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DIMENSION ESTIMATE OF POLYNOMIAL GROWTH

HARMONIC FORMS

Jui-Tang Ray Chen & Chiung-Jue Anna Sung

Abstract

Let H
p

l (M) be the space of polynomial growth harmonic forms.
We proved that the dimension of such spaces must be finite and
can be estimated if the metric is uniformly equivalent to one with
a nonnegative curvature operator. In particular, this implies that
the space of harmonic forms of fixed growth order on the Euclidean
space with any periodic metric must be finite dimensional.

1. Introduction

The classical de Rham-Hodge theory implies that the dimension of
the space of harmonic forms is a topological invariant of a compact Rie-
mannian manifold, hence independent of the choice of the background
Riemannian metric. For the complete noncompact manifolds, this is
no longer true. Nonetheless, it is an intriguing question to study the
space of harmonic forms and to seek for topological and geometrical
links. In the case of harmonic functions, Yau [12] has proved that any
positive harmonic function on a manifold with nonnegative Ricci cur-
vature must be constant. Hence the strong Liouville property holds.
Later, Saloff-Coste [11] showed this still holds true under a uniformly
equivalent metric. So the space of positive harmonic functions is stable
under a quasi-isometry for such manifolds.

A complete manifold M is said to satisfy a Sobolev inequality S(A, ν)
if there exist a point q ∈ M and constants A > 0 and ν > 2 such that
for all r > 0, and for all f ∈ C∞

0 (Bq(r)), we have
∫

Bq(r)
|f |

2ν
ν−2 ≤ Ar2V (q, r)−

2

ν

∫

Bq(r)
(|∇f |2 + r−2f2)

where V (q, r) is the volume of the geodesic ball Bq(r). Examples of man-
ifolds satisfying such a Sobolev inequality include minimal submanifolds
with Euclidean volume growth in R

m and manifolds with a nonnegative
Ricci curvature. It is also obvious that the Sobolev inequality holds
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true, possibly with a different constant A, under any uniformly equiva-
lent metric on M.

In [10], extending earlier work of Li [8], Li and Wang proved that the
dimension of the space H0

l (M) of polynomial growth harmonic functions
of growth order at most l has an estimate

dimH0
l (M) ≤ C(A, ν)lν

provided that the underlying manifold satisfies the Sobolev inequality
S(A, ν). So the finite dimensionality of the space H0

l (M) is valid on such
a manifold with respect to any uniformly equivalent metric.

Concerning the general harmonic p-forms, Li [8] has also established
a dimension estimate of the space of polynomial growth harmonic forms.
Assume that Kp ≥ 0 on Mm, where

KP =











lower bound of the curvature operator on M if p > 1,

(m − 1)−1 × (lower bound

of the Ricci curvature Ricci curvature) if p = 1.

Then his result says that

dim H
p
l (M) ≤ Clm−1,

where H
p
l (M) denotes the space of polynomial growth harmonic p-forms

on M of growth order at most l.

In view of the preceding results on harmonic functions, it is natural
to ask if the dimension of the space H

p
l (M) is stable under the change of

the metric to a uniformly equivalent one. If so, then it becomes possible
to relate the dimension to certain topological invariants of the manifold.
The goal of this paper is to show that the dimension remains finite.

Theorem 1.1. Let (Mm, g) be a complete Riemannian manifold with

dimension m. Suppose that Kp ≥ 0 on (M, g) and the metric g′ is

uniformly equivalent to g on M. Then there exist constants C > 0 and

ν > 2 such that the dimension of the space H
p
l (M, g′) is finite and

satisfies the inequality

dimH
p
l (M, g′) ≤ C lν

for all l ≥ 1.

An immediate corollary is that on the Euclidean space equipped with
any periodic metric the space of polynomial growth harmonic forms of
fixed growth order must be finite dimensional.

Corollary 1.2. Let g be a periodic Riemannian metric on R
m. Then

dimH
p
l (Rm, g) ≤ C lm

for all p ≥ 1 and l ≥ 1.
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Note that this corollary holds true for the case p = 0 by the result of
Avellaneda and Lin [1]. In fact, they have proven a much stronger result
by giving an explicit description of the polynomial growth harmonic
functions and establishing a one to one correspondence with the ones
with respect to the standard metric on R

m. It remains an interesting
question whether a similar description is also available for the harmonic
forms.

