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ON STABILITY AND THE CONVERGENCE OF

THE KÄHLER-RICCI FLOW

Duong H. Phong & Jacob Sturm

Abstract

Assuming uniform bounds for the curvature, the exponential
convergence of the Kähler-Ricci flow is established under two con-
ditions which are a form of stability: the Mabuchi energy is bound-
ed from below, and the dimension of the space of holomorphic
vector fields in an orbit of the diffeomorphism group cannot jump
up in the limit.

1. Introduction

The normalized Kähler-Ricci flow exists for all times, and converges
when the first Chern class is negative or zero [4, 35]. However, when
the first Chern class is positive, there are very few known cases of con-
vergence. In one complex dimension, Hamilton [19] used entropy esti-
mates to show convergence under the assumption of an initial metric of
everywhere positive scalar curvature. This last assumption was removed
later by Chow [12]. In higher dimensions, convergence was established
only in the case of positive biholomorphic sectional curvature, first by
X.X. Chen and Tian [9, 10] using Liouville energy functionals, and then
by Cao, B.L. Chen, and Zhu [5] using the recent injectivity radius bound
of Perelman [25].

The convergence of the Kähler-Ricci flow for a Kähler manifold X of
positive Chern class can be expected to be a difficult issue, since the
limit would give a Kähler-Einstein metric, and not all Fano manifolds
admit such metrics. According to a well-known conjecture of S.T. Yau
[36], the existence of a Kähler-Einstein metric should be equivalent
to the stability of X in the sense of geometric invariant theory. It is
then an important problem to relate stability to the convergence of the
Kähler-Ricci flow.

In this paper, we take a first step in this direction. More specifi-
cally, we consider the convergence of the Kähler-Ricci flow on a compact
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Kähler manifold (X, ω0) under two assumptions which are both a form
of stability:

(A) The Mabuchi energy νω0(φ) is bounded from below.

(B) Let J be the complex structure of X, viewed as a tensor. Then
the C∞ closure of the orbit of J under the diffeomorphism group of X
does not contain any complex structure J∞ with the property that the
space of holomorphic vector fields with respect to J∞ has dimension
strictly higher than the dimension of the space of holomorphic vector
fields with respect to J .

It is well-known by the work of Bando and Mabuchi [3] that the exis-
tence of a Kähler-Einstein metric implies condition (A). This condition
is also indirectly related to the notion of K-stability [14, 33]. Indeed,
if X is imbedded into CPN by sections of the anti-pluricanonical bun-
dle, then K-stability can be viewed as a condition on the asymptotic
behavior of the Mabuchi energy functional νω0(φ) along the orbits of
GL(N + 1). In particular, it has been shown by Donaldson [14] that
K-stability implies the lower boundedness of the Mabuchi energy for
toric varieties of dimension n = 2.

The condition (B) is arguably an even more direct manifestation of
stability. The stability of a geometric structure should be a condition
insuring that the moduli space of such structures be Hausdorff. All the
tensors J in the same orbit of the diffeomorphism group of X define
the same holomorphic structure. If, as ruled out by condition (B), the
dimension of the space of holomorphic vector fields jumps up in the limit,
then the limit would be different, and the moduli space of holomorphic
structures would not be Hausdorff.

Theorem 1. Let (X, J) be a compact complex manifold of dimension

n. Let ġk̄j = −Rk̄j + µgk̄j be the normalized Kähler-Ricci flow, with

initial metric gk̄j(0), and µgk̄j(0) a Kähler metric in the first Chern

class of X. Here µn denotes the total scalar curvature. Assume that

the Riemann curvature tensor is uniformly bounded along the flow.

1. If condition (A) holds, then we have for any s ≥ 0

(1.1) limt→∞||Rk̄j(t) − µgk̄j(t)||(s) = 0,

where || · ||(s) denotes the Sobolev norm of order s with respect to

the metric gk̄j(t).

2. If both conditions (A) and (B) hold, and if the diameter of X
is uniformly bounded along the flow, then the Kähler-Ricci flow

converges exponentially fast in C∞ to a Kähler-Einstein metric.

A recent but as yet unpublished work of Perelman shows that the
scalar curvature and the diameter of the manifold always remain
bounded under the Kähler-Ricci flow. Thus the diameter and curvature



ON STABILITY AND THE CONVERGENCE ... 151

assumptions in Theorem 1 may be significantly less restrictive than they
appear at first sight. The following theorem provides a setting where
the curvature assumptions in Theorem 1 can be obtained by combining
Perelman’s result with a relatively mild curvature positivity condition
on the initial metric:

Theorem 2. Let X be a compact Kähler manifold of dimension

n = 2, which satisfies the conditions (A) and (B). Assume that the

scalar curvature and the diameter of X are bounded from above along

the Kähler-Ricci flow with a Kähler initial metric in the first Chern

class of X. Assume further that

(C) The initial metric gk̄j(0) has non-negative Ricci curvature and

its traceless curvature operator is 2-nonnegative.

Then the Kähler-Ricci flow converges exponentially fast in C∞ to a

Kähler-Einstein metric.

The notion of 2-nonnegativity for the Riemann curvature operator
was introduced by H. Chen [8]. The condition (C) was introduced
in [28], where it was shown in 2 dimensions to be preserved by the
Kähler-Ricci flow. It should perhaps be mentioned that the case of an
initial metric with positive bisectional curvature in arbitrary dimension
is another case where the uniform boundedness curvature conditions of
Theorem 1 would be satisfied by the work of Cao, B.L. Chen and Zhu
[5], or if we invoke Perelman’s unpublished result. Indeed, by earlier
work of Mok [22] and Bando [2], the positivity of the bisectional curva-
ture is preserved. Thus the boundedness of the scalar curvature implies
the boundedness of the bisectional curvature, and hence of the sectional
curvature.

