in particular ω + σψ is symplectic. One easily checks that the
pull-back of ω under the map ∂1 : K × M → M, (k, x) 7→ k.x is

∂∗
1ω = ω − d

〈

Φ, θL
〉

∈ Ω2(K × M).

Equation (21) follows, since A(ψ−1) is a composition of ∂1 with the
inclusion M → K × M, x 7→ (ψ−1(x), x). q.e.d.

We collect some other formulas for the 2-form σψ which will become
useful later.

Proposition 3.3. Let (M, π, Φ) be as in Proposition 3.2.

a) For any bisection ψ ∈ Γ(M, K),

A(ψ)∗σψ = d
〈

Φ, ψ∗θL
〉

.

b) If ψ1, ψ2 ∈ Γ(M, K) are bisections,

σψ1⊙ψ2 = σψ1 + A(ψ−1
1 )∗σψ2 .

Proof. (a) Using the equivariance of Φ we have

A(ψ−1)∗
〈

Φ, ψ∗θL
〉

=
〈

A(ψ−1)∗Φ,A(ψ−1)∗ψ∗θL
)〉

=
〈

Φ, Ad−1
ψ−1

(

A(ψ−1)∗ψ∗θL
)

〉

.

But A(ψ−1)∗ψ∗θL = −(ψ−1)∗θR = −Adψ−1

(

(ψ−1)∗θL
)

.

(b) From the definition ψ1 ⊙ ψ2 = (A(ψ2)
∗ψ1)ψ2 we obtain

(ψ1 ⊙ ψ2)
∗θL = ψ∗

2θ
L + Adψ2(·)−1(A(ψ2)

∗ψ∗
1θ

L)

where ψ2(·)−1 denotes the function x 7→ ψ2(x)−1 (not to be confused
with ψ−1

2 (x)). Therefore,

d
〈

Φ, (ψ1 ⊙ ψ2)
∗θL

〉

= d
〈

Φ, ψ∗
2θ

L
〉

+ A(ψ2)
∗d

〈

Φ, ψ∗
1θ

L
〉

.

Now apply A((ψ1 ⊙ ψ2)
−1)∗ = A(ψ−1

1 )∗A(ψ−1
2 )∗ to this result, and use

(a). q.e.d.

Proposition 3.3(b) shows in particular that

Γ0(M, K) = {ψ ∈ Γ(M, K)| σψ = 0}
is a subgroup of the group of bisections. By Proposition 3.2, the ho-
momorphism Γ(M, K) → Diff(M), ψ 7→ A(ψ) restricts to a group
homomorphism,

Γ0(M, K) → Diffπ(M).
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3.3. Moser’s method for Poisson manifolds. Let (M, π) be a Pois-
son manifold, and σt a smooth family of closed 2-forms on M , with
σ0 = 0, such that 1 + σ♭

t ◦ π♯ is invertible for all t. Consider the family
of gauge-transformed Poisson structures, πt = πσt . Suppose

(22)
∂

∂t
σt = −dat

for a smooth family of 1-forms at ∈ Ω1(M), and define a time dependent

Moser vector field vt ∈ X(M) by vt = −π♯
t(at). Assume that the time

dependent vector field vt is complete (this is automatic if the symplectic
leaves of M are compact), and let Ft be the flow with initial condition
F0 = id. One has [2],

πt = (Ft)∗π.

The following alternative expression for the Moser vector field is useful:

Lemma 3.4. The Moser vector field is given by vt = −π♯(bt) where
bt = at + ι(vt)σt. The 1-form bt satisfies

(23)
∂

∂t

(

F ∗
t σt

)

= −d(F ∗
t bt),

where Ft is the flow of vt.

Proof. By definition vt = −π♯(b̃t) where b̃t = (1 + σ♭
t ◦ π♯)−1at. The

calculation

at = (1 + σ♭
t ◦ π♯)b̃t = b̃t − σ♭

tvt = b̃t − ι(vt)σt

shows b̃t = bt. From the definition of bt and the formula for dat, we find

dbt = dat + L(vt)σt = −
( ∂

∂t
− L(vt)

)

σt = −(F−1
t )∗

∂

∂t
(F ∗

t σt).

q.e.d.

We will refer to bt as the Moser 1-form. Note that for any given
Poisson manifold (M, π) the list of data vt, Ft, at, bt, σt, πt is determined
by bt (and also by at).

The following proposition describes a situation where the twist flows
A(ψt) from Section 3.1 can be viewed as Moser flows.

Proposition 3.5. Suppose K is a compact Lie group, and (M, π) is
a Hamiltonian Poisson K-manifold with moment map Φ: M → k∗. Let
βt ∈ Γ(M, k) define (cf. (16)) the family of bisections ψt ∈ Γ(M, K)
with ψ0 = 1. Then the 2-form σt determined by the Moser 1-form

bt = 〈dΦ, βt〉
coincides with the form σψt

. Hence, the Moser flow Ft coincides with
A(ψt), and the gauge transformed Poisson structure πt = πσt equals
A(ψt)∗π.
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Proof. By the moment map property, vt = −π♯(bt) = A(βt), with
flow Ft = A(ψt). We have to verify Equation (23). Observe (cf. (16))

dF ∗
t βt = d

(

∂ψt

∂t
ψt(·)−1

)

= Adψt

∂

∂t

(

ψ∗
t θ

L
)

.

Since F ∗
t Φ = Ad∗

ψt(·)−1 Φ by equivariance of the moment map, this gives

F ∗
t 〈Φ, dβt〉 =

〈

Ad∗
ψt(·)−1 Φ, dF ∗

t β
〉

=

〈

Φ,
∂

∂t
(ψ∗

t θ
L)

〉

=
∂

∂t

〈

Φ, ψ∗
t θ

L
〉

.

Therefore, using Proposition 3.3(a),

F ∗
t dbt = −dF ∗

t 〈Φ, dβt〉 = − ∂

∂t
d

〈

Φ, ψ∗
t θ

L
〉

= − ∂

∂t
F ∗

t σt.

q.e.d.

3.4. Stability of Poisson actions. A well-known argument due to
Palais shows that actions of compact Lie groups K on compact man-
ifolds M are stable. That is, any deformation of such an action is
obtained via conjugation by a family of diffeomorphisms of M . This
result extends to the Poisson category:

Proposition 3.6 (Stability of Poisson actions of compact Lie
groups). Let (M, π) be a Poisson manifold, K a compact Lie group, and
At : K → Diffπ(M) a family of K-actions by Poisson diffeomorphism
of M . Let wt ∈ X(M) be the time dependent vector field, given in terms
of its action on functions by

(24) wt = −
∫

K
dkAt(k

−1)∗
∂

∂t
At(k)∗

where dk denote the normalized Haar measure on K. Then wt is a
Poisson vector field. If the flow Ft ∈ Diffπ(M) of wt exists (e.g., if M
is compact, or if the K-orbits are independent of t), then

(25) At(k) ◦ Ft = Ft ◦ A0(k), k ∈ K.

Proof. The vector field wt given by (24) has the property,

∂

∂t
At(k)∗ + wt ◦ At(k)∗ −At(k)∗ ◦ wt = 0.

Assuming that the flow Ft of wt is defined, this integrates to

F ∗
t ◦ At(k)∗ ◦ (F−1

t )∗ = A0(k)∗,

which gives (25). Since At(k) are Poisson diffeomorphisms, each vector
field wt(k) = −At(k

−1)∗ ∂
∂tAt(k)∗ is a Poisson vector field, and hence so

is the K-average (24). q.e.d.