The proof of the aforementioned result of Li [8] relies on the Bochner-
Weitzenbock formula. Under a uniformly equivalent change of the met-
ric, however, the same curvature condition is not expected to hold.
Therefore, we need to take a different approach to estimate the dimen-
sion. We overcome the difficulty by relating the space of harmonic forms
to the eigenvalues of the Hodge Laplacian on the geodesic balls with re-
spect to the absolute boundary conditions. This kind of idea was first
introduced and successfully pursued by Li and Wang [10] for the har-
monic functions. Here, the added point is to show that such eigenvalues
are comparable under a uniformly equivalent change of the metric. This
of course can be easily seen from the variational characterization of the
eigenvalues for the function case. In the case of general forms, some
effort is required to show such a fact. So we will first study the eigen-
values in section 2 and obtain a lower bound estimate by modifying an
argument from [7]. The main result is then proved in section 3.

Acknowledgement. Part of this work was done when the second au-
thor was visiting the School of Mathematics at the University of Min-
nesota. She would like to thank the members of the School of Mathe-
matics for their hospitality during her visit.

2. Eigenvalue estimates

Let (Mm, g) be a complete, oriented Riemannian manifold. The
Hodge-Laplace-Beltrami operator ∆ acting on the space of smooth p-
forms Λp(M) is defined as

∆ = dδ + δd,

where d denotes the exterior differential operator and δ = ∗ d ∗, where
the linear operator ∗ is defined point-wise by

∗(w1 ∧ · · · ∧ wp) = wp+1 ∧ · · · ∧ wm

for a positively oriented orthonormal co-frame {w1, w2, . . . , wm} at the
point. A p-form w ∈ Λp(M) is called a harmonic p-form on (M, g) if

∆gw = 0.

Let q denote a point on (M, g) and let rq(x) represent the geodesic
distance function from x ∈ M to the point q. For each l ≥ 0, we denote
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the space of polynomial growth harmonic p-forms of degree at most l

by

H
p
l (M, g) ≡

{

w ∈ Λp(M) | ∆gw = 0, and |w| = O(rl
q)

}

.

For a bounded smooth domain B ⊂ M, a p-form w is said to satisfy
the absolute condition on B if the tangential component of both w and
δw on the boundary ∂B are zeros. On the boundary ∂B, let N∂B (re-
spectively N∗

∂Bq
) represent the inward unit normal vector (respectively

co-vector) field. Now, denote exterior multiplication by ext (·) and dual
exterior multiplication by int (·). It is not difficult to verify that ∆ is a
self-adjoint nonnegative operator on the space Λp(B) of smooth p-forms
on B satisfying the absolute boundary conditions. By the standard el-
liptic theory, we see that ∆ has a countable set of eigenvalues and the
multiplicity of each eigenvalue is finite. If we list all the eigenvalues
with multiplicity in nondecreasing order by {λk, k = 1, 2, 3, . . . }, then
λk → ∞ as k → ∞. Moreover, the i-th eigenvalue can be characterized
as

λi = inf
dim V =i

sup
w∈V \{0}

R(w),

where V is a subspace of Λp(B) and the Rayleigh-Ritz quotient R(w) is
defined by

R(w) =
(dw, dw) + (δw, δw)

(w, w)

for w ∈ Λp(B) and the L2 inner product for two forms v and w in Λp(B)
is defined by

(v, w) =

∫

B
〈v, w〉dx

with 〈v, w〉 being the point-wise inner product between v and w.

On the other hand, the Hodge-de Rham theorem provides an orthog-
onal decomposition of the space Λp(B) of differential forms of degree p

on B. For any w ∈ Λp(B), w can be uniquely written as

w = h + dv + δ u,

where h ∈ Hp(B), the space of harmonic p-forms satisfying the abso-
lute boundary conditions and v ∈ Λp−1(B), u ∈ Λp+1(B). Clearly, the
operator ∆ leaves this decomposition invariant, and the eigenvalues of
∆ on the subspace Hp(B) are zeros.