Without stability assumptions, the Kähler-Ricci flow is expected to
produce either singularities or solitons in the infinite time limit. For such
results, under similar assumptions of uniform bounds on the curvature,
see the recent works of N. Sesum [30, 31].

2. Part 1 of Theorem 1: Sobolev estimates

In this section, we prove the first statement in Theorem 1.

• We start with some preliminary considerations about the Kähler-
Ricci flow and the Mabuchi functional. Since the initial metric gk̄j(0) is

in c1(X), and since the Kähler-Ricci flow manifestly preserves the first
Chern class, we can write at all times

(2.1) Rk̄j − µ gk̄j = ∂j∂k̄h

for some smooth real scalar function h = h(t) defined up to a (time-
dependent) additive constant. We fix an arbitrary smooth choice of such
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constants. Since all our estimates ultimately depend only on ∇h, such
choices are immaterial. Now h flows according to

(2.2) ḣ = ∆h + µh + c

where c is a time-dependent constant, and ∆ = ∇k̄∇k̄. To see this, it
suffices to differentiate the defining equation for h with respect to time.
Since Ṙk̄j = −∂j∂k̄(g

lp̄ġp̄l) = ∂j∂k̄R, we obtain ∂j∂k̄R+µ∂j∂k̄h = ∂j∂k̄ḣ,

and hence R+µh+c′ = ḣ, where c′ is a constant. But (2.1) also implies
that R−µn = ∆h, so that the desired identity follows with c = c′ +µn.

• Next, the Mabuchi energy functional νω0(φ) is the functional on the
space of Kähler potentials {φ : gk̄j = gk̄j(0) + ∂j∂k̄φ > 0} defined by
its variation

(2.3) ν̇ω0(φ) = −
1

V

∫

X
φ̇(R − µn)ωn,

where the Kähler form ω is defined by ω =
√
−1
2π gk̄jdzj ∧ dz̄k and

V =
∫

X ωn. To determine φ̇ in the case of the Kähler-Ricci flow, we
rewrite the defining equation ġk̄j = −Rk̄j + µgk̄j = −∂j∂k̄h in terms of

φ. This gives φ̇ = −h + c′′, with c′′ another time-dependent constant.
Substituting this in the preceding equation, we get

(2.4) ν̇ω0(φ) = −
1

V

∫

X
|∇h|2ωn.

• We return now to the proof of part 1 of Theorem 2 proper. Our first
step is to show that the lower bound for the Mabuchi energy functional
together with the uniform boundedness of the scalar curvature implies
that

(2.5)

∫

X
|∇h|2ωn → 0, t → ∞.

Now integrating ν̇ω0(φ) and using the lower bound for νω0(φ) gives

(2.6)
1

V

∫ T

0
dt

∫

X
|∇h|2ωn = νω0(φ0) − νω0(φT ) ≤ C.

for all T > 0, which implies that
∫

X |∇h|2ωn converges to 0 along some
sequence of times tending to ∞. To get full convergence, we consider
the flow of |∇h|2. We have the following Bochner-Kodaira formula
(2.7)

∆|∂jh|
2 = gjk̄∆(∂jh) ∂kh+gjk̄∂jh ∆∂kh+Rjk̄∂jh ∂kh+|∇̄∇h|2+|∇∇h|2.

Comparing this with the time variation

(2.8) (|∂jh|
2)˙ = gjk̄(∂jh)˙∂kh + gjk̄∂jh (∂kh)˙+ Rjk̄∂jh ∂kh − µ|∇h|2
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and the flow (∂jh)˙ = ∆ (∂jh) + µ∂jh for ∂jh, we find

(2.9) (|∇h|2)˙− ∆|∇h|2 = −|∇̄∇h|2 − |∇∇h|2 + µ|∇h|2.

Let Y (t) =
∫

X |∇h|2ωn. Since (ωn)˙ = (−R + µn)ωn, we obtain

(2.10) Ẏ = µ(n+1)Y −

∫

X
|∇h|2R ωn−

∫

X
|∇̄∇h|2ωn−

∫

X
|∇∇h|2ωn.

Say |R| ≤ C. Then Ẏ ≤ (µ(n + 1) + C)Y , and hence

Y (t) ≤ Y (s)e(µ(n+1)+C)(t−s)

for all t ≥ s. Since the bound (2.6) implies that
∑∞

m=0

∫ m+1
m dtY (t) <

∞, there must be a sequence tm ∈ [m, m + 1) with Y (tm) → 0. The

previous bound implies Y (t) ≤ Y (tm)eµ(n+1)+C for all t ∈ [m, m + 1),
and hence Y (t) → 0 as t → ∞.

• The next step is to extend this convergence to the higher derivatives
of h. Since Y (t) is now known to tend to 0, the integration of (2.10)
gives

∫ ∞

0
dt

∫

X
|∇̄∇h|2ωn +

∫ ∞

0
dt

∫

X
|∇∇h|2ωn(2.11)

= Y (0) + µ(n + 1)

∫ ∞

0
dt

∫

X
|∇h|2ωn −

∫ ∞

0
dt

∫

X
|∇h|2R ωn.

