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Abstract

We study discrete group actions on coarse Poincaré duality
spaces, e.g., acyclic simplicial complexes which admit free cocom-
pact group actions by Poincaré duality groups. When G is an
(n − 1) dimensional duality group and X is a coarse Poincaré
duality space of formal dimension n, then a free simplicial ac-
tion G � X determines a collection of “peripheral” subgroups
H1, . . . , Hk ⊂ G so that the group pair (G, {H1, . . . , Hk}) is an
n-dimensional Poincaré duality pair. In particular, if G is a 2-
dimensional 1-ended group of type FP2, and G � X is a free sim-
plicial action on a coarse PD(3) space X , then G contains surface
subgroups; if in addition X is simply connected, then we obtain a
partial generalization of the Scott/Shalen compact core theorem
to the setting of coarse PD(3) spaces. In the process, we develop
coarse topological language and a formulation of coarse Alexander
duality which is suitable for applications involving quasi-isometries
and geometric group theory.

1. Introduction

In this paper, we study metric complexes (e.g., metric simplicial com-
plexes) which behave homologically in the large-scale like R

n, and dis-
crete group actions on them. One of our main objectives is a partial
generalization of the Scott/Shalen compact core theorem for 3-manifolds
([37], see also [26]) to the setting of coarse Poincaré duality spaces and
Poincaré duality groups of arbitrary dimension. In the one ended case,
the compact core theorem says that if X is a contractible 3-manifold
and G is a finitely generated one-ended group acting discretely and
freely on X, then the quotient X/G contains a compact core — a com-
pact submanifold Q with (aspherical) incompressible boundary so that
the inclusion Q → X/G is a homotopy equivalence. The proof of the
compact core theorem relies on standard tools in 3-manifold theory like
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transversality, which has no appropriate analog in the 3-dimensional
coarse Poincaré duality space setting, and the Loop Theorem, which
has no analog even for manifolds when the dimension is at least 4.

We now formulate our analog of the core theorem. For our pur-
pose, the appropriate substitute for a finitely generated, one-ended, 2-
dimensional group G will be a duality group of dimension n−1. (By the
dimension of a group, we will always mean the cohomological dimension
over Z.) We recall [6] that a group G is a k-dimensional duality group
if G is of type FP , H i(G; ZG) = 0 for i �= k, and Hk(G; ZG) is torsion-
free. (We never make use of the last assumption about Hk(G; ZG) in
our paper.) Examples of duality groups include:

A. Freely indecomposable 2-dimensional groups of type FP2; for in-
stance, torsion free one-ended 1-relator groups.

B. The fundamental groups of compact aspherical manifolds with in-
compressible aspherical boundary [6].

C. The product of two duality groups.
D. Torsion free S-arithmetic groups [9].

Instead of 3-dimensional contractible manifolds, we work with a class
of metric complexes which we call “coarse PD(n) spaces”. We defer
the definition to the main body of the paper (see Section 6 and Appen-
dix 11), but we note that important examples include universal covers of
closed aspherical n-dimensional PL-manifolds, acyclic complexes X with
H∗c (X) � H∗c (Rn) which admit free cocompact simplicial group actions,
and uniformly acyclic n-dimensional PL-manifolds with bounded geom-
etry. We recall that an n-dimensional Poincaré duality group (PD(n)
group) is a duality group G with Hn(G; ZG) � Z. Our group-theoretic
analog for the compact core will be an n-dimensional Poincaré duality
pair (PD(n) pair), i.e., a group pair (G, {H1, . . . ,Hk}) whose double
with respect to the Hi’s is an n-dimensional Poincaré duality group,
[14]. In this case, the “peripheral” subgroups Hi are PD(n−1) groups.
See Section 3 for more details.

Theorem 1.1. Let X be a coarse PD(n) space, and let G be an
(n − 1)-dimensional duality group acting freely and discretely on X.
Then:

1. G contains subgroups H1, . . . Hk (which are canonically defined up
to conjugacy by the action G � X) so that (G, {Hi}) is a PD(n)
pair.

2. There is a connected G-invariant subcomplex K ⊂ X so that K/G
is compact, the stabilizer of each component of X−K is conjugate
to one of the Fi’s, and each component of X −K/G is one-ended.
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Thus, the duality groupsG which appear in the above theorem behave
homologically like the groups in example B. As far as we know, Theorem
1.1 is new even in the case that X � R

n, when n ≥ 4. Theorem 1.1 and
Lemma 11.6 imply

Corollary 1.2. Let Γ be a n-dimensional Poincaré duality group.
Then, any (n − 1)-dimensional duality subgroup G ⊂ Γ contains a fi-
nite collection H1, . . . ,Hk of PD(n − 1) subgroups so that the group
pair (G, {Hi}) is a PD(n) pair; moreover, the subgroups H1, . . . ,Hk

are canonically determined by the embedding G→ Γ.

Corollary 1.3. Suppose that G is a group of type FP2, dim(G) ≤ 2,
and G acts freely and simplicially on a coarse PD(3) space. Then:

1. Each 1-ended factor of G admits the structure of a PD(3) pair.
2. Either G contains a surface group, or G is free. In particular, an

infinite index FP2 subgroup of a 3-dimensional Poincaré duality
group contains a surface subgroup or is free.

Proof. Let G = F ∗(∗iGi) be a free product decomposition where F is
a finitely generated free group, and each Gi is finitely generated, freely
indecomposable, and non-cyclic. Then, by Stallings’ theorem on ends
of groups, each Gi is one-ended, and hence is a 2-dimensional duality
group. Since dim(G) ≤ 2, this group is not a PD(3)-group. By Theorem
1.1, each Gi has structure of a PD(3)-pair (G, {H1, . . . ,Hk}). Each Hi

is a PD(2) subgroups, and therefore these subgroups are surface groups.
q.e.d.

Remark 1.4. Each PD(2) group over a commutative ring R with a
unit is the fundamental group of a 2-dimensional orbifold, see [16, 17]
for R = Z, [10] in case when R is a field and [31, 29] in the general case.

We believe that Corollary 1.3 still holds if one relaxes the FP2

assumption to finite generation, and we conjecture that any finitely
generated group which acts freely, simplicially but not cocompactly,
on a coarse PD(3) space is finitely presented. We note that Bestvina
and Brady [2] construct 2-dimensional groups which are FP2, but not
finitely presented.

In Theorem 1.1 and Corollary 1.2, one can ask to what extent the
peripheral structure – the subgroups H1, . . . ,Hk – are uniquely deter-
mined by the duality group G. We prove an analog of the uniqueness
theorem for peripheral structure [27] for fundamental groups of acylin-
drical 3-manifolds with aspherical incompressible boundary:
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Theorem 1.5. Let (G, {Hi}i∈I) be a PD(n) pair, where G is not a
PD(n − 1) group, and Hi does not coarsely separate G for any i. If
(G, {Fj}j∈J) is a PD(n) pair, then there is a bijection β : I → J such
that Hi is conjugate to Fβ(i) for all i ∈ I.

Remark 1.6. In a recent paper [38], Scott and Swarup give a group-
theoretic proof of Johannson’s theorem, see also [39].

Remark 1.7. The results and methods of this paper, in particular
Theorem 1.1, Corollaries 1.2, 1.3, and Theorem 1.5, remain valid (with
minor modifications) if one replaces the coefficient ring Z with an arbi-
trary commutative ring with unit. In Corollary 1.3, the conclusion in the
second case is that G either contains a surface group, or is virtually free.

We were led to Theorem 1.1 and Corollary 1.3 by our earlier work
on hyperbolic groups with one-dimensional boundary [28]; in that pa-
per, we conjectured that every torsion-free hyperbolic group G whose
boundary is homeomorphic to the Sierpinski carpet is the fundamental
group of a compact hyperbolic 3-manifold with totally geodesic bound-
ary. In the same paper, we showed that such a group G is part of a
canonically defined PD(3) pair and that our conjecture would follow if
one knew that G were a 3-manifold group. One approach to proving
this is to produce an algebraic counterpart to the Haken hierarchy for
Haken 3-manifolds in the context of PD(3) pairs. We say that a PD(3)
pair (G, {H1, . . . ,Hk}) is Haken if it admits a non-trivial splitting. (If
k > 0 then such a splitting always exists.) One would like to show
that Haken PD(3) pairs always admit non-trivial splittings over PD(2)
pairs whose peripheral structure is compatible with that of G. Given
this, one can create a hierarchical decomposition of the group G, and
try to show that the terminal groups correspond to fundamental groups
of 3-manifolds with boundary. The corresponding 3-manifolds might
then be glued together along boundary surfaces to yield a 3-manifold
with fundamental group G. At the moment, the biggest obstacle in this
hierarchy program appears to be the first step; and the two theorems
above provide a step toward overcoming it.

Remark 1.8. It is a difficult open problem due to Wall whether each
PD(n) group G (that admits a compact K(G, 1)) is isomorphic to the
fundamental group of a compact aspherical n-manifold (here, n ≥ 3),
see [30]. The case of n = 1 is quite easy, for n = 2, the positive solution
is due to Eckmann, Linnell and Müller [16, 17]. Partial results for n = 3
were obtained by Kropholler [32] and Thomas [42]. If the assumption
that G has finite K(G, 1) is omitted, then there is a counter-example
due to Davis [13]; he constructed PD(n) groups (for each n ≥ 4) which
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do not admit finite Eilenberg–MacLane spaces. For n ≥ 5, the positive
answer would follow from Borel Conjecture [30].

As an application of Theorems 1.1 and Corollary 1.3 and the tech-
niques used in their proof, we give examples of (n − 1)-dimensional
groups which cannot act freely on coarse PD(n) spaces (in particular,
they cannot be subgroups of PD(n) groups), see Section 9 for details:

1. A 2-dimensional one-ended group of type FP2 with positive Euler
characteristic cannot act on a coarse PD(3) space. The semi-direct
product of two finitely generated free groups is such an example.

2. For i = 1, . . . , �, let Gi be a duality group of dimension ni and
assume that for i = 1, 2 the group Gi is not a PD(ni) group.
Then, the product G1 × · · · × G� cannot act on a coarse PD(n)
space where n− 1 = n1 + · · ·+ n�. The case when n = 3 is due to
Kropholler, [32].

3. IfG1 is a k-dimensional duality group andG2 is the the Baumslag–
Solitar group BS(p, q) (where p �= ±q), then the direct product
G1 × G2 cannot act on a coarse PD(3 + k) space. In particular,
BS(p, q) cannot act on a coarse PD(3) space (unless |p| = |q| = 1).

Remark 1.9. Peter Kropholler had proven that a Baumslag–Solitar
group as above cannot be embedded in a PD(3) group G, under an
assumption on centralizers of elements of G.

4. An (n − 1)-dimensional group G of type FPn−1 which contains
infinitely many conjugacy classes of coarsely non-separating max-
imal PD(n − 1) subgroups cannot act freely on a coarse PD(n)
space.

Our theme is related to the problem of finding an n-thickening of
an aspherical polyhedron P up to homotopy, i.e., finding a homotopy
equivalence P → M where M is a compact manifold with boundary
and dim(M) = n. If k = dim(P ), then we may immerse P in R

2k by
general position, and obtain a 2k-manifold thickening M by “pulling
back” a regular neighborhood. Given an n-thickening P →M , we may
construct a free simplicial action of G = π1(P ) on a coarse PD(n) space
by modifying the geometry of Int (M) and passing to the universal cover.
In particular, if G cannot act on a coarse PD(n) space, then no such n-
thickening can exist. In the paper with Bestvina [3], we give examples of
finite k-dimensional aspherical polyhedra P whose fundamental groups
cannot act freely simplicially on any coarse PD(n) space for n < 2k,
and hence the polyhedra P do not admit n-thickening for n < 2k.

We conclude the discussion of our results with a couple of questions:
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Question 1.10. Is there a uniform embedding of a Baumslag–Solitar
group B(p, q) (with |p| = |q| �= 1) into the fundamental group of a
compact 3-manifold?

Note that one can easily construct a uniform embedding of B(p, q)
into a uniformly contractible 3-manifold M of bounded geometry, how-
ever it seems difficult to find an M which is the universal cover of a
compact 3-manifold.

Question 1.11. Is it true that PD(3) groups Γ are coherent, i.e.,
every finitely generated subgroup of Γ is also finitely presented (or even
FP2)? It seems unclear even if finitely generated normal subgroups in
Γ are finitely presented.

More generally,

Question 1.12.
1. Suppose that G is a finitely generated group acting freely and

simplicially on a coarse PD(3) space. Is it true that G is of type
FP2?

2. Suppose that a finitely generated group G admits a uniform em-
bedding into a coarse PD(3) space (e.g., a uniformly contractible
3-manifold). Is it true that G is of type FP2?

Below is a heuristic explanation of why Theorem 1.1 is true. Sup-
pose that the space X in question is the hyperbolic space H

n. Suppose
in addition that G ⊂ Isom (X) is a convex-cocompact discrete group of
isometries, i.e., there exists a closed convex G-invariant subset C ⊂ X
with compact quotient C/G. The hypothesis that G is an (n − 1)-
dimensional duality group means that its boundary (i.e., the limit set
Λ(G) ⊂ Sn−1) has the same homology as a wedge of (n − 2)-spheres.
Then, Alexander duality implies that each component of the comple-
ment of the discontinuity domain Ω(G) = Sn−1 \Λ(G) is acyclic. More-
over, since G is convex-cocompact, there are only finitely many G-orbits
of such components and the stabilizer Hi of such a component acts on
it cocompactly. Therefore, each Hi is a PD(n − 1)-group. Thus, we
obtain a collection of peripheral subgroups {H1, . . . ,Hk} and it follows
that (G, {H1, . . . ,Hk}) is a PD(n) pair.

To give an idea of the actual proof of Theorem 1.1, consider the case
when the coarse PD(n)-space X happens to be R

n with a uniformly
acyclic bounded geometry triangulation. We take combinatorial tubu-
lar neighborhoodsNR(K) of a G-orbit K in X and analyze the structure
of connected components of X − NR(K). Following Schwartz, we call
a connected component C of X −NR(K) deep if C is not contained in
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any tubular neighborhood of K. When G is a group of type FPn, using
Alexander duality one shows that deep components of X −NR(K) sta-
bilize: there exists R0 so that no deep component of X−NR0(K) breaks
up into multiple deep components as R increases beyond R0. If G is an
(n−1)-dimensional duality group, then the idea is to show that the sta-
bilizers of deep components of X−NR0(K) are PD(n−1)-groups, which
is the heart of the proof. These groups define the peripheral subgroups
H1, . . . ,Hk of the PD(n) pair structure (G, {H1, . . . ,Hk}) for G.

When X is a coarse PD(n)-space rather than R
n, one does not have

Alexander duality since Poincaré duality need not hold locally. However,
there is a coarse version of Poincaré duality which we use to derive an
appropriate coarse analogue of Alexander duality; this extends Richard
Schwartz’s coarse Alexander duality from the manifold context to the
coarse PD(n) spaces. Roughly speaking this goes as follows. If K ⊂ R

n

is a subcomplex, then Poincaré duality gives an isomorphism

H∗c (K)→ Hn−∗(Rn,Rn −K).

This fails when we replace R
n by a general coarse PD(n) space X. We

prove, however, that for a certain constant D, there are homomorphisms
defined on tubular neighborhoods of K:

PR+D : Hk
c (ND+R(K))→ Hn−k(X,YR), where YR := X −NR(K),

which determine an approximate isomorphism. This means that for
every R, there is an R′ (one may take R′ = R+ 2D) so that the homo-
morphisms a and b in the following commutative diagram are zero:

ker (PR′) → Hk
c (NR′(K))

PR′−→ Hn−k(X,YR′−D) → coker (PR′)
a ↓ ↓ ↓ b ↓

ker (PR) → Hk
c (NR(K)) PR−→ Hn−k(X,YR−D) → coker (PR)

This coarse version of Poincaré duality leads to coarse Alexander duality,
which suffices for our purposes.

In this paper, we develop and use ideas in coarse topology which origi-
nated in earlier work by a number of authors: [8, 20, 22, 24, 34, 35, 36].
Other recent papers involving similar ideas include [10, 43, 18, 19]. We
would like to stress, however, the difference between our framework and
versions of coarse topology in the literature. In [34, 24, 25], coarse
topological invariants appear as direct/inverse limits of anti-Čech sys-
tems. By passing to the limit (or even working with pro-categories á
la Grothendieck), one inevitably loses quantitative information which
is essential in many applications of coarse topology to quasi-isometries
and geometric group theory. The notion of approximate isomorphism
mentioned above (see Section 4) retains this information.
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In the main body of the paper, we deal with a special class of metric
complexes, namely metric simplicial complexes. This makes the expo-
sition more geometric, and, we believe, more transparent. Also, this
special case suffices for many of the applications to quasi-isometries
and geometric group theory. In Appendix (Section 11), we explain how
the definitions, theorems, and proofs can be modified to handle general
metric complexes.

Organization of the paper. In Section 2, we introduce metric sim-
plicial complexes and recall notions from coarse topology. Section 3
reviews some facts and definitions from cohomological group theory,
duality groups, and group pairs. In Section 4, we define approximate
isomorphisms between inverse and direct systems of abelian groups, and
compare these with Grothendieck’s pro-morphisms. Section 5 provides
finiteness criteria for groups, and establishes approximate isomorphisms
between group cohomology and cohomologies of nested families of sim-
plicial complexes. In Section 6, we define coarse PD(n) spaces, give
examples, and prove coarse Poincaré duality for coarse PD(n) spaces.
In Section 7, we prove coarse Alexander duality and apply it to coarse
separation. In Section 8, we prove Theorems 1.1, Proposition 8.10,
and variants of Theorem 1.1. In Section 9, we apply coarse Alexan-
der duality and Theorem 1.1 to show that certain groups cannot act
freely on coarse PD(n) spaces. In Section 10, we give a brief account of
coarse Alexander duality for uniformly acyclic triangulated manifolds
of bounded geometry. The reader interested in manifolds and not in
Poincaré complexes can use this as a replacement of Theorem 7.5.

Suggestions to the reader. Readers familiar with Grothendieck’s pro-
morphisms may wish to read the second part of section 4, which will al-
low them to translate statements about approximate isomorphisms into
pro-language. Readers who are not already familiar with pro-morphisms
may simply skip this. Those who are interested in finiteness properties of
groups may find Section 5, especially Theorems 5.11 and Corollary 5.14,
of independent interest.

2. Geometric preliminaries

Metric simplicial complexes. Let X be the geometric realization of a
connected locally finite simplicial complex. Henceforth, we will conflate
simplicial complexes with their geometric realizations. We will metrize
the 1-skeleton X1 of X by declaring each edge to have unit length and
taking the corresponding path-metric. Such an X with the metric on
X1 will be called a metric simplicial complex. The complex X is said to
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have bounded geometry if all links have a uniformly bounded number of
simplices; this is equivalent to saying that the metric space X1 is locally
compact and every R-ball in X1 can be covered by at most C = C(R, r)
r-balls for any r > 0. In particular, dim(X) < ∞. If K ⊂ X is a
subcomplex and r is a positive integer, then we define (combinatorial)
r-tubular neighborhood Nr(K) of K to be r-fold iterated closed star
of K, Str(K); we declare N0(K) to be K itself. Note that for r > 0,
Nr(K) is the closure of its interior. The diameter of K is defined to
be the diameter of its zero-skeleton, and ∂K denotes the frontier of K,
which is a subcomplex. For each vertex x ∈ X and R ∈ Z+, we let
B(x,R) denote NR({x}), the “R-ball centered at x”.

Remark 2.1. The definition of metric complexes, which generalize
metric simplicial complexes, appears in Appendix 11.

Coarse Lipschitz and uniform embeddings. We recall that a map
f : X → Y between metric spaces is called (L,A)-Lipschitz if

d(f(x), f(x′)) ≤ Ld(x, x′) +A

for any x, x′ ∈ X. A map is coarse Lipschitz if it is (L,A)-Lipschitz
for some L,A. A coarse Lipschitz map f : X → Y is called a uniform
embedding if there is a proper function φ : R+ → R+ (a distortion
function) such that

d(f(x), f(x′)) ≥ φ(d(x, x′))

for all x, x′ ∈ X.
Throughout the paper, we will use simplicial (co)chain complexes

and integer coefficients. If C∗(X) is the simplicial chain complex and
A ⊂ C∗(X), then the support of A, denoted Support (A), is the smallest
subcomplex K ⊂ X so that A ⊂ C∗(K). Throughout the paper, we will
assume that morphisms between simplicial chain complexes preserve the
usual augmentation.

If X,Y are metric simplicial complexes as above, then a homomor-
phism

h : C∗(X)→ C∗(Y )
is said to be coarse Lipschitz if for each simplex σ⊂X, Support(h(C∗(σ)))
has uniformly bounded diameter. The Lipschitz constant of h is

max
σ

diam (Support (h(C∗(σ)))).

