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A UNIVERSAL UPPER BOUND ON DENSITY OF

TUBE PACKINGS IN HYPERBOLIC SPACE

Andrew Przeworski

Abstract

Using techniques developed to solve the corresponding Euclid-
ean problem, we produce a universal upper bound on the density
of a packing of tubes in H

3.

1. Introduction

In E
3, it is rather intuitive that the densest way to pack congruent

infinite right circular cylinders is to have them all parallel to each other
and arranged using the hexagonal packing of circles in E

2. The optimal
density is then π√

12
. That these statements are true was proved [BK90]

by analyzing cross sections of the Dirichlet domain of such a packing.
Our general approach to dealing with the analogous problem in hyper-

bolic space will be to follow the same steps as Bezdek and Kuperberg
[BK90]. However, in H

3, most of the statements from the previous
paragraph become meaningless, or at best ambiguous. Thus, we first
need to find an appropriate hyperbolization of the problem.

One source of trouble is that Euclidean objects often have multiple
equivalent definitions which, when used in hyperbolic space, become
nonequivalent. A Euclidean right circular cylinder can be viewed as
either the set of all points within a fixed distance of some line, or as the
union of all lines passing perpendicularly through some disk. The latter
definition corresponds more closely to the more general meaning of the
word cylinder, but the former definition tends to be more useful. Thus,
we will use a different word, tube, to refer to the set of points within
a fixed distance of some line, and we will then answer questions about
tube packings.

In addition to defining the objects of study, we must define density.
In Euclidean space, it is not usually too difficult to define the density
of a packing, but in hyperbolic space, this can be difficult, even for
disk packings in H

2 [BR03]. To avoid these difficulties, we will define
instead an upper bound on density.
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Definition 1.1. Given a tube T in a packing, let D be its Dirichlet
domain. Choose a point p on the axis of T . For a given positive l,
we truncate T and D along planes perpendicular to the axis and at a
distance of l from p. We may then compute the density of the truncated
tube within the truncated Dirichlet domain. Taking the lim sup as l goes
to infinity produces an upper bound on the density of T within D. An
upper bound on the density of the packing is then the supremum over
all choices of T and p of the upper bound on the density of T within D

(or any number larger than the supremum).

A somewhat lesser difficulty is that while Euclidean space can be
scaled arbitrarily, hyperbolic space can not. Thus, hyperbolic results
will likely depend on the radius of the tubes. We will develop an upper
bound on density which will depend on the tube radius. There are
already various results [MM05, Prz04] of this nature. These prior
results tend to be strongest for large tube radii and practically useless for
small tube radii. This result, as a generalization of a Euclidean result,
will work best for small tube radii. The various results then complement
one another and provide a universal upper bound on density.

Still another difficulty is that the optimal Euclidean packing, if simply
adapted for hyperbolic space, is clearly no longer optimal, leaving us
without a candidate for an optimal packing. If the situation is similar to
that of packing disks in H

n [BR03], it’s possible that the very concept
of an optimal packing is quite complicated. We do not attempt to
determine radii for which there is an optimal packing, nor do we attempt
to present an optimal packing for any particular radius. It is unlikely
that there are any radii for which our result is sharp. In fact, it’s
not even known whether density must approach zero as the tube radius
approaches zero. Our result limits to the Euclidean case in which density
is π√

12
, and thus is possibly very far from optimal for small tube radii.

Nonetheless, all earlier results limited to 1 for small tube radii, so this
is a substantial improvement.

The main result that we prove is:

Theorem 4.3. The density of a packing of tubes of radius r in H
3

is at most
sinh r sin−1 1

2 cosh r

sinh−1 tanh r√
3

.

As a simple consequence, one gets a universal upper bound on density.
In addition we provide applications to hyperbolic manifolds.

