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UNIQUENESS OF THE RICCI FLOW ON COMPLETE
NONCOMPACT MANIFOLDS

BING-LoONG CHEN & XI-PING ZHU

Abstract

The Ricci flow is an evolution system on metrics. For a given
metric as initial data, its local existence and uniqueness on com-
pact manifolds were first established by Hamilton [9]. Later on,
De Turck [5] gave a simplified proof. In the later part of 80’s, Shi
[21] generalized the local existence result to complete noncompact
manifolds. However, the uniqueness of the solutions to the Ricci
flow on complete noncompact manifolds is still an open question.
In this paper, we give an affirmative answer for the uniqueness
question. More precisely, we prove that the solution of the Ricci
flow with bounded curvature on a complete noncompact manifold
is unique.

1. Introduction

Let (M™, gi;) be a complete Riemannian (compact or noncompact)
manifold. The Ricci flow

(1.1) %gij(x,t) = —2R;;(z,1), for x € M™ and t > 0,

with g;;(z,0) = g;j(x), is a weakly parabolic system on metrics. This
evolution system was introduced by Hamilton in [9]. Now it has proved
to be powerful in the research of differential geometry and lower di-
mensional topology (see for example Hamilton’s works [9], [10], [11],
[14] and the recent works of Perelman [17], [18]). The first matter for
the Ricci flow (1.1) is the short time existence and uniqueness of the
solutions. When the manifold M™ is compact, Hamilton proved in [9]
that the Ricci flow (1.1) has a unique solution for a short time. So the
problem has been well-settled on compact manifolds. In [5], De Turck
introduced an elegant trick to give a simplified proof. Later on, Shi
[21] extended the short time existence result to noncompact manifolds.
More precisely, Shi [21] proved that if (M",g;;) is complete noncom-
pact with bounded curvature, then the Ricci flow (1.1) has a solution
with bounded curvature on a short time interval. In this paper, we
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will deal with the uniqueness of the Ricci flow on complete noncompact
manifolds.

The uniqueness of the Ricci flow has been used in the theory of the
Ricci flow with surgery (see for example [17], [18], [1] and [3]). When we
consider the Ricci flow on a compact manifold, the Ricci flow will gen-
erally develop singularities in finite time. In the theory of the Ricci flow
with surgery, one eliminates the singularities by Hamilton’s geometric
surgeries (cut off the high curvature part and glue back a standard cap,
then run the Ricci flow again). An important question in this theory is
to control the geometry of the glued cap after surgery. The uniqueness
theorem of the Ricci flow insures that the solution on glued cap is suffi-
ciently close to a (complete noncompact) standard solution, which is the
evolution of capped round cylinder. Then we can apply the curvature
estimate [18], [3] and the canonical neighborhood decomposition [3],
[1] of the standard solutions to get the desired control. So even if we
consider the Ricci flow on compact manifolds, we still have to encounter
the problem of uniqueness on noncompact manifolds.

It is well-known that the uniqueness of the solution of a parabolic
system on a complete noncompact manifold does not always hold if one
does not impose any growth condition of the solutions. For example,
even the simplest linear heat equation on R with zero as initial data has
a nontrivial solution which might grow faster than el for any a >0
whenever ¢ > 0. This says, for the standard linear heat equation, the
most growth rate for the uniqueness is e?lel® Note that in a Kéihler
manifold, the Ricci curvature is given by

2

i " rga
Thus the reasonable growth rate that we can expect for the uniqueness
of the Ricci flow is the solution with bounded curvature.

In this paper, we will prove the following uniqueness theorem of the
Ricci flow.

R log det(gy7)-

Theorem 1.1. Let (M", g;j(x)) be a complete noncompact Riemann-
ian manifold of dimension n with bounded curvature. Let g;;(x,t) and
Gij(x,t) be two solutions to the Ricci flow on M™ x [0,T] with the same
gij(x) as initial data and with bounded curvatures. Then g;j(x,t) =
Gij(x,t) for all (x,t) € M™ x [0,T].

Since the Ricci flow is not a strictly parabolic system, our argument
will apply the De Turck trick. This is to consider the composition of the
Ricci flow with a family of diffeomorphisms generated by the harmonic
map flow. By pulling back the Ricci flow by this family of diffeomor-
phisms, the evolution equations become strictly parabolic. In order to
use the uniqueness theorem of a strict parabolic system on a noncom-
pact manifold, we have to overcome two difficulties. The first one is



UNIQUENESS OF THE RICCI FLOW 121

to establish a short time existence for the harmonic map flow between
noncompact manifolds. The second one is to get a priori estimates for
the harmonic map flow so that after pulling backs, the solutions to the
strictly parabolic system still satisfy suitable growth conditions. To the
best of our knowledge, one can only get short time existence of har-
monic map flow by imposing negative curvature or convex condition on
the target manifolds (see for example, [7] and [6]) or by simply assum-
ing the image of initial data lying in a compact domain on the target
manifold (see for example [16]).

There are two main contributions in this paper. The first one is that
we observe that the condition of injectivity radius bounded from below
by a positive constant ensures certain uniform (local) convexity and this
is sufficient to give the short time existence and the a priori estimates for
the harmonic map flow. But there are examples of complete Riemannian
manifolds of bounded curvature whose injectivity radius decays to zero
at infinity. Fortunately, from [4] or [2], we know that the injectivity
radius of manifolds of bounded curvature decays at worst exponentially.
The second contribution of this paper is to handle the case of injectivity
radius decaying to zero at infinity. Our idea is to study the evolution
equations coming from the composition of the Ricci flow and harmonic
map flow, as well as a conformal change at infinity by an exponential
factor. This new approach has the advantage of transforming the Ricci
flow equation to a strictly parabolic system on a manifold with uniform
geometry at infinity. This technique may potentially be used in dealing
with the Ricci flow on manifolds with unbounded curvature.

As a direct consequence, we have the following result.

Corollary 1.2. Suppose (M", g;j(x)) is a complete Riemannian man-
ifold, and suppose g;;(x,t) is a solution to the Ricci flow with bounded
curvature on M™ x[0,T] and with g;j(x) as initial data. If G is the isom-
etry group of (M", g;j(x)), then G remains to be an isometric subgroup
of (M™,gij(x,t)) for each t € [0,T].

This paper is organized as follows. In Section 2, we study the har-
monic map flow coupled with the Ricci flow. In Section 3, we study the
Ricci-De Turck flow and prove the uniqueness theorem.

We are grateful to Professor S.-T. Yau for many helpful discussions
and his encouragement. The first author is supported by FANEDD
200216 and NSFC 10401042 and the second author is also partially
supported by NSFC and the IMS of The Chinese University of Hong
Kong.

2. Harmonic map flow coupled with the Ricci flow

Let (M™,g;j(x)) and (N™, hij(y)) be two Riemannian manifolds, f :
M"™ — N™ be a map. The harmonic map flow is the following evolution
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equation for maps from M"™ to N™,

2.1) {%f(q;t):&f(a:,t), forx € M™,t > 0,

7,0 = f(2), for = € M™,
where A is defined by using the metrics g;j(x) and hqopg(y) as follows
Af (@, t) = g7 (@) ViV (2, 1),

and

Pf L Of L. 0% 0f

2.2 oo =2 pr9l 9
(22) ViVif dxidxd U oxk T PV 9t du

Here we use {z°} and {y*} to denote the local coordinates of M™ and
N™ respectively, Ffj and ng the corresponding Christoffel symbols of
Gij and haﬁ'

Let g;j(x,t) be a complete smooth solution of the Ricci flow with
gij(x) as initial data; then the harmonic map flow coupled with Ricci
flow is the following equation:

%f(x,t) = Af(z,t), forxe M™t>0,
f(l',O):f(.%'), for x € M™,

where A\, is defined as above by using the metrics g;;(x,t) and hag(y).
Suppose g;j(x,t) is a solution to the Ricci flow on M™ x [0,T] with
bounded curvature

|Rm|(x,t) < kO

for all (x,t) € M™ x[0,T]. Let (N™, hop) = (M"™, gi;(-,T)) be the target
manifold. The purpose of this section is to prove the following theorem:

Theorem 2.1. There exists 0 < Ty < T, depending only on kg, T
and n such that the harmonic map flow coupled with the Ricci flow

2F = A\F
(23) ot (.I',t) ' t. (x7t)7
F(-,0) = identity,

has a solution on M™ x [0,To] satisfying the following estimates:
(2.4) IVF| < Cy,

VP < Cut= "%, forallk >2,
for some constants Cj, depending only on ko, T, k and n.