Denote by {µe
j(g)|j ≥ 1} the eigenvalues of ∆ acting on the subspace

dΛp−1(B) of exact p-forms, and by {µco
l (g)|l ≥ 1} those corresponding

to the subspace δΛp+1(B) of co-exact p-forms. Then the eigenvalues
{λi(g)|i > dimHp(B)} is equal to the re-ordered union of {µe

j(g)|j ≥ 1}
and {µco

l (g)|l ≥ 1}. We have

{λi(g)|i > dimHp(B)} = {µe
j(g)|j ≥ 1} ∪ {µco

l (g)|l ≥ 1}.
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The following lemma is essentially due to [3]. We recall it here for
our convenience.

Lemma 2.1. Let (M, g) be a complete manifold with Riemannian

metric g. Let g′ denote another Riemannian metric on M which is uni-

formly equivalent to g, that is, there exists a positive constant C such

that

C−1g ≤ g′ ≤ Cg.

Then

(i) dim Hp(B, g) = dimHp(B, g′)
(ii) There exists a positive constant C such that

C−1λi(g) ≤ λi(g
′) ≤ Cλi(g)

for all i ≥ 1.

Proof. The first statement (i) is true as the space Hp(B, g) can be
identified with the p-th absolute cohomology of the set B by the de
Rham theorem.

To prove (ii), we first show the following claim.

µe
i,p(g) = inf

V
sup

φ∈V \{0}

{

(φ, φ)

(θ, θ)

∣

∣

∣
dθ = φ

}

,

where V ranges over all subspaces of dimension i of the space of all
exact forms on B satisfying the absolute boundary conditions.

The claim clearly implies that

C1µ
e
i (g) ≤ µe

i (g
′) ≤ C2µ

e
i (g)

and

C3µ
co
i (g) ≤ µco

i (g′) ≤ C4µ
co
i (g).

Therefore, (ii) follows.
To prove the claim, denote the nonzero eigenvalue µ of the eigen

p-form on B with absolute boundary condition. In addition, let E
p
d(µ)

(respectively E
p
δ (µ)) denote the space of all exact (respectively co-exact)

eigen p-forms belonging to the eigenvalue µ. Define a mapping T , where

T : E
p
d(µ) → E

p−1
δ (µ),

by

Tφ =
1

µ
δφ.

Denote the complete orthonormal set of exact eigen p-forms with re-
spect to the absolute boundary conditions by {φ1, φ2, φ3, . . .} with the
corresponding eigenvalues 0 < µe

1 ≤ µe
2 ≤ µe

3 ≤ · · · . Let

Vi ≡ span {φ1, . . . , φi}.
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Let Ψ = Tφ for φ =
∑

ajφj . Then φ = dΨ and

(φ, φ)

(Ψ, Ψ)
=

∑

a2
j

∑

(µe
j)

−1a2
j

.

Since µe
i = max µe

j , we see that

µe
i = sup

{

(φ, φ)

(Ψ, Ψ)

∣

∣

∣
φ ∈ Vi\{0}

}

.

If φ = dθ, then

θ = Ψ + dΦ + Ĥ,

for some (p−2)-form Φ and (p−1)-harmonic-form Ĥ under the absolute
boundary condition. This follows from the Hodge decomposition. Given
a p-form Ψ such that Ψ = δΨ, we have

(Ψ, dΦ) = (δΨ, Φ) − (Ψ, ext (N∗)Φ)L2(∂B) = 0,

(Ĥ, dΦ) = (δĤ, Φ) − (Ĥ, ext (N∗)Φ)L2(∂B) = 0,

(Ĥ, δΨ) = (dĤ, Ψ) + (Ĥ, ext (N∗)Ψ)L2(∂B) = 0.

Thus, for a fixed φ, we have

(θ, θ) = (Ψ, Ψ) + (φ, φ) + (Ĥ, Ĥ).

It follows that
(φ, φ)

(Ψ, Ψ)
= sup

{

(φ, φ)

(θ, θ)

∣

∣

∣
dθ = φ

}

,

then it is easy to see that

µe
i = sup

{

(φ, φ)

(θ, θ)

∣

∣

∣
φ ∈ Vi\{0} and dθ = φ

}

.

So

µe
i,p(g) ≥ inf

V
sup

φ∈V \{0}

{

(φ, φ)

(θ, θ)

∣

∣

∣
dθ = φ

}

.

