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BOUNDARY REGULARITY OF CONFORMALLY
COMPACT EINSTEIN METRICS

Piotr T. Chruściel, Erwann Delay, John M. Lee

& Dale N. Skinner

Abstract

We show that C2 conformally compact Riemannian Einstein
metrics have conformal compactifications that are smooth up to
the boundary in dimension 3 and all even dimensions, and poly-
homogeneous in odd dimensions greater than 3.

1. Introduction

Suppose M is a smooth, compact manifold with boundary, and let M
denote its interior and ∂M its boundary. (By “smooth,” we always mean
C∞.) A Riemannian metric g on M is said to be conformally compact
if for some smooth defining function ρ for ∂M in M , ρ2g extends by
continuity to a Riemannian metric (of class at least C0) on M . The
rescaled metric g = ρ2g is called a conformal compactification of g. If for
some (hence any) smooth defining function ρ, g is in Ck(M ) or Ck,λ(M),
then we say g is conformally compact of class Ck or Ck,λ, respectively.

If g is conformally compact, the restriction of g = ρ2g to ∂M is a
Riemannian metric on ∂M , whose conformal class is determined by g,
independently of the choice of defining function ρ. This conformal class
is called the conformal infinity of g.

Several important existence and uniqueness results [1, 2, 5, 9, 14]
concerning conformally compact Riemannian Einstein metrics have been
established recently. For many applications to physics and geometry, it
turns out to be of great importance to understand the asymptotic be-
haviour of the resulting metrics near the boundary. This question has
been addressed by Michael Anderson [2], who proved that if g is a
4-dimensional conformally compact Einstein metric with smooth con-
formal infinity, then the conformal compactification of g is smooth up
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to the boundary in suitable coordinates. It has long been conjectured
that in higher dimensions, conformally compact Einstein metrics with
smooth conformal infinities should have infinite-order asymptotic expan-
sions in terms of ρ and log ρ. The purpose of this paper is to confirm
that conjecture.

The choice of special coordinates in Anderson’s result cannot be dis-
pensed with. Because the Einstein equation is invariant under diffeo-
morphisms, we cannot expect that the conformal compactification of
an arbitrary conformally compact Einstein metric will necessarily have
optimal regularity for all C∞ structures on M . For example, suppose g
is an Einstein metric on M with a smooth conformal compactification,
and let Ψ: M → M be a homeomorphism that restricts to the iden-
tity map of ∂M and to a diffeomorphism from M to itself. Then, Ψ∗g
will still be Einstein with the same conformal infinity, but its conformal
compactification ρ2Ψ∗g may no longer be smooth. Thus, the best one
might hope for is that an arbitrary conformally compact Einstein met-
ric can be made smoothly conformally compact after pulling back by an
appropriate diffeomorphism. Even this is not true in general, because
Fefferman and Graham showed in [7] that there is an obstruction to
smoothness in odd dimensions.

Since Einstein metrics are always smooth (in fact, real-analytic) in
suitable coordinates in the interior, only regularity at the boundary
is at issue. For that reason, instead of assuming that M is compact,
we will assume only that it has a compact boundary component Y ,
and restrict our attention to a collar neighborhood of Y in M , which
we may assume without loss of generality is diffeomorphic to Y × [0, 1).
Throughout this paper, then, Y will be an arbitrary smooth, connected,
compact, n-dimensional manifold without boundary, and we make the
following identifications:

M = Y × [0, 1), M = Y × (0, 1), ∂M = Y × {0}.
Let ρ : M → [0, 1) denote the projection onto the [0, 1) factor; it is a
smooth defining function for ∂M in M . For 0 < R < 1, we define

MR = Y × (0, R], MR = Y × [0, R].

In this context, we extend the definition of conformally compact metrics
by saying that a Riemannian metric g on M or MR is conformally
compact if ρ2g extends to a continuous metric onM orMR, respectively.
A continuous map Ψ: MR → M (for some R) that restricts to the
identity map of ∂M and to a diffeomorphism from MR to its image will
be called a collar diffeomorphism. If Ψ and its inverse are of class Ck
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(or Ck,λ) up to the boundary, we will call it a Ck (resp., Ck,λ) collar
diffeomorphism.

The object of this paper is to prove that the following regularity holds:

Theorem A. Let g be a Riemannian metric on M . Suppose that
dimM = n+ 1 ≥ 3; g is Einstein with Ric(g) = −ng; g is conformally
compact of class C2; and the representative γ = ρ2g|∂M of the confor-
mal infinity of g is smooth. Let γ̃ be any smooth representative of the
conformal class [γ]. Then, for any 0 < λ < 1, there exists R > 0 and a
C1,λ collar diffeomorphism Φ: MR → M such that Φ∗g can be written
in the form

(1.1) Φ∗g = ρ−2(dρ2 +G(ρ)),

where {G(ρ) : 0 < ρ ≤ R} is a one-parameter family of smooth Rie-
mannian metrics on Y , dρ2 +G(ρ) has a continuous extension to MR

with G(0) = γ̃, and has the following regularity:
(a) If dimM is even or equal to 3, then dρ2 +G(ρ) extends smoothly

to MR, so Φ∗g is conformally compact of class C∞.
(b) If dimM is odd and greater than 3, then G can be written in the

form
G(ρ) = ϕ(ρ, ρn log ρ),

with ϕ(ρ, z) a two-parameter family of Riemannian metrics on Y
that is smooth in all of its arguments as a function on Y × [0, R]×
[Rn logR, 0]. Furthermore, Φ∗g is smoothly conformally compact
if and only if ∂zϕ(0, 0) vanishes identically on ∂M .

Remark. The symmetric 2-tensor field ∂zϕ(0, 0) along ∂M can be
determined in principle from local computations involving the conformal
class [γ] (cf. [7, 8, 11]). In fact, this tensor field is a constant multiple
of the ambient obstruction tensor defined in [11], whose vanishing is a
necessary condition for the existence of a smoothly conformally compact
Einstein metric on M with [γ] as conformal infinity. Explicit formulae
in low dimensions can be found in [10]. In odd dimensions, it is shown
in [12] that for any analytic [γ] and ∂zϕ(0, 0) there exists a unique Ein-
stein metric as above, defined on some neighborhood of the conformal
boundary.

The main idea of the proof is to use the harmonic map equation to put
g into a gauge in which it satisfies an elliptic equation, and then apply
the polyhomogeneity results of [3]. The proof consists of four steps.
First, we construct a preliminary collar diffeomorphism that makes ρ2g
coincide to second order along ∂M with a smooth product metric h.
Second, applying the inverse function theorem to the harmonic map
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equation, we show that there exists a collar diffeomorphism H : MR →
MR that is harmonic in MR, thought of as a map from (MR, g) to
(MR, h), where h = ρ−2h. It follows that the metric g̃ = (H−1)∗g
satisfies the following “gauge-broken Einstein equation” near ∂M :

(1.2) Q(g̃, h) := Ric(g̃) + ng̃ − δ∗
�g(∆

�gh(Id)) = 0

(see, e.g., [14]), where ∆
�gh is the harmonic map Laplacian. The third

step is to show that solutions to (1.2) satisfy the hypotheses of [3, The-
orem 5.1.1] and therefore are polyhomogeneous (i.e., have asymptotic
expansions in powers of ρ and log ρ). The last step is to use a special
defining function and Fermi coordinates near the boundary to put the
metric into the form (1.1).

