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FLAT SPACETIMES WITH COMPACT HYPERBOLIC
CAUCHY SURFACES

Francesco Bonsante

Abstract

Given a closed hyperbolic n-manifold M , we study the flat Lo-
rentzian structures on M × R such that M × {0} is a Cauchy
surface. We show there exist only two maximal structures shar-
ing a fixed holonomy (one future complete and the other one past
complete). We study the geometry of those maximal spacetimes
in terms of cosmological time. In particular, we study the asymp-
totic behaviour of the level surfaces of the cosmological time. As
a by-product, we get that no affine deformation of the hyperbolic
holonomy ρ : π1(M) → SO(n, 1) of M acts freely and properly
on the whole Minkowski space. The present work generalizes the
case n = 2 treated by Mess, taking from a work of Benedetti
and Guadagnini the emphasis on the fundamental rôle played by
the cosmological time. In the last sections, we introduce measured
geodesic stratifications on M , that in a sense furnish a good gener-
alization of measured geodesic laminations in any dimension and
we investigate relationships between measured stratifications on
M and Lorentzian structures on M × R.

1. Introduction

In this paper, we study flat (n+1)-spacetimes Y admitting a Cauchy
surface diffeomorphic to a compact hyperbolic n-manifold M . Roughly
speaking, we show how to construct a canonical future complete one,
Yρ, among all such spacetimes sharing the same holonomy ρ. We study
the geometry of Yρ in terms of its canonical cosmological time (CT). In
particular, we study the asymptotic behaviour of the level surfaces of
cosmological time.

The present work generalizes the case n = 2 treated in [14], taking
from [6], the emphasis on the fundamental rôle played by canonical
cosmological time. In particular, Mess showed that if F is a closed
surface of genus g ≥ 2, then the linear holonomies of the Lorentzian flat
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structures on R×F such that {0}×F is a spacelike surface are faithful
and discrete representations of π1(F ) into SO +(2, 1).

Moreover, he proved that every representation ϕ : π1(F ) → Iso (M3)
whose linear part is faithful and discrete is the holonomy for some
Lorentzian structure on R × F such that {0} × F is a spacelike sur-
face. In particular, he showed that there is a unique maximal future
complete convex domain of M

3, called domain of dependence, which is
ϕ(π1(F ))-invariant such that the quotient is a globally hyperbolic man-
ifold homeomorphic to R × F with regular cosmological time T .

If we fix the linear holonomy f : π1(F ) → SO +(2, 1), these domains
(and so the affine deformations of the representation f) are parametrized
by measured geodesic laminations on H

2/f(π1(F )). The link between
domains of dependence and measured geodesic laminations is the Gauss
map of the CT-level surfaces.

On the other hand, Benedetti and Guadagnini noticed in [6] that the
singularity in the past of a domain of dependence is a real tree which is
dual to the lamination. Moreover, they argued that the action of π1(F )
on the CT-level surface S̃a = T−1(a) tends in the Gromov sense to the
action of π1(F ) on the singularity for a→ 0 and to the action of π1(F ) on
the hyperbolic plane H

2 for a→ ∞. Thus, the asymptotic states of the
cosmological time materialize the duality between geometric real trees
(realized by the singularity in the past) and the measured geodesic lam-
inations in the hyperbolic surface F , according to Skora Theorem [19].

In this paper, we try to generalize this approach in higher dimensions.
By extending the Mess’ method to any dimension n, we associate to
each Yρ a Γ-invariant geodesic stratification of H

n (see Section 4 for the
definition), and we discuss the duality between geodesic stratifications
and singularities in the past. In particular, we recover this duality
at least for an interesting class of so called spacetimes with simplicial
singularity in the past.

We briefly describe the contents of this paper in Section 2. We first
recall some basic facts about Lorentzian spacetimes and hyperbolic man-
ifolds, then we give quite an articulated statement of the main results.
Some assertions will be fully described and proved in the later sections.
In the last section, we shall discuss some related questions and open
problems.

2. Preliminaries and Statement of the Main Theorem

In this section, we recall a few basic facts about Lorentzian geometry,
geometry of the Minkowski space, and hyperbolic space. An exhaustive
treatment about Lorentzian geometry, including a careful analysis of
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global causality questions, can be found in [12] or in [5]. For an intro-
duction to hyperbolic space, see [7]. In the last part of this section, we
state the main theorem which we shall prove in the following sections.

Spacetimes. A Lorentzian (n+1)-manifold (M,η) is given by a smooth
(n+1)-manifold M (this includes the topological assumption that M is
metrizable and with countable basis) and a symmetric non-degenerate
2-form η with signature equal to (n, 1). A basis (e0, . . . , en) of a tangent
space TpM is orthonormal if the matrix of ηp with respect to this basis is
diag(−1, 1, . . . , 1). A tangent vector v is spacelike (resp. timelike, null,
non-spacelike) if η(v, v) is positive (resp. negative, zero, non-positive).
A C1-curve in M is chronological (resp. causal) if the speed vector is
timelike (resp. non-spacelike).

Let M be a Lorentzian connected (n+1)-manifold. Consider the set C
in the tangent bundle of M formed by timelike tangent vectors: it turns
out that either C is connected or it has two connected components. In
the latter case, we say that M is time-orientable. A time-orientation
is a choice of one of these components. A spacetime is a Lorentzian
connected time-orientable manifold equipped with a time-orientation.
LetM be a spacetime and C+ be the chosen component. A non-spacelike
tangent vector is future-directed (resp. past directed) if it is not zero and
lies (resp. does not lie) in the closure of C+. A causal curve is future-
directed if its speed vector is future directed. For p ∈M , the future of p
(resp. the past) is the set I+(p) (resp. I−(p)) of points in M which are
future endpoints (resp. past endpoints) of chronological curves which
start at p. If we replace chronological curves with causal curves, we
obtain the causal future J+(p) (resp. causal past J−(p) ) of p.

Let γ : I →M be a causal curve. The Lorentzian length of γ is

�(γ) :=
∫

I

√
−η(γ̇(t), γ̇(t))dt.

Given p ∈M and q ∈ J−(p), the Lorentzian distance between p and q is

d(p, q) := {sup �(γ)|γ is a causal curve whose endpoints are p and q}.
For every p ∈M , we can take

τ(p) := sup{d(p, q)|q ∈ J−(p)}.
This defines a function

τ : M → R ∪ {+∞}
which can be very degenerate (for instance τ ≡ +∞ on the Minkowski
space M

n+1). We are interested in those spacetimes for which the func-
tion τ is a canonical cosmological time (CT): this means that τ is
finite and increasing on every directed causal curve (i.e., τ is a time) and
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is regular, that is τ tends to 0 over every inextensible past directed causal
curve. Spacetimes with regular cosmological time have been pointed out
and studied in [1]. We recall the following general result.

Theorem 2.1. Suppose that M is a spacetime with a regular cos-
mological time τ . Then, τ is twice differentiable almost everywhere.
Moreover, for every p ∈M , there is an inextensible in the past timelike
geodesic γ : (0, τ(p)] →M which has future endpoint at p and such that
τ(γ(t)) = t. The level surfaces Sa = τ−1(a) are future Cauchy surfaces.

A Cauchy surface is an embedded hypersurface S of M such that
every inextensible causal curve in M intersects S only in one point.

Finally, a spacetime M is globally hyperbolic if for every p, q ∈M
the set J+(p)∩ J−(q) is compact. It is the strongest global causality as-
sumption and implies strict constraints on the topology of M . In partic-
ular, in [11], it is shown that M is globally hyperbolic if and only if there
is a Cauchy surface S inM , and in this caseM is homeomorphic to R×S.

Minkowski space. The Minkowski (n+ 1)-spacetime M
n+1 is the flat

simply connected complete Lorentzian (n+1)-manifold (it is unique up
to isometry). Let (x0, . . . , xn) be the natural coordinates on R

n+1, then
a concrete model for M

n+1 is R
n+1 provided with the Lorentzian form

η = −dx2
0 + dx2

1 + · · · + dx2
n.

In what follows, we shall always use this model. Notice that the frame(
ei = ∂

∂xi

)
i=0,...,n

is parallel and orthonormal. Thus, we can identify

in a standard way the tangent space (TxM
n+1, ηx) with R

n+1 provided
with the inner product 〈·, ·〉 defined by the rule

〈v,w〉 = −v0w0 + v1w1 + · · · + vnwn.

Minkowski space is an orientable and time-orientable Lorentzian mani-
fold. Let us put on it the standard orientation (such that the canonical
basis (e0, . . . , en) is positive) and the standard time-orientation (a time-
like tangent vector v is future directed if 〈v, e0〉 < 0). By orthonormal
affine coordinates, we mean a set (y0, . . . , yn) of affine coordinates on
M

n+1, such that the frame { ∂
∂yi

} is orthonormal and positive and the
vector ∂

∂y0
is future directed.

Consider the isometry group of M
n+1. It is easy to see that f is

an isometry of M
n+1 if and only if it is affine and df(0) belongs to

the group O (n, 1) of linear transformations of R
n+1 which preserve the

inner product 〈·, ·〉. It follows that the group of isometries of M
n+1 is

generated by O (n, 1) and the group of translations R
n+1. Furthermore,

R
n+1 is a normal subgroup of Iso (Mn+1) (in fact, it is the kernel of the
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map Iso (Mn+1) 
 f �→ df(0) ∈ O (n, 1)), so Iso (Mn+1) is isomorphic
to R

n+1
� O (n, 1).

Notice that O (n, 1) is the isotropy group of 0 in Iso (Mn+1). It
is a semisimple Lie group and has four connected components. The
connected component of the identity SO +(n, 1) is the group of linear
transformations which preserve orientation and time-orientation. It is
called the Lorentz group. There are two proper subgroups which con-
tain SO +(n, 1): the group SO(n, 1) of linear isometries which preserve
orientation of M

n+1 and the group O +(n, 1) of linear isometries which
preserve time-orientation of M

n+1. In each of these groups, the index
of SO +(n, 1) is 2.

Geodesics in M
n+1 are straight lines. There are three types of geo-

desics up to isometry: spacelike, timelike and null. Notice that they
are classified by the restriction of the form η on them. Totally geodesic
k-planes are affine k-planes in M

n+1. Also, k-planes are classified up to
isometry by the restriction of the Lorentzian form on them. Hence, a
k-plane P is spacelike if η|P is a flat Riemannian form; it is timelike if
η|P is a flat Lorentz form; finally, P is null if η|P is a degenerated form.

Hyperbolic space. Let H
n be the set of points in the future of 0 which

have Lorentzian distance from 0 equal to 1. If we identify M
n+1 with

the tangent space T0M
n+1 via the exponential map, we get

H
n = {x ∈ M

n+1| 〈x, x〉 = −1, x0 > 0}.
It follows that the tangent space TxH

n is the space x⊥. Since x is
timelike TxH

n is spacelike so H
n has a natural Riemannian structure.

An easy computation shows that H
n is the simply connected complete

Riemannian manifold with constant sectional curvature equal to −1.
A geodesic in H

n is the intersection of H
n with a timelike 2-plane

passing through 0. More generally, a totally geodesic k-submanifold (k-
plane) of H

n is the intersection of H
n with a timelike (k+1)-plane which

passes through 0 (notice that such an intersection is always transverse).
Thus, it follows that a subset C of H

n is convex if and only if it is the
intersection of H

n with a convex cone with apex at 0.
Clearly, H

n is invariant for the group O +(n, 1) and furthermore, this
group acts by isometries on H

n. It can be shown that O +(n, 1) is in
fact the full isometry group of H

n. The group of orientation-preserving
isometries of H

n is identified with SO +(n, 1).
Let P

n be the set of lines passing through 0 and π : M
n+1 → P

n

the natural projection. Then, π|Hn is a diffeomorphism of H
n onto the

set of timelike lines. The closure of this set is a closed ball and its
boundary is formed by the set of null lines. Let ∂H

n be the set of null
lines and put on Hn := H

n ∪∂H
n the topology which makes the natural



446 F. BONSANTE

map π : Hn → P
n a homeomorphism onto its image. Notice that every

g ∈ O +(n, 1) extends uniquely to a homeomorphism of Hn.
Now, let us classify the elements of O +(n, 1). We say that g ∈

O +(n, 1) is elliptic if g has a timelike eigenvector (and in this case,
the respective eigenvalue is 1). We say that g is parabolic if it is not el-
liptic and has a unique null eigenvector (and in this case, the respective
eigenvalue is 1). Finally, we say that g is hyperbolic if it is not elliptic
and has two null eigenvectors (in this case, there exists λ > 1 such that
the respective eigenvalues are λ and λ−1). If g is hyperbolic, then a
unique g-invariant geodesic γ exists in H

n. In this case, γ is called the
axis of g.

Geometric structures. We shall consider only oriented manifolds or
spacetimes. We shall be concerned with hyperbolic n-manifolds (i.e.,
Riemannian n-manifolds locally isometric to H

n) and with flat (n +
1)-spacetimes (i.e., those locally isometric to M

n+1). By using the
convenient setting of (X,G)-manifolds (see e.g., Chap. B of [7]), we
can say that hyperbolic manifolds and flat spacetimes are, by defini-
tion, (X,G)-manifolds where (X,G) is respectively (Hn,SO +(n, 1)) and
(Mn+1, Iso (Mn+1)).

Let us summarize a few basic facts about such (X,G)-manifolds. Let
N be a (X,G)-manifold and let us fix a universal covering π : Ñ → N .
Then, the (X,G)-structure on N lifts to a (X,G)-structure on Ñ such
that:

1) The covering map π is a local isometry;
2) The group π1(N) acts by isometries on Ñ in such a way that

N = Ñ/π1(N) and π is identified with the quotient map.

Let us summarize these facts by saying that π : Ñ → N is a (X,G)-
universal covering.

Proposition 2.2. Given an (X,G)-universal covering π : Ñ → N ,
there exists a pair (D, ρ) such that:

1) D : Ñ → X is a local isometry;
2) ρ : π1(N) → G is a representation;
3) The map D is π1(N)-equivariant in the following sense

D(γ(x)) = ρ(γ)D(x) for all γ ∈ π1(N) and x ∈ Ñ .

Moreover, given two such pairs (D, ρ) and (D′, ρ′), there exists a unique
g ∈ G such that

D′ = gD and ρ′ = gρg−1.
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Definition 2.1. With the notation of Proposition 2.2, D is called a
developing map of N and h is the holonomy representative compatible
with D. The conjugacy class of h is called the holonomy of the (X,G)-
manifold N .

Remark 2.3. Generally, D is only a local isometry neither injective
nor surjective.

If D is a global isometry between Ñ and X, we say that the (X,G)-
manifold N is complete. A hyperbolic manifold is complete as a Rie-
mannian manifold if and only if it is (Hn,SO +(n, 1))-complete.

If N is complete, then ρ is a faithful representation and its image Γ
acts freely and properly discontinuously on X. The isometry D induces
an isometry D̂ : Ñ/π1(N) → X/Γ.

Let M := H
n/Γ be a complete hyperbolic n-manifold. Notice that

Γ acts freely and properly discontinuously on the whole I+(0). The
future complete Minkowskian cone on M is the flat spacetime C+(M) :=
I+(0)/Γ. Notice that I+(0) has regular cosmological time T̃ which is in
fact a real analytic submersion with level surfaces

Ha = {x ∈ I+(0)| − x2
0 + x2

1 + · · · + x2
n = −a2}.

For every p ∈ I+(0), we have T̃ (p) = d(p, 0) and the origin is the only
point with this property. Every Ha is a Cauchy surface of I+(0), so it
is globally hyperbolic.

Since T̃ is Γ-invariant, it induces the cosmological time T : C+(M) →
R+ with level surfaces Sa = Ha/Γ. Notice that M = S1 so that C+(M)
is diffeomorphic to R+ ×M .

We are interested in studying globally hyperbolic flat spacetimes Y ,
which admit a Cauchy surface diffeomorphic to M (hence, Y is dif-
feomorphic to R+ × M). We shall provide a complete discussion of
this problem on the assumption that M is compact. So, from now on,
M := H

n/Γ is a compact hyperbolic manifold.
The set of globally hyperbolic flat Lorentzian structures on R+ ×M

has a natural topology (induced by the C∞-topology on symmetric
forms). Let us denote this space by Lor(M). We know that Diffeo (R+×
M) acts continuously on Lor(M). The quotient MLor(M) is called mod-
uli space, whereas Teichmüller space TLor(M) is the quotient of Lor(M)
by the action of the group of homotopically trivial diffeomorphisms.
Notice that two structures which differ by a homotopically trivial dif-
feomorphism give the same holonomy (up to conjugacy), so that the ho-
lonomy depends only on the class of the structure in Teichmüller space.

For every group G, denote by RG the set of representations

π1(M)(= Γ) → G
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up to conjugacy. As π1(M) ∼= π1(R+ × M), we have a continuous
holonomy map

ρ : TLor(M) → RIso (Mn+1)

with linear part

dρ : TLor(M) → RSO +(n,1).

In [2], it has been shown that every linear holonomy is faithful with dis-
crete image (recently a more general result was given in [4]). So, we shall
often confuse linear holonomy with its image subgroup into SO +(n, 1)
(up to conjugacy). If n ≥ 3, Mostow Rigidity Theorem implies that
the linear holonomy group coincides with Γ (up to conjugacy). Thus,
if n ≥ 3, the image of the holonomy map h : TLor(M) → RIso (Mn+1) is
contained in

R(Γ) = {[ρ] ∈ RIso (Mn+1)|d(ρ(γ))(0) = γ for all γ ∈ Γ}.

When n = 2, we have to vary the hyperbolic structure on M (i.e., the
group Γ) which is now a closed surface of genus g ≥ 2. Anyway, R(Γ)
is the key object to be understood.

Let ρ be a representation of Γ into Iso (Mn+1) whose linear part is
the identity. Thus, ρ(γ) = γ + τγ where τγ = ρ(γ)(0) is the translation
part. By imposing the homomorphism condition, we obtain

ταβ = τα + ατβ ∀α, β ∈ Γ,

so, (τγ)γ∈Γ is a cocycle in Z1(Γ,Rn+1). Conversely, if (τγ)γ∈Γ is a co-
cycle, then the map Γ 
 γ �→ γ + τγ ∈ Iso (Mn+1) is a homomorphism.
Hence, the homomorphisms of Γ into Iso (Mn+1) whose linear part is
the identity are parametrized by cocycles in Z1(Γ,Rn+1).

Take two such representations ρ and ρ′ and let (τγ)γ∈Γ and (τ ′γ)γ∈Γ

be the respective translation parts. Suppose now that ρ and ρ′ are
conjugated by some element f ∈ Iso (Mn+1). Then, we have that the
linear part of f commutes with the elements of Γ. Since the centralizer
of Γ in SO +(n, 1) is trivial, f is a pure translation by a vector v =
f(0). Now, by imposing the condition ρ′(γ) = fρ(γ)f−1, we obtain that
τγ − τ ′γ = γv−v so that τγ and τ ′γ differ by a coboundary. Conversely, if
(τγ)γ∈Γ and (τ ′γ)γ∈Γ are cocycles which differ by a coboundary, then they
induce representations which are conjugated. Hence, there is a natural
identification between R(Γ) and the cohomology group H1(Γ,Rn+1).
In what follows, we use this identification without mentioning it. In
particular, for a cocycle τ , we denote by ρτ and Γτ respectively, the
homomorphism corresponding to τ and its image.
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Main results. Now, we can state the main results of this paper.

Theorem 2.4. For every [τ ] ∈ H1(Γ,Rn+1), there is a unique [Yτ ] ∈
TLor(M) represented by a maximal globally hyperbolic future complete
spacetime Yτ that admits a pair (D, ρ) of compatible developing map

D : Ỹτ → M
n+1

and holonomy representative

ρ : π1(Yτ )(= π1(M)) → Iso (Mn+1)

such that
1) ρ = ρτ .
2) D is injective and so, it is an isometry onto its image Dτ which

is a future complete proper convex domain of M
n+1.

3) The action of π1(M) on Dτ via ρ is free and properly discontinuous
so that the developing map D induces an isometry between Yτ and
Dτ/π1(M).

4) The spacetime Dτ has a canonical cosmological time T̃ : Dτ →
R+ which is a C1-submersion. Every level surface S̃a is the graph
of a proper C1-convex function defined over the horizontal hyper-
plane {x0 = 0}.

5) The map T̃ is π1(M)-invariant and induces the canonical cosmo-
logical time T on Yτ ; this is a proper C1-submersion and every
level surface Sa = S̃a/π1(M) is C1-diffeomorphic to M .

6) For every p ∈ Dτ , there exists a unique r(p) ∈ I−(p) ∩ ∂Dτ such
that T̃ (p) = d(p, r(p)). The map r : Dτ → ∂Dτ is continuous. The
image Στ := r(Dτ ) is called the singularity in the past. Στ is
spacelike-arc-connected, contractile and π1(M)-invariant. More-
over, the map r is π1(M)-equivariant.

The map
R(Γ) 
 [ρτ ] �→ [Yτ ] ∈ TLor(M)

is a continuous section of the holonomy map.
The same statement holds if we replace “future” with “past”. Let us

call Y −
τ and D−

τ the corresponding spaces.
Every globally hyperbolic flat spacetime with compact spacelike Cauchy

surface and holonomy group equal to ρτ (π1(M)) is diffeomorphic to M×
R+ and isometrically embeds either into Yτ or into Y −

τ .

In Section 7, we shall look at the asymptotic behaviour of the metrics
properties of the action of Γ on S̃a for a → +∞ and for a → 0. In
particular, we shall focus on the Gromov convergence when a→ +∞
and on the convergence of the marked length spectrum when a→ 0
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(the definition of these concepts are given in Section 7). The principal
result that we get is the following.

Theorem 2.5. Let Dτ ⊂ M
n+1 be the universal cover of Yτ for

τ ∈ Z1(Γ,Rn+1). Let S̃a be the CT level surface T̃−1(a) of Dτ and da

be the natural distance on S̃a. We have that S̃a is a π1(M)-invariant
spacelike surface and π1(M) acts by isometries on it.

When a → +∞ the π1(M)-action on the rescaled surfaces (S̃a,
da
a )

tends in the Gromov sense to the action of π1(M) on H
n.

When a → 0 the marked length spectrum of the π1(M)-action on
(S̃a, da) tends to the spectrum of the π1(M)-action on the singularity in
the past Σ.

Now, let us point out some comments and corollaries.
The following statement is an immediate consequence of Theorem 2.4.

Corollary 2.6. Let F be an n-manifold and suppose that there exists
a Lorentzian flat structure on R × F such that {0} × F is a spacelike
surface. Suppose that the holonomy group for such a structure is Γτ for
some τ ∈ Z1(Γ,Rn+1). Then, F is diffeomorphic to M = H

n/Γ.

By studying the action of Γτ = ρτ (π1(M)) on the boundary ∂Dτ , we
shall show that Γτ does not act freely and properly discontinuously on
the whole M

n+1.
On the domain Dτ , there is a natural field −N which is the Lorentzian

gradient of the cosmological time T̃ . We have that N is a timelike
field, furthermore N is future directed by the choice of the sign. Notice
that N(x) is the normal vector to S̃

�T (x)
at x, so that we call it the

normal field. By the identification of TxM
n+1 with M

n+1, we see that
N(x) ∈ H

n (in fact, it is also called the Gauss map of the surfaces
S̃a). The restriction N |

�Sa
is a surjective and proper map. The map N

is π1(M)-equivariant so it induces a map N : Dτ/Γτ → H
n/Γ. For all

a > 0, the restriction of the map N |Sa has degree 1.
When n = 2, it turns out that the singularity Στ is a real tree. More-

over, Mess showed that the images under N of the fibres of the retrac-
tion r produce a Γ-invariant geodesic lamination L of H

2. According
to Skora Theorem [19], L is the geodesic lamination dual to the real
tree Στ . More precisely, the complete duality is realized by suitably
equipping L with a transverse measure µ. Finally, the triple (M,L, µ)
determines the spacetime Yτ .