Remark. Note that if the actions At : K → Diffπ(M) commute with
another (fixed) action of a compact Lie group H, then the vector field
wt and hence the diffeomorphisms Ft are H-equivariant.
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3.5. Poisson diffeomorphisms of k∗. Of particular importance is the
case M = k∗, with A : K → Diffπ(k∗) the coadjoint action. We begin
with the following simple observation:

Lemma 3.7. For any compact Lie group K, the center of the group
Γ(k∗, K) of bisections is the subgroup Γ(k∗, K)K of equivariant bisec-
tions, and is contained in the kernel of the map Γ(k∗, K) → Diff(k∗),
ψ 7→ A(ψ).

Proof. Suppose ψ is a K-equivariant bisection, i.e. k ⊙ ψ = ψ ⊙ k
for all k ∈ K. Equivalently, ψ(k.µ) = Adk ψ(µ) for all µ ∈ k∗, k ∈ K.
Specializing to k ∈ Kµ, this shows that ψ(µ) is in the centralizer of
Kµ. Since K is compact, this implies ψ(µ) ∈ Kµ. We have thus shown
A(ψ) = id for all ψ ∈ Γ(k∗, K)K . Now suppose ψ, φ ∈ Γ(k∗, K), where
ψ is K-equivariant. Then

(ψ ⊙ φ)(µ) = ψ(A(φ)(µ))φ(µ) = Adφ(µ)(ψ(µ))φ(µ)

= φ(µ)ψ(µ) = (φ ⊙ ψ)(µ)

(for the last equality, we used that A(ψ) = id). This shows that
Γ(k∗, K)K is contained in the center of Γ(k∗, K). The converse is obvi-
ous, since central elements commute in particular with elements of K.
q.e.d.

Remark. A similar statement holds for invariant open subsets of k∗,
with the same proof.

Consider k∗ as a Hamiltonian K-space, with Φ the identity map.
The subgroup Γ0(k

∗, K) of bisections ψ with σψ = 0 is the group of
Lagrangian bisections. (One can show that a bisection is Lagrangian
if and only if its graph is a Lagrangian submanifold of the symplec-
tic groupoid K × k∗ = T ∗K.) The diffeomorphism A(ψ) defined by a
Lagrangian bisection is a Poisson diffeomorphism preserving symplectic
leaves.

Proposition 3.8. The kernel of the homomorphism

(26) Γ0(k
∗, K) −→ Diffπ(k∗), ψ → A(ψ)

is the group of invariant Lagrangian bisections Γ0(k
∗, K)K , while its

image is the normal subgroup of Poisson diffeomorphisms preserving
symplectic leaves.

Proof. By Lemma 3.7 above, A(ψ) = id for all ψ ∈ Γ0(k
∗, K)K .

Suppose conversely that ψ ∈ Γ0(k
∗, K) is a Lagrangian bisection with

A(ψ) = id. Then each ψt = r∗t ψ generates the trivial action. In partic-
ular, this is true for the constant map ψ0 ≡ ψ(0). Hence ψ(0) is in the
center of K. Replacing ψ with ψ′ = ψ(0)−1ψ, we may assume ψ(0) = 1.
Let βt = t−1r∗t β ∈ Γ(k∗, k)K be the k-valued functions generating ψt (cf.
(16)), and bt = t−2r∗t b the associated family of closed 1-forms. Since
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A(ψ) = id, the vector field v = −π♯(b) is zero. Hence b is K-invariant,
and therefore ψ is K-equivariant.

Let F ∈ Diffπ(k∗) be any Poisson diffeomorphism preserving sym-
plectic leaves. (In particular, F (0) = 0.) We have to show F = A(ψ)
for some Lagrangian bisection ψ.

Suppose first that F is a linear Poisson diffeomorphism of k∗. Then
F is dual to a Lie algebra automorphism f ∈ Aut(k). Since F preserves
orbits, the same is true for the map f . This implies that f is an inner
automorphism, f = Adk for some k ∈ K. Hence F = Ad∗

k = A(k−1) is
given by a Lagrangian bisection ψ ≡ k−1.

Consider now the general case. For t ∈ R let rt : k∗ → k∗ denote
the map rt(µ) = tµ. Let Ft = rt−1 ◦ F ◦ rt for t 6= 0, so that the
limit for t → 0 is the linearization F0 = d0F of F at the origin. Since
(rt)∗π = tπ, each Ft is a Poisson diffeomorphism preserving leaves. By
the linear case considered above, we may assume F0 = id.

Let vt ∈ Xπ(M) be the time-dependent vector field, given in terms
of its action on functions by vt = −(F−1

t )∗ ◦ ∂
∂tF

∗
t . Write v = v1. Then

vt = t−1(rt−1)∗v for t 6= 0. The vector fields vt vanish to second order at
0, since Ft(0) = 0 and d0Ft ≡ id for all t. In particular, v0 = 0. We now
use the well-known fact that a Poisson vector field on k∗ is Hamiltonian
if and only if it is tangent to the symplectic leaves (which is automatic if
k is semi-simple). This follows from the description of the first Poisson
cohomology of k∗ (see e.g., [14])

H1
π(k∗) ∼= (k∗)K ⊗ C∞(k∗)K .

Hence, we may write v = −π♯(b) for some exact 1-form b ∈ Ω1(k∗).
The 1-form b can be normalized by requiring that its K-average be
zero. (Note that exact 1-forms on k∗ generate the zero vector field if
and only if they are K-invariant.) Letting bt = t−2r∗t b, and denoting by
βt = t−1r∗t β ∈ Γ(k∗, k) the corresponding k-valued functions, we get

vt = −π♯(bt) = A(βt).

Let ψt ∈ Γ(k∗, K), ψ0 = 1 be the family of bisections obtained by
integrating βt (see (16)). We have ψt = r∗t ψ with ψ = ψ1. Since the
1-forms bt are closed, the corresponding 2-forms σt = σψt

(cf. (23) and
Proposition 3.5) vanish. That is, the bisections ψt are Lagrangian. We
have Ft = A(ψt) by construction, and in particular F = A(ψ). q.e.d.

Remark 3.9. Let (M, π) be a Poisson manifold admitting a sym-
plectic realization S ⇉ M . In Bursztyn-Weinstein [6, Section 5], the
Poisson diffeomorphisms of M which are generated by Lagrangian bi-
sections of S are referred to as inner automorphisms of M . Proposition
3.8 characterizes the inner automorphisms for the case T ∗K ⇉ k∗.

Proposition 3.10. Suppose σ ∈ Ω2(k∗) is a closed 2-form, defining
a gauge transformation of the Kirillov-Poisson structure π on k∗. Then
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there exists a bisection ψ ∈ Γ(k∗, K), ψ(0) = 1, such that σψ = σ. In
particular, A(ψ)∗π = πσ. ψ is unique up to multiplication from the right
by a Lagrangian bisection. If σ is invariant under the action of H ⊂ K,
the bisection ψ can be taken H-invariant.