2. Parabolas in hyperbolic space

In [BK90], many of the key steps in the proof involve some fairly
obvious properties of parabolas. In the hyperbolization of the problem



A UNIVERSAL UPPER BOUND ... 115

(and solution) one must establish similar properties for the analogous
curves in hyperbolic space. One first needs to determine the correspond-
ing curve and then one needs to develop computational tools for dealing
with it. As it turns out, the hyperbolic analog is, in the Klein model, a
hyperbola.

In [BK90] parabolas appear by determining the curve in some plane
which is equidistant from some point (in the plane) and some line (pos-
sibly not in the plane). We may assume that the line and point are
disjoint. (Actually, the equidistant curve could also be line(s) in some
special cases, but we will ignore this for the moment). We will need
to produce the analogous curve in hyperbolic space, although, as usual,
the hyperbolic computations are significantly more complicated.

We will start in the upper half-space model C×R
+, and then switch

to other models or coordinate systems as the need develops. Let the
(hyperbolic) plane be the (Euclidean) hemisphere of radius 1 centered
at (0, 0). Let the point be (0, 1) and let the line have endpoints (u, 0)
and (v, 0). The line is then the parametrized curve

(

u + v

2
+

u − v

2
cos t,

∣

∣

∣

∣

u − v

2

∣

∣

∣

∣

sin t

)

for t ∈ (0, π).

We note that it’s also possible for a (hyperbolic) line to be a vertical
(Euclidean) line with only one endpoint in C × {0}. However, this case
will be ruled out by later considerations.

Points on the plane which are at a distance d from (0, 1) are of the
form (eiθ tanh d, sech d). If such a point is on the equidistant curve, then
the distance to the line must also be d. Hence, there must be exactly one
point on the line which is at a distance d from (eiθ tanh d, sech d). Then,
we wish to determine whether there is exactly one value of t ∈ (0, π) for
which

cosh d = 1 +
|u+v

2 + u−v
2 cos t − eiθ tanh d|2 + (|u−v

2 | sin t − sech d)2

2|u−v
2 | sin t sech d

.

After some rearrangement, this becomes

|u − v| =
|u+v

2 − eiθ tanh d|2 + |u−v
2 |2 + sech2 d

sin t

+
2Re[(u+v

2 − eiθ tanh d) ū−v̄
2 ] cos t

sin t
.

This is an equation of the form a csc t + b cot t = c with a > |b|. One
can easily check that such an equation has exactly one solution in (0, π)
if and only if a2 = b2 + c2.
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Substituting the values for a, b, and c, we see that
(

∣

∣

∣

∣

u + v

2
− eiθ tanh d

∣

∣

∣

∣

2

+

∣

∣

∣

∣

u − v

2

∣

∣

∣

∣

2

+ sech2 d

)2

=

(

2Re

[(

u + v

2
− eiθ tanh d

)

ū − v̄

2

])2

+ |u − v|2.

After a little manipulation, this becomes

|u − v|2 = (|u − eiθ tanh d|2 + sech2 d)(|v − eiθ tanh d|2 + sech2 d)

= (|u|2 + 1 − 2 tanh d Re[ue−iθ])(|v|2 + 1 − 2 tanh d Re[ve−iθ]).

Up until now, we’ve been using the polar coordinates (d, θ) on the
hyperbolic plane. At this point, it becomes convenient to change to
(x, y) where x = tanh d cos θ and y = tanh d sin θ. These are cartesian
coordinates for the Klein model of the hyperbolic plane. Using these
coordinates, and letting u = u1 + iu2, v = v1 + iv2, we have

(|u|2 + 1 − 2u1x − 2u2y)(|v|2 + 1 − 2v1x − 2v2y) = |u − v|2

which one can readily check is a hyperbola except in some special cases
in which we get lines. One can further check that at the center point of
this hyperbola, the left side of the equation is less than the right side.
At the point (0, 0), the reverse is true, unless uv̄ = −1 which would
violate our assumption about the line and point being disjoint. This
implies that (0, 0) is on the convex side of the hyperbola. The convexity
here is in the Klein model, but since lines in hyperbolic space are also
lines in the Klein model, we see that the convexity is in fact true in the
hyperbolic plane.