A homomorphism h is said to be a uniform embedding if it is coarse
Lipschitz and there exists a proper function φ : R+ → R+ (a distor-
tion function) such that for each subcomplex K ⊂ X of diameter ≥ r,



288 M. KAPOVICH & B. KLEINER

Support (h(C∗(K))) has diameter ≥ φ(r). We will apply this definition
only to chain mappings and chain homotopies. (Recall that there is a
standard way to triangulate the product ∆k × [0, 1]; we can use this to
triangulate X × [0, 1] and hence view it as a metric simplicial complex.)
We say that a homomorphism h : C∗(X) → C∗(X) has displacement
≤ D if for every simplex σ ⊂ X, Support (h(C∗(σ))) ⊂ ND(σ).

We may adapt all of the definitions from the previous paragraph to
mappings between other (co)chain complexes associated with metric
simplicial complexes, such as the compactly supported cochain complex
C∗c (X).

Coarse topology. An n-dimensional metric simplicial complex X is
said to be uniformly acyclic if for every R1, there is an R2 such that for
each subcomplex K ⊂ X of diameter ≤ R1 the inclusion K → NR2(K)
induces zero on reduced homology groups. Such a function R2 = R2(R1)
will be called an acyclicity function for C∗(X). Let C∗c (X) denote the
complex of compactly supported simplicial cochains, and suppose α :
Cn

c (X)→ Z is an augmentation for C∗c (X), i.e., a homomorphism which
is zero on all coboundaries. Then, the pair (C∗c (X), α) is called uniformly
acyclic if there is an R0 > 0 and a function R2 = R2(R1) so that for all
x ∈ X0 and all R1 ≥ R0,

Im (H∗c (X,X −B(x,R1))→ H∗c (X,X −B(x,R2)))

maps isomorphically onto H∗c (X) under H∗c (X,X−B(x,R2))→H∗c (X),
and α induces an isomorphism ᾱ : Hn

c (X)→ Z.
Let K ⊂ X be a subcomplex of a metric simplicial complex X. For

every R ≥ 0, we say that an element c ∈ Hk(X − NR(K)) is deep if it
lies in

Im (Hk(X −NR′(K))→ Hk(X −NR(K)))
for every R′ ≥ R; equivalently, c is deep if it belongs to the image of

lim←−
r

Hk(X −Nr(K)) −→ Hk(X −NR(K)).

We let HDeep
k (X − NR(K)) denote the subgroup of deep homology

classes of X−NR(K). Hence, we obtain an inverse system {HDeep
k (X−

NR(K))}. We say that the deep homology stabilizes at R0 if the pro-
jection homomorphism

lim←−
R

HDeep
k (X −NR(K))→ HDeep

k (X −NR0(K))

is injective.
Specializing the above definition to the case k = 0, we arrive at the

definition of deep complementary components. If R ≥ 0, a component
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C of X − NR(K) is called deep if it is not contained within a finite
neighborhood of K. A subcomplex K coarsely separates X if there is
an R so that X − NR(K) has at least two deep components. A deep
component C of X −NR(K) is said to be stable if for each R′ ≥ R the
component C meets exactly one deep component of X −NR′(K). K is
said to coarsely separate X into (exactly) m components if there is an
R so that X −NR(K) consists of exactly m stable deep components.

Note that HDeep
0 (X − NR(K)) is freely generated by elements cor-

responding to deep components of X − NR(K). The deep homology
HDeep

0 (X −NR(K)) stabilizes at R0 if and only if all deep components
of X −NR0(K) are stable.

If G � X is a simplicial action of a group on a metric simplicial
complex, then one orbit G(x) coarsely separates X if and only if every
G-orbit coarsely separates X; hence, we may simply say that G coarsely
separates X. If H is a subgroup of a finitely generated group G, then
we say that H coarsely separates G if H coarsely separates some (and
hence any) Cayley graph of G.

Let Y,K be subcomplexes of a metric simplicial complex X. We say
that Y coarsely separates K in X if there is R > 0 and two distinct
components C1, C2 ⊂ X−NR(Y ) so that the distance function dY (·) :=
d(·, Y ) is unbounded on both K ∩ C1 and K ∩ C2. The subcomplex Y
will coarsely separate X in this case.

3. Group theoretic preliminaries

Resolutions, cohomology and relative cohomology. Let G be
group and K be an Eilenberg–MacLane space for G. IfM is a system of
local coefficients on K, then we have homology and cohomology groups
of K with coefficients inM: H∗(K;M) and H∗(K;M). Now, let A be
a ZG-module. We recall that a resolution of A is an exact sequence of
ZG-modules:

· · · → Pn → · · · → P0 → A→ 0.

Every ZG-module has a unique projective resolution up to chain ho-
motopy equivalence. If M is a ZG-module, then the cohomology of
G with coefficients in M , H∗(G;M), is defined as the homology of
chain complex HomZG(P∗,M) where P∗ is a projective resolution of
the trivial ZG-module Z; the homology of G with coefficients in M ,
H∗(G;M), is the homology of the chain complex P∗ ⊗ZG M . Using
the 1–1 correspondence between ZG-modules, M and local coefficient
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systemsM on an Eilenberg–MacLane space K, we get natural isomor-
phisms H∗(K;M) � H∗(G;M) and H∗(K;M) � H∗(G;M). Hence-
forth, we will use the same notation to denote ZG-modules and the
corresponding local systems on K(G, 1)’s.

Group pairs. We now discuss relative (co)homology following [7]. Let
G be a group, and H := {Hi}i∈I an indexed collection of (not nec-
essarily distinct) subgroups. We refer to (G,H) as a group pair. Let


iK(Hi, 1)
f→ K(G, 1) be the map induced by the inclusions Hi → G,

and let K be the mapping cylinder of f . We, therefore, have a pair of
spaces (K,
i K(Hi, 1)) since the domain of a map naturally embeds in
the mapping cylinder. Given any ZG-module M , we define the relative
cohomology H∗(G,H;M) (respectively homology H∗(G,H;M)) to be
the cohomology (resp. homology) of the pair (K,
iK(Hi, 1)) with coef-
ficients in the local system M . As in the absolute case, one can compute
relative (co)homology groups using projective resolutions, see [7]. For
each i ∈ I, let

· · · → Qn(i)→ · · · → Q0(i)→ Z→ 0

be a resolution of Z by projective ZHi-modules, and let

· · · → Pn → · · · → P0 → Z→ 0

be a resolution of Z by projective ZG-modules. The inclusions Hi →
G induce ZHi-chain mappings fi : Q∗(i) → P∗, unique up to chain
homotopy. We define a ZG-chain complex Q∗ to be ⊕i(ZG⊗ZHi Q∗(i))
with an augmentation

Q0 → ⊕i(ZG⊗ZHi Z)

induced by the augmentations Q0(i) → Z; the chain mappings fi yield
a ZG-chain mapping f : Q∗ → P∗. We let C∗ be the algebraic mapping
cylinder of f : this is the chain complex with Ci := Pi ⊕Qi−1 ⊕Qi with
the boundary homomorphism given by

(3.1) ∂(pi, qi−1, qi) = (∂pi + f(qi−1),−∂qi−1, ∂qi + qi−1).

We note that each Ci is clearly projective, a copy D∗ of Q∗ naturally
sits in C∗ as the third summand, and the quotient C∗/D∗ is a chain
complex of projective ZG-modules. Proposition 1.2 of [7] implies that
the relative homology (resp. cohomology) of the group pair (G,H) with
coefficients in a ZG-module M (defined as above using local systems
on Eilenberg–MacLane spaces) is canonically isomorphic to homology
of the chain complex (C∗/D∗)⊗ZG M (resp. HomZG((C∗/D∗),M)).
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Finiteness properties of groups. The (cohomological) dimension
dim(G) of a group G is n if n is the minimal integer such that there
exists a resolution of Z by projective ZG-modules:

0→ Pn → · · · → P0 → Z→ 0.

Recall that G has cohomological dimension n if and only if n is the
minimal integer so that Hk(G,M) = 0 for all k > n and all ZG-modules
M . Moreover, if dim(G) <∞, then

dim(G) = sup{n | Hn(G;F ) �= 0 for some free ZG-module F},
see [12, Ch. VIII, Proposition 2.3]. If

1→ G1 → G→ G2 → 1

is a short exact sequence then dim(G) ≤ dim(G1) + dim(G2), [12, Ch.
VIII, Proposition 2.4]. If G′ ⊂ G is a subgroup then dim(G′) ≤ dim(G).

A partial resolution of a ZG-module A is an exact sequence ZG-
modules:

Pn → · · · → P0 → A→ 0.

If A∗:
· · · → An → An−1 → · · · → A0 → A→ 0

is a chain complex, then we let [A∗]n denote the n-truncation of A∗, i.e.,

An → · · · → A0 → A→ 0.

A group G is of type FPn if there exists a partial resolution of Z by
finitely generated projective ZG-modules:

Pn → · · · → P0 → Z→ 0.

The group G is of type FP (resp. FL) if there exists a finite resolution
of Z by finitely generated projective (resp. free) ZG-modules. A group
pair (G, {H1, . . . ,Hm}) (where Hi’s are subgroups of G) is said to be of
type FP if G and all Hi’s are of type FP .

Lemma 3.2.
1. If G is of type FP , then dim(G) = n if and only if

n = max{i : H i(G; ZG) �= 0}.
2. If dim(G) = n and G is of type FPn, then there exists a resolution

of Z by finitely generated projective ZG-modules:

0→ Pn → · · · → P0 → Z→ 0.

In particular, G is of type FP .
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Proof. The first assertion follows from [12, Ch. VIII, Proposition
5.2]. We prove 2. Start with a partial resolution

Pn → Pn−1 → · · · → P0 → Z→ 0

where each Pi is finitely generated projective. By [12, Ch. VIII,
Lemma 2.1], the kernel Qn := ker [Pn−1 → Pn−2] is projective. However,
Pn maps onto Qn, hence Qn is also finitely generated. Thus, replacing
Pn with Qn, we get the required resolution. q.e.d.

Examples of groups of type FP and FL are given by fundamen-
tal groups of finite Eilenberg–MacLane complexes, or more generally,
groups acting freely cocompactly on acyclic complexes. According to
the theorem of Eilenberg–Ganea and Wall, if G is a finitely presentable
group of type FL, then G admits a finite K(G, 1) of dimension
max(dim(G), 3).

Let G be a group, let H := {Hi}i∈I be an indexed collection of
subgroups, and let

ε : ⊕i (ZG⊗ZHi Z)→ Z

be induced by the usual augmentation ZG → Z. Then, the group pair
(G,H) has finite type if the ZG-module Ker(ε) admits a finite length
resolution by finitely generated projective ZG-modules. If the index set
I is finite and the groups G and Hi are of type FP , then one obtains the
desired resolution of Ker(ε) using the quotient C∗/D∗ where (C∗,D∗)
is the pair given by the algebraic mapping cylinder construction (3.1).

For the next three topics, the reader may consult [5, 6, 7, 12, 14].

Duality groups. Let G be a group of type FP . Then, G is an n-
dimensional duality group if H i(G; ZG) = {0} when i �= n = dim(G),
and Hn(G; ZG) is torsion-free, [6]. There is an alternate definition of
duality groups involving isomorphisms H i(G;M) � Hn−i(G;D ⊗M)
for a suitable dualizing module D and arbitrary ZG-modules M , see
[6, 12]. Examples of duality groups include:

1. The fundamental groups of compact aspherical manifolds with as-
pherical boundary, where the inclusion of each boundary compo-
nent induces a monomorphism of fundamental groups.

2. Torsion-free S-arithmetic groups, [6, 9].
3. 2-dimensional one-ended groups of type FP2 [5, Proposition 9.17];

for instance torsion-free, one-ended, one-relator groups.
4. Any group which can act freely, cocompactly, and simplicially on

an acyclic simplicial complex X, where H i
c(X) vanishes except in

dimension n, and Hn
c (X) is torsion-free.
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Poincaré duality groups. These form a special class of duality groups.
If G is an n-dimensional duality group andHn(G; ZG) = Z, then G is an
n-dimensional Poincaré duality group (PD(n) group). As in the case of
duality groups, there is an alternate definition involving isomorphisms
H i(G;M) � Hn−i(G;D⊗M) where M is an arbitrary ZG-module and
the orientation ZG-module D is isomorphic to Z as an abelian group.
Examples include:

1. Fundamental groups of closed aspherical manifolds.
2. Fundamental groups of aspherical finite Poincaré complexes. Re-

call that an (orientable) Poincaré complex of formal dimension n
is a finitely dominated complex K together with a fundamental
class [K] ∈ Hn(K; Z) so that the cap product operation [K]∩ :
Hk(K;M)→ Hn−k(K;M) is an isomorphism for every local sys-
tem M on K and for k = 0, . . . , n.

3. Any group which can act freely, cocompactly, and simplicially on
an acyclic simplicial complex X, where X has the same compactly
supported cohomology as R

n.
4. Each torsion-free Gromov-hyperbolic group G whose boundary is

a homology manifold with the homology of sphere (over Z), see
[4]. Note that every such group is the fundamental group of a
finite aspherical Poincaré complex, namely the G-quotient of a
Rips complex of G.

Below are several useful facts about Poincaré duality groups (see
[12]):

(a) If G is a PD(n) group and G′ ⊂ G is a subgroup, then G′ is a
PD(n) group if and only if the index [G : G′] is finite.

(b) If G is a PD(n) group which is contained in a torsion-free group
G′ as a finite index subgroup, then G′ is a PD(n) group.

(c) If G×H is a PD(m) group, then G and H are PD(n) and PD(k)
groups, where m = n+ k.

(d) If G�H is a semi-direct product where G is a PD(n)-group and
H is a PD(k)-group, then G �H is a PD(n + k)-group. See [6,
Theorem 3.5].

There are several questions about PD(n) groups and their relation
with fundamental groups of aspherical manifolds. It was an open ques-
tion going back to Wall [44] whether every PD(n) group is the fun-
damental group of a closed aspherical manifold. The answer to this is
yes in dimensions 1 and 2, [40, 16, 17]. Recently, Davis in [13] gave
examples for n ≥ 4 of PD(n) groups which do not admit a finite presen-
tation, and these groups are clearly not fundamental groups of compact
manifolds. This leaves open several questions:
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1. Is every finitely presented PD(n) group the fundamental group of
a compact aspherical manifold?

2. A weaker version of 1: Is every finitely presented PD(n) group the
fundamental group of a finite aspherical complex? Equivalently,
by Eilenberg–Ganea, one may ask if every such group is of type
FL.

3. Does every PD(n) group act freely and cocompactly on an acyclic
complex? We believe this question is open for groups of type FP .
One can also ask if every PD(n) group acts freely and cocompactly
on an acyclic n-manifold.

Poincaré duality pairs. Let G be an (n − 1)-dimensional group of
type FP , and let H1, . . . ,Hk ⊂ G be PD(n− 1) subgroups of G. Then,
the group pair (G, {H1, . . . ,Hk}) is an n-dimensional Poincaré duality
pair, or PD(n) pair, if the double of G over the Hi’s is a PD(n) group.
We recall that the double of G over the Hi’s is the fundamental group
of the graph of groups G, where G has two vertices labeled by G, k
edges with the ith edge labeled by Hi, and edge monomorphisms are
the inclusions Hi → G. An alternate homological definition of PD(n)
pairs is the following: A group pair (G, {Hi}i∈I) is a PD(n) pair if it
has type FP , and H∗(G, {Hi}; ZG) � H∗c (Rn). For a discussion of these
and other equivalent definitions, see [7, 14]. We will sometimes refer to
the system of subgroups {Hi} as the peripheral structure of the PD(n)
pair, and the Hi’s as peripheral subgroups. The first class of examples
of duality groups mentioned above have natural peripheral structure
which makes them PD(n) pairs. In [28], we proved that if G is a
torsion-free Gromov-hyperbolic group whose boundary is homeomorphic
to the Sierpinski carpet S, then (G, {H1, . . . ,Hk}) is a PD(3) group
pair, where Hi’s are representatives of conjugacy classes of stabilizers
of the peripheral circles of S in ∂∞G. If (G, {H1, . . . ,Hk}) is a PD(n)
pair, where G and each Hi admit a finite Eilenberg–MacLane space X
and Yi respectively, then the inclusions Hi → G induce a map �iYi →
X (well-defined up to homotopy) whose mapping cylinder C gives a
Poincaré pair (C,�iYi), i.e., a pair which satisfies Poincaré duality for
manifolds with boundary with local coefficients (where �iYi serves as
the boundary of C). Conversely, if (X,Y ) is a Poincaré pair where
X is aspherical and Y is a union of aspherical components Yi, then
(π1(X), {π1(Y1), . . . , π1(Yk)}) is a PD(n) pair.

Lemma 3.3. Let (G, {Hi}) be a PD(n) pair, where G is not a
PD(n − 1) group. Then, the subgroups Hi are pairwise non-conjugate
maximal PD(n− 1) subgroups.
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Proof. If Hi is conjugate to Hj for some i �= j, then the double Ĝ of G
over the peripheral subgroups would contain an infinite index subgroup
isomorphic to the PD(n) group Hi×Z. The group Ĝ is a PD(n) group,
which contradicts property (a) of Poincaré duality groups listed above.

We now prove that each Hi is maximal. Suppose that Hi ⊂ H ⊂ G,
where H �= Hi is a PD(n − 1) group. Then, [H : Hi] < ∞. Pick
h ∈ H −Hi. Then, there exists a finite index subgroup Fi ⊂ Hi which
is normalized by h. Consider the double Ĝ of G along the collection
of subgroups {Hi}, and let Ĝ � T be the associated action on the
Bass-Serre tree. Since G is not a PD(n − 1) group, Hi �= G for each
i, and so there is a unique vertex v ∈ T fixed by G. The involution
of the graph of groups defining Ĝ induces an involution of Ĝ which is
unique up to an inner automorphism; let τ : Ĝ → Ĝ be an induced
involution which fixes Hi element-wise. Then, G′ := τ(G) fixes a vertex
v′ adjacent to v, where the edge vv′ is fixed by Hi. So h′ := τ(h) belongs
to τ(G) = G′, but h′ does not fix vv′. Therefore, the fixed point sets of h
and h′ are disjoint, which implies that g := hh′ acts on T as a hyperbolic
automorphism. Since h′ ∈ Normalizer (τ(Fi)) = Normalizer (Fi), we get
g ∈ Normalizer (Fi). Hence, the subgroup F generated by Fi and g is
a semi-direct product F = Fi � 〈g〉, and 〈g〉 � Z since g is hyperbolic.
The group F is a PD(n) group (by property (d)) sitting as an infinite
index subgroup of the PD(n) group Ĝ, which contradicts property (a).

q.e.d.

4. Algebraic preliminaries

In this Section, we introduce a notion of “morphism” between inverse
systems. Approximate isomorphisms, which figure prominently in the
remainder of the paper, are maps between inverse (or direct) systems
which fail to be isomorphisms in a controlled way, and for many purposes
are as easy to work with as isomorphisms.

Approximate morphisms between inverse and direct systems.
Recall that a partially ordered set I is directed if for each i, j ∈ I there
exists k ∈ I such that k ≥ i, j. An inverse system of (abelian) groups
indexed by a directed set I is a collection of abelian groups {Ai}i∈I and
homomorphisms (projections) pj

i : Ai → Aj , i ≥ j so that

pi
i = id and pk

j ◦ pj
i = pk

i

for any i ≤ j ≤ k. (One may weaken these assumptions, but they will
suffice for our purposes.) We will often denote the inverse system by
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(A•, p•) or {Ai}i∈I . Recall that a subset I ′ ⊂ I of a partially ordered
set is cofinal if for every i ∈ I there is an i′ ∈ I ′ so that i′ ≥ i.

Let {Ai}i∈I and {Bj}j∈J be two inverse systems of (abelian) groups
indexed by I and J , with the projection maps pi′

i : Ai → Ai′ and
qj′
j : Bj → Bj′ . The directed sets appearing later in the paper will be

order isomorphic to Z+ with the usual order.

Definition 4.1. Let α be an order preserving, partially defined, map
from I to J . Then, α is cofinal if it is defined on a subset of the form
{i ∈ I | i ≥ i0} for some i0 ∈ I, and the image of every cofinal subset
I ′ ⊂ I is a cofinal subset α(I ′) ⊂ J .

Definition 4.2. Let α : I → J be a cofinal map. Suppose that
({Ai}i∈I , p•) and ({Bj}j∈J , q•) are inverse systems. Then, a family of
homomorphisms fi : Ai → Bα(i), i ∈ I, is an α-morphism from {Ai}i∈I

to {Bj}j∈J if

(4.3) q
α(i′)
α(i) ◦ fi = fi ◦ pi′

i

whenever i, i′ ∈ I and i ≥ i′. The saturation f̂•• of the α-morphism f•
is the collection of maps f̂ j

i : Ai → Bj of the form

qj
α(k) ◦ fk ◦ pk

i .

In view of (4.3), this definition is consistent, and f̂•• is compatible with
the projection maps of A• and B•.

Suppose that {Ai}i∈I , {Bj}j∈J , {Ck}k∈K are inverse systems, α :
I → J , β : J → K are cofinal maps. Then, the composition of α- and
β-morphisms

f• : A• → B•, g• : B• → C•
is a γ-morphism for the cofinal map γ = β ◦ α : I → K. (The composi-
tion β ◦α is defined on the subset Domain (α)∩α−1(Domain (β)) which
contains {i : i ≥ i1} where i1 is an upper bound for non-cofinal subset
α−1(J −Domain (β)) in I.)