This implies that the L2 norms of ∇̄∇h and ∇∇h tend to 0 along some
subsequence of times going to infinity. To establish convergence, we
need as previously the flows for ∇̄∇h and ∇∇h. It is convenient to set
up a systematic induction argument as follows. Set

hK̄J = ∇js · · ·∇j1∇k̄r
· · ·∇k̄1

h,(2.12)

hK̄J · h′
K̄J

= gLK̄gJM̄hK̄Jh′
L̄M

,

|∇s∇̄rh|2 = hK̄J · hK̄J ,

gLK̄gJM̄ = gj1m̄1 · · · gjsm̄sgl1k̄1 · · · glr k̄r

for K = (k1 · · · kr), J = (j1 · · · js), L = (l1 · · · lr), M = (m1 · · ·ms).
Instead of Bochner-Kodaira formulas for the complex Laplacian ∇p̄∇p̄,
it is simpler to use the real Laplacian ∆R = ∆+∆̄, which gives at once

1

2
∆R|∇s∇̄rh|2(2.13)

=
1

2
∆RhK̄J · hK̄J + hK̄J ·

1

2
∆RhK̄J + |∇hK̄J |

2 + |∇̄hK̄J |
2.
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The time evolution of |∇s∇̄rh|2 is given by

(|∇s∇̄rh|2)˙ = ḣK̄J · hK̄J + hK̄J · ḣK̄J − µ(r + s)|∇s∇̄rh|2(2.14)

+
r

∑

α=1

Rlαk̄αhk̄1···k̄α···k̄r J h̄Jk̄r···
lα

···k̄1

+
s

∑

β=1

Rjβm̄βhK̄ j1···jβ ···js
h̄j1···

m̄β

···jsK̄ .

Now we need the flow for the tensor hK̄J . By induction, we find

ḣK̄J =
1

2
∆RhK̄J + µhK̄J −

1

2

r
∑

α=1

Rk̄α

m̄αhk̄1···m̄α···k̄r J(2.15)

−
1

2

s
∑

β=1

Rmβ
jβ

hK̄j1···mβ ···js

−
∑

1≤α<β≤s

Rmα
jα

mβ
jβ

hK̄j1···mα···mβ ···js

−
∑

1≤α<β≤r

Rk̄α

m̄α
k̄β

m̄βhk̄1···m̄α···m̄β ···k̄r J

+
r

∑

α=1

s
∑

β=1

Rk̄αjβ

m̄αnβhk̄1···m̄α···k̄rj1···nβ ···js

+

r+s−1
∑

u=1

DuRiem ⋆ Dr+s−uh.

Here D denotes covariant differentiation in either j or j̄ indices, and
Duh and DuRiem denote all tensors obtained by u covariant differen-
tiations of h and of the Riemann curvature tensor respectively. The
⋆ symbol indicates general pairings of these tensors. The last term in
the above equation is a lower order term which is actually absent when
r = s = 1. Assembling the equations (2.13), (2.14), and (2.15), we
obtain

(|∇s∇̄rh|2)˙ =
1

2
∆R|∇s∇̄rh|2 − |∇s+1∇̄rh|2 − |∇̄∇s∇̄rh|2(2.16)

+ µ(2 − r − s)|∇s∇̄rh|2

+ 2
r

∑

α=1

s
∑

β=1

Rk̄αjβ

m̄αnβhk̄1···m̄α···k̄rj1···nβ ···js
h̄K̄J

− 2
∑

1≤α<β≤s

Rmα
jα

mβ
jβ

hK̄j1···mα···mβ ···js
h̄K̄J
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− 2
∑

1≤α<β≤r

Rk̄α

m̄α
k̄β

m̄βhk̄1···m̄α···m̄β ···kr J h̄K̄J

+ 2
r+s−1
∑

u=1

DuRiem ⋆ Dr+s−uh ⋆ ∇s∇̄rh.

Set Yr,s(t) =
∫

X |∇s∇̄rh|2ωn. According to [20, 32], the uniform
boundedness of the Riemann curvature tensor in the Ricci flow implies
the uniform boundedness of the covariant derivatives of the Riemann
curvature tensor of any fixed order. The argument applies verbatim to
the normalized Kähler-Ricci flow. Thus the previous identity implies
that

Ẏr,s(t) ≤ C1 Yr,s(t) + C2

(
∫

X
|Dr+s−uh|2ωn

)1/2

Y 1/2
r,s (t)(2.17)

−

∫

X
|∇s+1∇̄rh|2ωn −

∫

X
|∇̄∇s∇̄rh|2ωn,

where a summation over 1 ≤ u ≤ r + s − 1 is understood, we have
bounded all curvature terms by constants, and applied the Cauchy-
Schwarz inequality to the lower order terms. This implies for any a ≥ b

Yr,s(a) − Yr,s(b)(2.18)

≤ C1

∫ a

b
dt Yr,s(t) + C2

∫ a

b
dt

(
∫

X
|Dr+s−uh|2ωn

)1/2

Y 1/2
r,s (t)

≤ C1

∫ ∞

b
Yr,s(t)

+ C2

(
∫ ∞

b
dt

∫

X
|Dr+s−uh|2ωn

)1/2 (
∫ ∞

b
dt Yr,s(t)

)1/2

.

We argue now by induction. Assume that
∫ ∞

0
dt

∫

X
|Dvh|2ωn < ∞, for v ≤ r + s(2.19)

∫

X
|Dvh|2ωn → 0, for v < r + s.

Then Yr,s(t) is in particular integrable on [0,∞), and arguing as be-
fore, we can choose bm ∈ [m, m + 1) with Yr,s(bm) → 0. The estimate
(2.18) applied with b = bm and m large enough shows that Yr,s(t) → 0.
Since any covariant derivative of h of order r + s differs from covariant
derivatives of the form ∇s∇̄rh and ∇s∇̄rh by DuRiem ⋆ Dr+s−uh with
u ≥ 1, and since all derivatives of the Riemann curvature tensor are
bounded, it follows from the second induction hypothesis and the fact
that Yr,s(t) → 0 that

∫

X |Dr+sh|2ωn → 0.