In this paper, we have addressed the regularity issue only for smooth
conformal infinities, primarily because the polyhomogeneity results of
[3] are proved only in that context. By chasing the losses of differentia-
bility that occur at various steps of our construction and that of [3], one
can almost certainly prove that for any N there exists n(N) such that
the solution will have a partial polyhomogeneous expansion with CN co-
efficients. Working out n(N) would be a straightforward but extremely
tedious exercise, which we have not attempted to do.

2. Weighted Hölder spaces

Throughout most of this paper, we will use the notations and con-
ventions of [14]. We define MR and MR as in the introduction. We
assume throughout that dimM = n+ 1 ≥ 3. Any smooth local coordi-
nates θ = (θ1, . . . , θn) on an open set U ⊂ Y yield smooth coordinates
(θ, ρ) = (θ1, . . . , θn, ρ) on the open subset Ω = U × [0, 1) ⊂ M . Choose
finitely many such charts (Ui) to cover Y , with each set Ui chosen so
that the coordinate functions extend smoothly to a neighborhood of U i

in Y . The resulting coordinates on Ωi = Ui × [0, 1) ⊂ M will be called
background coordinates for M .

Let B1, B2 be fixed precompact open coordinate balls in the upper
half-space H

n+1 = {(x, y) = (x1, . . . , xn, y) : y > 0}, with (0, . . . , 0, 1) ∈
B1 ⊂ B1 ⊂ B2. We will use the summation convention, with Greek
indices generally understood to run from 1 to n, and Roman indices to
run from 1 to n+1; sometimes it will be convenient to denote ρ by θn+1

and y by xn+1. Suppose p ∈ MR, and let (θ0, ρ0) be the coordinate
representation of p in some fixed background chart. If p is sufficiently
close to ∂M , we can define a diffeomorphism Φp : B2 →M by

(θ, ρ) = Φp(x, y) = (θ0 + ρ0x, ρ0y).
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As is shown in [14], for R sufficiently small, there exists a countable
set of points {pi} ⊂MR such that the sets

{
Φpi(B2)

}
form a uniformly

locally finite covering of MR, and the sets {Φpi(B1)} still cover MR.
For each such map, set Φi = Φpi , V1(pi) = Φi(B1) and V2(pi) = Φi(B2).
Then, for each i,

(
V2(pi),Φ−1

i

)
is a coordinate chart on MR, called a

Möbius chart; the corresponding coordinates (x, y) will be called Möbius
coordinates. It is shown in [14, Lemma 2.1] that if g is any Ck,λ con-
formally compact metric on M , the pulled-back metrics Φ∗

i g are all uni-
formly Ck,λ equivalent to the hyperbolic metric y−2

∑
j(dx

j)2 on B2.
By compactness, they are also uniformly Ck,λ equivalent on B2 to the
Euclidean metric

∑
j(dx

j)2.
We will be working in weighted Hölder spaces whose norms reflect

the intrinsic geometry of a conformally compact metric. Before intro-
ducing them, let us record some elementary facts about Hölder spaces
on subsets of R

m. If U ⊂ R
m is a precompact open subset, k, p are non-

negative integers, and λ ∈ [0, 1), we denote by Ck,λ(U ; Rp) the standard
Hölder space of functions from U to R

p, and we denote the usual Hölder
norm on this space by ‖ · ‖k,λ;U . If V ⊂ R

p is any open set, Ck,λ(U ;V )
denotes the open subset of Ck,λ(U ; Rp) consisting of maps that take
their values in V .

Lemma 2.1. Let U ⊂ R
m and V ⊂ R

p be convex, precompact open
sets, let k be a non-negative integer, and let λ ∈ [0, 1). Given f ∈
Ck+2(V ; R) and u0 ∈ Ck,λ(U ;V ) with k ≥ 1, there exists δ > 0 and
a constant C = C(U, V, k, λ, f, u0, δ) such that the following estimate
holds for all u ∈ Ck,λ(U ;V ) with ‖u− u0‖k,λ;U ≤ δ:

‖f ◦ u− f ◦ u0‖k,λ;U ≤ C‖u− u0‖k,λ;U .

Proof. This follows easily from the fact that composition u �→ f ◦ u
defines a C1 map from Ck,λ(U ;V ) to Ck,λ(U ; R) (cf. [15]). q.e.d.

Now, we proceed to define our weighted Hölder spaces on MR. Let
E → M be any tensor bundle, and let R > 0 be chosen so that MR

is covered by Möbius charts as above. For an integer k ≥ 0 and λ ∈
(0, 1), we define the intrinsic Hölder space Ck,λ(MR;E) to be the set
of locally Ck,λ sections of E over MR whose component functions in
Möbius coordinates satisfy a uniform Ck,λ bound, with norm

‖u‖k,λ := sup
i

‖Φ∗
iu‖k,λ;B2

,

where the supremum is over the countable collection of Möbius
charts described above. Weighted versions of these Hölder spaces
are defined by setting Ck,λ

δ (MR;E) = ρδCk,λ(MR;E), with the norm
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‖u‖k,λ,δ := ‖ρ−δu‖k,λ. It is shown in [14, Lemma 3.5] that this norm is
equivalent to

‖u‖k,λ,δ ∼ sup
i
ρ(pi)−δ‖Φ∗

iu‖k,λ;Bj

for either j = 1 or j = 2.

3. A preliminary normalization

Suppose that g satisfies the hypotheses of Theorem A. Let γ̃ be an
arbitrary smooth representative of the conformal class [γ] on Y . Define
a smooth product metric h on M = Y × [0, 1) by

h = dρ2 + γ̃.

Let h = ρ−2h, which is smoothly conformally compact and has [γ̃] as
conformal infinity.

The goal of this section is to show that we can modify g by a collar
diffeomorphism so that it agrees with h to second order along ∂M . This
lemma requires somewhat more work than might be expected because
we are only assuming that g has a C2 conformal compactification, and
we need to make this normalization without losing any smoothness.

Lemma 3.1. Let g and h be as above. For any sufficiently small
R > 0, there exists a C3 collar diffeomorphism G : MR → M that
satisfies ρ2G∗g = ρ2h+O(ρ2) in any background coordinates.

Proof. After replacing g by G∗
0g, where G0(x, ρ) = (x, ρ/f(x)), we

may as well assume that ρ2g|T∂M = γ̃. We will begin by showing that
there exists a C3 defining function r satisfying |dr|2r2g = 1 + O(ρ2).
Let g = ρ2g, which is a C2 Riemannian metric on MR. Because
Ric(g) = −ng, it follows that |dρ|2g = 1 along ∂M (cf. [9, p. 192]). By
Taylor’s theorem, therefore, there is a function b ∈ C1(MR) such that

|dρ|2g = 1 + bρ.

By Corollary 3.3.2 of [3], there exists a real-valued function r ∈ C3(MR)
∩C∞(MR) such that

r|∂M = 0,

∂ρr|∂M = 1,

∂2
ρr|∂M = −b|∂M .
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Then, r is a C3 defining function for ∂M , which satisfies r = ρ− 1
2bρ

2 +
O(ρ3), dr = (1 − bρ)dρ+O(ρ2). Therefore,

|dr|2r2g = |dr|2(r/ρ)2g(3.1)

= (r/ρ)−2|dr|2g
= (1 − 1

2bρ)
−2(1 − bρ)2|dρ|2g +O(ρ2)

= 1 +O(ρ2).