In Section 4, we shall see that for n ≥ 2, the images under N of the
fibres of the retraction r determine a geodesic stratification of H

n (we
shall introduce this notion in Section 4 and prove that in dimension
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n = 2, geodesic stratifications are geodesic laminations). Moreover, in
Section 8, we shall introduce the notion of measured geodesic stratifica-
tion and show that every measured geodesic stratification enables us to
construct a spacetime Yτ . For some technical reasons, we are not able,
for the moment, to show that this correspondence is bijective. However,
we present an interesting class of spacetimes: those with simplicial sin-
gularity. In dimension n = 2, the singularity of these spacetimes are
simplicial tree and the corresponding geodesic lamination is a multi-
curve. We shall show that for spacetimes with simplicial singularity,
the complete duality between singularity and geodesic stratification is
realized in a very explicit way.

3. Construction of Dτ

Let Γ be a torsion-free co-compact discrete subgroup of SO +(n, 1)
and M := H

n/Γ. Let us fix [τ ] ∈ H1(Γ,Rn+1) and consider the image
Γτ of the homomorphism associated with τ . Moreover, for every γ ∈ Γ,
let us denote by γτ the affine transformation x �→ γ(x) + τγ . In this
section, we construct a Γτ -invariant future complete convex domain of
Mn+1. Moreover, we show that the action of Γτ on this domain is free
and properly discontinuous and the quotient is diffeomorphic to R+×M .

First, let us show that there is a C∞-embedded hypersurface F̃τ of
M

n+1 which is spacelike (i.e., TpF̃τ is a spacelike subspace of TpM
n+1)

and Γτ -invariant such that the quotient F̃τ/Γτ is diffeomorphic to M .
We start with an easy and useful lemma (see [14]).

Lemma 3.1. Let S be a manifold and f : S → M
n+1 be a Cr-

immersion (r ≥ 1) such that f∗η is a complete Riemannian metric on
S . Then, f is an embedding. Moreover, by fixing orthonormal affine
coordinates (y0, . . . , yn), we get that f(S) is a graph over the horizontal
plane {y0 = 0}.

Proof. Let us set f(s) = (i0(s), . . . , in(s)). Let π : S → {y0 = 0} be
the canonical projection (namely, π(s) = (0, i1(s), . . . , in(s))). We have
to show that π is a Cr-diffeomorphism.

Notice that π is a Cr-map between Riemannian manifolds. We claim
that π is distance-increasing, that is

(1) 〈dπ(x)[v],dπ(x)[v]〉 ≥ (f∗η) (v, v).

The lemma easily follows from this claim: the equation (1) implies that π
is a local Cr-diffeomorphism. Furthermore, a standard argument shows
that π is path-lifting and so, π is a covering map. Since the horizontal
plane is simply connected, it follows that π is a Cr-diffeomorphism.
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Let us prove the claim. Given v ∈ TsS, let us set df(s)[v] = (v0, . . . ,
vn). Then, we have dπ(s)[v] = (0, v1, . . . , vn). Thus,

f∗η(v, v) = 〈dπ(x)[v],dπ(x)[v]〉 − v2
0 .

q.e.d.

Remark 3.2. Let S be a Γτ -invariant spacelike hypersurface in M
n+1,

such that the action of Γτ on it is free and properly discontinuous. Sup-
pose that S/Γτ is compact. By Hopf–Rinow Theorem, we know that S
is complete and so the previous lemma applies.

Now, we want to construct a Γτ -invariant spacelike hypersurface F̃τ .
In fact, we shall construct F̃τ in a particular class of spacelike hyper-
surfaces.

Definition 3.1. A closed connected spacelike hypersurface S divides
M

n+1 into two components, the future and the past of S. We say that
S is future convex (resp. past convex ) if I+(S) (resp. I−(S)) is a convex
set and S = ∂I+(S) (resp. S = ∂I−(S)). Moreover, S is future strictly
convex (resp. past strictly convex ) if I+(S) (resp. I−(S)) is strictly
convex.

Remark 3.3. The hyperbolic space H
n ⊂ M

n+1 is an example of
spacelike future strictly convex hypersurface in M

n+1.

Let N0 be the flat Lorentzian structure on [1/2, 3/2] ×M given by
the standard inclusion [1/2, 3/2] × M ⊂ C(M) (where C(M) is the
Minkowskian cone on M). We can identify the universal covering Ñ0 of
N0 with

Ñ0 = {x ∈ M
n+1|x ∈ I+(0) and d(0, x) ∈ [1/2, 3/2]}.

The following theorem was stated by Mess ([14]), for the case n = 2.
However, his proof runs in all dimensions. We relate it here for the sake
of completeness.

Theorem 3.4. If U is a bounded neighbourhood of 0 in Z1(Γ,Rn+1),
there exists K > 0 and a C∞-map

dev : U × Ñ0 → M
n+1

such that
1. for every σ ∈ U , the restriction

devσ : Ñ0 
 x �→ dev(σ, x) ∈ M
n+1

is a developing map whose holonomy is the representation associ-
ated with σ;
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2. dev0 is the multiplication by K;
3. devσ(Hn) is a strictly convex spacelike hypersurface.

Proof. By a Thurston Theorem (see [10]), there exists a neighbour-
hood U0 of 0 in Z1(Γ,Rn+1) and a C∞-map

dev′ : U0 × Ñ0 → M
n+1

such that
1. For every σ ∈ U0, the map dev′σ : Ñ0 → M

n+1 is a developing map
whose holonomy is the representation associated with σ;

2. dev′0 is the identity.
By using compactness of M , it is easy to show that if U0 is chosen suf-

ficiently small, then dev′σ(Hn) is a spacelike future convex hypersurface.
Now, let us fix K > 0 so that K · U0 ⊃ U and define dev : U × Ñ0 →

M
n+1 by the rule

(2) dev(σ, x) := Kdev′(σ/K, x).

It is straightforward to see that devσ is a developing map whose ho-
lonomy is the representation associated with σ. Clearly, dev0 is the
multiplication by K and devσ(Hn) = K · dev′σ/K(Hn) is a future convex
spacelike surface invariant for Γσ. q.e.d.

Now, let us fix a bounded neighbourhood of 0 in Z1(Γ,Rn+1) contain-
ing the cocycle τ . Consider the map dev of the previous theorem and
let F̃τ be the hypersurface devτ (Hn). Then, F̃τ is a Γτ -invariant future
strictly convex spacelike hypersurface such that the Γτ -action on it is
free and properly discontinuous and F̃τ/Γτ

∼= M . Clearly, in the same
way, we can obtain a Γτ -invariant spacelike hypersurface F̃−

τ which is
past strictly convex such that F̃−

τ /Γτ
∼= M .

Now, for any given hypersurface F̃ , we shall construct a natural do-
main D(F̃ ) which includes it. Furthermore, we shall show that if F̃
is Γτ -invariant and the action on F̃ is free and properly discontinuous,
then the same holds for D(F̃ ).

Definition 3.2. Given a spacelike hypersurface F̃ , the domain of
dependence of F̃ is the set D(F̃ ) of points p ∈ M

n+1 such that all
inextensible causal curves passing through p intersect F̃ .

The following is a well-known result (see e.g., [11]).

Proposition 3.5. The domain of dependence D(F̃ ) is open. More-
over, if F̃ is complete (i.e., the natural Riemannian structure on it is
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complete), then a point p ∈ M
n+1 lies in D(F̃ ) if and only if each null

line which passes through p intersects F̃ .

Proposition 3.6. Let F̃ be a complete spacelike C1-hypersurface. Let
us fix p /∈ D(F̃ ) and a null vector v such that the line p + Rv does not
intersect F̃ . Then, the null plane P = p+ v⊥ does not intersect F̃ .

Proof. Suppose that S := F̃ ∩P is non-empty. Since this intersection
is transverse, it follows that it is a closed (n− 1)-submanifold of F̃ and
so, it is complete.

Let us fix a set of orthonormal affine coordinates (y0, . . . , yn) such that
p is the origin and P = {y0 = y1} (i.e., v = (1, 1, 0, . . . , 0)). Consider
the map

π : S 
 (y0, y1, . . . , yn) → (0, 0, y2, . . . , yn) ∈ {y0 = y1 = 0}.
Just as in the proof of Lemma 3.1, we argue that π is a diffeomorphism.
Thus, s ∈ R exists such that q = (s, s, 0, . . . , 0) ∈ F̃ . But q lies on the
line p+ Rv and this is a contradiction. q.e.d.

Corollary 3.7. Let F̃ be a complete spacelike hypersurface. The
domain of dependence D(F̃ ) is a convex set. Moreover, for every p /∈
D(F̃ ), a null support plane through p exists.

Suppose that F̃ is Γτ -invariant and D(F̃ ) is not the whole M
n+1.

Then, either

D(F̃ ) =
⋂

P null plane

P∩ �F=∅

I+(P ) or

D(F̃ ) =
⋂

P null plane

P∩ �F=∅

I−(P ).

Thus, D(F̃ ) is either a future or a past set (i.e., D(F̃ ) = I+(D(F̃ )) or
D(F̃ ) = I−(D(F̃ ))).

Proof. Proposition 3.6 implies that for every p /∈ D(F̃ ), there exists
a null plane P which passes through p and does not intersect D(F̃ ).
Thus, D(F̃ ) is a convex set.

Suppose now, that F̃ is Γτ -invariant andD(F̃ ) is not the whole M
n+1.

We have to show that either D(F̃ ) is contained in the future of its null
support planes or it is contained in the past of its null support planes.
Suppose, by contradiction that there exist null support planes P and Q
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such that D(F̃τ ) ⊂ I−(P )∩ I+(Q). First, suppose that P and Q are not
parallel. Then, a timelike support plane R exists (see Fig. 1). Let us fix
an affine coordinates system (y0, . . . , yn) such that R = {yn = 0}. By
Lemma 3.1, we know that F̃ is the graph of a function defined on the
horizontal plane {y0 = 0}. Then, F̃ ∩R �= ∅ and this is a contradiction.

I−(P ) ∩ I+(Q)

R
P

Q

Figure 1. If P and Q are not parallel, a timelike sup-
port plane exists.

Suppose now, that we cannot choose non-parallel P and Q. Then, it
follows that null support planes are all parallel. Thus, let v be the null
vector orthogonal to all null support planes and [v] the corresponding
point on ∂H

n. Since Γτ acts on F̃ , we have that Γτ permutes the null
support planes of D(F̃ ). It follows that Γ · [v] = [v]. But Γ is a discrete
co-compact group and so it does not fix any point in H

n. q.e.d.

Remark 3.8. Completeness of F̃ is an essential hypothesis. For
instance if a point p is removed from F̃ the domain of dependence of
F̃ − {p} is no longer convex.
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Remark 3.9. If F̃ is future (past) convex then D(F̃ ) is future (past)
complete.

Proposition 3.10. Let F̃ be a Γτ -invariant spacelike hypersurface
such that the Γτ -action on it is free and properly discontinuous. Then,
Γτ acts freely and properly discontinuously on the whole D(F̃ ). More-
over, D(F̃ )/Γτ is diffeomorphic to R+ × F̃ /Γτ .

Proof. Since Γτ is torsion-free, it is sufficient to show that the action
is properly discontinuous.

Let K,H ⊂ D(F̃ ) be compact sets. We have to show that the set

Γ(K,H) = {γ ∈ Γ|γτ (K) ∩H �= ∅}
is finite. By using Proposition 3.5, we get that the sets C = (J+(K) ∪
J−(K))∩ F̃ and D = (J+(H)∪ J−(H)) ∩ F̃ are compact. Furthermore,
γτ (C) = (J+(γτ (K)) ∪ J−(γτ (K))) ∩ F̃ . Thus, Γ(K,H) is contained in
Γ(C,D). Since the action of Γτ on F̃ is properly discontinuous, Γ(C,D)
is finite.

Since F̃ /Γτ is a Cauchy surface in D(F̃ )/Γτ we have D(F̃ )/Γτ
∼=

R+ × F̃ /Γτ . q.e.d.

We have constructed a Γτ -invariant future convex hypersurface F̃τ

such that F̃τ/Γτ
∼= M . Now, let us consider D(F̃τ ): it is a Γτ -invariant

future complete convex set and D(F̃τ )/Γτ
∼= R+ ×M . From now on,

we shall denote D(F̃τ ) by Dτ .
Notice that, we can also consider the domain of dependence of F̃−

τ . In
the same way, we can show that D(F̃−

τ ) is a Γτ -invariant, past complete
convex domain of M

n+1 and D(F̃−
τ )/Γτ

∼= R+ ×M . We shall denote it
by D−

τ .
In the remaining part of this section, we shall prove that Dτ is not

the whole M
n+1. This is a necessary condition for Dτ to have regular

cosmological time. In the next section, we shall see that this condition
is in fact sufficient. In order to prove that Dτ is a proper subset, we
need some geometric properties of Γτ -invariant future convex sets.

Lemma 3.11. Let Ω be a proper convex set of M
n+1. If we fix a set

of orthonormal affine coordinates (y0, . . . , yn), then Ω is a future convex
set if and only if ∂Ω is the graph on the horizontal plane {y0 = 0} of a
1-Lipschitz convex function.

Proof. The if part is quite evident. Hence, suppose that Ω is a proper
future convex set. First, let us show that the projection on the horizontal
plane π : ∂Ω → {y0 = 0} is a homeomorphism. Since ∂Ω is a topological
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manifold, it is sufficient to show that the projection is bijective. Since
Ω is a future set, points on ∂Ω are not chronologically related and so,
the projection is injective.

It remains to show that given (a1, . . . , an), there exists a0 such that
(a0, a1, . . . , an) ∈ ∂Ω. Fix p ∈ ∂Ω. It is easy to see that there exist
a+ and a− such that (a+, a1, . . . , an) ∈ I+(p) and (a−, a1, . . . , an) ∈
I−(p). Since I+(p) ⊂ Ω and I−(p) ∩ Ω = ∅ there exists a0 such that
(a0, . . . , an) ∈ ∂Ω.

It follows that ∂Ω is the graph of a function f . Since Ω is future
convex, f is convex. Since two points on ∂Ω are not chronologically
related, f is 1-Lipschitz. q.e.d.

Lemma 3.12. Let Ω be a Γτ -invariant proper future convex set.
Then, for every u ∈ H

n there exists a plane P = p + u⊥ such that
Ω ⊂ I+(P ).

Proof. Consider, the set K of vectors v in M
n+1 which are orthogonal

to some support planes of Ω. Clearly, K is a convex cone with apex at
0. Since Ω is future complete it is easy to check that vectors in K are
not spacelike. So, the projection PK of K in P

n is a convex subset of
H

n. Since Ω is Γτ -invariant K is Γ-invariant. Then, PK is a Γ-invariant
convex set of H

n. Since it is not empty (at least a support plane exists)
and Γ is co-compact, then K contains the whole H

n and the lemma
follows. q.e.d.

Lemma 3.13. Let Ω be as in the previous lemma. For each timelike
vector v, the function

∂Ω 
 x �→ 〈x, v〉 ∈ R

is proper. If v is future directed, limx∈∂Ω x→∞ 〈x, v〉 = −∞ (we mean
by ∞ the point of Alexandroff compactification of ∂Ω).

Moreover, there exists a unique support plane Pv of Ω such that it is
orthogonal to v and Pv ∩ ∂Ω �= ∅.

Proof. Let us fix a timelike vector v. Clearly, we can suppose that v is
future directed and 〈v, v〉 = −1. Let (y0, . . . , yn) be a set of orthonormal
affine coordinates, with the origin at 0 and such that ∂

∂y0
= v. Notice

that 〈x, v〉 = −y0(x). Now, since Ω is future complete, the boundary
∂Ω is the graph of a convex function f : {y0 = 0} → R.

We have to show that f is proper and limx→∞ f(x) = +∞. Thus, it is
sufficient to show that the set KC = {x|f(x) ≤ C} is compact for every
C ∈ R. Since f is convex KC is a closed convex subset of {y0 = 0}.
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Suppose, by contradiction that it is not compact. It is easy to see that
there exist x ∈ {y0 = 0} and a horizontal vector w such that the ray
{x+ tw|t ≥ 0} is contained in KC .

We can suppose 〈w,w〉 = 1, so that the vector u =
√

2v + w is
timelike and 〈u, u〉 = −1. Lemma 3.12 implies that there exists M ∈ R

such that 〈p, u〉 ≤ M for all p ∈ ∂Ω. On the other hand, consider
pt = (x+ tw) + f(x+ tw)v. We have pt ∈ ∂Ω and

〈pt, u〉 = −
√

2f(q + tw) + 〈q + tw, q + tw〉 ≥ −
√

2C + 〈q + tw, q + tw〉 .
Since 〈q + tw, q + tw〉 → +∞, we have a contradiction. q.e.d.

Proposition 3.14. Let Ω be a Γτ -invariant future complete convex
proper subset of M

n+1. Then, a null support plane of Ω exists.

Proof. Take q ∈ ∂Ω and v ∈ H
n such that P = q + v⊥ is a support

plane at x. Let us fix γ ∈ Γ and consider the sequence of support
planes Pk := γk

τ (P ). If this sequence does not escape to infinity, there
is a subsequence which converges to a support plane Q. The normal
direction of Q is the limit of the normal directions of the Pk’s. On the
other hand, the normal direction of Pk is the direction of γk(v). Since
in the projective space [γk(v)] tends to a null direction, we have that Q
is a null support plane.

Thus, we have to prove that Pk does not escape to infinity. Let us
set vk = |

〈
v, γkv

〉
|−1γkv. We know that vk converges to an attractor

eigenvector of γ in M
n+1. On the other hand, we have

Pk =
{
x ∈ M

n+1| 〈x, vk〉 ≤
〈
γk

τ q, vk

〉}
.

Thus, the sequence Pk does not escape to infinity if and only if the
coefficients Ck =

〈
γk

τ q, vk

〉
are bounded. Since {vk}k∈N has compact

closure in M
n+1, it is sufficient to show that the coefficients

C ′
k :=

〈
γk

τ q − q, vk

〉
are bounded. For α ∈ Γ, let us set z(α) = ατ (q) − q. It is easy to see
that z is a cocycle (the difference z(α) − τα = αq − q is a coboundary).
Thus, we have

(3) C ′
k =

∣∣∣∣∣
〈
z(γk), γkv

〉
〈γkv, v〉

∣∣∣∣∣ =
∣∣∣∣∣
〈
γ−kz(γk), v

〉
〈γkv, v〉

∣∣∣∣∣ =
∣∣∣∣∣
〈
z(γ−k), v

〉
〈γkv, v〉

∣∣∣∣∣ .
Now, let λ > 1 be the maximum eigenvalue of γ. Denote by ‖ · ‖ the
Euclidean norm of R

n+1. Then, we have that ‖γ−1(x)‖ ≤ λ‖x‖ for every
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x ∈ R
n+1. Since

z(γ−k) = −
k∑

i=1

γ−i(z(γ))

it follows that ‖z(γ−k)‖ ≤ Kλk for some K > 0. Thus, we have∣∣∣〈z(γ−k), v
〉∣∣∣ ≤ K ′λk.

On the other hand, v can be decomposed into a sum x+ + x− + x0

where x+ is an eigenvector for λ, x− is an eigenvector for λ−1 and x0

is orthogonal to both x+ and x−. Since v is a future directed timelike
vector, it turns out that x+ and x− are future directed. Thus, we have〈

γkv, v
〉

= (λk + λ−k)
〈
x+, x−

〉
+
〈
x0, γkx0

〉
.

Now, notice that Span(x+, x−)⊥ is spacelike and γ-invariant. We de-
duce that

〈
x0, γkx0

〉
≤ 〈x0, x0〉 so that there exists M > 0 such that

|
〈
γkv, v

〉
| > Mλk. Thus, |C ′

k| ≤ K ′/M and this concludes the proof.
q.e.d.

Now, we can easily prove that Dτ is not the whole M
n+1.

Corollary 3.15. Let F̃ be a Γτ -invariant future convex spacelike hy-
persurface. Then, there is a null support plane which does not intersect
F̃ . Hence, D(F̃ ) �= M

n+1.

Proof. Take Ω = I+(F̃ ) and use Proposition 3.14. q.e.d.

In dimension n + 1 = 4, there is an easier argument to prove that
Dτ �= M

n+1. Notice that if 1 is not an eigenvalue for some γ ∈ Γ, then
the transformation γτ has a fixed point, namely z := (γ − 1)−1(τγ).
Generally, we say that γ ∈ SO +(3, 1) is loxodromic if γ−1 is invertible.
So, if Γ contains a loxodromic element, then Γτ does not act freely on
M

3+1 (and in particular, M
3+1 does not coincide with Dτ ).

Lemma 3.16. Let Γ be a discrete co-compact subgroup of SO +(3, 1).
Then, a loxodromic element γ ∈ Γ exists.

Proof. We use the identification SO +(3, 1) ∼= Iso +(H3) ∼= PSL(2,C).
A hyperbolic element γ ∈ PSL(2,C) is not loxodromic if and only if
tr γ ∈ R. Hence, by contradiction, suppose that every hyperbolic γ ∈ Γ
has a real trace.

Let us fix a hyperbolic element γ0 ∈ Γ. Up to conjugacy, we can
suppose

γ0 =
[
λ 0
0 λ−1

]
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with λ ∈ R+. Moreover, we can suppose that γ0 is a generator of the
stabilizer of the axis l0 with endpoints 0 and ∞. Now, let α be a generic
element of Γ

α =
[
a b
c d

]
.

By general facts about Kleinian groups, we know that either α fixes
the geodesic l0 or it does fix neither 0 nor ∞. We deduce that either
b = c = 0 or bc �= 0. Suppose α /∈ stab (l0), by imposing trα ∈ R and
tr (γ0α) ∈ R, we obtain

a+ d ∈ R;
λa+ λ−1d ∈ R.

Thus, a, d ∈ R. Since ad− bc = 1, we can write

α =
[

A Beiθ

Ce−iθ D

]
with A,D ∈ R, B,C ∈ R − {0} and θ ∈ [0, π).

Now, let β ∈ Γ − stab (l0) be defined as follows:

β =
[

A′ B′eiθ′

Ce−iθ′ D′

]
.

The first entry of αβ is AA′+BC ′ei(θ−θ′). Since it is real, we can deduce
that θ = θ′ (notice that BC ′ �= 0). So, there exists a θ0 such that for
every γ ∈ Γ − stab (l0), we have

γ =
[

A Beiθ0

Ce−iθ0 D

]
withA,B,C,D∈R. Hence, the rotation R−θ0 conjugates Γ in PSL(2,R)
and so Γ is Fuchsian. But this is a contradiction. q.e.d.

4. Cosmological Time and Singularity in the Past

In this section, we shall see that the cosmological time on Dτ/Γτ is
regular and the level surfaces are homeomorphic to M . Furthermore,
we shall study the boundary of Dτ and we shall see that it determines
a geodesic stratification in M . If n = 2, this stratification is in fact the
geodesic lamination which Mess associated with τ .

We shall study the geometry of a general class of domains of M
n+1,

the regular convex domains. We shall see that Dτ is a Γτ -invariant
regular convex domain. Most results of this section are quite general
and we shall not use the action of the group Γτ . We shall see that every
regular domain Ω is provided with a regular cosmological time T , a
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retraction r on the singularity in the past, and a normal field
N : Ω → H

n which is (up to the sign) the Lorentzian gradient of T .
Moreover, if the domain is Γτ -invariant, then all these objects are Γτ -
invariant. Finally, we shall see that if the normal field is surjective (this
is the case, for instance, when Ω = Dτ ), then the images into H

n of the
fibres of the retraction give a geodesic stratification. If Ω is Γτ -invariant,
then this stratification is Γ-invariant.

Definition 4.1. Let Ω ⊂ M
n+1 be a non-empty convex open set. We

say that Ω is a future complete (resp. past complete) regular convex
domain if it is the intersection of the future (resp. the past) of at least
two null support planes.

Remark 4.1. The condition that there exist at least 2 non-parallel
planes excludes either that Ω is the whole M

n+1 or that Ω is the future
of a null plane. These domains have not regular cosmological time. On
the other hand, if at least 2 non-parallel null support planes exist, then
a spacelike support plane exists and we shall see that this condition
ensures the existence of a regular cosmological time.