To establish the first induction hypothesis at order r+s+1, we return
to the equation (2.17). Integrating from 0 to ∞, and applying again the
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Cauchy-Schwarz inequality, we obtain
∫ ∞

0
dt

∫

X
|∇s+1∇̄rh|2ωn +

∫ ∞

0

∫

X
|∇̄∇s∇̄rh|2ωn(2.20)

≤ Yr,s(0) + C1

∫ ∞

0
dt Yr,s(t)

+ C2

(
∫ ∞

0
dt

∫

X
|Dr+s−uh|2ωn

)1/2 (
∫ ∞

0
dt Yr,s(t)

)1/2

.

This implies that the L2 norms of ∇s+1∇̄rh and ∇̄∇s∇̄rh are integrable
with respect to time on [0,∞). Using the first induction hypothesis and
again the uniform boundedness of the Riemann curvature tensor and
its derivatives, we can deduce that

∫

X |Dr+s+1h|2ωn is integrable with
respect to time on [0,∞). This completes the induction argument. Since
Rk̄j − µgk̄i is given by ∂k̄∂jh, the L2 convergence to 0 of all covariant
derivatives of h implies the convergence to 0 of all Sobolev norms of
Rk̄j − µgk̄j . The proof of the first part of Theorem 1 is complete.

3. Part 2 of Theorem 1: convergence of the metrics

Assuming now condition (B) and the uniform boundedness of the di-
ameter of X, we wish to establish the convergence of the metrics gk̄j(t)
as t → ∞. The uniform boundedness of the curvature together with the
uniform boundedness of the diameter imply the uniform boundedness
from below of the injectivity radius [7]. Since the volume is fixed under
the normalized flow, the uniform control of the diameter and the injec-
tivity radius imply the uniform control of the Sobolev constant. Thus
the equation (1.1) now implies

(3.1) supX |Dpġk̄j(t)|t = supX |Dp(Rk̄j(t) − µgk̄j(t))|t → 0,

for any fixed integer p, where we have introduced the lower index t to
stress that the norms are taken with respect to the metric gk̄j(t). How-

ever, the convergence to 0 of |ġk̄j(t)|t does not guarantee the convergence
of the metrics themselves. In fact, it does not even guarantee that they
are uniformly equivalent.

We also note that the uniform boundedness of the volume, diameter,
injectivity radius, and curvature implies that the metrics gk̄j(t) have

uniform bounded geometry, in the sense of Gromov [17], in fact uniform
bounded C∞ geometry, since all covariant derivatives of the curvature
are also bounded uniformly. Thus, by passing to a subsequence and
applying the C∞ version of Gromov compactness due to Hamilton [21],
we can find diffeomorphisms Ftj so that the pull-backs (Ftj )∗(g(tj))
converge in C∞. But we have no control over the diffeomorphisms
Ftj and cannot deduce from this the convergence of the metrics gk̄j(tj)
themselves. As we saw earlier, this issue of diffeomorphisms underlies
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the notion of stability, and it appears now central to the problem of
convergence of the flow. We shall see later, however, that Gromov
compactness can be put to good use in the proper context.

• To overcome these difficulties, we shall establish the exponential
decay of |ġk̄j(t)|t. Let Y =

∫

X |∇h|2ωn as before. Then we have

(3.2)

Ẏ =−

∫

X
|∇h|2(R−µn)ωn−

∫

X
∇jh∇k̄h(Rk̄j−µgk̄j)ω

n−2

∫

X
|∇̄∇̄h|2ωn.

This follows from either the equation (2.9) or (2.10), the fact that (ωn)̇ =
(−R + µn)ωn, and the Bochner-Kodaira formula for vector fields V =
(V j),

(3.3) ||∇V ||2 = ||∇̄V ||2 +

∫

X
Rk̄jV

j V̄ k̄ ωn

applied to V j = gjk̄∂k̄h = ∇jh (note that ∇jh = (∇̄h)j). The identity
(3.2) shows that the only chance of getting exponential decay is by ob-
taining a strictly positive lower bound for

∫

X |∇̄∇̄h|2ωn =
∫

X |∂̄V |2ωn.

• Let λt be the lowest strictly positive eigenvalue of the complex

Laplacian −∆t = −gjk̄∇j∇k̄ = −∂̄†∂̄ on T 1,0(X) vector fields. By the
elliptic theory, we have

(3.4) λt ||V − πtV ||2 ≤

∫

X
|∇̄V |2ωn,

where πt is the orthogonal projection with respect to gk̄j(t) on the space

H0(X, T 1,0) of holomorphic vector fields. When V is the gradient of the
function h as in our present case, it turns out that ||πtV ||2 is exactly the
Futaki invariant of the manifold X, applied to πtV . Recall that the Fu-
taki invariant Fut is the character defined on the space of holomorphic
vector fields by [15]

(3.5) Fut(W ) =

∫

X
(Wh)ωn, W ∈ H0(X, T 1,0).

It is independent of the choice of metric within the Kähler class. The
main observation for our purposes is

(3.6) ||πtV ||2 = Fut(πtV )

when V j =∇jh. To see this, we note 〈πtV, πtV 〉=〈V, π2
t V 〉=〈V, πtV 〉 =

〈∇̄h, πtV 〉 =
∫

X (πtV )(h)ωn = Fut(πtV ) = Fut(πtV ). Thus the in-
equality (3.2) implies

Ẏ ≤ −2 λt Y + 2λt Fut(πt(∇
jh))(3.7)

−

∫

X
|∇h|2(R − µn)ωn −

∫

X
∇jh∇k̄h(Rk̄j − µgk̄j)ω

n.
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This key inequality holds in all generality for the normalized Kähler-
Ricci flow.