The proof will occupy the rest of this section.
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2.1. Expanding base and target metrics at infinity. We will con-
struct appropriate auxiliary functions on M™ and N™ and do conformal
deformations for the base and the target metrics. Firstly, we construct
suitable positive functions on (N", hag). These functions can be ob-
tained by smoothing certain functions by convolution [8] (or by solving
certain differential equations [19]).

Lemma 2.2. Fiz p € N*. Then for any a > 1, there exists a C*
nonnegative function @, on N™ such that

va(y) =0 on B(p,a),
(2.5) d(y,p) < ¢a(y) < Cod(y,p) on N™\B(p,2a),
[VF0a| < Gk on N", fork>1,

where C, k =0,1,2,..., are constants depending only on ko and T'; the
distance d(y,p), the covariant derivatives V¥, and the norms |V¥p,|
are computed by using the metric hag.

Proof. Let £ be a smooth nonnegative increasing function on R such
that £(s) = 0 for s € (=00, 3], and ¢ = 1 for s € [Z,00). For each

y € N™, by averaging the functions & (d(p 4) ) and d(p,y) over a suitable
ball of the tangent space T, N" (see for example [8]), we obtain two
smooth functions &, and p. Notice that (N", hag) = (M", gi;(-,T));
thus all the covariant derivatives of the curvatures of h,g are bounded
by using Shi’s gradient estimates [21]. Then ¢, = C¢&.p, for some
constant C' depending only on ky and T, is the desired function. q.e.d.

Recall from [4] and [2] that on a complete manifold with bounded
curvature, the injectivity radius decays at worst exponentially; more
precisely, there exists a constant C'(n) > 0 depending only on the di-
mension, and there exists a constant § > 0 depending on n, kg and the
injectivity radius at p such that

(2.6) inj (N, hag, y) > o~ CmVhod(wr)
Fix a > 1, let % = 4C(n)v/kop, and set
(2.7) K — ¢ hog.

Clearly, hy 3 = hap on B(p,a). Note that (N, hag) = (M", g;(-,T)),
so the function ¢, is also a function on M™. Let

(2.8) gfj(m,t) = e“oagij(x,t)
be the new family of metrics on M". Instead of (2.3), we will consider
a new harmonic map flow

@, t) = AP 0)
(+,0) = identity,

(2.3)a

’1jQQ3|@
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a a
where A, F is defined by using the metrics gf;(z,t) and hg5(y).
Before we solve (2.3),, we have to discuss the geometry of the new

metrics hg5(y) and g (z,t). Let us first compute the curvature and its

covariant derivatives and injectivity radius of (N, hg 5) as follows.

By a direct computation, we get

(2.9)

Raﬁw&

a e?”
=e¥ Ropys + T{\V@“P(hagh@y — harhgs)
+ (2VaVs9® = Vo "Vso ) hgy + (2VV10" — V"V ) has
— (2V3V50® — VpV50") hay — (2VaV4y® — VooV has}

a
where R,g+5 is the curvature of hgﬁ, Vap® Vo Vsp?® and |V,¢°| are
computed by the metric hog. Therefore, by combining with (2.5), we
have

(2.10) |Rnlpe < e (ko + C(n)(Ca + C2))

< 00.
For higher derivatives, we rewrite (2.9) in a simple form
a a
Ry = " {Rpy + V* 5 Vo x h* x h™" + V2" % h}

where we use AxB to express some linear combinations of tensors formed
by contractions of tensor product of A and B. Note that

o a 1 asa asa a a
P,@’Y — I‘/B'Y = 5[Vﬁ§0 (5,}, + V’YSO (5[3 — h nhﬁyvn@ ]
= (Vi * hx* hil)gv,

so by induction, we have
a q a a a a a
(2.11)  V*R,, =VV* IR, + (' -T)« V"R,

k
:e(pa{zlem* Z vll(’pa**vzp()@a
=0 it iy =k—1

i1 tip=h+2
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where we denote V%p® = 1. By combining with (2.5) and gradient
estimate of Shi [21], we get

(2.12)

a 4 ) k
|ka7n|h‘1 < e—%w“c(n’ ko, k, C1, . .. 7Ok+2) <Z |lem| + 1>
=0
C(n ko, T, k)e™ 5 ¢

<
< C(TL, k‘o,T, k‘)

For the injectivity radius of h{ 5, we know from (2.5) and (2.7) that
for any y € N"\B(p, 2a + 1),

a

B(y,1)> B (y, €—2é(n)¢%<%+cl))

and
(2.13)
Vol (Bly, 1) = [, (e100VFie
B(y,1)

> 2nCn)Vho(va=Ci)yr] W(B(y, e—2é(n)«/5(¢a+01)))

a
where we denote by B(y, 1) the ball centered at y and of radius 1 with

a

respect to metric h 5, and Vol pa(B(y, 1)) its volume.
Since

va(y) = d(y,p),
for y € N™\B(p,2a + 1), there holds

(2.14) e~2C(VFo(patCh) ¢ 5o=C(n)vFod(y.p)

for y € N"\B(p,2a+ 1+ |élc(’§)‘5\;;_0|). By (2.6), (2.10), (2.13), (2.14) and

volume comparison theorem, we have

a

Vol pa(B(y,1)) = c(n, ko)e%é(n)\/%(«pfcl)(6725'(n)\/%(soa+01))n

>
2 c(n, ko).

By combining this with the local injectivity radius estimate in [4] or [2],
we get,

inj (N™, h%,y) > C(n, ko) > 0,

n ~log 51 )
foryEN\B(p,2a—|—1+ ONTIIE
Consequently, we have proved the following lemma:

Lemma 2.3. There exists a sequence of constants Cy, C1, ..., with
the following property. For all a > 1, there exists i, > 0, such that the
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metrics hgﬁ = e¥” hag on N™ satisfy

(2.15) |VER,, | e

fork=0,1,....

We next estimate the curvature and its covariant derivatives of g (z,t)

= e gij(z,1).
By the Ricci flow equation, we have

(2.16) Féj(-,T) — Féj(-,t) = /tT(g_1 * VRic)(-, s)ds,

Vo)L T) =T(-1))

T K .
:/t ZVHHRiC Y V(@ s) ~T(,T))
— i1 tip+1=l
ek U (D, 8) =T T)) b g B( s)ds.
By combining with the gradient estimates of Shi [21] and induction on
k, we have

(2.17)
’F(a T) - F(a t)‘ < C(nv k0> T) ftT ﬁdsa
|vg( T) (F(‘vT) - F(‘vt)” < C(”? k07T)(1 +llogt‘)7
-1
V5 oy (PG T) = T 0)| < Cln ko TR T, for k> 2.
Since
k—1
k a k—1 a i
vg(.,t)SO = Z Vg(.’T)‘P * Z Vgl(_’T)(F(-,t) - I'(,T))
1=0 1414 ip+1=l

V(T8 — T T))
for k > 1, the combination with (2.17) and (2.5) gives

|v ¢a| + |vz .7t)90a| < C(?’L, kO,T)a
(2.18) \V2t\\ C(n, ko, T)(1 + |ogt]),

‘vk 7t ‘ < (n7 k07T7 k)t_%, for k > 4

Then by combining (2.11) and (2.18), the curvature and the covariant
derivatives of ¢g(-,t) can be estimated as follows

aka

IV Rpnlge(.p) < Cln, ko, T, k)e™ Qwaf%, for k>0

Summing up, the above estimates give the following
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Lemma 2.4. There exists a sequence of constants ko, ki, ..., with
the following property. For all a > 1, the metrics gi;(-,t) = e gii (- 1)
on M™ satisfy

a 4 _ "
(2.19) V! Ronl gy < ™ 29473, for 120,
on M"™ x [0,T7].