Remark 4.2. Let F̃ be a Γτ -invariant future convex complete space-
like hypersurface. By Corollary 3.7, we know that D(F̃ ) is the inter-
section of the future of its null support planes. By Proposition 3.14,
it results that D(F̃ ) is not the whole M

n+1. Finally, Proposition 3.12,
ensures us that spacelike support planes exist. It follows that D(F̃ ) is a
future complete regular domain. In particular, Dτ is a future complete
regular domain.

On the other hand, we shall see that if Ω is a Γτ -invariant future
complete regular domain, then the cosmological time TΩ is regular and
Ω = D(S̃a) where S̃a is the level surface T−1

Ω (a). Moreover, S̃a turns
out to be a Γτ -invariant future convex spacelike complete hypersur-
face. Thus, we have that Γτ -invariant regular domains are domains
of dependence of some Γτ -invariant future convex complete spacelike
hypersurfaces.

We want to describe the cosmological time on Dτ and in general on
a future complete regular domain. First, we show that every future
complete convex set which has at least a spacelike support plane has a
regular cosmological time which is a C1-function.

Proposition 4.3. Let A be a future complete convex subset of M
n+1

and S = ∂A. Suppose that a spacelike support plane exists. Then,
for every p ∈ A, there exists a unique r(p) ∈ S which maximizes the
Lorentzian distance from p in A ∩ J−(p). Moreover, the map p �→ r(p)
is continuous.
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The point r = r(p) is the unique point in S such that, the plane
r + (p− r)⊥ is a support plane for A.

The cosmological time of A is expressed by the formula

T (p) =
√

−〈p− r(p), p − r(p)〉.
It is a concave C1 function. The Lorentzian gradient of T is given by
the formula

∇LT (p) = − 1
T (p)

(p− r(p)) .

Proof. Since A is convex, the Lorentzian distance in A is the restric-
tion of the Lorentzian distance in M

n+1, that is

d(p, q) =
√

−〈p− q, p− q〉 for every p ∈ A and q ∈ J−(p) ∩A.
Let us fix p ∈ A and a spacelike support plane P of A. Notice that
J−(p)∩ J+(P ) is compact and J−(p) ∩A ⊂ J−(p) ∩ J+(P ). Thus, there
exists a point r ∈ A ∩ J−(p) which maximizes the Lorentzian distance
from p. Clearly, r lies on the boundary S.

q
H−(p, d(p, r))

Pp

p

r

q′

Figure 2. Pp is a support plane for A.

Now, we have to show that r is unique. Suppose by contradiction
that there exists r′ ∈ S − {r} such that

d(p, r′) = d(p, r).

Let us define
H

−(p, α) = {x ∈ I−(p)| d(p, x) = α}.
Since H

−(p, d(p, r)) is a past convex spacelike surface the segment (r, r′)
is contained in I−(H−(p, d(p, r))). It turns out that d(p, s) > d(p, r) for



FLAT SPACETIMES 463

every s ∈ (r, r′). On the other hand, we have (r, r′) ∈ A and this
contradicts the choice of r.

We have to prove that the map p �→ r(p) is continuous. Let pk ∈ A
be such that pk → p ∈ A and let us put rk = r(pk). First, let us show
that {rk}k∈N is bounded. Notice that for a fixed q ∈ I+(p), there exists
k0 such that pk ∈ J−(q) for every k ≥ k0, so rk ∈ J−(q) ∩ S for k ≥ k0.
Since J−(q) ∩ S is compact, we deduce that {rk}k∈N is contained in a
compact subset of S. Hence, it is sufficient to prove that if rk → r then
r = r(p). If q ∈ A, then we have

〈pk − rk, pk − rk〉 ≤ 〈pk − q, pk − q〉 .

By passing to the limit, we obtain that r maximizes the Lorentzian
distance.

Take p ∈ A and let Pp be the plane r(p) + (p − r(p))⊥. We claim
that Pp is a support plane of A. Notice that Pp is the tangent plane
H

−(p, d(p, r)) at r(p). Suppose that q ∈ A ∩ I−(Pp) exists. We have
(q, r) ⊂ A. On the other hand, there exists q′ ∈ (q, r)∩I− (H−(p, d(p, r)))
(see Fig. 2). Then, d(p, q′) > d(p, r) and this is a contradiction. Con-
versely, let s ∈ A be such that s+(p− s)⊥ is a support plane for A. An
analogous argument shows that s is in the past of p and maximizes the
Lorentzian distance.

Now, we can prove that the cosmological time T is C1. We shall use
the following elementary fact:

Let Ω ⊂ R
N be an open set, and f : Ω → R a continuous function.

Suppose that there exist f1, f2 : Ω → R such that:

1. f1 ≤ f ≤ f2;
2. f1(x0) = f2(x0) = f(x0);
3. f1 and f2 are C1 and df1(x0) = df2(x0).

Then, f is differentiable at x0 and df(x0) = df1(x0).
Let us fix p ∈ A and consider r = r(p). Let (y0, . . . , yn) be a set of

orthonormal affine coordinates such that the origin is at r(p) and Pp is
the plane {y0 = 0} (by conseguence the coordinated of p are (µ, 0, . . . , 0)
where µ = T (p)). Consider, the functions

f1 : A 
 y �→ +y2
0 −

∑n
i=1 y

2
i ∈ R and

f2 : A 
 y �→ y2
0 ∈ R.

It is straightforward to recognize that f1 ≤ T 2 ≤ f2 and f1(p) = T 2(p) =
f2(p). Moreover, we have ∇Lf1(p) = −2µ ∂

∂y0
= ∇Lf2(p). It turns out

that T 2 is differentiable at p and ∇L

(
T 2
)

= −2(p − r). Thus, T is
differentiable at p and ∇LT (p) = − 1

T (p) (p− r).
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Finally, let us show that T is concave. If we set ϕ(p) := −T 2(p) =
〈p− r(p), p − r(p)〉, then we have to prove

−ϕ (tp+ (1 − t)q) ≥
(
t
√

−ϕ(p) + (1 − t)
√

−ϕ(q)
)2

for all p, q ∈ A and t ∈ [0, 1]. Since rt := t r(p) + (1 − t)r(q) ∈ A, we
have by the definition of r that

−ϕ(tp + (1 − t)q)

≥ −〈(tp+ (1 − t)q) − rt, (tp+ (1 − t)q) − rt〉
= −〈t (p− r(p)) + (1 − t) (q − r(q)) , t (p− r(p)) + (1 − t) (q − r(q))〉

= −
(
t2ϕ(p) + (1 − t)2ϕ(q) + 2t(1 − t) 〈p− r(p), q − r(q)〉

)
.

Since p− r(p) and q− r(q) are future directed timelike vectors, we have
〈p− r(p), q − r(q)〉 ≤ −

√
ϕ(p)ϕ(q) so

−ϕ(tp + (1 − t)q)

≥
(
t2(−ϕ(p)) + (1 − t)2(−ϕ(q)) + 2t(1 − t)

√
ϕ(p)ϕ(q)

)
=
(
t
√

−ϕ(p) − (1 − t)
√

−ϕ(q)
)2
.

q.e.d.

Corollary 4.4. By using the notation of Proposition 4.3, we have

lim
k→+∞

T (pk) = 0

for all (pk)k∈N ⊂ A such that pk → p ∈ ∂A.

Proof. Let us fix q ∈ I+(p). We have that pk ∈ I+(q) for all k � 0.
By arguing as in Proposition 4.3, we see that {r(pk)} is a bounded
set. Up to passing to a subsequence, we can suppose that r(pk) → r.
Since pk − r(pk) is a timelike vector, p − r is a non-spacelike vector.
On the other hand, since S is an achronal set, it follows that p − r
is a null vector. Since T 2(pk) = −〈pk − r(pk), pk − r(pk)〉, we have
limk→+∞ T 2(pk) = −〈p− r, p − r〉 = 0. q.e.d.

Corollary 4.5. With the above notation, let us put S̃a = T−1(a) for
a > 0. Then, S̃a is a future convex spacelike hypersurface and TpS̃a =
(p− r(p))⊥ for all p ∈ S̃a.
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We have I+(S̃a) =
⋃

b>a S̃b. Moreover, let ra : I+(S̃a) → S̃a be the
projection and Ta the CT of I+(S̃a), then we have:

ra(p) = S̃a ∩ [p, r(p)]

Ta(p) = T (p) − a.

Let A be as in Proposition 4.3, T the CT of A and r : A→ ∂A the re-
traction. The normal field on A is the map N : A→ H

n defined by the
rule N(p) := 1

T (p)(p− r(p)). It coincides up to sign with the Lorentzian
gradient of T on A (we have defined N = −∇LT instead of N = ∇LT

because we want N to be future directed). If S̃a = T−1(a), then N |
�Sa

is the normal field on S̃a. Notice that the following identity holds

p = r(p) + T (p)N(p) for all p ∈ A.
Thus, every point in A is decomposed in a singularity part r(p) and a
hyperbolic part T (p)N(p). We shall see that such decomposition plays
an important rôle to recover the announced duality. The following in-
equalities are a consequence of the fact that r(p) +N(p)⊥ is a support
plane of A.

Corollary 4.6. With the above notation, we have that

〈q, p− r(p)〉 < 〈r(p), p− r(p)〉
〈T (p)N(p) − T (q)N(q), r(p) − r(q)〉 ≥ 0 for all p, q ∈ A.(4)

We denote by ΣA the image of the retraction r : A→ ∂A and we refer
to it as singularity in the past. Notice that if r0 = r(p), then the
plane r0 + (p − r0)⊥ is a spacelike support plane for A. Conversely, let
r0 ∈ ∂A and suppose that there exists a future directed timelike vector
v such that the spacelike plane r0 + v⊥ is a support plane. We have
pλ = r0 + λv ∈ A for λ > 0 and by Proposition 4.3, r(r0 + λv) = r0.

Corollary 4.7. Let A be a future convex set which has a spacelike
support plane. Then, r0 ∈ ΣA if and only if there exists a timelike vector
v such that the plane r0 + v⊥ is a support plane. Moreover,

r−1(r0) = {r0 + v| r0 + v⊥ is a support plane}.
Remark 4.8. Notice that the map r : A→ ΣA continuously extends

to a retraction r : A ∪ ΣA → ΣA. This map is a deformation retrac-
tion (in fact, the maps rt(p) = t(p − r(p)) + r(p) give the homotopy).
Therefore, ΣA is contractile.

Now, let Ω be a future complete regular domain. Let us use this
notation:

• T is the cosmological time on Ω and S̃a = T−1(a);
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• r : Ω → ∂Ω is the retraction and N : Ω → H
n the normal field;

• Σ = r(Ω) is the singularity in the past.

Lemma 4.9. The hypersurface S̃a is a Cauchy surface for Ω. More-
over, Ω is the domain of dependence of S̃a.

Proof. Since Ω is a regular domain, we have D(S̃a) ⊂ Ω. Now, let
p ∈ Ω and v be a future directed non-spacelike vector. Since T (p +
λv)2 ≥ −〈p+ λv − r(p), p + λv − r(p)〉, there exists λ > 0 such that
T (p + λv) > a. On the other hand, there exists µ < 0 such that
p+ µv ∈ ∂Ω. By Corollary 4.4, we have that limt→µ T (p+ tv) = 0. So,
there exists λ′ ∈ R such that T (p+ λ′v) = a. Thus, Ω ⊂ D(S̃a) and the
proof is complete. q.e.d.

Remark 4.10. If Ω is a Γτ -invariant regular domain then, T is a
Γτ -invariant function. It follows that the CT level surfaces S̃a are Γτ -
invariant future convex spacelike hypersurfaces. Moreover, we have r ◦
γτ = γτ ◦ r and N ◦ γτ = γ ◦N . Thus, Σ is a Γτ -invariant subset of ∂Ω.

From the previous lemma it follows that S̃a/Γτ is a Cauchy surface
of Ω/Γτ . In particular if we take Ω = Dτ = D(F̃τ ) (see Section 3 for the
definition of Dτ ) we have that S̃a/Γτ is homeomorphic to F̃τ/Γτ

∼= M
(in fact, two Cauchy surfaces are always homeomorphic).

We shall give a more precise description of the map r for a regular
domain Ω. In particular, we shall describe the singularity and the fibre
of a point on the singularity in terms of geometric properties of the
boundary ∂Ω. Let us start with a simple remark.

Lemma 4.11. For every p ∈ ∂Ω, there exists a future directed null
vector v such that the ray p+R+v is contained in ∂Ω. Furthermore, we
have

Ω =
⋂

{I+(p + v⊥)| p ∈ ∂Ω and

v is a null vector such that p+ R+v ⊂ ∂Ω}.
Proof. Let us fix p ∈ ∂Ω. There exists a null future directed vector v

such that the ray p + v⊥ is a support plane for Ω. Since I+(p) ⊂ Ω the
ray p+ R+v is contained in ∂Ω.

Conversely, suppose that a ray R = p+ R+v is contained in ∂Ω. By
Han–Banach Theorem, there exists a hyperplane P such that Ω and R
are contained in the opposite (closed) half-spaces bounded by P . Since
P is a support plane of Ω, it is not timelike. Since R is contained in ∂Ω,
it is contained in P . It follows that v is parallel to P so that P = p+v⊥.

q.e.d.
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Proposition 4.12. A point p ∈ ∂Ω lies in Σ if and only if there are
at least 2 future directed null rays contained in ∂Ω start from p.

Moreover, if p ∈ Σ, then r−1(p) is the intersection of Ω with the
convex hull of the null rays contained in ∂Ω and starting from p.

Proof. Let us use the following elementary fact about convex sets:
Let V be a (finite dimensional ) vector space and G ⊂ V ∗. Consider

the convex set K = {v ∈ V |g(v) ≤ Cg for g ∈ G}. Suppose that the
following properties hold:

1. if g ∈ G and λ > 0, then λg ∈ G and Cλg = λCg;
2. if gn → g and Cgn → C, then g ∈ G and Cg ≤ C.

Then, for all v ∈ ∂K, the set Gv = {g ∈ G|Cg = g(v)} is non-empty.
Moreover, the plane v + P is a support plane of K if and only if there
exists h in the convex hull of Gv such that P = ker h.

Consider the family L of null future directed vectors which are or-
thogonal to some null support planes. Let Cv = supr∈Ω 〈v, r〉 for every
v ∈ L. By Lemma 4.11, we have

Ω = {x ∈ M
n+1| 〈x, v〉 ≤ Cv for all v ∈ L}.

Now, let us fix p ∈ ∂Ω and let L(p) be the set of null future directed
vectors v such that p + v⊥ is a support plane of Ω. We can apply the
remark about convex sets stated above to the family L (in fact, the
inner product 〈·, ·〉 gives an identification of R

n+1 with its dual) and we
obtain that L(p) is non-empty. Moreover, let us fix a future directed
non-spacelike vector v, then p + v⊥ is a support plane if and only if v
belongs to the convex hull of L(p). By Corollary 4.7, we get that r−1(p)
is the intersection of Ω with the convex hull of p+ L(p).

Finally, notice that a null future directed vector v lies in L(p) if and
only if p+ R+v is contained in ∂Ω. q.e.d.

Now, for p ∈ Σ, let us define a subset of H
n

F(p) := N(r−1(p)).

In the following corollary, we point out that F(p) is an ideal convex set
of H

n. We recall that a convex set C of H
n is ideal if it is the convex

hull of boundary points.

Corollary 4.13. Let us fix p ∈ Σ and set L(p) as in the previous
proposition. Let us denote by L̂(p) the set of points of ∂H

n which cor-
respond to points in L(p). Then, F(p) = N(r−1(p)) is the convex hull
in H

n of L̂(p).

Thus, we see that each point p in the singularity Σ corresponds to
an ideal convex set F(p). Now, we shall study how the convex sets
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{F(p)}p∈Σ stay in H
n. Given two convex sets C,C ′ ⊂ H

n, we say that
a hyperplane P separates C from C ′ if C and C ′ are contained in the
opposite closed half-spaces bounded by P .

Proposition 4.14. Let Ω be a future complete regular domain. For
every p, q ∈ Σ, the plane (p − q)⊥ separates F(p) from F(q). The
segment [p, q] is contained in Σ if and only if F(p) ∩ F(q) �= ∅. In this
case, for all r ∈ (p, q), we have

F(r) = F(p) ∩ (p − q)⊥ = F(q) ∩ (p− q)⊥ = F(p) ∩ F(q).

Proof. Inequalities (4) imply that 〈tv, p − q〉 ≤ 〈sw, p − q〉 for every
v ∈ F(q), w ∈ F(p) and t, s ∈ R+. This inequality can be satisfied
if and only if 〈v, p − q〉 ≤ 0 and 〈w, p − q〉 ≥ 0 for all v ∈ F(q) and
w ∈ F(p). This shows that (p− q)⊥ separates F(p) from F(q).

Suppose, now that F(p) ∩ F(q) �= ∅: we have that F(p) ∩ F(q) is
contained in (p − q)⊥. Let v ∈ F(p) ∩ F(q) and Pv be the unique
support plane which is orthogonal to v and intersects ∂Ω. We know
that Pv passes through p and q so that the segment [p, q] is contained in
∂Ω. Finally, since Pv is a spacelike support plane which passes through
every r ∈ (p, q), we have [p, q] ⊂ Σ and F(p) ∩ F(q) ⊂ F(r).

Conversely, suppose that [p, q] is contained in Σ. Let us take r ∈ (p, q)
and v ∈ F(r). Then, we have that 〈v, p − r〉 ≤ 0 and 〈v, r − q〉 ≥ 0.
Since p−r and r−q have the same direction, we argue that 〈v, r − q〉 = 0
and 〈v, r − p〉 = 0 so that v ∈ F(p) ∩ F(q).

In order to conclude the proof, we have to show that F(r) ⊃ F(p) ∩
(p−q)⊥. We know that F(p)∩(p−q)⊥ is the convex hull of L̂(p)∩(p−q)⊥.
Thus, it is sufficient to show that L(r) ⊃ L(p)∩ (p−q)⊥. Now, let us fix
v ∈ L(p)∩ (p− q)⊥ and consider the plane P = p+v⊥. The intersection
of this plane with Ω includes the ray p + R+v and the segment [p, q].
Since this intersection is convex, we have that r + R+v is a subset of
P ∩ Ω and thus, v ∈ L(r). q.e.d.

Let us give a general definition.

Definition 4.2. A geodesic stratification of H
n is a family C =

{Ci}i∈I such that
1) Ci is an ideal convex set of H

n;
2) H

n =
⋃

i∈I Ci;
3) For every i, j ∈ I (with i �= j), there exists a support plane Pi,j

which separates Ci from Cj . Furthermore, if Ci ∩ Cj �= ∅, then
Ci ∩ Cj = Ci ∩ Pi,j = Cj ∩ Pi,j .

Every Ci is called a piece of the stratification.
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We say that the stratification is Γ-invariant if γ(Ci) ∈ C for all γ ∈ Γ
and for all Ci ∈ C.

If Ω is a future complete regular domain of M
n+1 such that the normal

field N is surjective, we have that {F(p)}p∈Σ is a geodesic stratification.
If Ω is a Γτ -invariant future complete regular domain by Lemma 3.12,

the normal field N is surjective. In this case, it is evident that the
stratification {F(p)}p∈Σ is Γ-invariant.

Let C be an ideal convex set. Then, we say that a point p is internal if
all the support planes passing through p contain C. Let us denote by bC
the set of points of C which are not internal. Notice that, unless C has
non-empty interior, bC is not the topological boundary. If dimC = k,
then bC has a natural decomposition into convex pieces which are ideal
convex sets Ci with dimCi < k (see [10]).

Now, if C is a geodesic stratification of H
n, we can add to it the pieces

of the decomposition of bCi for Ci ∈ C. It is easy to see that in this way,
we obtain a new geodesic stratification C which we call the completion
of C. Notice that C = C. A geodesic stratification which coincides with
its completion is called complete.

Now, let us define the k-stratum of C (for 1 ≤ k ≤ n− 1) as the set

X(k) =
⋃

{F ∈ C|dimF ≤ k}.

If C is Γ-invariant, then also C is. Moreover, in this case, the strata are
Γ-invariant subsets.

It is easy to see that X(n−1) is a closed set (in fact, H
n−X(n−1) is the

union of the interior of the n-pieces of C). If n = 2, we have only the
1-stratum which in fact is a geodesic lamination of H

2. Conversely, if L
is a Γ-invariant geodesic lamination, there is a unique complete geodesic
stratification C such that L is the 1-stratum of C. For n = 2, we know
that the stratification is continuous in the sense that if rk ∈ Ck and
rk → r ∈ H

n then, there exists a piece C ∈ C such that Ck → C with
respect to the Hausdorff topology.

Unfortunately, in dimension n > 2, geodesic stratifications are more
complicated: the strata X(k) are not closed for k �= n − 1 and we do
not have continuity. However, as we are going to see, the stratifications
which arise from complete regular domains with surjective normal field
are weakly continuous in the following sense:

Definition 4.3. A geodesic stratification C is weakly continuous if
the following property holds. Suppose (xk)k∈N is a convergent sequence
of H

n and x = limk→+∞ xk. Let Fk be a piece which contains xk and
suppose that Fk → F in the Hausdorff topology. Then, there exists a
piece G ∈ C such that F ⊂ G.
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Before proving the weakly continuity of stratifications associated with
regular domains, let us point out a useful propriety of regular domains
with surjective normal field.

Lemma 4.15. Let Ω be a future complete regular domain of M
n+1,

such that the normal field N : Ω → H
n is surjective. Then, the restric-

tion of N to the CT level surface S̃a is a proper map.

Proof. Let (pk)k∈N be a divergent sequence in S̃a and suppose N(pk)
→ x∞. The assumption on N implies that there exists p∞ ∈ S̃a such
that N(p∞) = x∞. Now, consider the segments Rk = [p∞, pk]: up to
passing to a subsequence, we have that Rk tends to a ray R with starting
point p∞. Now, by using that the planes pk + N(pk)⊥ and p∞ + x⊥∞
are supporting planes of I+(S̃a) it is not hard to see that the Euclidean
angle between Rk and the plane p∞ + x⊥∞ is less than the (Euclidean)
angle between the latter plane and pk + N(pk)⊥. Since N(pk)⊥ tends
to x⊥∞, we can deduce that R is contained in the plane p∞ + x⊥∞.

Since this plane is a supporting plane for I+(S̃a) and R ⊂ I+(S̃a), we
have that R ⊂ S̃a. Moreover, we have that R ⊂ N−1(x∞).

Let w ∈ R
n+1 be the spacelike direction of R: we have that N(p∞ +

λw) = x∞ for all λ > 0. By inequalities (4), we can deduce 〈w, x∞〉 = 0.
Now, take y ∈ H

n such that 〈w, y〉 > 0 and q ∈ S̃a such that N(q) = y.
By inequalities (4), we have that

〈p∞ + λw − q, x∞ − y〉 ≥ 0 for all λ > 0.

But 〈w, x∞ − y〉 < 0. So, we have a contradiction. q.e.d.

Now, we can prove that regular domains produce weakly continuous
stratifications.

Proposition 4.16. Let Ω be a future complete regular domain with
surjective normal field N . Then, the geodesic stratification C associated
with it is weakly continuous.

Proof. Let (xk)k∈N ⊂ H
n be a convergent sequence with xk → x. Let

Fk be a piece containing xk and suppose that Fk → F . We have to
prove that F is contained in a piece G.

Let us take rk ∈ Σ such that Fk = F(rk). Notice that pk = rk + xk

lies in S̃1. Since N |
�S1

is a proper map, a convergent subsequence pk(j)

exists. Let us set p = lim pk(j) and r = r(p). We want to show that F
is contained in F(r). Since F is the convex hull of L̂F = F ∩ ∂H

n, it is
sufficient to show that L̂F ⊂ L̂(r). Now, let us take [v] ∈ L̂F . We know
that there exists a sequence [vn] ∈ L̂(rn) such that [vn] → [v] in ∂H

n.
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We have that rn + R+vn ⊂ ∂Ω. Since ∂Ω is closed, this implies that
r + R+v ⊂ ∂Ω. Thus, we can conclude that [v] ∈ L̂(r). q.e.d.

