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UNIQUENESS OF THE RICCI FLOW ON COMPLETE

NONCOMPACT MANIFOLDS

Bing-Long Chen & Xi-Ping Zhu

Abstract

The Ricci flow is an evolution system on metrics. For a given
metric as initial data, its local existence and uniqueness on com-
pact manifolds were first established by Hamilton [9]. Later on,
De Turck [5] gave a simplified proof. In the later part of 80’s, Shi
[21] generalized the local existence result to complete noncompact
manifolds. However, the uniqueness of the solutions to the Ricci
flow on complete noncompact manifolds is still an open question.
In this paper, we give an affirmative answer for the uniqueness
question. More precisely, we prove that the solution of the Ricci
flow with bounded curvature on a complete noncompact manifold
is unique.

1. Introduction

Let (Mn, gij) be a complete Riemannian (compact or noncompact)
manifold. The Ricci flow

(1.1)
∂

∂t
gij(x, t) = −2Rij(x, t), for x ∈ Mn and t ≥ 0,

with gij(x, 0) = gij(x), is a weakly parabolic system on metrics. This
evolution system was introduced by Hamilton in [9]. Now it has proved
to be powerful in the research of differential geometry and lower di-
mensional topology (see for example Hamilton’s works [9], [10], [11],
[14] and the recent works of Perelman [17], [18]). The first matter for
the Ricci flow (1.1) is the short time existence and uniqueness of the
solutions. When the manifold Mn is compact, Hamilton proved in [9]
that the Ricci flow (1.1) has a unique solution for a short time. So the
problem has been well-settled on compact manifolds. In [5], De Turck
introduced an elegant trick to give a simplified proof. Later on, Shi
[21] extended the short time existence result to noncompact manifolds.
More precisely, Shi [21] proved that if (Mn, gij) is complete noncom-
pact with bounded curvature, then the Ricci flow (1.1) has a solution
with bounded curvature on a short time interval. In this paper, we
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will deal with the uniqueness of the Ricci flow on complete noncompact
manifolds.

The uniqueness of the Ricci flow has been used in the theory of the
Ricci flow with surgery (see for example [17], [18], [1] and [3]). When we
consider the Ricci flow on a compact manifold, the Ricci flow will gen-
erally develop singularities in finite time. In the theory of the Ricci flow
with surgery, one eliminates the singularities by Hamilton’s geometric
surgeries (cut off the high curvature part and glue back a standard cap,
then run the Ricci flow again). An important question in this theory is
to control the geometry of the glued cap after surgery. The uniqueness
theorem of the Ricci flow insures that the solution on glued cap is suffi-
ciently close to a (complete noncompact) standard solution, which is the
evolution of capped round cylinder. Then we can apply the curvature
estimate [18], [3] and the canonical neighborhood decomposition [3],
[1] of the standard solutions to get the desired control. So even if we
consider the Ricci flow on compact manifolds, we still have to encounter
the problem of uniqueness on noncompact manifolds.

It is well-known that the uniqueness of the solution of a parabolic
system on a complete noncompact manifold does not always hold if one
does not impose any growth condition of the solutions. For example,
even the simplest linear heat equation on R with zero as initial data has

a nontrivial solution which might grow faster than ea|x|2 for any a > 0
whenever t > 0. This says, for the standard linear heat equation, the

most growth rate for the uniqueness is ea|x|2 . Note that in a Kähler
manifold, the Ricci curvature is given by

Rij̄ = − ∂2

∂zi∂z̄j
log det(gkl̄).

Thus the reasonable growth rate that we can expect for the uniqueness
of the Ricci flow is the solution with bounded curvature.

In this paper, we will prove the following uniqueness theorem of the
Ricci flow.

Theorem 1.1. Let (Mn, gij(x)) be a complete noncompact Riemann-

ian manifold of dimension n with bounded curvature. Let gij(x, t) and

ḡij(x, t) be two solutions to the Ricci flow on Mn × [0, T ] with the same

gij(x) as initial data and with bounded curvatures. Then gij(x, t) =
ḡij(x, t) for all (x, t) ∈ Mn × [0, T ].

Since the Ricci flow is not a strictly parabolic system, our argument
will apply the De Turck trick. This is to consider the composition of the
Ricci flow with a family of diffeomorphisms generated by the harmonic
map flow. By pulling back the Ricci flow by this family of diffeomor-
phisms, the evolution equations become strictly parabolic. In order to
use the uniqueness theorem of a strict parabolic system on a noncom-
pact manifold, we have to overcome two difficulties. The first one is
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to establish a short time existence for the harmonic map flow between
noncompact manifolds. The second one is to get a priori estimates for
the harmonic map flow so that after pulling backs, the solutions to the
strictly parabolic system still satisfy suitable growth conditions. To the
best of our knowledge, one can only get short time existence of har-
monic map flow by imposing negative curvature or convex condition on
the target manifolds (see for example, [7] and [6]) or by simply assum-
ing the image of initial data lying in a compact domain on the target
manifold (see for example [16]).

There are two main contributions in this paper. The first one is that
we observe that the condition of injectivity radius bounded from below
by a positive constant ensures certain uniform (local) convexity and this
is sufficient to give the short time existence and the a priori estimates for
the harmonic map flow. But there are examples of complete Riemannian
manifolds of bounded curvature whose injectivity radius decays to zero
at infinity. Fortunately, from [4] or [2], we know that the injectivity
radius of manifolds of bounded curvature decays at worst exponentially.
The second contribution of this paper is to handle the case of injectivity
radius decaying to zero at infinity. Our idea is to study the evolution
equations coming from the composition of the Ricci flow and harmonic
map flow, as well as a conformal change at infinity by an exponential
factor. This new approach has the advantage of transforming the Ricci
flow equation to a strictly parabolic system on a manifold with uniform
geometry at infinity. This technique may potentially be used in dealing
with the Ricci flow on manifolds with unbounded curvature.

As a direct consequence, we have the following result.

Corollary 1.2. Suppose (Mn, gij(x)) is a complete Riemannian man-

ifold, and suppose gij(x, t) is a solution to the Ricci flow with bounded

curvature on Mn×[0, T ] and with gij(x) as initial data. If G is the isom-

etry group of (Mn, gij(x)), then G remains to be an isometric subgroup

of (Mn, gij(x, t)) for each t ∈ [0, T ].

This paper is organized as follows. In Section 2, we study the har-
monic map flow coupled with the Ricci flow. In Section 3, we study the
Ricci-De Turck flow and prove the uniqueness theorem.

We are grateful to Professor S.-T. Yau for many helpful discussions
and his encouragement. The first author is supported by FANEDD
200216 and NSFC 10401042 and the second author is also partially
supported by NSFC and the IMS of The Chinese University of Hong
Kong.

2. Harmonic map flow coupled with the Ricci flow

Let (Mn, gij(x)) and (Nm, hij(y)) be two Riemannian manifolds, f :
Mn → Nm be a map. The harmonic map flow is the following evolution
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equation for maps from Mn to Nm,

(2.1)

{

∂
∂t

f(x, t) = △f(x, t), for x ∈ Mn, t > 0,

f(x, 0) = f(x), for x ∈ Mn,

where △ is defined by using the metrics gij(x) and hαβ(y) as follows

△fα(x, t) = gij(x)∇i∇jf
α(x, t),

and

(2.2) ∇i∇jf
α =

∂2fα

∂xi∂xj
− Γk

ij

∂fα

∂xk
+ Γα

βγ

∂fβ

∂xi

∂fγ

∂xj
.

Here we use {xi} and {yα} to denote the local coordinates of Mn and
Nm respectively, Γk

ij and Γα
βγ the corresponding Christoffel symbols of

gij and hαβ .
Let gij(x, t) be a complete smooth solution of the Ricci flow with

gij(x) as initial data; then the harmonic map flow coupled with Ricci
flow is the following equation:

{

∂
∂t

f(x, t) = △tf(x, t), for x ∈ Mn, t > 0,

f(x, 0) = f(x), for x ∈ Mn,

where △t is defined as above by using the metrics gij(x, t) and hαβ(y).
Suppose gij(x, t) is a solution to the Ricci flow on Mn × [0, T ] with

bounded curvature

|Rm|(x, t) ≤ k0

for all (x, t) ∈ Mn× [0, T ]. Let (Nn, hαβ) = (Mn, gij(·, T )) be the target
manifold. The purpose of this section is to prove the following theorem:

Theorem 2.1. There exists 0 < T0 < T , depending only on k0, T

and n such that the harmonic map flow coupled with the Ricci flow

(2.3)

{

∂
∂t

F (x, t) = △tF (x, t),

F (·, 0) = identity,

has a solution on Mn × [0, T0] satisfying the following estimates:

|∇F | ≤ C̃1,(2.4)

|∇kF | ≤ C̃kt
− k−2

2 , for all k ≥ 2,

for some constants C̃k depending only on k0, T , k and n.

The proof will occupy the rest of this section.
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2.1. Expanding base and target metrics at infinity. We will con-
struct appropriate auxiliary functions on Mn and Nn and do conformal
deformations for the base and the target metrics. Firstly, we construct
suitable positive functions on (Nn, hαβ). These functions can be ob-
tained by smoothing certain functions by convolution [8] (or by solving
certain differential equations [19]).

Lemma 2.2. Fix p ∈ Nn. Then for any a > 1, there exists a C∞

nonnegative function ϕa on Nn such that

(2.5)











ϕa(y) ≡ 0 on B(p, a),

d(y, p) 6 ϕa(y) 6 C0d(y, p) on Nn\B(p, 2a),

|∇kϕa| 6 Ck on Nn, for k > 1,

where Ck, k = 0, 1, 2, . . . , are constants depending only on k0 and T ; the

distance d(y, p), the covariant derivatives ∇kϕa and the norms |∇kϕa|
are computed by using the metric hαβ.

Proof. Let ξ be a smooth nonnegative increasing function on R such
that ξ(s) = 0 for s ∈ (−∞, 5

4 ], and ξ = 1 for s ∈ [74 ,∞). For each

y ∈ Nn, by averaging the functions ξ(d(p,y)
a

) and d(p, y) over a suitable
ball of the tangent space TyN

n (see for example [8]), we obtain two
smooth functions ξa and ρ. Notice that (Nn, hαβ) = (Mn, gij(·, T ));
thus all the covariant derivatives of the curvatures of hαβ are bounded
by using Shi’s gradient estimates [21]. Then ϕa = Cξaρ, for some
constant C depending only on k0 and T , is the desired function. q.e.d.