• Assume now all the conditions stated for part 2 of Theorem 1.
Then the lower boundedness of the Mabuchi energy functional implies
that the Futaki invariant vanishes identically (see [34]). Furthermore,

|∇jh∇k̄h(Rk̄j −µgk̄j)| ≤ |∇h|2|Rk̄j −µgk̄j |t, so that the convergence of

|Rk̄j −µgk̄j |t to 0 established in (1.1) implies that for any ǫ > 0, we have

(3.8) Ẏ ≤ (−2 λt + ǫ)Y, t ∈ [Tǫ,∞),

for Tǫ large enough. Thus establishing exponential convergence reduces
to showing that λt is uniformly bounded from below by a positive con-
stant.

• The bounds from below for λt do not appear to be accessible by
Bochner-Kodaira techniques, as these apply to a negative bundle in-
stead of a positive one, as is here the case. Rather, they should reflect
the bounded geometry, just as in the case of the lowest eigenvalue for
the scalar Laplacian. In that case, we can either construct explicitly
the Green’s function as in [1] or make use of estimates for the low-
est eigenvalue such as Cheeger’s [6] in terms of the isoperimetric and
Sobolev constants [11]. However, no simple characterization of λt seems
available in the case of vector fields. Instead, we shall establish the fol-
lowing estimate by using a complex version of the Gromov compactness
theorem:

Theorem 3. Let X be a compact, complex manifold of dimension

n. Assume that its complex structure J is stable in the sense that it

satisfies the condition (B) stated in the Introduction. Fix V > 0, D > 0,
δ > 0, and constants Ck. Then there exists an integer N and a constant

C = C(V, D, δ, Ck, n, N) > 0 such that

(3.9) C ||W ||2 ≤ ||∂̄W ||2, W ⊥ H0(X, T 1,0),

for all Kähler metrics g on X whose volumes and diameters are bounded

above by V and D respectively, whose injectivity radius is bounded from

below by δ > 0, and the k-th derivatives of whose curvature tensors are

uniformly bounded by Ck, for all k ≤ N .

Assuming Theorem 3 for the moment, we deduce that there exists a
positive constant c so that λt > 2c for all t. Thus for t large enough,
Y (t) satisfies the differential inequality

(3.10) Ẏ (t) ≤ −c Y (t)

from which it follows that Y (t) decreases exponentially fast

(3.11)

∫

X
|∇h|2ωn ≤ C e−c t.
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• Once the exponential decay of the L2 norm of ∇h has been es-
tablished, it is not difficult to deduce the exponential decay of the L2

norms Yr,s of ∇̄r∇sh, where all norms are taken with respect to the
metric gk̄j(t). For example, the inequality (2.17) implies that

Ẏr,s(t)

(3.12)

≤ −2c Yr,s(t) +

(

C1 +
1

2
+ 2c

)

Yr,s(t)

+ C2

∫

X
|Dr+s−uh|2ωn −

∫

X
|∇s+1∇̄rh|2ωn −

∫

X
|∇̄∇s∇̄rh|2ωn,

and on the right hand side, a summation over all indices u in the range
1 ≤ u ≤ r + s − 1 is understood. For any ǫ > 0, there exists a constant
c(ǫ) independent of t so that

Yr,s(t) ≤ ǫ

(
∫

X
|∇s+1∇̄rh|2ωn +

∫

X
|∇̄∇s∇̄rh|2ωn

)

(3.13)

+ c(ǫ)

∫

|Dr+s−1h|2ωn.

By choosing ǫ small enough, we can deduce that

Ẏr,s(t) ≤ −2c Yr,s(t) + C3

∑

1≤u≤r+s−1

∫

X
|Dr+s−uh|2ωn(3.14)

≤ −2c Yr,s(t) + C4 e−c t,

where in the last inequality, we have assumed by induction that all L2

norms of Dr+s−uh decay exponentially. Integrating between t and 0, we
see that Yr,s(t) decays exponentially also.

• From the exponential decay of the L2 norms of ∇ph for all p ≥ 1,
we deduce from the Sobolev imbedding theorem with uniform constants
that we have exponential decay of the Ck norms

(3.15) supX |∇kh|2t ≤ Ck e−c t.

• The next step is to show that all metrics gk̄j(t) are uniformly equiv-
alent, that is, bounded by one another up to a constant independent of
t. According to a lemma of Hamilton ([18], Lemma 14.2), it suffices to
show that

(3.16)

∫ ∞

T
supX |ġk̄j |t dt < ∞.

Since ġk̄j(t) = ∂k̄∂jh, the preceding result implies that |ġk̄j |t decays
exponentially as t → ∞. This implies the desired inequality, and hence
all metrics gk̄j(t) are uniformly equivalent.
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• Since all metrics gk̄j(t) are now known to be equivalent, we can now
write for some strictly positive constant c

|gk̄j(T )W jW̄ k̄ − gk̄j(S)W jW̄ k̄|(3.17)

≤

∫ T

S
supX |ġk̄j |t|W |2t dt

≤ C |W |2t=0

∫ T

S
supX |ġk̄j |t dt,

≤ C ′ |W |2t=0 (e−c T/2 − e−c S/2).

This tends to 0 exponentially as S, T → ∞. Thus the metrics gk̄j(t)

converge exponentially fast as t → ∞ to some metric gk̄j(∞), which is

also equivalent to all the gk̄j(t)’s. Iterating the arguments shows that

the convergence is in C∞. Since ∂k̄∂jh tends to 0, the metric gk̄j(∞) is
clearly Kähler-Einstein. The proof of Theorem 1 is complete. q.e.d.