We remark that the fact that the curvatures of k{5 and g (-, ¢) are
uniformly bounded (independent of a) is essential in our argument, while
the injectivity radius bound ¢, may depend on a.

For the new family of metrics gf;(-,¢), we have the following lemma.

Lemma 2.5.

9 a p® = a2 a S a4, w..a a ay—1
5% = ¢ (—2Rij + (V ¢ + V"« Vo) x g% (9)),
aak . a a o a

il =€ (9)~" * VRic 4 e (§) 72 % g * Ric * V?

a a3

a2 a
+e?7(9) P x (9)?  |(VR)2+V "V +V o7,

a q a2
£ a a a
(220) €2 |VS0 |ga(-,t) + e@ |vga(-,t)¢ ’ga(-,t) < C(na kOaT)7
a3
30 a
e2? |Vga(,7t)§0 |ga(.7t) < C(n, k‘o,T)(l + |logt]),

kg ak 1
€2 Va9 lgaey < C(n, ko, Ty k) ==, for k>4

t 2

Proof. Note that
a
I -T=gxg %V
a a
V2t = V2" + (T —T) * Vi

VkSOG — Z gk‘—l % (g—l)k—l " Vilgoa $oee ok vipgpa
i1+Fip=Fk
where the summation is taken over all indices i; > 0. By combining this
a

with (2.18), we get the desired estimates for [V*ja(. ;)¢ ga(.1)- On the
other hand, since

a

a
Rij = Ri; + (V2% + Vi « V) % g% g1,
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it follows that
ViRji = ViRj + g * (ga)f1 * <Ric * Vo + V3<,0a)
+(g%)% * (9") %+ <V2s0“ * Vo' + (V¢“)3> :

By combining this with

ak
ar aFk

0 a
il = plu T 59 g x V)
" (ViRji + VR — ViRij) + g % g2 * Ric* Vo,

we have proved the lemma. q.e.d.

2.2. Modified harmonic map flow. The purpose of this subsection is
to solve the equation (2.3),. More precisely, we will prove the following
theorem:

Theorem 2.6. There exists 0 < Ty < T, depending only on kg, T
and n such that for all a > 1 the modified harmonic map flow coupled
with the Ricci flow

) F(2,t) = D F(x, 1)

(2.3)a
(+,0) = identity

’11@@|Q3

has a solution on M™ x [0,T1] satisfying the following estimates

(2.21) IVE| < C(n, ko, T),
aka

|V F| <C(n, ko, T,k)t” 2, forall k>2,

for some constants C'(n, ko, T, k) depending only on n, ko, T, and k but
independent of a.

a
Note that F' is viewed as a map from (M", gi(z,t)) to (N", kg 5(y)),
all the covariant derivatives and the norms in Theorem 2.6 are computed
with respect to gfi(x,t) and kg 5(y). We begin with an easier short time
existence of (2.3), where the short time interval may depend on a.

2.2.1. Short time existence of the modified harmonic map
flows. We consider (2.3), with general initial data.

Theorem 2.7. Let f be a smooth map from M™ to N™ with

Eq = sup |Vf\g(0 , () + sup \Vf|g” (-0),he , (¥) < 00
xE M'n GM?L
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Then there exists a dg > 0 such that the initial problem

%}a?(x>t) = &t%‘('rvt)a
F(z,0) = f(=z),

has a smooth solution on M™ x [0, o] satisfying the following estimates

(2.3).

a a
(2.22) sup |VF|ga(0ype (z,t)
() €M™ x[0,80] 96501 h5

a a
+ sup |V2F]g%(.70)7hgﬁ(x,t) < C(n, ko, T, a, Ey),
(,8) €M™ x[0,60]
4 a C(n, ko, T,k,a
sup  (VEPlg (o (2 t) < SRR
(z,t)eM™ x[0,50] i 2

for k> 3.

We will prove the theorem by solving the corresponding initial-bound-
ary value problem on a sequence of exhausted bounded domains D C
D, C -+ with smooth boundaries and Dj 2 By, . 0)(P,j +1):

%Fj(x t) =24, 9(:(:,15), for x € Dj and t > 0,
(2.23) Fi(z,0) = f(z) for z € Dj,
Fi(z,t) = f(x) for x € 0Dy,

a a.
and F' will be obtained as the limit of a convergent subsequence of FY
as j — oo. Here P is a fixed point on M"™ and Bga(. 0)(P,j + 1) is the
geodesic ball centered at P of radius j + 1 with respect to the metric
gij ('a 0)

a
The following lemma gives the zero-order estimate of F7.

Lemma 2.8. There exist positive constants 0 < Ty < T and C > 0
a

such that for any j, if (2.23) has a smooth solution F7 on D; x [0, T3]
with T3 < T, then we have

(2'24) d(N”,h“)(f(x)’ Fj(l‘,t)) < Cﬂ,
for any (x,t) € Dj x [0, T3].

a
Proof. For simplicity, we drop the superscripts a and j of FV. Note
that the distance function d(yn pa)(y1,y2) can be regarded as a func-

tion on N™ x N™. Set 9(y1,y2) = %d%Nnﬁa)(ylva) and p(z,t) =
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¢(f(x), F(z,t)). Then (z,t) is smooth when 1 < 2i2. Now we com-
pute the equation of p(z,t):

0 a
2.25 — —A
ez (5-4)

adh « a\ij
= —dpa(f(2), F(x, ))WA tf* — Hess (¥) (X3, X;)(9%)
where the vector fields X;, i = 1,2,...,n, in local coordinates (y{, yg)
on N" x N" are defined as follows
af* o OFB 9

X; = . . .
f0xt OyY * Ozt ayg

To handle the first term on the right hand side of (2.25), we use
C;C U;g _ 1k k -1 a
Ui, t) = T(2,0) = Ty (2, 1) — T55(2,0) + g(t) x g~ (1) x Ve
+ g(a 0) * g_l(" O) * vsoaa
to conclude that
|Atf|ga(-,t),ha < C(na k()?T)EO'

Recall from Lemma 2.3 that the curvature of the metric h‘éﬁ is bounded
by Co. We claim that if dpa(f(z), F(z,t)) < min{%, ﬁ}’ then

. 1 aa
(2.26) Hess (1) (X, X;)(9")Y 2 5|V F[ga o — C

where C' = C(Ey, Cy) depends only on Ey and Cj.
Indeed, recall the computation of Hess (1) in [20]. For any (u,v) €
D = {(u,v) : (u,v) € N* x N",u # v,dnn(u,v) < min{%

~Yuv be the minimal geodesic from u to v and e; € T, N™ be the tangent
vector to 7y, at u. Then ej(u,v) defines a smooth vector field on D.
Let {e;} be an orthonormal basis for T;, N which defines u smoothly.
By parallel translation of {e;} along ~,,, we define {€;} an orthonormal
basis for T, N"™. Thus {ey,...ep,€1,...€,} is a local frame on D. Then
for any X = X; + Xs € T(u,U)Da where

n n
1= &ei, and Xo = né;,
i=1

i=1
by the formula (16) in [20], we have
Hess (1 )= (& / t(Ve,V, Ve, V) + / t(Ve,V, Ve, V)
i=1 0 0