Recall from [4] and [2] that on a complete manifold with bounded
curvature, the injectivity radius decays at worst exponentially; more
precisely, there exists a constant C̃(n) > 0 depending only on the di-
mension, and there exists a constant δ > 0 depending on n, k0 and the
injectivity radius at p such that

(2.6) inj (Nn, hαβ , y) > δe−C̃(n)
√

k0d(y,p).

Fix a > 1, let ϕa = 4C̃(n)
√

k0ϕa and set

(2.7) ha
αβ = eϕa

hαβ .

Clearly, ha
αβ = hαβ on B(p, a). Note that (Nn, hαβ) = (Mn, gij(·, T )),

so the function ϕa is also a function on Mn. Let

(2.8) ga
ij(x, t) = eϕa

gij(x, t)

be the new family of metrics on Mn. Instead of (2.3), we will consider
a new harmonic map flow

(2.3)a







∂
∂t

a

F (x, t) =
a

△t

a

F (x, t),
a

F (·, 0) = identity,
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where
a

△t

a

F is defined by using the metrics ga
ij(x, t) and ha

αβ(y).

Before we solve (2.3)a, we have to discuss the geometry of the new
metrics ha

αβ(y) and ga
ij(x, t). Let us first compute the curvature and its

covariant derivatives and injectivity radius of (Nn, ha
αβ) as follows.

By a direct computation, we get

a

Rαβγδ

(2.9)

= eϕa

Rαβγδ +
eϕa

4
{|∇ϕa|2(hαδhβγ − hαγhβδ)

+ (2∇α∇δϕ
a −∇αϕa∇δϕ

a)hβγ + (2∇β∇γϕa −∇βϕa∇γϕa)hαδ

− (2∇β∇δϕ
a −∇βϕa∇δϕ

a)hαγ − (2∇α∇γϕa −∇αϕa∇γϕa)hβδ}

where
a

Rαβγδ is the curvature of ha
αβ , ∇αϕa,∇α∇δϕ

a and |∇αϕa| are

computed by the metric hαβ . Therefore, by combining with (2.5), we
have

|
a

Rm|ha 6 e−ϕa

(k0 + C(n)(C2 + C2
1 ))(2.10)

< ∞.

For higher derivatives, we rewrite (2.9) in a simple form

a

Rm = eϕa{Rm + ∇ϕa ∗ ∇ϕa ∗ h2 ∗ h−1 + ∇2ϕa ∗ h}

where we use A∗B to express some linear combinations of tensors formed
by contractions of tensor product of A and B. Note that

a

Γα
βγ − Γα

βγ =
1

2
[∇βϕaδα

γ + ∇γϕaδα
β − hαηhβγ∇ηϕ

a]

= (∇ϕa ∗ h ∗ h−1)α
βγ ,

so by induction, we have

a

∇k
a

Rm = ∇
a

∇k−1
a

Rm + (
a

Γ − Γ) ∗
a

∇k−1
a

Rm(2.11)

= eϕa

{ k
∑

l=0

∇lRm ∗
∑

i1+···+ip=k−l

∇i1ϕa ∗ · · · ∗ ∇ipϕa

+
∑

i1+···+ip=k+2

∇i1ϕa ∗ · · · ∗ ∇ipϕa

}

,
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where we denote ∇0ϕa = 1. By combining with (2.5) and gradient
estimate of Shi [21], we get

|
a

∇k
a

Rm|ha 6 e−
k+2
2

ϕa

C(n, k0, k, C1, . . . , Ck+2)

(

k
∑

l=0

|∇lRm| + 1

)

(2.12)

6 C(n, k0, T, k)e−
k+2
2

ϕa

6 C(n, k0, T, k).

For the injectivity radius of ha
αβ , we know from (2.5) and (2.7) that

for any y ∈ Nn\B(p, 2a + 1),

a

B(y, 1) ⊃ B
(

y, e−2C̃(n)
√

k0(ϕa+C1)
)

and

Vol ha(
a

B(y, 1)) =

∫

a

B(y,1)
(e4C̃(n)

√
k0ϕa)

n
2

(2.13)

> e2nC̃(n)
√

k0(ϕa−C1)Vol h(B(y, e−2C̃(n)
√

k0(ϕa+C1)))

where we denote by
a

B(y, 1) the ball centered at y and of radius 1 with

respect to metric ha
αβ , and Vol ha(

a

B(y, 1)) its volume.
Since

ϕa(y) > d(y, p),

for y ∈ Nn\B(p, 2a + 1), there holds

(2.14) e−2C̃(n)
√

k0(ϕa+C1)
6 δe−C̃(n)

√
k0d(y,p)

for y ∈ Nn\B(p, 2a + 1 + | log δ−1

C̃(n)
√

k0
|). By (2.6), (2.10), (2.13), (2.14) and

volume comparison theorem, we have

Vol ha(
a

B(y, 1)) > c(n, k0)e
2nC̃(n)

√
k0(ϕa−C1)(e−2C̃(n)

√
k0(ϕa+C1))n

> c(n, k0).

By combining this with the local injectivity radius estimate in [4] or [2],
we get

inj (Nn, ha, y) > C̃(n, k0) > 0,

for y ∈ Nn\B
(

p, 2a + 1 +
∣

∣

∣

log δ−1

C̃(n)
√

k0

∣

∣

∣

)

.

Consequently, we have proved the following lemma:

Lemma 2.3. There exists a sequence of constants C̄0, C̄1, . . ., with

the following property. For all a > 1, there exists ia > 0, such that the
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metrics ha
αβ = eϕa

hαβ on Nn satisfy

|
a

∇k
a

Rm|ha 6 C̄ke
− k+2

2
ϕa

6 C̄k(2.15)

inj (Nn, ha
αβ) > ia > 0

for k = 0, 1, . . . .

We next estimate the curvature and its covariant derivatives of ga
ij(x,t)

= eϕa
gij(x, t).

By the Ricci flow equation, we have

Γl
ij(·, T ) − Γl

ij(·, t) =

∫ T

t

(g−1 ∗ ∇Ric )(·, s)ds,(2.16)

∇k
g(·,T )(Γ(·, T ) − Γ(·, t))

=

∫ T

t

k
∑

l=0

∇k+1−lRic ∗
∑

i1+1+···+ip+1=l

∇i1
g(·,T )(Γ(·, s) − Γ(·, T ))

∗ · · · ∗ ∇ip
g(·,T )(Γ(·, s) − Γ(·, T )) ∗ gk ∗ g−(k+1)(·, s)ds.

By combining with the gradient estimates of Shi [21] and induction on
k, we have
(2.17)











|Γ(·, T ) − Γ(·, t)| 6 C(n, k0, T )
∫ T

t
1√
s
ds,

|∇g(·,T )(Γ(·, T ) − Γ(·, t))| 6 C(n, k0, T )(1 + | log t|),
|∇k

g(·,T )(Γ(·, T ) − Γ(·, t))| 6 C(n, k0, T, k)t−
k−1
2 , for k ≥ 2.

Since

∇k
g(·,t)ϕ

a =
k−1
∑

l=0

∇k−l
g(·,T )ϕ

a ∗
∑

i1+1+···+ip+1=l

∇i1
g(·,T )(Γ(·, t) − Γ(·, T ))

∗ · · · ∗ ∇ip
g(·,T )(Γ(·, t) − Γ(·, T ))

for k > 1, the combination with (2.17) and (2.5) gives

(2.18)















|∇g(·,t)ϕ
a| + |∇2

g(·,t)ϕ
a| 6 C(n, k0, T ),

|∇3
g(·,t)ϕ

a| 6 C(n, k0, T )(1 + | log t|),
|∇k

g(·,t)ϕ
a| 6 C(n, k0, T, k)t−

k−3
2 , for k > 4.

Then by combining (2.11) and (2.18), the curvature and the covariant
derivatives of ga(·, t) can be estimated as follows

|
a

∇
k a

Rm|ga(·,t) 6 C(n, k0, T, k)e−
k+2
2

ϕa

t−
k
2 , for k > 0.

Summing up, the above estimates give the following
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Lemma 2.4. There exists a sequence of constants k̄0, k̄1, . . ., with

the following property. For all a > 1, the metrics ga
ij(·, t) = eϕa

gij(·, t)
on Mn satisfy

(2.19) |
a

∇l
a

Rm|ga(·,t) 6 k̄le
− l+2

2
ϕa

t−
l
2 , for l > 0,

on Mn × [0, T ].

We remark that the fact that the curvatures of ha
αβ and ga

ij(·, t) are

uniformly bounded (independent of a) is essential in our argument, while
the injectivity radius bound ia may depend on a.

For the new family of metrics ga
ij(·, t), we have the following lemma.

Lemma 2.5.

∂

∂t
ga
ij = eϕa

(−2
a

Rij + (
a

∇
2

ϕa +
a

∇ϕa ∗
a

∇ϕa) ∗ a
g ∗ (

a
g)−1),

∂

∂t

a

Γ
k

ij = eϕa

(
a
g)−1 ∗

a

∇
a

Ric + eϕa

(
a
g)−2 ∗ a

g ∗
a

Ric ∗ ∇ϕa

+ eϕa

(
a
g)−3 ∗ (

a
g)2 ∗

[

(
a

∇a
ϕ)3 +

a

∇
2

ϕa
a

∇ϕa +
a

∇
3

ϕa

]

,

e
ϕa

2 |
a

∇ϕa|ga(·,t) + eϕa |
a

∇
2

ga(·,t)ϕ
a|ga(·,t) 6 C(n, k0, T ),(2.20)

e
3
2
ϕa |

a

∇
3

ga(·,t)ϕ
a|ga(·,t) 6 C(n, k0, T )(1 + | log t|),

e
k
2
ϕa |

a

∇
k

ga(·,t)ϕ
a|ga(·,t) 6 C(n, k0, T, k)

1

t
k−3
2

, for k > 4.