Remark 4.17. Consider the regular domain Dτ constructed in Sec-
tion 4. By Lemmas 3.12 and 4.5, the map N : S̃1 → H

n is surjective.
Thus, it produce a weakly continuous stratification Cτ of H

n.

Remark 4.18. We can define geodesic laminations also in dimension
n higher than 2. They correspond to geodesic stratifications with empty
(n − 2)-stratum X(n−2). By a Zeghib result (see [21]), we know that
Γ-invariant geodesic laminations of H

n are locally finite (in fact, they
are lifting of totally geodesic surfaces embedded in H

n/Γ).
On the other hand, Scannell showed in [17] that there exists a closed

hyperbolic non-Haken 3-manifold M such that H1(π1(M),R3+1) is non-
empty. Thus, if we take [τ ] in this cohomology group, it follows that
Cτ is not a geodesic lamination of H

3. It follows that in order to study
Lorentzian structures on M × R with M a closed hyperbolic manifold,
we cannot restrict ourselves to the case that C is a geodesic lamination
(i.e., X(n−2) is empty).

We postpone a more careful discussion about Γ-invariant geodesic
stratifications to the final sections. In the last part of this section, we
shall consider the future complete regular domain Dτ which we have
constructed in Section 3. We shall prove that Γτ does not act freely
and properly discontinuously on ∂Dτ . From this result, we shall deduce
that the action of Γτ on M

n+1 is not free and properly discontinuous.
In particular, we shall see that the domain of dependence of any Γτ -
invariant spacelike hypersurface is a regular domain (either future or
past complete).

Lemma 4.19. Let Ω be a future complete regular domain. Suppose,
that Σ is closed in ∂Ω. Then, the retraction Ω → Σ uniquely extends to
a deformation retraction r : Ω → Σ.

Proof. Since Σ is closed, it is easy to see that for every point p outside
Σ, there exists a unique null ray R in ∂Ω such that p is contained in
the interior of R. Thus, we can define the retraction on ∂Ω by taking
r(p) as the starting point of the ray R. It is easy to show that this is a
continuous extension of r. q.e.d.

Let Ω be a future complete regular domain and suppose that Σ is
closed. Let us set X = ∂Ω. First, we construct the boundary of X. We
know that X −Σ is a C1-manifold foliated by rays with starting points
in Σ. Let p ∈ X − Σ and R(p) be the ray of the foliation which passes
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through p. The retraction on X is defined in this way: r(p) = p if p ∈ Σ
whereas r(p) is the starting point of R(p) if p ∈ X − Σ.

The boundary of X is the leaf space of the foliation:

∂X := {R|R is a ray of the foliation}.

We want to define a topology on X := X ∪ ∂X such that it agrees with
the natural topology on X and makes X an n-manifold with bound-
ary equal to ∂X. Thus, we have to define a fundamental family of
neighbourhoods of a point R ∈ ∂X. Let us fix a C1-embedded closed
(n − 1)-ball D which intersects the foliation transversely and passes
through R and define

U(R,D) = {p ∈ X − Σ|R(p) ∩ intD �= ∅ separates p from r(p)} ∪
∪{S ∈ ∂X|S ∩ intD �= ∅}.

Then, we can consider the topology on X which agrees with the natural
topology on X and such that for each R ∈ ∂X the sets U(R,D) are a
fundamental family of neighbourhoods of R. It is easy to see that X is a
Hausdorff space. In order to construct an atlas on X , let us consider for
p ∈ X−Σ a future directed timelike vector v(p) that is tangent to R(p)
such that y0(v(p)) = 1 (y0 is a timelike affine coordinate – this is only a
normalization condition). For all (n− 1)-balls D as above, consider the
maps µD : D × (0,+∞] → U(R,D) defined by the rule

µD(x, t) =
{
x+ tv(x) if t < +∞
R(x) if t = +∞.

It is easy to see that these maps are local charts, so that X is a manifold
with boundary. Finally, the retraction r uniquely extends to a retraction
r : X → Σ. Notice that this retraction is a proper map.

Now, suppose that Γτ acts freely and properly discontinuously on
Ω. Then, the action of Γτ on X uniquely extends to an action on X .
Moreover, the map r : X → Σ is Γτ -equivariant. By using this remark,
it follows that the action of Γτ on X is free and properly discontinu-
ous. Thus, X/Γτ is a manifold with boundary. Now, we can state the
announced proposition.

Proposition 4.20. The action of Γτ on ∂Dτ is not free and properly
discontinuous.

Proof. By contradiction, suppose that the action is free and properly
discontinuous. Let us set X = ∂Dτ , M ′ := X/Γτ and K := Σ/Γτ . Let
r̂ : Dτ/Γτ → K be the surjective map which induced by the retraction
r : Dτ → Σ. Since S̃1/Γτ is compact (in fact, we have seen that it
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is homeomorphic to M), we have that K is compact. Since M ′ is a
Hausdorff space, K is closed in M ′ and so, Σ is closed in X = ∂Dτ .

Thus, we can construct the boundary ∂X of X and M ′ is the interior
of the manifold with boundary M ′ = X/Γτ .

Consider the retraction r : X → Σ: since this map is Γτ -equivariant
and proper, it induces to the quotient a proper map r : M ′ → K. Since
K is compact, it follows that M ′ is a compact manifold with boundary.

Since r : M ′ → K is a deformation retraction, we have that Hn(K) =
Hn(M ′) and by Poincaré duality, it follows that

Hn(K) = Hn(M ′) = H0(M ′
, ∂M

′) = 0.

On the other hand, let us consider Yτ = Dτ/Γτ and Y τ = Dτ/Γτ . We
know that the map r : Dτ → Σ induces to the quotient a deformation
retraction Y τ → K. So

Hn(K) = Hn(Y τ ) = Hn(Yτ ).

Now, we have Yτ
∼= R ×M . So Hn(Yτ ) = Hn(M) = Z and this is a

contradiction. q.e.d.

Corollary 4.21. The affine group Γτ does not act freely and properly
discontinuously on the whole M

n+1. Moreover, let F̃ be a Γτ -invariant
complete spacelike hypersurface such that Γτ acts freely and properly
discontinuously on it. Then, D(F̃ ) is a regular domain (either future or
past complete).

Proof. The first statement follows from the previous proposition. In
particular, we have that D(F̃ ) is not the whole M

n+1. By Corollary 3.7,
we know that D(F̃ ) is either future or past complete and it is the in-
tersection of the future (resp. past) of null planes. By Lemma 3.12,
we know that D(F̃ ) has spacelike support planes and so, it is a regular
domain. q.e.d.

5. Uniqueness of the Domain of Dependence

Let us summarize what we have seen until now. We have fixed a
free-torsion co-compact discrete subgroup Γ of SO +(n, 1) and we have
set M = H

n/Γ. Then, we have fixed a cocycle τ ∈ Z1(Γ,Rn+1) and we
have studied Γτ -invariant regular domains of M

n+1. In particular, we
have constructed a Γτ -invariant future complete (resp. past complete)
regular domain Dτ (resp. D−

τ ) such that the action of Γτ on it is free and
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properly discontinuous and the quotient Yτ = Dτ/Γτ is a globally hy-
perbolic manifold homeomorphic to R+×M with regular CT. Moreover,
we have seen that if F̃ is a Γτ -invariant complete spacelike hypersurface
such that the action on it is free and properly discontinuous, then D(F̃ )
is a regular domain (either future or past complete).

In this section, we want to show that Dτ (resp. D−
τ ) is the unique Γτ -

invariant future complete (resp. past complete) regular domain. In par-
ticular, we shall deduce that every Γτ -invariant spacelike hypersurface
is contained either in Dτ or in D−

τ and is in fact, a Cauchy surface of it.

Theorem 5.1. With the above notation, Dτ is the unique Γτ -invariant
future complete regular domain.

Let us give a scheme of the proof. Given a Γτ -invariant future com-
plete regular domain Ω, we have to show that Ω = Dτ .

Let TΩ be the cosmological time on Ω (whereas T is the cosmological
time on Dτ ). For every a > 0 let S̃Ω

a = T−1
Ω (a) (whereas S̃a = T−1(a)

is the level surface of Dτ ). Since S̃Ω
a (resp. S̃a) is a Cauchy surface of

Ω (resp. Dτ ), we have that Ω = D(S̃Ω
a ) (resp. Dτ = D(S̃a)). Thus, it

is sufficient to prove that S̃a ⊂ Ω and S̃Ω
a ⊂ Dτ for a � 0. Let us split

the proof into some steps.
Step 1. Ω ∩ Dτ �= ∅.
Step 2. Fix p0 ∈ Ω ∩Dτ and let C be the convex hull of the Γτ -orbit

of p0. Then, C is a future complete convex set.
Step 3. Let ∆ = ∂C be the boundary of C. Then, ∆/Γτ is compact.
Step 4. Let a > supq∈∆ TΩ(q) ∨ supq∈∆ T (q). Then, S̃Ω

a ⊂ Dτ and
S̃a ⊂ Ω.

Step 1 is quite evident. In fact, let us fix p ∈ Ω and q ∈ Dτ . Since Ω
and Dτ are future complete, we have I+(p) ∩ I+(q) ⊂ Ω ∩ Dτ . On the
other hand, the future sets of two points in M

n+1 are not disjoint.
Step 2 is more difficult. We start with a lemma.

Lemma 5.2. Let C be a closed convex set of M
n+1 whose interior

part is non-empty. Then, exactly one of the following statements holds:
(1) There exists a non-spacelike vector v such that C = {x ∈ M

n+1|α1

≤ 〈x, v〉 ≤ α2};
(2) A timelike support plane of C exists;
(3) Every support plane is non-timelike and C is either a future or a

past convex set.

Proof. Suppose there exist p, q ∈ ∂C such that q ∈ I+(p). Let us
prove that C verifies either (1) or (2). More exactly, suppose that C
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does not have a timelike support plane. We have to prove that C satisfies
(1).

Let Pp and Pq be non-timelike support planes respectively at p and
at q. Since q ∈ I+(p), we can argue that C ⊂ I+(Pp)∩ I−(Pq). As in the
proof of Corollary 3.12, if Pp and Pq are not parallel, then a timelike
support plane exists. Thus, Pp and Pq are parallel.

Since p and q are generic, it follows that for all p′, q′ ∈ ∂C such that
p′ ∈ I+(q′) the support planes at p′ and at q′ are parallel. In particular,
there exists a non-spacelike direction v such that the unique support
plane at p′ and the unique support plane at q′ are orthogonal to v.

We have to show that the boundary of C coincides with Pp ∪ Pq: in
fact, it is sufficient to prove the inclusion Pp ∪ Pq ⊂ ∂C. Now, let us
take e = q − p and define the set

A = {z ∈ Pq|z ∈ ∂C and z − e ∈ ∂C}.
It is sufficient to prove that A = Pq. Clearly, A is closed and non-empty
(in fact q ∈ A). Thus, it is sufficient to show that A is open. Now, let
us fix z ∈ A and set z′ = z − e: the set

U = I+(z′) ∩ ∂C
is a neighbourhood of z in ∂C and for x ∈ U , there is a unique support
plane Px parallel to Pq which passes through x. Since Pq is a support
plane and Pq∩∂C �= ∅, it follows that Pq = Px. So, U is contained in Pq.
In the same way, we can deduce that V = I−(z)∩∂C is contained in Pp.
Thus, U∩(V +e) is a neighbourhood of z in ∂C which is contained in A.

We have proved that if there exist p, q ∈ ∂C such that p−q is timelike,
then C verifies either (1) or (2). Suppose now that for all p, q ∈ ∂C, the
vector p− q is non-timelike. We have to show that C verifies (3).

Suppose that a timelike support plane exists. Then, there exists a
vector u and K ∈ R such that

〈u, u〉 = 1 and 〈u, p〉 ≤ K for all p ∈ C.

Take p0 ∈ intC and v+, v− ∈ H
n such that

〈u, v+〉 > 0 〈u, v−〉 < 0.

Consider for t > 0

pt = p0 + tv+ p−t = x0 − tv−.

We have

〈pt, u〉 = 〈p0, u〉 + t 〈v+, u〉 → +∞ as t→ +∞;

〈p−t, u〉 = 〈p0, u〉 − t 〈v−, u〉 → +∞ as t→ +∞.
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Thus, there exist t+ > 0 and t− < 0 such that pt+ and pt− lie in ∂C.
But then, we have pt+ in the future of pt− and this contradicts our
assumption about C.

Hence, all the support planes of C are non-timelike. Let P be a
support plane. We can suppose that C ⊂ I+(P ) (the other case is anal-
ogous). We claim that C ⊂ I+(Q) for every support plane Q. Otherwise
every timelike geodesic starting from a point p0 ∈ intC should meet C in
a compact interval I . Then, the endpoints of I should be two chronolog-
ically related points on ∂C and this contradicts our assumption on ∂C.

Thus, we have

C =
⋂

P support plane

I+(P ).

It follows that C is future complete. q.e.d.

Now, let us go back to Step 2. We have taken p0 ∈ Ω ∩ Dτ and we
have considered the convex hull C of the Γτ orbit of p0. Now, we have to
show that C is future complete. By the previous lemma it is sufficient
to prove:

a) intC �= ∅;
b) C is not of the form {x ∈ M

n+1|α1 ≤ 〈x, v〉 ≤ α2};
c) C has not a timelike support plane.

a) is quite evident. In fact, if the interior of C is empty then, there
exists a unique k-plane P with 0 < k < n + 1 such that C ⊂ P and
intP (C) �= ∅. Then, since C is Γτ -invariant, it follows that P is Γτ -
invariant too. So, the tangent plane of P is Γ-invariant. But, we know
that Γ is co-compact and so it is irreducible. In an analogous way, we
can prove (b).

It remains to prove that C does not have a timelike support plane.
For this purpose, we introduce some notations. Fix a set of orthonormal
affine coordinates (y0, . . . , yn). For every γ ∈ Γ, let us denote by x+(γ)
(resp. x−(γ)) the attractor null eigenvector of γ (resp. γ−1) such that
y0(x+(γ)) = 1 (resp. y0(x−(γ)) = 1). For every z ∈ M

n+1, we can write

z = a+(γ, z)x+(γ) + a−(γ, z)x−(γ) + x0(γ, z) + x1(γ, z)

with

a+, a− ∈ R, x0 ∈ ker(γ − 1) and

x1 ∈ ker(γ − 1)⊥ ∩ Span〈x+(γ), x−(γ)〉⊥.

In order to prove (c), we now have to show the following lemma.
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Lemma 5.3. Let us fix r ∈ Dτ and put z(γ) = γτ r − r for γ ∈ Γ.
Then, we have

a+(γ, z(γ)) ≥ 0;
a−(γ, z(γ)) ≤ 0.

Furthermore, if a+(γ, z(γ))a−(γ, z(γ)) = 0, then x0(γ, z(γ)) = 0.

Proof. We have seen in Proposition 3.14 that z is a cocycle. Thus, it
is easy to see that

z(γk) =
k−1∑
i=0

γiz(γ)

z(γ−k) = −
k∑

i=1

γ−iz(γ).

Let λ > 1 be the attractive eigenvalue of γ. For simplicity, let us
set a+ = a+(γ, z(γ)), a− = a−(γ, z(γ)), x0 = x0(γ, z(γ)) and x1 =
x1(γ, z(γ)). By using previous formulas, we obtain

z(γk) =
λk − 1
λ− 1

a+x
+(γ) +

1
λk

λk − 1
λ− 1

a−x−(γ) + kx0

+ (γk−1 + · · · + γ + 1)x1;

z(γ−k) = − 1
λk

λk − 1
λ− 1

a+x
+(γ) − λk − 1

λ− 1
a−x−(γ) − kx0

− γ−k(γk−1 + · · · + γ + 1)x1.(5)

Now, x1 lies inW = ker(1−γ)⊥∩Span〈x+(γ), x−(γ)〉⊥ that is a spacelike
γ-invariant subspace. Moreover, the application (1− γ)|W is invertible.
Let us denote by Bγ the map (1 − γ)|−1

W . Thus, it is easy to see that
(γk−1 + · · · + γ + 1)x1 = (γk − 1)Bγx

1 and so, we have that the set
{(γk−1 + · · · + γ + 1)x1}k∈N is bounded.

Let us fix a future directed timelike vector e. Since r ∈ Dτ , there
exists K ∈ R such that 〈αr, e〉 ≤ K for all α ∈ Γ and thus, 〈z(α), e〉 ≤
2K for all α ∈ Γ. Now, let us impose

〈
z(γk), e

〉
≤ 2K for every k ∈ N.

Since {(γk−1 + · · ·+ γ+ 1)x1}k∈N is bounded, there exists K ′ such that

(6)
λk − 1
λ− 1

a+

〈
x+(γ), e

〉
+

1
λk

λk − 1
λ− 1

a−
〈
x−(γ), e

〉
+ k

〈
x0, e

〉
≤ K ′.

Since 〈x+(γ), e〉 < 0, we can easily argue that a+ ≥ 0. In an analogous
way, we can prove that a− ≤ 0.

Now, consider the case a+ = 0 (the case a− = 0 is analogous). Sup-
pose by contradiction, x0 �= 0. Since x0 is spacelike, we can choose the



478 F. BONSANTE

vector e so that
〈
x0, e

〉
> 0, but then the expression on the left in (6)

tends to +∞ as k → +∞ and this contradicts (6). q.e.d.

Now, we can prove that C does not have any timelike support plane.
By contradiction, let us suppose that there exist a spacelike vector v
and K ∈ R such that

〈γτp0, v〉 ≤ K for all γ ∈ Γ.

If we set z(γ) = γτp0 − p0, we have 〈z(γ), v〉 ≤ 2K for all γ ∈ Γ.
Let us fix γ ∈ Γ such that 〈x+(γ), v〉 ≥ 0 and 〈x−(γ), v〉 ≥ 0 (such

a γ exists because the limit set of Γ is the whole ∂H
n). Let us set

a+ = a+(γ, z(γ)). Notice that a+ �= 0: in fact, if a+ = 0, we have that
x0(γ, z(γ)) = 0. Then, from (5), it follows that z(γk) runs in a compact
set for k ≥ 0. But, we know that the action of Γτ on C is properly
discontinuous (in fact C ⊂ Dτ ) and this gives a contradiction. Thus,
a+ is positive. By using (5), we can easily see that

〈
z(γk), v

〉
→ +∞

and this is a contradiction.
Finally, we have that C is either a future or a past convex set. Since

C is contained in Dτ ∩Ω and this is future convex, we have that C is a
future convex set. This concludes the proof of Step 2.

Now, let us prove Step 3. Since C is Γτ -invariant, it follows that
∆ = ∂C is Γτ -invariant too. Furthermore, since C is a convex set with
non-empty interior, then ∆ is a topological n-manifold. Moreover, if
a0 = T (p0), then ∆ is contained in I+(Sa0).

We have to show that ∆/Γτ is compact. Let r : Dτ → ∂Dτ be the
retraction. Since ∆ ⊂ Dτ , we can define

f : ∆ 
 p �→ r(p) +
a0

T (p)
(p − r(p)) ∈ S̃a0

where a0 = T (p0). Notice that f(p) is the intersection of the timelike
line p+R(p− r(p)) with the surface S̃a0 . Clearly, f is Γτ -equivariant so
induces a map f : ∆/Γτ → S̃a0/Γτ . We have seen that S̃a0/Γτ is home-
omorphic to M . So, it is sufficient to show that f is a homeomorphism.

Since C is future convex, it is easy to see that f is injective. On the
other hand, let us fix q ∈ S̃a0 . We have that q + λ(q − r(q)) ∈ C for
λ � 0. Since T is concave q + λ(q − r(q)) /∈ C for λ < 0. Thus, there
exists λ0 ≥ 0 such that p = q + λ0(q − r(q)) ∈ ∆.

Since r (q + λ(q − r(q))) = r(q) for all λ ∈ (−1,+∞), we have r(p) =
r(q) so that the lines p+R(p−r(p)) and q+R(q−r(q)) coincide. Thus,
q is the intersection of the line p+R(p−r(p)) with S̃a0 and so f(p) = q.
It follows that the map f is surjective. By Theorem of the Invariance of
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Domain, f is a homeomorphism and so is f . This concludes the proof
of Step 3.

Now, let us prove Step 4. Notice that the functions T : ∆ → R and
TΩ : ∆ → R are Γτ -invariant. Since ∆/Γτ is compact, these functions
are bounded on ∆ so that there exists a > 0 such that T (x) < a and
TΩ(x) < a for every x ∈ ∆. We have to show that S̃a and S̃Ω

a are
contained in C. Let y ∈ Dτ and suppose y /∈ C and y ∈ I−(∆). There
exists y′ ∈ ∆ ∩ I+(y) so, we have T (y) < T (y′) < a. It follows S̃a ⊂ C.
An analogous argument shows that S̃Ω

a ⊂ C. This concludes the proof
of Step 4 and the proof of Theorem 5.1. q.e.d.

Clearly, an analogous theorem holds for Γτ -invariant past complete
regular domains. So, D−

τ is the unique Γτ -invariant past complete reg-
ular domain.

Corollary 5.4. If τ and σ differ by a coboundary, then Dτ and Dσ

differ by a translation. Moreover, D−τ coincides with −(D−
τ ).

Proof. Suppose that σγ − τγ = γ(x) − x. Then, it is easy to see that
Dτ + x is a Γσ-invariant future complete regular domain.

On the other hand, notice that −(D−
τ ) is a future complete regular

domain and it is invariant by the action of Γ−τ . q.e.d.

Let us set Yτ := Dτ/Γτ (resp. Y −
τ := D−

τ /Γτ ). We have that Yτ and
Yσ are isometric if and only if τ and σ differ by a coboundary (i.e., the
isometric class of Yτ depends only on the cohomology class of τ). Notice
that for τ = 0, the domain D0 (resp. D−

0 ) coincides with I+(0) (resp.
I−(0)) so that Y0 is the Minkowskian cone C+(M).

On the other hand, a time-orientation reversing isometry between
Y−τ and Y −

τ exists.

Corollary 5.5. Let F̃ be a Γτ -invariant complete spacelike hypersur-
face on which the action of Γτ is free and properly discontinuous. Then,
F̃ is contained either in Dτ or in D−

τ . In particular, every timelike co-
ordinate is proper on F̃ and the Gauss map has degree 1. Furthermore,
F̃ /Γτ is homeomorphic to M .

Proof. We know that D(F̃ ) is a Γτ -invariant either future or past
complete regular domain. By Theorem 5.1, we get that either D(F̃ ) =
Dτ or D(F̃ ) = D−

τ . Thus, F̃ is contained either in Dτ or in D−
τ . Notice

that this implies that every timelike coordinate on F̃ is proper.
Suppose F̃ ⊂ Dτ . Let us consider the map

ϕ : F̃ 
 x �→ r(x) +
1

T (x)
(x− r(x)) ∈ S̃1.
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It is easy to see that this map is Γτ -equivariant and injective. Fur-
thermore, since F̃ is a Cauchy surface for Dτ (in fact Dτ = D(F̃ )), we
can easily see that ϕ is surjective. Thus, it is a Γτ -equivariant home-
omorphism. It follows that it induces a homeomorphism ϕ : F̃ /Γτ →
S̃1/Γτ

∼= M .
Finally, consider the Gauss map of F̃ . It is a Γ-equivariant map

G : F̃ → H
n (i.e., G(γτp) = γG(p)). It is easy to see that this map

induces on the quotient a map G : F̃ /Γτ → M which is a homotopy
equivalence. Thus, it has degree 1. q.e.d.

Now, we want to prove that Yτ and Y −
τ are the only maximal globally

hyperbolic spacetimes with a compact spacelike Cauchy surface and
with holonomy group Γτ . We need the following remark which was
stated by Mess in [14] for the case n = 2. However, his proof is valid in
every dimension.

Corollary 5.6. For every τ ∈ Z1(Γ,Rn+1), the intersection Dτ ∩D−
τ

is empty.