_/%m@wwngfMMwVMm>
0 0
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where V' is a Jacobi field on geodesic o (connecting (v, v) to (u,v)) and &
(connecting (u,u) to (u,v)) with X as the boundary values, where X is
extended to be a local vector field by letting its coefficients with respect
to {e1,...€n,€1,...6,} be constant(see [20]). By the Jacobi equation,
|V|, 7|V, V| and 7|V, V| are bounded by C(is, Co)|X|. Thus we have

[Hess (1) |pe < C(da, Co)

under the assumption of the claim. So the mixed term — aa 5 feF 4 5 (g ayij

in Hess (1) (X4, X;)(9%)% can be bounded by C(Ey, C[))EO|VF|ga7ha. On
the other hand, the Hessian comparison theorem for the points which
are not in the cut locus gives

oY g e 0P T .
I 7 >0
ay2aay25 PaﬁoF)a 'Y =49 a3

A a aw

Y120y ~ Ty f)a 7 4 s
Thus the claim follows.
Let

Ty =max < t < T :supdpe(f(z), F(x,t)) < min< i, T .
D 4/ Co

If F(ac t) is a smooth solution of (2.23) on D x [0, T3] with T3 < T4, by
(2.25) and (2.26), we get

0 1 aa
(227) (E — At) P S _i‘vF‘ga’ha + C\/ﬁ—" C

on D x [0, T3], for some constant C' depending on Ej, i, and Cp. Note
that the initial and boundary values of p are zero, so by the maximum
principle, we get
a
dpa(f (@), F(z,1)) < CV.
This implies

2
min ¢ iq, ——=
) . as 4/Co
T5 > min , T3

Hence the lemma holds with

2
min{ia, ”}
44/C
T i SR

= min
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After we have the zero order estimate (2.24), we now apply the stan-
dard parabolic equation theory to get the following short time existence
for (2.23).

Lemma 2.9. There exists a positive constant Ty < Ty depending

only on the dimension n,a, Ty and C in Lemma 2.8 such that for each
a

J, the initial-boundary value problem (2.23) has a smooth solution Fi
on Dj x [0, T3].

Proof. For an arbitrarily fixed point zg in Dj, choose normal coordi-
nates {x'} and {y®} on (M™, g%(-,0)) and (N, h®) around z¢ and f(z0)
respectively. The equation (2.23) can be written as

aya B 62ya ak &ya
2.28) 2 (z,) = (¢7)¥ Yk )Y
228) 200 = (") 0] ot - Thie.0 55

gz 1 n 8yﬁ 83/7
+ Fﬁ'y(y (ZL‘,t), el (J?,t)) ot 9z [°
a
Note that I'g. (f(z0)) = 0. By applying (2.24) and a result of Hamilton
(Corollary (4.12) in [12]), we know that the coefficients of the quadratic
terms of the gradients on the RHS of (2.28) can be as small as we like
provided T3 > 0 sufficiently small (independent of 2y and j).

Now for fixed j, we consider the corresponding parabolic system of
a

the difference of the map F7 and f(z). Clearly the coefficients of the
quadratic terms of the gradients are also very small. Thus, whenever
(2.23) has a solution on a time interval [0, T3] with T3 < T3, we can
argue exactly as in the proof of Theorem 6.1 in Chapter VII of the book

a @ _
[15] to bound the norm of VF7 over D; x [0, T3] by a constant depending

only on the L* bound of Z% in (2.23), the map f(z), the domain Dj,

and the metrics gf;(+,t) and h 4 over the domain Dj1. Hence by the

same argument as in the proof of Theorem 7.1 in Chapter VII of the

book [15], we deduce that the initial-boundary value problem (2.23) has
a

a smooth solution F7 on D; x [0, T3). q.e.d.

a
Unfortunately, the gradient estimates of F7 in the proof of the above

lemma depend also on the domain D;. In order to get a convergent
a a

subsequence of F7, we have to estimate the covariant derivatives of FJ
uniformly in each compact subset. Before we proceed, we need some
preliminary estimates and notations. Note that for any ¢, we can equip

a
the bundle (T*M)®?®@ F TN the metric and connection induced from
a a -1
(M, g) and (N, h). In fact, for any section u € (T*M)®P1@F TN, we
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a a—1
define the covariant derivative Vu of u as a section of (T*M)®P@F TN
by the formula

a out ; al

o . 21,225--5tp—1 o
(vu)i17127---7ip—1,ip - driv Fipyijuil77:27~--’l'j71l77;j+17~--aip—1
aB
a® OF
+Fﬁvaxzp 11,02,..,Tp—1"
al a®

where I';; and I'g, are connection coefficients of (M g) and (N h) re-

spectively. We can define the Laplacian of u by Au = g (V w).. ij-
Recall the Ricci identity

aB  av
a2 a2 a akl a oF OF aad
(V u)a,i,j - (v u).c.t.,j,i = _Rijimlu-~~k~~-g + RB’yE(W%h UC

aa a a® a o

Note that the derivative VF' (V,F = %7) is a section of the bundle
a—1

aba
T*M ® F TN, the higher derivative v F is a section of (T*M)®P @
"
F TN Since the bundle (T*M)®P ® F TN changes with the time,

we define a covariant time derivative D; as follows. For any section
-1

a
u® . of (T*M)®? @ F TN, we define

11...,0p
o
a®™
o' _ ’Y
Dt“h---ﬂ’p_ ot n -ip +Fﬁ”/ ot Uiy oip
aA
Lemma 2.10. The covariant derivatives of FV satisfy the following
equations

(229)  DVF = ANFI 4 Rie(M™) « VFI 4 Ry % (VFI)?,
a a k-1 ¢
DthFJ A V’“FJ +) v [(RM 4 Ry # (VFJ)
=0

0 @ a o a a
+ e Ry + V3e? > * Vk_lF]],

a a a
where V(A * B) represents the linear combinations of V' Ax B, V=1 A x
a a a a a a
VB, ..., AxV'B, and V?e¥" = " (V2p® + Vi x Vo).
Proof. For k =1, by direct computation and Ricci formula, we have

a

a a alaa aQ aaaa5aa Kl
DyViF® = \ViF* — RIVF® + Rys Vi FPV FOV F (g%)
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For k > 2, by Ricci formula, it follows

a a
VAVk i AV"’F" + V(R + Ry * (VFJ) )« VFTLRY).,
Recall from (2.20) that

a a a a @ a
(%r]k — V(e Ry + V2e9™).

Then we have
Dtva’“l;lj _ ﬁtvakﬁj
- %[(Dt - Aat)vgilf?j] + %(GWRLEW + VaQS‘Pa) * nglFaj
+ RaN * %Fa] * Vaz}?j * V]?_lFaj
+ %[(Riw + RN * (VFJ) ) * V’g—lﬁj]
%[(Dt ﬁ)v’?*lpi]
3 {(Ri‘” + Ry * (VFJ) (QWER(;M + Va?e“pa) * V’g_llgj}
k=1 4

Z V![(Rar + Ry % (VF)? + 9" Ry + V2e#") 5 VLR,
=

This proves the lemma.