Proof. The assumption on σ means that the bundle map A = 1 +
σ♭ ◦ π♯ is invertible everywhere. Define a smooth family of closed 2-
forms σt, by letting σ0 = 0 and σt = t−1r∗t σ for t 6= 0. Introduce the
corresponding operators

At = 1 + σ♭
t ◦ π♯

on T ∗k∗, connecting A1 = A with A0 = 1. Using (rt)∗π = tπ, one
finds At = r∗t ◦ A ◦ r∗t−1 for t 6= 0. Since A is invertible, it follows
that the operator At is invertible for all t. Hence, each σt defines a
gauge transformation. Now let at be the family of 1-forms, obtained
by applying the homotopy operator to − ∂

∂tσt, and bt the corresponding
family of Moser 1-forms. By Proposition 3.5, the bisections ψt corre-
sponding to bt satisfy σψt

= σt. Thus ψ = ψ1 has the desired property
σψ = σ. Uniqueness of ψ up to Lagrangian bisections follows directly
from Proposition 3.3(b). If σ is H-invariant, then the bisection ψ just
constructed is H-invariant. q.e.d.

For any compact, connected Lie group K, we denote by Z(K) ⊂ K
the identity component of the center, and by Kss its semi-simple part
(commutator subgroup). Thus K̂ = Kss×Z(K) → K is a finite covering
of K, and k = kss ⊕ z(k) on the level of Lie algebras.

Proposition 3.11. Let K1, K2 be compact Lie groups, and suppose
Φ: k∗2 → k∗1 is the moment map for a Hamiltonian action A : K1 →
Diffπ(k∗2). Suppose that the composition of Φ with the projection k∗1 →
z(k1)

∗ is a linear map, k∗2 → z(k1)
∗. Then there exists a Lie algebra

homomorphism τ : k1 → k2 and a Lagrangian bisection ψ ∈ Γ0(k
∗
2, K2)

such that Φ = τ∗ ◦ A(ψ).

Proof. Let us first of all observe that Φ(0) = 0. Indeed, for the z(k1)
∗-

component of Φ this follows by linearity, while for the (kss
1 )∗-component

it follows since moment maps are equivariant by definition.
For all t 6= 0, the scaled Poisson homomorphism Φt = r−1

t ◦Φ ◦ rt is a
moment map for the scaled action k 7→ At(k) = r−1

t ◦A(k)◦rt. Note that
the z(k1)

∗-component of Φt, and hence the Z(K1) ⊂ K1-action, do not
depend on t. The limit Φ0 for t → 0 equals the linearization of Φ at 0,
and is a moment map for the linearized action A0. By Proposition 3.6
and the subsequent remark, there exists a Z(K1)-equivariant Poisson
diffeomorphism F ∈ Diffπ(k∗2) with A(k) = F ◦ A0(k) ◦ F−1, k ∈ K1.
Since moment maps for semisimple Lie groups (in this case Kss

1 ) are
unique, and since the z(k1)

∗-component of Φ does not depend on t, this
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implies Φ = Φ0 ◦ F−1. By Proposition 3.8, F−1 = A(ψ) for some
Lagrangian bisection ψ. Since Φ0 is a linear Poisson map, it is of the
form Φ0 = τ∗ for a Lie algebra homomorphism τ∗. q.e.d.

4. Ginzburg-Weinstein diffeomorphisms

The main result of this section is Theorem 4.7, showing that Ginz-
burg-Weinstein diffeomorphisms can be arranged to be compatible with
given Poisson Lie group homomorphisms.

4.1. Poisson Lie groups. We briefly review Poisson Lie groups, refer-
ring to [9, 8, 19] for more detailed information. A Poisson Lie group
is a Lie group K, equipped with a Poisson structure πK for which the
product map is Poisson. The linearization of πK at the group unit is a
Lie algebra 1-cocycle δK : k → ∧2k, with the property that the dual map
(δK)∗ defines a Lie bracket on k∗. Conversely, if K is connected, the
cobracket δK determines πK . One refers to the Lie algebra k together
with δK as the tangent Lie bialgebra of the Poisson Lie group K. The
dual Poisson Lie group K∗ is the connected, simply connected Poisson
Lie group with tangent Lie bialgebra k∗. If πK = 0, the dual Poisson
Lie group is simply k∗ with the Kirillov Poisson structure.

A Poisson Lie group action of (K, πK) on a Poisson manifold (M, πM )
is a K-action such that the action map ∂1 : K × M → M, (k, x) 7→ k.x
is a Poisson map. A K∗-valued moment map [18] for such an action is
a Poisson map Ψ: M → K∗ such that the generating vector fields are
given by

(27) A(ξ) = −(πM )♯Ψ∗
〈

θR, ξ
〉

.

Here θR ∈ Ω1(K∗) ⊗ k∗ is the right-invariant Maurer-Cartan form on
K∗. Equation (27) reduces to the usual moment map condition (19) if
K carries the zero Poisson structure. According to Lu [18], any Poisson
map Ψ: M → K∗ defines an infinitesimal Poisson Lie group action via
(27). In particular, the identity map of K∗ defines an infinitesimal
dressing action of K on K∗. In nice cases, it integrates to a global
action of K.

Compact Lie group K carries a standard Poisson structure πK struc-
ture, constructed by Lu and Weinstein in [19]. Let G = KC be the
complexification of K, viewed as a real Lie group, and g = kC its Lie
algebra. Consider the Iwasawa decomposition

g = k ⊕ a ⊕ n, G = KA N

relative to a choice of maximal torus T ⊂ K and fundamental Weyl
chamber. That is, a =

√
−1t while n is the direct sum of root spaces

for the positive roots. Let B(·, ·) be an invariant scalar product on
k, and BC(·, ·) its complexification. Then 2 ImBC(·, ·) is an invariant
scalar product on g, and restricts to a non-degenerate pairing between
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k and the Lie algebra a ⊕ n. In this way k∗ ∼= a ⊕ n acquires a Lie
algebra structure, making k into a Lie bialgebra. Thus K is a Poisson
Lie group, with K∗ = AN the dual Poisson Lie group. The action of K
on G by left multiplication descends to the dressing action AK∗ on K∗,
viewed as a homogeneous space G/K. To analyze the dressing action,
it is convenient to work with the Cartan decomposition

(28) g = k ⊕ p, G = K P

where p =
√
−1k and P = exp p. Recall that the exponential map

exp: g → G restricts to a diffeomorphism p → P . Let e : k∗ → K∗ be
the diffeomorphism defined by the compositions,

k∗ ∼= g/k ∼= p
exp−→ P ∼= G/K ∼= K∗.

Then e intertwines the coadjoint action Ak∗ with the dressing action:

e ◦ Ak∗(k) = AK∗(k) ◦ e.

Example. Let K = U(n), with maximal torus T = T (n) and the
usual choice of positive roots. Then G = GL(n, C) (viewed as a real Lie
group), N are the upper triangular matrices with 1’s down the diagonal,
and A are the diagonal matrices with positive entries. Hence K∗ =
AN are the upper triangular matrices with positive diagonal entries.
Furthermore, p = Herm(n) and P = Herm+(n). The isomorphism

K∗ ∼= P is explicitly given by X 7→ (X∗X)1/2, and identifies the dressing
action with the conjugation action on Herm+(n).

4.2. Ginzburg-Weinstein diffeomorphisms. Let K be a compact
Lie group with the standard Poisson structure, and consider the map
e : k∗ → K∗ constructed above. In [1], it was observed that the Poisson
structure πk∗

1 = (e−1)∗π
K∗

is gauge equivalent to the Kirillov-Poisson
structure πk∗

0 = πk∗ .