Definition 4.4. Let A•
f•→ B• be an α-morphism of inverse systems

(A•, p•), (B•, q•).
1. When I is totally ordered, we define Im(f̂ j

• ), the image of f• in
Bj, to be ∪{Im(f̂ j

i : Ai → Bj) | α(i) ≥ j}.
2. Let ω : I → I be a function with ω(i) ≥ i for all i ∈ I. Then, f•

is an ω-approximate monomorphism if for every i ∈ I, we have

Ker
(
Aω(i)

fω(i)−→ Bα(ω(i))

)
⊂ Ker (Aω(i)

p•−→ Ai).
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3. Suppose I is totally ordered. If ω̄ : J → J is a function with
ω̄(j) ≥ j for all j ∈ J , then f• is an ω̄-approximate epimorphism
if for every j ∈ J , we have:

Im (Bω̄(j)
q•−→ Bj) ⊂ Im (f̂ j

• ).

4. Suppose I is totally ordered. If ω : I → I and ω̄ : J → J are
functions, then f is an (ω, ω̄)-approximate isomorphism if both 2
and 3 hold.

We will frequently suppress the functions α, ω, ω̄ when speaking
of morphisms, approximate monomorphisms (epimorphisms, isomor-
phisms).

Note that an α-morphism induces a homomorphism between inverse
limits, since for each cofinal subset J ′ ⊂ J , we have:

lim←−
j∈J

Bj
∼= lim←−

j∈J′
Bj.

Similarly, an approximate monomorphism, resp. isomorphism, of in-
verse systems induces a monomorphism, resp. isomorphism, of their
inverse limits. (Eric Swenson observed that similar assertion is false for
approximate epimorphisms.) However, the converse is not true. For
instance, let Ai := Z for each i ∈ N, where N has the usual order. Let

pi−n
i : Ai → Ai−n be the index n inclusion.

It is clear that the inverse limit of this system is zero. We leave it
to the reader to verify that the system (A•, p•) is not approximately
isomorphic to zero-inverse system.

We have similar definitions for homomorphisms of direct systems.
A direct system of (abelian) groups indexed by a directed set I is a
collection of abelian groups {Ai}i∈I and homomorphisms (projections)
pj

i : Ai → Aj, i ≤ j so that

pi
i = id, pk

j ◦ pj
i = pk

i

for any i ≤ j ≤ k. We often denote the direct system by (A•, p•). Let
{Ai}i∈I and {Bj}j∈J be two direct systems of (abelian) groups indexed
by directed sets I and J , with projection maps pi′

i : Ai → Ai′ and
qj′
j : Bj → Bj′ .

Definition 4.5. Let α : I → J be a cofinal map. Then, a family of
homomorphisms fi : Ai → Bα(i), i ∈ I, is a α-morphism of the direct
systems {Ai}i∈I and {Bj}j∈J if

q
α(i′)
α(i) ◦ fi = fi′ ◦ pi′

i
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whenever, i ≤ i′. We define the saturation f̂•• the same way as for
morphisms of inverse systems.

Definition 4.6. Let f• : A• → B• be an α-morphism of direct sys-
tems:

f• = {fi : Ai → Bα(i), i ∈ I}.
1. When I is totally ordered, we define Im(f̂ j

• ), the image of f• in
Bj, to be ∪{Im(f̂ j

i ) | α(i) ≤ j}.
2. Let ω : I → I be a function with ω(i) ≥ i for all i ∈ I. Then, f•

is an ω-approximate monomorphism if for every i ∈ I, we have

Ker
(
Ai

fi−→ Bα(i)

)
⊂ Ker (Ai

p•−→ Aω(i)).

3. Suppose I is totally ordered, and ω̄ : J → J is a function with
ω̄(j) ≥ j for all j ∈ J . f• is an ω̄-approximate epimorphism if for
every j ∈ J , we have:

Im
(
Bj

q•−→ Bω̄(j)

)
⊂ Im (f̂ ω̄(j)

• ).

4. Suppose I is totally ordered and ω : I → I and ω̄ : J → J are
functions. Then, f is an (ω, ω̄)-approximate isomorphism if both
2 and 3 hold.

An inverse (direct) system A• is said to be constant if Ai = Aj and
pi

j = id for each i, j. An inverse (direct) system A• is approximately
constant if there is an approximate isomorphism between it and a con-
stant system (in either direction). Likewise, an inverse or direct system
is approximately zero if it is approximately isomorphic to a zero system.
The reader will notice that approximately zero systems are the same as
pro-zero systems [1, Appendix 3], i.e., systems A• such that for each
i ∈ I, there exists j ≥ i such that pi

j : Aj → Ai (resp. pj
i : Ai → Aj) is

zero (see below).
The proof of the following lemma is straightforward and is left to the

reader.

Lemma 4.7. The composition of two approximate monomorphisms
(epimorphisms, isomorphisms) is an approximate monomorphism (epi-
morphism, isomorphism).

Category-theoretic behavior of approximate morphisms and
Grotendieck’s pro-categories. The remaining material in this sec-
tion relates to the category theoretic behavior of approximate mor-
phisms and a comparison with pro-morphisms, and it will not be used
elsewhere in the paper.
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In what follows, (A•, p•) and (B•, q•) will once again denote inverse
systems indexed by I and J respectively. However, for simplicity, we
will assume that I and J are both totally ordered.

Definition 4.8. Let f• : A• → B• be an α-morphism with saturation
f̂•• . The kernel of f• is the inverse system {Ki}i∈I where Ki := Ker (fi :
Ai → Bα(i)) with the projection maps obtained from the projections of
A• by restriction. We define the image of f• to be the inverse system
{Dj}j∈J where Dj := Im (f̂ j

• ), with the projections coming from the
projections of B•. Note that Dj is a subgroup of Bj , j ∈ J . We also
define the cokernel coKer (f•) of f•, as the inverse system {Cj}j∈J where
Cj := Bj/Dj .

An inverse (respectively direct) system of abelian groups A• is pro-
zero if for every i ∈ I, there exists j ≥ i such that pi

j : Aj → Ai (resp.
pj

i : Ai → Aj) is zero (see [1, Appendix 3]). Using this language, we
may reformulate the definitions of approximate monomorphisms:

Lemma 4.9. Let f• : A• → B• be a morphism of inverse systems of
abelian groups. Then:

1. f• is an approximate monomorphism iff its kernel K• := Ker (f•)
is pro-zero.

2. f• is an approximate epimorphism iff its cokernel is a pro-zero
inverse system.

3. f• is an approximate isomorphism iff both Ker (f•) and coKer (f•)
are pro-zero systems.

Proof. This is immediate from the definitions. q.e.d.

For a fixed cofinal map α : I → J , the collection of α-morphisms from
A• to B• forms an abelian group the obvious way. In order to compare
morphisms A• → B• with different index maps I → J , we introduce an
equivalence relation:

Definition 4.10. Let f : A• → B• and g : A• → B• be morphisms
with saturations f̂•• and ĝ•• . Then, f• is equivalent g• if there is a cofinal
function ρ : J → I so that for all j ∈ J , both f̂ j

ρ(j) and ĝj
ρ(j) are defined,

and they coincide.

This equivalence relation is compatible with composition of approxi-
mate morphisms. Hence, we obtain a category Approx where the objects
are inverse systems of abelian groups and the morphisms are equivalence
classes of approximate morphisms. An approximate inverse for an ap-
proximate morphism f• is an approximate morphism g• which inverts
f• in Approx.



300 M. KAPOVICH & B. KLEINER

Lemma 4.11. Suppose I, J ∼= Z+, D• is a sub inverse system of A•
(i.e., Di ⊂ Ai, i ∈ I), and let Q• be the quotient system: Qi := Ai/Di.
Then

1. The morphism A• → Q• induced by the canonical epimorphisms
Ai → Qi has an approximate inverse iff D• is a pro-zero system.

2. The morphism D• → A• defined by the inclusion homomorphisms
Di → Ai has an approximate inverse iff Q• is a pro-zero system.

3. If f• : A• → B• is a morphism, Ker (f•) is zero (i.e., Ker (f•)i =
{0} for all i ∈ I), and Im (f•) = B•, then f• has an approximate
inverse.

Proof. We leave the “only if” parts of 1 and 2 to the reader.
When D• is pro-zero, the map β : I → I defined by

β(i) := max{i′ | Di ⊂ Ker (Ai → Ai′)}
is cofinal. Let g• : Q• → A• be the β-morphism where gi : Ai/Di =
Qi → Aβ(i) is induced by the projection Ai → Aβ(i). One checks that
g• is an approximate inverse for A• → Q•.

Suppose Q• is pro-zero. Define a cofinal map β : I → I by

β(i) := max{i′ | Im (Ai → Ai′) ⊂ Di′},
and let g• : A• → D• be the β-morphism where gi : Ai → Dβ(i) is
induced by the projection Ai → Aβ(i). Then, g• is an approximate
inverse for the inclusion D• → A•.

Now, suppose f• : A• → B• is an α-morphism with zero kernel and
cokernel. Let J ′ := α(I) ⊂ J , and define β′ : J ′ → I by β′(j) =
minα−1(j). Define a cofinal map σ : J → J ′ by σ(j) := max{j′ ∈ J ′ |
j′ ≤ j}; let β : J → I be the composition β′◦σ, and define a β-morphism
g• by gj := f−1

β(j) ◦ q
σ(j)
j . Then, g• is the desired approximate inverse for

f•. q.e.d.

Lemma 4.12. Let f• : A• → B• be a morphism.
1. If f• has an approximate inverse, then it is an approximate iso-

morphism.
2. If f• is an approximate isomorphism and I, J ∼= Z+, then f• has

an approximate inverse.

Proof. Let f• : A• → B• and g• : B• → A• be α and β morphisms
respectively, and let g• be an approximate inverse for f•. Since h• :=
g• ◦ f• is equivalent to idA• , then for all i there is an i′ ≥ i so that ĥi

i′

is defined and ĥi
i′ = pi

i′ . Letting γ := β ◦ α, we have, by the definition
of the saturation, ĥ••, pi

i′ = ĥi
i′ = pi

γ(i) ◦ hi′ . So, Ker (hi′) ⊂ Ker (pi
i′).
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Thus, f• is an approximate monomorphism. The proof that f• is an
approximate epimorphism is similar.

We now prove part 2. Let {Ki}i∈I be the kernel of f•, let {Qi}i∈I =
{Ai/Ki}i∈I be the quotient system, and let {Dj}j∈J be the image of
f•. Then, f• may be factored as f• = t• ◦ s• ◦ r• where r• : A• →
Q• is induced by the epimorphisms Ai → Ai/Ki, s• : Q• → D• is
induced by the homomorphisms of quotients, and t• : D• → B• is
the inclusion. By Lemma 4.11, s• has an approximate inverse. When
the kernel and cokernel of f• are pro-zero, then r• and t• also admit
approximate inverses by Lemma 4.11. Hence, f• has an approximate
inverse in this case. q.e.d.

Below, we relate the notions of α-morphisms, approximate monomor-
phisms (epimorphisms, isomorphisms) with Grothendieck’s pro-mor-
phisms. Strictly speaking, this is unnecessary for the purposes of this pa-
per. However, it puts our definitions into perspective. Also, readers who
prefer the language of pro-categories may use Lemma 4.14 and Corollary
4.15 to translate the theorems of Sections 6 and 7 into pro-theorems.

Definition 4.13. Let {Ai}i∈I , {Bj}j∈J be inverse systems. The
group of pro-morphisms proHom (A•, B•) is defined as

lim←−
j∈J

lim−→
i∈I

Hom (Ai, Bj)

(see [23], [1, Appendix 2], [15, Ch II, Section 1]). The identity pro-
morphism is the element of proHom (A•, A•) determined by

(idAj )j∈I ∈
∏
j

lim−→
i∈I

Hom (Ai, Aj).

This yields a category Pro-Abelian where the objects are inverse sys-
tems of abelian groups and the morphisms are the pro-morphisms. A
pro-isomorphism is an isomorphism in this category.

Remark. By relaxing the definition of inverse systems, this category
becomes an abelian category, [1, Appendix 4]. However, we will not
discuss this further.

By the definitions of direct and inverse limits, an element of
proHom (A•, B•) can be represented by an admissible “sequence”([

hj
ρ(j) : Aρ(j) → Bj

])
j∈J

of equivalence classes of homomorphisms hj
ρ(j) : Aρ(j) → Bj; here, two

homomorphisms hj
i : Ai → Bj, h

j
k : Ak → Bj are equivalent if there
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exists � ≥ i, k such that

hj
i ◦ pi

� = hj
k ◦ pk

� ;

and the “sequence” is admissible if for each j ≥ j′, there is an i ≥
max{ρ(j), ρ(j′)} so that

qj′
j ◦ hj

ρ(j) ◦ p
ρ(j)
i = hj′

ρ(j′) ◦ p
ρ(j′)
i .

Given a cofinal map α : I → J between directed sets, we may con-
struct a function ρ : J → I so that α(ρ(j)) ≥ j for all j; then any α-
morphism f• : A• → B• induces an admissible sequence ([f̂ j

ρ(j) : Aρ(j) →
Bj]}j∈J . The corresponding element pro (f•) ∈ proHom (A•, B•) is in-
dependent of the choice of ρ by condition (4.3) of Definition 4.2.

Remark. Here we construct ρ using the axiom of choice, where we
pick ρ(j) ∈ α−1(j).

Lemma 4.14.
1. If f : A• → B• and g : A• → B• are morphisms, then pro (f) =

pro (g) iff f• is equivalent to g•. In other words, pro descends to
a faithful functor from Approx to Pro-Abelian.

2. When I, J ∼= Z+, then every pro-morphism from A• to B• arises
as pro(f•) for some approximate morphism f• : A• → B•. Thus,
pro descends to a fully faithful functor from Approx to Pro-Abelian
in this case.

Proof. The first assertion follows readily from the definition of
proHom(A•, B•) and Definition 4.10.

Suppose I, J ∼= Z+ and φ ∈ proHom (A•, B•) is represented by an
admissible sequence ([

hj
ρ0(j) : Aρ0(j) → Bj

])
j∈J

.

We define ρ : J → I and another admissible sequence (h̄j
ρ(j) : Aρ(j) →

Bj)j∈J representing φ by setting ρ(0) = ρ0(0), h̄0
ρ(0) := h0

ρ0(0), and

inductively choosing ρ(j), h̄j
ρ(j) so that ρ(j) > ρ(j − 1), h̄j

ρ(j) := hj
ρ0(j) ◦

p
ρ0(j)
ρ(j) and qj−1

j ◦ h̄j
ρ(j) = h̄j−1

ρ(j−1) ◦ p
ρ(j−1)
ρ(j) . Note that the mapping ρ

is strictly increasing and hence cofinal. Now, define a cofinal map α :
Z+ → Z+ by setting α(i) := max{j | ρ(j) ≤ i} for i ≥ ρ(0) = ρ0(0).
We then get an α-morphism f• : A• → B• where fi := h̄

α(i)
ρ(α(i)) ◦ p

ρ(α(i))
i .

Clearly, pro (f•) = (h̄j
ρ(j))j∈J . q.e.d.
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Corollary 4.15. Suppose I, J ∼= Z+ and f• : A• → B• is a mor-
phism. Then, f• is an approximate isomorphism iff pro (f•) is a pro-
isomorphism.

Proof. By Lemma 4.12, f• is an approximate isomorphism iff it rep-
resents an invertible element of Approx, and by Lemma 4.14, this is
equivalent to saying that pro (f•) is invertible in Pro-Abelian. q.e.d.

5. Recognizing groups of type FPn

The main result in this section is Theorem 5.11, which gives a char-
acterization of groups G of type FPn in terms of nested families of
G-chain complexes, and Lemma 5.1 which relates the cohomology of G
with the corresponding cohomology of the G-chain complexes. A re-
lated characterization of groups of type FPn appears in [11]. We will
apply Theorem 5.11 and Lemma 5.1 in Section 8 to show that peripheral
subgroups Hi are of type FP.

Suppose for i = 0, . . . , N , we have an augmented chain complex A∗(i)
of projective ZG-modules, and for i = 1, . . . , N , we have an augmenta-
tion preserving G-equivariant chain map ai : A∗(i − 1) → A∗(i) which
induces zero on reduced homology in dimensions < n. Let G be a group
of type FPk, and let

0← Z← P0 ← · · · ← Pk

be a chain complex of finitely generated projective ZG-modules. We
assume that k ≤ n ≤ N .

Lemma 5.1. Under the above conditions, we have:
1. There is an augmentation preserving G-equivariant chain mapping
P∗ → A∗(n).

2. If k < n and ji : P∗ → A∗(0) are augmentation preserving G-
equivariant chain mappings for i = 1, 2, then the compositions
P∗

ji→ A∗(0)→ A∗(k) are G-equivariantly chain homotopic.

Proof of 1. We start with the diagram

P0

↓
Z ← A0(0).

Then, projectivity of P0 implies that we can complete this to a com-
mutative diagram by a ZG-morphism f0 : P0 → A0(0). Assume in-
ductively that we have constructed a G-equivariant augmentation pre-
serving chain mapping fj : [P∗]j → A∗(j). Then, the image of the
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composition Pj+1
∂→ Pj

fj→ Aj(j)→ Aj(j + 1) is contained in the image

of Aj+1(j+1) ∂→ Aj(j+1) since aj+1 induces zero on reduced homology.
So, projectivity of Pj+1 allows us to extend fj to a G-equivariant chain
mapping fj+1 : [P∗]j+1 → A∗(j + 1). q.e.d.

Proof of 2. Similar to the proof of 1: Use induction and projectivity of
the P�’s. q.e.d.

We now assume in addition that P∗ is a partial resolution of Z. Then,

Lemma 5.2. Suppose k < n and f : P∗ → A∗(0) is an augmentation
preserving G-equivariant chain mapping. Then, for any ZG-module M ,
the map

H i(f) : H i(A∗(0);M)→ H i(P∗;M)
carries the image Im(H i(A∗(n);M) → H i(A∗(0);M)) isomorphically
onto H i(P∗;M) for i = 0, . . . k − 1. The map

Hi(f) : Hi(P∗;M)→ Hi(A∗(n);M)

is an isomorphism onto the image of Hi(A∗(0);M)→ Hi(A∗(n);M) for
i = 0, . . . k − 1. The map

Hk(f) : Hk(P∗;M)→ Hk(A∗(n);M)

is onto the image of Hk(A∗(0);M) → Hk(A∗(n);M).

Proof. Let ρ∗ : [A∗(n)]k → P∗ be a G-equivariant chain mapping
constructed using the fact that Hi(P∗) = {0} for i < k. Consider the
compositions

αk−1 : [P∗]k−1
f∗→ [A∗(0)]k−1 → [A∗(n)]k−1

ρ∗→ P∗
and

βk : [A∗(0)]k → [A∗(n)]k
ρ∗→ [P∗]k

f∗→ [A∗(0)]k → A∗(n).
Both are (G-equivariantly) chain homotopic to the inclusions; the first
one since P∗ is a partial resolution, and the second by applying asser-
tion 2 of Lemma 5.1 to the chain mapping [A∗(0)]k → A∗(0). Assertion
follows immediately from this. q.e.d.

We note that the above lemmas did not require any finiteness assump-
tions on the ZG-modules Ai(j). Suppose now that the group G satisfies
assumptions in Lemma 5.2 and let G � X be a free simplicial action
on a uniformly (n − 1)-acyclic locally finite metric simplicial complex
X, k ≤ n− 1. Then, by part 1 of Lemma 5.1, we have a G-equivariant
augmentation-preserving chain mapping f : P∗ → C∗(X). Let K ⊂ X
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be the support of the image of f . It is clear that K is G-invariant and
K/G is compact. As a corollary of the proof of the previous lemma, we
get:

Corollary 5.3. Under the above assumptions the direct system of re-
duced homology groups {H̃i(NR(K))}R≥0 is approximately zero for each
i < k.

Proof. Given R > 0, we consider the system of chain complexes A∗(0)
:= C∗(NR(K)), A∗(1) = A∗(2) = · · · = A∗(N) = C∗(X). The mapping

[A∗(0)]k
βk→ A∗(N) = C∗(X) from the proof of Lemma 5.1 is chain

homotopic to the inclusion via a G-equivariant homotopy hR. On the
other hand, this map factors through P∗, hence it induces zero mapping
of the reduced homology groups

H̃i(NR(K)) 0→ H̃i(Support (Im (βk))), i < k.

The support of Im (hR) is contained in NR′(K) for some R′ <∞, since
hR is G-equivariant. Hence, the inclusion NR(K) → NR′(K) induces
zero map of H̃i(·) for i < k. q.e.d.

Before stating the next corollary, we recall the following fact:

Lemma 5.4 (See [12]). Let G � X be a discrete, free, cocompact
action of a group on a simplicial complex. Then, the complex of com-
pactly supported simplicial cochains C∗c (X) is canonically isomorphic to
the complex Hom ZG(C∗(X); ZG); in particular, the compactly supported
cohomology of X is canonically isomorphic to H∗(X/G; ZG).