To prove the reverse inequality, we first note that

µe
i,p = µco

i,p−1

as the operator δ commutes with the Laplacian ∆. For any such a
subspace V = {φj}i

j=1 of dimension i, φj is an eigen p-form, there exists

a nonzero φ ∈ V so that φ is perpendicular to Vi−1 of dimension (i− 1)
and Vi−1 ⊂ V. We may write

φ = dθ

and
φj = dθj

for all j, where θ and θj are (p−1)-forms satisfying the absolute bound-
ary conditions. Note that

θj = µ−1
j δ φj , where µj is the eigenvalue of eigen p-form φj .



DIMENSION ESTIMATE OF HARMONIC FORMS 173

Hence,
(θ, θj) = 0 for all 1 ≤ j ≤ i − 1.

Also, using the Hodge decomposition, we may assume θ is co-exact.
Therefore,

µe
i,p(θ, θ) = µco

i,p−1(θ, θ) ≤ (dθ, dθ) = (φ, φ).

This shows that

µe
i,p(g) ≤ sup

φ∈V \{0}

{

(φ, φ)

(θ, θ)

∣

∣

∣
dθ = φ

}

.

Since V is arbitrary, this proves the reverse inequality and the claim.
q.e.d.

In the following, we will get a lower bound estimate of the eigenvalues
of p-forms satisfying the absolute boundary conditions on a geodesic ball
in a manifold with Kp ≥ 0. The argument closely follows those in [7].

Proposition 2.2. Let Mm be a complete manifold. Let B = Bq(r)
be a geodesic ball of radius r > 0. Then there exist constants C > 0 and

ν > 2 such that

(i) dim Hp(B) ≤ CeC
√

Kpr,

(ii) for k > dimHp(B),

λk(B) ≥ C−1 k2/ν r−2 e−C
√

Kp r + C Kp.

Proof. Let E be the k-dimensional space spanned by the eigen p-
forms corresponding to the first k eigenvalues {λ1, . . . , λk} on B. Then
there exists w ∈ E, w 6= 0, such that

(1)
k

V
‖w‖2

2 ≤ ‖w‖2
∞ · min{(m

p ), k},

where V denotes the volume of B. This is a result in [7].
On the other hand, we claim that there exist constants C > 0, k0 > 0

and ν > 2 such that for w ∈ E,

(2) ‖w‖2
∞ ≤ C(ν)

(

eC(1+
√

Kpr)V −2/νr2(2λk − p(m − p)Kp)
)ν/2

‖w‖2
2

for all k ≥ k0.

It is easy to see that the proposition follows by combining (1) and
(2). To prove (2), we first observe that for w ∈ Λp(B),

∂|w|2
∂n

= 0 on ∂B,

where ∂
∂n is the outward unit normal of ∂B. Indeed, for a point x ∈ ∂B,

choose normal coordinates {x1, . . . , xm} at x so that {x1, . . . , xm−1}
forms a coordinate system on ∂B. So at x, we have

∂

∂xm
=

∂

∂n
.
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Now write w =
∑

I fIdxI , where I = {i1, . . . , ip} with i1 < i2 < · · · < ip.

Since wtan = 0 on ∂B, we have fI = 0 on ∂B when m ∈ Ic. On the
other hand, using this fact and also (δw)tan = 0 on ∂B, we conclude

∂fI

∂xm
(x) = 0

for all I with m ∈ I. Now it is clear that

∂|w|2
∂xm

(x) = 0.

We also observe that the following Neumann Sobolev type inequality
holds on M

inf
a∈R

(
∫

B
|f − a|

2ν
ν−2

)
ν−2

ν

≤ eC(1+
√

Kpr) V − 2

ν r2

∫

B
|∇f |2

for all smooth functions f on B.

From [7] lemma 2, we have

(
∫

B
|f |

2ν
ν−2 dv

)
ν−2

ν

≤ eC(1+
√

Kpr)V −2/νr2

∫

B
|∇f |2 dv(3)

+ V −2/ν

∫

B
|f |2 dv.

Let {wi}k
i=1 be the eigen p-forms satisfying the absolute boundary

conditions with the corresponding non-zero eigenvalues {λi}k
i=1 and we

also assume {wi}k
i=1 are orthonormal and span E. If w ∈ E, then there

exist {ai}k
i=1 such that w =

∑k
i=1 aiwi , that is, ∆w =

∑k
i=1 λiaiwi. By

Bochner’s formula

1

2
∆ |w|2 ≤ (∆w, w) − |∇w|2 − p(m − p)Kp |w|2

and the fact in [7] lemma 8

|∇ |w||2 ≤ |∇w|2

we have

1

2
∆ |w|2 ≤ (∆w, w) − |∇ |w||2 − p(m − p)Kp |w|2 .