Theorem 4.1 ([1]). There is a canonical T -invariant closed 2-form
σ ∈ Ω2(k∗), with the property

(e−1)∗π
K∗

= πk∗

σ .

We can now state a refined version of the Ginzburg-Weinstein theorem
[14]. A similar result was obtained by Enriquez-Etingof-Marshall in
[11], for formal Poisson Lie groups.

Theorem 4.2 (Ginzburg-Weinstein diffeomorphisms). Let K be a
compact Lie group with the standard Poisson structure. Then there
exists a bisection ψ ∈ Γ(k∗, K), with ψ(0) = 1, such that the map

γ = e ◦ A(ψ) : k∗ → K∗

is a Poisson diffeomorphism. The bisection ψ can be chosen to be T -
equivariant and to take values in the semi-simple part Kss.



GINZBURG-WEINSTEIN VIA GELFAND-ZEITLIN 21

Proof. By Proposition 3.10, there exists a bisection ψ ∈ Γ(k∗, K),
ψ(0) = 1 with σψ = σ. For any such bisection A(ψ)∗π

k∗ = πk∗

σ =

(e−1)∗π
K∗

. Since σ is T -invariant, one can take ψ to be T -equivariant.

The map ψ lifts to a unique map ψ̂ ∈ Γ(M, K̂), ψ̂(0) = 1 with values

in the finite cover K̂ = Kss × Z(K) of K. Replacing ψ with the Kss-

component of ψ̂, we arrange that ψ takes values in Kss. q.e.d.

Definition 4.3. A bisection ψ ∈ Γ(k∗, K) will be called a Ginzburg-
Weinstein twist if it has the properties ψ(0) = 1 and σψ = σ.

By Proposition 3.3(b), Ginzburg-Weinstein twists are unique up to a
Lagrangian bisection.

Ginzburg-Weinstein twists can be used to turn ordinary k∗-valued
moment maps into K∗-valued moment maps, and vice versa. However,
the change of the moment map produces a twisted action.

Definition 4.4. Given an K → Diff(M) on a manifold M , and a
bisection ψ ∈ Γ(M, K), the ψ-twisted action of K on M is defined as
follows,

(29) Aψ : K → Diff(M), Aψ(k) = A(ψ) ◦ A(k) ◦ A(ψ)−1.

Proposition 4.5. Suppose ψ ∈ Γ(k∗, K) is a Ginzburg-Weinstein
twist, and let γ = e ◦ A(ψ). Let (M, π) be a Poisson manifold, and
Φ: M → k∗ and Ψ: M → K∗ two Poisson maps related by Ψ = γ ◦ Φ.
Then Φ is the moment map for a Hamiltonian K-action A if and only
if Ψ is the moment map for a Poisson Lie group K-action A′. The two
actions are related as follows,

(30) A′ = AΦ∗ψ−1
, A = (A′)(e

−1◦Ψ)∗ψ.

Proof. Suppose Φ generates a K-action A. We will show that Ψ

generates the action A′ = Aψ−1◦Φ. By [1, 3], the map

e ◦ Φ: M → K∗

is the moment map for a Poisson-Lie group action of (K, πK) on M ,
where M is equipped with the gauge transformed Poisson structure
πΦ∗σ. Since σ = σψ, the diffeomorphism A(Φ∗ψ−1) takes the gauge
transformed Poisson structure πΦ∗σ structure back to π. Furthermore,

A(Φ∗ψ−1) intertwines A with the twisted action A′ = Aψ−1◦Φ, and
takes e ◦ Φ to

(e ◦ Φ) ◦ A(Φ∗ψ) = e ◦ A(ψ) ◦ Φ = Ψ.

It follows that Ψ is a moment map for the twisted action A′ = AΦ∗ψ−1

on (M, π).
Conversely, assume that Ψ generates an action A′. Then e−1 ◦ Ψ :

M → k∗ is a moment map for a Hamiltonian action on (M, π−(e−1◦Ψ)∗σ).
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Applying A((e−1 ◦ Ψ)∗ψ to restore the Poisson structure π, and ar-
guing as above, we see that Φ is a moment map for the action A =

(A′)(e
−1◦Ψ)∗ψ on (M, π). (Alternatively, one can also use Lemma 4.9

below to argue that the two formulas (12) are equivalent.) q.e.d.

4.3. Functorial properties of Ginzburg-Weinstein maps. A ho-
momorphism of Poisson Lie groups K1, K2 is a Lie group homomorphism

T : K1 → K2

which is also a Poisson map. On the infinitesimal level, a homomor-
phism of Poisson Lie groups defines a homomorphism of Lie bialgebras,
τ : k1 → k2. That is, the dual map τ∗ : k∗2 → k∗1 is a Lie algebra homo-
morphism, and in particular exponentiates to a dual Poisson Lie group
homomorphism T ∗ : K∗

2 → K∗
1 . Given a Poisson Lie group action A

of K2 on a Poisson manifold M , with moment map Ψ: M → K∗
2 , the

composition T ∗ ◦ Ψ is a moment map for the K1-action A ◦ T .
For any compact Lie group K with the standard Poisson structure,

the maximal torus T with the zero Poisson structure is a Poisson-Lie
subgroup. That is, the inclusion T : T → K is a Poisson-Lie group
homomorphism.

Lemma 4.6. Suppose ψ ∈ Γ(k∗, K) is a T -equivariant Ginzburg-
Weinstein twist, and let γ = e ◦ A(ψ). Then the following diagram
commutes:

k∗ −−−−→
τ∗

t∗





y

γ





y

∼=

K∗ −−−−→
T ∗

T ∗

Proof. Let T : T → K denote the inclusion, and consider the Poisson
map Υ: k∗ → t∗ given as the composition of the Poisson maps γ : k∗ →
K∗ and T ∗ : K∗ → T ∗ ∼= t∗. Proposition 4.5 shows that γ is a moment

map for the twisted K-action Aψ−1
, and hence Υ is a moment map for

the twisted T -action, Aψ−1 ◦ T . Since ψ is T -equivariant, the twisted
and untwisted T -actions coincide. Hence, Υ and τ∗ are moment maps
for the same T -action. It follows that their difference is a K-invariant
function k∗ → t∗. It hence suffices to show that Υ and τ∗ coincide on
t∗ = (k∗)T ⊂ k∗ (fixed point set for the coadjoint action of T on k∗).
That is, we have to show that Υ restricts to the identity map of t∗.

Since ψ is T -equivariant, it takes t∗ = (k∗)T to T = KT (fixed point
set for the conjugation action of T on K). In particular, A(ψ) acts
trivially on t∗, and hence γ coincides with e on t∗ ⊂ k∗. Since e : k∗ →
K∗ restricts to the natural identification t∗ ∼= T ∗, we conclude that Υ
restricts to the identity map of t∗. q.e.d.
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Theorem 4.7 (Compatible Ginzburg-Weinstein maps). Let K1, K2

be compact Poisson Lie groups with the standard Poisson structure, and
T : K1 → K2 a Poisson Lie group homomorphism. Given any Ginzburg-
Weinstein twist ψ1 ∈ Γ(k∗1, K1), there exists a Ginzburg-Weinstein twist
ψ2 ∈ Γ(k∗2, K2), for which the diagram

(31)

k∗2
τ∗

−−−−→ k∗1




y

γ2





y

γ1

K∗
2 −−−−→

T ∗

K∗
1

with γi = ei ◦ Ai(ψi) commutes. Here Ai denotes the coadjoint action
of Ki on k∗i . One can arrange that ψ2 takes values in the semi-simple
part Kss

2 .