In the next corollary, we assume that G, P∗, X, f , K are as above, in
particular, X is a uniformly (n−1)-acyclic locally finite metric simplicial
complex, and for some k ≤ n− 1,

Pk → · · · → P0 → Z→ 0

is a resolution by finitely generated projective ZG modules.

Corollary 5.5.
1. For any local coefficient system (ZG-module) M , the family of

maps

H i(NR(K)/G;M)
f i

R→ H i(P∗;M)
defines a morphism between the inverse system

{H i(NR(K)/G;M)}R≥0

and the constant inverse system {H i(P∗;M)}R≥0 which is an ap-
proximate isomorphism when 0 ≤ i < k.
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2. The map

H i
c(NR(K)) � H i(NR(K)/G; ZG)

f i
R−→ H i(P∗; ZG)

is an approximate isomorphism when 0 ≤ i < k.
3. The ZG-chain map

fR,∗ : P∗ → C∗(NR(K))

induces a homomorphism of homology groups

fR,i : H̃i(P∗; ZG)→ H̃i(NR(K))

which is an approximate isomorphism for 0 ≤ i < k.

Proof.
1. According to Corollary 5.3 the direct system of reduced homology

groups {H̃i(NR(K))} is approximately zero for each i < k. Thus, for
N > k, we have a sequence of integers R0 = 0 < R1 < R2 < · · · < RN

so that the maps

H̃i(NRj (K))→ H̃i(NRj+1(K))

are zero for each j < N, i < k. We now apply Lemma 5.1 where
A∗(j) := C∗(NRj (K)).

2. This follows from part 1 and Lemma 5.4.
3. Note that H̃i(P∗; ZG) � {0} for i < k; this follows directly from

the definition of a group of type FPk. Thus, the assertion follows from
Corollary 5.3. q.e.d.

There is also an analog of Corollary 5.5 which does not require a
group action:

Lemma 5.6. Let X and Y be bounded geometry metric simplicial
complexes, where Y is uniformly (k − 1)-acyclic and X is uniformly

k-acyclic. Suppose C∗(Y )
f→ C∗(X) is a chain mapping which is a

uniform embedding, and K := Support (Im (f)) ⊂ X. Then

1. The induced map on cohomology

H i
c(f) : H i

c(NR(K))→ H i
c(Y )

defines a morphism between the inverse system {H i
c(NR(K))}R≥0

and the constant inverse system {H i
c(Y )}R≥0 which is an approx-

imate isomorphism for 0 ≤ i < k, and an approximate monomor-
phism for i = k.
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2. The approximate isomorphism approximately respects support in
the following sense. There is a function ζ : N → N so that if
i < k, S ⊂ Y is a subcomplex,

T := Support (f∗(C∗(S))) ⊂ X
is the corresponding subcomplex of X, and α∈ Im(H i

c(Y, Y − S)→
H i

c(Y )), then α belongs to the image of the composition

H i
c(NR(K),NR(K)−Nζ(R)(T ))→ H i

c(NR(K))
Hi

c(f)−−−−−→ H i
c(Y ).

3. The induced map

H̃i(f) : {0} � H̃i(Y )→ H̃i(NR(K))

is an approximate isomorphism for 0 ≤ i < k.
4. All functions ω, ω̄ associated with the above approximate isomor-

phisms and the function ζ can be chosen to depend only on the
geometry of X,Y and f .

Proof. Since f is a uniform embedding, using the uniform (k − 1)-
acyclicity of Y and uniform k-acyclicity of X, we can construct a direct
system {ρR} of uniform embeddings of the truncated chain complexes

[0← C0(NR(K))← · · · ← Ck(NR(K))]
ρR→ [0← C0(Y )← · · · ← Ck(Y )]

so that the compositions f ◦ ρR are chain homotopic to the inclusions

[0← C0(NR(K))← · · · ← Ck(NR(K))]

→ [0← C0(NR′(K))← · · · ← Ck(NR′(K))]
(for R′ = ω(R)) via chain homotopies of bounded support. Moreover,
the restriction of the composition ρR ◦ f to the (k − 1)-truncated chain
complexes is chain homotopic to the identity via a chain homotopy with
bounded support.

We first prove that the morphism of inverse systems defined by

H i
c(f) : H i

c(NR(K))→ H i
c(Y )

is an approximate monomorphism. Suppose

α ∈ Ker(H i
c(f) : H i

c(NR′(K))→ H i
c(Y ))

where R′ = ω(R). Then, H i(f ◦ ρR′)(α) = 0. But the restriction of
H i(f ◦ ρR′)(α) to NR(K) is cohomologous to the restriction of α to
NR(K).

Since the restriction of the composition ρR◦f to the (k−1)-truncated
chain complex [C∗(Y )]k−1 is chain homotopic to the identity, it follows
that

H i
c(f) : H i

c(NR(K))→ H i
c(Y )
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is an epimorphism for R ≥ 0 and i < k.
Part 2 of the lemma follows immediately from the fact that ρR is

a uniform embedding and the coarse Lipschitz property of the chain
homotopies constructed above.

We omit the proof of part 3 as it is similar to that of part 2. q.e.d.

Lemma 5.7. Let (X, d) and (X ′, d′) be bounded geometry uniformly
acyclic metric simplicial complexes, Z ⊂ X a subcomplex; suppose f :
(Z, d|Z )→ (X ′, d′) is a uniform embedding, and set K := f(Z). Then,
f “induces” approximate isomorphisms of the direct and inverse systems

{H∗(NR(Z))}R≥0 → {H∗(NR(K))}R≥0,

{H∗c (NR(Z))}R≥0 → {H∗c (NR(K))}R≥0.

As in part 2 of Lemma 5.6, these approximate isomorphisms respect
support, and as in part 4 of that lemma, the functions ω, ω̄ can be chosen
to depend only on the geometry of X, X ′, and f .

Proof. We argue as in the previous lemma. Since f is a uniform
embedding, using the uniform acyclicity of X and X ′, we construct
direct systems {ρR}, {φr} of uniform embeddings of chain complexes

C∗(NR(Z))
ρR→ C∗(Nα(R)(K))

(extending f∗ : C∗(Z)→ C∗(K)) and

C∗(Nr(K))
φr→ C∗(Nβ(r)(Z)),

so that the compositions φα(R) ◦ ρR, ρβ(r) ◦ φr, regarded as maps

C∗(NR(Z))→ C∗(Nω(R)(Z)), C∗(Nr(K))→ C∗(Nω̄(r)(K))

for certain ω(R) ≥ α(R), ω̄(r) ≥ β(r), are chain homotopic to the
inclusions

C∗(NR(Z))→ C∗(Nω(R)(Z)), C∗(Nr(K))→ C∗(Nω̄(r)(K))

via chain homotopies of bounded support. Thus, the induced maps of
homology (and compactly supported cohomology) groups are approxi-
mate inverses of each other. q.e.d.

Note that in the above discussion, we used finiteness assumptions on
the group G to make conclusions about (co)homology of families of G-
invariant chain complexes. Our next goal is to use existence of a family
of chain complexes A∗(i) of finitely generated projective ZG modules as
in Lemma 5.1 to establish finiteness properties of the group G (Theo-
rem 5.11). We begin with a homotopy-theoretic analog of Theorem 5.11.
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Proposition 5.8. Let G be a group, and let X(0) a1→ X(1) a2→ · · · an+1→
X(n+ 1) be a diagram of free, simplicial G-complexes where X(i)/G is
compact for i = 0, . . . n + 1. If the maps ai are n-connected for each i,
then there is an (n+1)-dimensional free, simplicial G-complex Y where
Y/G is compact and Y is n-connected.

Proof. We build Y inductively as follows. Start with Y0 = G where
G acts on Y0 by left translation, and let j0 : Y0 → X(0) be any G-
equivariant simplicial map. Inductively apply Lemma 5.9 below to the
composition Yi

ji→ X(i) → X(i + 1) to obtain Yi+1 and a simplicial
G-map ji+1 : Yi+1 → X(i+ 1). Set Y := Yn+1. q.e.d.

Recall that a simplicial cell is a simplicial complex PL-homeomorphic
to a single simplex.

Lemma 5.9. Let Z and A be locally finite simplicial complexes with
free cocompact simplicial G-actions, where dim(Z) = k, and Z is (k−1)-
connected. Let j : Z → A, be a null-homotopic G-equivariant simplicial
map. Then, we may construct a k-connected simplicial G-complex Z ′ by
attaching (equivariantly) finitely many G-orbits of simplicial (k+1)-cells
to Z, and a G-map j′ : Z ′ → A extending j.

Proof. By replacing A with the mapping cylinder of j, we may assume
that Z is a subcomplex of A and j is the inclusion map. Let Ak denote
the k-skeleton of A. Since Z is (k − 1)-connected, after subdividing
Ak if necessary, we may construct a G-equivariant simplicial retraction
r : Ak → Z. For every (k + 1)-simplex c in A, we attach a simplicial
(k + 1)-cell c′ to Z using the composition of the attaching map of c
with the retraction r. It is clear that we may do this G-equivariantly,
and there will be only finitely many G-orbits of (k + 1)-cells attached.
We denote the resulting simplicial complex by Z ′, and note that the
inclusion j : Z → A clearly extends (after subdivision of Z ′) to an
equivariant simplicial map j′ : Z ′ → A.

We now claim that Z ′ is k-connected. Since we built Z ′ from Z by
attaching (k+1)-cells, it suffices to show that πk(Z)→ πk(Z ′) is trivial.
If σ : Sk → Z is a simplicial map for some triangulation of Sk, we get a
simplicial null-homotopy τ : Dk+1 → A extending σ. Let Dk+1

k denote
the k-skeleton of Dk+1. The composition Dk+1

k
τ→ A

r→ Z → Z ′ extends
over each (k + 1)-simplex ∆ of Dk+1, since τ |

∆
: ∆ → A is either an

embedding, in which case r ◦ τ |
∂∆

: ∂∆ → Z ′ is null homotopic by the
construction of Z ′, or τ |

∆
: ∆→ A has image contained in a k-simplex
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of A, and the composition

∂∆ τ→ A
r→ Z

is already null-homotopic. Hence, the composition Sk σ→ Z ↪→ Z ′ is
null-homotopic. q.e.d.

The next lemma is a homological analog of Lemma 5.9 which provides
the inductive step in the proof of Theorem 5.11.

In the following lemma we declare that Hk(P∗) := Zk(P∗).

Lemma 5.10. Let G be a group. Suppose 0 ← Z
ε← P0 ← · · · ← Pk

is a partial resolution by finitely generated projective ZG-modules, and
Z

ε← A0 ← · · · ← Ak+1 is an augmented chain complex of finitely
generated projective ZG-modules. Let j : P∗ → A∗ be an augmenta-
tion preserving chain mapping which induces zero on homology groups.
Then, we may extend P∗ to a partial resolution P ′∗:

0← Z
ε← P0 ← · · · ← Pk ← Pk+1

where Pk+1 is finitely generated free, and j extends to a chain mapping
j′ : P ′∗ → A∗.

Proof. By replacing A∗ with the algebraic mapping cylinder of j, we
may assume that P∗ is embedded as a subcomplex of A∗, j is the in-
clusion, and for i = 0, . . . , k, the chain group Ak splits as a direct sum
of ZG-modules Ai = Pi ⊕Qi where Qi is finitely generated and projec-
tive. Applying the projectivity of Qi, we construct a chain retraction
from the k-truncation [A∗]k of A∗ to P∗. Choose a finite set of gen-
erators a1, . . . , a� for the ZG-module Ak+1. We let Pk+1 be the free
module of rank �, with basis a′1, . . . , a

′
�, and define the boundary op-

erator ∂ : Pk+1 → Pk by the formula ∂(a′i) = r(∂(ai)). To see that
Hk(P ′∗) = 0, pick a k-cycle σ ∈ Zk(P∗). We have σ = ∂τ for some
τ =

∑
ciai ∈ Ak+1. Then, σ = r(∂τ) =

∑
cir(∂ai) =

∑
ci∂a

′
i; so σ is

null-homologous in P ′∗. The extension mapping j′ : P ′∗ → A∗ is defined
by a′i �→ ai, 1 ≤ i ≤ �. q.e.d.

Theorem 5.11. Suppose for i = 0, . . . , N , we have an augmented
chain complex A∗(i) of finitely generated projective ZG-modules, and for
i = 1, . . . , N , we have an augmentation preserving G-equivariant chain
map ai : A∗(i− 1) → A∗(i) which induces zero on reduced homology in
dimensions ≤ n ≤ N .

Then, there is a partial resolution

0← Z← F0 ← · · · ← Fn
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of finitely generated free ZG-modules, and a G-equivariant chain map-
ping f : F∗ → A(n). In particular, G is a group of type FPn.

Proof. Define F0 to be the group ring ZG, with the usual augmen-
tation Z ← ZG. Then, construct Fi and a chain map Fi → Ai(i) by
applying the previous lemma inductively. q.e.d.

Corollary 5.12. Suppose that G � X is a free simplicial action of
a group G on a metric simplicial complex X. Suppose that we have
a system of (non-empty) G-invariant simplicial subcomplexes X(0) ⊂
X(1) ⊂ . . . ⊂ X(N) so that:

(a) X(i)/G is compact for each i,
(b) The induced mappings H̃i(X(k))→ H̃i(X(k+1)) are zero for each

i ≤ n ≤ N and 0 ≤ k < N .
Then, the group G is of type FPn.

Proof. Apply Theorem 5.11 to A∗(i) := C∗(X(i)). q.e.d.

Note that the above corollary is the converse to Corollary 5.3. Thus,

Corollary 5.13. Suppose that G � X is a free simplicial group ac-
tion on a uniformly acyclic bounded geometry metric simplicial complex,
K := G(�), where � ∈ X. Then, G is of type FP if and only if the the di-
rect system of reduced homology groups {H̃∗(NR(K))} is approximately
zero.

Combining Theorem 5.11 and Lemma 5.1, we get:

Corollary 5.14. Suppose for i = 0, . . . , 2n+1, we have an augmented
chain complex A∗(i) of finitely generated projective ZG-modules, and for
i = 1, . . . , 2n+1, we have augmentation preserving G-equivariant chain
maps ai : A∗(i − 1) → A∗(i) which induce zero on reduced homology in
dimensions ≤ n. Then:

1. There is a partial resolution F∗:

0← Z← F0 ← · · · ← Fn

by finitely generated free ZG-modules and a G-equivariant chain
mapping f∗ : F∗ → A∗(n). In particular, G is of type FPn.

2. For any ZG-module M , the map H i (f) : H i (A∗(n);M) →
H i(F∗;M) carries the image Im(H i(A(2n);M) → H i(A(n);M))
isomorphically onto H i(F∗;M) for i = 0, . . . n− 1.

3. The map Hi(f) : Hi(P∗;M)→ Hi(A∗(2n);M) is an isomorphism
onto the image of Hi(A∗(n);M)→ Hi(A∗(2n);M).
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We now discuss a relative version of Corollaries 5.5 and 5.14. Let
X be a uniformly acyclic bounded geometry metric simplicial complex,
and G a group acting freely and simplicially on X; thus, G has finite
cohomological dimensions since X is acyclic and dim(X) < ∞. Let
K ⊂ X be a G-invariant subcomplex so that K/G is compact; and let
{Cα}α∈I be the deep components of X −K. Define YR := X −NR(K),
Yα,R := Cα ∩ YR. We will assume that the system

{H̃j(Yα,R)}R≥0

is approximately zero for each j, α. In particular, {H̃0(Yα,R)}R≥0 is ap-
proximately zero, which implies that each Cα is stable. Let Hα denote
the stabilizer of Cα in G. Choose a set of representatives Cα1 , . . . , Cαk

from the G-orbits in the collection {Cα}. For notational simplicity,
we relabel α1, . . . , αk as 1, . . . , k. Let Hi = Hαi be the stabilizer of
Ci = Cαi . This defines a group pair (G, {H1, . . . ,Hk}). Let P∗ be a
finite length projective resolution of Z by ZG-modules, and for each
i = 1, . . . , k, we choose a finite length projective resolution of Z by ZHi-
modules Q∗(i). Using the construction described in Section 3 (see the
discussion of the group pairs), we convert this data to a pair (C∗,D∗)
of finite length projective resolutions (consisting of ZG-modules). We
recall that D∗ decomposes in a natural way as a direct sum ⊕αD∗(α)
where each D(α) is a resolution of Z by projective ZHα-modules. Now,
construct a ZHi-chain mapping C∗(Yαi,0) → D∗(αi) using the acyclic-
ity of D∗(αi). We then extend this G-equivariantly to a mapping
C∗(Y0)→ D∗, and then to a ZG-chain mapping ρ0 : (C∗(X), C∗(Y0))→
(C∗,D∗). By restriction, this defines a morphism of inverse systems
ρR : (C∗(X), C∗(YR))→ (C∗,D∗).

Lemma 5.15. The mapping ρ• induces approximate isomorphisms
between relative (co)homology with local coefficients:

H∗(G, {Hi};M)→ H∗(C∗(X), C∗(YR);M) � H∗(X/G,YR/G;M)

H∗(X/G,YR/G;M) � H∗(C∗(X), C∗(YR);M)→ H∗(G, {Hi};M)
for any ZG-module M .

Proof. We will prove the lemma by showing that the maps ρR form
an “approximate chain homotopy equivalence” in an appropriate sense.

For each i, we construct a ZHi-chain mappingD∗(i)→ C∗(Yi,R) using
part 1 of Lemma 5.1 and the fact that

{H̃j(Yα,R)}R≥0

is an approximately zero system. We then extend these to ZG-chain
mappings

fR : (C∗,D∗)→ (C∗(X), C∗(YR)).
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Using part 2 of Lemma 5.1, we can actually choose the mappings fR

so that they form a compatible system chain mappings up to chain-
homotopy. The composition

ρR ◦ fR : (C∗,D∗)→ (C∗,D∗)

is ZG-chain mapping, hence it is chain-homotopic to the identity. The
composition

fR ◦ ρR : C∗(X,YR)→ C∗(X,YR)

need not be chain homotopic to the identity, but it becomes chain ho-
motopic to the projection map when precomposed with the restriction
C∗(X,YR′) → C∗(X,YR) where R′ ≥ R is suitably chosen (by again
using part 2 of Lemma 5.1 and the fact that

{H̃j(Yα,R)}R≥0

is an approximately zero system). This clearly implies the induced ho-
momorphisms on (co)homology are approximate isomorphisms. q.e.d.

6. Coarse Poincaré duality

We now introduce a class of metric simplicial complexes which satisfy
coarse versions of Poincaré and Alexander duality, see Theorems 6.7, 7.5,
7.7.

From now on, we will adopt the convention of extending each (co)chain
complex indexed by the non-negative integers to a complex indexed by
the integers by setting the remaining groups equal to zero. So, for
each (co)chain complex {Ci, i ≥ 0}, we get the (co)homology groups
Hi(C∗),H i(C∗) defined for i < 0.

Definition 6.1 (Coarse Poincaré duality spaces). A coarse Poincaré
duality space of formal dimension n is a bounded geometry metric sim-
plicial complex X so that C∗(X) is uniformly acyclic, and there is a
constant D0 and chain mappings

C∗(X) P̄→ Cn−∗
c (X) P→ C∗(X)

so that
1. P and P̄ have displacement ≤ D0 (see Section 2 for the definition

of displacement).
2. P̄ ◦ P and P ◦ P̄ are chain homotopic to the identity by D0-

Lipschitz (see Section 2) chain homotopies Φ : C∗(X)→C∗+1(X),
Φ̄ : C∗c (X)→ C∗−1

c (X).
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We will often refer to coarse Poincaré duality spaces of formal dimen-
sion n as coarse PD(n) spaces. Throughout the paper, we will reserve
the letter D0 for the constant which appears in the definition of a coarse
PD(n) space; we let D := D0 + 1.

Note that for each coarse PD(n) space X, we have

H∗c (X) � Hn−∗(X) � Hn−∗(Rn) � H∗c (Rn).

We will not need the bounded geometry and uniform acyclicity condi-
tions until Theorem 7.7. Later in the paper, we will consider simplicial
actions on coarse PD(n) spaces, and we will assume implicitly that the
actions commute with the operators P̄ and P , and the chain homotopies
Φ and Φ̄.

The next lemma gives important examples of coarse PD(n) spaces:

Lemma 6.2. The following are coarse PD(n) spaces:

1. An acyclic metric simplicial complex X which admits a free, sim-
plicial, cocompact action by a PD(n) group.

2. An n-dimensional, bounded geometry metric simplicial complex X,
with an augmentation α : Cn

c (X)→ Z for the compactly supported
simplicial cochain complex, so that (C∗c (X), α) is uniformly acyclic
(see Section 2 for definitions).

3. A uniformly acyclic, bounded geometry metric simplicial complex
X which is a topological n-manifold.

Proof.
1. Let 0 ← Z ← P0 ← · · · ← Pn ← 0 be a resolution of Z by

finitely generated projective ZG-modules. X is acyclic, so we have ZG-
chain homotopy equivalences P∗

α� C∗(X) and Hom (P∗,ZG) � C∗c (X)
where α is augmentation preserving. Hence, to construct the two chain
equivalences needed in Definition 6.1, it suffices to construct a ZG-chain
homotopy equivalence p : P∗ → Hom (Pn−∗,ZG) of ZG-modules (since
the operators are G-equivariant conditions 1 and 2 of Definition 6.1 will
be satisfied automatically). For this, see [12, p. 221].