Proof. Note that

a

Γ − Γ = g ∗ g−1 ∗ ∇ϕa

a

∇2ϕa = ∇2ϕa + (
a

Γ − Γ) ∗ ∇ϕa

a

∇kϕa =
∑

i1+···+ip=k

gk−1 ∗ (g−1)k−1 ∗ ∇i1ϕa ∗ · · · ∗ ∇ipϕa

where the summation is taken over all indices ij > 0. By combining this

with (2.18), we get the desired estimates for |
a

∇k
ga(·,t)ϕ

a|ga(·,t). On the
other hand, since

a

Rij = Rij + (
a

∇2ϕa + ∇ϕa ∗ ∇ϕa) ∗ g ∗ g−1,
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it follows that

a

∇i

a

Rjl = ∇iRjl + ga ∗ (ga)−1 ∗
(

a

Ric ∗ ∇ϕa +
a

∇3ϕa

)

+ (ga)2 ∗ (ga)−2 ∗
( a

∇2ϕa ∗
a

∇ϕa + (
a

∇ϕa)3
)

.

By combining this with

∂

∂t

a

Γ
k

ij =
∂

∂t
Γk

ij +
∂

∂t
(g−1 ∗ g ∗ ∇ϕa)

= −gkl(∇iRjl + ∇jRli −∇lRij) + g ∗ g−2 ∗ Ric ∗ ∇ϕa,

we have proved the lemma. q.e.d.

2.2. Modified harmonic map flow. The purpose of this subsection is
to solve the equation (2.3)a. More precisely, we will prove the following
theorem:

Theorem 2.6. There exists 0 < T1 < T , depending only on k0, T

and n such that for all a > 1 the modified harmonic map flow coupled

with the Ricci flow

(2.3)a







∂
∂t

a

F (x, t) =
a

△t

a

F (x, t)
a

F (·, 0) = identity

has a solution on Mn × [0, T1] satisfying the following estimates

|
a

∇
a

F | ≤ C(n, k0, T ),(2.21)

|
a

∇
k a

F | ≤ C(n, k0, T, k)t−
k−2
2 , for all k ≥ 2,

for some constants C(n, k0, T, k) depending only on n, k0, T , and k but

independent of a.

Note that
a

F is viewed as a map from (Mn, ga
ij(x, t)) to (Nn, ha

αβ(y)),
all the covariant derivatives and the norms in Theorem 2.6 are computed
with respect to ga

ij(x, t) and ha
αβ(y). We begin with an easier short time

existence of (2.3)a where the short time interval may depend on a.

2.2.1. Short time existence of the modified harmonic map

flows. We consider (2.3)a with general initial data.

Theorem 2.7. Let f be a smooth map from Mn to Nn with

E0 = sup
x∈Mn

|
a

∇f |ga
ij(·,0),ha

αβ
(x) + sup

x∈Mn

|
a

∇2f |ga
ij(·,0),ha

αβ
(x) < ∞.
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Then there exists a δ0 > 0 such that the initial problem

(2.3)a
′







∂
∂t

a

F (x, t) =
a

△t

a

F (x, t),
a

F (x, 0) = f(x),

has a smooth solution on Mn × [0, δ0] satisfying the following estimates

sup
(x,t)∈Mn×[0,δ0]

|
a

∇
a

F |ga
ij(·,0),ha

αβ
(x, t)(2.22)

+ sup
(x,t)∈Mn×[0,δ0]

|
a

∇2
a

F |ga
ij(·,0),ha

αβ
(x, t) 6 C(n, k0, T, a, E0),

sup
(x,t)∈Mn×[0,δ0]

|
a

∇k
a

F |ga
ij(·,0),ha

αβ
(x, t) 6

C(n, k0, T, k, a)

t
k−2
2

,

for k ≥ 3.

We will prove the theorem by solving the corresponding initial-bound-
ary value problem on a sequence of exhausted bounded domains D1 ⊆
D2 ⊆ · · · with smooth boundaries and Dj ⊇ Ba

ga(·,0)(P, j + 1) :

(2.23)















∂
∂t

a

F j(x, t) =
a

△t

a

F j(x, t), for x ∈ Dj and t > 0,

F j(x, 0) = f(x) for x ∈ Dj ,
a

F j(x, t) = f(x) for x ∈ ∂Dj ,

and
a

F will be obtained as the limit of a convergent subsequence of
a

F j

as j → ∞. Here P is a fixed point on Mn and Ba
ga(·,0)(P, j + 1) is the

geodesic ball centered at P of radius j + 1 with respect to the metric
ga
ij(·, 0)

The following lemma gives the zero-order estimate of
a

F j .

Lemma 2.8. There exist positive constants 0 < T2 < T and C > 0

such that for any j, if (2.23) has a smooth solution
a

F j on D̄j × [0, T3]
with T3 ≤ T2, then we have

(2.24) d(Nn,ha)(f(x),
a

F j(x, t)) ≤ C
√

t,

for any (x, t) ∈ Dj × [0, T3].

Proof. For simplicity, we drop the superscripts a and j of
a

F j . Note
that the distance function d(Nn,ha)(y1, y2) can be regarded as a func-

tion on Nn × Nn. Set ψ(y1, y2) = 1
2d2

(Nn,ha)(y1, y2) and ρ(x, t) =



130 B.-L. CHEN & X.-P. ZHU

ψ(f(x), F (x, t)). Then ψ(x, t) is smooth when ψ < 1
2 i2a. Now we com-

pute the equation of ρ(x, t):
(

∂

∂t
−

a

△t

)

ρ(2.25)

= −dha(f(x), F (x, t))
∂dha

∂y1
α

a

△tf
α − Hess (ψ)(Xi, Xj)(g

a)ij

where the vector fields Xi, i = 1, 2, . . . , n, in local coordinates (yα
1 , y

β
2 )

on Nn × Nn are defined as follows

Xi =
∂fα

∂xi

∂

∂yα
1

+
∂F β

∂xi

∂

∂y
β
2

.

To handle the first term on the right hand side of (2.25), we use

a

Γk
ij(x, t) −

a

Γk
ij(x, 0) = Γk

ij(x, t) − Γk
ij(x, 0) + g(·, t) ∗ g−1(·, t) ∗ ∇ϕa

+ g(·, 0) ∗ g−1(·, 0) ∗ ∇ϕa,

to conclude that

|
a

△tf |ga(·,t),ha 6 C(n, k0, T )E0.

Recall from Lemma 2.3 that the curvature of the metric ha
αβ is bounded

by C̄0. We claim that if dha(f(x), F (x, t)) ≤ min{ ia
4 , π

4
√

C̄0

}, then

(2.26) Hess (ψ)(Xi, Xj)(g
a)ij ≥ 1

2
|

a

∇
a

F |2ga,ha − C

where C = C(E0, C̄0) depends only on E0 and C̄0.
Indeed, recall the computation of Hess (ψ) in [20]. For any (u, v) ∈

D = {(u, v) : (u, v) ∈ Nn × Nn, u 6= v, dNn(u, v) < min{ ia
2 , π

2
√

C̄0

}}, let

γuv be the minimal geodesic from u to v and e1 ∈ TuNn be the tangent
vector to γuv at u. Then e1(u, v) defines a smooth vector field on D.
Let {ei} be an orthonormal basis for TuNn which defines u smoothly.
By parallel translation of {ei} along γuv, we define {ēi} an orthonormal
basis for TvN

n. Thus {e1, . . . en, ē1, . . . ēn} is a local frame on D. Then
for any X = X1 + X2 ∈ T(u,v)D, where

X1 =

n
∑

i=1

ξiei, and X2 =

n
∑

i=1

ηiēi,

by the formula (16) in [20], we have

Hess (ψ)(X, X) =

n
∑

i=1

(ξi − ηi)
2 +

∫ r

0
t〈∇e1V,∇e1V 〉 +

∫ r

0
t〈∇ē1V,∇ē1V 〉

−
∫ r

0
t〈R(e1, V )V, e1〉 −

∫ r

0
t〈R(ē1, V )V, ē1〉
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where V is a Jacobi field on geodesic σ (connecting (v, v) to (u, v)) and σ̄

(connecting (u, u) to (u, v)) with X as the boundary values, where X is
extended to be a local vector field by letting its coefficients with respect
to {e1, . . . en, ē1, . . . ēn} be constant(see [20]). By the Jacobi equation,
|V |, r|∇e1V | and r|∇ē1V | are bounded by C(ia, C̄0)|X|. Thus we have

|Hess (ψ)|ha ≤ C(ia, C̄0)

under the assumption of the claim. So the mixed term ∂2ψ

∂yα
1 ∂y

β
2

fα
i F

β
j (ga)ij

in Hess (ψ)(Xi, Xj)(g
a)ij can be bounded by C(E0, C̄0)E0|

a

∇
a

F |ga,ha . On
the other hand, the Hessian comparison theorem for the points which
are not in the cut locus gives

∂ψ

∂y2
α∂y2

β
− (

a

Γγ
αβ ◦

a

F )
∂ψ

∂y
γ
2

≥ π

4
ha

αβ ,

∂ψ

∂y1
α∂y1

β
− (

a

Γγ
αβ ◦ f)

∂ψ

∂y
γ
1

≥ π

4
ha

αβ .

Thus the claim follows.
Let

T ′
2 = max

{

t ≤ T : sup
D

dha(f(x), F (x, t)) ≤ min

{

ia,
π

4
√

C̄0

}}

.

If
a

F (x, t) is a smooth solution of (2.23) on D̄ × [0, T3] with T3 6 T ′
2, by

(2.25) and (2.26), we get

(2.27)

(

∂

∂t
−

a

△t

)

ρ ≤ −1

2
|

a

∇
a

F |2ga,ha + C
√

ρ + C

on D × [0, T3], for some constant C depending on E0, ia and C̄0. Note
that the initial and boundary values of ρ are zero, so by the maximum
principle, we get

dha(f(x),
a

F (x, t)) ≤ C
√

t.

This implies

T ′
2 ≥ min



















min

{

ia,
π

4
√

C̄0

}2

C2
, T3



















.

Hence the lemma holds with

T2 = min



















min

{

ia,
π

4
√

C̄0

}2

C2
, T



















.

q.e.d.



132 B.-L. CHEN & X.-P. ZHU

After we have the zero order estimate (2.24), we now apply the stan-
dard parabolic equation theory to get the following short time existence
for (2.23).

Lemma 2.9. There exists a positive constant T3 ≤ T2 depending

only on the dimension n, a, T2 and C in Lemma 2.8 such that for each

j, the initial-boundary value problem (2.23) has a smooth solution
a

F j

on D̄j × [0, T3].