3. Minimizing Area

An upper bound on density is defined via the Dirichlet domain for
a given tube in a packing. Following [BK90] we define a Dirichlet

domain slice to be any cross section of the Dirichlet domain by a plane
perpendicular to the axis of the tube. The center of the Dirichlet domain
slice is the point which lies on the axis of the tube. Once we introduce
coordinates, we will usually place this point at the origin.

From here on, we will assume that we are given a specific packing of
tubes of radius r.

First, we develop a relationship between the slice and an upper bound
on density for the packing.

Proposition 3.1. π sinh2 r
min

S

R

S

cosh R dA
is an upper bound on density, where

S varies over all possible slices and R is the distance to the center of

the slice.
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Proof. We will use cylindrical coordinates (R, θ, z) on H
3. Specifi-

cally, choose a half-plane P and call its edge ℓ. Given a point p ∈ H
3,

let p′ be the orthogonal projection of p onto ℓ. Let R be the distance
from p to p′, θ be the angle between the segment pp′ and P (with some
suitably chosen sign convention), and let z be the signed distance from p′

to some chosen basepoint z0 on ℓ. For our purposes, the only restriction
is that ℓ be the axis of a tube T in the packing.

An upper bound on density is then defined as any number as large as

max
T,z0

lim sup
l→∞

Vol(T ∩ {(R, θ, z) : |z| ≤ l})
Vol(D ∩ {(R, θ, z) : |z| ≤ l}) .

Let Sz be the slice of the Dirichlet domain D at height z. Then the
upper bound may be expressed as

max
T,z0

lim sup
l→∞

2πl sinh2 r
∫ l

−l

∫

Sz

cosh R dAdz
≤ 2πl sinh2 r

min
S

2l
∫

S

cosh R dA
.

q.e.d.

To find an upper bound on density, it will be sufficient to find a lower
bound on

∫

S

cosh R dA, a certain weighted area of the slice.

Proposition 3.2. The Dirichlet domain slice is bounded by lines and

Klein model hyperbolas of the type described in the previous section. The

slice is convex.

Proof. A point is on the boundary of the slice if it is equidistant from
the center and the axis of some other tube. Thus the boundary consists
of the hyperbolas described earlier, or when the hyperbolas degenerate,
lines. We had shown earlier that the origin is on the convex side of these
curves. q.e.d.

The points at which these various curves intersect will be called ver-
tices of the slice. They are cross sections of edges of the Dirichlet do-
main.

Proposition 3.3. The distance from any vertex to the center of the

slice is at least sinh−1 2 sinh r√
3

.

Proof. The argument in [BK91] can be copied practically verbatim,
although the computations must be done hyperbolically, to show that
if a sphere in H

3 intersects three disjoint tubes of radius r, then the
radius of the sphere is at least sinh−1 2 sinh r√

3
− r. Since the vertices are

equidistant from at least three tubes, we see that any vertex must be
at least sinh−1 2 sinh r√

3
away from the axes of the tubes. q.e.d.
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Later, we will use this result to truncate the slice, discarding every-
thing that is farther from the center than sinh−1 2 sinh r√

3
. However, we

also need to know how far vertices can be from each other.

Proposition 3.4. Choose two points P1 and P2 on the boundary of

the slice which are at a distance of sinh−1 2 sinh r√
3

from the center and

have no vertex between them. If the points are connected by a line, then

the angular separation (based at the center) between the points is at most

2 sin−1 1
2 cosh r

. If the points are connected by a hyperbola, the angular

separation is at most 2 cos−1

(

cosh r
√

3+4 sinh2 r−1
cosh 2r

)

.