Proof. It is easy to see that Dτ ∩ D−
τ is a Γτ -invariant compact set.

Thus, if it is non-empty, its barycentre p is a fixed point of Γτ . It is
straightforward to recognize that I+(p) and I−(p) are respectively a Γτ -
invariant future and past complete domain of dependence (notice that
the cohomology class of τ vanishes). Hence, Dτ = I+(p) and D−

τ = I−(p)
so, their intersection is empty. q.e.d.

Corollary 5.7. There exists only two maximal globally hyperbolic flat
spacetimes with compact spacelike Cauchy surface and with holonomy
group Γτ .

Proof. Let Y be a maximal globally hyperbolic flat spacetime with
a compact spacelike Cauchy surface N and holonomy group equal to
Γτ . We have to show that Y isometrically embeds in Yτ or in Y −

τ . It
is sufficient to show that the developing map D : Ỹ → M

n+1 is an
embedding with image contained either in Dτ or in D−

τ .
Let N be the spacelike Cauchy surface of Y . We know that D : Ñ →

M
n+1 is an embedding and its image D(Ñ) is a Γτ -invariant surface

such that the Γτ -action on it is free and properly discontinuous. Thus,
D(Ñ) is a Cauchy surface either of Dτ or D−

τ . It follows that N is
homeomorphic to M . In [2], it is shown that Y is foliated by spacelike
hypersurfaces so thatD(Y ) ⊂ Dτ∪D−

τ . Since these domains are disjoint,
it follows that D(Y ) is contained in one of them, say Dτ (the other case
is analogous).
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Consider the map TD := T ◦ D where T is the CT of Dτ : we have
that TD is a π1(Y )-invariant regular map such that the level surfaces Ña

are π1(Y )-invariant spacelike Cauchy surfaces. Thus, Ña/π1(Y ) ∼= N ,
is compact. It follows that D|

�Na
is an embedding. Moreover, let us fix

p ∈ Ña and q ∈ Ñb with a �= b. Since, we have that T (D(p)) = a and
T (D(q)) = b, it follows D(p) �= D(q). Thus, the map D is an embedding
of Y into Dτ . This map induces on the quotient the embedding Y → Yτ .

q.e.d.

6. Continuous Family of Domains of Dependence

We use the notation introduced in the previous sections. In particu-
lar, Γ is a torsion-free co-compact and discrete subgroup of SO +(n, 1)
and M = H

n/Γ. We have seen that a well defined correspondence exists

H1(Γ,Rn+1) 
 [τ ] �→ [Yτ ] ∈ TLor(M)

where Yτ is the quotient of the unique Γτ -invariant future complete reg-
ular domain Dτ by the action of the deformed group Γτ , (we recall that
TLor(M) is the Teichmüller space of globally hyperbolic flat Lorentzian
structures on R ×M with a spacelike Cauchy surface). In this section,
we shall show that this correspondence is continuous.

More precisely, we shall prove that for every bounded neighbourhood
U of 0 in Z1(Γ,Rn+1), there is a continuous map

dev : U ×
(
R+ × M̃

)
→ M

n+1

such that for every τ ∈ U , the restriction devτ = dev(τ, ·) is a developing
map of Yτ .

Let us consider the map

(7) dev0 : U × M̃ → M
n+1

constructed in Theorem 3.4. We know that dev0
τ is an embedding onto

a Γτ -invariant strictly convex spacelike hypersurface and the map dev0
τ

is Γ-equivariant in the following sense

dev0
τ (γx) = γτdev

0
τ (x).

For every τ ∈ U , let F̃τ be the image of M̃ under dev0
τ (M̃ ). Now, let us

fix a set of orthonormal affine coordinates (y0, . . . , yn). We know that
there exists a convex function ϕτ : {y0 = 0} → R such that F̃τ is the
graph of ϕτ . The first remark is that ϕτ is a continuous function of τ .
More exactly, let (τk)k∈N be a sequence in U which converges to τ in U .
Then, ϕτk

tends to ϕτ in the compact-open topology.
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We know that for every τ ∈ U , the domain Dτ is the domain of
dependence of F̃τ . Now, let ψτ : {y0 = 0} → R be such that ∂Dτ is the
graph of ψτ . We want to prove that ψτ is a continuous function of τ .

Proposition 6.1. Let (τk)k∈N be a sequence in U which converges to
τ ∈ U . Then, ψτk

tends to ψτ in the compact-open topology.

Proof. First, let us show that the family {ψτk
: {y0 = 0} → R}k∈N is

locally bounded and equicontinuous. Since two points on ∂Dτk
are not

chronologically related, it follows that the maps ψτk
are 1-Lipschitzian

so they form an equicontinuous family. We have to prove that they are
locally bounded. Since F̃τ is contained in Dτ , we have ψτk

≤ ϕτk
. On the

other hand, we can consider a continuous family of past strictly convex
Γσ-invariant spacelike hypersurfaces

{
F̃−

σ

}
σ∈U

. Let ϕ−
τk

: {y0 = 0} → R

be such that F̃−
τk

is the graph of ϕ−
τk

. The domain of dependence of F−
τk

is D−
τk

and since it is disjoint from Dτk
, we can deduce that

ϕ−
τk

≤ ψτk
≤ ϕτk

.

Notice that {ϕ−
τk
}k∈N and {ϕτk

}k∈N are convergent and hence, locally
bounded. It follows that ψτk

is locally bounded too.
Now, it remains to prove that if ψτk

→ ψ∞, then ψ∞ = ψτ . We have
that ψ∞ is a convex function and the graph S of ψ∞ is Γτ -invariant.
Furthermore, since ψ∞ is a 1-Lipschitz function, then S has not timelike
support planes. Hence, I+(S) is the future of the graph of ψ∞ and it is a
future convex set. It is easy to see that I+(S) is a future complete regular
domain. Since it is Γτ -invariant by Theorem 5.1, we have I+(S) = Dτ .
Thus, graph (ψ∞) = ∂Dτ and so ψ∞ = ψτ . q.e.d.

Let (τk)k∈N be a sequence in U which converges to τ ∈ U . Let us fix
K a compact subset of Dτ . The last proposition implies that K ⊂ Dτk

for k � 0. Thus, we can suppose that K ⊂ Dτk
for any k. Notice that

the cosmological time Tτk
, the normal field Nτk

and the retraction rτk

of the domain Dτk
are maps defined over K. The following propositions

show that these maps converge to the corresponding maps for Dτ as
k → +∞.

Proposition 6.2. Let (τk)k∈N be a sequence as above. Let Tk = Tτk

be the cosmological time of Dτk
. Then, Tk|K uniformly tends to the

restriction on K of the cosmological time T = Tτ of Dτ .

In order to prove the proposition, we need the following technical
lemma.
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Lemma 6.3. For C ∈ R and for every cocycle σ, let us set

KC(σ) = {x ∈ {y0 = 0}|ψσ(x) ≤ C}
(ψσ is the function defined over the horizontal plane such that ∂Dσ is
the graph of such a function). Then, for every C ∈ R and ε > 0, there
exists k0 ∈ N such that

KC−ε(τ) ⊂ KC(τk) ⊂ KC+ε(τ) for all k ≥ k0.

For every cocycle σ, let M(σ) be the minimum of the function ψσ :
{y0 = 0} → R. Then, M(τk) converges to M(τ).

Proof. Notice that KC(σ) is a convex compact set. Moreover, if C >
M(σ), then KC(σ) has non-empty interior and ∂KC(σ) is the level set
{x|ψσ(x) = C}.

Now, let us set M = M(τ). First, let us show the first statement for
C > M . Fix ε > 0 and let k0 ∈ N be such that ||ψτ −ψτk

||∞,KC+ε(τ) <
ε
2

for all k ≥ k0 . Clearly, KC−ε(τ) ⊂ KC(τk) for all k ≥ k0. Now, let x
be a point that does not lie in KC+ε(τ). We claim that ψτk

(x) ≥ C + ε
2

for all k ≥ k0 and this proves the other inclusion.
Let k > k0 and x0 ∈ {y0 = 0} be such that ψτ (x0) = M . Consider

the map c(t) = ψτk
(x0 + t(x − x0)) for t ∈ [0, 1]. Let t0 be such that

x0 + t0(x− x0) ∈ ∂KC+ε(τ). We have that

c(0) ≤M + ε
2 and

c(t0) ≥ C + ε
2 .

By imposing c(t0) ≤ (1− t0)c(0) + t0c(1), we have that ψτk
(x) = c(1) ≥

C + ε
2 .

Now, suppose C < M . Let us fix k0 such that

KM+1(τk) ⊂ KM+2(τ) and
||ψτ − ψτk

||∞,KM+2(τ) <
M−C

2 for all k > k0.

Then, it turns out that KC(τk) = ∅ for all k > k0.
Thus, it turns out that M(τ) ≤ liminfk→+∞M(τk). On the

other hand, since ψτk
tends to ψτ , we can easily see that M(τ) ≥

limsupk→+∞M(τk). q.e.d.

Now, we can prove Proposition 6.2.

Proof. Let M be the minimum of ψτ . By Lemma 6.3, there exists
k0 such that ψτk

(x) > M − 1 for all x ∈ {y0 = 0} and k ≥ k0. Notice
that the set J−(K) ∩ {y0 ≥ M − 1} is a compact set and let H be the
projection of it onto the horizontal plane {y0 = 0}. Let us fix ε > 0 and
k(ε) such that ||ψτ − ψτk

||∞,H < ε
2 for k ≥ k(ε).
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Let p ∈ K and r be the projection of p on ∂Dτ : notice that r ∈
J−(K) ∩ {y0 ≥M − 1}. Now, if k ≥ k(ε), then r+ ε ∂

∂y0
belongs to Dτk

so that

Tk(p) >

√
−
〈
p− r + ε

∂

∂y0
, p − r + ε

∂

∂y0

〉
.

Now, notice that −
〈
p− r + ε ∂

∂y0
, p− r + ε ∂

∂y0

〉
= −T (p)2−ε2 +2ε(p−

r)0. By the compactness of J−(K) ∩ {y0 ≥M}, there exists a constant
C such that

Tk(p) >
√
T (p)2 + ε2 − 2Cε.

Thus, we can fix η > 0 such that Tk(p) > T (p) − η for all k ≥ k(ε) and
p ∈ K.

On the other hand, also the projection rk(p) of x on ∂Dτk
lies in

J−(K) ∩ {y0 ≥M − 1}. So, the same argument shows that T (p) >
Tk(p) − η for all k > k(ε) and p ∈ K. q.e.d.

Let ψa
τ : {y0 = 0} → R be such that graph (ψa

τ ) is the CT level
surface S̃a(τ) := T−1

τ (a). Proposition 6.2 implies that these maps are
continuous functions of τ .

Corollary 6.4. If τk → τ , then ψa
τk

tends to ψa
τ in the compact-open

topology.

Proof. Since the maps ψa
τk

are 1-Lipschitz, we have that {ψa
τk
}k∈N is

an equicontinuous family. On the other hand, notice that

ψτk
< ψa

τk
< ψτk

+ a.

Since {ψτk
} is locally bounded, it follows that {ψa

τk
}k∈N is also locally

bounded. From Proposition 6.2, it follows that if ψa
τk

converges and the
limit is ψa

τ . q.e.d.

Now, let us prove that the retraction rτ and the normal field Nτ are
continuous functions of τ .

Proposition 6.5. Let τk → τ be as above. Let rk and Nk be respec-
tively the retraction and the normal field of Dτk

. Now, fix a compact
subset K of Dτ . The maps rk|K and Nk|K converge in the compact-open
topology respectively to the retraction r and to the normal field N of the
domain Dτ .

Proof. Let M be the minimum of the map ψτ and fix k0 such that
ψτk

≥M−1 for all k ≥ k0. In particular, rk(p) ∈ J−(K)∩{y0 ≥M−1}
for all p ∈ K and k > k0. Since J−(K) ∩ {y0 ≥ M − 1} is compact, we
can choose C such that ||p− rk(p)|| ≤ C for all p ∈ K and k ≥ k1 (|| · ||
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is the Euclidean norm). On the other hand, because of Proposition 6.2,
we can choose k1 > k0 such that

β > Tk(p) ≥ α > 0 for all p ∈ K and k ≥ k1.

(Here, Tk is the CT on Dτk
and T is the CT on Dτ .)

Thus, the image Nk(K) is contained in the set H = {x ∈ H
n| ||x|| ≤

C
α } for all k ≥ k1. This is a compact set of H

n so the family of functions
{Nk|K}k∈N is bounded.

In order to show that Nk|K → N |K , it is sufficient to prove that
Nk(pk) → N(p) for all convergent sequences pk → p. Since Nk(pk)
runs in a compact subset of H

n, we can suppose that Nk(pk) tends to a
timelike vector v. Let us set a = T (p). In order to show that N(p) = v,
it is sufficient to prove that p + v⊥ is a support plane for the surface
S̃a = T−1(a), i.e., we have to prove the following inequality

(8) 〈q, v〉 ≤ 〈p, v〉 for all q ∈ S̃a.

Let us fix q ∈ S̃a and put q = (ψa
τ (y), y). Let us set ak = Tk(pk) and

consider the sequences

qk := (ψak
τk

(y), y);

q′k := (ψa
τk

(y), y).

By Corollary 6.4, we have that q′k → q. On the other hand, it turns out
that ||qk − q′k|| ≤ |ak − a| so that qk → q. We know that 〈qk, Nk(p)〉 ≤
〈pk, Nk(p)〉: by passing to the limit inequality (8) follows.

Since rk + TkNk = id, we have that rk|K → r|K uniformly. q.e.d.

Corollary 6.6. Let K be as above. Then, the cosmological times Tτk

tend to Tτ in the C1-topology of C1(K).

Now, let us go back to the original problem.

Theorem 6.7. For every bounded neighbourhood U of 0 in Z1(Γ,
R

n+1), there exists a continuous map

dev : U ×
(
R+ × M̃

)
→ M

n+1

such that devτ is a developing map of Yτ for every τ ∈ U .

Proof. Let dev0 : U × H
n → M

n+1 be the map defined in (7). Now,
let us fix τ ∈ U , x ∈ H

n and t > 0. Consider the timelike geodesic γ in
Dτ which passes through dev0

τ (x) and has the direction of the normal
field at dev0

τ (x). Now, let dev(τ, t, x) be the point on γ with CT equal
to t:

dev(τ, t, x) = rτ (dev0
τ (x)) + tNτ (dev0

τ (x)).
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Clearly, dev satisfies the three properties required. On the other hand,
by Propositions 6.2 and 6.5, we can easily see that it is continuous.

q.e.d.

Remark 6.8. With the proof of Theorem 6.7, the proof of Theo-
rem 2.4 is complete. In the following section, we shall prove Theo-
rem 2.5.

Remark 6.9. Notice that the coordinate t on R+×M̃ coincides with
the pull-back of the cosmological time under the map devτ , i.e.,

Tτ (devτ (t, x)) = t.

On the other hand, notice that rτ (devτ (t, x)) and Nτ (devτ (t, x)) depend
only on the x coordinate. Thus, there are well-defined functions

rτ : M̃ → Στ

Nτ : M̃ → H
n

such that rτ (devτ (t, x)) = rτ (x) and Nτ (devτ (t, x)) = Nτ (x).

The map dev is only continuous. But, we can smooth this map to
obtain a C

∞-map dev′ which verifies the properties required in Theorem
6.7. In fact, it is easy to see that, we can perturb the normal field Nτ

on Dτ to obtain a Γτ -invariant timelike smooth vector field Vτ . By
considering the restriction of the flow of this vector field on the Cauchy
surface F̃τ , we obtain a smooth developing map dev′τ which verifies
Properties 1 and 2 of Theorem 6.7.

We can construct the field Vτ such that V0 coincides with N0 and Vτ

“varies continuously” with τ in the following sense: for every convergent
sequence τk → τ and for every open set K ⊂ Dτ , the fields Vτk

|K tend to
Vτ |K in the C∞-topology. In this way, it is easy to see that dev′(τ, x) =
dev′τ (x) is a smooth map which verifies the properties required in the
theorem.

7. Gromov Convergence of the CT-Level Surfaces

Let us summarize what we have seen until now. We have fixed a
closed hyperbolic n-manifold M and we have identified π1(M) with a
torsion-free co-compact discrete subgroup of SO +(n, 1), say Γ, such
that M = H

n/Γ. Given a cocycle τ ∈ Z1(Γ,Rn+1), we have considered
the deformation Γτ of Γ. We have proved that there exists a unique
Γτ -invariant future complete regular domain Dτ such that the action is
free and properly discontinuous and the quotient is a globally hyperbolic
spacetime diffeomorphic to R+ ×M . The domain Dτ is provided with
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a Γτ -invariant regular cosmological time T which is a C1-submersion.
Moreover, there exist a retraction map r : Dτ → Σ onto the singularity
in the past and a normal field N : Dτ → H

n which is, up to sign,
the Lorentzian gradient of the cosmological time T . The level surfaces
S̃a = T−1(a) are spacelike C1-hypersurfaces, so that there is a natural
path-distance da on them. Since S̃a is Γτ -invariant and S̃a/Γτ

∼= M is
compact by Hopf–Rinow Theorem, we can deduce that da is a complete
distance. In this section, we shall study the metric properties of the
surface S̃a and in particular, the asymptotic behaviour when a → +∞
and when a→ 0.

In the previous section, we have constructed a developing map

devτ : R+ × M̃ → M
n

such that devτ ({a} × M̃) = S̃a and there are well-defined maps

r : M̃ → Σ
N : M̃ → H

n

such that r(devτ (t, x)) = r(x) and N(devτ (t, x)) = N(x). By taking the
pull-back of the distance da on S̃a, we obtain a family of distances δa
on M̃ such that π1(M)(= Γ) acts by isometries on (M̃, δa).

The main results of this section are the following propositions.

Proposition 7.1. For all x, y ∈ M̃

lim
a→+∞

δa(x, y)
a

= dH(N(x),N(y))

where dH is the distance of H
n. Moreover, the maps a−1δa tend in the

compact-open topology of C(M̃×M̃) to the map (x, y) �→dH(N(x),N(y)).

Proposition 7.2. There exists a natural distance dΣ on Σ such that

lim
a→0

δa(x, y) = dΣ(r(x), r(y)) for all x ∈ M̃ .

Moreover, δa tends in the compact-open topology to the map (x, y) �→
dΣ(r(x), r(y)).

We shall see that Proposition 7.1 implies that the action of Γτ on S̃a

tends in the Gromov sense to the action of Γ on H
n when a→ +∞. On

the other hand, when a→ 0, we can deduce by Proposition 7.2 only the
convergence of the spectra of the action of Γτ on S̃a to the spectrum of
the action of Γτ on Σ.

Let us start by showing that {δa}a>0 and {a−1δa}a>0 are respectively
increasing and decreasing functions of a.
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Lemma 7.3. Take a Lipschitz path c : [0, 1] → S̃a. Then, the paths
N(t) = N(c(t)) and r(t) = r(c(t)) are differentiable almost everywhere
and we have

N(t) = N(0) +
∫ t

0
Ṅ(s)ds;

r(t) = r(0) +
∫ t

0
ṙ(s)ds.

Moreover, we have that Ṅ(t) and ṙ(t) lie in Tc(t)S̃a (so they are space-

like) and
〈
Ṅ(t), ṙ(t)

〉
> 0 almost everywhere.

Proof. In order to prove the first statement, it is sufficient to show
that the maps N : S̃a → H

n ⊂ M
n+1 and r : S̃a → Σ ⊂ M

n+1 are locally
Lipschitz with respect to the Euclidean distance dE of M

n+1. Since
p = r(p) + aN(p), it is sufficient to show that N is locally Lipschitz.

Let us fix a compact K ⊂ S̃a and set H = N(K). Since H is compact,
there exists a constant C such that

dE(x, y) = ||x− y|| ≤ C(〈x− y, x− y〉)1/2.

On the other hand, by inequalities (4), we have that

(〈N(p) −N(q), N(p) −N(q)〉)1/2 ≤ 1
a
(〈p− q, p− q〉)1/2.

Since 〈p− q, p− q〉 ≤ ||p − q||2, we can deduce that ||N(p) − N(q)|| ≤
C
a ||p− q|| for all p, q ∈ K.

Now, notice that N(t) is a path in H
n so Ṅ(t) ∈ TN(t)H

n = Tc(t)S̃a.
Since ṙ(t) = ċ(t) − aṄ(t), we have ṙ(t) ∈ Tc(t)S̃a almost everywhere.
Finally, inequalities (4) show that 〈N(t+ h) −N(t), r(t+ h) − r(t)〉 ≥
0. Thus, we can easily deduce that

〈
Ṅ(t), ṙ(t)

〉
≥ 0. q.e.d.

Lemma 7.4. For all x, y ∈ M̃ and a < b, we have

δa(x, y) ≤ δb(x, y);

dH(N(x),N(y)) ≤ 1
b
δb(x, y) ≤

1
a
δa(x, y).

Proof. For t > 0, let us set pt = devτ (t, x) and qt = devτ (t, y). Let
cb : [0, 1] → S̃b be a length-minimizing geodesic path between pb and qb.
Consider r(t) = r(cb(t)) and N(t) = N(cb(t)) and let c : [0, 1] → S̃a be
the path defined by the rule c(t) = r(t) + aN(t). We have that c is a
rectifiable arc between pa and qa so that the length of c is greater than
the distance δa(x, y). Now, notice that ċb(t) = ċ(t) + (b − a)Ṅ (t). By
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Lemma 7.3, we have that 〈ċb(t), ċb(t)〉 ≥ 〈ċ(t), ċ(t)〉. This proves that
the length of cb is greater than the length of c and so, the first inequality
holds. Now, we shall prove the second one.

Let c : [0, 1] → S̃a be a Lipschitz path. For simplicity let us setN(t) =
N(c(t)). By Lemma 7.3, we have that a2

〈
Ṅ(t), Ṅ (t)

〉
≤ 〈ċ(t), ċ(t)〉.

By this inequality, it follows that dH(N(p), N(q)) ≤ 1
ada(p, q) for all

p, q ∈ S̃a. On the other hand, for fixed x, y ∈ M̃ let ca : [0, 1] → S̃a be
the da-minimizing geodesic between pa = devτ (a, x) and qa = devτ (a, y).
Let us define c(t) = ca(t) + (b − a)N(t) (where N(t) = N(ca(t))): the
endpoints of this path are pb and qb so that

δb(x, y)
b

=
db(pb, qb)

b
≤ 1
b

∫ 1

0
〈ċ(t), ċ(t)〉1/2 dt.

By Lemma 7.3, we know that a2
〈
Ṅ(t), Ṅ (t)

〉
≤ 〈ċa(t), ċa(t)〉 so that

〈ċ(t), ċ(t)〉1/2 ≤ 〈ċa(t), ċa(t)〉1/2 + (b− a)
〈
Ṅ(t), Ṅ (t)

〉1/2

≤ 〈ċa(t), ċa(t)〉1/2 +
(b− a)
a

〈ċa(t), ċa(t)〉1/2

=
b

a
〈ċa(t), ċa(t)〉1/2 .

Thus, we have

δb(x, y)
b

≤ 1
a

∫ 1

0
(〈ċa(t), ċa(t)〉)1/2dt =

δa(x, y)
a

.

q.e.d.

Now, we can prove Proposition 7.1.

Proof of Proposition 7.1. Let us fix x, y ∈ M̃ . By Lemma 7.4, we have
that 1

aδa(x, y) is a decreasing function of a so there exists

δ∞(x, y) = lim
a→+∞

1
a
δa(x, y).

Let us show that a−1δa tends to δ∞ in the compact-open topology. Since
a−1δa ≤ δ1 the family {a−1δa|K}a>1 is locally bounded. On the other
hand, by triangular inequality, we have for a > 1

|a−1δa(x, y) − a−1δa(x′, y′)| ≤ a−1δa(x, x′) + a−1δa(y, y′)

≤ δ1(x, x′) + δ1(y, y′).