2. We construct a chain mapping P : C∗(X) → Cn−∗
c (X) as follows.

We first map each vertex v ofX to an n-cocycle β∈Cn
c (X,X−B(v,R0))

which maps to 1 under the augmentation α, (such a β exists by the
uniform acyclicity of (C∗c (X), α)), and extend this to a homomorphism
C0(X) → Cn

c (X). By the uniform acyclicity of (C∗c (X), α), we can
extend this to a chain mapping P . By similar reasoning, we obtain a
chain homotopy inverse P̄ , and construct chain homotopies P̄ ◦ P ∼ id
and P ◦ P̄ ∼ id.
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3. X is acyclic, and therefore orientable. An orientation of X de-
termines an augmentation α : Cn

c (X) → Z. The uniform acyclicity of
X together with ordinary Poincaré duality implies that (C∗c (X), α) is
uniformly acyclic. So, 3 follows from 2.

We remark that if G � X is a free simplicial action, then these
constructions can be made G-invariant. q.e.d.

WhenK ⊂ X is a (non-empty) subcomplex we will consider the direct
system of tubular neighborhoods {NR(K)}R≥0 of K and the inverse
system of the closures of their complements

{YR := X −NR(K)}R≥0.

We get four inverse and four direct systems of (co)homology groups:

{Hk
c (NR(K))}, {Hj(X,YR)}, {Hk

c (X,NR(K))}, {Hj(YR)}
{Hk

c (YR)}, {Hj(X,NR(K))}, {Hk
c (X,YR)}, {Hj(NR(K))}

with the usual restriction and projection homomorphisms. Note that
by excision, we have isomorphisms

Hj(X,YR) � Hj(NR(K), ∂NR(K)), etc.

Extension by zero defines a group homomorphism Ck
c (NR+D(K))

ext⊂
Ck

c (X). When we compose this with

Ck
c (X) P→ Cn−k(X)

proj→ Cn−k(X,YR),

we get a well-defined induced homomorphism

PR+D : Hk
c (NR+D(K))→ Hn−k(X,YR)

where D is as in Definition 6.1. We get, in a similar fashion, homomor-
phisms

(6.3) Hk
c (NR+D(K))

PR+D−→ Hn−k(X,YR) P̄R−→ Hk
c (NR−D(K))

(6.4) Hk
c (YR) PR−→ Hn−k(X,NR+D(K))

P̄R+D−→ Hk
c (YR+2D)

(6.5) Hk
c (X,NR+D(K))

PR+D−→ Hn−k(YR) P̄R−→ Hk
c (X,NR−D(K))

(6.6) Hk
c (X,YR) PR−→ Hn−k(NR+D(K))

P̄R+D−→ Hk
c (X,YR+2D)

Note that the homomorphisms in (6.3), (6.5) determine α-morphisms
between inverse systems and the homomorphisms in (6.4), (6.6) de-
termine β-morphisms between direct systems, where α(R) = R − D,
β(R) = R +D (see Section 4 for definitions). These operators inherit
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the bounded displacement property of P and P̄ , see condition 1 of De-
finition 6.1. We let ω(R) := R + 2D, where D is the constant from
Definition 6.1.

Theorem 6.7 (Coarse Poincaré duality). Let X be a coarse PD(n)
space, K ⊂ X be a subcomplex as above. Then, the morphisms P•, P̄•
in (6.3), (6.5) are (ω, ω)-approximate isomorphisms of inverse systems
and the morphisms P•, P̄• in (6.4), (6.6) are (ω, ω)-approximate iso-
morphisms of direct systems (see Section 4). In particular, if X �=
NR0(K) for any R0, then the inverse systems {Hn

c (NR(K))}R≥0 and
{Hn(YR)}R≥0 are approximately zero.

Proof. We will verify the assertion for the homomorphism P• in (6.3)
and leave the rest to the reader. We first check that P• is an ω-
approximate monomorphism. Let

ξ ∈ Z∗c (NR+2D(K))

be a cocycle representing an element [ξ] ∈ Ker (PR+2D), and let ξ1 ∈
C∗c (X) be the extension of ξ by zero. Then, we have

P (ξ1) = ∂η + ζ

where η ∈ Cn−∗(X) and ζ ∈ Cn−∗(X −NR+D(K)). Applying P̄ and
the chain homotopy Φ, we get

δΦ(ξ1) + Φδ(ξ1) = P̄ ◦ P (ξ1)− ξ1 = P̄ (∂η + ζ)− ξ1
so

ξ1 = δP̄ (η) + P̄ (ζ)− δΦ(ξ1)− Φδ(ξ1).
The second and fourth terms on the right-hand side vanish upon pro-
jection to H∗c (NR(K)), so [ξ] ∈ Ker (H∗c (NR+2D(K))→ H∗c (NR(K)).

We now check that P• is an ω-approximate epimorphism. Let

[σ] ∈ Im (Hn−∗(X,X −NR+2D(K))→ Hn−∗(X,X −NR(K))),

then σ lifts to a chain τ ∈ Cn−∗(X) so that ∂τ ∈ Cn−∗(X −NR+2D(K)).
Let [τ ] ∈ Hn−∗(X,YR+2D) be the corresponding relative homology class.
Applying P and the chain homotopy Φ̄, we get

P (P̄ (τ))− τ = ∂Φ̄(τ) + Φ̄(∂τ).

Since Φ̄(∂τ) vanishes in Cn−∗(X,X −NR(K)), we get that

[σ] = PR+D(P̄R+2D([τ ])).

The proof of the last assertion about {Hn
c (NR (K ) ) }R≥ 0 and

{Hn(YR)}R≥0 follows since they are approximately isomorphic to zero
systems H0(X,YR) and H0(X,NR(K)). q.e.d.
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Corollary 6.8. Suppose W be a bounded geometry uniformly acyclic
metric simplicial complex (with metric dW ), Z ⊂W and f : (Z, dW |Z)→
(X, dX ) be a uniform embedding to a coarse PD(n) space X.

1. NR(f(Z)) = X for some R iff {Hn
c (NR(Z))}R≥0 is approximately

isomorphic to the constant system Z.
2. If W is a coarse PD(k)-space for k < n, then NR(f(Z)) �= X for

any R.
3. If W = Nr(Z) for some r and W is a coarse PD(n)-space, then
NR(f(Z)) = X for some R. The thickness R depends only on r,
and the geometry of W , X, and f .

Proof. 1. Let K = f(Z). The mapping f induces an approxi-
mate isomorphism between the inverse systems {Hn

c (NR(Z))}R≥0 and
{Hn

c (NR(K))}R≥0 (see Lemma 5.7), and the latter is approximately iso-
morphic to {H0(X,X −NR(K))}R≥0 by coarse Poincaré duality. Note
that H0 (X, X − NR(K)) = 0 unless NR (K) = X, in which case
H0(X,X −NR(K)) = Z. In the latter case, {Hn

c (NR(Z))}R≥0 is ap-
proximately isomorphic to Z. In the former case, {Hn

c (NR(Z))}R≥0 is
approximately zero.

2. If W is a coarse PD(k)-space, then by applying Theorem 6.7 to
Z ⊂W , we get that {Hn

c (NR(Z))}R≥0 is approximately zero (recall our
convention that both homology and cohomology groups are defined to
be zero in negative dimensions). Thus, 2 follows from 1.

3. This follows by applying part 1 twice. q.e.d.

7. Coarse Alexander duality and coarse Jordan separation

In this section, as in the previous one, we extend complexes indexed
by the non-negative integers to complexes indexed by Z, by setting the
remaining groups equal to zero.

Let X, K, D, YR, and ω be as in the preceding section. Composing
the morphisms P• and P̄• with the boundary operators for long exact
sequences of pairs, we obtain the compositions AR+D

(7.1) H∗c (NR+D(K))
PR+D−−−−−→ Hn−∗(X,YR)

∂� H̃n−∗−1(YR)

and ĀR+D

(7.2) H̃n−∗−1(YR+D)
∂−1

� Hn−∗(X,YR+D)
P̄R+D−−−−−→ H∗c (NR(K)).
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Similarly, composing the maps from (6.3)–(6.4) with boundary opera-
tors and their inverses, we get:

(7.3) H∗c (YR) AR−→ H̃n−∗−1(NR+D(K))

and

(7.4) H̃n−∗−1(NR(K)) ĀR−→ H∗c (YR+D).

Theorem 7.5 (Coarse Alexander duality).
1. The morphisms A• and Ā• in (7.1)–(7.4) are (ω, ω)-approximate

isomorphisms.
2. The maps A• in (7.1) and (7.3) have displacement at most D.

The map Ā• in (7.2) (respectively (7.4)) has displacement at most
D in the sense that if σ ∈ Zn−∗−1(YR+D) (σ ∈ Zn−∗−1(NR(K)),
and σ = ∂τ for τ ∈ Cn−∗(X), then the support of ĀR+D([σ])
(respectively ĀR([σ])) is contained in ND(Support (τ)).

Like ordinary Alexander duality, this theorem follows directly from
Theorem 6.7, and the long exact sequence for pairs.

Combining Theorem 7.5 with Corollary 5.5, we obtain:

Theorem 7.6 (Coarse Alexander duality for FPk groups). Let X be
a coarse PD(n) space, and let G, P∗, G � X, f , and K be as in the
statement of Corollary 5.5. Then,

1. The family of compositions

H̃n−i−1(YR+D) Ā→ H i
c(NR(K))

f i
R−→ H i(P∗; ZG)

defines an approximate isomorphism when i < k, and an approx-
imate monomorphism when i = k. Recall that for i < k, we have
a natural isomorphism H i(P∗,ZG) � H i(G,ZG).

2. The family of compositions

H̃i(P∗; ZG)→ H̃i(NR(K)) ĀR−→ Hn−i−1
c (YR+D)

is an approximate isomorphism when i < k, and an approximate
epimorphism when i = k. Recall that H̃i(P∗; ZG) = {0} for i < k
since G is of type FPk.

Theorem 7.7 (Coarse Alexander duality for maps). Suppose X is
a coarse PD(n) space, X ′ is a bounded geometry uniformly (k − 1)-
acyclic metric simplicial complex, and f : C∗(X ′) → C∗(X) is a chain
map which is a uniform embedding. Let K := Support (f(C∗(X ′)),
YR := X −NR(K). Then:
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1. The family of compositions

H̃n−i−1(YR+D) Ā→ H i
c(NR(K))

Hi
c(fR)−−−−−→ H i

c(X
′)

defines an approximate isomorphism when i < k, and an approxi-
mate monomorphism when i = k.

2. The family of compositions

H̃i(X ′)→ H̃i(NR(K)) ĀR−→ Hn−i−1
c (YR+D)

is an approximate isomorphism when i < k, and an approximate
epimorphism when i = k. (The function ω for the above ap-
proximate isomorphisms depends only on the distortion of f , the
acyclicity functions for X and X ′, and the bounds on the geometry
of X and X ′.)

3. Furthermore, these approximate isomorphisms approximately re-
spect support in the following sense. There is a function ζ : N→ N

so that if i < k, S ⊂X ′ is subcomplex, T := Support(f∗(C∗(S))) ⊂
X is the corresponding subcomplex of X, and α ∈ Im (H i

c(X ′,
X ′ − S) → H i

c(X
′)), then α belongs to the image of the composi-

tion

H̃n−i−1(YR ∩Nζ(R)(T ))→ H̃n−i−1(YR)
Hi

c(f)◦Ā−−−−−→ H i
c(X

′).

4. If k = n+ 1, then Hn
c (X ′) = {0} unless NR(K) = X for some R.

Proof. Parts 1, 2 and 3 of Theorem follow from Lemma 5.6 and The-
orem 7.5. Part 4 follows since for i = n, {H̃n−i−1(YR+D)} = {0} is
approximately isomorphic to the constant system {Hn

c (X ′)}. q.e.d.

We now give a number of corollaries of coarse Alexander duality.

Corollary 7.8 (Coarse Jordan separation for maps). Let X and X ′
be n-dimensional and (n−1)-dimensional coarse Poincaré duality spaces
respectively, and let g : X ′ → X be a uniform embedding. Then:

1. g(X ′) coarsely separates X into (exactly) two components.
2. For every R, each point of NR(g(X ′)) lies within uniform distance

from each of the deep components of YR := X −NR(g(X ′)).
3. If Z ⊂ X ′, X ′ �⊂ NR(Z) for any R and h : Z → X is a uniform

embedding, then h(Z) does not coarsely separate X. Moreover,
for any R0, there is an R1 > 0 depending only on R0 and the
geometry of X,X ′, and h such that precisely one component of
X −NR0(h(Z)) contains a ball of radius R1.
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Proof. We have the following diagram:

H̃0(YR)
Hn−1

c (g)◦Ā−−−−−→ Hn−1
c (X ′) = Z

↑
lim←−

R

H̃Deep
0 (YR)

where the family of morphisms Hn−1
c (g)◦Ā gives rise to an approximate

isomorphism. Thus,
lim←−

R

H̃Deep
0 (YR) = Z

which implies 1. Let x ∈ NR(K). Then there exists a representative
α of a generator of Hn−1

c (X ′) such that Hn−1
c (g)(α) ∈ Cn−1

c (X) is
supported uniformly close to x. We apply Part 3 of Theorem 7.7 to the
class [Hn−1

c (g)(α)] to prove 2.
To prove part 3, we first note that by Corollary 6.8, we have X −

NR(h(Z)) �= ∅ for all R. By Lemma 5.7 and coarse Alexander duality
(Theorem 7.5), the inverse system {H̃0(X −NR(h(Z)))}R≥0 is approxi-
mately zero. But this means that there is precisely one deep component
of X −NR(f(Z)) for every R; it also implies the second half of part 3.

q.e.d.

As a special case of the above corollary, we have:

Corollary 7.9 (Coarse Jordan separation for submanifolds). Let X
and X ′ be n-dimensional and (n−1)-dimensional uniformly acyclic PL-
manifolds respectively, and let g : X ′ → X be a uniform embedding.
Then, the assertions 1, 2 and 3 from the preceding theorem hold.

Similarly, to the Corollary 7.8, we get:

Corollary 7.10 (Coarse Jordan separation for groups). Let X be
a coarse PD(n)-space and G be a PD(n − 1)-group acting freely sim-
plicially on X. Let K ⊂ X be a G-invariant subcomplex with K/G
compact. Then:

1. G coarsely separates X into (exactly) two components.
2. For every R, each point of NR(K) lies within uniform distance

from each of the deep components of X −NR(K).

Lemma 7.11. Let W be a bounded geometry metric simplicial com-
plex which is homeomorphic to a union of W = ∪i∈IWi of k half-spaces
Wi � R

n−1
+ along their boundaries. Assume that for i �= j, the union

Wi ∪ Wj is uniformly acyclic and is uniformly embedded in W . Let
g : W → X be a uniform embedding of W into a coarse PD(n) space
X. Then, g(W ) coarsely separates X into k components. Moreover,
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there is a unique cyclic ordering on the index set I so that for R suffi-
ciently large, the frontier of each deep component C of X −NR(g(W ))
is at finite Hausdorff distance from g(Wi) ∪ g(Wj) where i and j are
adjacent with respect to the cyclic ordering.

Proof. We have Hn−1
c (W ) � Z

k−1, so, arguing analogously to Corol-
lary 7.8, we see that g(W ) coarsely separates X into k components.
Applying coarse Jordan separation and the fact that no Wi coarsely
separates Wj in W , we can define the desired cyclic ordering by declar-
ing that i and j are consecutive iff g(Wi) ∪ g(Wj) coarsely separates
X into two deep components (Corollary 7.8), one of which is a deep
component of X − g(W ). We leave the details to the reader. q.e.d.

Lemma 7.12. Suppose G is a group of type FPn−1 of cohomological
dimension ≤ n − 1, and let P∗, f , G � X, K ⊂ X and YR be as in
Theorem 7.6. Then, every deep component of YR is stable for R ≥ D; in
particular, there are only finitely many deep components of YR modulo
G. If dim(G) < n− 1, then there is only one deep component.

Proof. The composition

(7.13) lim←−
R

H̃Deep
0 (YR)→ H̃Deep

0 (YD)
f i

D◦ĀD−−−−−→ Hn−1(P∗; ZG)

is an isomorphism by Theorem 7.6. Therefore,

H̃Deep
0 (YR)→ H̃Deep

0 (YD)

is a monomorphism for any R ≥ D, and hence every deep component
of YD is stable. If dim(G) < n − 1, then Hn−1(P∗,ZG) = {0}, and by
(7.13), we conclude that YD contains only one deep component. q.e.d.

Another consequence of coarse Jordan separation is:

Corollary 7.14. Let G � X be a free simplicial action of a group G
of type FP on a coarse PD(n) space X, and let K ⊂ X be a G-invariant
subcomplex on which G acts cocompactly. By Lemma 7.12, there is an
R0 so that all deep components of X − NR0(K) are stable; hence, we
have a well-defined collection of deep complementary components {Cα}
and their stabilizers {Hα}. If H ⊂ G is a PD(n − 1) subgroup, then
one of the following holds:

1. H coarsely separates G.
2. H has finite index in G, and so G is a PD(n− 1) group.
3. H has finite index in Hα for some α.
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In particular, G contains only finitely many conjugacy classes of max-
imal, coarsely non-separating PD(n− 1) subgroups.

Proof. We assume that H does not coarsely separate G. Pick a base-
point � ∈ K, and let W := H(�) be the H-orbit of �. Then, by Corol-
lary 7.10, there is an R1 so that X−NR1(W ) has two deep components
C+, C− and both are stable. Since H does not coarsely separate G, we
may assume that K ⊂ NR2(C−) for some R2. Therefore, C+ has finite
Hausdorff distance from some deep component Cα of X −NR0(K), and
clearly, the Hausdorff distance between the frontiers ∂C+ and ∂Cα is
finite. Either H preserves C+ and C−, or it contains an element h which
exchanges the two. In the latter case, h(Cα) is within finite Hausdorff
distance from C−; so, in this case, K is contained in Nr(W ) for some r,
and this implies 2. When H preserves C+, then we have H ⊂ Hα, and
since H acts cocompactly on ∂C+, it also acts cocompactly on ∂Cα and
hence, [Hα : H] <∞. q.e.d.

8. The proof of Theorem 1.1

Sketch of the proof of Theorem 1.1. Consider an action G � X
as in the statement of Theorem 1.1. Let K ⊂ X be a G-invariant
subcomplex with K/G compact. By Lemma 7.12, the deep compo-
nents of X − NR(K) stabilize at some R0, and hence, we have a col-
lection of deep components Cα and their stabilizers Hα. Naively, one
might hope that for some R ≥ R0, the tubular neighborhood NR(K) is
acyclic, and the frontier of NR(K) breaks up into connected components
which are in one-to-one correspondence with the Cα’s, each of which is
acyclic and has the same compactly supported cohomology as R

n−1. Of
course, this is too much to hope for, but there is a coarse analog which
does hold. To explain this, we first note that the systems H̃∗(NR(K))
and H∗c (NR(K)) are approximately zero and approximately constant
respectively by Corollary 5.5. Applying coarse Alexander duality, we
find that the systems H∗c (YR) and H̃∗(YR) corresponding to the com-
plements YR := X −NR(K) are approximately zero and approximately
constant, respectively. Instead of looking at the frontiers of the neigh-
borhoods NR(K), we look at metric annuli A(r,R) := NR(K)−Nr(K)
for r ≤ R. One can try to compute the (co)homology of these annuli
using a Mayer–Vietoris sequence for the covering X = NR(K)∪Yr; how-
ever, the input to this calculation is only approximate, and the system
of annuli does not form a direct or inverse system in any useful way.
Nonetheless, there are finite direct systems of nested annuli of arbitrary
depth for which one can understand the (co)homology, and this allows
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us to apply results from Section 5 to see that the Hα’s are Poincaré
duality groups.

Remark. There is an extra complication in calculating Hn−1
c for the

annuli which we have omitting from this sketch.

The proof of Theorem 1.1. We now assume that G is a group of
type FP acting freely and simplicially on a coarse PD(n) space X.
This implies that dim(G) ≤ n, so, by Lemma 3.2, there is a resolution
0 → Pn → · · · → P0 → Z → 0 of Z by finitely generated projective
ZG-modules. We may construct G-equivariant (augmentation preserv-
ing) chain mappings ρ : C∗(X) → P∗ and f : P∗ → C∗(X) using the
acyclicity of C∗(X) and P∗; the composition ρ◦f : P∗ → P∗ is ZG-chain
homotopic to the identity. If L ⊂ X is a G-invariant subcomplex for
which L/G is compact, then we get an induced homomorphism

H∗(G; ZG)
H∗(ρ)−→ H∗(X/G; ZG)→ H∗(L/G; ZG) � H∗c (L);

abusing notation, we will denote this composition by H∗(ρ).
Let K ⊂ X be a connected, G-invariant subcomplex so that K/G

is compact and the image of f is supported in K. For R ≥ 0 set
YR := X −NR(K). Corollary 5.5 tells us that the families of maps

(8.1) {0} → {H̃∗(P∗; ZG)} → {H̃∗(NR(K))}
(8.2) H∗c (f) : H∗c (NR(K))→ H∗(G; ZG) � H∗(P ; ZG).

define approximate isomorphisms. Applying Theorems 7.6, we get ap-
proximate isomorphisms

(8.3) {0} → Hk
c (YR) for all k

and

(8.4) φk,R : H̃k(YR)→ Hn−k−1(P∗; ZG) � Hn−k−1(G; ZG) for all k.