4. Lower bounds for the ∂̄ operator on vector fields and

Gromov compactness

It remains to prove Theorem 3. This theorem is essentially a con-
sequence of the following Kähler version of the Gromov compactness
theorem, combined with some elementary perturbation theory for Lapla-
cians:

Theorem 4. Let X be a compact smooth manifold. Let (g(t), J(t)) be

any sequence of metrics g(t) and complex structures J(t) on X such that

g(t) is Kähler with respect to J(t). Assume that the g(t)’s have bounded

geometry, in the sense that their volumes, diameters, curvatures, and co-

variant derivatives of their curvature tensor are all bounded from above,

and their injectivity radii are all bounded from below. Then there exists

a subsequence tj, and a sequence of diffeomorphisms Ftj : X → X
such that the pull-back metrics g̃(tj) = F ∗

tjg(tj) converge in C∞ to

a smooth metric g̃(∞), and the pull-back complex structure tensors

J̃(tj) = F ∗
tjJ(tj) converge in C∞ to an integrable complex structure

tensor J̃(∞). Furthermore, the metric g̃(∞) is Kähler with respect to

the complex structure J̃(∞).

Proof of Theorem 4. The C∞ part of the theorem, without reference
to complex structures and Kähler forms, is actually the version of the
Gromov compactness theorem established by Hamilton [20], where Ck

uniform bounds on the curvature are assumed, instead of just C0 bounds
as in the original version of Gromov, Peters [25], Greene and Wu [16].
(Hamilton’s version is even more difficult, because no diameter bound
is assumed. In that case, the diffeomorphisms Ftj map a sequence of
exhausting compact subsets of X into a sequence of exhausting compact
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subsets of a limiting manifold X̃, which may not be compact. One
also needs to choose reference points Pt and reference frames at these
points.) Thus, passing to a subsequence, we assume that there exist
diffeomorphisms so that g̃(t) converges, and concentrate on finding a

subsequence tj so that the complex structures J̃(tj) converge also.

First we recall the definitions: To say that J is a complex structure
is to say that J2 = −I and its Nijenhuis tensor vanishes. To say that
a metric g is compatible with a complex structure J is to say that
g(u, v) = g(Ju, Jv) for all u, v ∈ TX. In local coordinates, giju

ivj =

gklJ
k
i uiJ l

jv
i, in other words

(4.1) gij = Jk
i gklJ

l
j .

Let g = g̃(∞) and, whenever convenient, write also g(t) = gt, J(t) =
Jt for all values of t including ∞. Let ∇ be the Riemannian connection
associated to g. It suffices to show that there are constants Cα such
that

(4.2) |∇αJt|g ≤ Cα for all t.

We do this first in the case α = 0: Since gt → g, it suffices to prove

(4.3) |Jt|gt ≤ Cα for all t.

Working in normal coordinates for gt, the equation (4.1) implies, for
each i, that

1 =
∑

k

(Jt)
k
i (Jt)

k
i .

Thus |Jt|gt = n, and this proves (4.3).

Now we prove (4.2) by induction: It is true when α = 0. Since
∇tJt = 0 (this is the definition of “Kähler”) we have

(4.4) ∇αJt = ∇α−1(∇−∇t)Jt.

Let Ht = ∇−∇t. Then (Ht)gt = ∇gt. In other words,

(4.5) (Ht)
p
ki(gt)pj + (Ht)

p
kj(gt)pi = ∇k(gt)ij .

Permuting the indices gives

(Ht)
p
ij(gt)pk + (Ht)

p
ik(gt)pj = ∇i(gt)jk(4.6)

(Ht)
p
jk(gt)pi + (Ht)

p
ji(gt)pk = ∇j(gt)ki.

Thus

(4.7) 2(Ht)
p
ij = (gt)

pk[∇j(gt)ki + ∇i(gt)jk −∇k(gt)ij ].

This shows that Ht and all its derivatives are uniformly bounded: in-
deed, Ht converges in C∞ to H∞ = 0. It follows from (4.4) that Jt

and its derivatives are bounded. Thus a subsequence converges, and
the limit J̃∞ is clearly a complex structure. Since HtJt = ∇Jt, we get
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H∞J̃∞ = ∇J̃∞, but H∞ = 0. Thus J̃∞ = J̃(∞) is Kähler, and the
proof of Theorem 4 is complete. q.e.d.

Proof of Theorem 3. The main step in the proof is to show that, if
(g(t), J(t)) are Kähler metrics which converge in C∞ to (g(∞), J(∞)),
where g(∞) is a Kähler metric with respect to the complex structure
J(∞), and if the dimension of the space of holomorphic vector fields is
the same for all N ≤ t ≤ ∞, then

(4.8) limt→∞λt = λ∞,

where λt is the lowest strictly positive eigenvalue of the Laplacian −∆t =

−∇j̄
t∇tj̄ on the space T 1,0

t (X) of complex tangent vectors with respect to
(g(t), J(t)). Assuming this for the moment, Theorem 3 can be proven by
contradiction: if it does not hold, then there exists a sequence of metrics
g(t) with λt → 0. Passing to a subsequence, we can apply Theorem 4,
and obtain diffeomorphisms Ft so that the metrics g̃(t) = (Ft)∗(g(t))

and complex structures J̃(t) = (Ft)∗(J(t)) converge in C∞ to a metric

g̃(∞) and complex structure J̃(∞). By the preceding inequality, the
lowest eigenvalues of g̃(t) tend then to a strictly positive limit. But
Ft is a biholomorphic isometry between the space X equipped with
the Kähler structure (g(t), J(t)) and the Kähler structure (g̃(t), J̃(t)).

Thus the eigenvalues of (g̃(t), J̃(t)) are the same as the eigenvalues of
(g(t), J(t)). This contradiction proves Theorem 3.