Proof. It’s easy to verify that if a triangle has two equal sides of
length sinh−1 2 sinh r√

3
and the altitude has length at least r then the

angle (between the two equal length sides) is at most 2 sin−1 1
2 cosh r

.
In the case of a hyperbola, we have more work to do. Let the tube

whose Dirichlet domain we’re using be T1. The hyperbola under con-
sideration is equidistant from the axis of T1 and the axis of some other
tube T2. Consider the plane which contains the axis of T2 and is per-
pendicular to the common perpendicular between the axes of T1 and T2.
The points P1 and P2 are at a distance of sinh−1 2 sinh r√

3
from the axis

of T2 so are within this distance of the plane. Thus we are dealing with
the following situation: a line segment BC of unknown length, and two
other line segments AB and CP1 intersecting BC perpendicularly (and
on the same side of BC) where the length of AB is at least 2r, the length
of AP1 is sinh−1 2 sinh r√

3
, and the length of CP1 is at most sinh−1 2 sinh r√

3
.

The segment AB joins the center A of the slice to the constructed plane,
the segment BC lies within the plane, and the other two segments con-
nect P1 to A and the plane. We wish to know how large ∠BAP1 can
be (and then double the result). The Laws of Cosines then indicates
that coshBP1 = cosh AB cosh AP1 − sinhAB sinhAP1 cos ∠BAP1 and
cos ∠ABP1 = cosh AB cosh BP1−cosh AP1

sinh AB sinh BP1
. The Law of Sines further tells us

that cos ∠ABP1 = sin∠CBP1 = sinh CP1

sinh BP1
. Some straightforward algebra

then yields cos ∠BAP1 = sinh AB cosh AP1−sinh CP1

cosh AB sinh AP1
. One can readily check

that this expression is increasing in AB and decreasing in CP1. Thus
cos ∠BAP1 is minimized when AB has length 2r and CP1 has length
sinh−1 2 sinh r√

3
, yielding the desired result. q.e.d.

We are going to cut the Dirichlet domain slice along specific rays orig-
inating at the center, thereby breaking it up into various pieces bounded
by two radial segments and either a line or a hyperbola. We’ll refer to
these pieces as sectors of the slice. Of course, given two radial segments
of specified lengths, there is only one line joining their endpoints. How-
ever, the same two radial segments could be joined by many different
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hyperbolas. Thus we will need to find the hyperbola which minimizes
the weighted area of the sector.

Proposition 3.5. Let P1 and P2 be two points which are at a distance

of sinh−1 2 sinh r√
3

from the center, and are also on the boundary of the

slice. Suppose further that the angle between P1 and P2 is greater than

2 sin−1 1
2 cosh r

and at most 2 cos−1

(

cosh r
√

3+4 sinh2 r−1
cosh 2r

)

. Then among

all hyperbolas of the type discussed earlier which join these points while

staying at least r from the center, the one which minimizes the weighted

area of the sector is the one which is tangent to circle of radius r at the

point halfway between P1 and P2.

Proof. The curves with which we are dealing are specific types of
hyperbolas in the Klein model. A general hyperbola would satisfy
an equation of the form ax2 + bxy + cy2 + dx + ey + f = 0 where
b2 − 4ac > 0. Accounting for choice of scale, there are five parameters
present, whereas we earlier generated a four-parameter family of hyper-
bolas (or two complex parameters), which we shall refer to as allowable

hyperbolas. Rather than attempt to remain within this four-parameter
family, we will briefly enter the realm of all possible hyperbolas, to sim-
plify some of the computations.

First, we shall show that given an allowable hyperbola meeting the
hypotheses, there is a hyperbola which is symmetric about the x-axis,
goes through the given points, and bounds no more weighted area than
the original. However, this hyperbola will in general not be allowable.
Thereafter, we find a hyperbola which is more likely to be allowable,
goes through the given points, is symmetric about the x-axis, and does
not increase weighted area. However, it is not immediately obvious that
this hyperbola does not get too close to the origin. We then verify
that among such hyperbolas, the one which passes through (tanh r, 0)
bounds the least weighted area and is closest to the origin at (tanh r, 0)
and that this hyperbola is allowable. This would complete the proof of
the theorem.