For each £ > 0, let & be a smooth non-increasing function from
(—00,400) to [0,1] so that &(s) = 1 for s € (—o0,3 + #], and
&(s) = 0 for s € [3+ 2%), moreover for any € > 0 there exists a

universal Cy > 0 such that

1€1(5)] + |€1(3)] < Crebi(s)

Lemma 2.11. There exists a positive constant Ty, 0 < Ty < T3
independent of j such that for any geodesic ball Bgya(.)(z0,9) C Dy,
there is a constant C = C(a, 8, Eq, Co, ko) such that the smooth solution

of (2.23) satisfies
a @,
|VF]|ga(.7t)’ha < C

on Bya.op (@0, %) x [0, 4.
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Proof. We compute the equation of ]VF |2a () e For simplicity, we
drop the superscript j. By (2.20), we have

(2.30)
(5 - 8) ¥FRco,
— (Ric (M™) x VF + R“N & (V) VE) go o — zyva??yga(,,t),ha
+ e?"(Ric (aM") + Vanpa + %cpa * %gp“) «VE*VFE
2\V2F|2 ) ha -+ C (1, ko, )|VF| yha +C(n )C’0|VF|

g% (-5t),h

Setting

pal,t) = (&3 (f(2), Fl,6) + A)VEPa( o pe

where A is determined later, and combining with (2.27) and (2.24), we
have

< Apa- Q\VQF\ga pa (i (f (@), F(2,)) + A) = [VF|ga o

atﬂA
+ C(n)ColdZa(f(x), F(2,1)) + A)|V |4 pa
+ CIVEF e o + Cn, ko, T)pa
+ 2|V (f (@), F (@, 1))]ge VIV E () pelge-
Since

Vo (f (), F(2,1))|ge < 2dpa(f (@), F(2,))([VF|gope + [V flgapa)
< CVE+ CVAV Flga e,

aza a a
\V!VF!g a( )y helge < 2[V7F gapa |V F|ga pa,

by choosing Ty =min{T3, 4C(n)1(7002 1 A= 40(;)60 , and applying Cauchy-
Schwartz inequality, we have
9 _
(& - A) —C(n)Cop% + C

where C' = C(n, ko, T, Eoy, a).
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dga(.,())(xo,-))
0

We compute the equation of u = &( pa at the smooth

points of function dya(. oy (o, ),

0 a _ .
(& - ﬁ) u < C& — C(n)Copi&s — 2(9")7Vi&1Vpa

Adge.. 0y (o, /
4 _gi g (70)( 0 )_i_enkoT@

o 52

By the Hessian comparison theorem and the fact that —&{ > 0, we have

a

a a a a a
ViVijdga(. 0y < ViVidga( o) + (L(-,0) = T(-,)) % Vdga(. o)
1+ kodga(.
< [ 0500 | o g%(-,0),
dga('vo)

a C é"
_giAdg“(~,0) < %

These two inequalities hold on the whole manifold in the sense of support

functions. Thus for any z; € M"™, there is a function h,, which is

smooth on a neighborhood of x1 with hy, (-) > dge(.0y(20, "), hay (1) =

dge(.0y(z0,71) and

a cle
—& Ahgy |y < 2 fl’.

Indeed, h;, can be chosen to have the form dga(.0)(q; ) + dga(.0)(q; o)

for some ¢, so we may require ‘%hxl‘ga(.p) < 1. Let (z1,tp) be the
maximum point of u over M™ x [0,Ty]. If tg = 0, then &pa < Ey.
Assume ¢y > 0. At the point (z1,t9), we have %(§1pA)(x1,t0) >0. If
x1 does not lie on the cut locus of xg, then

&
&

_ C
< —C(n)Copiér + 5—2\/571,% +C&

- 1
0 < ~ClCoris + g5 (790 20+ 160D) pa -+

_ C
< —C(n)Copiés + 50

- C
< —C(n)Co(pa&r)* + 51
We get

C
C(n)C_0(54

for all (z,t) € Bga(.0)(w0,0) % [0,T4]. If 21 lies on the cut locus of
xg, then by applying the standard support function technique (see for

§1pa < max {Em



UNIQUENESS OF THE RICCI FLOW 137

example [19]), the above maximum principle argument still works. So
by the definition of & and p4, we have

a @, C
’VF”ga(-,t),ha < 5

on Bga(. o) (zo, 2 T 9) % [0, Ty]. The proof of the lemma is completed. q.e.d.

The next lemma estimates the higher derivatives in terms of the

bound of [VF7|ga(. 4 pa

a
Lemma 2.12. Let F' be a smooth solution of equation

o a a
— —A|F=
Gi-%)
on Bga(.0)(70,5) X [0, 7], with T <T. Suppose

a a
(2.31) sup IVElga (.0),na,(@,t) < B,
(xrt)eBga(~,O)(1‘07%)X[07T]

a_a
2
and sup Y F\g;,zj(.’g),hgﬁ(:v,O) <FE
z€Bga. 0)(z0, %)

Then for any k> 2, there exists a positive constant C = C(k, E, 6, ko, T)
> 0 such that

(2.32) |v Fyg e <Ct™ 2
on B a(. 0)<$0, 2) [0 T]

Proof. The proof is using the Bernstein trick. We assume § < 1
without loss of generality. For k = 2, from (2.15), (2.19), (2.20) and
(2.29), we have

(2.33)

0 a a_ q
<a - At) IV2F 2o 0y o

=

MH

V(Rar + By #(VFI)? 4 ¢ Ry + V2e?" )« V2 LF), v2%> )
gll a

N
Il
o

3 2 ©® n a2 a S 4. a a2a 2
— 2|V F] A)he T € (Rlc(M) Vgo + Vo x Vo) « (VF)

2380 Sy
—2|V F‘ ),he +C|V F|g a(t)he T 5 |V F|ga(~,t),h“

Vit
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In this lemma, we use C' to denote various constants depending only on
E, ko, T, k and d. Note that by (2.30) and (2.33), we have

0
(55— B) PR e < 209 F e €.
C

0 a a_ q A a
<— - At) |v2F’ga(,7t)7ha < C‘V2F‘ga(,7t)7ha + %

So by setting

v =|V2F a1y —20\/+2C\/_+|VF|2 J e

we have

o ¢ 9 %0 Ja
(5 - At) v < 2|V F oy pe + CIV Fga( ) pe +C
< —vi4C.
Since at t = 0,
v < QCﬁ—F Ey + E%

on Bya. o)(zo, 345), we apply the maximum principle as in Lemma 2.11

to get
d a(. 5"
) (—g (,035(550 )> v< C

on Bga(.0)(Zo, 30) x [0, T]. This implies

|v2F|ga(,7t)7ha S C

on Bga(. o) (7o, 3+ 2%)5) x [0,T].
Now we estimate the third-order derivatives. From Shi’s gradient

estimate [21], the estimate |v2%|ga(,’t)7ha < (C, and (2.15), (2.19), (2.20)
and (2.29), we have:

(2.34)

8 3

2 a a a aa .. a a ¢ a A a
= <Z V![(Rar + Ry #(VF)? + ¢" Ry + V2" )+ V3L F], V3F> .
=0 g%,
2|V4Fy2 ) he + €7 (Ric (M") + v%“ F Ve # Vt) # (V)2
2|V4F’2 ha + C|V F‘|2 t) ha + — |V3F|ga(.’t)7ha
on Bya. (o, (3+2£)8) x [0, T]. Here we used the estimates [V4e#"|ge <
%, |V36‘Pa]ga < C(1+|logt]), and |[V2R,,| < %
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By (2.33), it follows

g a 9y a C
(2.35) <§ - At) |V2F|§a(yt)7 2|V F|g a(t)he T2 NG

on Bya(. o) (w0, (5+5)8) x[0,T]. Letv—(]VQF\2 ha+A)]V F\2 () 34"

where A = 100 sup \V F|g )h (x,t)+ C. By a di-
Bya(.,0)(20,(3+35)8)x[0,T]
rect computation, it follows

B
= A
(o )
< VP2 CovEER, o+ C (|v2Fy2 + A)
< go(-).h gr(-nhe T 7 ).he
(29 F Ry + O Pl + SV Flpce
+ 8|V2F|ga(-,t),h“|V3F|§a(~,t),ha|V4F|ga(~,t),ha'
Since
8V F lga(.),ne [V F 20y a [V Flga(. ) e
_‘V3F|4 t)ha+16\V F\Q t)ha!VQF\ ) hes

we deduce

0
<§ —A> v < —|V F|g a(tyhe T ’V F|g h“+7‘V3F|2 (-t),h®

and
9
(a - &)
T e+ OV Flye e + CVAITP PR
1
< _f{t2|V3F|3a(.7t),ha - C\/E(\/E|V3F|g“(wt)ﬂh“)

- tU - C\/%(t|v3F’§a(7t)7ha)}

1( (tv)?
< —={ - - .
St {10502 C}
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So at the maximum point of fg(w)(tv), applying the maximum
principle as in Lemma 2.11, we have

o<1 {8 el ro (Bl i) w

1
t
% {63(“}) — Oty — Ct gg(tv)}
1
t

= 105C?
53(“’)2 4
S- { w050z~ ¢ [

which gives
&3(tv) < V108CS.