Let P denote the gradient of r with respect to the metric r2g; thus,
P is a C2 vector field on MR. Because Pρ = 〈dr, dρ〉r2g = 〈dr, dr +
O(ρ)〉r2g = 1 + O(ρ), we can write P = ∂/∂ρ + Q, where Q is a C2

vector field on MR that is tangent to ∂M . Choose a smooth embed-
ding X = (X1, . . . ,XN ) : Y ↪→ R

N into some Euclidean space, and
denote by the same symbol the extension of each coordinate function
XA to M = Y × [0, 1), chosen to be constant along the [0, 1) factor.
By [3, Cor. 3.3.2] again, for each A = 1, . . . , N , there is a C3 function
X̃A : M → R, smooth in M , satisfying

X̃A|∂M = XA|∂M ,

∂ρX̃
A|∂M = −QXA|∂M ,

∂2
ρX̃

A|∂M = −∂ρQX
A|∂M .

It follows that PX̃A = O(ρ2). The C3 map X̃ : M → R
N whose coor-

dinate functions are (X̃1, . . . , X̃N ) thus satisfies X̃∗P = O(ρ2).
We wish to use X̃ and r to construct a collar diffeomorphism of MR.

However, X̃ might not map into X(Y ). To correct this, let U ⊂ R
N be

a tubular neighborhood of X(Y ), and let Π: U → X(Y ) be a smooth
retraction. Define a C3 map Z : MR →M by

Z(x, ρ) = (X−1 ◦ Π ◦ X̃(x, ρ), r(x, ρ)).

The restriction of Z to ∂M is the identity, and for some small ε > 0, Z
is an embedding of M ε into M .

Let p ∈ MR be arbitrary, and let q = Z(p). Writing Z∗g = (Z−1)∗g,
we conclude from (3.1) that

|dρ(q)|2ρ2Z∗g = ρ(q)−2|dρ(q)|2Z∗g

= ρ(Z(p))−2|d(ρ ◦ Z)(p)|2g
= r(p)−2|dr(p)|2g
= |dr(p)|2r2g = 1 +O(ρ(p)2) = 1 +O(ρ(q)2).
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To check the mixed tangential/normal components of ρ2Z∗g, let (θα, ρ)
be any background coordinates on MR, and let Zα = θα ◦ Z denote
the tangential component functions of Z in these coordinates. Observe
that dθα(Z∗P ) = dθα(X−1∗ ◦ Π∗ ◦ X̃∗P ). Because the component func-
tions of Π∗ (as a map from R

N to itself) are uniformly bounded, as are
those of X−1∗ in background coordinates, it follows that the tangential
components PZα of Z∗P in background coordinates are O(ρ2). Thus,

〈dρ(q), dθα(q)〉ρ2Z∗g = ρ(q)−2〈dρ(q), dθα(q)〉Z∗g

= ρ(Z(p))−2〈d(ρ ◦ Z)(p), d(θα ◦ Z)(p)〉g
= 〈dr(p), dZα(p)〉r2g

= PpZ
α = O(ρ(p)2) = O(ρ(q))2.

We define our collar diffeomorphism by G = Z−1|MR0
for R0 suffi-

ciently small, and let ĝ = ρ2G∗g = ρ2Z∗g. By construction, in any
background coordinates,

|dρ|2
�g = 1 +O(ρ2)(3.2)

〈dρ, dθα〉
�g = O(ρ2).(3.3)

Inverting the coordinate matrix of ĝ, therefore, we find that

ĝ = dρ2 + ĝαβ(θ, ρ)dθαdθβ +O(ρ2)

for some functions ĝαβ that are C2 up to ∂M . Moreover, because
the restriction of G to ∂M is the identity and G∗ρ = ρ + O(ρ2),
ĝαβ = γ̃αβ = hαβ at points of ∂M .

To conclude the proof, we will use the Einstein equation to show that
∂ρĝαβ = 0 along ∂M , which implies ĝ = h+O(ρ2) as desired. In terms
of ĝ, the Einstein equation for G∗g translates to

−nρ−2ĝjk = R̂jk + (n− 1)ρ−1ρ;jk + ρ−1ρ;l
lĝjk − nρ−2ρ;lρ;

lĝjk,

where the semicolons indicate covariant derivatives, all taken with re-
spect to ĝ (cf. [13, p. 266]). Multiplying by ρ, using (3.2), and evaluating
at ρ = 0, we obtain (n−1)ρ;jk +ρ;l

lĝjk = 0 along ∂M . Taking the trace
with respect to ĝ, we find that ρ;l

l = 0 and therefore, ρ;jk = 0 along
∂M . Expanding this equation in terms of the Christoffel symbols of ĝ
in background coordinates, we conclude that ∂ρĝαβ = 0 along ∂M as
claimed. q.e.d.
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4. The harmonic map normalization

In this section, we will show that g can be modified by a collar diffeo-
morphism so that it satisfies the elliptic equation (1.2) near the bound-
ary. We seek a collar diffeomorphism that is harmonic from (MR, g) to
(MR, h), where h is the smoothly conformally compact metric defined
in the preceding section. In order to find one, we will parameterise
the diffeomorphisms near the identity by small vector fields using the
Riemannian exponential map of h.

For any small R > 0, let ∂RMR = Y ×{R} denote the “inner bound-
ary” of MR, and let C̊k,λ

δ (MR;TM) denote the set of vector fields in
Ck,λ

δ (MR;TM) that vanish on ∂RMR. If v ∈ C̊k,λ
δ (MR;TM), define a

map Hv : MR →M by

Hv(p) = expp(v(p)),

where exp denotes the Riemannian exponential map of h. Since confor-
mally compact metrics are complete at infinity [16], Hv is well-defined
as a map from MR into M as long as both R and v are sufficiently small.

Let us call a map H : MR →MR admissible if for each Möbius chart,
H maps V1(pi) into V2(pi). Because h is uniformly equivalent to the
Euclidean metric in Möbius coordinates, for any admissible map H,
the Riemannian distance dh(p,H(p)) is uniformly bounded for p ∈MR.
This implies that dh(p,H(p)) → 0 uniformly as p→ ∂M , which in turn
implies that any admissible map has a continuous extension to ∂M that
fixes ∂M pointwise.

Lemma 4.1. If δ ≥ 0 and v is sufficiently small in C̊1,0
δ (MR;TM),

then Hv is an admissible map from MR to itself.

Proof. Because dh(p,Hv(p)) ≤ |v(p)|h and dh is uniformly equivalent
to Euclidean distance in Möbius coordinates, it follows that Hv will
be an admissible map if ‖v‖0,0,δ is sufficiently small, provided that Hv

maps MR to itself. By examining the lengths of minimizing geodesics to
∂RMR, the reader can verify that this is the case provided that ‖v‖1,0,δ

is small enough that |∇v|h ≤ 1
2 on MR. q.e.d.

Let Σ2 denote the bundle of symmetric covariant 2-tensors over M .
For any section w of Σ2, write gw = h+w. For any 0 < λ < 1, define a
map

Θ: C̊2,λ
1+λ(MR;TM)×C1,λ

1+λ(MR; Σ2) → C0,λ
1+λ(MR;TM)×C1,λ

1+λ(MR; Σ2)

by
Θ(v,w) =

(
(Hv)−1

∗ (∆gwhHv), w
)
,
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where ∆gwhHv denotes the harmonic map Laplacian of Hv, viewed as a
map from (MR, gw) to (MR, h).

Lemma 4.2. The map Θ is well-defined and of class C1 in a neigh-
borhood of (0, 0) in C̊2,λ

1+λ(MR;TM) × C1,λ
1+λ(MR; Σ2).

Proof. When v and w are understood, let us write g = gw andH = Hv

for brevity. Recall that g is uniformly C1,λ equivalent to the Euclidean
metric in Möbius coordinates; a similar statement applies to h, but in
that case, we have uniform Cm equivalence for every m.