We start with an allowable hyperbola ax2+bxy+cy2+dx+ey+f = 0.
Being allowable means that there is some choice of real parameters
u1, u2, v1, v2, with

a = 4u1v1

b = 4(u1v2 + u2v1)

c = 4u2v2

d = −2(u1(v
2
1 + v2

2 + 1) + v1(u
2
1 + u2

2 + 1))

e = −2(u2(v
2
1 + v2

2 + 1) + v2(u
2
1 + u2

2 + 1))

f = (u2
1 + u2

2 + 1)(v2
1 + v2

2 + 1) − (u1 − v1)
2 − (u2 − v2)

2.
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Note that this forces b2 − 4ac ≥ 0 and that if b2 − 4ac = 0 then the
curve is not a hyperbola, but rather lines. Also, note that (e2 − 4cf) −
(b2 − 4ac) = 4(v2(u

2
1 + u2

2 − 1) + u2(1 − v2
1 − v2

2))
2 ≥ 0 and thus that

e2 − 4cf ≥ b2 − 4ac.
Working in the Klein model again, we may choose the coordinate

system so as to have the two given points P1 and P2 be symmetric
about the x-axis, and have positive x-coordinates. Let the two points
be (x0,±y0) where x0 > 0 and x2

0 + y2
0 = tanh2 sinh−1 2 sinh r√

3
. Based

on the hypotheses, we may further assume that x0 < tanh r. Having
the hyperbola pass through two points which are symmetric about the
x-axis does not necessarily make the hyperbola symmetric about the
x-axis (i.e., b = e = 0). However, if the hyperbola is not symmetric
about the x-axis, then x0 = − e

b
and c 6= 0. If we perform the affine

transformation (x, y) → (x, y + bx+e
2c

), we will get the hyperbola

(b2 − 4ac)x2 − 4c2y2 + (2be − 4cd)x + (e2 − 4cf) = 0.

Note the this transformation does not change the (Klein) distance
between two points with the same x-coordinate. Thus the vertical extent
of the hyperbola at a given x-coordinate will be preserved, and will
now be centered about y = 0. Since the weighted area element in the
Klein model is coshR dA = 1√

1−x2−y2
· dx dy

(1−x2−y2)3/2 = dx dy
(1−x2−y2)2

, this

verifies that the resulting symmetric hyperbola bounds less weighted
(hyperbolic) area than the original hyperbola. It’s not clear that the
modified hyperbola stays far enough away from the center or that it’s
allowable, but this hyperbola is only an intermediate step. Our final
hyperbola will meet the necessary criteria.

Our goal now is to reimpose hypotheses, one by one, without increas-
ing weighted area. First, we take a step toward allowability. There are
various ways that an allowable hyperbola can be symmetric about the
x-axis, but since we need only find any such hyperbola, we will choose
one type, specifically those generated by uv = 1. One can readily check
that a necessary condition for this is having the x2 coefficient equal to
the constant term. Requiring, in addition, that the x coefficient not be
too close to zero would create a sufficient condition. However, we won’t
bother with this second condition. Thus, the hyperbolas we’ll be gener-
ating are possibly not allowable, but they are closer to being allowable
than the previous hyperbola was.

Let the vertex of the hyperbola be (x1, 0). Consider the family of sym-
metric hyperbolas which pass through the points (x0,±y0) and (x1, 0).
This is a one parameter family

x2 − (x1 − x0)(t − x0x1)

x1y
2
0

y2 − x2
1 + t

x1
x + t = 0



A UNIVERSAL UPPER BOUND ... 121

for t > x2
1 > x0x1. One can readily check that increasing t results in a

hyperbola which bounds a larger set. Recall that for an allowable hy-

perbola, t = 1. Since our current value of t is e2−4cf
b2−4ac

≥ 1 > x2
1, the sym-

metric hyperbola we discussed earlier can be replaced by a symmetric
hyperbola which passes through the points (x0,±y0) and (x1, 0), meets
a necessary condition for allowability, and bounds no more weighted
area than before. Again, it is not immediately obvious that this new
hyperbola does not get too close to the origin.