Let α ≥ 1, and we have

1

2

∫

B
|w|2α−2 ∆ |w|2 ≤

∫

B
|w|2α−2 (∆w, w) − p(m − p)Kp ‖w‖2α

2α(4)

−
∫

B
|w|2α−2 |∇ |w||2 .
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Using the absolute boundary condition, the left hand side of inequality
(4) becomes

1

2

∫

B
|w|2α−2 ∆ |w|2 =(α − 1)

∫

B
|w|2α−3 〈∇ |w| ,∇|w|2〉

=2(α − 1)

∫

B
|w|2α−2 〈∇ |w| ,∇|w|〉

=
2(α − 1)

α2

∫

B
〈∇ |w|α ,∇|w|α〉

and the third term in the right hand side of (4) is
∫

B
|w|2α−2 |∇ |w||2 =

1

α2

∫

B
|∇ |w|α|2 .

Hence, (4) becomes

2(α − 1)

α2

∫

B
|∇ |w|α|2

≤
∫

B
|w|2α−2 (∆w, w) − p(m − p)Kp ‖w‖2α

2α − 1

α2

∫

B
|∇ |w|α|2 .

Let f = |w|, we have

2α − 1

α2

∫

B
|∇fα|2 ≤

∫

B
f2α−2〈∆w, w〉 − p(m − p)Kp ‖f‖2α

2α .

Applying (3) to the function fα

(
∫

B
|fα|2β dv

)1/β

≤ eC(1+
√

Kpr)V −2/νr2

∫

B
|∇fα|2 + V −2/ν

∫

B
f2α

where β = ν
ν−2 . We have

‖f‖2α
2αβ ≤ α2

2α − 1
eC(1+

√
Kpr)V −2/νr2

(
∫

B
f2α−2〈∆w, w〉

− p(m − p)Kp ‖f‖2α
2α

)

+ V −2/ν ‖f‖2α
2α

≤ α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)

(
∫

B
f2α−2〈∆w, w〉

− p(m − p)Kp ‖f‖2α
2α

)

+ r−2 ‖f‖2α
2α

)

.

Let α = βi, i = 0, 1, 2, . . .. Then,

‖f‖2α
2βi+1 ≤ α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)

(
∫

B
f2βi−2〈∆w, w〉(5)

− p(m − p)Kp ‖f‖2βi

2βi

)

+ r−2 ‖f‖2βi

2βi

)

.
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When i = 0, we have

‖f‖2
2β ≤ V −2/νr2

(

eC(1+
√

Kpr)

(
∫

B
〈∆w, w〉 − p(m − p)Kp ‖f‖2

2

)

+ r−2 ‖f‖2
2

)

.

Since

∫

B
〈∆w, w〉 =

∫

B
〈λiaiwi, ajwj〉

= λia
2
i ≤ λka

2
i

= λk

∫

B
〈w, w〉.

This implies

‖f‖2
2β ≤ V −2/νr2

(

eC(1+
√

Kpr) (λk − p(m − p)Kp) + r−2
)

‖f‖2
2 .

By Hölder inequality

‖f‖2
2 ≤ V (β−1)/β ‖f‖2

2β .

If we let λ∗
k = λk − p(m − p)Kp,

V −(β−1)/β ‖f‖2
2 ≤ V −2/νr2

(

eC(1+
√

Kpr)λ∗
k + r−2

)

‖f‖2
2 .

We claim that for 1 ≤ i < ∞,

V −(β−1)/αβ ‖f‖2
2α(6)

≤
i

∏

j=0

(

2β2j

2βj − 1

)β−j
(

V −2/νr2

(

eC(1+
√

Kpr)λ∗
k

+ r−2

))

Pi
j=0

β−j

‖f‖2
2 .