Proof. For an arbitrarily fixed point x0 in D̄j , choose normal coordi-
nates {xi} and {yα} on (Mn, ga(·, 0)) and (Nn, ha) around x0 and f(x0)
respectively. The equation (2.23) can be written as

(2.28)
∂yα

∂t
(x, t) = (ga)ij(x, t)

{

∂2yα

∂xi∂xj
−

a

Γk
ij(x, t)

∂yα

∂xk

+
a

Γα
βγ(y1(x, t), . . . , yn(x, t))

∂yβ

∂xi

∂yγ

∂xj

}

.

Note that
a

Γα
βγ(f(x0)) = 0. By applying (2.24) and a result of Hamilton

(Corollary (4.12) in [12]), we know that the coefficients of the quadratic
terms of the gradients on the RHS of (2.28) can be as small as we like
provided T3 > 0 sufficiently small (independent of x0 and j).

Now for fixed j, we consider the corresponding parabolic system of

the difference of the map
a

F j and f(x). Clearly the coefficients of the
quadratic terms of the gradients are also very small. Thus, whenever
(2.23) has a solution on a time interval [0, T ′

3] with T ′
3 ≤ T3, we can

argue exactly as in the proof of Theorem 6.1 in Chapter VII of the book

[15] to bound the norm of
a

∇
a

F j over D̄j×[0, T ′
3] by a constant depending

only on the L∞ bound of
a

F in (2.23), the map f(x), the domain Dj ,
and the metrics ga

ij(·, t) and ha
αβ over the domain Dj+1. Hence by the

same argument as in the proof of Theorem 7.1 in Chapter VII of the
book [15], we deduce that the initial-boundary value problem (2.23) has

a smooth solution
a

F j on D̄j × [0, T3]. q.e.d.

Unfortunately, the gradient estimates of
a

F j in the proof of the above
lemma depend also on the domain Dj . In order to get a convergent

subsequence of
a

F j , we have to estimate the covariant derivatives of
a

F j

uniformly in each compact subset. Before we proceed, we need some
preliminary estimates and notations. Note that for any q, we can equip

the bundle (T ∗M)⊗q ⊗
a

F
−1

TN the metric and connection induced from

(M,
a
g) and (N,

a

h). In fact, for any section u ∈ (T ∗M)⊗p−1⊗
a

F
−1

TN, we
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define the covariant derivative
a

∇u of u as a section of (T ∗M)⊗p⊗
a

F
−1

TN

by the formula

(
a

∇u)α
i1,i2,...,ip−1,ip =

∂uα
i1,i2,...,ip−1

∂xip
−

a

Γ
l

ip,ij
uα

i1,i2,...,ij−1l,ij+1,...,ip−1

+
a

Γ
α

βγ

∂
a

F
β

∂xip
u

γ
i1,i2,...,ip−1

,

where
a

Γ
l

ij and
a

Γ
α

βγ are connection coefficients of (M,
a
g) and (N,

a

h) re-

spectively. We can define the Laplacian of u by
a

△u =
a
g

ij
(

a

∇
2

u)...,ij .
Recall the Ricci identity

(
a

∇
2

u)α
...,i,j − (

a

∇
2

u)α
...,j,i = −

a

Rijimlu···k···
a
g

kl
+

a

Rβγδζ
∂

a

F
β

∂xi

∂
a

F
γ

∂xj

a

h
αδ

uζ
···.

Note that the derivative
a

∇
a

F (
a

∇i

a

F
α

= ∂
a

F
α

∂xi ) is a section of the bundle

T ∗M ⊗
a

F
−1

TN , the higher derivative
a

∇
p a

F is a section of (T ∗M)⊗p ⊗
a

F
−1

TN . Since the bundle (T ∗M)⊗p ⊗
a

F
−1

TN changes with the time,
we define a covariant time derivative Dt as follows. For any section

uα
i1...,ip

of (T ∗M)⊗p ⊗
a

F
−1

TN , we define

Dtu
α
i1...,ip =

∂

∂t
uα

i1...,ip +
a

Γ
α

βγ

∂
a

F
β

∂t
u

γ
i1...,ip

.

Lemma 2.10. The covariant derivatives of
a

F j satisfy the following

equations

Dt

a

∇
a

F j =
a

△t

a

∇
a

F j +
a

Ric(Mn) ∗
a

∇
a

F j +
a

RN ∗ (
a

∇
a

F j)3,(2.29)

Dt

a

∇k
a

F j =
a

△t

a

∇k
a

F j +
k−1
∑

l=0

a

∇l

[(

a

RM +
a

RN ∗ (
a

∇
a

F j)2

+ eϕa a

RM +
a

∇2eϕa

)

∗
a

∇k−l
a

F j

]

,

where
a

∇l(A ∗B) represents the linear combinations of
a

∇lA ∗B,
a

∇l−1A ∗
a

∇B, . . ., A ∗
a

∇lB, and
a

∇2eϕa
= eϕa

(
a

∇2ϕa +
a

∇ϕa ∗
a

∇ϕa).

Proof. For k = 1, by direct computation and Ricci formula, we have

Dt

a

∇i

a

Fα =
a

△t

a

∇i

a

Fα −
a

Rl
i

a

∇l

a

Fα +
a

R
α

βδγ

a

∇i

a

F β
a

∇k

a

F δ
a

∇l

a

F γ(ga)kl.
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For k > 2, by Ricci formula, it follows

a

∇
a

△
a

∇k−1
a

F j =
a

△
a

∇k
a

F j +
a

∇[(
a

RM +
a

RN ∗ (
a

∇
a

F j)2) ∗
a

∇k−1
a

F j ].

Recall from (2.20) that

∂

∂t

a

Γi
jk =

a

∇(eϕa a

RM +
a

∇2eϕa

).

Then we have

Dt

a

∇k
a

F j −
a

△t

a

∇k
a

F j

=
a

∇[(Dt −
a

△t)
a

∇k−1
a

F j ] +
a

∇(eϕa a

RM +
a

∇2eϕa

) ∗
a

∇k−1
a

F j

+
a

RN ∗
a

∇
a

F j ∗
a

∇2
a

F j ∗
a

∇k−1
a

F j

+
a

∇[(
a

RM +
a

RN ∗ (
a

∇
a

F j)2) ∗
a

∇k−1
a

F j ]

=
a

∇[(Dt −
a

△)
a

∇k−1
a

F j ]

+
a

∇{(
a

RM +
a

RN ∗ (
a

∇
a

F j)2 + (eϕa a

RM +
a

∇2eϕa

) ∗
a

∇k−1
a

F j}

=
k−1
∑

l=0

a

∇l[(
a

RM +
a

RN ∗ (
a

∇
a

F j)2 + eϕa a

RM +
a

∇2eϕa

) ∗
a

∇k−l
a

F j ].

This proves the lemma. q.e.d.

For each k > 0, let ξk be a smooth non-increasing function from
(−∞, +∞) to [0, 1] so that ξk(s) = 1 for s ∈ (−∞, 1

2 + 1
2k+1 ], and

ξk(s) = 0 for s ∈ [12 + 1
2k ); moreover for any ǫ > 0 there exists a

universal Ck,ǫ > 0 such that

|ξ′k(s)| + |ξ′′k(s)| ≤ Ck,ǫξk(s)
1−ǫ.

Lemma 2.11. There exists a positive constant T4, 0 < T4 ≤ T3

independent of j such that for any geodesic ball Bga(·,0)(x0, δ) ⊂ Dj,

there is a constant C = C(a, δ, E0, C̄0, k̄0) such that the smooth solution

of (2.23) satisfies

|
a

∇
a

F j |ga(·,t),ha 6 C

on Bga(·,0)(x0,
3δ
4 ) × [0, T4].
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Proof. We compute the equation of |
a

∇
a

F j |2
ga(·,t),ha . For simplicity, we

drop the superscript j. By (2.20), we have

(

∂

∂t
−

a

△t

)

|
a

∇
a

F |2ga(·,t),ha

(2.30)

= 〈
a

Ric (Mn) ∗
a

∇
a

F +
a

RN ∗ (
a

∇
a

F )3,
a

∇
a

F 〉ga,ha − 2|
a

∇2
a

F |2ga(·,t),ha

+ eϕa

(
a

Ric (Mn) +
a

∇2ϕa +
a

∇ϕa ∗
a

∇ϕa) ∗
a

∇
a

F ∗
a

∇
a

F

6 −2|
a

∇2
a

F |2ga(·,t),ha + C(n, k0, T )|
a

∇
a

F |2ga(·,t),ha + C(n)C̄0|
a

∇
a

F |4ga(·,t),ha .

Setting

ρA(x, t) = (d2
ha(f(x), F (x, t)) + A)|

a

∇
a

F |2ga(·,t),ha

where A is determined later, and combining with (2.27) and (2.24), we
have

∂

∂t
ρA 6

a

△ρA − 2|
a

∇2
a

F |2ga,ha(d2
ha(f(x),

a

F (x, t)) + A) − |
a

∇
a

F |4ga,ha

+ C(n)C̄0(d
2
ha(f(x),

a

F (x, t)) + A)|
a

∇
a

F |4ga,ha

+ C|
a

∇
a

F |2ga,ha + C(n, k0, T )ρA

+ 2|∇d2
ha(f(x),

a

F (x, t))|ga |∇|
a

∇
a

F |2ga(·,t),ha |ga .

Since

|∇d2
ha(f(x),

a

F (x, t))|ga 6 2dha(f(x),
a

F (x, t))(|
a

∇
a

F |ga,ha + |
a

∇f |ga,ha)

6 C
√

t + C
√

t|
a

∇
a

F |ga,ha ,

|∇|
a

∇
a

F |2ga(·,t),ha |ga 6 2|
a

∇2
a

F |ga,ha |
a

∇
a

F |ga,ha ,

by choosing T4 =min{T3,
1

4C(n)C̄0C2 }, A= 1
4C(n)C̄0

, and applying Cauchy-

Schwartz inequality, we have

(

∂

∂t
−

a

△
)

ρA 6 −C(n)C̄0ρ
2
A + C

where C = C(n, k0, T, E0, a).
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We compute the equation of u = ξ1(
dga(·,0)(x0,·)

δ
)ρA at the smooth

points of function dga(·,0)(x0, ·),
(

∂

∂t
−

a

△
)

u 6 Cξ1 − C(n)C̄0ρ
2
Aξ1 − 2(ga)ij∇iξ1∇jρA

+



−ξ′1

a

△dga(·,0)(x0, ·)
δ

+ enk0T |ξ′′1 |
δ2



 ρA.