At this point, we are dealing with hyperbolas of the form

x2 − (x1 − x0)(1 − x0x1)

x1y
2
0

y2 − x2
1 + 1

x1
x + 1 = 0.

Note that x1 ≥ tanh r as x1 is the x-coordinate of the vertex of the
original hyperbola which was to the right of (tanh r, 0). Note further,
that decreasing x1 results in a hyperbola which bounds a smaller set
and yet still satisfies all of the earlier conditions. Thus, we might as
well assume that x1 = tanh r. In this case, it is easy to check that the
hyperbola is allowable. All that now remains of the proof is to show
that the vertex of this hyperbola is the point which is closest to the
origin. For a hyperbola, if the vertex minimizes distance locally then
it minimizes distance globally. One can easily check that the vertex
minimizes distance locally if y2

0(1 − x2
1) − 2x1(x1 − x0)(1 − x0x1) > 0.

Keep in mind that x1 and x2
0 + y2

0 depend on nothing but r. Thus we
may regard this expression as a quadratic in x0. The coefficient of x2

0

is negative so the expression will be minimized at one of the extreme
values for x0. We know that

2 sinh r
√

3 + 4 sinh2 r

cosh r
√

3 + 4 sinh2 r − 1

cosh 2r
≤ x0 ≤ x1.

One can readily check that the expression is positive at either of these
points. q.e.d.

4. Optimizing the Dirichlet domain slice

Recall that the Dirichlet domain slice is a convex region which if
represented in the Klein model is bounded by lines and hyperbolas.
The vertices of this region lie on or outside the circle of (Klein) radius

2 sinh r√
3+4 sinh2 r

. Let Q1, Q2, . . . Qn be the points at which the edges of the

slice intersect this circle. By removing any parts of the slice which lie
outside of the circle, we will not increase the weighted area of the slice.
Parts of the resulting boundary could be arcs. We may introduce new
vertices on these arcs and then replace the arcs with chords joining
these vertices, further reducing weighted area. If two of the vertices
are separated by an angle of at most 2 sin−1 1

2 cosh r
then by removing
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any region on the far side of the chord joining these points, we will not
increase the weighted area. Lastly, if two of the vertices are separated by

an angle between 2 sin−1 1
2 cosh r

and 2 cos−1

(

cosh r
√

3+4 sinh2 r−1
cosh 2r

)

, then

they are joined by a hyperbola. We may replace this hyperbola with
the allowable hyperbola which passes through these two vertices and is
tangent to the circle of radius tanh r at a point halfway in between the
vertices.

As a result of this process, we see that the Dirichlet domain slice which
minimizes weighted area is a union of isosceles triangles of side length

2 sinh r√
3+4 sinh2 r

and of specific types of hyperbolic sectors. The weighted

area of any such sector is completely determined by the angle it subtends
at the origin.

Proposition 4.1. If the sector is an isosceles triangle with (Klein)
side length 2 sinh r√

3+4 sinh2 r
and vertex angle θ ≤ 2 sin−1 1

2 cosh r
, then the

weighted area is

A1(θ) =
2 sinh r cos θ

2 sinh−1 2 sin θ
2

sinh r
√

3
√

3 + 4 sin2 θ
2 sinh2 r

.