• We turn now to the proof of the eigenvalue limit (4.8). Let || · ||
H

(s)
t

be the Sobolev norm of order s on T (X), taken with respect to the metric
g(t). Since the metrics g(t) converge, we have the following inequalities

|〈U, V 〉t − 〈U, V 〉∞| ≤ ct ||U ||∞||V ||∞, U, V ∈ C∞(X, T (X)),(4.9)

C−1
t ||V ||

H
(s)
t

≤ ||V ||
H

(s)
∞

≤ Ct||V ||
H

(s)
t

, V ∈ C∞(X, T (X))

with constants ct → 0, Ct → 1 as t → ∞. Here 〈·, ·〉t denotes the
inner product with respect to gt. Furthermore, there exist constants
C independent of t so that the elliptic a priori estimate for ∆t holds
uniformly in t:

(4.10) ||V ||
H

(1)
t

≤ C(〈∆tV, V 〉t + || · ||2
H

(0)
t

), V ∈ C∞(X, T 1,0(X)).

Let {φ
(α)
t }1≤α≤N be an orthonormal set of eigenvectors for ∆t

(4.11) ∆tφ
(α)
t = 0, 〈φ

(α)
t , φ

(β)
t 〉t = δαβ.

For each α, the uniform a priori estimate implies that φ
(α)
t is uniformly

bounded in H
(1)
t . But the uniform equivalence of all Sobolev norms

|| · ||
(1)
t to || · ||

(1)
∞ implies that φ

(α)
t is uniformly bounded in H

(1)
∞ . By
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Rellich’s lemma, it follows that there is a subsequence φ
(α)
tj

which con-

verges in L2
∞(X). This implies 〈φ

(α)
∞ , φ

(β)
∞ 〉 = limj→∞〈φ

(α)
t , φ

(β)
t 〉t = δαβ.

Furthermore, ∆∞φ
(α)
∞ = limj→∞ ∆tφ

(α)
t = 0 in the sense of distribu-

tions, which implies by elliptic regularity that φ
(α)
∞ is actually smooth,

and the equation holds in the standard sense. Thus we have shown
that there is a subsequence tj → ∞ so that for each α, the sequence φα

tj

converges in L2 to an orthonormal set φ
(α)
∞ ∈ H0

∞(X, T 1,0(X)).

• We make use now of the assumption that the dimensions of Kt =
ker(∆t) and K∞ = ker(∆∞) are the same. Thus, by passing to a sub-

sequence, we can assume the existence of orthonormal bases {φ
(α)
t } for

Kt = ker(∆t) for 1 ≤ t ≤ ∞, with φ
(α)
t converging to φ

(α)
∞ as t → ∞.

We now show that

(4.12) liminft→∞λt ≥ λ∞.

Let K⊥
t be the orthogonal complement of Kt in L2(X, T 1,0

t (X)), with
respect to the metric g(t). Let ψt ∈ K⊥

t be a lowest eigenfunction of
∆t,

(4.13) ∆tψt = λtψt, ψt ∈ K⊥
t , ||ψt||

2
t = 1.

Fix any ǫ > 0. Assume that there exists a sequence tj → ∞ so that

(4.14) λtj ≤ (1 − ǫ)λ∞

for all tj . We abbreviate tj by t for the sake of notational simplicity.
Then ||∆tψt||L2

t
= λt is bounded, and the uniform elliptic a priori es-

timate implies that ||ψt||H(2)
t

is uniformly bounded. In fact, the same

argument applied to ∆2
t and its corresponding uniform elliptic a priori

estimate implies that ||ψt||H(4)
t

is uniformly bounded. Thus we may as-

sume that ψt converges in H
(2)
∞ . Clearly the limit is in K⊥

∞. Now let
Π denote the orthogonal projection from T (X) to K⊥

∞. It follows im-
mediately from the convergence of (g(t), J(t)) to (g(∞), J(∞)), and the

convergence of the orthonormal basis {φ
(α)
t } of Kt to the orthonormal

basis {φ
(α)
∞ } of K∞ that

(4.15) ||Πψt − ψt||H(2)
∞

→ 0,

for any ψt ∈ K⊥
t converging to a vector field in K⊥

∞. Since ∆t − ∆∞
is a differential operator of second order whose coefficients tend to 0 in
C∞, we have ||∆t − ∆∞||

Hom (H
(2)
∞ ,H

(0)
∞ )

→ 0, where the norm denotes

the operator norm from H
(2)
∞ to H

(0)
∞ . Thus

(4.16) 〈∆tψt, ψt〉t = 〈∆∞(Πψt), Πψt〉∞ − o(1) ≥ λ∞ ||Πψt||
2
∞ − o(1),
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where o(1) denotes terms tending to 0 as t → ∞. But ||Πψt||
2
∞ → 1

as t → ∞. This contradicts (4.14) for t large enough. Our statement
about the liminf λt follows at once.

• Similarly, we can show that limsupλt ≤ λ∞, even without the
assumption about the ranks of Kt not jumping up in the limit. In-
deed, for any fixed ǫ > 0, choose ψ ∈ Ker(∆∞)⊥ with ||ψ||∞ = 1
and λ∞ ≤ 〈∆∞ψ, ψ〉∞ ≤ λ∞ + ǫ. If Πt denotes the orthogonal projec-
tion from T (X) to K⊥

t , then it is easy to see that Πtψ ∈ K⊥
t satisfies

〈∆t(Πtψ), Πtψ〉t → 〈∆∞ψ, ψ〉∞. Since λt ≤ 〈∆tψt, ψt〉t, this gives the
desired estimate. The proof of Theorem 3 is complete. q.e.d.

5. Proof of Theorem 2

When the dimension of X is 2, under the assumption of non-negativity
of the Ricci curvature and 2-nonnegativity of the traceless curvature op-
erator for the initial metric, the non-negativity of the Ricci curvature is
preserved for all times [28]. (The definition of the traceless curvature
operator is given below. Its 2-nonnegativity means that the sum of its
two lowest eigenvalues is non-negative.) Thus the boundedness of the
scalar curvature implies the boundedness of the eigenvalues and hence
of the Ricci curvature.