For this proof, we will denote Möbius coordinates generically by x or
(xj) = (x1, . . . , xn+1), and the associated standard fiber coordinates on
TM by v or (vj) = (v1, . . . , vn+1). Letting Ej(x, v) denote the (smooth)
component functions of the h-exponential map in Möbius coordinates,
we see that H has component functions given by

Hj(x) = Ej(x, v(x)).

Because Ej(x, 0) = xj, it follows from Lemma 2.1 that the functions
Aj(x) = Hj(x)− xj satisfy the following uniform bound for sufficiently
small v ∈ C̊2,λ

1+λ(MR;TM):

‖Aj‖2,λ;B1
≤ C‖Φ∗

i v‖2,λ;B1
≤ Cρ(pi)1+λ‖v‖2,λ,1+λ.

Calculating in Möbius coordinates, we have

(4.1) (∆ghH)j = gkl
(−∂k∂lH

j + Γm
kl∂mH

j − (Πj
mq ◦H)∂kH

m∂lH
q
)
,

where Γm
kl are the Christoffel symbols of g and Πj

mq are those of h. Note
that we can write the difference Γm

kl − Πm
kl as follows:

Γm
kl − Πm

kl = 1
2g

mj (∂kwlj + ∂lwkj − ∂jwkl)

+ 1
2 (gmj − hmj) (∂khlj + ∂lhkj − ∂jhkl) .

By virtue of Lemma 2.1 again, this time with f equal to the mj-
component of the map taking an (n + 1) × (n + 1) matrix to its in-
verse, this last expression is in C0,λ(B1), with C1 dependence on w,
and satisfies an estimate of the form

‖Γm
kl − Πm

kl‖0,λ;B1
≤ Cρ(pi)1+λ‖w‖1,λ,1+λ.

Now, rewrite (4.1) as follows:

(∆ghH)j = gkl

(
−∂k∂lA

j + (Γm
kl − Πm

kl)∂mH
j + Πm

kl∂mA
j − Πj

ml∂kA
m

− Πj
mq∂kH

m∂lA
q + (Πj

mq ◦ Id−Πj
mq ◦H)∂kH

m∂lH
q

)
.
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Another application of Lemma 2.1 shows that this expression is in
C0,λ(B1), with C1 dependence on v and w, and with C0,λ norm bounded
by a multiple of ρ(pi)1+λ (‖v‖2,λ,1+λ + ‖w‖1,λ,1+λ). Finally, since the
pushforward map H−1∗ : TH(p)M → TpM is represented by the inverse
of the matrix ∂Hj/∂xk(p) = δj

k + ∂Aj/∂xk(p), one last application of
Lemma 2.1 shows that Θ is a C1 map as claimed. q.e.d.

Lemma 4.3. If R is sufficiently small, the differential DΘ(0,0) is a
Banach space isomorphism from : C̊2,λ

1+λ(MR;TM) × C1,λ
1+λ(MR; Σ2) to

C0,λ
1+λ(MR;TM) ×C1,λ

1+λ(MR; Σ2).

Proof. At (v,w) = (0, 0), the differential of Θ can be computed as
follows:

DΘ(0,0)(v,w) =
(

∂

∂t

∣∣∣∣
t=0

(
(Htv)−1

∗ (∆hhHtv)
)

+
∂

∂t

∣∣∣∣
t=0

(∆gtwh Id), w
)

= (Lv +Aw,w),

where L is the linearisation of the harmonic map Laplacian ∆hh about
the identity map, and A is some first-order linear differential opera-
tor that is bounded from C1,λ

1+λ(MR; Σ2) to C0,λ
1+λ(MR;TM). Clearly,

this is invertible if and only if L : C̊2,λ
1+λ(MR;TM) → C0,λ

1+λ(MR;TM) is
invertible.

A computation shows that L = ∇∗
h∇h − Ric(h). Because Ric(h)

approaches −nh at ∂M , it is straightforward to check that (in the ter-
minology of [14]) the characteristic exponents of L are

s = 0, n+ 2,
n+ 2 ±√

n2 + 8n
2

.

It follows that L has indicial radius R = (n + 2)/2, and therefore, by
[14, Theorem C and Section 7], it is Fredholm as an operator from
Ck+2,λ

δ (M ;TM) to Ck,λ
δ (M ;TM) for all k ≥ 0, 0 < λ < 1, and −1 <

δ < n + 1. Moreover, [14, Lemma 7.12] shows that for a 1-form u
supported in MR,

(u,∇∗
h∇hu) ≥

(
n2

4
+ 1 − ε

)
‖u‖2

0,2,

where ε can be made as small as desired by taking R small. Since the
operator ∇∗

h∇h commutes with the index-raising isomorphism between
1-forms and vector fields, the same result holds for vector fields. It
follows that L ∼ ∇∗

h∇h +n satisfies an a priori L2 estimate of the form

‖v‖L2 ≤ C‖Lv‖L2 for all v ∈ C∞
c (MR;TM)
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when R is sufficiently small. Then, the same argument as in the proof of
Theorem C of [14] implies that L : C̊k+2,λ

δ (MR;TM) → Ck,λ
δ (MR;TM)

is an isomorphism for −1 < δ < n + 1; the only modification that
needs to be made is to handle the Dirichlet boundary condition on the
inner boundary ∂RMR, but as L is uniformly elliptic there, the required
estimates follow easily from the standard theory of elliptic boundary
value problems. q.e.d.

Now, suppose g satisfies the hypotheses of Theorem A, and let
w = G∗g − h, where G is given by Lemma 3.1. Let ψ : R → [0, 1]
be a smooth cutoff function such that ψ(t) ≡ 1 for t ≤ 1

2 and ψ(t) ≡ 0
for t ≥ 1. For any small s > 0, define ψs ∈ C∞(MR) by

ψs(p) = ψ

(
ρ(p)
s

)
,

Then, we define ws = ψsw. Observe that gws = G∗g on the subset Ms/2

where ψs ≡ 1.

Lemma 4.4. For any fixed small R > 0 and any 0 < λ < 1, ws → 0
in C1,λ

1+λ(MR; Σ2) as s→ 0.

Proof. Because ψs is uniformly bounded in C1,λ(MR) and supported
in Ms, the lemma follows from the fact that, in Möbius coordinates, the
component functions of Φ∗

iw and their first and second derivatives are
bounded by a constant multiple of ρ(pi)2. q.e.d.

Theorem 4.5. With g and h as above, for any 0 < λ < 1, there
exists a C2,λ collar diffeomorphism Ψ: MR → M such that Ψ∗g − h ∈
C1,0

1+λ(MR; Σ2) and g̃ = Ψ∗g satisfies (1.2) on MR0 for some 0 < R0< R.

Proof. Let Θ and ws be defined as above. It follows from Lemma 4.3
and the inverse function theorem that Θ is a bijection from a neigh-
borhood of (0, 0) in C̊2,λ

1+λ(MR;TM)×C1,λ
1+λ(MR; Σ2) to a neighborhood

of (0, 0) in C0,λ
1+λ(MR;TM) × C1,λ

1+λ(MR; Σ2). By Lemma 4.4, therefore,
we can choose s small enough that (0, ws) = Θ(v,w) for some (v,w) ∈
C̊2,λ

1+λ(MR;TM) × C1,λ
1+λ(MR; Σ2). This is equivalent to the assertion

that w = ws and Hv is harmonic from (MR, gws) to (MR, h). Because
gws = G∗g on Ms/2, Hv is also harmonic from (Ms/2, G

∗g) to (Ms/2, h).
Because the component functions Hj(x) in Möbius coordinates dif-

fer from xj by functions Aj(x) that can be made as small as desired
in C2,λ(B2) (by taking s sufficiently small), it follows that Hv is a dif-
feomorphism from MR to itself, and by Lemma 4.1, it is an admissible
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map, and therefore, extends to a homeomorphism of MR fixing ∂M
pointwise, i.e., a collar diffeomorphism.