By the Hessian comparison theorem and the fact that −ξ′1 > 0, we have

a

∇i

a

∇jdga(·,0) 6

a

∇0
i

a

∇0
jdga(·,0) + (

a

Γ(·, 0) −
a

Γ(·, t)) ∗ ∇dga(·,0)

6

(

1 + k̄0dga(·,0)
dga(·,0)

+ C

)

ga
ij(·, 0),

−ξ′1
a

△dga(·,0) 6
C|ξ′1|

δ
.

These two inequalities hold on the whole manifold in the sense of support
functions. Thus for any x1 ∈ Mn, there is a function hx1 which is
smooth on a neighborhood of x1 with hx1(·) > dga(·,0)(x0, ·), hx1(x1) =
dga(·,0)(x0, x1) and

−ξ′1
a

△hx1 |x16 2
C|ξ′1|

δ
.

Indeed, hx1 can be chosen to have the form dga(·,0)(q, ·) + dga(·,0)(q, x0)

for some q, so we may require |
a

∇hx1 |ga(·,0) 6 1. Let (x1, t0) be the
maximum point of u over Mn × [0, T4]. If t0 = 0, then ξ1ρA 6 E0.
Assume t0 > 0. At the point (x1, t0), we have ∂

∂t
(ξ1ρA)(x1, t0) > 0. If

x1 does not lie on the cut locus of x0, then

0 6 −C(n)C̄0ρ
2
Aξ1 +

1

δ2

(

enk0T |ξ′1|2
ξ1

+ 2C(|ξ′1| + |ξ′′1 |)
)

ρA + Cξ1

6 −C(n)C̄0ρ
2
Aξ1 +

C

δ2

√

ξ1ρA + Cξ1

6 −C(n)C̄0ρ
2
Aξ1 +

C

δ4

6 −C(n)C̄0(ρAξ1)
2 +

C

δ4
.

We get

ξ1ρA 6 max

{

E0,

√

C

C(n)C̄0δ4

}

for all (x, t) ∈ Bga(·,0)(x0, δ) × [0, T4]. If x1 lies on the cut locus of
x0, then by applying the standard support function technique (see for
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example [19]), the above maximum principle argument still works. So
by the definition of ξ1 and ρA, we have

|
a

∇
a

F j |ga(·,t),ha 6
C

δ

on Bga(·,0)(x0,
3δ
4 )× [0, T4]. The proof of the lemma is completed. q.e.d.

The next lemma estimates the higher derivatives in terms of the

bound of |
a

∇
a

F j |ga(·,t),ha .

Lemma 2.12. Let
a

F be a smooth solution of equation

(

∂

∂t
−

a

△
)

a

F = 0

on Bga(·,0)(x0, δ) × [0, T̄ ], with T̄ 6 T . Suppose

sup
(x,t)∈Bga(·,0)(x0, 3δ

4
)×[0,T̄ ]

|
a

∇
a

F |ga
ij(·,0),ha

αβ
(x, t) 6 E1,(2.31)

and sup
x∈Bga(·,0)(x0, 3δ

4
)

|
a

∇2
a

F |ga
ij(·,0),ha

αβ
(x, 0) 6 E1.

Then for any k> 2, there exists a positive constant C = C(k, E1, δ, k0, T )
> 0 such that

(2.32) |
a

∇k
a

F |ga(·,t),ha ≤ Ct−
k−2
2

on Bga(·,0)(x0,
δ
2) × [0, T̄ ].

Proof. The proof is using the Bernstein trick. We assume δ < 1
without loss of generality. For k = 2, from (2.15), (2.19), (2.20) and
(2.29), we have

(

∂

∂t
−

a

△t

)

|
a

∇2
a

F |2ga(·,t),ha

(2.33)

=
〈

1
∑

l=0

a

∇l[(
a

RM +
a

RN ∗(
a

∇
a

F j)2 + eϕa a

RM +
a

∇2eϕa

)∗
a

∇2−l
a

F ],
a

∇2
a

F
〉

ga,ha

− 2|
a

∇3
a

F |2ga(·,t),ha + eϕa

(
a

Ric (Mn) +
a

∇2ϕa +
a

∇ϕa ∗
a

∇ϕa) ∗ (
a

∇2
a

F )2

6 −2|
a

∇3
a

F |2ga(·,t),ha + C|
a

∇2
a

F |2ga(·,t),ha +
C√
t
|

a

∇2
a

F |ga(·,t),ha .
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In this lemma, we use C to denote various constants depending only on
E1, k0, T , k and δ. Note that by (2.30) and (2.33), we have

(

∂

∂t
−

a

△t

)

|
a

∇
a

F |2ga(·,t),ha 6 −2|
a

∇2
a

F |2ga(·,t),ha + C,

(

∂

∂t
−

a

△t

)

|
a

∇2
a

F |ga(·,t),ha 6 C|
a

∇2
a

F |ga(·,t),ha +
C√
t
.

So by setting

v = |
a

∇2
a

F |ga(·,t),ha − 2C
√

t + 2C
√

T + |
a

∇
a

F |2ga(·,t),ha ,

we have
(

∂

∂t
−

a

△t

)

v 6 −2|
a

∇2
a

F |2ga(·,t),ha + C|
a

∇2
a

F |ga(·,t),ha + C

6 −v2 + C.

Since at t = 0,

v 6 2C
√

T + E1 + E2
1

on Bga(·,0)(x0,
3δ
4 ), we apply the maximum principle as in Lemma 2.11

to get

ξ2

(

dga(·,0)(x0, ·)
δ

)

v 6 C

on Bga(·,0)(x0,
3δ
4 ) × [0, T̄ ]. This implies

|
a

∇2
a

F |ga(·,t),ha ≤ C

on Bga(·,0)(x0, (
1
2 + 1

23 )δ) × [0, T̄ ].
Now we estimate the third-order derivatives. From Shi’s gradient

estimate [21], the estimate |
a

∇2
a

F |ga(·,t),ha ≤ C, and (2.15), (2.19), (2.20)
and (2.29), we have:

(

∂

∂t
−

a

△t

)

|
a

∇3
a

F |2ga(·,t),ha

(2.34)

=
〈

2
∑

l=0

a

∇l[(
a

RM +
a

RN ∗(
a

∇
a

F )2 + eϕa a

RM +
a

∇2eϕa

)∗
a

∇3−l
a

F ],
a

∇3
a

F
〉

ga,ha

− 2|
a

∇4
a

F |2ga(·,t),ha + eϕa

(
a

Ric (Mn) +
a

∇2ϕa +
a

∇ϕa ∗
a

∇ϕa) ∗ (
a

∇3
a

F )2

6 −2|
a

∇4
a

F |2ga(·,t),ha + C|
a

∇3
a

F |2ga(·,t),ha +
C

t
|

a

∇3
a

F |ga(·,t),ha

on Bga(·,0)(x0, (
1
2 + 1

8)δ)× [0, T̄ ]. Here we used the estimates |
a

∇4eϕa |ga 6

C√
t
, |

a

∇3eϕa |ga 6 C(1 + | log t|), and |
a

∇2
a

Rm| 6
C
t
.
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By (2.33), it follows

(2.35)

(

∂

∂t
−

a

△t

)

|
a

∇2
a

F |2ga(·,t),ha 6 −2|
a

∇3
a

F |2ga(·,t),ha +
C√
t

on Bga(·,0)(x0, (
1
2+1

8)δ)×[0, T̄ ]. Let v=(|
a

∇2
a

F |2
ga(·,t),ha+A)|

a

∇3
a

F |2
ga(·,t),ha ,

where A = 100 sup
Bga(·,0)(x0,( 1

2
+ 1

23
)δ)×[0,T̄ ]

|
a

∇2
a

F |ga
ij(·,t),ha

αβ
(x, t) + C. By a di-

rect computation, it follows

(

∂

∂t
−

a

△
)

v

≤ |
a

∇3
a

F |2ga(·,t),ha

(

−2|
a

∇3
a

F |2ga(·,t),ha +
C√
t

)

+ (|
a

∇2
a

F |2ga(·,t),ha + A)

×
(

−2|
a

∇4
a

F |2ga(·,t),ha + C|
a

∇3
a

F |2ga(·,t),ha +
C

t
|

a

∇3
a

F |ga(·,t),ha

)

+ 8|
a

∇2
a

F |ga(·,t),ha |
a

∇3
a

F |2ga(·,t),ha |
a

∇4
a

F |ga(·,t),ha .

Since

8|
a

∇2
a

F |ga(·,t),ha |
a

∇3
a

F |2ga(·,t),ha |
a

∇4
a

F |ga(·,t),ha

6 −|
a

∇3
a

F |4ga(·,t),ha + 16|
a

∇4
a

F |2ga(·,t),ha |
a

∇2
a

F |2ga(·,t),ha ,

we deduce

(

∂

∂t
−

a

△
)

v 6 −|
a

∇3
a

F |4ga(·,t),ha +
C

t
|

a

∇3
a

F |ga(·,t),ha +
C√
t
|

a

∇3
a

F |2ga(·,t),ha

and

(

∂

∂t
−

a

△
)

(tv)

6 v − t|
a

∇3
a

F |4ga(·,t),ha + C|
a

∇3
a

F |ga(·,t),ha + C
√

t|
a

∇3
a

F |2ga(·,t),ha

6 −1

t

{

t2|
a

∇3
a

F |4ga(·,t),ha − C
√

t(
√

t|
a

∇3
a

F |ga(·,t),ha)

− tv − C
√

t(t|
a

∇3
a

F |2ga(·,t),ha)
}

6 −1

t

{

(tv)2

105C2
− C

}

.
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So at the maximum point of ξ3(
dga(·,0)(x0,·)

δ
)(tv), applying the maximum

principle as in Lemma 2.11, we have

0 6 −1

t

{

ξ3(tv)2

105C2
− Cξ3

}

+ C

( |ξ′3|2
ξ3

+ |ξ′′3 |
)

(tv)

6 −1

t

{

ξ3(tv)2

105C2
− Cξ3 − Ct

√

ξ3(tv)

}

6 −1

t

{

ξ3(tv)2

106C2
− C4

}

,

which gives

ξ3(tv) 6
√

106C6.