Next, we consider the curvature tensor Rābc̄d. On a Kähler manifold,
the Riemann curvature operator can be viewed as an operator on the
space of real (1, 1)-forms. The traceless curvature operator Op(S) is the
projection of the Riemann curvature operator on the subspace of trace-
less real (1,1)-forms (see [28], eq.(2.8)). Now, under the assumption
(C), the eigenvalues m1 ≤ m2 ≤ m3 of the traceless curvature opera-
tor Op(S) are bounded: indeed, if they are all non-negative, then this
follows immediately from the boundedness of the scalar curvature since
m1 + m2 + m3 = R/2. Otherwise, the 2-nonnegativity implies that at
most one eigenvalue m1 is negative, and that 0 ≤ m1 + m2. But then

(5.1)
1

2
R = (m1 + m2) + m3 ≥ m3 ≥ 0,

and hence m3 is uniformly bounded. Since 0 ≤ m2 ≤ m3, so is m2.
Finally,

(5.2) 0 ≤
1

2
R = m1 + m2 + m3 ⇒ |m1| ≤ m2 + m3

and thus |m1| is also uniformly bounded. The boundedness of the eigen-
values of Op(S) implies that its entries are also uniformly bounded. This
is because the matrix for Op(S) is symmetric, and thus diagonalizable
by unitary matrices. Next, the curvature operator Rābc̄d = Op(R) can
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be written as

(5.3) Op(R) =

(

R/2 S
St Op(S)

)

where S is the traceless part of the Ricci curvature Sāb = Rāb −Rδāb/n.
We deduce that the entries of Op(R) are all bounded. Hence its eigen-
values are also bounded, establishing the uniform boundedness of the
Riemann curvature tensor Rābc̄d. Theorem 2 follows now from Theo-
rem 1. q.e.d.

6. Remarks

• It is clear from the proof of Theorem 1 that, for any ǫ > 0, the
rate of exponential convergence can be taken to be λ∞ − ǫ, where λ∞
is the lowest strictly positive eigenvalue of the complex Laplacian on
the space T 1,0(X) of vector fields with respect to the Kähler-Einstein
metric gk̄j(∞).

• Several specific notions of stability have been by now proposed
in the literature [13, 14, 24, 27, 29, 33]. At the present time, the
relations between these various notions are still obscure. Nor has any
precise relation between any of them and the convergence of the Kähler-
Ricci flow been as yet proved. This is clearly an important direction
for further investigation, and it can be hoped that the methods of the
present paper would be useful.

• From the proof of part 1 of Theorem 1, it is clear that the assump-
tion that R ≥ 0 (but not necessarily uniformly bounded from above),
combined with lower bounds for the Mabuchi energy also suffices to
show that

∫

X |Dh|2ωn → 0 and
∫ ∞
0 dt

∫

X |D2h|2ωn < ∞.

• The preceding inequality implies that
∫ ∞
0

∫

X(R − µn)2ωn < ∞.
This inequality was instrumental in [9], where it was established under
the stronger assumption of positive biholomorphic sectional curvature,
using a Moser-Trudinger type inequality and suitable generalizations of
Liouville energy functionals.

• The flow for |Drh|2 for general r requires bounds for the full Rie-
mann curvature tensor and its derivatives. However, certain lower order
derivatives can still be bounded under the assumption of lower bounds
for the Mabuchi functional and weaker curvature assumptions. For ex-
ample, under the weaker assumption that |R| remains bounded, we still
have

(6.1)

∫

X
|∇∇̄h|2ωn → 0.
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Indeed, an integration by parts shows that the L2 norm of ∇∇̄h is the
same as the L2 norm of ∆h. The flow of ∆h is easily derived from that
of hk̄j , which is given in (2.15), with no lower order terms as we had

noted earlier. We find (∆h)̇ = ∆(∆h) + Rjk̄hk̄j , and hence

(6.2) (|∆h|2)˙ = ∆(|∆h|2) − 2|∇∆h|2 + 2|∇∇̄h|2∆h + 2µ(∆h)2.

If we let Y =
∫

X |∆h|2ωn =
∫

X |∇∇̄h|2ωn, it follows that

Ẏ = −2

∫

X
|∇∆h|2ωn + 2

∫

X
|∇∇̄h|2∆hωn(6.3)

+

∫

X
(∆h)2(−R + µ(n + 2))ωn ≤ C Y

since ∆h = R− µn is bounded in absolute value by assumption. As we
saw earlier, this differential inequality together with the integrability of
Y (t) over [0,∞) implies that Y (t) → 0 as t → ∞. Substituting this
back in the above equation, we see also that

∫ ∞
0

∫

X |∇(∆h)|2ωn < ∞.

• It would be interesting to find additional conditions, such as the k-
nonnegativity of the traceless curvature operator, which would preserve
the non-negativity of the Ricci curvature under the Kähler-Ricci flow in
higher dimensions. It is already known that the positivity of the Ricci
curvature is not preserved by the Ricci flow on complete manifolds of
dimensions 4 or higher, thanks to the counterexamples constructed by
L. Ni [23].
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MR 1787650, Zbl 0978.53002.

[35] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the com-

plex Monge-Ampere equation, I, Comm. Pure Appl. Math. 31 (1978) 339–411,
MR 0480350, Zbl 0369.53059.

[36] , Open problems in geometry, Proc. Symp. Pure Math. 54 (1993) 1–28,
MR 1216573, Zbl 0801.53001.

Department of Mathematics
Columbia University
New York, NY 10027

E-mail address: phong@cpw.math.columbia.edu

Department of Mathematics
Rutgers University

Newark, NJ 07102

E-mail address: sturm@andromeda.rutgers.edu