Define Ψ = G ◦ H−1
v : MR → M , and let g̃ = Ψ∗g. By the diffeo-

morphism invariance of the Einstein equation, g̃ is Einstein; and by the
diffeomorphism invariance of the harmonic map equation, the identity
map is harmonic on Ms/2 from g̃ =

(
H−1

v

)∗ (G∗g) to h. Thus, g̃ satisfies
(1.2) on Ms/2.

Next, we will show that Ψ∗g − h ∈ C1,0
1+λ(MR; Σ2). Since G∗g − h =

w ∈ C1,λ
1+λ(MR; Σ2) by the proof of Lemma 4.4, it suffices to show that

(H−1
v )∗G∗g−G∗g ∈ C1,λ

1+λ(MR; Σ2). Let us abbreviate G∗g by ĝ andH−1
v

by K : MR →MR. Again, by taking s (and thus also Aj) small enough,
we can ensure that Hv(V2(pi)) contains V 1(pi) for each Möbius chart,
and therefore, K is an admissible map. We will write the component
functions of Hv as Hj(x) = xj +Aj(x) as above, with

‖Aj‖2,λ;B2
≤ Cρ(pi)1+λ.

If s is chosen small enough, then the functions Aj will be uniformly
small in C2,λ(B2), so the Jacobian matrix ∂kH

j(x) will be uniformly
invertible on B2, independent of the choice of Möbius chart. Let us
write (Ij

k(x)) for the components of the inverse matrix of (∂kH
j(x)).

Because matrix inversion is continuous in the C1,λ norm by Lemma 2.1,
the functions Ij

k are uniformly bounded in C1,λ(B2).
The chain rule shows that

(4.2) ∂kK
j(x) = Ij

k(K(x)),

which is continuous and uniformly bounded on B1. But this implies
that Kj is uniformly C1, and using (4.2), we conclude successively that
∂kK

j(x) is uniformly C1, Kj is uniformly C2, ∂kK
j(x) is uniformly C1,λ

(by Lemma 2.1, and thus Kj is uniformly C2,λ on B1.
Let us write Bj(x) = Kj(x)−xj . The fact that Hv◦K = Id translates

in Möbius coordinates to

Kj(x) +Aj(K(x)) = xj,

so Bj(x) = −Aj(K(x)), and we conclude that

(4.3) ‖Bj‖2,λ;B1
= ‖Aj ◦K‖2,λ;B1

≤ C‖Aj‖2,λ;B2
≤ C ′ρ(pi)1+λ.
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Now, to show that K∗ĝ − ĝ ∈ C1,0
1+λ(MR; Σ2), we just compute in

Möbius coordinates:

K∗ĝ − ĝ = ĝjk(K(x))(dxj + dBj)(dxk + dBk) − ĝjk(x)dxj dxk

=
(
ĝjk(K(x)) − ĝjk(x)

)
dxj dxk

+ 2ĝjk(K(x))
∂Bk

∂xq
dxj dxq + ĝjk(K(x))

∂Bj

∂xm

∂Bk

∂xq
dxm dxq.

Because ρ2ĝ ∈ C2(M), the component functions ĝjk are uniformly
bounded in C2(B2) by the properties of Möbius coordinates. The same
is true of ĝjk ◦K by composition. The last two terms above thus have
C1 norms uniformly bounded by a constant multiple of ρ(pi)1+λ. Dif-
ferentiating the first term, we obtain

∂l (ĝjk ◦K − ĝjk) = (∂mĝjk ◦K)
∂Km

∂xl
− ∂lĝjk

= (∂mĝjk ◦K)
∂Bm

∂xl
+ (∂lĝjk ◦K − ∂lĝjk) .

The first term is uniformly bounded by a multiple of ρ(pi)1+λ thanks
to (4.3). The same is true of the second term by a simple application
of the mean value theorem and the fact that Kj(x)− xj = Bj(x). This
completes the proof that Ψ∗g − h ∈ C1,0

1+λ(MR; Σ2).
It remains only to show that Ψ has a C2,λ extension to MR. Because

G is C3 onMR by construction, it suffices to considerH−1
v = K. Choose

a fixed pi ∈MR and corresponding Möbius chart Φi. We can write the
map K either in Möbius coordinates, with coordinate functions denoted
by (Kj) as above:

K(xj) =
(
K1(xj), . . . ,Kn+1(xj)

)
,

or in background coordinates (θj) = (θ1, . . . , θn, ρ), with coordinate
functions that we will denote by (Kj):

K(θj) =
(
K1(θj), . . . ,Kn+1(θj)

)
.

The two coordinate representations are related by

Km(θj) = cm + ρ(pi)Km

(
θj − cj

ρ(pi)

)
,

where cj are constants defined by (c1, . . . , cn+1) = (θ1(pi), . . . , θn(pi), 0).
Using once again the fact that Kj(x) = xj + Bj(x) with Bj satisfying
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(4.3), we compute

∂Km

∂θk
= δm

k +
∂Bm

∂xk

(
θj − cj

ρ(pi)

)
,

so both Km and ∂Km/∂xk are uniformly bounded. Differentiating once
more, we find

∂2Km

∂θk∂θl
= ρ(pi)−1 ∂

2Bm

∂xk∂xl

(
θj − cj

ρ(pi)

)
,

and therefore,∣∣∣∣ ∂2Km

∂θk∂θl
(θj) − ∂2Km

∂θk∂θl
(θ̃j)

∣∣∣∣
= ρ(pi)−1

∣∣∣∣∣ ∂2Bm

∂xk∂xl

(
θj − cj

ρ(pi)

)
− ∂2Bm

∂xk∂xl

(
θ̃j − cj

ρ(pi)

)∣∣∣∣∣
≤ ρ(pi)−1‖Bm‖2,λ;B2

∣∣∣∣∣θj − θ̃j

ρ(pi)

∣∣∣∣∣
λ

≤ C
∣∣∣θj − θ̃j

∣∣∣λ ,
which shows that Km is uniformly C2,λ up to the boundary as claimed.

q.e.d.

5. Polyhomogeneity

Let U0 ⊂ R
n be an open set, and let U = U0× (0, ε) ⊂ H

n+1. For any
δ ∈ R, we denote by C δ the space of functions f ∈ C∞(U) that satisfy,
on any subset K × (0, ε0) with K ⊂ U0 compact and 0 < ε0 < ε, esti-
mates of the following form for all integers r ≥ 0 and all multi-indices α:

|(y∂y)r∂α
x f(x, y)| ≤ Cr,αy

δ.

(We use the multi-index notations α = (α1, . . . , αn) and ∂α
x =

(∂x1)α1 . . . (∂xn)αn .)
A smooth function f : U → R is said to be polyhomogeneous (cf. [3,

17]) if there exists a sequence of real numbers si → +∞, a sequence of
non-negative integers {qi}, and functions fij ∈ C∞(U0) such that

(5.1) f(x, y) ∼
∞∑
i=1

qi∑
j=0

ysi(log y)jfij(x)
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in the sense that for any δ > 0, there exists a positive integer N such
that

f(x, y) −
N∑

i=1

qi∑
j=0

ysi(log y)jfij(x) ∈ C δ.