Thus by the definition of v and &3, we get

yv?'F\g Jha < Ct 2

on By(zo, (3 + 51)0) x [0,T].

Now we estimate the higher derivatives by induction. Suppose we
have proved that

a

I3 L2
’V F’ga(,’t)’ha, Sct 2 B forl:?),...,k*].,

on By (o, (5 + 2i,c)é) x [0,T]. By (2.29), we have

k=1 4
= (3" V! ((Bur + By +(VE)? + ¢ Ray V2 Vi) ka> "
l O g k)
CoVRHLER, ke (Rie (MP) + VR 4 Vit s Tp0) # (THE)?

2|V’“+1F\2 ) ha C|V’“F\2
k 1 a a a a
v! [RM + Ry * (VF)?

=1

. a a o a g a q
+ e Ry + V2e¥ ” I G AP\ P
g%,he
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By the induction hypothesis, the local derivative estimates of Shi, and
(2.15), (2.19) and (2.20), it follows

k=1 4 C
SV Rl ge \v Ul go(ayne < ot
=1 t 2

N

-1

T

m‘\

IVIRN # (VF)?]]ge| VF ) ya gy o < + C|VFF|ga(.t) pa

1

l
P
Z|v+ ?"ga| V¥ F | ja(. 1) pa

=1
-1 4
|Vie#” RM| \v lF|g #).ha
1

N
Q

e
|
™)

~
M‘

w
Q

N
T

~
v ‘

l

This gives

0 a Ok & Bl f
(E - At) [VEF 2oy e < =20V pa

+C’|V’“F\2 phe + 5o 1|v’€F\g o,

t 2

0 a ¢ a ¢ a C
(E - At) V2 Flgo e < CIV Flgagy e +
t 2

C

o a a_ a
(& — At> V20 e < 2|VkF\2

Let ¢ = 2(::23) —1,then 0 <e <1 for k > 4. It is clear that

- C
(57— &) IV FUSE o < CITHFISE o+ 94 Fl

and

9 E 1+ k-1 %2
(8t ) < v F’ a( t ,ha + ‘v F|ga(~,t),h“
<

k 1+
2\V Fy yhe T CIV Fg C.t)ho

a g
_ k=3 k o1+ k—1 2
vt (V F’g (Et pa TV F‘g“(nt),ha) .
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Then we have

a a
(a‘@”

Vo ke kel C ort ¢
< (kf - 3); +t 3 <—]V F|3a(.,t),ha + t% ’V F|ZG(.,t),h‘l + )

th=3
1 e
< —;{w% — CVtvT= — Cv — C\/E}
1 2 c
R 14+e —
S gt }

on Bga(. o) (o, (% + 2%)5) x [0,T]. Similarly, at the maximum point of

dgaq. 5
fk(gga( ’%on ))v, we have

O<_i{§vlis_c§}+c w+|€// v
Y k k & k

1 2 1te

S —gp&wtE =0 v C}
1 (1 2

<——1Z s —

STy {25’“”1+ C}
1 (1 2

< —— — e —

X o {2(£kv)1+ C}v

since %rs > 1. So we proved the k-th order estimate

aka =
|V F’ga(,7t)7ha S Ct 2

on Bya(.oy(wo, (5 + #)5) x [0,T]. This completes the proof of the
lemma. q.e.d.

Now we are ready to prove Theorem 2.7.

Proof of Theorem 2.7. B
Since Dj 2 Bga(.o)(P,j + 1), by choosing 6 = 1 and T = T} in

a
Lemma 2.11 and Lemma 2.12, we get a convergent subsequence of F7
a

(as j — 00) on Bya(. 0y (P, 7) x [0, T4]. Denote the limit by F' (as j — 00).
a
Then F is the desired solution of (2.3)/, with estimates (2.22).

Finally we prove a uniqueness theorem for the solutions of (2.3)/, with
estimates (2.22).

a a
Lemma 2.13. Let F' and F be two solutions of the initial value

problem (2.3)!, on [0,T), T < T, with estimates (2.22). Then F=Fon
0, 7).
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a

PT‘OOf. Set ”¢(Z/17 3/2) = %d%N",h‘l) (yb y2> and p(xa t) = w(F (.%', t)?

F(z,t)). Then ¢(z,t) is smooth when 1 < i2. Now by the same
calculation as in Lemma 2.8, we have:

5 g
<a - m) p = —Hess ()(Xi, X;)(g")”
where the vector fields X;, i = 1,2,...,n, in local coordinates (yf, yg)

on N™ x N™ are defined as follows

oF 9 OFP 9

X, = . R
T 0a oys T 0w gyf

By the estimates (2.22), we know that there is a constant 0 < T/ < T
such that there holds
i2 7
<minq &, —
P mm{ 8 800}
on M™ x [0,T"].

Similarly as in the proof of Lemma 2.8, by using the computation
of Hess (¢)) in [20] (the formula (16) in [20]), for any (u,v) € D =
{(u,v) : (u,v) € N" x N" with 0 < dyn(u,v) < min{%, —"=1}}, and

25/

any X € Ty ) D,

Hess (¢)(X, X) > —/ t(R(e1, V)V, e1) —/ t(R(e1, V)V, e1)
0 0
where V is a Jacobi field on geodesic o (connecting (v,v) to (u,v)) and
o (connecting (u,u) to (u,v)) with X as the boundary values as before.

Since |%F|ga,ha and |%F|ga,ha are bounded, we know from the above
formula that

Hess (1) (X, X;)(9")" > —Cp
on M™ x [0,T']. Thus we have

9 _R C
v <
( o1 t) p 1%
on M™ x L(),T’]. By the maximum principle, it follows that p = 0 on
M™ x [0,T']. Then the lemma follows by continuity method. q.e.d.

2.2.2. Proof of Theorem 2.6 and Theorem 2.1.

Proof of Theorem 2.6. Let us check the initial data. Now f = identity,
S0

(236) ’vf@a(.’o)’ha = gij(‘v 0)913(7 T)
< neanoT
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(2.37)

%9 12 A A
IV lge0yne = T (5 0) = T35, T) |ga . 0) he

T a a a a
< C(n, ko, T) / e (IV Ratlge () + [ Rar % V%o
0

VO oy IV g V2% gty + [V o))t

T
1
<Cn,k,T/ — + |logt|dt
(n ko, T) |+ ot

< C(n, ko, T).