Proof. We may assume, passing to a finite cover of K1 if necessary,
that the semi-simple part Kss

1 is simply connected. We begin by choos-
ing an arbitrary T2-equivariant Ginzburg-Weinstein twist ψ2. We will
show how to modify ψ2 (possibly destroying the T2-equivariance), in
such a way that the above diagram commutes. The idea is to apply
Proposition 3.11 to the Poisson map

Υ = γ−1
1 ◦ T ∗ ◦ γ2 : k∗2 → k∗1.

To apply this proposition, we have to verify that the z(k1)
∗-component

of Υ is given by a linear map. In fact, we will show that the z(k1)
∗-

components of Υ and τ∗ are equal. Since ψ2 is T2-equivariant, Lemma
4.6 shows that γ2 restricts to the natural identification t∗2 → T ∗

2 . Simi-
larly, γ1 restricts to the natural identification z(k1)

∗ → Z(K1)
∗ = z(k1)

∗,
since this is true for e2, and since the action of K1 (hence of A(ψ1)) on
z(k1)

∗ is trivial. Since the Poisson bivector of K2 vanishes exactly along
T2, the map T must take Z(K1) ⊂ T1 into T2. Hence, the diagram

k∗2 −−−−→ t∗2 −−−−→ z(k1)
∗





y

γ2





y

γ2





y

γ1

K∗
2 −−−−→ T ∗

2 −−−−→ Z(K1)
∗

commutes, proving the claim.
It follows in particular that the z(k1)

∗-component of Υ is a moment
map for the action of Z(K1) ⊂ K1 via T . On the other hand, the (kss

1 )∗-
component is a moment map for some action of Kss

1 , since Kss
1 is simply

connected. Hence, Υ is the moment map for a K1-action. By Proposi-
tion 3.11, there exists a Lagrangian bisection φ ∈ Γ0(k

∗
2, K2), φ(0) = 1,

with the property Υ ◦ A(φ) = Υ0 = τ∗. That is, replacing ψ with
ψ′ = ψ ◦φ the diagram (31) commutes. As in the proof of Theorem 4.2,
one can arrange that the new ψ takes values in Kss

2 , without changing
A(ψ). q.e.d.
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Let us call two Ginzburg-Weinstein twists ψ1 ∈ Γ(k∗1, K1) and ψ2 ∈
Γ(k∗2, K2) compatible (relative to T : K1 → K2) if the corresponding
Ginzburg-Weinstein diffeomorphism γi = ei ◦A(φi) defines a commuta-
tive diagram (31). The compatibility condition is equivalent to a certain
equivariance condition, as the following result shows.

Theorem 4.8. Suppose ψ1 ∈ Γ(k∗1, K1) and ψ2 ∈ Γ(k∗2, K2) are com-
patible Ginzburg-Weinstein twists, and put

ψ̂1 = T ◦ ψ1 ◦ (e−1
1 ◦ T ∗ ◦ e2) ∈ Γ(k∗2, K2).

Then the ‘ratio’ ψ̂−1
1 ⊙ ψ2 ∈ Γ(k∗2, K2) is K1-equivariant in the sense

that it ⊙-commutes with all T (k) for all k ∈ K1. One has the formula

(32) (ψ̂−1
1 ⊙ ψ2)(µ) = T

(

ψ1(τ
∗µ)

)−1
ψ2(µ).

Proof. Given arbitrary Ginzburg-Weinstein twists ψ1, ψ2, consider
again the moment map Υ = γ−1

1 ◦ T ∗ ◦ γ2 : k∗2 → k∗1 as in the proof
of Theorem 4.7. Suppose (M, π) is a Poisson manifold, and Φ: M → k∗2
is the moment map for a Hamiltonian action A : K2 → Diffπ(M). Let
us compute the K1-action generated by Υ ◦ Φ. Using Proposition 4.5,
we have

Φ: M → k∗2 is a moment map for A
⇒ γ2 ◦ Φ: M → K∗

2 is a moment map for AΦ∗ψ−1
2

⇒ T ∗ ◦ γ2 ◦ Φ: M → K∗
1 is a moment map for AΦ∗ψ−1

2 ◦ T
⇒ γ−1

1 ◦ T ∗ ◦ γ2 ◦ Φ: M → k∗1 is a moment map for

(AΦ∗ψ−1
2 ◦ T )ψ1◦e

−1
1 ◦(T ∗◦γ2◦Φ).

We may re-write the result as

(AΦ∗ψ−1
2 ◦ T )ψ1◦e

−1
1 ◦T ∗◦γ2◦Φ = (AΦ∗ψ−1

2 )Φ
∗(T ◦ψ1◦e

−1
1 ◦T ∗◦γ2) ◦ T

= (AΦ∗ψ−1
2 )Φ

∗(ψ̂1◦A(ψ2)) ◦ T

= AΦ∗(ψ−1
2 ⊙ψ̂1) ◦ T .

In the last line, we have used Lemma 4.9 below to write an iterated
twist as a single twist.

Assume now that ψ1, ψ2 are compatible. The commutativity of the
diagram (31) means that Υ = τ∗. In particular, for any Hamiltonian

K2-space (M, π, Φ), the twisted K1-action AΦ∗(ψ−1
2 ⊙ψ̂1) ◦ T coincides

with the untwisted action A ◦ T . By definition of the twisted action,
this is equivalent to

(33) A(Φ∗(ψ−1
2 ⊙ψ̂1))◦A(T (k)) = A(T (k))◦A(Φ∗(ψ−1

2 ⊙ψ̂1)), k ∈ K1.

Apply this result to M = K2×k∗2, with symplectic structure coming from
the identification with T ∗K2, and with Φ: (k, µ) 7→ µ the moment map
for the K2-action A(k)(h, µ) = (hk−1, k.µ). Since the map Γ(k∗2, K2) →



GINZBURG-WEINSTEIN VIA GELFAND-ZEITLIN 25

Diff(K2 × k∗2), ψ 7→ A(Φ∗ψ) is 1-1, the above equation implies (ψ−1
2 ⊙

ψ̂1) ⊙ T (k) = T (k) ⊙ (ψ−1
2 ⊙ ψ̂1) as desired.

The bisection ψ̂−1
1 ⊙ ψ2 may be re-written, using

ψ̂−1
1 = T ◦ ψ−1

1 ◦ (e−1
1 ◦ T ∗ ◦ e2) = T ◦ ψ−1

1 ◦ A(ψ1) ◦ τ∗ ◦ A(ψ2)
−1

because of the commutativity of the diagram (31). Thus,

ψ̂−1
1 (A(ψ2)(µ)) = T

(

ψ1(τ
∗µ)

)−1
,

and (32) follows. q.e.d.

In the proof we used the following lemma:

Lemma 4.9. Suppose M is a K-manifold with action A. Let ψ ∈
ΓA(M, K) be a bisection relative to the action A, and φ ∈ ΓAψ(M, K)
a bisection relative to the twisted action Aψ. Then the iterated twist
(Aψ)φ can be written as a single twist,

(Aψ)φ = Aψ⊙A(ψ)∗φ.