Proof. Using polar coordinates (ρ, φ) on the Klein model, the weight-
ed area of the triangle ∆ is

∫

∆

cosh R dA = 2

∫ θ
2

0

∫

2 sinh r cos θ
2

cos φ
√

3+4 sinh2 r

0

ρ

(1 − ρ2)2
dρdφ

=

∫ θ
2

0

1

1 − 4 sinh2 r cos2 θ
2

cos2 φ(3+4 sinh2 r)

− 1 dφ

=
4 sinh2 r cos2 θ

2

3 + 4 sinh2 r

∫ θ
2

0

1

cos2 φ − 4 sinh2 r cos2 θ
2

3+4 sinh2 r

dφ

=
1

√

3+4 sinh2 r

4 sinh2 r cos2 θ
2

− 1

tanh−1 tan θ
2

√

3+4 sinh2 r

4 sinh2 r cos2 θ
2

− 1

=
2 sinh r cos θ

2 sinh−1 2 sin θ
2

sinh r
√

3
√

3 + 4 sinh2 r sin2 θ
2

.

q.e.d.
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If the sector is bounded by a hyperbola and has a vertex angle θ >

2 sin−1 1
2 cosh r

, then the weighted area is

A2(θ) = 2

∫ θ
2

0

∫ f(θ,φ)

0

ρ

(1 − ρ2)2
dρ dφ

where ρ = f(θ, φ) describes the hyperbola in polar coordinates (ρ, φ) on
the Klein model.

Note that A1 and A2 are actually functions of both r and θ, but we
are suppressing the r dependence.

Proposition 4.2. Both A1 and A2 are concave down. Thus the den-

sity of a sector of a circle of vertex angle θ in one of these types of sectors

is maximized at θ = 2 sin−1 1
2 cosh r

or θ = 2 cos−1

(

cosh r
√

3+4 sinh2 r−1
cosh 2r

)

.

Proof. To check that A1 is concave down, we note that it can be
written as

A1(θ) =
∂

∂θ





(

sinh−1

(

2 sin θ
2 sinh r√
3

))2


 .

Then A1(θ) = ∂
∂θ

(h2(θ)) for some function h(θ), so A′′
1(θ) = 6h′h′′ +

2hh′′′. Some simple computation verifies that h > 0, h′ > 0, h′′ < 0,
and h′′′ < 0, so A1 is concave down as a function of θ.

Checking that A2 is concave down is more complicated. First, we
rearrange the formulation of A2 to facilitate this computation.

A2(θ) = 2

∫ tanh r

0

∫ θ
2

0

ρ

(1 − ρ2)2
dφ dρ

+ 2

∫ 2 sinh r√
3+4 sinh2 r

tanh r

∫ θ
2

g(θ,ρ)

ρ

(1 − ρ2)2
dφ dρ

where φ = g(θ, ρ) describes the hyperbola in polar coordinates.
The first term is linear in θ so will not affect concavity. The second

term will be concave down if g(θ, ρ) can be shown to be concave up as
a function of θ. Although it requires a fair amount of computation, this
is not particularly difficult.

The weighted density of a sector of a circle in one of these regions

will be θ sinh2 r
2Ai(θ)

where i would be 1 or 2, depending on the size of θ. As

Ai is concave down, it is easy to check that the density is maximized at
one of the endpoints and that the endpoint θ = 0 is not the maximum.

q.e.d.

One can check that of these, the larger density is achieved when
θ = 2 sin−1 1

2 cosh r
and thus we have
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Theorem 4.3. The density of a packing of tubes of radius r in H
3

is at most
sinh r sin−1 1

2 cosh r

sinh−1 tanh r√
3

.

We note that one could actually improve this result slightly. We
could find the smallest weighted area Dirichlet domain slice, using the
concavity of the area functions. Such a Dirichlet domain slice would
have to be composed of sectors of vertex angle 2 sin−1 1

2 cosh r
, vertex

angle 2 cos−1

(

cosh r
√

3+4 sinh2 r−1
cosh 2r

)

, and at most one sector of some other

vertex angle. There are then only finitely many cases one must check
to determine the optimum density. However, the improvement is very
small and significantly complicates the statement of the result. Thus
we do not pursue this course of action.

Corollary 4.4. The density of a symmetric packing of tubes in hy-

perbolic space is at most 0.91.