Thus by the definition of v and ξ3, we get

|
a

∇3
a

F |ga(·,t),ha ≤ Ct−
1
2

on B0(x0, (
1
2 + 1

24 )δ) × [0, T̄ ].
Now we estimate the higher derivatives by induction. Suppose we

have proved that

|
a

∇l
a

F |ga(·,t),ha ≤ Ct−
l−2
2 , for l = 3, . . . , k − 1,

on B0(x0, (
1
2 + 1

2k )δ) × [0, T̄ ]. By (2.29), we have

(

∂

∂t
−

a

△t

)

|
a

∇k
a

F |2ga(·,t),ha

=
〈

k−1
∑

l=0

a

∇l[(
a

RM +
a

RN ∗(
a

∇
a

F )2 + eϕa a

RM +
a

∇2eϕa

)∗
a

∇k−l
a

F ],
a

∇k
a

F
〉

ga,ha

− 2|
a

∇k+1
a

F |2ga(·,t),ha + eϕa

(
a

Ric (Mn) +
a

∇2ϕa +
a

∇ϕa ∗
a

∇ϕa) ∗ (
a

∇k
a

F )2

6 −2|
a

∇k+1
a

F |2ga(·,t),ha + C|
a

∇k
a

F |2ga(·,t),ha

+ C(n)
k−1
∑

l=1

∣

∣

∣

a

∇l
[ a

RM +
a

RN ∗ (
a

∇
a

F )2

+ eϕa a

RM +
a

∇2eϕa
]∣

∣

∣

ga,ha
|

a

∇k−l
a

F |ga,ha |
a

∇k
a

F |ga(·,t),ha .
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By the induction hypothesis, the local derivative estimates of Shi, and
(2.15), (2.19) and (2.20), it follows

k−1
∑

l=1

|
a

∇l
a

RM |ga |
a

∇k−l
a

F |ga(·,t),ha 6
C

t
k−1
2

,

k−1
∑

l=1

|
a

∇l[
a

RN ∗ (
a

∇
a

F )2]|ga |
a

∇k−l
a

F |ga(·,t),ha 6
C

t
k−1
2

+ C|
a

∇k
a

F |ga(·,t),ha ,

k−1
∑

l=1

|
a

∇l+2eϕa |ga |
a

∇k−l
a

F |ga(·,t),ha 6
C

t
k−2
2

,

k−1
∑

l=1

|
a

∇l
a

eϕa

RM |ga |
a

∇k−l
a

F |ga(·,t),ha 6
C

t
k−1
2

.

This gives
(

∂

∂t
−

a

△t

)

|
a

∇k
a

F |2ga(·,t),ha 6 −2|
a

∇k+1
a

F |2ga(·,t),ha

+ C|
a

∇k
a

F |2ga(·,t),ha +
C

t
k−1
2

|
a

∇k
a

F |ga(·,t),ha ,

(

∂

∂t
−

a

△t

)

|
a

∇k
a

F |ga(·,t),ha 6 C|
a

∇k
a

F |ga(·,t),ha +
C

t
k−1
2

,

(

∂

∂t
−

a

△t

)

|
a

∇k−1
a

F |2ga(·,t),ha 6 −2|
a

∇k
a

F |2ga(·,t),ha +
C

tk−
5
2

.

Let ε = 2(k−3)
k−2 − 1, then 0 ≤ ε < 1 for k ≥ 4. It is clear that

(

∂

∂t
−

a

△t

)

|
a

∇k
a

F |1+ε
ga(·,t),ha 6 C|

a

∇k
a

F |1+ε
ga(·,t),ha +

C

t
k−1
2

|
a

∇k
a

F |εga(·,t),ha ,

and
(

∂

∂t
−

a

△t

) (

|
a

∇k
a

F |1+ε
ga(·,t),ha + |

a

∇k−1
a

F |2ga(·,t),ha

)

6 −2|
a

∇k
a

F |2ga(·,t),ha + C|
a

∇k
a

F |1+ε
ga(·,t),ha

+
C

t
k−1
2

|
a

∇k
a

F |εga(·,t),ha +
C

tk−
5
2

,

on Bga(·,0)(x0, (
1
2 + 1

2k )δ) × [0, T̄ ].
Let

v = tk−3

(

|
a

∇k
a

F |1+ε
ga(·,t),ha + |

a

∇k−1
a

F |2ga(·,t),ha

)

.
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Then we have
(

∂

∂t
−

a

△
)

v

6 (k − 3)
v

t
+ tk−3

(

−|
a

∇k
a

F |2ga(·,t),ha +
C

t
k−1
2

|
a

∇k
a

F |εga(·,t),ha +
C

tk−
5
2

)

6 −1

t
{v

2
1+ε − C

√
tv

ε
1+ε − Cv − C

√
t}

6 − 1

2t
{v

2
1+ε − C}

on Bga(·,0)(x0, (
1
2 + 1

2k )δ) × [0, T̄ ]. Similarly, at the maximum point of

ξk(
dga(·,0)(x0,·)

δ
)v, we have

0 6 − 1

2t
{ξkv

2
1+ε − Cξk} + C

( |ξ′k|2
ξk

+ |ξ′′k |
)

v

6 − 1

2t
{ξkv

2
1+ε − Cξ

1+ε
2

k v − C}

6 − 1

2t

{

1

2
ξkv

2
1+ε − C

}

6 − 1

2t

{

1

2
(ξkv)

2
1+ε − C

}

,

since 2
1+ε

> 1. So we proved the k-th order estimate

|
a

∇k
a

F |ga(·,t),ha ≤ Ct−
k−2
2

on Bga(·,0)(x0, (
1
2 + 1

2k+1 )δ) × [0, T̄ ]. This completes the proof of the
lemma. q.e.d.

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7.
Since Dj ⊇ Bga(·,0)(P, j + 1), by choosing δ = 1 and T̄ = T4 in

Lemma 2.11 and Lemma 2.12, we get a convergent subsequence of
a

F j

(as j → ∞) on Bga(·,0)(P, j)×[0, T4]. Denote the limit by
a

F (as j → ∞).

Then
a

F is the desired solution of (2.3)′a with estimates (2.22).
Finally we prove a uniqueness theorem for the solutions of (2.3)′a with

estimates (2.22).

Lemma 2.13. Let
a

F and
a

F̄ be two solutions of the initial value

problem (2.3)′a on [0, T̄ ], T̄ 6 T , with estimates (2.22). Then
a

F =
a

F̄ on

[0, T̄ ].
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Proof. Set ψ(y1, y2) = 1
2 d2

(Nn, ha) (y1, y2) and ρ(x, t) = ψ(
a

F (x, t),
a

F̄ (x, t)). Then ψ(x, t) is smooth when ψ < 1
2 i2a. Now by the same

calculation as in Lemma 2.8, we have:
(

∂

∂t
−

a

△t

)

ρ = −Hess (ψ)(Xi, Xj)(g
a)ij

where the vector fields Xi, i = 1, 2, . . . , n, in local coordinates (yα
1 , y

β
2 )

on Nn × Nn are defined as follows

Xi =
∂

a

Fα

∂xi

∂

∂yα
1

+
∂

a

F̄ β

∂xi

∂

∂y
β
2

.

By the estimates (2.22), we know that there is a constant 0 < T̄ ′ 6 T̄

such that there holds

ρ < min

{

i2a
8

,
π2

8C̄0

}

on Mn × [0, T̄ ′].
Similarly as in the proof of Lemma 2.8, by using the computation

of Hess (ψ) in [20] (the formula (16) in [20]), for any (u, v) ∈ D =
{(u, v) : (u, v) ∈ Nn × Nn with 0 < dNn(u, v) < min{ ia

2 , π

2
√

C̄0

}}, and

any X ∈ T(u,v)D,

Hess (ψ)(X, X) > −
∫ r

0
t〈R(e1, V )V, e1〉 −

∫ r

0
t〈R(ē1, V )V, ē1〉

where V is a Jacobi field on geodesic σ (connecting (v, v) to (u, v)) and
σ̄ (connecting (u, u) to (u, v)) with X as the boundary values as before.

Since |
a

∇F |ga,ha and |
a

∇F̄ |ga,ha are bounded, we know from the above
formula that

Hess (ψ)(Xi, Xj)(g
a)ij

> −Cρ

on Mn × [0, T̄ ′]. Thus we have
(

∂

∂t
−

a

△t

)

ρ 6 Cρ

on Mn × [0, T̄ ′]. By the maximum principle, it follows that ρ = 0 on
Mn × [0, T̄ ′]. Then the lemma follows by continuity method. q.e.d.

2.2.2. Proof of Theorem 2.6 and Theorem 2.1.

Proof of Theorem 2.6. Let us check the initial data. Now f = identity,
so

|
a

∇f |2ga(·,0),ha = gij(·, 0)gij(·, T )(2.36)

6 ne2nk0T
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|
a

∇2f |2ga(·,0),ha = |
a

Γk
ij(·, 0) −

a

Γk
ij(·, T )|ga(·,0),ha

(2.37)

6 C(n, k0, T )

∫ T

0
eϕa

(|
a

∇
a

RM |ga(·,t) + |
a

RM ∗
a

∇ϕa|ga(·,t)

+ |
a

∇ϕa|3ga(·,t) + |
a

∇ϕa|ga(·,t)|
a

∇2ϕa|ga(·,t) + |
a

∇3ϕa|ga(·,t))dt

6 C(n, k0, T )

∫ T

0

1√
t

+ | log t|dt

6 C(n, k0, T ).

By applying Theorem 2.7, we know that there is δ0 > 0 such that

(2.3)a has a smooth solution
a

F on Mn× [0, δ0] with estimates (2.22). In
views of Lemma 2.12 and Lemma 2.13, in order to prove Theorem 2.6,

we only need to bound |
a

∇
a

F |2
ga(·,t),ha uniformly on a uniformly interval

[0, T1] with T1 independent of a. To this end, let

T̃ = sup
{

T̃0 | T̃0 6 T, (2.3)a has a smooth solution on Mn × [0, T̃0]

with sup
Mn×[0,T̃0]

|
a

∇
a

F |2ga(·,t),ha < ∞
}

.

We will estimate T̃ from below.