Thus, the family {a−1δa|K}a>1 is equicontinuous. By these remarks, we
easily have that a−1δa → δ∞ in the compact-open topology of M̃ × M̃ .
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Clearly, δ∞ is a pseudo-distance on M̃ . We claim that δ∞(x, y) = 0
if and only if N(x) = N(y). In fact, from Lemma 7.4, we have that
if d∞(x, y) = 0, then N(x) = N(y). On the other hand, if N(x) =
N(y), the segment [r(x), r(y)] is contained in Σ and one easily see that
δa(x,y)

a = 1
a(〈r(y) − r(x), r(y) − r(x)〉)1/2. By passing to the limit, we

obtain that δ∞(x, y) = 0.
It follows that there exists a distance d on H

n such that

δ∞(x, y) = d(N(x),N(y))

In the last part of this proof, we shall show that d = dH. We already
know that dH ≤ d.

By using Theorem 5.1, it is easy to see that D τ
a

= 1
aDτ . Let us

consider the map

f : Dτ 
 p �→ p

a
∈ D τ

a
.

For p ∈ Dτ , let cp be the Lorentzian-length maximizing timelike geodesic
of Dτ with future-endpoint equal to p. Then, f(cp) is a Lorentzian-
length maximizing timelike geodesic of D τ

a
. Since the length of f(cp) is

a−1Tτ (p), we have

T τ
a

(p
a

)
=
Tτ (p)
a

.

Thus, 1
a S̃a is the CT-level surface S̃1( τ

a) = T−1
τ
a

(1). Moreover, the dis-

tance a−1δa is the pull-back of the natural path-distance on S̃1( τ
a).

Since pa = r(x)+aN(x) and qa = r(y)+aN(y), we have lima→+∞ pa

a =
N(x) and lima→+∞ qa

a = N(y) (recall that pa = devτ (a, x) and qa =
devτ (a, y)).

Now, let c : [0, 1] → H
n be a geodesic path between N(x) and N(y)

c(t) = (ψ0(u(t)), u(t))

where ψ0 : {y0 = 0} → R is the function such that H
n = graph (ψ0).

Let ca(t) = (ψa(u(t)), u(t)) be the corresponding path on the surface
S̃1( τ

a) and let us consider p′a = ca(0) and q′a = ca(1). Since ψa → ψ0 in
C1-topology, we have that∫ 1

0
(〈ċa(t), ċa(t)〉)1/2dt→

∫ 1

0
(〈ċ(t), ċ(t)〉)1/2dt = dH(N(x),N(y)).

Let us set a−1pa = (ψa(va), va) and a−1qa = (ψa(wa), wa). It is easy to
see that

δa(x, y)
a

≤ ||va − u(0)|| + ||wa − u(1)|| +
∫ 1

0
(〈ċa(t), ċa(t)〉)1/2



FLAT SPACETIMES 491

Since va → u(0) and wa → u(1) by passing to the limit, we get

d(N(x),N(y)) ≤ dH(N(x),N(y)).

q.e.d.

We want to show that the action of Γτ on (S̃a, a
−1da) tends in the

Gromov sense to the action of Γ on H
n for a → +∞. For a complete

definition of convergence in the Gromov sense of a sequence of isometric
actions on metric spaces see e.g., [15]. However, we need only the
following statement which is an immediate corollary of the definition.

Suppose that Γ acts by isometries on metric spaces (Xi, di) for i ∈
N and on a metric space (X∞, d∞). Suppose that there exists a se-
quence of Γ-equivariant maps πi : Xi → X∞ which verifies the fol-
lowing property: for every compact subset K∞ of X∞ and ε > 0 for
i � 0, there exists a compact set Ki such that πi(Ki) = K∞ and
|d∞(πi(x), πi(y)) − di(x, y)| < ε for all x, y ∈ Ki. Then, the action
of Γ on Xi tends in the Gromov sense to the action of Γ on X∞.

Corollary 7.5. The action of Γτ on the rescaled surfaces (S̃a, a
−1da)

tends in the Gromov sense to the action of Γ on H
n when a→ +∞.

Proof. We want to see that the maps N : S̃a → H
n satisfy the above

condition. Let us fix a compact set K ⊂ H
n and set H = N−1(K) ⊂

M̃ . Since N is a proper map, we have that H is compact. Let Ka =
devτ (a,H) ⊂ S̃a. By Proposition 7.1, we have that for all ε > 0, there
exists a0 such that for all a > a0∣∣∣∣da(x, y)

a
− dH(N(x), N(y))

∣∣∣∣ ≤ ε for all x, y ∈ Ka

q.e.d.

Now, we are interested in the asymptotic behaviour of the distances
δa when a→ 0. The results that we obtain are similar to those that we
have proved in the previous case. However, in this case, we shall see that
there are some technical problems in the proofs. In particular, since ∂Dτ

is an achronal set, a notion of length of a curve is defined. However, the
length of a non-constant curve can be zero. Taking the infimum of the
lengths of the curves with fixed endpoints, yields a pseudo-distance on
∂Dτ . The first problem arises when we try to prove that this pseudo-
distance restricted to Σ is in fact a distance. It seems to be more
convenient to change viewpoint. First, we shall show that the distances
δa tend to a pseudo-distance δ0 on M̃ such that

δ0(x, y) = 0 ⇔ r(x) = r(y).
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This implies that there exists a distance dΣ on Σ such that δ0(x, y) =
dΣ(r(x), r(y)). Later, we shall prove that this distance coincides with
the natural path-distance on Σ.

Proposition 7.6. There exists a pseudo-distance δ0 on M̃ such that
δa → δ0 in the compact-open topology. Moreover, δ0(x, y) = 0 if and
only if r(x) = r(y).

Proof. By using Lemma 7.4, we can easily argue the first statement
as in the proof of Proposition 7.1.

The proof of the second statement is more difficult. We need the
following technical lemma.

Lemma 7.7. Let ϕ : R
n → R be a convex C1-function such that

||∇ϕ(x)|| < 1 for all x ∈ R
n. Let S = {(x0, . . . , xn) ∈ M

n+1|x0 =
ϕ(x1, . . . , xn)} be the corresponding spacelike surface in Minkowski space
and suppose S to be complete. Let 0 be a minimum point of ϕ, then for
every y ∈ R

n, there exists a distance-minimizing geodesic arc c(t) =
(ϕ(x(t)), x(t)) with starting point equal to (ϕ(0), 0) and ending point
equal to (ϕ(y), y) such that the functions t �→ ||x(t)|| and t �→ ϕ(x(t))
are increasing (|| · || is the Euclidean norm of R

n).

Proof of the lemma. First, suppose that ϕ is C∞. By imposing that c
is a geodesic, we can deduce that the path x(t) satisfies the following
equation

ẍ(t) =
ẋ · Hϕ(x) · ẋ

(1 − ||∇ϕ(x)||2)3/2
∇ϕ(x)

where Hϕ(x) is the Hessian matrix of ϕ at x.
If we set f(t) = ||x(t)||2, we have

ḟ(t) = 2x(t) · ẋ(t);

f̈(t) = 2
(
ẋ(t) · ẋ(t) + x(t) · ẍ(t)

)
.

Now, we have that x(0) = 0 so ḟ(0) = 0. Hence, it is sufficient to prove
that f̈(t) ≥ 0 for t ≥ 0. By looking at the last expression, it follows that
it is sufficient to show that x(t) · ẍ(t) ≥ 0. Since ϕ is convex, we have
that ẋ ·Hϕ(x) · ẋ ≥ 0 so x(t) · ẍ(t) ≥ 0 if and only if x · ∇ϕ(x) ≥ 0. On
the other hand, since ϕ(0) is the minimum of ϕ, by imposing convexity
of ϕ on the rays starting from 0, we easily deduce that this inequality
holds for all x ∈ R

n. An analogous computation shows that t �→ ϕ(x(t))
is increasing.

Now, suppose that ϕ is only C1. Let {ρε} be a family of positive
C∞-functions on R

n such that:
1. suppρε = {x ∈ R

n| ||x|| ≤ ε};
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2.
∫

Rn ρε = 1.
Let ϕε be the convolution ϕ ∗ ρε

ϕε(x) =
∫

Rn

ϕ(x− y)ρε(y)dy.

We know that ϕε is C∞ and ϕε → ϕ in C1-topology. Moreover, it is
easy to see that ϕε is a convex function so that Sε := graph (ϕε) is a
smooth future convex spacelike surface.

Let us fix y ∈ R
n. By using completeness of S, we have that for

ε� 1, there exists a path

xε : [0, Lε] → R
n

such that
1) cε(t) = (ϕε(xε(t)), xε(t)) is a parametrization of a distance-mini-

mizing geodesic arc on the surface Sε;
2) xε(0) = x and xε(Lε) = y;
3) ||ẋε(t)|| = 1 and Lε is bounded.

Thus, xε tends to a Lipschitz arc x(t) and it is easy to see that the path
t �→ (ϕ(x(t)), x(t)) is a distance-minimizing geodesic between (ϕ(0), 0)
and (ϕ(y), y).

Let pε(t) be the orthogonal projection of cε(t) onto T(ϕε(x),x)Sε

pε(t) = cε(t) +
〈cε(t), (1,∇ϕε(x))〉

1 − ||∇ϕε(x)||2
(1,∇ϕε(x)).

We know that 〈pε(t), pε(t)〉 is an increasing function of t. On the other
hand, since ∇ϕε(x) → 0, we have that pε(t) → x(t) as ε → 0. Thus,
||x(t)|| is an increasing function of t. q.e.d.

Let us go back to the proof of Proposition 7.6. We have to show
r(x) = r(y) for all x, y ∈ M̃ such that δ0(x, y) = 0. By contradiction,
suppose that there exist x, y ∈ M̃ such that δ0(x, y) = 0 and r(x) �= r(y).
Let us fix a set of affine coordinates (y0, . . . , yn) in such a way that

∂
∂y0

= N(x) and r(x) = 0. Let ϕa and ϕ be the functions defined over

the horizontal plane such that S̃a = graph(ϕa) and ∂Dτ = graph (ϕ).
We have pa = dev(a, x) = (a, 0) and qa = dev(a, y) = (ϕa(za), za). Now,
for every a > 0, let us fix a distance-minimizing geodesic path

ca(t) = (ϕa(xa(t)), xa(t)) for t ∈ [0, La]

between pa and qa such that ||xa(t)|| is increasing. Since za → z0, for
a→ 0, there exists a constant K such that

||xa(t)|| ≤ K for all a ≤ 1.
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First, suppose that there exists a sequence ak such that Lak
is bounded.

Then, up to passing to a subsequence, we have that xak
tends to a 1-

Lipschitz path x : [0, L] → R
n such that x(0) = 0 and x(L) = z0. Let

us set ϕa(t) = ϕa(x(t)). Then, by the hypothesis on δ0, we have that

lim
k→+∞

∫ Lak

0

√
1 − ϕ̇ak

(t)2dt = 0.

Thus, |ϕ̇ak
(t)| → 1 for almost all t ∈ [0, L]. By Lemma 7.7, we know

that ϕak
(xak

(t)) are increasing functions of t so that ϕ̇ak
(t) → 1. Thus,

it follows that ϕak
(t) − ϕak

(s) → t − s. On the other hand, we have
that ϕak

(t) − ϕak
(s) → ϕ(x(t)) − ϕ(x(s)). So, we obtain ϕ(x(t)) = t.

Thus, we have that the path t �→ (ϕ(x(t), x(t)) is a null path contained
in ∂Dτ between r(x) and r(y). But this is a contradiction (in fact, no
point in Σ lies in the interior of any null ray contained in ∂Dτ ).

Hence, suppose that La → +∞. Then, there exist a sequence ak → 0
and a Lipschitz path

x : [0,+∞) → R
n

such that xak
→ x in the compact-open topology. Since ||xak

(t)|| ≤ K,
we have that ||x(t)|| ≤ K. On the other hand, the same argument used
above shows that ϕ(x(t)) = t. Since ϕ is 1-Lipschitz, we have ||x(t)|| ≥ t
and this gives a contradiction. q.e.d.

From this proposition, it follows that there exists a distance d on Σ
such that

d(r(x), r(y)) = lim
a→0

δa(x, y) for all x, y ∈ M̃.

We have to check that d coincides with the natural path-distance dΣ.
For r, s ∈ Σ, let us denote by C(r, s) the set of Lipschitzian paths (with
respect to the Euclidean distance on M

n+1) in ∂Dτ between r and s.
Then, dΣ(r, s) is defined by the rule

dΣ(r, s) := inf
c∈C(r,s)

∫ √
〈ċ(s), ċ(s)〉ds.

Proposition 7.8. We have dΣ(r, s) = d(r, s) for all r, s ∈ Σ.

Proof. It is easy to see that if c : [0, 1] → S̃a is a rectifiable path
then, r ◦ c is a rectifiable path with a length less than the length of c.
It follows that dΣ(r(x), r(y)) ≤ δa(x, y). Thus, dΣ(r, s) ≤ d(r, s).

Let us show the other inequality. Let r, s ∈ Σ and x, y ∈ M̃ be such
that r(x) = r and r(y) = s. Moreover, let us set pa = dev(a, x) and qa =
dev(a, y). Let (y0, . . . , yn) be a set of affine orthonormal coordinates
and ϕ : R

n → R (resp. ϕa : R
n → R) be such that ∂Dτ = graph (ϕ)
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(resp. S̃a = graph (ϕa)). We have r = (ϕ(u), u), s = (ϕ(v), v), pa =
(ϕa(ua), ua) and qa = (ϕa(va), va). Finally, let us set q′a = (ϕa(u), u)
and p′a = (ϕa(u), u).

Now, consider the set E of points in R
n where ϕ is not differentiable.

There exists a sequence of 1-Lipschitz path xk : [0, Lk] → R
n between u

and v such that x−1
k (E) has null Lebesgue measure on [0, Lk] and

lim
k→+∞

∫ Lk

0

√
1 − (∇ϕ(xk(t)) · ẋk(t))2dt = dΣ(r, s).

Consider the path cka(t) = (ϕa(xk(t)), xk(t)). It is a path in S̃a between
q′a and p′a so that

da(pa, qa) ≤ da(pa, p
′
a)+

∫ Lk

0

√
1 − (∇ϕa(xk(t)) · ẋk(t))2dt + da(qa, q′a).

Notice (ϕa(x), x)+ (1,∇ϕa(x))⊥ is a support plane for S̃a at (ϕa(x), x).
So the sequence of planes (ϕa(x), x) + (1,∇ϕa(x))⊥ converges to a sup-
port plane for ∂Dτ in (ϕ(x), x). Thus, it is easy to see that ∇ϕa(x) →
∇ϕ(x) for a→ 0 and for all x ∈ R

n − E. It follows that

lim
a→0

∫ Lk

0

√
1 − (∇ϕa(xk(t)) · ẋk(t))2dt

=
∫ Lk

0

√
1 − (∇ϕ(xk(t)) · ẋk(t))2dt.

Now, we have that da(pa, p
′
a) ≤ ||u− ua|| (resp. da(qa, q′a) ≤ ||v − va||))

so by passing to the limit for a→ 0 we have

d(r, s) ≤
∫ Lk

0

√
1 − (∇ϕ(xk(t)) · ẋk(t))2dt for all k.

By passing to the limit for k → +∞, we obtain d(r, s) ≤ dΣ(r, s). q.e.d.

In order to show Gromov convergence of S̃a to Σ, notice that we
cannot use the argument of Corollary 7.5. In fact, there exists a compact
set of (Σ, dΣ) such that for every a > 0, no compact set in S̃a projects
onto it. For instance, consider the case n = 2 and let τ ∈ Z1(Γ,R2+1) be
such that the lamination L associated to Dτ is simplicial. In this case,
the singularity is a simplicial tree such that every vertex is the endpoint
of a numerable set of edges. Let us fix a vertex r0 and consider a
numeration (ek)k∈N of the edges with an endpoint equal to r0. Let

K =
⋃
k∈N

{r ∈ ek|dΣ(r, r0) ≤ C/k}
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where C is the minimum of the lengths of edges in Σ. It is easy to
see that K is compact. By contradiction suppose that for some a > 0,
there exists a compact Ka such that r(Ka) = K. Now, let F(r0) =
N(r−1(r0)): it is a complementary region of the lamination and F(r)
is a component of the boundary of F(r0) for all r ∈ K. Moreover,
F(r) depends only on the edge which contains r. Let Fk be the leaf
corresponding to ek. Now, let us fix p0 ∈ Ka such that r(p0) = r0
and for all k, let pk ∈ Ka be such that r(pk) ∈ ek. We have that
da(pk, p0) ≥ adH(Fk, N(p0)). On the other hand, dH(Fk, N(p0)) → +∞
for k → +∞ and this contradicts the compactness of Ka.

In what follows, we shall prove the convergence of the spectra of the
Γτ -action on S̃a to the spectrum of the Γτ -action on Σ. In general, let
(X, d) be a metric space provided with an action of Γ. For every γ ∈ Γ,
we can define the translation length of γ as �X(γ) = infx∈X d(x, γ · x).
Clearly, �X(γ) depends only on the conjugation class of γ and so a
function �X : C → [0,+∞) is defined on the set C of conjugation classes
of Γ − {1}. This function is called the marked length spectrum of the
action. For simplicity, we denote by �a (a > 0) the marked length
spectrum of the Γτ -action on the CT level surface S̃a, by �0 the marked
length spectrum of the Γτ -action on Σ and by �H the spectrum of the
action on H

n.

Corollary 7.9. With the above notation, we have that for all γ ∈ Γ:

lim
a→+∞ �a(γτ )/a = �H(γ);

lim
a→0

�a(γτ ) = �0(γτ ).

Proof. The first limit is a consequence of the Gromov convergence.
For the second limit, notice that �a(γτ ) ≥ �0(γτ ). On the other hand,
let x ∈ M̃ : then, we have

�a(γ) ≤ δa(x, γx)

so that lim supa→0 �a(γ) ≤ dΣ(r(x), γτ r(x)). We may conclude

lim sup
a→0

�a(γτ ) ≤ �0(γτ ).

q.e.d.

8. Measured Geodesic Stratification

In Section 4, we have associated a geodesic stratification of H
n to

every future complete regular domain with a surjective normal field. In
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this section, we define the notion of transverse measure on a stratifica-
tion. We have seen that in dimension n = 2, geodesic stratifications are
in fact geodesic laminations. We shall see that for n = 2, transverse
measures on geodesic stratifications are equivalent to transverse mea-
sures on the corresponding geodesic laminations (in the classical sense).
Since the behaviour of a stratification is rather more complicated than
the behaviour of a lamination, the general definition of transverse mea-
sure on a stratification is more involved.

We shall see that every measured geodesic stratification gives a fu-
ture complete regular domain. In his work, Mess exposed a technique to
associate a future complete regular domain of M

2+1 to a measured geo-
desic lamination. This construction is a generalization of that technique
to any dimension n ≥ 2.

Let us fix a complete weakly continuous geodesic stratification C. For
p ∈ H

n, let us denote by C(p) the piece in C which contains p and has
minimum dimension.

The first notion that we need is the transverse measure on a piece-
wise geodesic path. Let c : [0, 1] → H

n be a piece-wise geodesic path. A
transverse measure on it is a R

n+1-valued measure µc on [0, 1] such that

1) There exists a finite positive measure |µc| such that µc is |µc|-
absolutely continuous and supp|µc| is the topological closure of
the set {t ∈ (0, 1)| ċ(t) /∈ Tc(t)C(c(t))};

2) Let vc = dµc

d|µc| be the |µc|-density of µc, then,

(9)
vc(t) ∈ Tc(t)H

n ∩ Tc(t)C(c(t))⊥,
〈vc(t), vc(t)〉 = 1,
〈vc(t), ċ(t)〉 > 0 |µc| − a.e.

3) The endpoints of c are not atoms of the measure |µc|.
Let us point out a useful property of transverse measures on geodesic
paths.

Lemma 8.1. Let c : [0, 1] → H
n be a geodesic path and µc be a

transverse measure on it. Then, for |µc|-almost all t, we have

〈c(0), vc(t)〉 < 0 〈c(1), vc(t)〉 > 0.

Thus, vc(t)⊥ separates c(0) from c(1).

Proof. Since c is a geodesic path, there exists v ∈ Tc(0)H
n such that

c(t) = cosh(s(t))c(0) + sinh(s(t))v
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with s(t) an increasing function. By (9), we have |µc|-almost everywhere

0 = 〈c(t), vc(t)〉 = cosh(s(t)) 〈c(0), vc(t)〉 + sinh(s(t)) 〈v, vc(t)〉 ;

0 < 〈ċ(t), vc(t)〉 = ṡ(t)
(
sinh(s(t)) 〈c(0), vc(t)〉 + cosh(s(t)) 〈v, vc(t)〉

)
.

Looking at these expressions, we can easily deduce 〈c(0), vc(t)〉 < 0. An
analogous computation shows the other inequality. q.e.d.

A first consequence of this lemma is that the measure µc determines
the positive measure |µc|.

Corollary 8.2. Let c be a piece-wise geodesic path and µc a trans-
verse measure on it. Suppose that λ is a positive measure such that µc

is λ-absolutely continuous and the density u = dµc

dλ verifies (9). Then,
λ = |µc|.

Proof. First, let us show that λ is |µc|-absolutely continuous. Let E ⊂
[0, 1] be such that |µc|(E) = 0. We can suppose that E is contained in
an interval I = [t0, t1] such that c|I is a geodesic path. Since µc(E) = 0,
it follows

0 =
〈
c(t0),

∫
E
u(t)dλ

〉
=
∫

E
〈c(t0), u(t)〉 dλ.

The same argument of Lemma 8.1 shows that 〈c(t0), u(t)〉 < 0 for λ-
almost all t ∈ I. Thus, we have λ(E) = 0.

Now, let us set a = dλ
d|µc| . We have

vc(t) =
dµc

d|µc|
=

dµc

dλ
dλ

d|µc|
= a(t)u(t) |µc| − a.e.

Since 〈vc(t), vc(t)〉 = 〈u(t), u(t)〉 = 1, we can deduce that a(t) = 1.
q.e.d.

In order to define a transverse measure on a geodesic stratification,
we need the following definition.

Definition 8.1. Let ϕs : [0, 1] → H
n be a homotopy between ϕ0

and ϕ1. We say that ϕ is C-preserving if C(ϕs(t)) = C(ϕ0(t)) for all
(t, s) ∈ [0, 1] × [0, 1] (recall that C(x) is the piece of C which contains x
and has minimum dimension).

Now, we can give the definition of transverse measure on a geodesic
stratification.

Definition 8.2. Let C be a complete weakly continuous stratification
and let us fix a subset Y ⊂ H

n which is a union of pieces of C such that
the Lebesgue measure of Y is 0. We mean by (C, Y )-admissible path



FLAT SPACETIMES 499

(or simply admissible path) any piece-wise geodesic path c : [0, 1] → H
n

such that every maximal geodesic sub-segment has no endpoint in Y .
A transverse measure on (C, Y ) is the assignment of a transverse

measure µc to every admissible path c : [0, 1] → H
n such that

1) If there exists a C-preserving homotopy between two paths c and
d, then µc = µd;

2) For every admissible path c and every parametrization s : [0, 1] →
[0, 1] of an admissible sub-arc of c, we have that µc◦s = s∗(µc);

3) The atoms of |µc| are contained in c−1(Y ), and for every y ∈ Y ,
there exists an admissible path c such that |µc| has some atoms
on c−1(y);

4) µc(c) = 0 for every closed admissible path c;
5) For all sequences (xk)k∈N such that xk ∈ H

n−Y and x= lim
k→+∞

xk ∈
H

n − Y , we have that µck
(ck) → 0 where ck is the admissible arc

[xk, x].
A measured geodesic stratification is given by a weakly continuous
geodesic stratification, a subset Y as above and a measure µ on (C, Y ).

A measured geodesic stratification (C, Y, µ) is Γ-invariant if C is Γ-
invariant, Y is Γ-invariant and we have

µγ◦c(E) = γ(µc(E))

for all admissible paths c : [0, 1] → H
n, borelian sets E ⊂ [0, 1] and

γ ∈ Γ.

x0

v c
γ

y1

x1

y0

Figure 3. The figure shows a non-admissible arc.