A function or tensor field on MR is said to be polyhomogeneous if
its coordinate representation in every background chart is polyhomo-
geneous. (Note that the definition of polyhomogeneity is phrased some-
what differently in [3], but it is easy to verify that the two definitions
are equivalent. Note also that there is a misprint in the first displayed
inequality of [3, Section 3.1.5]: ∂α

y in that inequality should be replaced
by ∂α

v .)
In this section, we will apply the theory of [3] to conclude that solu-

tions to (1.2) are polyhomogeneous. A key step in the proof will be
a regularity result for the linearised operator D1Q(h,h) = 1

2 (∆L + 2n)
from [14]. Following [3], we say that an interval (δ−, δ+) ⊂ R is a
(weak) regularity interval for a second-order linear operator P on the
spaces Ck,λ

δ (MR; Σ2) if whenever u is a locally C2 section of Σ2 such
that u ∈ C0,0

δ0
(MR; Σ2) and Pu ∈ C0,λ

δ (MR; Σ2) with λ ∈ (0, 1) and
δ− < δ0 < δ < δ+, it follows that u ∈ C2,λ

δ (MR; Σ2). (We caution
the reader that the notations for weighted Hölder spaces used in [3] are
different from those of [14] that we are using here, in terms of index
positions and normalization of weights. The space of sections of Σ2 that
is denoted by Cδ

k+λ(M) in [3] is equal to the space that we would call
Ck,λ

δ+2(MR; Σ2). The difference between the weight factors δ and δ + 2
arises because we measure the size of the component functions in Möbius
coordinates, while [3] measures them in background coordinates. To
avoid confusion, we will use the notation ACδ

k+λ(M) for the space de-
noted by Cδ

k+λ(M) in [3], so that ACδ
k+λ(M) = Ck,λ

δ+2(MR; Σ2). The con-
dition that, we have defined here would be expressed in [3] by saying that
(δ− − 2, δ+ − 2) is a regularity interval for P on the spaces ACδ

k+λ(M).)

Theorem 5.1. With g̃ = Ψ∗g as in the preceding section, g̃ is poly-
homogeneous.

Proof. For any small symmetric 2-tensor ϕ on MR, define

F [ϕ] := ρ2Q(h+ ρ−2ϕ, h),

with Q as in (1.2). Then, ϕ = ρ2(g̃ − h) satisfies F [ϕ] = 0. We wish
to apply [3, Theorem 5.1.1] to F , and thereby conclude that ϕ is poly-
homogeneous. To do so, we will consider ϕ0 ≡ 0 as an approximate
solution to F [ϕ] = 0, and check that F , ϕ, and ϕ0 satisfy each of the



BOUNDARY REGULARITY 127

hypotheses of Theorem 5.1.1. (Actually, we will be using the modi-
fied version of Theorem 5.1.1 described in Remark (ii) and following the
statement of that theorem—we have only a weak regularity interval, but
we will verify that our constants all satisfy appropriately strengthened
inequalities so that this is sufficient.)

(i) F is a geometric operator in the sense of [3]: This follows easily
from the fact that F is an invariant operator on tensor fields.
(Note that the notion of geometricity defined in [3] is considerably
weaker than that of [14]; in particular, the definition in [3] does
not require the coordinate expression of F [ϕ] to depend only on
the coefficients of a single metric and the covariant derivatives of
its curvature.)

(ii) F is quasilinear, and F [ϕ] can be written in background coordi-
nates as a smooth function of

(
ρ, θα, ϕij , ρ∂kϕij , ρ

2∂k∂lϕij

)
: This

is easily seen by expanding Q(g̃, h) in background coordinates.
(iii) F [ϕ0] is a smooth tensor field on M and an element of ACδ0

0 (M) =
C0,0

δ0+2(M ; Σ2) for some δ0 > 1: Observe that F [ϕ0] = F [0] =
ρ2Q(h, h) = ρ2(Ric(h) + nh). Using the formula for the trans-
formation of the Ricci tensor under a conformal change of metric
(cf. [4, p. 59]), this can be written in background coordinates as

F [ϕ0] = ρ2 (Rij + nhij)

= ρ2Rij + (n− 1)ρρ;ij + ρh
kl
ρ;klhij − nh

kl
ρ;kρ;lhij + nhij ,

where the curvature and covariant derivatives are computed with
respect to the smooth metric h = ρ2h. Because of the way we con-
structed h, |dρ|2

h
is identically equal to 1 and ρ;ij is identically zero,

so all terms after the first one cancel, showing that F [ϕ0] = ρ2Rij ,
which is smooth on M and O(ρ2) in background coordinates, and
thus an element of AC2

0 (M).
(iv) ϕ − ϕ0 ∈ ACδ

1(MR) = C1,0
δ+2(MR; Σ2) for some δ > 1 and R > 0:

Since ϕ − ϕ0 = ϕ = ρ2(g̃ − h), this is equivalent to the assertion
that g̃− h ∈ C1,0

δ (MR; Σ2) for some δ > 1, which is guaranteed by
Theorem 4.5.

(v) The linearised operator F ′[ϕ0] is a geometric elliptic operator sat-
isfying conditions (4.2.1)–(4.2.4) of [3]: Actually, this is not true
as stated, but something just as good is true. Note that F ′[ϕ0] =
ρ2 ◦ D1Q(h,h) ◦ ρ−2 = ρ2 ◦ (∆L + 2n) ◦ ρ−2, which is certainly a
geometric elliptic operator.

Define subbundles of Σ2 as follows:

V0 = span(g);
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V1 =
{
q ∈ Σ2 : Trg q = 0, q(grad ρ, ·) = 0

}
;

V2 = span
(
g − n+ 1

|dρ|2g
dρ⊗ dρ

)
;

V3 = {dρ⊗ ω + ω ⊗ dρ : ω ∈ T ∗M, 〈ω, dρ〉 = 0} .

It is easy to check that Σ2 admits an orthogonal decomposition
Σ2 = V0 ⊕ V1 ⊕ V2 ⊕ V3. For i = 0, . . . , 3, let πi : Σ2 → Vi denote
the orthogonal projection. The arguments of [9, pp. 199–202] show
that ∆L + 2n can be written in the form

∆L + 2n =
3∑

i=0

Pi + P̃ ,

where in background coordinates P̃ is of the form [3, (4.2.3)] and
each Pi is an operator on sections of Vi that can be written

Pi = − (ρ2∂2
ρ + (5 − n)ρ∂ρ +Bi

)⊗ πi,

with B0 = B2 = 4 − 2n, B1 = 4 − 4n, and B3 = 3 − 3n. Thus,

F ′[ϕ0] =
3∑

i=0

Li + L̃,

where L̃ = ρ2 ◦ P̃ ◦ ρ−2 is again of the form [3, (4.2.3)], and

Li = ρ2 ◦ Pi ◦ ρ−2 = − (ρ2∂2
ρ + (1 − n)ρ∂ρ + bi

)⊗ πi,

with bi = Bi − 4 < 0. All of the arguments in [3, Sections 4 and
5] go through with only trivial changes if the ordinary differential
operator denoted there by Lab is replaced by the block-diagonal
operator L0 ⊕ L1 ⊕ L2 ⊕ L3.