Assuming this is true for α = βj , j = 0, . . . , i−1, by induction, we need
to show (6) for i. Suppose the function g = |w|, where w ∈ E with the
property that for all w ∈ E,

(7)
‖g‖2α

‖g‖2

≥ ‖w‖2α

‖w‖2

for all w ∈ E.
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Without loss of the generality, we may use the the scaling and assume
‖g‖2 = 1. Then equation (5) becomes

‖g‖2α
2αβ ≤ 2α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)

(
∫

B
g2α−2(∆w, w)

− p(m − p)Kp ‖f‖2α
2α

)

+ r−2 ‖g‖2α
2α

)

≤ 2α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)(‖g‖2α−1
2α ‖∆w‖2α

− p(m − p)Kp ‖f‖2α
2α) + r−2 ‖g‖2α

2α

)

.

We also note that if s ≥ 2, then there exists a subset {η}⊂{1, 2, . . . , k}
such that

∥

∥

∥

∥

∥

k
∑

i=1

λiwi

∥

∥

∥

∥

∥

s

≤
∥

∥

∥

∥

∥

∑

η

λkwη

∥

∥

∥

∥

∥

s

.

This property is proved in [7] lemma 17. Let w =
∑

biwi, then ∆w =
∑

λibiwi and we have

‖∆w‖2α =

∥

∥

∥

∥

∥

∑

i

λibiwi

∥

∥

∥

∥

∥

2α

≤
∥

∥

∥

∥

∥

∑

η

λkbηwη

∥

∥

∥

∥

∥

2α

= λk

∥

∥

∥

∥

∥

∑

η

bηwη

∥

∥

∥

∥

∥

2α

≤ λk ‖g‖2α

∥

∥

∥

∥

∥

∑

η

bηwη

∥

∥

∥

∥

∥

2

by (7)

≤ λk ‖g‖2α .

Thus,

‖g‖2α
2αβ ≤ 2α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)λ∗
k ‖g‖2α

2α + r−2 ‖g‖2α
2α

)

=
2α2

2α − 1
V −2/νr2

(

eC(1+
√

Kpr)λ∗
k + r−2

)

‖g‖2α
2α .

Using Moser iteration, we get the following result

‖g‖2
2αβ ≤

i
∏

j=0

(

2β2j

2βj − 1

)β−j

·
(

V −2/νr2
(

eC(1+
√

Kpr)λ∗
k + r−2

))

Pi
j=0

β−j

‖g‖2
2 .
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On the other hand, by Hölder inequality, we have

‖g‖2
2α ≤ V (β−1)/αβ ‖g‖2

2αβ .

Therefore,

V −(β−1)/αβ ‖g‖2
2α ≤

i
∏

j=0

(

β2j

2βj − 1

)β−j
(

V −2/νr2

(

eC(1+
√

Kpr)λ∗
k

+ r−2

))

Pi
j=0

β−j

‖g‖2
2 .

By (7), we get

V −(β−1)/αβ ‖f‖2
2βi ≤

i
∏

j=0

(

β2j

2βj − 1

)β−j
(

V −2/νr2

(

eC(1+
√

Kpr)λ∗
k

+ r−2

))

Pi
j=0

β−j

‖f‖2
2 .

Letting i → ∞, then ‖f‖2
2βi → ‖f‖2

∞, and

∞
∏

j=0

(

β2j

2βj − 1

)β−j

≤ exp

(

1

β1/2 − 1

)

= c1(ν),

∞
∑

j=0

β−j =
1

1 − 1
β

=
β

β − 1
=

ν
ν−2

ν
ν−2 − 1

=
ν

2
.

Hence, we obtain

‖f‖2
∞ ≤ C(ν)

(

V −2/νr2
(

eC(1+
√

Kpr)λ∗
k + r−2

))ν/2
‖f‖2

2 .

This means, for all w ∈ E, w satisfies

(8)

‖w‖2
∞ ≤ C(ν)(eC(1+

√
Kpr)V −2/νr2(λk − p(m − p)Kp + r−2))ν/2 ‖w‖2

2 .

We note that the Hodge Laplace Beltrami operator ∆ = dδ + δd is non-
negative and self-adjoint on B under the absolute boundary condition.
Hence, using the standard elliptic theory, if we assume λ1 to be the first
non-zero eigenvalue, we have the property

0 < λ1 ≤ λ2 ≤ · · · → ∞.

This means, given a constant b > 0, there exists k0 large enough such
that the k-th nonzero eigenvalue λk ≥ b−2 on B = Bq(r).

We select 0 < b ≤ r, this implies

λk ≥ r−2.