Proof. If the tube radius is at most 1.2 then the density bound we
just developed will be at most 0.91. If the tube radius is 1.2 or more,
then the density bound in [Prz04] is at most 0.91. q.e.d.

Of course, one could also produce a slightly stronger, although more
complicated result by incorporating the three current upper bounds on
density: this one for r ≤ 1.2, our earlier result [Prz04] for 1.2 ≤ r ≤ 7.1,
and Marshall and Martin’s [MM05] for r ≥ 7.1. We let ρ(r) denote the
upper bound on density achieved in this fashion.

5. Applications

The primary application of a result such as ours is to the study of
hyperbolic 3-manifolds. Typically, one tries to locate a geodesic in the
manifold such that the maximal tube about this geodesic has certain
desirable properties, such as a lower bound on tube radius. The goal is
usually to use this information about the tube to produce a lower bound
on the tube volume, and hence a lower bound on the manifold volume.
Our upper bound on tube density will allow stronger lower bounds on
manifold volume.

First, we need some preliminaries.

Theorem 5.1 ([GMT03]). The orientable hyperbolic 3-manifold of

minimal volume has a tube of radius at least log 3
2 about its shortest

geodesic.

Theorem 5.2 ([Ago02]). Let M be a hyperbolic 3-manifold and let

γ be a geodesic link in M with an embedded open tubular neighborhood
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T of radius r. Let Mγ denote M \ γ in a complete hyperbolic metric.

Then

Vol(Mγ) ≤ (coth r coth 2r)
3

2 (Vol(M) + (
coth r

coth 2r
− 1)Vol(T )).

We may improve Agol’s result [Ago02] by incorporating information
about tube density.

Corollary 5.3. Let M be a hyperbolic 3-manifold and let γ be a

geodesic link in M with an embedded open tubular neighborhood T of

radius r. Let Mγ denote M \ γ in a complete hyperbolic metric. Then

Vol(Mγ) ≤ (coth r coth 2r)
3

2 Vol(M)

(

1 + ρ(r)

(

coth r

coth 2r
− 1

))

.

Proof. One simply notices that Vol(T ) ≤ ρ(r)Vol(M). q.e.d.

We note that as ρ(r) is at most 0.91, one could simplify the corollary a
bit by replacing ρ(r) with 0.91. However, this would weaken the result,
particularly when r is either very large or very small.

This corollary may now be used to improve the current lower bound
on the volume of hyperbolic 3-manifolds.

Proposition 5.4. All orientable hyperbolic 3-manifolds have volume

at least 0.3324

Proof. It is known [CM01] that the minimal volume noncompact ori-
entable hyperbolic 3-manifold has volume 2.0298.... As stated earlier,
the minimal volume orientable hyperbolic 3-manifold has a tube of ra-
dius at least log 3

2 about some geodesic. Inserting these two statements
into Corollary 5.3 produces the desired lower bound. q.e.d.

Finally, we include a chart which helps to indicate the extent to which
the current density results fall short. Using Oliver Goodman’s pro-
gram tube [Goo], we computed the radii of the maximal tubes about
geodesics of length less than 3 in the first (roughly) 1400 manifolds in
the Weeks census [Wee](a few manifolds or geodesics caused trouble for
tube so were omitted). The resulting data are displayed in Figure 1.

We offer a few comments on this illustration. First, the current upper
bounds on density are at least 0.85, regardless of radius, indicating that
there’s still a long way to go, particularly for small tube radii. Second,
the chart could be perceived as suggesting that there is a lower bound on
density. This is unlikely. Rather, there are known lower bounds on tube
volume [GMM01, MM03]. Combined with our using only relatively
small volume manifolds, one gets an illusory lower bound on density.
Finally, the data for tubes of very small radius are biased. In order
for a very small radius tube to have anything other than a very small
volume, it would have to be very long. By dealing with only geodesics
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Figure 1.

of length less than 3, we have made it impossible to use this chart to
discern information about the density of very small radius tubes.
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