We denote φ∗,D by φ∗.
We now apply Lemma 7.12 to see that every deep component of

X−ND(K) is stable. Let {Cα} denote the collection of deep components
ofX−ND(K), and set YR,α := YR∩Cα and ZR,α := X − YR,α. Note that
for every α, andD < r < R, we have ZR,α∩Yr,α = NR(K)−Nr(K)∩Cα.

Lemma 8.5.
1. There is an R0 so that if R ≥ R0, then YR,α = X − ZR,α and
ZR,α = NR−R0(ZR0,α).

2. The systems {H̃k(YR,α)}, {H̃k(ZR,α)}, {Hk
c (YR,α)}, {Hk

c (ZR,α)}
are approximately zero for all k.
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Proof. Pick R0 large enough that all shallow components of X −
ND(K) are contained in NR0−1(K). Then, for all R ≥ R0, ∂Cα∩YR = ∅
and hence YR,α, like YR itself, is the closure of its interior; this implies
that YR,α = X −X − YR,α = X − ZR,α. We also have ZR,α = NR(K)�
(�β 	=αCβ) for all R ≥ R0. Since �β 	=αNR(Cβ) ⊂ NR0+R(K)∪(�β 	=αCβ),
we get

NR(ZR0,α) = NR0+R(K) ∪ (�β 	=αNR(Cβ))

= NR0+R(K) ∪ (�β 	=αCβ)
= ZR0+R,α.

Thus, we have proven 1.
To prove 2, we first note that {H̃0(YR,α)} is approximately zero

by the stability of the deep components Cα. When R ≥ R0, then
ZR,α is connected (since NR(K) and each Cβ are connected), and this
says that {H̃0(ZR,α)} is approximately zero. When R ≥ R0, then YR

is the disjoint union �αYR,α, so we have direct sum decompositions
Hk(YR) = ⊕αHk(YR,α) and Hk

c (YR) = ⊕αH
k
c (YR,α) which are com-

patible projection homomorphisms. This together with (8.3) and (8.4)
implies that {H̃k(YR,α)} and {Hk

c (YR,α)} are approximately zero for all
k. By part 1 and Theorem 7.5, we get that {Hk

c (ZR,α)} and {H̃k(ZR,α)}
are approximately zero for all k. q.e.d.

Lemma 8.6. There is an Rmin > D so that for any R ≥ Rmin and
any integer M , there is a sequence R ≤ R1 ≤ R2 ≤ · · · ≤ RM with
the following property. Let A(i, j) := NRj (K)−NRi(K) ⊂ YRi, and
Aα(i, j) := A(i, j) ∩Cα. Then, for each 1 < i < j < M ,

1. The image of H̃k(A(i, j)) → H̃k(A(i − 1, j + 1)) maps isomorphi-
cally onto
Hn−k−1(G; ZG) under the composition

H̃k(A(i − 1, j + 1))→ H̃k(YD)
φk→ Hn−k−1(G; ZG)

for 0 ≤ k ≤ n− 1. The homomorphism

H̃n(A(i, j)) → H̃n(A(i− 1, j + 1))

is zero.
2. Hk(ρ) : Hk(G; ZG) → Hk

c (A(i, j)) maps Hk(G; ZG) isomorphi-
cally onto the image of Hk

c (A(i − 1, j + 1)) → Hk
c (A(i, j)) for

0 ≤ k < n− 1.

3. There is a system of homomorphisms Hn−1
c (Aα(i, j))

θα
i,j−→Z (comp-

atible with the inclusions Aα(i, j) → Aα(i − 1, j + 1)) so that the
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image of Hn−1
c (Aα(i − 1, j + 1)) → Hn−1

c (Aα(i, j)) maps isomor-
phically to Z under θα

i,j.

4. For each α, H̃0(Aα(i, j)) 0→ H̃0(Aα(i− 1, j + 1)).

Proof. We choose Rmin large enough so that for any R ≥ Rmin, the
following inductive construction is valid. Let R1 := R. Using the ap-
proximate isomorphisms (8.1), (8.2), (8.3), (8.4), and Lemma 8.5, we
inductively choose Ri+1 so that:

A. H̃k(NRi(K)) 0→ H̃k(NRi+1(K)) for 0 ≤ k ≤ n.
B. Im(H̃k(YRi+1)→H̃k(YRi)) maps isomorphically to Hn−k−1(G; ZG)

under φk,Ri
for 0 ≤ k < n, and Im(H̃k(YRi+1) → H̃k(YRi)) is zero

when k = n.
C. Im (H∗c (NRi+1 (K)) → H∗c (NRi (K))) maps isomorphically onto

H∗(G; ZG) under H∗c (f).
D. H∗c (YRi)

0→ H∗c (YRi+1).

E. For each α, Hn−1
c (YRi,α) 0→ Hn−1

c (YRi+1,α), and Hn−1
c (ZRi+1,α) 0→

Hn−1
c (ZRi,α).

F. For each α, H̃0(YRi+1,α) 0→H̃0(YRi,α) and H̃0(ZRi,α) 0→H̃0(ZRi+1,α).
Now, take 1 < i < j < M , and consider the map of Mayer–Vietoris se-

quences for the decompositions X = NRj (K)∪YRi and X = NRj+1(K)∪
YRi−1 :

H̃k+1(X)→ H̃k(A(i, j))→ H̃k(NRj (K))⊕ H̃k(YRi) → H̃k(X)
↓ ↓ 0 ↓ ↓ ↓

H̃k+1(X)→ H̃k(A(i− 1, j + 1))→ H̃k(NRj+1(K))⊕ H̃k(YRi−1) → H̃k(X)
↓ φk|A(i−1,j+1)

↓ φk

Hn−k−1(G,ZG)→ Hn−k−1(G,ZG)

Since H̃∗(X) = {0}, conditions A and B and the diagram imply the
first part of assertion 1. The same Mayer–Vietoris diagram for k = n
implies the second part.

Let 0 ≤ k < n − 1. Consider the commutative diagram of Mayer–
Vietoris sequences:

Hk(G,ZG)→ Hk(G,ZG)
Hk(ρ) ↓ Hk(ρ) ↓

Hk
c (X)→ Hk

c (NRj+1(K))⊕Hk
c (YRi−1)→ Hk

c (A(i− 1, j + 1))→ Hk+1
c (X)

↓ ↓ 0 ↓ ↓ ↓
Hk

c (X)→ Hk
c (NRj (K))⊕Hk

c (YRi)→ Hk
c (A(i, j)) → Hk+1

c (X)

Assertion 2 now follows from the fact that Hk
c (X) ∼= Hk+1

c (X) = 0,
conditions C and D, and the diagram.
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Assertion 3 follows from condition E, the fact that Hn
c (X) � Z, and

the following commutative diagram of Mayer–Vietoris sequences (θα
i,j is

the coboundary operator in the sequence):

Hn−1
c (ZRj+1,α) ⊕ Hn−1

c (YRi−1,α) → Hn−1
c (Aα(i − 1, j + 1))

θi−1,j+1−−−−−→Hn
c (X)→0

0 ↓ 0 ↓ ↓ ↓
Hn−1

c (ZRj ,α) ⊕ Hn−1
c (YRi,α) → Hn−1

c (Aα(i, j))
θi,j−−−−−→ Hn

c (X)→0

Assertion 4 follows from condition F and the following commutative
diagram:

H̃1(X)→ H̃0(Aα(i, j))→ H̃0(ZRj ,α)⊕ H̃0(YRi,α) → H̃0(X)
↓ ↓ 0 ↓ 0 ↓ ↓

H̃1(X)→ H̃0(Aα(i− 1, j + 1))→ H̃0(ZRj+1,α)⊕ H̃0(YRi−1,α) → H̃0(X)

q.e.d.

Corollary 8.7. If G is an (n − 1)-dimensional duality group, then
each deep component stabilizer is a PD(n− 1) group.

Proof. Fix a deep component Cα of X − ND(K), and let Hα be its
stabilizer in G. Let R = D, M = 4k + 2, and apply the construction of
Lemma 8.6 to get D ≤ R1 ≤ R2 ≤ . . . ≤ R4k+2 satisfying the conditions
of Lemma 8.6.

Pick 1 < i < j < M . The mappings H̃�(A(i, j)) → H̃�(A(i−1, j+1))
are zero for each � = 1, . . . , n by part 1 of Lemma 8.6, sinceHk(G,ZG) =
0 for k < n− 1. Because A(p, q) is the disjoint union 
αAα(p, q) for all
0 < p < q < M , we actually have H̃�(Aα(i, j)) 0→ H̃�(Aα(i − 1, j + 1))
for 1 ≤ � ≤ n. By part 4 of Lemma 8.6, the same assertion holds for
� = 0. Applying Theorem 5.11 to the chain complexes C∗(Aα(i, j)),
we see that when k > 2n + 5, Hα is a group of type FPn. Since
dim(Hα) ≤ dim(G) = n − 1, it follows that Hα is of type FP (see
Section 3).

The mappings H�
c(Aα(i − 1, j + 1)) → H�

c(Aα(i, j)) are zero for 0 ≤
� < n−1 by part 2 of Lemma 8.6 and the fact that A(p, q) = 
αAα(p, q).
By parts 1 and 2 of Lemma 5.1, we have Hk(Hα,ZHα) = {0} for 0 ≤
k < n − 1, and Hn−1(Hα,ZHα) � Z by part 3 of Lemma 8.6. Hence,
Hα is a PD(n− 1) group. q.e.d.

Remark. For the remainder of the proof, we really only need to know
that each deep component stabilizer is of type FP .
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Proof of Theorem 1.1 concluded. Let C1, . . . , Ck be a set of represen-
tatives for the G-orbits of deep components of X − NR(K), and let
H1, . . . ,Hk ⊂ G denote their stabilizers. Recall that bothG and each Hi

are assumed to be of type FP , see Section 3. By Lemma 5.15, we have

H∗(G, {Hi}; ZG) � lim−→
R

H∗c (X,YR),

while limRH
∗
c (X,YR) � limRHn−∗(NR(K)) by Coarse Poincaré dual-

ity, and
lim−→

R

H∗(NR(K)) � H∗(X) � H∗(pt)

since homology commutes with direct limits. Therefore, the group pair
(G, {Hi}) satisfies one of the criteria for PD(n) pairs (see Section 3),
and we have proven Theorem 1.1. q.e.d.

We record a variant of Theorem 1.1 which describes the geometry of
the action G � X more explicitly:

Theorem 8.8. Let G � X be as in Theorem 1.1, and let K ⊂ X be a
G-invariant subcomplex with K/G compact. Then, there are R0, R1, R2

so that
1. The deep components {Cα}α∈I of X−NR0(K) are all stable, there

are only finitely many of them modulo G, and their stabilizers
{Hα}α∈I are PD(n− 1) groups.

2. For all α ∈ I, the frontier ∂Cα is connected, and NR1(∂Cα) has
precisely two deep complementary components, Eα and Fα, where
Eα has Hausdorff distance at most R2 from Cα. Unless G is a
PD(n− 1) group, the distance function d(∂Cα, ·) is unbounded on
K ∩ Fα.

3. The Hausdorff distance between X −
αEα and K is at most R2.

Proof. This is clear from the discussion above. q.e.d.

We remark that there are α1 �= α2 ∈ I so that the Hausdorff distance

dH(∂Cα1 , ∂Cα2) <∞
iff G is a PD(n− 1) group.

In Proposition 8.10, we generalize the following uniqueness theorem of
the peripheral structure from 3-dimensional manifolds to PD(n) pairs:

Theorem 8.9 (Johannson [27], see also [41]). Let M be a compact
connected acylindrical 3-manifold with aspherical incompressible bound-
ary components S1, . . . , Sm. Let N be a compact 3-manifold homotopy-
equivalent to M , with incompressible boundary components Q1, . . . , Qn,
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and ϕ : π1(M) → π1(N) be an isomorphism. Then, ϕ preserves the
peripheral structures of π1(M) and π1(N) in the following sense. There
is a bijection β between the set of boundary components of M and the
set of boundary components on N so that after relabeling via β, we have:
ϕ(π1(Si)) is conjugate to π1(Qi)) in π1(N).

Proposition 8.10. Let (G, {Hi}i∈I) be a PD(n) pair, where G is not
a PD(n−1) group, and Hi does not coarsely separate G for any i. Now,
let G � X be a free simplicial action on a coarse PD(n) space, and let
(G, {Lj}j∈J) be the group pair obtained by applying Theorem 1.1 to this
action. Then, there is a bijection β : I → J so that Hi is conjugate to
Lβ(i) for all i ∈ I.

Proof. Under the assumptions above, each Hi and Lj is a maximal
PD(n − 1) subgroup (see Lemma 3.3). By Corollary 7.14, each Hi

is conjugate to some Lj , and by Lemma 3.3, this defines an injection
β : I → J . Consider the double Ĝ of G over the Lj’s. Then, the double
of G over the Hi’s sits in Ĝ, and the index will be infinite unless β is a
bijection. q.e.d.

We now establish a relation between the acylindricity assumption in
Theorem 8.9 and coarse non-separation assumption in Proposition 8.10.
We first note that if M is a compact 3-manifold with incompressible
aspherical boundary components S1, . . . , Sm, then M is acylindrical iff
π1(Si) ∩ g(π1(Sj))g−1 = {e} whenever i �= j or i = j but g /∈ π1(Si).

Lemma 8.11. Suppose G is a duality group and G � X is a free
simplicial action on a coarse PD(n) space, and let (G, {Hj}j∈J) be the
group pair obtained by applying Theorem 1.1 to this action. Assume
that Hi ∩ (gHjg

−1) = {e} whenever, i �= j or i = j but g /∈ Hi. Then,
no Hi coarsely separates G.

Proof. Let K0 ⊂ X be a connected G-invariant subcomplex so that
K0/G is compact and all deep components of X −K0 are stable. Now,
enlarge K0 to a subcomplex K ⊂ X by throwing in the shallow (i.e.,
non-deep) components of X − K0; then K is connected, G-invariant,
K/G is compact, and all components of X − K are deep and stable.
Let {Cα} denote the components of X −K, and let Ci be a component
stabilized by Ci. We will show that ∂Ci does not coarsely separate K
in X. Since K ↪→ X is a uniform embedding, G � K is cocompact,
and Hi � ∂Ci is cocompact, this will imply the lemma.

For all components Cα and all R, the intersection Hi∩Hα acts cocom-
pactly on NR(∂Ci) ∩ C̄α, where Hα is the stabilizer of Cα; when α �= i
the group Hi ∩Hα is trivial, so in this case Diam(NR(∂Ci)∩ C̄α) <∞.
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For each R, there are only finitely many α – modulo Hi – for which
NR(∂Ci) ∩ Cα �= ∅, so there is a constant D1 = D1(R) so that if α �= i,
then Diam (NR(∂Ci) ∩Cα) < D1. Each ∂Cα is connected and 1-ended,
so we have an R1 = R1(R) so that if α �= i, and x, y ∈ ∂Cα−NR1(∂Ci),
then x may be joined to y by a path in ∂Cα −NR(∂Ci).

By Corollary 7.10, there is a function R2 = R2(R) so that if x, y ∈
K −NR2(∂Ci), then x may be joined to y by a path in X −NR(∂Ci).

Pick R, and let R′ = R2(R1(R)). If x, y ∈ K −NR′(∂Ci), then they
are joined by a path αxy in X−NR1(R)(∂Ci). For each α �= i, the portion
of αxy which enters Cα may be replaced by a path in ∂Cα −NR(∂Ci).
So x may be joined to y in K −NR(∂Ci). Thus, ∂Ci does not coarsely
separate K in X. q.e.d.

Lemma 8.12. Let M be a compact 3-manifold with ∂M �= ∅, with
aspherical incompressible non-empty boundary components S1, . . . , Sm.
Then, M is acylindrical if and only if π1(M) is not a surface group and
no Hi = π1(Si) ⊂ π1(M) = G coarsely separates G.

Proof. The implication ⇒ follows from Lemma 8.11. To establish
⇐ assume that M is not acylindrical. This implies that there exists a
non-trivial decomposition of π1(M) as a graph of groups with a single
edge group C which is a cyclic subgroup of some Hi. Thus, C coarsely
separates G. Since [G : Hi] = ∞, it follows that Hi coarsely separates
G as well. q.e.d.

Corollary 8.13. Suppose G is not a PD(n − 1) group, both (G,
{Hi}i∈I) and (G, {Lj}j∈J) are PD(n) pairs, no Hi coarsely separates
G, and each Lj admits a finite Eilenberg–MacLane space. Then, there
is a bijection β : I → J so that Hi is conjugate to Lβ(i) for all i ∈ I.
Thus, the peripheral structure of G in this case is unique.

Proof. Under the above assumptions, the double Ĝ of G with re-
spect to the collection of subgroups {Lj}j∈J admits a finite Eilenberg–
MacLane space K(Ĝ, 1). Thus, we can take as a coarse PD(n)-space X
the universal cover of K(Ĝ, 1). Now, apply Proposition 8.10. q.e.d.

9. Applications

In this section, we discuss examples of (n − 1)-dimensional groups
which cannot act on coarse PD(n) spaces.
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2-dimensional groups with positive Euler characteristic. Let G
be a group of type FP2 with cohomological dimension 2. If the χ(G) >
0, then G cannot act freely simplicially on a coarse PD(3) space. To
see this, note that by Mayer–Vietoris some one-ended free factor G′ of
G must have χ(G′) > 0. If G′ acts on a coarse PD(3) space, then G′
contains a collection H of surface subgroups so that (G′,H) is a PD(3)
pair. Since the double of a PD(3) pair is a PD(3) group (which has
zero Euler characteristic) by Mayer–Vietoris, we have χ(G′) ≤ 0, which
is a contradiction.

We are grateful to the referee for the following remark:

Remark 9.1. A generalization of the Chern–Hopf Conjecture asserts
that ifH is a 2n-dimensional Poincaré duality group, then (−1)nχ(H) ≥
0. So, if this conjecture is true, then Theorem 1.1 implies that if G is a
2n-dimensional duality group with (−1)nχ(G) < 0, then G cannot act
freely and simplicially on a coarse PD(2n+ 1) space.

Bad products. Suppose G =
∏k

i=1Gi where each Gi is a duality group
of dimension ni, and G1, G2 are not Poincaré duality groups. Then, G
cannot act freely simplicially on a coarse PD(n) space, where n − 1 =∑k

i=1 ni.

Proof. Let G � X be a free simplicial action on a coarse PD(n)
space.

Step 1. G contains a PD(n− 1) subgroup. This follows by applying
Theorem 1.1 to G � X, since otherwise, G � X is cocompact and
Lemma 5.4 would give Hn(G; ZG) � Z, contradicting dim(G) = n− 1.

We apply Theorem 1.1 to see that G � X defines deep complemen-
tary component stabilizers Hα ⊂ G which are PD(n− 1) groups.

Step 2. Any PD(n− 1) subgroup V ⊂ G virtually splits as a product∏k
i=1 Vi where Vi ⊂ Gi is a PD(ni) subgroup. Consequently each Gi

contains a PD(ni) subgroup.

Lemma 9.2. A PD(m) subgroup V of a m-dimensional product
group W :=

∏k
i=1Wi contains a finite index subgroup V ′ which splits as

a product V ′ =
∏k

i=1 Vi where Vi ⊂ Wi is a Poincaré duality group of
dimension dim(Wi).

Proof. Look at the kernels of the projections

p̂j : W →
∏
i	=j

Wi
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restricted to V . The dimension of the middle group in a short exact
sequence has dimension at most the sum of the dimensions of the other
two groups. Applying this to the exact sequence

1→Wj ∩ V → V → p̂j(V )→ 1,

we get that Wj ∩V has the same dimension as Wj. Hence,
∏

j(Wj ∩V )
has the same dimension as V , so it has finite index in V (see Section 3).
Therefore,

∏
j(Wj ∩ V ) is a PD(n) group and so the factor groups

(Wj ∩ V ) are PD(dim(Wj)) groups. q.e.d.

Step 3. No PD(n−1) subgroup V ⊂ G can coarsely separate G. This
follows immediately from step 2 and:

Lemma 9.3. For i = 1, 2 let Ai ⊂ Bi be finitely generated groups,
with [Bi : Ai] =∞. Then, A1 ×A2 does not coarsely separate B1 ×B2.