By applying Theorem 2.7, we know that there is §y > 0 such that

a
(2.3), has a smooth solution F' on M™ x [0, 6] with estimates (2.22). In
views of Lemma 2.12 and Lemma 2.13, in order to prove Theorem 2.6,

we only need to bound \VF \ pa Uniformly on a uniformly interval
[0,T}] with 77 independent of a To this end, let

T = sup {To | To < T, (2.3), has a smooth solution on M™ x [0, Ty]

with  sup |VF\2 )he < oo}
M"X[O,To]

We will estimate T from below.
We come back to the equation (2.30) of \VF]Q

holds
0 a a a
(a_ - At) |VF|§“(-,t),ha

2[V2F]2 yho + C1(n, ko, T)VF 20 ) o

) R where there

+ Ca(n, ko, )’VF|g alot),

~ a
on M™ x [0,T]. We remark that F' is defined on a complete manifold
with bounded curvature and sup .o 7 \VF \ yha < 00, for each

Ty < T. So by applying the maximum principle on complete manifolds,
we have

dr aa.,
E(?\l}g IV F|ga(.t),p0)

a a a a
< Ci(n, ko, T) sup IVE 2y ne + Ca(n, ko, T) Sup IVFga(.0) o
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where —+ is the upper right derivative defined by
d* u(t + At) — u(t)

—u = lim sup

dt At\o At

By combining with (2.36), we have

a a
2 2nkoT
sup [V E[fa( gy pa < 20707,
M7 x[0,T0]

. ~ log 2
provided Ty < min{7, o kO,T)+2n62"k0TC'2(n ko,T)}

a
By Lemma 2.12 and Lemma 2.13 and Theorem 2.7, the solution F'

exists smoothly until \VF \2 ) ha blows up, so we know

log 2
T>mindT, .
— { C1(n, ko, T) + 2ne2nkoT Cy(n, ko, T) }

. log 2
By choosing 77 = min{7, Clno, T)+2n(;2”k0TCQ(n o) }, Theorem 2.6 fol-

lows. q.e.d.

Proof of Theorem 2.1. Note that ¢ = 0 on By(. r)(P,a), and gf;(z,t) =
e gij(x,1), hes(y) = e¥"hag. It follows that

gfj(:c,t) = gij(z,t) on By (P, a),
hgzﬁ(y) = haﬁ(y) on Bg(~,T)(Pa a)'
By Theorem 2.6 and estimates (2.21) and letting a — oo, the solutions

a
F of (2.3), on M™ x [0,T1] have a convergent subsequence so that the
limit is a solution of (2.3) with the estimates (2.4). q.e.d.

3. The uniqueness of the Ricci flow

3.1. Preliminary estimates for the Ricci-De Turck flow. Let
F(z,t) be a solution to (2.3) in Theorem 2.1 on M™ x [0,Tp]. Let

Gij(x,t) = ha,g(F(a:,t))%%%if be the one-parameter family of pulled

back metrics F*h. We will estimate g;;(x,t) in terms of g;;(x,t).

Proposition 3.1. There exists a constant 0 < T5 < Ty depending
only on ko and T such that for all (z,t) € M"™ x [0,T5], we have

1
1 —~i' ) < Gij ) < ) 7T ~i' )
B o0 < gt) < ok, Do)
~ C ’n,ko,T,k
gl < S0 Tok) 2 )
2

fork=1,2,....
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Proof. We first consider the zero-order estimate of g;;(x,t). The esti-
mate |VF|? = ;9" < C in (2.4) implies §;;(z,t) < Cg;j(x,t). For the
reverse inequality, we compute the equation of g;;(x,t) by (2.4):

(3.2)
0 . -

5% = BGij — RixFfF hapg®™ — Ry FP F hagg"
+2Rapys FOF F] P g — 2hog 2, F g
> Agij — Riedijg™ — Riedug™ — 2ko|VF|Pgi; — 2|V F g5

> Agij — Riedijg™ — Ringuig™ — C(n, ko, T)gij.
Combining (3.2) with the Ricci flow equation gives
0 A . 1
T Gij + C(n, ko, T)tgij — ngj
- 1
> —Ri, <glj + C(n, ko, T)tgi; — Wéﬂj) g"
1

~ 1
— ik (gh' + C(n, ko, T)tgu — Wﬂu) J".

Note that at t =0,

~ 1
(gij + C(n, ko, T)tgij — Wﬂzj) |t=0

1

=9i(-T) — ngj(‘uo) > 0.

By applying the maximum principle to above equation, we obtain

~ 1
9i + O ko, T)tgij — 5 —apor 9is > 0

on M" x [0,Tp]. Let Ts = min{Tp, 4n62”k0T1C' ka,T)}. Then we have

(

1

gij > ngj, on M"™ x [O,Tg,].

This gives the zero-order estimate of g;;(x,t).

For the first order derivative of g;;, we compute

Vigis = (Vi = Vi)giy = Chi — Dha + Tk — Thj)gui
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and

gg] ‘ )glp’g

' aFﬁ

|(Thi — Tho)
ViV F® haﬁ

aFﬂ
< C(n, ko, T) ‘vkv T Bl ——hag
< C(n ko, T)|V?Flgn|VF g
< C(TL, ko, T) .
This gives the first order estimate.
For higher order estimates, we prove it by induction. Suppose we

have showed

Vigls < fl for 1=1,2,...,k—1,

2

~+~

|V~Z(F—f‘)\g§£l for 1=0,1,...,k—2.
tz
Since by induction
[VFHI =)l
= [V = 1) * gl
k—1 . ) N ) N )
= VI =D egle Y, VAL -D)xe s V(ST
j=0 114 tigH1=j g
k—1
(n, ko, T ZW’“,} I(V2F  VF)| g

=0
Z V(L = D)z [V =)l
i1+ 14 tig+1=j

< C(n, ]&T, k)
t 2
and
Vrg = V(T =T) * g)
k—1 ~
= S VHT D)« TR,

=0

then we have
C

‘@kglé < 5
t 2

This completes the induction argument and the proposition is proved.
q.e.d.
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Proposition 3.2. Let F(xz,t) be the solution of (2.3) in Theorem
2.1. Then F(-,t) are diffeomorphisms for all t € [0,T5]; moreover, there
exists a constant C(n, ko, T) > 0 depending only on n, ko and T such
that

dp(F(x1,t), F(x2,1)) = e C0R0D gy (21, 20)
for all x1,x9 € M™, t € [0, T5].

Proof. Note that

1._ -
Egij(xat) < gij(z,t) < Cgij(w,1)

implies that F' are local diffeomorphisms. So we only need to prove
that F'(-,t) is injective and proper. Suppose not. Then there exist two
points x1 # xg, such that F(x1,t) = F(x2,t), for some ty € (0,T5].
Assume tp > 0 to be the first time so that F(x1,t) = F(z2,t). Choose
small § > 0, such that there exist a neighborhood O of F(x1,to) and a
neighborhood O of z; such that F~1(-,t) is a diffecomorphism from O
to O for all t € [ty — 0, tp]; moreover, letting ¥; be a shortest geodesic(
parametrized by arc length) on the target (N", hog) connecting F(z1,t)
and F(z9,t), we require 5 € O for t € [ty — 6,t9). We compute

S (F a1, 0), F(a2,8)) = (V7' D) — (V5 O

where 7(0) = F(z1,t) , ¥(I) = F(x2,t), and V* = AF*. Now we pull
back everything by F~! to O,
0
gy (F(@1:8), Fz2,8)) = (P-3V = V.7 (0)) o
> — sup ’ﬁv,(l’,t)dh(F(wl,t),F($2,t))
zeF~15
where Py is the parallel translation along F~15 using the metric F*h.

Since l
~ ox
ViVl =V Ve ——,
k WV e
where V V¢ is the covariant derivative of the section V¢ of the bundle
F~'TN, thus by (2.4),

ViV = [ViVOV VP hapi™)2 < CIVPF| <

SlQ

It follows that we have
dp(F(21,1), F(22,1)) < V0V g, (F(21,t0), F(22,10)) = 0,

for t € [to — d,to], which contradicts the choice of ty. So F(-,t) are
diffeomorphisms.
By choosing O = N", O = M™, the above computation also gives

dn(F(21,1), Fxg,t)) = e €k D) g, (21 29).