We come back to the equation (2.30) of |
a

∇
a

F |2
ga(·,t),ha , where there

holds
(

∂

∂t
−

a

△t

)

|
a

∇
a

F |2ga(·,t),ha

6 −2|
a

∇2
a

F |2ga(·,t),ha + C1(n, k0, T )|
a

∇
a

F |2ga(·,t),ha

+ C2(n, k0, T )|
a

∇
a

F |4ga(·,t),ha

on Mn × [0, T̃ ]. We remark that
a

F is defined on a complete manifold

with bounded curvature and supMn×[0,T̃0] |
a

∇
a

F |2
ga(·,t),ha < ∞, for each

T̃0 < T̃ . So by applying the maximum principle on complete manifolds,
we have

d+

dt
(sup

Mn

|
a

∇
a

F |2ga(·,t),ha)

6 C1(n, k0, T ) sup
Mn

|
a

∇
a

F |2ga(·,t),ha + C2(n, k0, T ) sup
Mn

|
a

∇
a

F |4ga(·,t),ha
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where d+

dt
is the upper right derivative defined by

d+

dt
u = lim sup

△tց0

u(t + △t) − u(t)

△t
.

By combining with (2.36), we have

sup
Mn×[0,T̃0]

|
a

∇
a

F |2ga(·,t),ha 6 2ne2nk0T ,

provided T̃0 6 min{T, log 2
C1(n,k0,T )+2ne2nk0T C2(n,k0,T )

}.

By Lemma 2.12 and Lemma 2.13 and Theorem 2.7, the solution
a

F

exists smoothly until |
a

∇
a

F |2
ga(·,t),ha blows up, so we know

T̃ > min

{

T,
log 2

C1(n, k0, T ) + 2ne2nk0T C2(n, k0, T )

}

.

By choosing T1 = min{T, log 2
C1(n,k0,T )+2ne2nk0T C2(n,k0,T )

}, Theorem 2.6 fol-

lows. q.e.d.

Proof of Theorem 2.1. Note that ϕa = 0 on Bg(·,T )(P, a), and ga
ij(x, t) =

eϕa
gij(x, t), ha

αβ(y) = eϕa
hαβ . It follows that

ga
ij(x, t) = gij(x, t) on Bg(·,T )(P, a),

ha
αβ(y) = hαβ(y) on Bg(·,T )(P, a).

By Theorem 2.6 and estimates (2.21) and letting a → ∞, the solutions
a

F of (2.3)a on Mn × [0, T1] have a convergent subsequence so that the
limit is a solution of (2.3) with the estimates (2.4). q.e.d.

3. The uniqueness of the Ricci flow

3.1. Preliminary estimates for the Ricci-De Turck flow. Let
F (x, t) be a solution to (2.3) in Theorem 2.1 on Mn × [0, T0]. Let

g̃ij(x, t) = hαβ(F (x, t))∂F α

∂xi
∂F β

∂xj be the one-parameter family of pulled
back metrics F ∗h. We will estimate gij(x, t) in terms of g̃ij(x, t).

Proposition 3.1. There exists a constant 0 < T5 6 T0 depending

only on k0 and T such that for all (x, t) ∈ Mn × [0, T5], we have

1

C(n, k0, T )
g̃ij(x, t) 6 gij(x, t) 6 C(n, k0, T )g̃ij(x, t)(3.1)

|∇̃kg|g̃ 6
C(n, k0, T, k)

t
k−1
2

for k = 1, 2, . . . .
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Proof. We first consider the zero-order estimate of gij(x, t). The esti-
mate |∇F |2 = g̃ijg

ij ≤ C in (2.4) implies g̃ij(x, t) ≤ Cgij(x, t). For the
reverse inequality, we compute the equation of g̃ij(x, t) by (2.4):

∂

∂t
g̃ij = △g̃ij − RikF

α
l F

β
j hαβgkl − RjkF

α
l F

β
i hαβgkl

(3.2)

+ 2RαβγδF
α
i F

β
k F

γ
j F δ

l gkl − 2hαβFα
k,iF

β
l,jg

kl

> △g̃ij − Rikg̃ljg
kl − Rjkg̃lig

kl − 2k0|∇F |2gij − 2|∇2F |2gij

> △g̃ij − Rikg̃ljg
kl − Rjkg̃lig

kl − C(n, k0, T )gij .

Combining (3.2) with the Ricci flow equation gives

(

∂

∂t
−△

) (

g̃ij + C(n, k0, T )tgij −
1

2ne2nk0T
gij

)

> −Rik

(

g̃lj + C(n, k0, T )tglj −
1

2ne2nk0T
glj

)

gkl

− Rjk

(

g̃li + C(n, k0, T )tgli −
1

2ne2nk0T
gli

)

gkl.

Note that at t = 0,

(

g̃ij + C(n, k0, T )tgij −
1

2ne2nk0T
gij

)

|t=0

= gij(·, T ) − 1

2ne2nk0T
gij(·, 0) > 0.

By applying the maximum principle to above equation, we obtain

g̃ij + C(n, k0, T )tgij −
1

2ne2nk0T
gij > 0

on Mn × [0, T0]. Let T5 = min{T0,
1

4ne2nk0T C(n,k0,T )
}. Then we have

g̃ij >
1

4ne2nk0T
gij , on Mn × [0, T5].

This gives the zero-order estimate of gij(x, t).

For the first order derivative of gij , we compute

∇̃kgij = (∇̃k −∇k)gij = (Γl
ki − Γ̃l

ki)glj + (Γl
kj − Γ̃l

kj)gli
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and

|(Γl
ki − Γ̃l

ki)|2g̃ = |(Γp
ki − Γ̃p

ki)g̃lp|2g̃

=

∣

∣

∣

∣

∇k∇iF
α ∂F β

∂xl
hαβ

∣

∣

∣

∣

g̃

6 C(n, k0, T )

∣

∣

∣

∣

∇k∇iF
α ∂F β

∂xl
hαβ

∣

∣

∣

∣

g

6 C(n, k0, T )|∇2F |g,h|∇F |g,h

6 C(n, k0, T ).

This gives the first order estimate.
For higher order estimates, we prove it by induction. Suppose we

have showed

|∇̃lg|g̃ 6
C

t
l−1
2

for l = 1, 2, . . . , k − 1,

|∇̃l(Γ − Γ̃)|g̃ 6
C

t
l
2

for l = 0, 1, . . . , k − 2.

Since by induction

|∇̃k−1(Γ − Γ̃)|g̃
= |∇̃k−1[(Γ − Γ̃) ∗ g̃]|g̃

=

∣

∣

∣

∣

∣

∣

k−1
∑

j=0

∇k−1−j [(Γ − Γ̃) ∗ g̃] ∗
∑

i1+1+···+iq+1=j

∇̃i1(Γ − Γ̃) ∗ · · · ∗ ∇̃iq(Γ − Γ̃)

∣

∣

∣

∣

∣

∣

g̃

6 C(n, k0, T )
k−1
∑

j=0

|∇k−1−j
g,h (∇2F ∗ ∇F )|g,h

·
∑

i1+1+···+iq+1=j

|∇̃i1(Γ − Γ̃)|g̃ · · · |∇̃iq(Γ − Γ̃)|g̃

6
C(n, k0, T, k)

t
k−1
2

and

∇̃kg = ∇̃k−1((Γ − Γ̃) ∗ g)

=
k−1
∑

i=0

∇̃i(Γ − Γ̃) ∗ ∇̃k−1−ig,

then we have

|∇̃kg|g̃ 6
C

t
k−1
2

.

This completes the induction argument and the proposition is proved.
q.e.d.
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Proposition 3.2. Let F (x, t) be the solution of (2.3) in Theorem

2.1. Then F (·, t) are diffeomorphisms for all t ∈ [0, T5]; moreover, there

exists a constant C(n, k0, T ) > 0 depending only on n, k0 and T such

that

dh(F (x1, t), F (x2, t)) > e−C(n,k0,T )dh(x1, x2)

for all x1, x2 ∈ Mn, t ∈ [0, T5].

Proof. Note that

1

C
g̃ij(x, t) ≤ gij(x, t) ≤ Cg̃ij(x, t)

implies that F are local diffeomorphisms. So we only need to prove
that F (·, t) is injective and proper. Suppose not. Then there exist two
points x1 6= x2, such that F (x1, t) = F (x2, t), for some t0 ∈ (0, T5].
Assume t0 > 0 to be the first time so that F (x1, t) = F (x2, t). Choose

small δ > 0, such that there exist a neighborhood Õ of F (x1, t0) and a

neighborhood O of x1 such that F−1(·, t) is a diffeomorphism from Õ

to O for all t ∈ [t0 − δ, t0]; moreover, letting γ̃t be a shortest geodesic(
parametrized by arc length) on the target (Nn, hαβ) connecting F (x1, t)

and F (x2, t), we require γ̃ ∈ Õ for t ∈ [t0 − δ, t0]. We compute

∂

∂t
dh(F (x1, t), F (x2, t)) = 〈V, γ̃′(l)〉h − 〈V, γ̃′(0)〉h

where γ̃(0) = F (x1, t) , γ̃(l) = F (x2, t), and V α = △Fα. Now we pull
back everything by F−1 to O,

∂

∂t
dh(F (x1, t), F (x2, t)) = 〈P−γ̃V − V, γ′(0)〉F ∗h

≥ − sup
x∈F−1γ̃

|∇̃V |(x, t)dh(F (x1, t), F (x2, t))

where Pγ̃ is the parallel translation along F−1γ̃ using the metric F ∗h.
Since

∇̃kV
l = ∇kV

α ∂xl

∂yα
,

where ∇kV
α is the covariant derivative of the section V α of the bundle

F−1TN, thus by (2.4),

|∇̃kV
l| = [∇kV

α∇lV
βhαβ g̃kl]

1
2 6 C|∇3F | 6

C√
t
.

It follows that we have

dh(F (x1, t), F (x2, t)) 6 eC(
√

t0−
√

t0−δ)dh(F (x1, t0), F (x2, t0)) = 0,

for t ∈ [t0 − δ, t0], which contradicts the choice of t0. So F (·, t) are
diffeomorphisms.

By choosing Õ = Nn, O = Mn, the above computation also gives

dh(F (x1, t), F (x2, t)) > e−C(n,k0,T )dh(x1, x2).
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This in particular implies the properness of the maps, and the proof of
the proposition is completed. q.e.d.