Proof. Suppose that x = (x1, x2), y = (y1, y2) are points in the Cayley
graphs of B1, B2 which are at distance at least R from A := A1 × A2.
Without loss of generality, we may assume that d(x1, A1) ≥ R/2. We
then pick a point x′2 ∈ B2 with distance at least R/2 from A2 and
connect x2 to x′2 by a path x2(t) the the Cayley graph of B2. The path
(x1, x2(t)) does not intersect NR

2
(A). Applying similar argument to y,

we reduce the proof to the case where d(xi, Ai) ≥ R/2 and d(yi, Ai) ≥
R/2, i = 1, 2. Now, connect x1 to y1 by a path x1(t), and y2 to x2

by a path y2(t); it is clear that the paths (x1(t), x2), (y1, y2(t)) do not
intersect NR

4
(A). On the other hand, these paths connect x to (y1, x2)

and y to (y1, x2). q.e.d.

Step 4. By steps 1 and 2, we know that each Gi contains a PD(ni)
subgroup. Let Li ⊂ Gi be a PD(ni) subgroup for i > 1. Set L :=
G1 × (

∏k
i=2 Li). Observe that L is not a PD(n − 1) group since G1 is

not a PD(n1) group. Therefore, no finite index subgroup of L can be a
PD(n− 1) subgroup, see Section 3.

Step 5. Choose a base-point � ∈ X. We now apply Theorem 8.8 to
the action L � X with K := L(�), and we let Ri, Cα, Hα Eα, and Fα

be as in the Theorem 8.8. Since L has infinite index in G, the distance
function d(∂Cα, ·) is unbounded on G(�) ∩ Eα for some α ∈ I, while
part 2 of Theorem 8.8 implies that d(∂Cα, ·) is unbounded on K ∩ Fα.
Hence, Hα coarsely separates G, which contradicts step 3. q.e.d.
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Baumslag–Solitar groups. Pick p �= ±q, and let G := BS(p, q) de-
note the Baumslag–Solitar group with the presentation

(9.4) 〈a, b | bapb−1 = aq〉.
If G1 is a k-dimensional duality group, then the direct product G1 ×G
does not act freely simplicially on a coarse PD(3 + k) space.

We will prove this when G1 = {e}. The general case can be proved
using straightforward generalization of the argument given below, once
one applies the “Bad products” example above to see that G1 must be a
PD(k) group if G1×G acts on a coarse PD(3+ k) space. Assume that
G � X is a free simplicial action on a coarse PD(3) space. Choosing a
base-point � ∈ X, we obtain a uniform embedding G→ X.

We recall that the presentation (9.4) defines a graph of groups decom-
position of G with one vertex labeled with Z, one oriented edge labeled
with Z, and where the initial and final edge monomorphisms embed the
edge group as subgroups of index p and q respectively. The Bass–Serre
tree T corresponding to this graph of groups has the following structure.
The action G � T has one vertex orbit and one edge orbit. For each
vertex v ∈ T , the vertex stabilizer Gv is isomorphic to Z. The vertex v
has p incoming edges and q outgoing edges; the incoming (respectively
outgoing) edges are cyclically permuted by Gv with ineffective kernel
the subgroup of index p (respectively q).

Let Σ̄ be the presentation complex corresponding to the presentation
(9.4), and let Σ denote its universal cover. Then, Σ admits a natural
G-equivariant fibration π : Σ→ T , with fibers homeomorphic to R. For
each vertex v ∈ T , the inverse image π−1(v) has a cell structure iso-
morphic to the usual cell structure on R, and Gv acts freely transitively
on the vertices. For each edge e ⊂ T , the inverse image π−1(e) ⊂ Σ
is homeomorphic to a strip. The cell structure on the strip may be
obtained as follows. Take the unit square in R

2 with the left edge sub-
divided into p segments and the right edge subdivided into q segments;
then glue the top edge to the bottom edge by translation and take the
induced cell structure on the universal cover. The edge stabilizer Ge

acts simply transitively on the 2-cells of π−1(e).
We may view Σ as a bounded geometry metric simplicial complex by

taking a G-invariant triangulation of Σ. Given k distinct ideal boundary
points ξ1, . . . , ξk ∈ ∂∞T and a base-point � ∈ T , we consider the geodesic
rays �ξi ⊂ T , take the disjoint union of their inverse images Yi :=
π−1(�ξi) ⊂ Σ and glue them together along the copies of π−1(�) ⊂
π−1(�ξi). The resulting complex Y inherits bounded geometry metric
simplicial complex structure from Σ. The reader will verify the following
assertions:
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1. Y is uniformly contractible.
2. For i �= j, the union Yi ∪Yj ⊂ Y is uniformly contractible and the

inclusion Yi ∪ Yj → Y is a uniform embedding.
3. The natural map Y → Σ is a uniform embedding.
4. The cyclic ordering induced on the Yi’s by the uniform embedding

which is the composition C∗(Y ) → C∗(Σ) → C∗(X) (see Lemma
7.11) defines a continuous G-invariant cyclic ordering on ∂∞T .

Let a be the generator of Gv for some v ∈ T . Setting ek := (pq)k,
the sequence gk := aek – viewed as elements in Isom (T ) – converges to
the identity as k → ∞. So, the sequence of induced homeomorphisms
of the ideal boundary of T converges to the identity. The invariance
of the cyclic ordering clearly implies that gk acts trivially on the ideal
boundary of T for large k. This implies that gk acts trivially on T for
large k. Since this is absurd, G cannot act discretely and simplicially
on a coarse PD(3) space.

Remark 9.5. The complex Σ – and hence BS(p, q) – can be uni-
formly embedded in a coarse PD(3) space homeomorphic to R

3. To see
this, we proceed as follows. First take a proper PL embedding T → R

2

of the Bass–Serre tree into R
2. For each co-oriented edge −→e of T ⊂ R

2,
we take product cell structure on the half-slab P (−→e ) := π−1(e) × R+

where R+ is given the usual cell structure. We now perform two types
of gluings. First, for each co-oriented edge −→e , we glue the half-slab
P (−→e ) to Σ by identifying π−1(e) × 0 with π−1(e) ⊂ Σ. Now, for each
pair −→e1 , −→e2 of adjacent co-oriented edges, we glue P (−→e1) to P (−→e2) along
π−1(v)×R+ where v = e1∩e2. It is easy to see that after suitable subdi-
vision, the resulting complex X becomes a bounded geometry, uniformly
acyclic 3-dimensional PL manifold homeomorphic to R

3.

Higher genus Baumslag–Solitar groups. Note that BS(p, q) is the
fundamental group of the following complex K = K1(p, q). Take the
annulus A with the boundary circles C1, C2. Let B be another annulus
with the boundary circles C ′1, C

′
2. Map C ′1, C

′
2 to C1, C2 by mappings

f1, f2 of degrees p and q respectively. Then, K is obtained by gluing A
and B by f1 � f2. Below, we describe a “higher genus” generalization
of this construction. Instead of the annulus A, take a surface S of
genus g ≥ 1 with two boundary circles C1, C2. Then, repeat the above
construction of K by gluing the annulus B to S via the mappings C ′1 →
C1, C

′
2 → C2 of the degrees p, q respectively. The fundamental group

G = Gg(p, q) of the resulting complex Kg(p, q) has the presentation

〈a1, b1, . . . , ag, bg, c1, c2, t : [a1, b1] · · · [ag, bg]c1c2 = 1, tcq2t
−1 = cp1〉.
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One can show that the group Gg(p, q) is torsion-free and Gromov-
hyperbolic [28]. Note that the universal cover K̃ of the complex Kg(p, q)
does not fiber over the Bass–Serre tree T of the HNN-decomposition of
G. Nevertheless there is a properly embedded c1-invariant subcomplex
in K̃ which (c1-invariantly) fibers over T with the fiber homeomorphic
to R. This allows one to repeat the arguments given above for the group
BS(p, q) and show that the group Gg(p, q) cannot act simplicially freely
on a coarse PD(3) space (unless p = ±q). However, in [28], we show
that Gg(p, q) contains a finite index subgroup isomorphic to the funda-
mental group of a compact 3-manifold with boundary.

Groups with too many coarsely non-separating Poincaré dual-
ity subgroups. By Corollary 7.14, if G is of type FP , and G � X
is a free simplicial action on a coarse PD(n) space, then there are
only finitely many conjugacy classes of coarsely non-separating maxi-
mal PD(n− 1) subgroups in G.

We now construct an example of a 2-dimensional group of type FP
which has infinitely many conjugacy classes of coarsely non-separating
maximal surface subgroups; this example does not fit into any of the
classes described above. Let S be a 2-torus with one hole, and let
{a, b} ⊂ H1(S) be a set of generators. Consider a sequence of embedded
loops γk ⊂ S which represent a + kb ∈ H1(S), for k = 0, 1, . . .. Let
Σ be a 2-torus with two holes. Glue the boundary torus of S × S1

homeomorphically to one of the boundary tori of Σ × S1 so that the
resulting manifold M is not Seifert fibered. Consider the sequence Tk ⊂
M of embedded incompressible tori corresponding to γk×S1 ⊂ S×S1 ⊂
M . Let L ⊂ π1(M) be the infinite cyclic subgroup generated by the
homotopy class of γ0. Finally, we let G be the double of π1(M) over the
cyclic subgroup L, i.e., G := π1(M) ∗L π1(M). Then, the reader may
verify the following:

1. LetHi ⊂ π1(M) ⊂ G be the image of the fundamental group of the
torus Ti for i > 0 (which is well-defined up to conjugacy). Then,
each Hi is maximal in G, and the Hi’s are pairwise non-conjugate
in G.

2. Each Hi ⊂ π1(M) coarsely separates π1(M) into precisely two
deep components.

3. For each i > 0, the subgroup Hi ⊂ π1(M) coarsely separates some
conjugate of L in π1(M).

4. It follows from 3 that Hi is coarsely non-separating in G for i > 0.
5. G is of type FP and has dimension 2.

Therefore, G cannot act freely simplicially on a coarse PD(3) space.
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10. Appendix: Coarse Alexander duality in brief

We will use terminology and notation from Section 2.

Theorem 10.1. Let X and Y be bounded geometry uniformly acyclic
metric simplicial complexes, where X is an n-dimensional PL manifold.
Let f : C∗(Y )→ C∗(X) be a chain map which is a a uniform embedding,
and let K ⊂ X be the support of f(C∗(Y )) ⊂ C∗(X). For every R, we
may compose the Alexander duality isomorphism A.D. with the induced
map on compactly supported cohomology:

(10.2) H̃n−k−1(X \NR(K)) A.D.−→ Hk
c (NR(K))

Hk
c (f)−−−−−→ Hk

c (Y );

we call this composition AR. Then,
1. For every R, there is an R′ so that

(10.3)
Ker(AR′) ⊂ Ker(H̃n−k−1(X −NR′(K))→ H̃n−k−1(X \NR(K))).

2. AR is an epimorphism for all R ≥ 0.
3. All deep components of X \ K are stable; their number is 1 +
rank(Hn−1

c (Y )).
4. If Y is an (n− 1)-dimensional manifold, then for all R, there is a
D so that any point in NR(K) lies within distance D of both the
deep components of X −NR(K).

The functions R′ = R′(R) and D = D(R) depend only on the geome-
try of X and Y (via their dimensions and acyclicity functions), and on
the coarse Lipschitz constant and distortion of f .

Proof.
Step 1. We construct a coarse Lipschitz chain map g : C∗(X) →

C∗(Y ) as follows. For each vertex x ∈ X, y ∈ Y , we let [x], [y] denote the
corresponding element of C0(X), C0(Y ). To define g0 : C0(X)→ C0(Y ),
we map [x] for each vertex x ∈ X ⊂ C0(X) to [y], where we choose a
vertex y ∈ Y ⊂ C0(Y ) for which the distance d(x,Support (f(y))) is
minimal, and extend this homomorphism Z-linearly to a map C0(X)→
C0(Y ). Now, assume inductively that gj : Cj(X) → Cj(Y ) has been
defined by j < i. For each i-simplex σ ∈ Ci(X), we define gi(σ) to
be a chain bounded by gi−1(∂σ) (where Support (gi(σ)) lies inside the
ball supplied by the acyclicity function of Y ). Using a similar inductive
procedure to construct chain homotopies, one verifies:

a) For every R, there is an R′ so that the composition

(10.4) C∗(NR(K))
g∗→ C∗(Y )→ C∗(K)→ C∗(NR′(K))

is chain homotopic to the inclusion by an R′-Lipschitz chain ho-
motopy with displacement < R′.



336 M. KAPOVICH & B. KLEINER

b) There is a D so that

C∗(Y )
f→ C∗(K)

g→ C∗(Y )

is a chain map with displacement at most D and g ◦ f is chain ho-
motopic to idC∗(Y ) by a D-Lipschitz chain map with displacement
< D.

Step 2. Pick R, and let R′ be as in (a) above. If

α ∈ Ker (Hk
c (NR′(K))

Hk
c (f)−−−−−→ Hk

c (Y )),

then, α is in the kernel of the composition

Hk
c (NR′(K))

Hk
c (f)−−−−−→ Hk

c (Y )
Hk

c (g)−−−−−→ Hk
c (NR(K))

which coincides with the restriction Hk
c (NR′(K))→ Hk

c (NR(K)) by (a)
above. Similarly, the composition

Hk
c (Y )

Hk
c (g)−−−−−→ Hk

c (NR(K))
Hk

c (f)−−−−−→ Hk
c (Y )

is the identity, so Hk
c (f) is an epimorphism. Applying the Alexander

duality isomorphism to these two assertions, we get parts 1 and 2.

Step 3. Let C be a deep component of X −K. Suppose C1, C2 are
deep components of X −NR(K) with Ci ⊂ C. Picking points xi ∈ Ci,
the difference [x1]− [x2] determines an element of H̃0(X−NR(K)) lying
in Ker (H̃0(X −NR(K))→ H̃0(X −K). Hence,

AR([x1]− [x2]) = A0(pR([x1]− [x2])) = A0(0) = 0

where pR : H̃0(X −NR(K)) → H̃0(X −K) is the projection. Since C1

and C2 are deep, for any R′ ≥ R, there is a c ∈ H̃0(X −NR′(K)) which
projects to [x1]− [x2] ∈ H̃0(X−NR(K)). But then AR′(c) = 0 and part
1 forces [x1] − [x2] = 0. This proves that C1 = C2, and hence that all
deep components of X−K are stable. The number of deep components
of X −K is

1 + rank (lim←−
R

H̃0(X −NR(K)),

and by part 1, this clearly coincides with 1+rank (Hn−1
c (Y )). Thus, we

have proved 2.

Step 4. To prove part 4, we let C1, C2 be the two deep components
of X −K guaranteed to exist by part 3. Pick x ∈ NR(K), and let R′
be as in part 1. Since f is coarse Lipschitz chain map, there is a y ∈ Y
with d(x,Support (f([y]))) < D1 whereD1 is independent of x (but does
depend on R). Choose a cocycle α ∈ Cn−1

c (Y ) representing the gener-
ator of Hn−1

c (Y ) which is supported in an (n − 1)-simplex containing



COARSE ALEXANDER DUALITY AND DUALITY GROUPS 337

y. Then, the image α′ of α under Cn−1
c (Y )

Cn−1
c (g)−→ Cn−1

c (NR′(K)) is a
cocycle supported in B(x,D2) ∩NR′(K) where D2 depends on R′, but
is independent of x. Applying the Alexander duality isomorphism to
[α′] ∈ Hn−1

c (NR′(K)), we get an element c ∈ C̃0(X −NR′(K)) which is
supported in B(x,D2 + 1)∩ (X −NR′(K)), and which maps under AR′

to [α] ∈ Hn−1
c (Y ).

Remark. The above Alexander duality isomorphism is ultimately in-
duced by taking the cap product with the fundamental class of H lf

n (X),
the locally finite homology group of X.

Picking xi ∈ Ci far from K, we have [x1] − [x2] ∈ H̃0(X − NR′(K))
and AR′([x1] − [x2]) = ±[α]. By part 1, it follows that the images of
c and [x1] − [x2] under the map H̃0(X −NR′(K)) → H̃0(X −NR(K))
coincide up to sign. In other words, support (c) ∩ Ci �= ∅, so we have
shown that d(x,Ci) < D2 for each i = 1, 2. q.e.d.

11. Appendix: Metric complexes

In this section, we discuss the definition of metric complexes, and
explain how one can modify statements and proofs from the rest of
the paper so that they work with metric complexes rather than metric
simplicial complexes.

We have several reasons for working with objects more general than
metric simplicial complexes. First of all, Poincaré duality groups are
not known to act freely cocompactly on acyclic simplicial complexes
(or even on simplicial complexes that are acyclic through dimension
n + 1). Second, many maps arising in our arguments (e.g., retraction
maps and chain maps associated with a uniform embedding) are chain
mappings which are not realizable using PL maps. Also, one would like
to have natural constructions like mapping cylinders for chain mappings
of geometric origin.

11.1. Metric complexes.

Definition 11.1. A metric space X has bounded geometry if there
is a constant a > 0 such that for every x, x′ ∈ X, we have d(x, x′) > a,
and for every R ≥ 0, every R-ball contains at most N = N(R) points.

We observe that this definition relates to the usual notion of a Rie-
mannian manifold of bounded geometry as follows. Recall that a com-
plete Riemannian manifold is said to have bounded geometry if its in-
jectivity radius is bounded away from zero and the sectional curvature



338 M. KAPOVICH & B. KLEINER

is bounded both from above and from below. For 0 < r < ∞, pick a
maximal r-net X ⊂ M in such a manifold and consider X as a metric
space with the metric induced from M . Then, the metric space X has
bounded geometry in the sense of the above definition.

In the remainder of this section, X and X ′ will denote bounded geom-
etry metric spaces.

A free module over X is a triple (M,Σ, p) where M is the free Z-
module with basis Σ, and Σ

p→ X is a map. (This definition can be
generalized to the category of projective modules M over X by consid-
ering the pair (M,supp) where supp : M → (bounded subsets of X) is
the support map for the elements m ∈ P .) We will refer to the space
X as the control space, and p as the projection map. A free module
over X has finite type if #p−1(x) is uniformly bounded independent of
x ∈ X. We will often suppress the basis Σ and the projection p in our
notation for free modules over X. A D-morphism from a free module
(M,Σ, p) over X to a free module (M ′,Σ′, p′) over X ′ is a pair (f, f̂)
where f : X → X ′ is a map, f̂ : M → M ′ is module homomorphism
such that for all σ ∈ Σ, f̂(σ) ∈ span((p′)−1(B(f(p(σ)),D)). A mor-
phism (f, f̂) is coarse Lipschitz (resp. a uniform embedding) if the map
of control spaces f is coarse Lipschitz (resp. a uniform embedding).
When X = X ′, we say that (f, f̂) has displacement (at most) D if
f = idX and (f, f̂) defines a D-morphism.

A chain complex over X is a chain complex C∗ where each Ci is a
free module over X, and the boundary operators ∂i : Ci → Ci−1 have
bounded displacement (depending on i). A chain map (resp. chain
homotopy) between a chain complex C∗ over X and a chain complex C ′∗
over X ′ is a chain map (resp. chain homotopy) C∗ → C ′∗ which induces
bounded displacement morphisms Ci → C ′i (resp. Ci → C(i+1)′) for
each i. Note that any chain complex over X has a natural augmentation
ε : C0 → Z which maps each element of Σ0 to 1 ∈ Z. A metric complex
is a pair (X,C∗) where

1. X is a bounded geometry metric space and C∗ is a chain complex
over X.

2. Each (Ci,Σi, pi) is a free module over X of finite type.
3. The projection map p0 is onto.

The space X is called the control space of the metric complex (X,C∗).

Example 11.2. If Y is a metric simplicial complex, we may define
two closely related metric complexes:

1. LetX be the zero-skeleton of Y , equipped with the induced metric.
We orient each simplex in Y , and let C∗ be the simplicial chain
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complex, where the basis Σi is just the collection of oriented i-
simplices. We then define the projection pi : Σi → X by setting
pi(σ) equal to some vertex of σ, for each σ ∈ Σi.

2. Let X ′ be the zero-skeleton of the first barycentric subdivision
Sd(Y ), equipped with the induced metric. We consider the sub-
complex of the singular chain complex of Y generated by the sin-
gular simplices of the form σ : ∆k → Y where σ is an affine
isomorphism from the standard k-simplex to a k-simplex in Y ;
these maps form the basis Σ′k for C ′k, and we define p′ : Σ∗ → X
by projecting each σ ∈ Σ∗ to its barycenter.

If C∗ is a chain complex over X, and W ⊂ C∗, then the support of
W , supp (W ), is the image under p of the smallest subset of Σ∗ whose
span contains W .

If K ⊂ X, we define the (sub)complex over K, denoted C[K], to be
the metric subcomplex (K,C ′∗) where the basis Σ′∗ for the chain complex
C ′∗ is the largest subset of Σ∗ such that p(Σ′∗) ⊂ K and span(Σ′∗) is a sub-
complex of the chain complex C∗. In other words, the triple (C ′i,Σ

′
i, p
′
i)

can be described inductively as follows. Start with Σ′0 = p−1
0 (K), and

inductively, let

Σ′i := {σ ∈ Σi | pi(σ) ∈ K and ∂i(σ) ∈ C ′i−1}.
By abusing notation, we shall refer to the homology groups H∗(C∗[K])
(resp. compactly supported cohomology groups) as the homology (resp.
compactly supported cohomology ) of K.

If L ⊂ X, then [C∗(L)]k, the “k-skeleton of C∗ over L”, is defined as
the k-truncation of C∗[L]:

C0[L]← C1[L]← · · · ← Ck[L].