DIMENSION ESTIMATE OF HARMONIC FORMS 179

Hence, from (8), we have (2)

‖w‖2
∞ ≤ C(ν)(eC(1+

√
Kpr)V −2/νr2(2λk − p(m − p)Kp))

ν/2 ‖w‖2
2

for all w belong to the space span by the eigen p-forms E correspondent
to first k-th non-zero eigenvalues. Using the dimension estimate (1), we
get

k

V
‖w‖2

2 ≤(m
p ) ‖w‖2

∞

≤C(ν)(m
p )(eC(1+

√
Kpr)V −2/νr2(2λk − p(m − p)Kp))

ν/2 ‖w‖2
2 ,

that is,

λk ≥ C(ν)(m
p )−2/νe−C(1+

√
Kpr)k2/νr−2 − 1

2
p(m − p)Kp for all k ≥ k0.

We complete the proof. q.e.d.

3. Proof of the Main Result

In this section, we will prove our main result Theorem 1.1. We start
by establishing some preliminary lemmas. The following elementary
fact appears in Li and Wang [10].

Lemma 3.1. Let V be a k-dimensional subspace of a vector space

W . Assume that W is endowed with an inner production L and a bi-

linear form Φ. Then for any given linearly independent set of vectors

{w1, . . . , wk−1} ⊂ W , there exists an orthonormal basis {v1, . . . , vk} of

V with respect to L such that Φ(vi, wj) = 0 for all 1 ≤ j < i ≤ k.

Let λi denote the i-th nonzero eigenvalue on p-forms on Bq(r) ⊂
(M, g) satisfying the absolute boundary conditions on ∂Bq(r). We have
the following lemma.

Lemma 3.2. Let V be a k-dimensional subspace of H
p
l (M). For any

fixed number β > 1 and any subspace Y of V , let trLβr
Lr(Y ) denote the

trace of the bilinear form Lr with respect to the inner product Lβr on

Y . Then we have

min
dim Y =k−s

trLβr
Lr(Y ) ≤

k
∑

i=s+1

8

(β − 1)2r2λi(βr)
,

where the minimum is taken over all subspaces Y in V with dimY =
k − s and s = dimHp(Bq(r)).

Proof. Let φ be a nonnegative function defined on Bq(βr) satisfying
these conditions:

φ = 1 on Bq(r), 0 ≤ φ ≤ 1 on Bq(βr), φ = 0 on ∂Bq(βr),
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and

|∇φ| ≤ 2

(β − 1)r
.

Observe that by the property of unique continuation, V is a k-dimen-
sional subspace because

V ⊂ L2(Bq(βr), dv) ∩ L2(Bq(r), φdv).

Applying Lemma 3.1 with {w1, . . . , wk} as the eigen p forms of Bq(βr)
corresponding to the nonzero eigenvalues

{λ1(βr), . . . , λk(βr)},

we get an orthonormal basis {v1, . . . , vk} of V with respect to the inner
product Lβr. Hence

Φβr(vi, wj) =

∫

Bq(βr)
(vi, wj)φdv = 0

for 1 ≤ j < i ≤ k. Thus, for any 1 ≤ i ≤ k, let

|vi|2 ≡ 〈vi, vi〉,

‖vi‖2 = (vi, vi) =

∫

〈vi, vi〉 and

sgn = (−1)m(p+1)+1.

We have

λi(βr)

∫

Bq(βr)
|φvi|2 dv

≤ (d(φvi), d(φvi))L2(Bq(βr)) + (δ(φvi), δ(φvi))L2(Bq(βr))

= (dφ ∧ vi + φdvi, dφ ∧ vi + φdvi)L2(Bq(βr))

+ (φδvi + sgn ∗ (dφ ∧ ∗vi), φδvi + sgn ∗ (dφ ∧ ∗vi))L2(Bq(βr))

= ‖dφ ∧ vi‖2
L2(Bq(βr)) + 2(φdvi, dφ ∧ vi)L2(Bq(βr))

+ ‖φdvi‖2
L2(Bq(βr)) + ‖φδvi‖2

L2(Bq(βr))

+ 2(φδvi, sgn ∗ (dφ ∧ ∗vi))L2(Bq(βr)) + ‖dφ ∧ ∗vi‖2
L2(Bq(βr)).
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On the other hand,