Proof. By definition, Aψ(φ)(x) = A(ψ)A(φ(x))A(ψ−1)(x). Hence

Aψ(φ) = A(ψ ⊙A(ψ)∗φ ⊙ ψ−1).

Using this formula we calculate, for all k ∈ K,

(Aψ)φ(k) = Aψ(φ) ◦ Aψ(k) ◦ Aψ(φ)−1

= A(ψ ⊙A(ψ)∗φ) ◦ A(k) ◦ A(ψ ⊙A(ψ)∗φ)−1

= Aψ⊙A(ψ)∗φ(k).

q.e.d.

4.4. Anti-Poisson involutions. An anti-Poisson involution of a Pois-
son manifold (M, π) is an involutive diffeomorphism s ∈ Diff(M) revers-
ing the Poisson structure, s∗π = −π. An anti-Poisson involution of a
Poisson Lie group (K, πK) is an anti-Poisson involution sK of the un-
derlying Poisson manifold which is also an automorphism of the group
K. In this case, sK canonically induces an anti-Poisson involution of
the dual Poisson Lie group K∗.

Suppose K is a compact Lie group with standard Poisson structure.
Then any anti-linear involution of the Lie algebra g = kC preserving
the Iwasawa decomposition and the bilinear form 2 ImBC defines an
anti-Poisson involution sK of K. Let sk∗ be the induced involution of
k∗.

Lemma 4.10. There exists a Ginzburg-Weinstein twist ψ ∈ Γ(k∗, K)
which, in addition to the properties from Theorem 4.2, satisfies the
equivariance property

ψ ◦ sk∗ = sK ◦ ψ.
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Proof. The Ginzburg-Weinstein twist constructed in the proof of The-
orem 4.2 has the required equivariance property under involutions. In-
deed, the forms σt, at on k∗, hence also the Moser 1-form bt, change
sign under sk∗ (see [3]). It follows that the Moser vector field vt is sk∗-
invariant, while the function βt is equivariant, βt ◦ sk∗ = sk ◦ βt.

q.e.d.

Example. If K = U(n), the complex conjugation operation sK(A) =
A is an anti-Poisson involution. The involution sk∗ is complex conju-
gation on k∗ ∼= Herm(n), and sK∗ is complex conjugation on upper
triangular matrices or, equivalently, on the space P = Herm+(n) of
positive definite matrices. Compatibility of a Ginzburg-Weinstein twist
ψ with these involutions just means ψ(A) = ψ(A). In particular, ψ
restricts to a bisection Sym(n) → SO(n).

The functoriality properties of Ginzburg-Weinstein maps generalize
in the obvious way to the presence of such involutions. Thus, suppose
Ki, i = 1, . . . , n are compact Poisson Lie groups with standard Poisson
structure, and sKi

are anti-Poisson involutions of Ki of the type dis-
cussed above. Assume Ti : Ki → Ki+1, i = 1 . . . , n − 1 are Poisson Lie
group homomorphisms with

Ti ◦ sKi
= sKi+1 ◦ T .

Then the Ginzburg-Weinstein twists ψi,t ∈ Γ(k∗i , Ki) constructed in The-
orem 4.7 can be arranged to satisfy

ψi,t ◦ sk∗i
= sKi

◦ ψi,t.

Indeed, the maps obtained in the proof of Theorem 4.7 automatically
have this property, since all constructions are compatible with the in-
volutions. It follows that all maps in the commutative diagram (31)
intertwine the various involutions. In particular, one obtains a commu-
tative diagram for the fixed point sets of the involutions.

5. Gelfand-Zeitlin systems

5.1. Thimm actions. The following construction of torus actions from
non-Abelian group actions appeared in Thimm’s work [21] on com-
pletely integrable systems, and was later clarified by Guillemin-Stern-
berg in [15]. We will present the Thimm actions using the terminology
of bisections. Let K be a compact Lie group, with maximal torus T ,
and let k∗reg ⊂ k∗ be the subset of regular elements; that is, elements
whose stabilizer is conjugate to T . Pick a fundamental Weyl chamber
t∗+ ⊂ t∗. Then k∗reg = K/T × int(t∗+) as K-manifolds. Restriction of
equivariant bisections over k∗reg to int(t∗+) defines a group isomorphism,

(34) Γ(k∗reg, K)K ∼=−→ Γ(int(t∗+), T ).



GINZBURG-WEINSTEIN VIA GELFAND-ZEITLIN 27

Lemma 5.1. The isomorphism (34) identifies the subgroups of La-
grangian bisections: Γ0(k

∗
reg, K)K ∼= Γ0(int(t∗+), T ).

Proof. If ψ ∈ Γ(k∗reg, K)K is Lagrangian, then clearly so is its restric-
tion to int(t∗+). For the converse, suppose ψ restricts to a Lagrangian

bisection over int(t∗+). For any ξ ∈ k we have ι(ξ)
〈

µ, (ψ−1)∗θL
〉

=
〈

µ, ξ − Adψ(µ)(ξ)
〉

= 0, since ψ(µ) ∈ Kµ. Hence also

ι(ξ)d
〈

µ, (ψ−1)∗θL
〉

= L(ξ)
〈

µ, (ψ−1)∗θL
〉

− dι(ξ)
〈

µ, (ψ−1)∗θL
〉

= 0.

Since on the other hand the pull-back of d
〈

µ, (ψ−1)∗θL
〉

to int(t∗+) ⊂ k∗reg
is zero, this shows d

〈

µ, (ψ−1)∗θL
〉

= 0. Thus ψ is Lagrangian. q.e.d.

Define a group homomorphism

(35) χ : T → Γ0(k
∗
reg, K)K

by composing the map inverse to (34) with the inclusion T →
Γ0(int(t∗+), T ) as constant bisections. That is, χ(t) : k∗reg → K is the
unique K-equivariant map with χ(t)(µ) = t for µ ∈ int(t∗+).

Recall that by Lemma 3.7, Γ(k∗reg, K)K is the center of Γ(k∗reg, K),
and that its action on k∗reg is trivial. In particular, χ(t) acts trivially
on k∗reg. Non-trivial actions are obtained by pulling χ(t) back under an

equivariant map, Φ: M → k∗. Thus let M0 = Φ−1(k∗reg) ⊂ M , and

χM (t) = Φ∗χ(t) ∈ Γ(M0, K)K . We define the Thimm action of t ∈ T
by

t • x = A(χM (t))(x), x ∈ M0.

By construction, the Thimm action commutes with the K-action, and
the map Φ is Thimm-invariant:

Φ(t • x) = t • Φ(x) = Φ(x).

From now on, we will write χ(t)(µ) ≡ χ(t; µ) and similarly for χM .

Lemma 5.2. If ψ ∈ Γ(M0, K) is constant along the fibers of Φ,
then ψ commutes (under ⊙) with all χM (t), and (ψ ⊙ χM (t))(x) =
ψ(x)χM (t; x).

Proof. Since A(χM (t)) preserves the fibers of Φ, the bisection ψ sat-
isfies A(χM (t))∗ψ = ψ. Hence, Lemma 3.1 applies. q.e.d.

Thimm actions are naturally associated with Hamiltonian group ac-
tions.