Remark 8.3. The restriction to admissible sub-arcs is necessary for
the foundation of the definition. For instance, consider the stratification
of H

2 with one geodesic γ. Let us fix a geodesic arc c: if c intersects
transversely γ at a point t0, let us put µc = vδt0 , where v is the normal
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to γ such that 〈v, ċ(t0)〉 > 0. If c is contained in γ or does not intersect
it, let us put µc = 0. It is not possible to extend this definition to all
piece-wise geodesic paths: in fact, consider the segment c as in Fig. 3.
By applying property 4, of Definition 8.2 to the closed admissible arc
c∗[x1, x0], we have µc(c) = v. On the other hand, we have µc([x0, y0)) =
0, µc([y0, y1]) = 0 and µc((y1, x1]) = 0 and this is a contradiction.

Given a measured geodesic stratification (C, Y, µ), condition 3 in De-
finition 8.2, imposes a minimality property of Y .

Remark 8.4. Consider the case n = 2. Let Γ be a co-compact
Fuchsian group. Let C be a Γ-invariant geodesic stratification. The
1-stratum L of C is a Γ-invariant geodesic lamination of H

2. We know
that L = S ∪ L1 where S is a simplicial lamination and L1 projects
onto H

2/Γ to a lamination with no closed leaf (see [9] for further details
about geodesic laminations).

We shall show that maximal measured geodesic stratifications (C,Y, µ)
are naturally identified with the transverse measures (in the classical
sense) on the lamination L = X(1) (notice that these concepts are quite
different, in fact one is a R

2+1-valued measure and the other is a positive
measure).

Let us fix a transverse measure µ on (C, Y ): we want to see that there
exists a unique transverse measure λ on L such that λc = |µc| for all
admissible paths c. First, notice that Y is a union of geodesics of L
(every component of H

2 − L has non-empty interior). It follows that
every transverse path d is a composition of paths di such that there exists
a C-preserving homotopy between di and a suitable parametrization ci
of the admissible geodesic segment [di(0), di(1)]. Thus, we can define λd

such that its restriction on di is |µci |. By using properties 1 and 2 of
Definition 8.2, it is easy to see that this definition does not depend on
the choice of the decomposition and in fact, it is the only possible one.
Finally, since µ is Γ-invariant, we have that λ is Γ-invariant too.

By general facts about measured geodesic laminations (see [9]), it
follows that for every admissible path c, the atoms of µc are exactly
c−1(S). It follows that S = Y .

Conversely, let λ be a Γ-invariant transverse measure on L. Put
Y = S. We want to construct a (C, Y )-measure on H

2. Let us fix an
admissible path c and consider the function vc : [0, 1] → R

2+1 defined
in the following way: vc(t) = 0 if c(t) /∈ L, otherwise vc(t) is the normal
vector to the leaf C(c(t)) such that 〈vc(t), ċ(t)〉 > 0. Then, we can define
µc as the R

2+1-measure on [0, 1] which is λc-absolutely continuous and
has λc-density equal to vc. It is easy to see that in this way, µc is a
transverse measure on c. Furthermore, by definition, the assignment
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c �→ µc verifies conditions 1 and 2 of Definition 8.2. An easy analysis of
the geometry of a lamination shows that conditions 4 and 5 are satisfied.

It is easy to see that this correspondence gives an identification be-
tween Γ-invariant transverse measures on C and Γ-invariant transverse
measures on L.

Notice that in dimension n = 2 condition 4 of Definition 8.2 is ensured
by the geometry of the stratification. Furthermore, in this case, the set
Y is determined by the lamination (i.e., it does not depend on the
measure).

Before constructing a future complete regular domain with a given
geodesic stratification, let us point out an easy property of measured
geodesic stratifications.

Lemma 8.5. Let µ be a transverse measure on (C, Y ). Then, for
every x ∈ H

n − Y , there exists a unique maximal piece of C which
contains x (maximal with respect to the inclusion).

Proof. Suppose that there exist two pieces C1, C2 which contain x.
We want to show that there exists a piece C which contains C1 ∪ C2.

Let xi be a point in Ci such that C(xi) = Ci. Notice that xi does not
lie on Y (in fact, Y is a union of pieces so if y ∈ Y , then C(y) ⊂ Y ).
Consider the piece-wise geodesic arc c = [x1, x] ∪ [x, x2] ∪ [x2, x1]. It is
closed and admissible so that

µc([x2, x1]) = −µc([x1, x]) − µc([x, x2]).

(Notice that x, x1 and x2 are not atoms.) Since [x1, x] and [x, x2] are
contained in C, we can easily see that µc([x1, x2]) = 0. On the other
hand, by Lemma 8.1, we have that 〈vc(t), x2 − x1〉 > 0 for |µc|-almost
all t. Since 〈µc([x1, x2]), x2 − x1〉 =

∫
[x1,x2]

〈vc(t), x2 − x1〉, we have that
|µc|([x1, x2]) = 0. Thus, the segment [x1, x2] is contained in a piece C.
Clearly, C contains C1 and C2. q.e.d.

Given a measured geodesic stratification (C, Y, µ), we are going to
construct a regular domain with stratification equal to C.

Fix a base point x0 ∈ H
n − Y and define for x /∈ Y

ρ(x) = µcx(cx)

where cx is an admissible path between x0 and x. It is quite evident that
this definition does not depend on the choice of the path. Furthermore,
notice that

ρ(y) = ρ(x) + µcx,y(cx,y)
where cx,y is the geodesic arc between x and y. By using property 5, it
follows that the map ρ : H

n − Y → M
n+1 is continuous.
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For x /∈ Y , let us denote by M(x) the maximal piece of C which
contains x (by Lemma 8.5 this piece is unique). By using Lemma 8.1 it
is easy to see that

(10) 〈ρ(y) − ρ(x), y〉 ≥ 0 〈ρ(y) − ρ(x), x〉 ≤ 0.

Furthermore, by arguing as in Lemma 8.5, we can easily see that the
equality holds if and only if M(x) = M(y). Thus, ρ(x) = ρ(y) if and
only if M(x) = M(y).

Let us define the convex set

Ω =
⋂

x∈Hn−Y

I+(ρ(x) + x⊥).

Theorem 8.6. The convex set Ω is a future complete regular domain.
For x ∈ H

n − Y , we have ρ(x) + ax ∈ S̃a so r(ρ(x) + ax) = ρ(x) and
N(ρ(x) + ax) = x (S̃a is the CT level surface T−1(a), whereas r and
N are respectively the retraction and the normal field). In particular,
ρ(x) ∈ Σ for every x ∈ H

n − Y .
Moreover, S̃a is the boundary of the convex hull of the set Sa =

{ρ(x) + ax|x ∈ H
n − Y }.

Proof. First, let us show that ρ(x) ∈ ∂Ω. Clearly, ρ(x) /∈ Ω. Now,
let us take v ∈ I+(0). We have to show that ρ(x) + v ∈ Ω i.e.,
〈ρ(x) + v − ρ(y), y〉 < 0 for every y ∈ H

n. From inequalities (10), it fol-
lows 〈ρ(x) − ρ(y), y〉 ≤ 0. Since v is future directed, we have 〈v, y〉 < 0
and so I+(ρ(x)) ⊂ Ω.

Now, notice that ρ(x) = ρ(y) for every y ∈ M(x). So, by definition,
the plane ρ(x)+y⊥ is a support plane for Ω at ρ(x) for every y ∈M(x).
Let v be a null direction such that [v] is on the boundary of M(x). By
taking a sequence (yk)k∈N ∈ M(x) such that yk → [v], it is easy to see
that the plane ρ(x) + v⊥ is a support plane for Ω. Thus, we have

Ω ⊂
⋂

x∈H
n−Y and

[v]∈M(x)∩∂Hn

I+(ρ(x) + v⊥).

If we prove the other inclusion, we obtain that Ω is a future complete
regular domain. Fix p ∈ M

n+1 and suppose that 〈p− ρ(x), v〉 < 0 for
every x ∈ H

n and [v] ∈ M(x) ∩ ∂H
n. We have to show that p ∈ Ω.

Notice that every x ∈ H
n − Y is a convex combination of a collection

v1, . . . , vn such that [vi] ∈M(x)∩∂H
n. It follows that 〈p− ρ(x), x〉 < 0

and so p ∈ Ω.
Since ρ(x)+x⊥ is a support plane of Ω, we have that ρ(x)+ax ∈ S̃a.

Moreover, it follows that r(ρ(x) + ax) = ρ(x) and N(ρ(x) + ax) = x.
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Now, let us prove the last part of this theorem. We have to show that
I+(S̃a) is the convex hull of the set Sa = {ax+ ρ(x)|x ∈ H

n − Y }. The
future of S̃a contains the convex hull of Sa. On the other hand, it is easy
to see that spacelike support planes of the convex hull of Sa are support
planes of I+(S̃a). Thus, in order to prove the statement, it is sufficient
to show that the convex hull of Sa has no timelike support plane. By
contradiction, suppose that there exists a vector v such that 〈v, v〉 = 1
and 〈ax+ ρ(x), v〉 < C. Up to translating Ω, we can suppose that the
base point x0 is orthogonal to v. Consider the geodesic γ such that
γ(0) = x0 and γ̇(0) = v. We can suppose that there exists a sequence
tk → +∞ such that xk = γ(tk) /∈ Y . By using that 〈ρ(xk), xk〉 ≥ 0 and
〈ρ(xk), x0〉 ≤ 0, we deduce that 〈ρ(xk), v〉 ≥ 0. Since 〈xk, v〉 → +∞, we
have that 〈axk + ρ(xk), v〉 → +∞ and this gives a contradiction. q.e.d.

Now, we want to point out some interesting properties of the domain
Ω constructed in this way. First, notice that the image of the normal
field contains H

n − Y . Thus, it is not hard to see that for every x ∈
H

n, there is a support plane of Ω orthogonal to x. It follows that the
normal field N is surjective. In particular, we recall that Lemma 4.15
implies that the restriction of the normal field to the CT-level surface
S̃a = T−1(a) is a proper map.

We are going to show that the stratification associated to Ω coincides
with C at least on Hn − Y . First, we give a technical result.

Lemma 8.7. Let Ω be the regular domain constructed in Theorem 8.6.
Then, for every x ∈ H

n, we have that N−1(x)∩ S̃1 is the convex hull of
the limit points of the sequences (xk + ρ(xk))k∈N such that xk ∈ H

n −Y
and xk → x.

Proof. Let us take p ∈ S̃1 and suppose that N(p) = x. We have to
show that for all v ∈ N(p)⊥, there exists a sequence (xk) ⊂ H

n − Y
such that xk + ρ(xk) → p∞ with N(p∞) = x and 〈p∞ − p, v〉 ≥ 0.
We know that there exists a sequence xk ∈ H

n − Y such that xk =
cosh dkx + sinh dkvk such that dk → 0 and vk → v. let us set pk =
xk + ρ(xk). Since N is a proper map, up to passing to a subsequence,
we have that pk → p∞ such that N(p∞) = x. Since 〈pk − p, x〉 ≤ 0 and
〈pk − p, xk〉 ≥ 0, we have that 〈pk − p, vk〉 ≥ 0 and by passing to the
limit, we have 〈p∞ − p, v〉 ≥ 0. q.e.d.

Proposition 8.8. Let Ω be the regular domain associated with the
measured stratification (C, Y, µ). Then, for every x ∈ H

n − Y , we have
that r(N−1(x)) = {ρ(x)}. Moreover, F(ρ(x)) is the maximal piece
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M(x). (We recall that F(r0) = N(r−1(r0)) where r0 ∈ Σ and r is
the retraction onto the singularity Σ).

Proof. Let us take x ∈ H
n − Y . Since ρ : H

n − Y → M
n+1 is a

continuous map, Lemma 8.7 implies that N−1(x) ∩ S̃1 = {x + ρ(x)}.
Thus, r(N−1(x)) = {ρ(x)}. Now, let us prove that F(ρ(x)) = M(x).
Clearly, M(x) ⊂ F(ρ(x)), thus we have to prove the other inclusion. Let
us take y ∈ F(ρ(x)). First, suppose that y /∈ Y . Since y ∈ F(ρ(y)), we
have 〈y, ρ(y) − ρ(x)〉 = 0. On the other hand, by (10), we can deduce
M(x) = M(y).

Suppose now that y ∈ Y ∩ F(ρ(x)). Let us prove that y lies on the
boundary bF(ρ(x)) (see Section 4 for the definition of the boundary
bK of a convex set K). Since y ∈ Y , we have that N−1(y) ∩ S̃1 is
not only a point. So, there exists a spacelike vector v orthogonal to
y such that [ρ(x), ρ(x) + εv] is contained in Σ. We have that v⊥ is a
support plane of F(ρ(x)) and contains y. So, if y /∈ bF(ρ(x)), we have
x ∈ F(ρ(x) + εv) i.e., ρ(x) + εv ∈ r(N−1(x)). Since x /∈ Y , we have
a contradiction. Thus, it follows F(ρ(x)) − bF(ρ(x)) ⊂ H

n − Y and so
F(ρ(x)) − bF(ρ(x)) ⊂M(x). Hence, we can deduce F(ρ(x)) ⊂M(x).

q.e.d.

Remark 8.9. Notice that the stratification induced by the domain Ω
coincides with C on H

n−Y , so that Y is the union of pieces of the strat-
ification associated with Ω. Moreover, by property 3 of Definition 8.2,
it turns out that Y = {y ∈ H

n|#N−1(y) > 1}.

Corollary 8.10. Let (C, Y, µ) be a Γ-invariant measured geodesic
stratification of H

n (where Γ is a cocompact torsion-free discrete sub-
group of SO +(n, 1)). Let us fix a base point x0 /∈ Y and set τγ =
ρ(γ(x0)). Then, we have that τ ∈ Z1(Γ,Rn+1). Let Ω be a domain
associated with (C, Y, µ). Then, we have Ω = Dτ and F(ρ(x)) = M(x)
for every x /∈ Y .

Proof. Since µ is Γ-invariant, we have

ρ(γ(x)) = γρ(x) + ρ(γ(x0)).

Thus, ταβ = ατβ + τα, so that τ is a cocycle. The same equality shows
that Ω is a Γτ -invariant regular domain. Thus, Theorem 5.1 implies that
it is equal to Dτ . Finally, Proposition 8.8 implies that F(ρ(x)) = M(x)
for every x /∈ Y . q.e.d.
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9. Simplicial Stratifications

In this section, we study future complete regular domains of M
3+1

with simplicial geodesic stratifications. We have restricted ourselves to
the case n + 1 = 4 to make the discussion simple. However, most of
the results of this section can be generalized in higher dimensions. In
remarks 9.2, 9.10 and 9.13, we shall suggest how to get such a general-
ization.

Definition 9.1. We say that a geodesic stratification C of H
n is

simplicial if any p ∈ H
n admits a neighbourhood U intersecting only a

finite number of pieces of C.

vi

∆i+1∆i

Pi+1

vi−1

PiPi−1

wi−1

wi

xi−1

xi

xi+1

αi−1

αi

αi+1

Figure 4. A neighbourhood of a point on a 1-piece of a
simplicial stratification of H

3.

We shall see that the correspondence between measured geodesic
stratifications and regular domains induces an identification between
measured simplicial stratifications and regular domains with simpli-
cial singularity. Finally, we shall recover the duality between stratifi-
cations and singularities.

Notice that in dimension n = 2, simplicial stratifications correspond
to simplicial laminations. Moreover, in all dimensions, a simplicial strat-
ification has closed strata: it is, in fact, a tessellation of H

n by locally
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finite ideal convex polyhedra. In Fig. 4, we show the local behaviour of
a simplicial stratification of H

3.
First, we shall describe the measures on a simplicial stratification.

Let (C, Y, µ) be a measured geodesic stratification of H
3 with simplicial

support C. Let X be the 2-stratum of C. We want to show that X = Y .
Since Y has empty interior, we have Y ⊂ X. On the other hand, let c
be a geodesic path with no endpoint in X (such a path is admissible).
Notice that supp|µc| is c−1(X), but this set is finite so that the measure
|µc| has an atom on every point of c−1(X). Thus, X ⊂ Y .

Let us fix a 2-piece P and let ∆1 and ∆2 be the 3-pieces which
incide on P . Let c be an admissible geodesic path which starts from
∆1 and ends into ∆2. Clearly, µc = av1,2δc−1(P ) where a is a positive
constant, v1,2 is the normal vector to P which points towards ∆2 and
δx is the Dirac measure centred at x. By using properties 1 and 2 of
Definition 8.2, we can easily see that the constant a does not depend on
the path. By imposing that µc(c) + µc−1(c−1) = 0, we can deduce that
the measure of a geodesic path c′ which starts from ∆2 towards ∆1 is
µδ = av2,1δc−1(P ). It follows that the constant a depends only on the
piece P . We call it the weight of P and we denote it by aµ(P ).

We want to show that the set of weights {aµ(P )|P is a 2 − piece}
satisfies a certain set of equations and determines the measure µ.

Let us fix a geodesic l in C and let P1, . . . , Pk and ∆1, . . . ,∆k be
respectively the 2-pieces and the 3-pieces which incide on l. We can
suppose that the numeration is such that ∆i incides on Pi−1 and Pi

(the index i − 1 and i are considered mod k, see Fig. 4). Let us fix
xi ∈ int(∆i) and consider the admissible closed path c = [x1, x2] ∪
[x2, x3] ∪ . . . ∪ [xk−1, xk] ∪ [xk, x1]. By imposing that µc(c) = 0, we can
deduce

(11)
k∑

i=1

aµ(Pi)vi = 0

where vi is the normal vector to Pi which points towards ∆i+1. Notice
that vi lies in the linear subspace of M

3+1 which is orthogonal to the
space generated by l (which we denote l⊥). If we fix a point x ∈ l, l⊥
is identified with the subspace of TxH

3 orthogonal to l. By performing
a π

2 -rotation on l⊥, we can see that equation (11) is equivalent to the
equation

(12) pl(aµ) =
∑
l⊂P

aµ(P )w(P ) = 0

where w is the unitary vector of l⊥ tangential to P and pointing inward
(see Fig. 4).
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Definition 9.2. A family of positive constants a = {a(P )} parame-
trized by the set of 2-pieces of C is called a family of weights for the
stratification if the equation pl(a) = 0 is satisfied for every 1-piece l.

We have shown that there is a family of weights associated with
every transverse measure µ on C. Now, we want to prove that this
correspondence is bijective.

Proposition 9.1. For every family of weights {a(P )}, there exists a
unique transverse measure µ such that a(P ) = aµ(P ).

Proof. First, let us prove uniqueness. Let µ and ν be measures such
that aµ(P ) = aν(P ) for all 2-pieces P . If c is an admissible arc which
intersects only 2-pieces, it follows that µ(c) = ν(c). Suppose now that
c ∩X is a point p which lies on the 1-piece l. Consider an arc c′ which
has the same endpoints as c and does not intersect the 1-stratum. We
have µc(c) = µc′(c′) = νc′(c′) = νc(c). Since suppµc = suppνc = c−1(p),
we have µc = νc.

∆2

∆j

∆1

∆k

Figure 5. Definition of measure on a geodesic which
passes through the 1-stratum.

Notice that every admissible path is a composition of paths c1∗· · ·∗cn
such that every ci either does not intersect the 1-stratum or intersects
only one geodesic. It follows that µc = νc.

Now, let us prove existence. Let c be an admissible geodesic path:
notice that c−1(P ) is at most a point for every 2-piece P . Suppose that
c does not intersect any geodesics of the stratification. Then, we can
define µc =

∑
P a(P )v(P )δc−1(P ) where v(P ) is the normal vector to P

pointing in the direction of c (notice that this sum is finite). Suppose
now that c intersects only one geodesic l. Let P1, . . . , Pk and ∆1, . . . ,∆k

be respectively the 2-pieces and the 3-pieces which incide on l. We
choose the numeration as above and suppose that c comes from ∆1 and



508 F. BONSANTE

goes into ∆j . Thus, we can define

µc =

(
j−1∑
i=1

a(Pi)u(Pi)

)
δc−1(l)

where u(Pi) is the normal vector to Pi which points towards ∆j. Since
j−1∑
i=1

a(Pi)u(Pi) =
k∑

i=j

a(Pi)u(Pi),

this definition does not depend on the numeration (see Fig. 5). Now,
let c be an admissible path. Consider a decomposition of c in geodesic
admissible paths c1 ∗ · · · ∗ck such that every ci intersects either only one
geodesic of the stratification or only one 2-piece. Thus, we can define
µc such that µc|ci is µci . Notice that this definition does not depend on
the decomposition of c.

Clearly, this measure satisfies properties 1, 2 and 3 of Definition 8.2.
Let us show that if c is a closed admissible path, then µc(c) = 0. First,
notice that we can assume that c does not intersect any geodesic of C.
In fact, if c intersects l, we can perform the move in Fig. 6. Notice
that we obtain a closed admissible arc c′ such that µc′(c′) = µc(c) and
#(c′ ∩ X(1)) < #(c ∩ X(1)) (here, X(1) is the 1-stratum). Since these
intersections are finite, we can suppose c ∩X(1) = ∅.

c′
c

Figure 6. Performing the move in the figure, we obtain
an arc which does not intersect X(1).

Now, c − X is a union of components m1, . . . ,mN , where mi is an
oriented arc with endpoints on the faces P−

i and P+
i . Notice that we

can suppose that the faces P−
i and P+

i are different. In fact, otherwise,
we can perform the move in Fig. 7. We call such a path tight.

Now, let n(P, c) be the cardinality of the intersection of c with the face
P . It is clear that if n(P, c) = n(P, c′) for every P , then µc(c) = µc′(c′).
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c

c′

Figure 7. Performing the move in the figure we obtain
a tight arc.

On the other hand, let c and c′ be tight paths such that there exists a
homotopy between them in H

n −X(1): it is easy to see that n(P, c) =
n(P, c′) for every P (in fact for every tight path c there exists ε > 0
such that if c′ is in a ε-neighbourhood of c, then n(P, c) = n(P, c′)).

Thus, we have that µc(c) depends only on the homotopy class of c
in H

n − X(1). Now, let us fix a base point x0 ∈ H
n − X. Since every

α ∈ π1(Hn − X(1), x0) is represented by an admissible path, we have
constructed a map π1(Hn −X(1)) 
 [c] → µc(c) ∈ R

3+1 that turns to be
a homomorphism.

For every geodesic l ⊂ X(1), let us consider an admissible path sl

which winds around l. Now, we can join sl to x0 with an admissible
arc d. Consider the loop cl = d ∗ sl ∗ d−1. Notice that the family {cl}
generates π1(Hn−X(1), x0). On the other hand, we have µcl

(cl) = µsl
(sl)

and since the weights verify equation pl, we have µcl
(cl) = 0. It follows

that µc(c) = 0. Thus, µ is a measure on (C,X). q.e.d.

Remark 9.2. An analogous description of measures on simplicial
stratifications holds in higher dimension. In fact, for a given simplicial
stratification C of H

n, we can associate to every (n−1)-piece P a positive
number a(P ) as in the 3-dimensional case. For every (n−2)-dimensional
piece l, we can consider an admissible path c which winds around l. By
imposing that µc(c) = 0, we obtain that the family {a(P )} verify the
linear equation pl. Thus, we can define a family of weights as a family of
positive constants {a(P )} parametrized by (n − 1)-pieces and solution
of equations pl parametrized by (n− 2)-pieces.

On the other hand, we can check that a family of weights determines
a measure on C. As in the 3-dimensional case, it is easy to prove that
two measures µ and ν which produce the same family of weights are
equal.
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Finally, let us fix a family of weights {a(P )}. For a given admissi-
ble path c which does not intersect X(n−2), we can define a transverse
measure µc as in the 3-dimensional case. Moreover, given such a path
c, it turns out that µc(c) depends only on the free homotopy class of c
as a path in H

n − X(n−2). Thus, if we fix a base-point x0, we have a
homomorphism π1(Hn −X(n−2), x0) → R

n+1.
For each (n − 2)-piece l, let cl be an admissible loop which starts

from x0, goes towards l, then winds around l and finally goes back to
x0. Now, π1(Hn −X(n−2)) is generated by the loops cl parametrized by
the 2-pieces l. Since {a(P )} is a family of weights, it is easy to see that
µcl

(cl) = 0. Thus, for every closed admissible path c in H
n−X(n−2), we

have µc(c) = 0. It is easy to see that we can extend this measure to a
measure defined for every admissible path (we can extend the argument
of Proposition 8.8 to any dimension). Thus, we can conclude that for a
simplicial stratification of H

n, the families of weights on C parametrize
the measures on C.