UNIQUENESS OF THE RICCI FLOW 149

This in particular implies the properness of the maps, and the proof of
the proposition is completed. q.e.d.

2. Ricci De-turck flow. From the previous section, we know that
the harmonic map flow coupled with Ricci flow (2.3) with identity as ini-
tial data has a short time solution F'(x,t) on M™ x [0, T5], which remains
being a diffeomorphism with good estimates (2.4). Let (F~1)"g be the
one-parameter family of pulled back metrics on the target (N", hqg).
Denote gag(y,t) = (F71)9)ap(y,t). Then gns(y,t) satisfies the so-
called Ricci-De Turck flow:

0
(3.3) @gaﬁ(y, t) = —2Rap(y,t) + Va Vs + VgV,

where V¢ = gﬁ'y(Fgw (9)—T5,(h)), I'5,(9) and I'g, (h) are the Christoffel
symbols of the metrics go(y,t) and hqg(y) respectively.

By (3.1) of Proposition 3.1, we already have the following estimates
for gag(y,t)

1
4 T~ 1. < « 9 < ) 7T «
(3.4) C(ka’T)haa(y) 9ap(y,t) < C(n, ko, T)hap(y)
C(n, ko, T,k
W gln < %
2

on N™ x [0,T5].
Let gij(x,t) and g;;(x,t) be two solutions to the Ricci flow with
bounded curvature and with the same initial value as assumed in The-

orem 1.1. We solve the corresponding harmonic map flow with same
target (Nnv hocﬁ) = (angzj(’ T)) by

0 —_
(35) EF(I‘J&) _ All:‘(l',t),
F(-,0) = identity,
and
8 = _
F(-,0) = identity,

respectively. Then we obtain two solutions F(x,t) and F(z,t) on M™ x
[0,T5]. It is clear that F(x,t) still satisfies (2.4), Proposition 3.1 and
Proposition 3.2. Let gag(y,t) = (F~1)"g(y, t), then gus(y,t) still satis-
fies (3.4). Now we have two solutions gag(y, t) and gng(y,t) to the Ricci
De-Turck flow (3.3) with same initial data and with good estimates
(3.4).

Proposition 3.3. There holds

9ap(Ys ) = Jap(y, 1)
on N™ x [0, Ts].
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Proof. We can write the Ricci-De Turck flow (3.3) by using the fixed
metric hqg(y) in the following form (see [21]):

0 -~ e~ e~
(37) Egaﬁ = g’yévwv&gaﬁ - gvégagggnR,B'mé - g’yagﬁﬁgénRawﬁ

1 - - - -
+ 59”595’7 (vagévvﬁgné + 2V 98¢ Vngas
~ 2V595¢Vsan — 2V 59¢3 V §9an — Wagaﬁégﬁvv)
where gog = hag, V and R are the covariant derivative and the curvature

of gop. Note that g, also satisfies (3.7), and then the difference go5 —
Jap satisfies the following equation:

(3.8)
S99 =9 Tslo )+ g w7+ P (5 )
+g xg  xRmx (g —9)
+g txg g xg v Rmx (g9 - 9)

+9 g kg xVgxVgx(g—79)
g lxg '« VgxVgx(g—7)

+9 xg
£ g x Vg Vg —g)+5 x5 * Vg V(g )
since g% — g8 = gaggnﬁ(gng — gne)- Let

’g - g‘Q = gowgﬁé(gaﬁ - gaﬁ)(gvé - g’y&)'

It follows from (3.8) that:

(% - gw@ﬁa) lg — g
< =26"1575% (Vegap — Vegap) (Vagrs — Viiye)
+ C(n)[|Rm|(1+|gllg ™" DIg~ '+ Vallg lg "]
+VglPUg Pl + 1 g 1P)]lg — gl
+Cm)|g ' PVl + IVa)IV(g — 9)llg — gl
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where all the norms are computed with the metric § = h. By Cauchy-
Schwartz inequality and (3.4), we have

o _
A7) =12
(3.9) <8t g VNa) lg — gl
< _2g§n§a7§ﬂ6(@£gaﬁ - ﬁggaﬁ)(ﬁngvé - ﬁngvzs)
C . - B B
+—lg—aP+C|V(g—9)llg—
\/%\g gl V(g —9)llg — gl
<Slg-gp
VA
on N™ x [0, T5].

Let 1 be the nonnegative function in Lemma 2.2 with a = 1, then

S0+ d.) < o1(0) < Codl.p) o N\B(P,2),

V| + V21| < C, on N™.

For any fixed ¢ and any e > 0, consider the maximum of |g — g|> — ep.
Clearly, the maximum is achieved at some point P! and there hold

lg— g (Ph) = g — g1*(y) — ep(y),

e) =
Vg —gI?|(P!) < Ce,
VaVslg = gI*(PL) < Cegap(PL),
for all y € N™. This gives
(3.10) limsup |g — g[*(P!) = sup|g — g|°

e—0
9*°VaVslg — gl (P!) < Ce
by the equivalence of g and g.

Define a function

19— 920k (t) = sup |g — g[*(y,t).
yeN™

By (3.9) and (3.10), we have

d+ ) C )
— g — g2 () < =g — g2 (1),

and then
19 — 92 (1) < VT g = §[2,0x(0) = 0.

max max

Therefore the proof of the Proposition 3.3 is completed. q.e.d.
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3.3. Proof of the main theorem. Let g;;(x,t) and g;;(x,t) be two
solutions to the Ricci flow (1.1) with bounded curvature and with the
same initial data. We solve the corresponding harmonic map flow (3.5)
and (3.6) with the same target (N", hog) = (M", gi;(-,T)) respectively.
We obtain two solutions F(z,t) and F(z,t) which are diffeomorphisms
for t € [0,T5], where T5 > 0 depends only on n,ky,T. Then (F~1)%g
and (F~1)"g are two solutions to the Ricci-De Turck flow with the same
initial value. It follows from Proposition 3.3 that

(F ) 'g=F"1g,

on N™ x [0,T5]. So in order to prove g;;(x,t) = gi;j(x,t), we only need

to show F' = F. Let
Vy.1) = g71(F, ~ T5,) = —(AF 0 F )
Vo(y.8) = 57 (5, ~ T5,) = ~(BF o F1)e
be two one-parameter families of vector fields on N", where go5(y,t) =

(F 1" 9)ap(y,t) and Gap(y,t) = (F1)"g)as(y, t). By Proposition 3.3,
we have gos(y,t) = gap(y,t); thus the vector fields V' = V on the target
N™. Therefore, F and F satisfy the same ODE equation with the same
initial value:

0

—F=VoF
ot o

F(-,0) = identity,
and

o _ _
CF=VoF
gl =Vel

F(-,0) = identity.

By the same calculation as in the proof of Proposition 3.2, we have

_8 dyn(F(z,t), F(z,t)) < sup ]?V|(y,t)dNn(F(x,t),Z:"(:E,t))
at yeN'n
< Cinn (P, 1), B, 1),
\/E M ) )
This gives

dyn (F(z,t), F(z,1)) < eV dyn (F(z,0), F(z,0)) = 0,

which concludes that
F(x,t) = F(,t).
Thus g(z,t) = g(z,t), for all (z,t) € M™ x [0,T5] and for some T5 >
0. Clearly, we can extend the interval [0,75] to the whole [0,7] by
continuity method.
Therefore we complete the proof of the Theorem 1.1. q.e.d.
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Finally, Corollary 1.2 is a direct consequence of Theorem 1.1. In-
deed, since G is the isometry group of g;;(x,0), then for any o € G,
o*g(-,t) is still a solution to the Ricci flow with bounded curvature and
o*g(-,t) |i=0o= o*g(-,0) = ¢g(-,0). By applying Theorem 1.1, we have
o*g(-,t) = g(-,t), Vt € [0,T]. So the corollary follows. q-e.d.
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