0 =

∫

Bq(βr)
φ2〈vi, ∆vi〉dv

= (φ2vi, ∆vi)L2(Bq(βr))

= (δ(φ2vi), δvi)L2(Bq(βr)) + (d(φ2vi), dvi)L2(Bq(βr))

+ (ext (N∗
Bq(βr))(φ

2vi), dvi)L2(∂Bq(βr))

− (int (N∗
Bq(βr))d(φ2vi), δvi)L2(∂Bq(βr))

= (φδvi, φδvi)L2(Bq(βr)) + 2(φδvi, sgn ∗ (dφ ∧ ∗vi))L2(Bq(βr))

+ (φdvi, φdvi)L2(Bq(βr)) + 2(φdvi, dφ ∧ vi)L2(Bq(βr)).

We also have

(d(φvi), d(φvi))L2(Bq(βr)) + (δ(φvi), δ(φvi))L2(Bq(βr))

= ‖dφ ∧ vi‖2
L2(Bq(βr)) + ‖dφ ∧ ∗vi‖2

L2(Bq(βr))

=

∫

Bq(βr)
|dφ ∧ vi|2 + |dφ ∧ ∗vi|2dv

≤ sup |∇φ|2 · ‖vi‖2
L2(Bq(βr))

≤ 8

(β − 1)2r2
‖vi‖2

L2(Bq(βr))

=
8

(β − 1)2r2
,

since vi is orthonormal on Bq(βr). Therefore, we get
∫

Bq(r)
|vi|2 dv ≤

∫

Bq(βr)
|φvi|2 dv

≤ λ−1
i (βr)

{

(d(φvi), d(φvi))L2(Bq(βr))

+ (δ(φvi), δ(φvi))L2(Bq(βr))

}

≤ 8

(β − 1)2r2λi(βr)
.

Hence, if we let Y represent the space spanned by {vs+1, . . . , vk}, then

dimY = k − s,

and

trLβr
Lr(Y ) =

k
∑

i=s+1

∫

Bq(r)
|vi|2 dv ≤

k
∑

i=s+1

8

(β − 1)2r2λi(βr)
,

completing the proof. q.e.d.

The next result is due to Li [8].
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Lemma 3.3. Let K be a k-dimensional linear space of p-forms de-

fined on a manifold N with polynomial volume growth of degree m. Sup-

pose each u ∈ K is of polynomial growth of at most degree l. For

any β > 1, θ > 0, and r0 > 0, there exists r > r0 such that if

{ui}k
i=1 is an orthonormal basis of K with respect to the inner prod-

uct Lβr(u, v) =
∫

Bq(βr)〈u, v〉, then

k
∑

i=1

∫

Bq(r)
|ui|2 ≥ kβ−(2l+m+θ).

We are now ready to prove Theorem 1.1 which is restated here.

Theorem 3.4. Let (Mm, g) be a complete Riemannian manifold with

Kp = 0 on (M, g). Then for any uniformly equivalent metric g′ on M

and for all l ≥ 1, the space H
p
l (M, g′) is finite dimensional and its

dimension satisfies the inequality

dimH
p
l (M, g′) ≤ C lν

for some constants C > 0 and ν > 2.

Proof. For any k-dimensional subspace V of H
p
l (M), by Lemma 3.3,

where we set β = 1 + 1
l and δ = 1, there exists R > 0 such that

C k ≤ trLβR
LR(V ).

Let λk be the k-th eigenvalue of the Hodge Laplacian acting on p-
forms on Bq(R) satisfying the absolute boundary conditions on ∂Bq(R)
under the metric g′. Then by Lemma 2.1 and Proposition 2.2, we have

λk ≥ C k2/ν · R−2,

for all k > dimHp(Bq(R)). Combining with Lemma 3.2, we find there
exists a subspace Y in V with

dimY = dim V − dim Hp(Bq(R))

so that

C k ≤ trLβR
LR(V )

≤ trLβR
LR(Y ) + dimHp(Bq(R))

≤ C l2 k1−2/ν .

We conclude that k ≤ C lν by using Lemma 2.1 and Proposition 2.2
on the estimate of dimHp(Bq(R)). Since V is arbitrary, we have proved
that

dimH
p
l (M, g′) ≤ C lν

for all l ≥ 1. q.e.d.
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