3.2. Ricci De-turck flow. From the previous section, we know that
the harmonic map flow coupled with Ricci flow (2.3) with identity as ini-
tial data has a short time solution F (x, t) on Mn×[0, T5], which remains
being a diffeomorphism with good estimates (2.4). Let (F−1)

∗
g be the

one-parameter family of pulled back metrics on the target (Nn, hαβ).

Denote gαβ(y, t) = ((F−1)
∗
g)αβ(y, t). Then gαβ(y, t) satisfies the so-

called Ricci-De Turck flow:

(3.3)
∂

∂t
gαβ(y, t) = −2Rαβ(y, t) + ∇αVβ + ∇βVα

where V α = gβγ(Γα
βγ(g)−Γα

βγ(h)), Γα
βγ(g) and Γα

βγ(h) are the Christoffel

symbols of the metrics gαβ(y, t) and hαβ(y) respectively.
By (3.1) of Proposition 3.1, we already have the following estimates

for gαβ(y, t)

1

C(n, k0, T )
hαβ(y) 6 gαβ(y, t) 6 C(n, k0, T )hαβ(y)(3.4)

|∇k
hg|h 6

C(n, k0, T, k)

t
k−1
2

on Nn × [0, T5].
Let gij(x, t) and ḡij(x, t) be two solutions to the Ricci flow with

bounded curvature and with the same initial value as assumed in The-
orem 1.1. We solve the corresponding harmonic map flow with same
target (Nn, hαβ) = (Mn, gij(·, T )) by

(3.5)

{

∂
∂t

F (x, t) = △F (x, t),

F (·, 0) = identity,

and

(3.6)

{

∂
∂t

F̄ (x, t) = △̄F̄ (x, t),

F̄ (·, 0) = identity,

respectively. Then we obtain two solutions F (x, t) and F̄ (x, t) on Mn×
[0, T5]. It is clear that F̄ (x, t) still satisfies (2.4), Proposition 3.1 and
Proposition 3.2. Let ḡαβ(y, t) = (F̄−1)

∗
ḡ(y, t), then ḡαβ(y, t) still satis-

fies (3.4). Now we have two solutions gαβ(y, t) and ḡαβ(y, t) to the Ricci
De-Turck flow (3.3) with same initial data and with good estimates
(3.4).

Proposition 3.3. There holds

gαβ(y, t) = ḡαβ(y, t)

on Nn × [0, T5].
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Proof. We can write the Ricci-De Turck flow (3.3) by using the fixed
metric hαβ(y) in the following form (see [21]):

∂

∂t
gαβ = gγδ∇̃γ∇̃δgαβ − gγδgαξ g̃

ξηR̃βγηδ − gγδgβξ g̃
ξηR̃αγηδ(3.7)

+
1

2
gγδgξη

(

∇̃αgξγ∇̃βgηδ + 2∇̃γgβξ∇̃ηgαδ

− 2∇̃γgβξ∇̃δgαη − 2∇̃βgξγ∇̃δgαη − 2∇̃αgξγ∇̃δgβη

)

where g̃αβ = hαβ , ∇̃ and R̃ are the covariant derivative and the curvature
of g̃αβ . Note that ḡαβ also satisfies (3.7), and then the difference gαβ −
ḡαβ satisfies the following equation:

∂

∂t
(g − ḡ) = gγδ∇̃γ∇̃δ(g − ḡ) + g−1 ∗ ḡ−1 ∗ ∇̃2ḡ ∗ (ḡ − g)

(3.8)

+ ḡ−1 ∗ g̃−1 ∗ R̃m ∗ (g − ḡ)

+ g−1 ∗ ḡ−1 ∗ g ∗ g̃−1 ∗ R̃m ∗ (g − ḡ)

+ g−1 ∗ g−1 ∗ ḡ−1 ∗ ∇̃g ∗ ∇̃g ∗ (g − ḡ)

+ g−1 ∗ ḡ−1 ∗ ḡ−1 ∗ ∇̃g ∗ ∇̃g ∗ (g − ḡ)

+ ḡ−1 ∗ ḡ−1 ∗ ∇̃g ∗ ∇̃(g − ḡ) + ḡ−1 ∗ ḡ−1 ∗ ∇̃ḡ ∗ ∇̃(g − ḡ)

since gαβ − ḡαβ = gαξ ḡηβ(ḡηξ − gηξ). Let

|g − ḡ|2 = g̃αγ g̃βδ(gαβ − ḡαβ)(gγδ − ḡγδ).

It follows from (3.8) that:

(

∂

∂t
− gγδ∇̃γ∇̃δ

)

|g − ḡ|2

6 −2gξη g̃αγ g̃βδ(∇̃ξgαβ − ∇̃ξ ḡαβ)(∇̃ηgγδ − ∇̃η ḡγδ)

+ C(n)[|R̃m|(1 + |g||g−1|)|ḡ−1| + |∇̃2ḡ||ḡ−1||g−1|
+ |∇̃g|2(|ḡ−1|2|g−1| + |ḡ−1||g−1‖2)]|g − ḡ|2

+ C(n)|ḡ−1|2(|∇̃g| + |∇̃ḡ|)|∇̃(g − ḡ)||g − ḡ|



UNIQUENESS OF THE RICCI FLOW 151

where all the norms are computed with the metric g̃ = h. By Cauchy-
Schwartz inequality and (3.4), we have

(

∂

∂t
− gγδ∇̃γ∇̃δ

)

|g − ḡ|2(3.9)

6 −2gξηg̃αγ g̃βδ(∇̃ξgαβ − ∇̃ξ ḡαβ)(∇̃ηgγδ − ∇̃η ḡγδ)

+
C√
t
|g − ḡ|2 + C|∇̃(g − ḡ)||g − ḡ|

6
C√
t
|g − ḡ|2

on Nn × [0, T5].
Let ϕ1 be the nonnegative function in Lemma 2.2 with a = 1, then

1

C
(1 + d̃(y, p)) 6 ϕ1(y) 6 C0d̃(y, p) on Nn\B(P, 2),

|∇̃ϕ1| + |∇̃2ϕ1| 6 C, on Nn.

For any fixed t and any ε > 0, consider the maximum of |g − ḡ|2 − εϕ.
Clearly, the maximum is achieved at some point P t

ε and there hold

|g − ḡ|2(P t
ε) > |g − ḡ|2(y) − εϕ(y),

|∇̃|g − ḡ|2|(P t
ε) 6 Cε,

∇̃α∇̃β |g − ḡ|2(P t
ε) 6 Cεg̃αβ(P t

ε),

for all y ∈ Nn. This gives

lim sup
ε→0

|g − ḡ|2(P t
ε) = sup |g − ḡ|2(3.10)

gαβ∇̃α∇̃β |g − ḡ|2(P t
ε) 6 Cε

by the equivalence of g and g̃.
Define a function

|g − ḡ|2max(t) = sup
y∈Nn

|g − ḡ|2(y, t).

By (3.9) and (3.10), we have

d+

dt
|g − ḡ|2max(t) 6

C√
t
|g − ḡ|2max(t),

and then

|g − ḡ|2max(t) 6 eC
√

T |g − ḡ|2max(0) = 0.

Therefore the proof of the Proposition 3.3 is completed. q.e.d.
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3.3. Proof of the main theorem. Let gij(x, t) and ḡij(x, t) be two
solutions to the Ricci flow (1.1) with bounded curvature and with the
same initial data. We solve the corresponding harmonic map flow (3.5)
and (3.6) with the same target (Nn, hαβ) = (Mn, gij(·, T )) respectively.
We obtain two solutions F (x, t) and F̄ (x, t) which are diffeomorphisms
for t ∈ [0, T5], where T5 > 0 depends only on n, k0, T . Then (F−1)

∗
g

and (F̄−1)
∗
ḡ are two solutions to the Ricci-De Turck flow with the same

initial value. It follows from Proposition 3.3 that

(F−1)
∗
g = (F̄−1)

∗
ḡ,

on Nn × [0, T5]. So in order to prove gij(x, t) ≡ ḡij(x, t), we only need
to show F ≡ F̄ . Let

V α(y, t) = gβγ(Γ̃α
βγ − Γα

βγ) = −(△F ◦ F−1)α

V̄ α(y, t) = ḡβγ(Γ̃α
βγ − Γ̄α

βγ) = −(△̄F̄ ◦ F̄−1)α

be two one-parameter families of vector fields on Nn, where gαβ(y, t) =

((F−1)
∗
g)αβ(y, t) and ḡαβ(y, t) = ((F̄−1)

∗
ḡ)αβ(y, t). By Proposition 3.3,

we have gαβ(y, t) = ḡαβ(y, t); thus the vector fields V ≡ V̄ on the target
Nn. Therefore, F and F̄ satisfy the same ODE equation with the same
initial value:

∂

∂t
F = V ◦ F,

F (·, 0) = identity,

and

∂

∂t
F̄ = V ◦ F̄ ,

F̄ (·, 0) = identity.

By the same calculation as in the proof of Proposition 3.2, we have

∂

∂t
dNn(F (x, t), F̄ (x, t)) 6 sup

y∈Nn

|∇̃V |(y, t)dNn(F (x, t), F̃ (x, t))

6
C√
t
dNn(F (x, t), F̃ (x, t)).

This gives

dNn(F (x, t), F̄ (x, t)) 6 eC
√

T dNn(F (x, 0), F̄ (x, 0)) = 0,

which concludes that

F (x, t) ≡ ¯F (x, t).

Thus g(x, t) = ḡ(x, t), for all (x, t) ∈ Mn × [0, T5] and for some T5 >

0. Clearly, we can extend the interval [0, T5] to the whole [0, T ] by
continuity method.

Therefore we complete the proof of the Theorem 1.1. q.e.d.



UNIQUENESS OF THE RICCI FLOW 153

Finally, Corollary 1.2 is a direct consequence of Theorem 1.1. In-
deed, since G is the isometry group of gij(x, 0), then for any σ ∈ G,
σ∗g(·, t) is still a solution to the Ricci flow with bounded curvature and
σ∗g(·, t) |t=0= σ∗g(·, 0) = g(·, 0). By applying Theorem 1.1, we have
σ∗g(·, t) = g(·, t), ∀t ∈ [0, T ]. So the corollary follows. q.e.d.
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