Lemma 5.3 (Guillemin-Sternberg [15]). Suppose (M, π) is a Hamil-
tonian K-manifold, with moment map Φ: M → k∗. Then the Thimm
T -action on M0 is Hamiltonian, with moment map q ◦ Φ: M → t∗.
Here q : k∗ → t∗+ ⊂ t∗ is the unique K-invariant map with q(µ) = µ for
µ ∈ t∗+.
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Suppose now that

(36) K1
T1−→ K2

T2−→ · · · → Kn

is a sequence of compact Lie groups and homomorphisms, with differen-

tials τi : ki → ki+1. For i < j we will write T j
i = Tj−1 ◦· · ·◦Ti : Ki → Kj ,

with differential τ j
i : ki → kj . Take the maximal tori Ti ⊂ Ki and positive

Weyl chambers t∗i,+ to be compatible, in the sense that for all i < n,

Ti(Ti) ⊂ Ti+1, τ∗
i (t∗i+1,+) ⊂ t∗i,+.

Let M be a Kn-manifold, and Φn : M → k∗n an equivariant map. Then
each Ki acts on M via T n

i , and we obtain a Ki-invariant map Φi =
(τn

i )∗Φn : M → k∗i . Let

M0 =
n
⋂

i=1

Φ−1
i (k∗i,reg),

and define χi,M : Ti → Γ(M0, Kn) by

χi,M (ti) = T n
i ◦ χi(ti) ◦ Φi, ti ∈ Ti

where χi(ti) ∈ Γ(k∗i,reg, Ki).

Lemma 5.4. The images of the homomorphisms χi, M : Ti →
Γ(M0, Kn) all commute. Hence, they combine to define a group homo-
morphism

χM : Tn × · · · × T1 → Γ(M0, Kn).

One has the formula

χM (tn, . . . , t1; x) = χ1,M (t1; x) · · ·χn,M (tn; x).

Proof. Let ti ∈ Ti, tj ∈ Tj where i < j. The bisection χj(tj) ∈
Γ(k∗j,reg, Kj) is Kj-equivariant, while T j

i ◦χi(ti) ◦ (τ j
i )∗ is constant along

the fibers of (τ j
i )∗. Hence, Lemma 5.2 shows that the two bisections com-

mute under ⊙, and that the product (T j
i ◦χi(ti) ◦ (τ j

i )∗)⊙χj(tj) equals
the pointwise product. It follows that χi,M (ti) and χj,M (tj) commute
and that the product χi,M (ti) ⊙ χj,M (tj) equals the pointwise product.

q.e.d.

We define the Thimm action of t = (tn, . . . , t1) ∈ Tn ×· · ·×T1 on M0

by

t • x = A(χM (tn, . . . , t1))(x).

If (M, π) is a Hamiltonian Kn-space, with moment map Φn, then the
Thimm action of Tn×· · ·×T1 on M0 is Hamiltonian, with moment map

(qn ◦ Φn, . . . , q1 ◦ Φ1) : M0 → t∗n × · · · × t∗1.
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Here qi : k∗i → t∗i,+ ⊂ t∗i are the unique Ki-invariant maps with qi(µ) = µ
for µ ∈ t∗+. As a special case, the identity map Φ: k∗n → k∗n gives rise to
a Hamiltonian action of Tn−1 × · · · × T1 on

(k∗n)0 =
n−1
⋂

i=1

((τn
i )∗)−1(k∗i,reg).

(The torus Tn is excluded, since its Thimm action is trivial.)

5.2. Thimm actions for Poisson Lie groups. Let K be a compact
Lie group with standard Poisson structure, and K∗

reg ⊂ K∗ the subset
of points whose stabilizer under the dressing action of K has maximal
rank. Since e : k∗reg → K∗

reg is a K-equivariant diffeomorphism, any
K-equivariant map Ψ: M → K∗ defines a Thimm T -action, via the
composition e−1 ◦ Ψ. Let ψ ∈ Γ(k∗, K) be a Ginzburg-Weinstein twist,
and γ = e ◦ A(ψ). Parallel to Lemma 5.3 we have:

Lemma 5.5. Suppose M is a Poisson manifold, and Ψ: M → K∗ is
a moment map for a Poisson Lie group action A : K → Diff(M). Then
the Thimm T -action on M0 is Hamiltonian, with moment map

p ◦ Ψ: M0 → t∗.

Here p = q◦e−1 : K∗ → t∗. If Ψ = γ ◦Φ, where Φ: M → k∗ is a moment
map for a Hamiltonian K-action, then the Thimm actions defined by Φ
and Ψ coincide.

Proof. As shown in Proposition 4.5, Φ is the moment map for the
twisted action AΦ∗ψ on M . Since Ak∗(ψ) preserves orbits, p = q ◦
e−1 = q ◦ γ−1. Thus, p ◦ Ψ = q ◦ Φ where Φ = γ−1 ◦ Ψ. Thus,
Lemma 5.3 identifies p ◦Ψ as the moment map for the Thimm T -action
corresponding to Φ (relative to the twisted action AΦ∗ψ). Since the two
K-actions are conjugate under A(Φ∗ψ), the same is true for the two
Thimm T -actions. But since χM (t) is K-equivariant, Lemma 5.2 shows
Φ∗ψ⊙χM (t)◦Φ∗ψ−1 = χM (t). Hence, the two Thimm actions coincide.

q.e.d.

Suppose (36) is a sequence of homomorphisms of Poisson Lie groups
K1, . . . , Kn, equipped with the standard Poisson structure. Let M be a
Kn-manifold, let Ψn : M → K∗

n be an equivariant map, and let Ψi : M →
K∗

i be the composition of Ψn with the map (T n
i )∗ : K∗

n → K∗
i . We then

obtain commuting Thimm Ti-actions on

M0 =
n
⋂

i=1

Ψ−1
i (K∗

i,reg).

If (M, π) is a Poisson manifold, and Ψn is the moment map for a Poisson-
Lie group action of Kn, then the Thimm Tn × · · · × T1-action on M0 is
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Hamiltonian, with moment map

(pn ◦ Ψn, . . . , p1 ◦ Ψ1) : M0 → t∗n × · · · × t∗1.

Here pi = qi◦e−1
i . In particular, we obtain a Hamiltonian Tn−1×· · ·×T1-

action on

(K∗
n)0 =

n−1
⋂

i=1

((T n
i )∗)−1(K∗

i,reg).

By an inductive application of Theorem 4.7, it is possible to choose
Ginzburg-Weinstein twists ψi ∈ Γ(k∗i , Ki), with ψi(0) = 1, which are
compatible in the sense that the resulting diagram

k∗n
τ∗

n−1−−−−→ · · · τ∗

2−−−−→ k∗2
τ∗

1−−−−→ k∗1




y

γn





y

γ2





y

γ1

K∗
n −−−−→

T ∗

n−1

· · · −−−−→
T ∗

2

K∗
2 −−−−→

T ∗

1

K∗
1

with γi = ei ◦ Ai(ψi) commutes.

Proposition 5.6. For any choice of compatible Ginzburg-Weinstein
twists ψi ∈ Γ(k∗i , Ki), the map γn : k∗n → K∗

n intertwines the Thimm
Tn−1 × · · · × T1-actions on (k∗n)0 and (K∗

n)0, as well as their moment
maps. The map ψn has the following equivariance property under the
Thimm action of t = (tn−1, . . . , t1) ∈ Tn−1 × · · · × T1,

(37) ψn(t • µ) = χ̃(t; µ)ψn(µ)χ(t; µ)−1.