(vi) The interval (0, n) is a regularity interval for the operator F ′[ϕ0]
on the spaces ACδ

k+λ(MR): It is an immediate consequence of
Lemma 6.4(b) of [14] that (0, n) is a regularity interval for ∆L+2n
on the spaces Ck,λ

δ (M ; ΣR), and it follows immediately from this
that (−2, n − 2) is a regularity interval for F ′[ϕ0] = ρ2 ◦ (∆L +
2n)◦ρ−2 on the same spaces. In the terminology of [3], this means
that (0, n) is a regularity interval on ACδ

k+λ(MR).

From [3, Theorem 5.1.1], therefore, we conclude that ϕ (and hence
also g̃) is polyhomogeneous. q.e.d.
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6. The asymptotic expansion

To obtain the asymptotic expansion announced in Theorem A, we
need to subject g to one more collar diffeomorphism. First, a prelimi-
nary lemma.

Lemma 6.1. Suppose g̃ is a Riemannian metric on MR that is poly-
homogeneous and conformally compact of class C1,λ for some 0 < λ < 1,
and satisfies |dρ|ρ2

�g → 1 at ∂M . Then, there exists a polyhomogeneous
C1,λ defining function r such that |dr|r2

�g ≡ 1 in a neighborhood of ∂M
and r/ρ→ 1 at ∂M .

Proof. Writing g = ρ2g̃ and r = ρeu, we see that the conclusion is
equivalent to

|dρ|2g + 2ρ〈dρ, du〉g + ρ2|du|2g = 1, u|∂M = 0.

It is shown in [13, Lemma 5.1] that this has a solution u ∈ C2,λ(MR; R)
if g is C3,λ up to the boundary, by reducing it to finding the flow of
the Hamiltonian vector field XF , where F : T ∗MR → R is the function
defined by

F (θ, ξ) = 2〈dρ, ξ〉g + ρ|ξ|2g −
1 − |dρ|2g

ρ
.

(Here (θ, ξ) = (θ1, . . . , θn+1, ξ1, . . . , ξn+1) are standard coordinates on
T ∗MR associated with background coordinates.) In the present situa-
tion, F is only of class C0,λ on T ∗MR; but because it is polyhomoge-
neous, each of the following quantities is also C0,λ in each background
chart:

∂F

∂ξj
,
∂F

∂θα
, ρ

∂F

∂ρ
,

∂2F

∂ξj∂ξk
,

∂2F

∂θα∂θβ
,

∂2F

∂ξj∂θα
, ρ

∂2F

∂θα∂ρ
, ρ

∂2F

∂ξj∂ρ
, ρ2 ∂

2F

∂ρ2
.

Since the normal component of XF satisfies

dρ(XF )|∂T ∗MR
=

∂F

∂ξn+1

∣∣∣∣
∂T ∗MR

= 2gn+1,n+1|∂T ∗MR
= 2,

it follows that V = 1
2XF satisfies the hypotheses of Lemma 6.3 below, so

the flow-out by XF from the boundary of T ∗MR exists and is polyhomo-
geneous and of class C0,λ. The rest of the argument in [13, Lemma 5.1]
then goes through to prove the existence of r as claimed. Moreover, the
solution r so obtained is itself polyhomogeneous; matching lowest-order
terms in the expansion of r with those in the expansion of g, we find
that r ∈ C1,λ(MR) as claimed. q.e.d.
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It is clear from the proof of the preceding lemma that near any bound-
ary point, one can choose new coordinates in which r is one of the co-
ordinate functions and the metric is polyhomogeneous. In fact, we can
do much better, as the next lemma shows.

Lemma 6.2. If g̃ satisfies the hypotheses of the preceding lemma,
then for R sufficiently small, there exists a polyhomogeneous C1,λ collar
diffeomorphism Γ: MR →M such that Γ∗g̃ has the form (1.1).

Proof. Let r be the polyhomogeneous C1,λ defining function given
by Lemma 6.1. Let q ∈ ∂M , and let (θα, ρ) be a fixed choice of back-
ground coordinates on a neighborhood Ω of q in MR. As in the proof of
Lemma 3.1, let P be the r2g̃-gradient of r, which is a polyhomogeneous
C0,λ vector field on MR whose normal component satisfies dρ(P ) = 1
along ∂M . Using Lemma 6.3 again, in each background coordinate
chart Ω, we obtain a uniquely determined C0,λ polyhomogeneous flow
(x, t) �→ γx(t), where for each x ∈ Ω ∩ ∂M , γx : [0, ε] → MR is the
integral curve of P starting at x. Comparing lowest-order terms in the
expansions of γx(t) and P , we see that the flow is in fact C1,λ up to
the boundary. The various maps thus obtained in different coordinate
charts all agree where they overlap, so they patch together to define a
global map Γ: ∂M × [0, ε] →MR. The inverse function theorem shows
that Γ is a diffeomorphism in a neighborhood of ∂M ×{0}. Identifying
∂M × [0, ε] with Mε, we can view Γ as a collar diffeomorphism. It is
easy to check that Γ∗g̃ has the form (1.1) with G(ρ) polyhomogeneous.

q.e.d.

Here is the ODE lemma used in the proofs of Lemmas 6.1 and 6.2.
It is adapted from Proposition B.1 in [6]. In this lemma, H

m+1 denotes
the upper half-space in R

m+1, with coordinates (x1, . . . , xm, y). In our
application of this lemma in the proof of Lemma 6.1, the xi-coordinates
correspond to (θ1, . . . , θn, ξ1, . . . , ξn+1), and y corresponds to ρ = θn+1.

Lemma 6.3. Let U0 be an open subset of R
m, and let V be a C1

vector field on U = U0 × (0, ε) ⊂ H
m+1 of the form

V = Ai(x, y)
∂

∂xi
+ (1 +B(x, y))

∂

∂y
.

Suppose that Ai and B satisfy the following estimates for some constants
C0 > 0 and 0 < λ < 1:

|B|, |∂xjB|, |y∂yB| ≤ C0y
λ,(6.1)

|Ai|, |∂xjAi|, |y∂yA
i| ≤ C0y

λ−1.
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(a) If K is any compact subset of U0, there exists ε > 0 such that, for
each x0 ∈ K, there is a unique continuous solution γ = γx0 on
[0, ε] to the initial value problem

γ′(t) = V (γ(t)),(6.2)

γ(0) = (x0, 0).

(b) If the coefficient functions Ai and B are polyhomogeneous, then
the map (x, t) �→ γx(t) is polyhomogeneous and C0,λ up to the
boundary.

Proof. Let x0 ∈ K be arbitrary. Choose constants C1 > 0 and 0 <
α < λ, and let ε be a positive constant to be determined later. Let X
denote the set of continuous maps γ : [0, ε] → R

m+1 of the form

(6.3) γ(t) = (x0 + a(t), t+ b(t))

satisfying

|ai(t)| ≤ C1t
α,(6.4)

|b(t)| ≤ C1t
α+1.(6.5)

If ε is sufficiently small, all such maps take their values in U for t ∈ (0, ε],
and X is a complete metric space when endowed with the metric

d(γ, γ̃) = sup
t∈[0,ε]

(
t−α|a(t) − ã(t)| + t−α−1|b(t) − b̃(t)|

)
.

Note that for any γ ∈ X , we have |y(γ(t)) − t| = |b(t)| ≤ C1t
1+α ≤

C1ε
αt, so choosing ε small enough that C1ε

α < 1
2 implies that

(6.6) 1
2t ≤ y(γ(t)) ≤ 3

2t.