Now, let us go back to the case n+1 = 4. Let us consider a family of
weights a = {a(P )}. We have seen that this family induces a measure
µ on C. Let Ω be the domain associated to the measured stratification
(C,X, µ). We want to describe the CT-level surface S = T−1(1) and the
singularity Σ.

N

Sa
H

3

Figure 8. The inverse image of a neighbourhood of a
point in H

3 on the CT-level-surface of a regular domain
with simplicial singularity.

Proposition 9.3. Consider the decomposition of S into the sets
S(i) := {x ∈ S|dimN−1(N(x)) ∩ S = i} (for i = 0, 1, 2). Then, we
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have

S(i) = �{N−1(C) ∩ S|C is a 3 − i piece}.

If ∆ is a 3-piece N−1(∆) is obtained from ∆ by translation and in
particular, the normal field N restricted to every component of S0 is an
isometry.

If P is a 2-piece, then N−1(P ) is isometric to P × [0, a(P )] and the
normal field coincides with the projection onto the first factor.

Finally, if l is a geodesic piece, then N−1(l) is isometric to l ×
Fl where Fl is a Euclidean k-gon. More precisely, let P1, . . . , Pk and
∆1, . . . ,∆k be respectively the 2-pieces and 3-pieces incide on l (numeration
is chosen as above). Then, there is a numeration of the edges of Fl, say
e1, . . . , ek, such that the length of ei is a(Pi) and the angle between ei−1

and ei is π − αi where αi is the dihedral angle of ∆i along l.

Proof. Let us fix a base point x0 and for every 3-piece ∆, let ρ∆ =
µc(c) where c is an admissible path which joins x0 to ∆. Clearly, ρ∆

does not depend on the path c and so it is well defined. Moreover, we
have

Ω =
⋂
∆

⋂
x∈∆

{p ∈ M
3+1| 〈p− ρ∆, x〉 < 0}.

Now, for every x ∈ H
n there exists a unique support plane Px of Ω

which is orthogonal to x and such that Px ∩Ω �= ∅. On the other hand,
we have that r(N−1(x)) = Px ∩ Ω.

Suppose now that x ∈ ∆: by definition of Ω, we have that Px is the
plane which passes through ρ∆ and is orthogonal to x.

If x ∈ int∆, then by using inequalities (10), we can see that Ω∩Px =
{ρ∆}. Now, let us take x ∈ P where P is a 2-piece. By Lemma 8.7,
we can deduce Ω ∩ Px = [ρ∆− , ρ∆+ ] where ∆− and ∆+ are the 3-pieces
which incide on P . Finally, suppose that x ∈ l for some geodesic piece
l. We have that Ω ∩ Px is the convex hull of ρ∆i where ∆1, . . . ,∆k are
the 3-pieces which incide on l. Let Pi be the 2-piece which separates
∆i from ∆i+1. Notice that Px ∩ Ω is a k-gon with vertices pi = ρ∆i .
Moreover, we have ρ∆i+1 − ρ∆i = a(Pi)vi (where vi is the normal vector
to Pi which point towards ∆i+1). It is easy to see that the edges of
Px ∩Ω are ei = [pi, pi+1] so that the length of ei is a(Pi). Moreover, the
angle between ei−1 and ei is equal to the angle between −vi−1 and vi.
Since the angle between vi−1 and vi is equal to the dihedral angle of ∆i

along l, we have that Px ∩ Ω is isometric to the k-gon Fl defined in the
proposition.

From this analysis, it follows that N−1(∆) ∩ S = ∆ + ρ∆ and so the
normal field is an isometry onto N−1(∆).
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Now, let us consider a 2-piece P . We have seen that r(N−1(x)) =
[ρ∆− , ρ∆+ ] for every x ∈ P . Thus, [ρ∆− , ρ∆+ ] × P 
 (p, x) → p + x ∈
N−1(P ) ∩ S is a parametrization: notice that this map is an isometry
(in fact the segment [ρ∆− , ρ∆+ ] is orthogonal to P ), and the normal
map coincides with the projection onto the second factor.

An analogous argument proves the last statement of the proposition.
q.e.d.

For i = 0, 1, 2, let us set Σi = {p ∈ Σ|dimF(p) = 3 − i} (recall that
F(p) = N(r−1(p))). From the last proposition, we immediately have
the following corollary:

Corollary 9.4. If Ω is as above, then Σ is naturally a cellular com-
plex in the following sense. Σ0 is a numerable set; every component s
of Σ1 is an open segment, moreover the closure of s is a closed segment
and ∂s = s− s is contained in Σ0; every component σ of Σ2 is an open
2-cell, moreover, the closure of σ is a closed 2-cell and in fact it is a
finite-sided polygon with vertices in Σ0 and edges in Σ1.

Remark 9.5. We have not made any hypothesis about local finite-
ness of the cells.

Remark 9.6. If C is a simplicial stratification of H
3, we can construct

the dual complex. For every 3-piece ∆, there is a vertex v∆, for every
2-piece P , there is the segment [v∆, v′∆] where ∆ and ∆′ are the 3-pieces
which incide on P , and for every 1-piece l, there is the polygon with
vertices v∆1 , . . . , v∆n where ∆1, . . . ,∆n are the pieces which incide on l.

Notice that Σ is combinatorially equivalent to the dual complex of
C. Thus, the combinatorial structure of Σ depends only on the com-
binatorial structure of C. This remark points out the duality between
stratifications and singularities.

In what follows, we introduce a class of regular domains whose strat-
ification is simplicial. However, as we are going to see, this class do not
coincide with the class of all regular domains with simplicial stratifica-
tion. On the other hand, a regular domain invariant for some affine
deformation Γτ of a co-compact Fuchsian group Γ, belongs to this class
if and only its singularity is simplicial.

Definition 9.3. Given a point p in the singularity Σ of a future
complete regular domain, we say that p is a vertex if there exists a
spacelike support plane at p which intersects only p.

We say that Σ is simplicial if the set of vertices Σ0 is discrete and there
exists a cellularization Σ0 ⊂ Σ1 ⊂ Σ2 such that every component of
Σ1−Σ0 is a straight segment with endpoints in Σ0 and every component
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of Σ2 − Σ1 is a finite-sided spacelike polygon with vertices in Σ0 and
edges in Σ1.

(A) (B)

c2

ci

c1

c2
ci c1

Figure 9. On the left a non-simplicial stratification and
on the right a simplicial stratification.

Remark 9.7. We shall prove that a regular domain with simplicial
singularity has simplicial stratification. If we do require that Σ0 is only
a numerable set this result is no longer true. Consider, for instance,
the stratification of H

2 given in Fig. 9 (A) (here, the example is given
for n = 2, but an analogous example holds for n = 3). It is easy to
construct a regular domain with such a stratification and singularity
with cell decomposition.

On the other hand, there exist regular domains with simplicial strat-
ification which does not have a simplicial singularity. For instance,
consider the stratification of H

2 given in Fig. 9 (B). It is easy to con-
struct a regular domain with such a stratification whose singularity Σ
is compact in M

2+1. It follows that Σ0 is not discrete.

Remark 9.8. Let Σ be a simplicial singularity of a future complete
regular domain Ω. Notice that we can consider on Σ a weak topology
induced by the cellularization (A ⊂ Σ is open in this topology if and
only if the intersection of A with every open cell is open). Since we do
not require local finiteness of cells, generally, this topology is finer than
the topology induced by M

3+1.
Notice that every open cell has a natural distance. Thus, if c is a

path in Σ, we can define the length of c as the sum of the lengths of
intersections of c with the cells of Σ. Finally, we can define a path-
distance on Σ such that dΣ(r, r′) is the infimum of the lengths of paths
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from r to r′. It is easy to see that this distance agrees with the natural
distance on Σ described in Section 7. Thus, the topology induced by
M

3+1 on Σ generally is finer than the topology induced by dΣ.

Now, we can prove that regular domains with surjective normal field
and simplicial singularity are given by measured simplicial stratifica-
tions of H

3. (Notice that in order to prove that a regular domain is
produced by a measured stratification, the normal field must be surjec-
tive, on the other hand, this condition ensures us that the normal field
is a proper map.)

Proposition 9.9. Let Ω be a regular domain with surjective normal
field N and simplicial singularity. The stratification C associated to Ω
is simplicial. Moreover, there exists a unique measure µ on C such that
Ω is equal (up to translations) to the domain associated with (C, µ).

Proof. If we take p, q ∈ Σ which belong to the same cell of Σ, then
F(p) = F(q). Thus, it is sufficient to show that if K is a compact set of
H

3, then r(N−1(K)) intersects only a finite number of cells of Σ. Since
N restricted to a CT level surface is a proper map, it is sufficient to
prove that if H is a compact set in S̃1, then r(H) intersects only a finite
number of cells.

Now, let us fix such a compact set H ⊂ S̃1, and for every p ∈ H,
let V (p) be the set of vertices of the cell containing r(p). Since the
set of vertices is discrete, it is sufficient to show that the set

⋃
V (p) is

bounded in M
3+1.

Suppose that there exists a divergent sequence of vertices vk ∈ V (pk).
Up to passing to a subsequence, we can suppose pk → p∞ with p∞ ∈ H.
Now, let us consider the sequence of segments [r(pk), vk]. Up to passing
to a subsequence, we have that these segments tend to an infinite ray
R with starting point at r(p∞). Since [r(pk), vk] is contained in the
plane r(pk)+N(pk)⊥, it follows that the ray R is contained in the plane
r(p∞) +N(p∞)⊥. Thus, R is contained in Σ, but then for all r ∈ R, we
have that N(r + N(pk)) = N(pk). Since we know that N is a proper
map, we have a contradiction.

We have proved that C is a simplicial stratification. Now, we define
a family of weights {a(P )} on it. Given a 3-piece ∆ of C, by Proposi-
tion 4.14, there exists a vertex v(∆) such that ∆ = F(v(∆)). Now,
if P is a 2-piece, there exist two 3-pieces, say ∆0 and ∆1, such that
F is face of them. It follows that r(N−1(P )) is the spacelike seg-
ment [v(∆0), v(∆1)]. Thus, we can define a(P ) = (〈v(∆1) − v(∆0),
v(∆1) − v(∆0)〉)1/2. Let us show that this is a family of weights on C.
Given a geodesic l of the stratification, let P1, . . . , Pk and ∆1, . . . ,∆k

be respectively the 2-pieces and the 3-pieces which incide on l. Let us
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suppose Pi = ∆i−1 ∩∆i (take i mod k). For simplicity, set pi = v(∆i).
We know that pi+1 − pi is an orthogonal vector to Pi pointing towards
∆i+1. So that if vi is the normal vector to Pi pointing towards ∆i+1,
we have pi+1 − pi = a(Pi)vi. Thus∑

i

a(Pi)vi =
∑

i

pi+1 − pi = 0.

Let µ be the measure corresponding to the family {a(P )}. We have
to show that up to translations, Ω is the domain corresponding to the
measure µ.

Let us fix a base point x0 ∈ H
n −X. Up to translations, we can sup-

pose that r(N−1(x0)) = 0. Now, let p be a vertex of Σ. By construction,
it is quite evident that p = µc(c) where c is an admissible path starting
from x0 and ending in the piece which corresponds to p. It follows that
Ω is the regular domain which corresponds to the measure µ. q.e.d.

Remark 9.10. Let us discuss the generalization in higher dimension.
It is not hard to extend to all dimensions Proposition 9.3. In fact, if
Ω is a domain constructed by a measured simplicial singularity and S
is the CT level surface T−1(1), we can consider the decomposition of S
into sets S(i) = {x ∈ S|dimN−1N((x)) ∩ S = i} for i = 0, . . . , n− 1. It
turns out that the closure of S(i) is the disjoint union of inverse images
under N of (n−i)-pieces. Moreover, if C is a (n−i)-piece, then N−1(C)
is isometric to C ×QC where QC is a i-dimensional finite-sided convex
Euclidean polyhedron.

Clearly, the definition of domains with simplicial stratification can be
extended to all dimensions. Notice that Proposition 9.9 holds in every
dimension (in fact, the proof is quite general). Finally, it is easy to see
that the simplicial singularity corresponding to a simplicial (measured)
stratification is combinatorially equivalent to the dual complex of the
stratification.

In the last part of this section, we shall study Γ-invariant simpli-
cial geodesic stratifications where Γ is a torsion-free discrete cocompact
subgroup of SO +(3, 1). We see that for a Γ-invariant simplicial strati-
fication, the set of measures on it is parametrized by a finite number of
positive numbers which satisfy a finite set of linear equations.

We start with some remarks about Γ-invariant simplicial stratifica-
tions.

Proposition 9.11. Let C be a Γ-invariant simplicial stratification of
H

3. Then, the projection of π(C) onto H
3/Γ is compact for every piece

C ∈ C. In particular, the projection of a 1-piece is a simple geodesic
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whereas the projection of a 2-piece is either a closed hyperbolic surface
or a hyperbolic surface with geodesic boundary. Finally, there is only a
finite number of pieces up to the action of Γ.

Proof. Since C is simplicial, we can easily see that Γ ·C is closed and
the projection of C is compact. Thus, the projection of a 1-piece l is
a compact complete geodesic and so it is closed. Since the orbit of l is
formed by a disjoint union of geodesics, it follows that the projection is
a simple geodesic.

An analogous argument shows that the projection of a 2-piece P is a
hyperbolic surface. Notice that if P is a plane, it is closed. Otherwise,
it has totally geodesic boundary.

Let K be a compact fundamental region for Γ. Since K intersects
only a finite number of pieces, the last statement follows. q.e.d.

Let us fix a Γ-invariant simplicial stratification C. We denote by
TC the projection of the 2-stratum X onto M = H

3/Γ. Notice that
there exists a finite set of simple geodesics {c1, . . . , cN} of M such that
ci ⊂ TC and TC −

⋃
ci is a finite union of totally geodesic submanifolds

F1, . . . , FL such that F i = Fi∪ci1∪. . .∪cik . Moreover, every component
of M − TC is locally convex. The geodesics ci are called the edges of
the surface whereas the surfaces Fi are the faces. A subset X ⊂ M
equipped with such a decomposition and such that the complementary
regions are locally convex is called piece-wise geodesic surface. Notice
that piece-wise geodesic surfaces correspond bijectively to Γ-invariant
geodesic stratifications.

Now, let µ be a Γ-invariant measure on C. Notice that the correspond-
ing family of weights {a(P )} satisfies a(γP ) = a(P ) for every 2-piece
P and every γ ∈ Γ. Thus, there exists a family of positive constants
{α(F )} parametrized by the faces of TC such that a(P ) = α(π(P )).

This remark suggests the following definition. Let T be a piece-wise
geodesic surface in M and let C be the stratification associated to T . A
family of weights on T is a family {α(F )} parametrized by the faces of
T such that {a(P ) := α(π(P ))} is a family of weights on C. Notice that
for every 1-piece l, we have that the equations associated to l and γ(l)
are related by the identity

pγ(l)(a) = γpl(a)

so solutions of equation pl coincide with solutions of pγl. Thus, the
conditions that we have to impose to ensure that {α(F )} is a family of
weights can be parametrized by the edges of T .

Finally, we have that the families of weights on T correspond bijec-
tively with Γ-invariant measures on C. Notice that if T is a piece-wise
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geodesic surface with f faces and e edges, then the weights on T corre-
spond to a subset of R

f
+ defined by 2e linear equations (in fact, every

pl is equivalent to 2 linear equations). Thus, if positive solutions exist,
they form a convex cone of dimension greater than f − 2e.

Example 9.1. Now, we exhibit some examples of piece-wise geo-
desic surfaces. Let us fix an hyperbolic 3-manifold with totally geodesic
boundary N and consider the canonical decomposition of N in trun-
cated polyhedra (see [13] for the definition). Let M be the double of
N , notice that the double of the 2-skeleton of the decomposition of N
gives a piece-wise geodesic surface T .

Suppose that every polyhedron of decomposition is a truncated tetra-
hedron. We want to estimate the number of edges and faces of T . On
the boundary of N , the decomposition gives a triangulation. Let v, l, t
be respectively the number of vertices, edges and faces of this triangu-
lation. We have v− l+ t = χ where χ is the Euler characteristic of ∂N
(χ < 0). On the other hand, we have t = 2/3l and so, v − 1/3l = χ.
Now, let e, f be respectively the number of edges and faces of T . We
have that v = 2e (in fact, every edge of T intersects ∂N in two vertices)
and l = 3e. It follows that 2e− f = χ < 0.

We conclude this section by proving that regular domains which are
invariant for some affine deformation of Γ correspond bijectively to Γ-
invariant measured simplicial stratifications.

Corollary 9.12. There exists a bijective correspondence between Γ-
invariant measured simplicial stratifications of H

3 and future complete
regular domains which are invariant for some affine deformation Γτ of
Γ and have a simplicial singularity.

Proof. It is sufficient to show that Γ-invariant measured simplicial
stratifications give domains with simplicial singularity. Now, let us fix
a Γ-invariant measured simplicial stratification (C,X, µ) and let {a(P )}
be the family of weights associated with it. By Proposition 9.11, we
have that there exists a > 0 such that a ≤ a(P ) for all 2-faces P .
Now, for a 3-piece ∆, let ρ∆ be the corresponding point on Σ. We
have that Σ0 = {ρ∆|∆ is a 3-piece}. On the other hand, we know that
〈ρ∆,−ρ∆′ , ρ∆ − ρ∆′〉 ≥ a2 so that Σ0 is a discrete set. q.e.d.

Remark 9.13. Clearly, there exists a similar discussion about Γ-
invariant measured simplicial stratifications in every dimension (where
Γ is a co-compact torsion-free discrete group). In particular, for a given
Γ-invariant simplicial stratification C, there exists only a finite number of
pieces up to the action of Γ. Thus, as in the 3-dimensional case, we can
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deduce that the set of Γ-invariant family of weights on C is parametrized
by the set of positive solutions of a linear system with f parameters
and 2e equations where f is the number of (n − 1)-pieces (modulo Γ)
and e is the number of (n − 2)-pieces (modulo Γ). Moreover, we can
see that Γ-invariant simplicial geodesic stratifications of H

n correspond
bijectively to regular domains of M

n+1 invariant for the action of some
affine deformation Γτ of Γ and with simplicial singularity.

10. Conclusions

Let Γ be a torsion-free co-compact discrete subgroup of SO +(n, 1).
We have seen that for every cocycle τ ∈ Z1(Γ,Rn+1), there exists a
unique future complete future complete regular domain Dτ which is Γτ -
invariant. So, future complete regular domains arise naturally in the
study of Lorentzian flat structures on R ×M .

In Section 4, we have associated to Dτ a Γ-invariant geodesic stratifi-
cation of H

n. On the other hand, in Section 8, we have seen that given a
Γ-invariant measured geodesic stratification, we can construct a future
complete regular domain which is invariant for an affine deformation of
Γ. Moreover, in dimension n = 2, this correspondence agrees with the
Mess identification between measured geodesic laminations and future
complete regular domains.

We can ask if this correspondence is an identification in every di-
mension. We have seen in Section 9 that this correspondence induces
an identification between simplicial stratification and future complete
regular domains with simplicial singularity.

The general case seems more difficult. Given a future complete reg-
ular domain Ω, we should construct a measured geodesic stratifi-
cation (C, Y, µ) which gives Ω. By looking at the construction of a
domain Ω, we have Y = {x|#(N−1(x)) > 1} and in fact, it is easy to
see that this set has zero Lebesgue measure in H

n. Now, suppose that
for every admissible path c : [0, 1] → H

n, there exists a Lipschitz path
c̃ : [0, 1] → S̃1 such that N(c̃([0, 1])) = c([0, 1]). On this assumption,
we could define a measure µ on an admissible path in this way. Since
the retraction is locally Lipschitz, the map r(t) = r(c̃(t)) is Lipschitz so
that it is differentiable almost everywhere. Consider the R

n+1-valued
measure µ̃ on [0, 1] defined by the identity

µ̃(E) =
∫

E
r′(t)dt.

Then, we could define the transverse measure µc as the image of the
measure µ̃:

µc = N∗(µ̃).
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Notice that the assumption is always verified for regular domains Ω aris-
ing from measured geodesic stratifications. In fact, given an admissible
path c, the Lipschitz path c̃ always exists. In fact, we can define

c̃(t) = c(t) +
∫ t

0
µc.

Thus, the problem is: given an admissible path c : [0, 1] → H
n, we

have to find a rectifiable curve c̃ ⊂ S̃1 such that N(c̃) is the curve c
(notice that if S̃a is strictly convex, there exists a unique curve such
that N(c̃) = c, but we do not know if such an arc is rectifiable).

In dimension n = 2, we can see that this problem has always a so-
lution because if v1 and v2 are orthogonal vectors to two leaves of the
lamination, then they generate a timelike vector space so that

| 〈v1, v2〉 | ≥ 〈v1, v1〉1/2 〈v2, v2〉1/2 .

By using this inequality, it can be shown [8] that the length of c̃ is less
than

�(c) + 〈r(c̃(1)) − r(c̃(0)), r(c̃(1)) − r(c̃(0))〉
where �(c) is the length of H

n. Unfortunately, in dimension n ≥ 3, this
argument fails.

Geodesic stratifications occur in the study of conformal structures on
hyperbolic closed manifold. More precisely, if N is equal to M equipped
with a conformal structure (i.e., a (Sn,Conf(Sn))-structure), then the
universal covering is decomposed in a union of pieces {Pi}. The devel-
oping map takes Pi on a subset of Sn which is conformally equivalent to
a hyperbolic ideal convex set. Moreover, this decomposition is intrinsic
(see for instance [3, 18]).

Now, suppose that we have a differentiable path Nt of conformal
structures on M such that N0 corresponds to the hyperbolic structure.
Let us denote by Ct the stratification of Nt.

We know that the derivative of the respective holonomies ρt pro-
duces a cocycle τ ∈ H1

ρ0
(π1(M), so(n + 1, 1)) (in fact, the group of

conformal diffeomorphisms of Sn is isomorphic to SO (n + 1, 1)). On
the other hand, by means of Weil local rigidity Theorem [20], it is not
hard to check that if n ≥ 3, then there exists a natural identification
H1

Ad◦ρ0
(π1(M), so(n+1, 1)) ∼= H1

ρ0
(π1(M),Rn+1). Thus, we can consider

the domain Dτ that produces a stratification C0 of H
n. So, we can ask

how the stratifications Ct and C0 are related. More precisely, we can
suppose that the developing maps Dt of Nt converge to the developing
map D0 of M . So, it makes sense to ask if the stratification Ct tends to
the stratification C0 when t→ 0.
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We can state this problem also in dimension 2. Consider the path
of projective structures Nt corresponding, in Thurston parametrization
of the space of projective structures, to points (M, tλ). (Recall that in
dimension 2, projective structures are (S2,Conf(S2))-structures.). We
know that Nt is projectively equivalent to the grafting of N along tλ.
Thus, when t → 0, the measured lamination of Nt tends to λ. Now,
the derivative in 0 of the holonomies ρt is a cocycle t ∈ H1

Ad◦ρ0
(π1(M),

so(3, 1)). Moreover, this element does not lie in H1
Ad◦ρ0

(π1(M), so(2, 1)).
Thus, t represents a non-vanishing element

τ ∈ H1(π1(M), so(3, 1))/H1(π1(M), so(2, 1)) ∼= H1(π1(M),R2+1).

By Epstein formulas of the derivative of bending deformations (see [10])
in [8], it is deduced that the lamination associated to Dτ is λ. Thus, at
least in dimension 2, the question has a positive answer.
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