Here

χ(t; µ) =
n−1
∏

i=1

T n
i

(

χi(ti; µ)
)

, χ̃(t; µ) =
n−1
∏

i=1

T n
i

(

Adψi((τn
i )∗µ) χi(ti; µ)

)

.

Proof. For each i < n we obtain commutative diagrams

(38)

k∗n
(τn

i )∗−−−−→ k∗i
qi−−−−→ t∗i,+





y

γn





y

γi





y

=

K∗
n −−−−→

(T n
i )∗

K∗
i −−−−→

pi

t∗i,+

It follows that the map γn intertwines the moment maps for the actions
of Tn−1 × · · · × T1, as well as the actions themselves. By Theorem
4.8, the commutativity of the diagram (38) implies that the bisection

ψ̂−1
i ⊙ ψn ∈ Γ(k∗n, Kn) is Ki-equivariant, and that

(ψ̂−1
i ⊙ ψn)(µ) = T n

i

(

ψi((τ
n
i )∗µ)

)−1
ψn(µ).
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The Ki-equivariance of the bisection ψ = ψ̂−1
i ⊙ ψn implies the Thimm

Ti-equivariance,

(39) ψ(ti • µ) = AdT n
i ◦χi(ti;µ) ψ(µ).

Using (τn
i )∗(ti • µ) = (τn

i )∗µ, this yields

ψn(ti • µ) = T n
i

(

Adψi((τn
i )∗µ) χi(ti; µ)

)

ψn(µ) T n
i

(

χi(ti; µ)
)−1

,

proving (37). q.e.d.

Remark.

a) Throughout this discussion, we can assume that the functions ψi

take values in the semi-simple part Kss
i .

b) In the presence of anti-Poisson involutions sKi
(of the type dis-

cussed in Section 4.4) with sKi+1 ◦ Ti = Ti ◦ sKi
, one can assume

that the maps ψi satisfy sKi
◦ ψi = ψi ◦ sk∗i

. Thus γn restricts to a
diffeomorphism between the fixed point sets of sk∗n

and sK∗

n
, equi-

variant for the action of T ′
n−1 ×· · ·×T ′

1, where T ′
i is the fixed point

set of the restriction of sKi
to Ti.

5.3. The U(n) Gelfand-Zeitlin system. Consider the sequence (36)
for the special case Ki = U(i), with the standard choice of maximal

tori Ti = T (i), and with T j
i : U(i) → U(j) the inclusions as the upper

left corner (extended by 1’s along the diagonal). Identifying u(i)∗ ∼=
Herm(i) as above, the standard choice of fundamental Weyl chamber
consists of diagonal matrices with decreasing diagonal entries. The maps

(τ j
i )∗ : u(j)∗ → u(i)∗ translate into the projection of a Hermitian j × j-

matrix onto the ith principal submatrix, and are clearly compatible with
these choices of t∗i,+. As shown by Guillemin-Sternberg [15], the Thimm
Tn−1 × · · · × T1-action for the sequence of projections

u(n)∗ → · · · → u(2)∗ → u(1)∗

defines a completely integrable system on u(n)∗, and coincides with the
Gelfand-Zeitlin system described in Section 1.

Let U(i) carry the standard Poisson-Lie group structure correspond-
ing to these choices of Ti, t∗i,+ and the scalar product Bi(A

′, A) =

− tr(A′A). The bracket on u(i)∗ corresponds to its identification with
upper triangular matrices, with real diagonal entries. The map

(τ j
i )∗ : u(j)∗ → u(i)∗

projects an upper triangular matrix onto the upper left i× i block, and

is easily checked to preserve Lie brackets. Hence, T j
i are Poisson-Lie

group homomorphisms. The identification

U(i)∗ ∼= Herm+(i)
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takes the dressing action of U(i) to the action by conjugation. The maps

(T j
i )∗ : U(j)∗ → U(i)∗

are again identified with projection to the upper left corner, both under
the identification with positive definite matrices, and under the identifi-
cation with the group upper triangular matrices with positive diagonal.
The Thimm T (n − 1) × · · · × T (1)-action for the sequence of maps

U(n)∗ → · · · → U(2)∗ → U(1)∗

is Flaschka-Ratiu’s nonlinear Gelfand-Zeitlin system. Let ψi : u(i)∗ →
SU(i) be compatible Ginzburg-Weinstein twists, with ψi(0) = 1 and

ψi(A) = ψi(A), and let γi : u(i)∗ → U(i)∗ be the corresponding Ginz-
burg-Weinstein diffeomorphisms. Then ψn : u(n)∗ → SU(n) has the
properties (i)-(iii) listed at the end of Section 2. This finally completes
the proof of Theorems 1.1, 1.2, and 1.3. Furthermore, from the unique-
ness properties of ψn (Theorem 1.3), and since γn is a Poisson map by
construction, Theorem 1.4 now comes for free.

Remark. While all the arguments in this paper were carried out in
the C∞-category, we could equally well have worked in the Cω-category
of real-analytic maps. In particular, the distinguished 2-form σ ∈ Ω2(k∗)
from Section 4.2 is real-analytic, by the explicit formula given in [3]. It
follows that the distinguished Ginzburg-Weinstein twist ψ for U(n) is
not only smooth, but is in fact real-analytic.

5.4. Other classical groups. We conclude with some remarks on
Gelfand-Zeitlin systems for the other classical groups. Consider first
the special orthogonal groups SO(n), with the standard choice of maxi-
mal tori. Guillemin-Sternberg’s construction for the series of inclusions

SO(2) → SO(3) → · · ·
produces a Gelfand-Zeitlin torus action over an open dense subset of
each Poisson manifold so(n)∗ (not to be confused with the real locus of
u(n)∗, which does not carry a Poisson structure). A dimension count
confirms that this defines a completely integrable system. On the other
hand, for the symplectic groups the series of inclusions

Sp(1) → Sp(2) → · · ·
does not yield a completely integrable system, since the Gelfand-Zeitlin
torus does not have sufficiently large dimension. (By a more sophisti-
cated construction, Harada [16] was able to obtain additional integrals
of motion in this case.) Consider now the standard Poisson structures
on the groups SO(n) and Sp(n). Unfortunately, the inclusions SO(i) →
SO(i+1) are not Poisson Lie group homomorphisms, essentially due to
the fact that the Dynkin diagram of SO(i) is not a subdiagram of that
of SO(i+1). However, the inclusions SO(i) → SO(i+2) are Poisson Lie
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group homomorphisms, and so are the inclusions Sp(i) → Sp(i+1). By
the same discussion as for the unitary groups, one obtains Ginzburg-
Weinstein diffeomorphisms so(n)∗ → SO(n)∗ (resp. sp(n)∗ → Sp(n)∗)
intertwining the resulting (partial) Gelfand-Zeitlin systems. However, in
contrast to the unitary groups, there is no simple uniqueness statement
in these cases.
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Boston, MA, 2006, MR 2214253.

[18] J.-H. Lu, Momentum mappings and reduction of Poisson actions, Symplectic
geometry, groupoids, and integrable systems (Berkeley, CA, 1989), Springer,
New York, 1991, 209–226, MR 1104930, Zbl 0735.58004.

[19] J.-H. Lu & A. Weinstein, Poisson Lie groups, dressing transforma-

tions, and Bruhat decompositions, J. Differential Geom. 31(2) (1990) 501–526,
MR 1037412, Zbl 0673.58018.
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