Define a map T : X → X by

Tγ(t) =
(
xi

0 +
∫ t

0
Ai(γ(τ)) dτ, t+

∫ t

0
B(γ(τ)) dτ

)
.
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It is straightforward to check that∫ t

0
|Ai(γ(τ))| dτ ≤

∫ t

0
C0y(γ(t))λ−1 dτ

≤
∫ t

0
C0Cτ

λ−1 dτ ≤ C ′tλ ≤ C ′ελ−αtα;∫ t

0
|B(γ(τ))| dτ ≤

∫ t

0
C0y(γ(t))λ dτ

≤
∫ t

0
C0Cτ

λ dτ ≤ C ′tλ+1 ≤ C ′ελ−αtα+1.

Thus, if we choose ε small enough, it follows that T maps X into X .
We will show that, after choosing ε even smaller if necessary, T is a

contraction. Suppose γ, γ̃ ∈ X . If (x∗, y∗) is any point along the line
segment between γ(t) and γ̃(t), (6.6) implies that 1

2 t ≤ y∗ ≤ 3
2 t. To

estimate d(Tγ, T γ̃), we use the mean-value theorem to obtain

t−α

∫ t

0

∣∣Ai(γ(τ)) −Ai(γ̃(τ))
∣∣ dτ

≤ t−α
∑

j

∫ t

0
|∂xjAi(x∗, y∗)| |aj(τ) − ãj(τ)| dτ

+ t−α

∫ t

0
|∂yA

i(x∗, y∗)| |b(τ) − b̃(τ)| dτ

≤ t−α

∫ t

0
mC0(y∗)λ−1ταd(γ, γ̃) dτ

+ t−α

∫ t

0
C0(y∗)λ−2τα+1d(γ, γ̃) dτ

≤ t−α

∫ t

0
C0Cτ

λ+α−1d(γ, γ̃) dτ

≤ C ′ελd(γ, γ̃),

for some (x∗, y∗) on the line segment between γ(τ) and γ̃(τ). The anal-
ogous estimate for the y-component is similar. Thus, T is a contraction
if we choose ε sufficiently small. It therefore has a unique fixed point
in X , which is a solution to (6.2). By compactness, it is clear that for
any given C1, we can choose ε uniformly for x0 ∈ K.

To see that the solution is unique, suppose γ is any continuous so-
lution to (6.2). If we write γ in the form (6.3), the equation Tγ = γ
together with (6.1) implies successively that |b(t)| ≤ Ct, then |b(t)| ≤
Ctλ+1, and finally |ai(t)| ≤ Ctλ. It follows that (6.4) and (6.5) hold on
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[0, ε] if C1 and ε are chosen appropriately. Thus, the restriction of γ to
[0, ε] is in X , and so is equal to the unique fixed point of T .

Finally, we will prove the polyhomogeneity of the solution when V
is polyhomogeneous. Recall the spaces C δ defined at the beginning of
Section 5. We will need the following fact about these spaces, which is
proved by a straightforward analysis of the Taylor expansion of F (u +
f, v + g) about (u, v) = (u1, . . . , um, v):

F
(
u(x, y) + f(x, y), v(x, y) + g(x, y)

) − F
(
u(x, y), v(x, y)

)
(6.7)

∈ C δ+γ

when F ∈ C δ, ui ∈ C 0, f i ∈ C γ , v ∈ C 1, g ∈ C γ+1, γ ≥ 0.

For this proof, let A denote the space of polyhomogeneous functions
on U , and for any δ ∈ R, define A δ = A ∩C δ. Thus, a polyhomogeneous
function f is in A δ if and only if its leading term in the expansion (5.1)
satisfies s1 ≥ δ and, if s1 = δ, q1 = 0. Our hypotheses imply that
Ai ∈ A λ−1 and B ∈ A λ.

For each x0 ∈ K, let a(x0, t) and b(x0, t) denote the functions a(t)
and b(t) obtained above with initial condition (x0, 0). The standard
argument showing that solutions of ODEs depend smoothly upon initial
values can be used to obtain estimates of the following form for all multi-
indices α:

|∂α
x a

i(x, t)| ≤ Cαt
λ, |∂α

x b(x, t)| ≤ Cαt
λ+1.

It is then straightforward to use the differential equation to obtain esti-
mates on (t∂t)r∂α

xa
i(x, t) and (t∂t)r∂α

x b(x, t), showing that ai ∈ C λ and
b ∈ C λ+1.

Suppose that for some integer m ≥ 1, we have a “partial polyhomo-
geneous expansion” of the form

ai(x, t) = pi(x, t) + ri(x, t), b(x, t) = q(x, t) + s(x, t),(6.8)

with pi ∈ A λ, ri ∈ C mλ, q ∈ A λ+1, s ∈ C mλ+1.

The discussion in the preceding paragraph shows that (6.8) holds with
m = 1 and pi = q = 0. Inserting (6.8) into Tγ = γ, we obtain ri =
ri
0 + ri

1, where

ri
0 =

∫ t

0
Ai
(
x+ p(x, τ), τ + q(x, τ)

)
dτ − pi(x, t),

ri
1 =

∫ t

0

(
Ai
(
x+ p(x, τ) + r(x, τ), τ + q(x, τ) + s(x, τ)

)
−Ai

(
x+ p(x, τ), τ + q(x, τ)

))
dτ.
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From (6.7), we conclude that ri
1 ∈ C (m+1)λ. On the other hand, it is

easy to check that ri
0 is polyhomogeneous, and since ri

0 = ri−ri
1 ∈ C mλ,

we have ri
0 ∈ A mλ. A similar argument shows that s = s0 + s1, with

s0 ∈ A mλ+1 and s1 ∈ C (m+1)λ+1. We let P i denote the sum of the
(finitely many) terms in the expansion of ri

0 that are in A mλ
�C (m+1)λ,

and Q the sum of the terms in s0 that are in A mλ+1
� C (m+1)λ+1.

Replacing pi by pi + P i and q by q + Q, we obtain (6.8) with m + 1
in place of m. Continuing by induction, we conclude that a and b are
polyhomogeneous. Since both are in A λ, it follows that (x, t) �→ γx(t)
is a C0,λ map. q.e.d.

We are finally ready to prove the main theorem.

Proof of Theorem A. Suppose g satisfies the hypotheses of the theorem.
Let Ψ be the collar diffeomorphism given by Theorem 4.5, and let g̃ =
Ψ∗g, which is polyhomogeneous and conformally compact of class C1,λ,
0 < λ < 1. Theorem 4.5 shows that ρ2Ψ∗g − ρ2h ∈ C1,0

3+λ(MR; Σ2),
which implies that ρ2Ψ∗g − ρ2h = O(ρ1+λ) in background coordinates,
so Ψ∗g and h have the same conformal infinity γ̃.

Then, let Γ be the collar diffeomorphism given by Lemma 6.2, so that
Γ∗g̃ has the form (1.1). Because r/ρ → 1 at ∂M , it follows that Γ∗g̃
also has γ̃ as conformal infinity. Because ρ2Γ∗g̃ is continuous up to ∂M
and has a smooth restriction to ∂M , it follows that the log terms in the
asymptotic expansion for G(ρ) all occur with positive powers of ρ. Once
polyhomogeneity is known, the detailed form of the expansion is estab-
lished by matching powers and coefficients of various terms appearing
in the equations. Such a study has been done by Robin Graham and
Charles Fefferman [8] (see also [12]), and the results there imply that
the expansions are of the form described in Theorem A. In the special
case, when dimM = 3, it is possible to choose the conformal infinity γ̃
to have constant Gaussian curvature, and an easy computation shows
that the first log term vanishes in this case (cf. [7, 8, 12]), so ρ2Γ∗g̃ is
always smooth.

The proof is completed by letting Φ be the collar diffeomorphism
Ψ ◦ Γ. q.e.d.
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