If (X,C∗) is a metric complex, K ⊂ X, then we have a chain complex
C∗[X,K] (and hence homology groups H∗[X,K]) for the pair [X,K]
defined by the formula C∗[X,K] := C∗[X]/C∗[K]. Likewise, we may
define the cochain complexes

C∗[X,K] := Hom (C∗[X,K],Z)

and cohomology of pairs H∗[X,K]. The compactly supported cochain
complex C∗c [X,L] of [X,L] is the direct limit limH∗[X,X − K] where
K ⊂ X ranges over compact subsets disjoint from L. The compactly
supported cochain complex is clearly isomorphic to the subcomplex of
C∗[X,L] consisting of cochains α with α(σ) = 0 for all, but finitely many
σ ∈ Σ∗. The support of α ∈ C∗[X] is {p∗(σ) | σ ∈ Σ∗, α(σ) �= 0}. Note
that there is a constant D depending on k such that for all α ∈ Ck[X,L],
we have Supp (α) ⊂ ND(X − L).
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If K ⊂ X, we define an equivalence relation on p−1
0 (K) ⊂ Σ0 by

saying that σ ∼ σ′ if σ − σ′ is homologous to zero in C∗[K]. We call
the equivalence classes of the relation the components of K. By abusing
notation, we will also refer to the projection of such component to X is
called a “component” of K. Note that uniform 0-acyclicity of (X,C∗)
implies that there exists r0 > 0 so that for each “component” L ⊂ K,
there exists a component of C0[Nr0(L)] which contains C0[L].

With this in mind, deep components of X − K, stable deep com-
ponents and coarse separation in X are defined as in Section 2. For
instance, a component L ⊂ Σ0 of X − K is deep if p0(L) is not con-
tained in NR(K) for any R.

The deep homology classes and stabilization of the deep homology of
the complement X −K are defined similarly to the case of metric sim-
plicial complexes.

The relation between the deep components and the deep 0-homology
classes is the same as in the case of metric simplicial complexes.

If [σ] ∈ HDeep
0 (C∗[X − K]) and σ ∈ Σ0, then σ belongs to a deep

component of X−K and this component does not depend on the choice
of σ representing [σ]. Vice-versa, if L ⊂ Σ0 is a deep component of X−
K, then each ξ ∈ Span (L) determines an element of HDeep

0 (C∗[X−K]).
The deep homology HDeep

0 (C∗[X − NR(K)]) stabilizes at R0 iff all
deep components of X −NR0(K) are stable.

Note also that for each k ∈ Z+, there exists r > 0 so that the following
holds for each K ⊂ X:

Suppose that Lα ⊂ X, α ∈ A, is a collection of “components” of
X −K so that d(Lα, Lβ) ≥ r for all α �= β. Then,

[C∗(∪α∈ALα)]k = ⊕α∈A[C∗(Lα)]k.

An action of a group G on a metric complex (X,C∗) is a pair (ρ, ρ̂)

where G
ρ

� X and G
ρ̂
� Σ∗ are actions, ρ̂ induces an action G � C∗ by

chain isomorphisms, and p∗ : Σ∗ → X is G-equivariant with respect to
ρ and ρ̂. For many of our results, a more general notion of action (or
quasi-action) would suffice here. An action G � (X,C∗) is free (resp.
discrete, cocompact) provided the action G

ρ
� X is free (resp. discrete,

cocompact). We can identify C∗c [X] with Hom ZG(C∗,ZG) whenever G
acts freely cocompactly on a metric complex (X,C∗), [12, Lemma 7.4].

We say that a metric complex (X,C∗) is uniformly k-acyclic if for
each R, there is an R′ = R′(R) such that for all x ∈ X, the inclusion

C∗[B(x,R)]→ C∗[B(x,R′)]
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induces zero in reduced homology H̃j for all j = 0 . . . k. We say that
(X,C∗) is uniformly acyclic if it is uniformly k-acyclic for every k. Ob-
serve that a group G acts freely cocompactly on a uniformly (k − 1)-
acyclic metric complex iff it is a group of type FPk, and it acts freely
cocompactly on a uniformly acyclic metric complex iff it is a group of
type FP∞.

The next lemma implies that for uniformly 0-acyclic metric complexes
(X,C∗), the metric space X is “uniformly properly equivalent” to a
path-metric space.

Lemma 11.3. Suppose (X,C∗) is a uniformly 0-acyclic metric com-
plex. For any subset Y ⊂ X and any r > 0, let Gr(Y ) be the graph
with vertex set Y , with y, y′ ∈ Y joined by an edge iff d(y, y′) < r. Let
dGr : Y ×Y → Z∪{∞} be the combinatorial distance in Gr (the distance
between points in the distinct components of Gr is infinite). Then, the
following hold:

1. Let r0 be the displacement of ∂1 : (C1,Σ1, p1) → (C0,Σ0, p0). If

r ≥ r0, then (X, dGr )
idX→ (X, d) is a uniform embedding (here,

Gr = Gr(X)). In particular, dGr(x, x′) <∞ for all x, x′ ∈ X.
2. For all R, there exists R′ = R′(R) such that if σ, σ′ ∈ Σ0, d(p0(σ),
p0(σ′)) ≤ R and K ⊂ X, then either σ and σ′ belong to the same
component of X −K, or d(p0(σ),K) < R′ and d(p0(σ′),K) < R′.

Proof. Pick r ≥ r0. To prove 1, it suffices to show that for all R,
there is an N such that if d(x, x′) < R, then dGr(x, x′) < N .

Pick R and x, x′ ∈ X with d(x, x′) < R. Choose σ ∈ p−1
0 (x) and

σ′ ∈ p−1
0 (x′). By the uniform 0-acyclicity of X, there is an R′ = R′(R)

such that σ − σ′ represents zero in H0[B(x,R′)]. So

σ − σ′ =
∑

aiτi

where τi ∈ p−1
1 (B(x,R′)) and ∂τi ∈ C0[B(x,R′)] for all i. Let Z ⊂ X

be the set of vertices lying in the same component of Gr(B(x,R′)) as
x. Then, ∑

τi∈p−1
1 (Z)

ai∂1τi

has augmentation zero, forcing σ′ ∈ p−1
0 (Z). It follows that dGr(x, x′) ≤

#B(x,R′) ≤ N = N(R).
Part 2 follows immediately from the uniform 0-acyclicity of X. q.e.d.

Recall that if X is a metric space and d ∈ [0,∞), the Rips complex
RipsD(X) is defined as follows: The vertices of RipsD(X) are points in
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X. Distinct points x0, x1, . . . , xn ∈ X span an n-simplex in RipsD(X) if

d(xi, xj) ≤ D, ∀ 0 ≤ i, j ≤ n.
Note that Rips0(X) = X. Then, for r ≤ R, we have a natural embed-
dings

Ripsr(X)→ RipsR(X).
We metrize each connected component of RipsD(X) by using the path
metric so that each simplex is isometric to the regular Euclidean simplex
with edges of the unit length.

Suppose that X is a bounded geometry metric space, consider the
sequence of Rips complexes

X → Rips1(X)→ Rips2(X)→ Rips3(X)→ · · ·
of X. Then arguing analogously to the proof of Lemma 5.10, one proves

Proposition 11.4. X is the control space of a uniformly acyclic
complex C∗ iff the sequence of Rips complexes Ripsj(X) is uniformly
pro-acyclic.

Using the above definitions, one can translate the results from Sec-
tions 2 and 5 into the language of metric complexes by

1. Replacing metric simplicial complexes X with metric complexes
(X,C∗).

2. Replacing simplicial subcomplexes K ⊆ X with subsets of the
control space X.

3. Replacing tubular neighborhoods NR(K) of simplicial subcom-
plexes of metric simplicial complexes with metric R-neighborhoods
NR(K) of subsets K of the control space X.

4. Replacing the simplicial chain complex C∗(K) (resp. C∗c (K)) with
C∗[K] (resp. C∗c [K]), and likewise for homology and compactly
supported cohomology.

5. Replacing coarse Lipschitz and uniform embeddings (resp. chain
maps, chain homotopies) with coarse Lipschitz and uniform em-
beddings (resp. chain maps, chain homotopies) of metric com-
plexes.

11.2. Coarse PD(n) spaces. A coarse PD(n) space is a uniformly
acyclic metric complex (X,C∗) equipped with chain maps

(X,C∗c ) P→ (X,Cn−∗) and (X,C∗)
P̄→ (X,Cn−∗

c )

over idX , and chain homotopies P̄ ◦ P Φ∼ id and P ◦ P̄ Φ̄∼ id over idX .
As with metric simplicial complexes, we will assume implicitly that

any group action G � (X,C∗) on a coarse PD(n) space commutes with
P, P̄ , Φ, and Φ̄.
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Remark 11.5. Most of the results only require actions to commute
with the operators P and P̄ up to chain homotopies with bounded
displacement (in each dimension).

It follows from our assumptions that if G � (X,C∗) is a free action
on a coarse PD(n) space, then the cohomological dimension of G is ≤ n:
for any ZG-module M , we may compute H∗(G;M) using the cochain
complex Hom ZG(C∗,M) which is ZG-chain homotopy equivalent to the
complex Hom ZG(Cn−∗

c ,M), which vanishes in dimensions > n.

Example 11.6. Suppose G is a PD(n) group. Then (see [12]), there
is a resolution

0← Z← A0 ← A1 ← · · ·
of Z by finitely generated free ZG-modules, ZG-chain mappings

A∗
P̄→ Hom ZG(An−∗,ZG)

and HomZG(An−∗,ZG) P→ A∗, and ZG-chain homotopies P ◦ P̄ Φ∼ id

and P̄ ◦ P Φ̄∼ id. For each i, let Σ̄i be a free basis for the ZG-module
Ai, and let

Σi := {gτ | g ∈ G, τ ∈ Σ̄i} ⊂ Ai.

Define a G-equivariant map pi : Σi → G by sending gτ ∈ Σi to g,
for every g ∈ G, τ ∈ Σ̄i. Then, (Ai,Σi, pi) is a free module over G
(equipped with a word metric and regarded here as a metric space)
for each i, and the pair (G,A∗) together with the maps P, P̄ , Φ, Φ̄
define a coarse PD(n) space on which G acts freely cocompactly (recall
that Hom ZG(A∗,ZG) � A∗c). Conversely, if G � (X,C∗) is a free
cocompact action of a group G on a coarse PD(n) space, then G is FP∞,
cdim(G) ≤ n (by the remark above), and the existence of the duality
operators implies that Hk(G,ZG) = {0} for k �= n and Hn(G,ZG) � Z;
these conditions imply that G is a PD(n) group [12, Theorem 10.1]

Remark 11.7. If G � X is any group acting freely on a coarse
PD(n) space (X,C∗), then dim(G) ≤ n. To prove this, note that we
can use the action G � C∗ to compute the cohomology H∗(G;M) of
G. Then, the ZG-chain homotopy equivalence C∗ ↔ C∗c implies that
Hk(G;M) = 0 for k ≥ n.

The material from Sections 6 and 7 now adapts in a straightforward
way to the more general setting of coarse PD(n)-spaces, with the caveat
that the displacement, distortion function, etc, may depend on the di-
mension (since the chain complexes will be infinite dimensional in gen-
eral). For instance, we have the coarse Jordan separation theorem
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Theorem 11.8. Let (X, C∗) and (X ′, C∗) be coarse PD(n) and
PD(n− 1) spaces respectively, and let g : X ′ → X be a uniform embed-
ding. Then

1. g(X ′) coarsely separates X into (exactly) two components.
2. For every R, each point of NR(g(X ′)) lies within uniform distance

from each of the deep components of YR := X −NR(g(X ′)).
3. If Z ⊂ X ′, X ′ �⊂ NR(Z) for any R and h : Z → X is a uniform

embedding, then h(Z) does not coarsely separate X. Moreover,
for any R0, there is an R1 > 0 depending only on R0 and the
geometry of X,X ′, and h such that precisely one component of
X −NR0(h(Z)) contains a ball of radius R1.

11.3. The proof of Theorem 1.1. We now explain how to modify
the main argument in Section 8 for metric complexes.

For simplicity, we will assume that Σ0 = X. One can reduce to this
case by replacing the X with Σ0, and modifying the projection maps pi

accordingly (in a G-equivariant fashion).
The direct translation of the proof using the rules 1–5 above applies

until Lemma 8.5. The only part of the lemma that is needed later is
part 2, so we explain how to deduce this.

First, note that the system {H̃0(YR,α)} is approximately zero as be-
fore. Likewise, for every k, the k-skeleton of the chain complex C∗(YR)
decomposes as a direct sum ⊕β[C∗(YR,β)]k for R sufficiently large, since
the distance between the subsets YR,β for different β tends to infinity
as R → ∞ by Lemma 11.3. This implies that as before, {Hj(YR,α)} is
approximately zero for every j.

Let

r0 := displacement(∂1 : (C1,Σ1, p1)→ (C0,Σ0, p0)).

We now claim that for each R, there is an R′ such that NR(Cβ) is
contained in Cβ∪NR′(K). (Here and below, Cβ ⊂ X are the components
of X − NR0(K) following the notation of Section 8.) To see this, pick
x ∈ Cβ, x′ ∈ X with d(x, x′) ≤ R, and apply part 1 of Lemma 11.3 to
get a sequence x = x1, . . . , xj = x′ with d(xi, xi+1) ≤ r0 and j ≤ M =
M(R). By Lemma 11.3, either xj ∈ Cβ (and we are done) or there is
an i such that d(xi, ND(K)) < r = r(r0). In the latter case, we have
x′ ∈ Nr+Mr0(K), which proves the claim.

Following the proof of Lemma 8.5, there is an R0 such that for
R ≥ R0, we have ZR,α = NR(K) ∪ (∪β 	=αCβ). From the claim in the
previous paragraph, it now follows that for every R ≥ R0, there is an R′
such that ZR,α ⊂ NR′(ZR0,α) and NR(ZR0,α) ⊂ ZR′,α. Therefore, the
homology and compactly supported cohomology of the systems {ZR,α}
and {NR(ZR0,α)} are approximately isomorphic, and similar statements
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also apply to the complements of these systems. Part 2 of Lemma 8.5
now follows from coarse Alexander duality.

The only issue in the remainder of the proof that requires different
treatment for general metric complexes is the application of Mayer–
Vietoris sequences for homology and compactly supported cohomology.
If (X,C∗) is a metric complex, and X = A∪B, then the Mayer–Vietoris
sequences

→ Hk[A ∩B]→ Hk[A]⊕Hk[B]→ Hk(X) ∂→ Hk−1[A ∩B]→
→ Hk−1

c [A ∩B] δ→ Hk
c [X]→ Hk

c [A]⊕Hk
c [B]→ Hk

c [A ∩B]→
need not be exact in general. By the Barratt–Whitehead Lemma [21,
Lemma 7.4], in order for the sequences to be exact through dimension
k, it suffices for the inclusion of pairs (B,A∩B)→ (X,A) to induce iso-
morphisms in homology and compactly supported cohomology through
dimension k+2. One checks that there is a constant r = r(k) (depending
on the displacements of the boundary operators ∂1, . . . , ∂k+1) such that
this will hold provided d(A−B,X−A) ≥ r. So, the proof of Lemma 8.6
goes through provided one chooses the numbers R1 ≤ . . . ≤ RM to be
well enough separated that the Mayer–Vietoris sequences hold through
the relevant range of dimensions.

11.4. Attaching metric complexes. Suppose that Y ⊂ X is a pair
of spaces of bounded geometry so that the inclusion Y → X is a uniform
embedding.

Let P,Q be metric complexes over X and Y respectively:

Q : 0← Z← Q0 ← Q1 ← · · · ← Qn ← · · · ,
the complex

P : 0← Z← P ′0 ⊕ P ′′0 ← P ′1 ⊕ P ′′1 · · · ← P ′n ⊕ P ′′n ← · · ·
has the boundary maps ∂′j ⊕ ∂′′j : Pj → P ′j−1 ⊕ P ′′j−1, where

P ′ : 0← Z← P ′0 ← P ′1 · · · ← P ′n ← · · ·
is a subcomplex over Y . Let φ : P ′ → Q,φj : P ′j → Qj, j = 0, 1, . . . ,
be a chain map over Y , called the “attaching map.” We will define a
complex R = Att (P,Q, φ) determined by “attaching” P to Q via φ;
the complex R will be a metric complex over X. This construction is
similar to attaching a cell complex A to a complex B via an attaching
map f : C → B, where C is a subcomplex of A.

We let Rj := P ′′j ⊕ Qj , this determines free generators for Rj; the
boundary map ∂j : Rj → Rj−1 = P ′′j−1 ⊕Qj−1 is given by

∂|P ′′ := ∂′′ ⊕ (φ ◦ ∂′),
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the restriction of ∂ to Q is the boundary map ∂Q of the complex Q.
(It is clear that ∂ ◦ ∂ = 0.) The control maps to X are defined by
restricting the control map for P to the (free) generators of P ′′j and
using the control map of Q for the (free) generators of Qj.

The following lemma is straightforward and is left to the reader.

Lemma 11.9. Suppose that we are given a complex P over X, com-
plexes Q,T over Y , a chain homotopy-equivalence h : Q → T and
attaching maps φ : P ′ → Q,ψ : P ′ → T are such that ψ = h ◦ φ,
where all the chain homotopies in question have bounded displacement
≤ Const (j). Then, the metric complexes Att (P,Q, φ),Att (P, T, ψ) are
chain homotopy-equivalent with bounds on the displacement of the chain
homotopy depending only on Const (j).

11.5. Coarse fibrations. The goal of this section is to define a class of
metric spaces W which are “coarsely fibered” over coarse PD(n) metric
simplicial complexes X so that the “coarse fibers” Yx are control spaces
of PD(k) spaces. We will show that under a mild restriction on the
base X and the fibers Yx, the metric space W is the control space of a
coarse PD(n+ k) space.

Suppose that X is an n-dimensional metric simplicial complex equip-
ped with an orientation of its 1-skeleton, and L, A ∈ R. Assume that
for each vertex x ∈ X(0), we are given a metric space Yx, and (L,A)-
quasi-isometries fpq : Yp → Yq for each positively oriented edge [pq] in
X. We will assume that each Yx is the control space of a metric complex
(Yx, Qx) where the complexes Qx are uniformly acyclic (with acyclicity
function independent of x); in particular, there exists C < ∞ so that
the C-Rips complex of each Yx is connected.

Remark. For much of what follows, the assumption that the acyclic-
ity function of Qx is independent of x can be relaxed.

It follows that fpq induce morphisms f̂pq : Qp → Qq which are uni-
form embeddings and uniform chain homotopy-equivalences with the
displacements independent of p, q.

The family of maps fpq : Yp → Yq together with the metric on X de-
termine a metric space W = W (X, {Yp}, {fpq}) which “coarsely fibers”
over X with the fibers Yp:

As a set, W is the disjoint union �x∈X(0)Yx. Declare the distance
between y, fpq(y) (for each y ∈ Yp) equal 1 and then induce the quasi-
path metric on W by considering chains where the distance between the
consecutive points is at most max(C, 1). It is clear that W has bounded
geometry.
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The reader will verify that the maps Yp → W are uniform em-
beddings, where the distortion functions are independent of p. Let
projX : W → X denote the “coarse fibration”; projX : Yx → {x}.

Example 11.10. Suppose that we have a short exact sequence

1→ H → G→ K → 1

of finitely generated groups where the group H has type FP. This exact
sequence determines a coarse fibration with the total space G, base K
and fibers H × {k}, k ∈ K. (Each group is given a word metric.)

Example 11.11. The following example appears in [33]. Suppose
that, we have a graph of groups Γ := {Gv , hvw : Ee− → Ee+}, where
Gv are vertex groups, Ee± are the edge subgroups for the edge e; we
assume that each edge group Ee± has type FP and each edge group
has finite index in the corresponding vertex group. Let G = π1(Γ) be
the fundamental group of this graph of groups, L ⊂ T be a geodesic in
the tree T dual to the graph of groups Γ. There is a natural projection
p : G → T , let W := p−1(L). Then, W can be described as a coarse
fibration whose base consists of the vertices of L and whose fibers are
copies of the edge groups.

Examples of the above type as well as a question of Papasoglou mo-
tivate constructions and the main theorem of this section.

Our next goal is to define a metric complex R with the control space
W . We define the complex R inductively.

Let R0 := ⊕x∈X(0)Qx. The (free) generators of R0 are the free genera-
tors of Qx, x ∈ X(0). Define the control map to W by sending generators
of (Qx)0 to the points of Yx via the control map for the complex Qx.

Orient each edge e ⊂ X(1), e = [e−e+]. To construct R1, first consider
the complex P 1 := ⊕e∈X(1)C∗(e)⊗Qe− . We have the attaching map φ1

φ1 : ⊕e∈X(1)C∗(∂e)⊗Qe− ⊂ P 1 → R0

given by the identity maps

C0(e−)⊗Qe− → C0(e−)⊗Qe− ⊂ R0

and by

C0(e+)⊗Qe− → Qe−
f̂e−e+→ Qe+ .

We then define R1 as Att (P 1, R0, φ1) by attaching P 1 to R0 via φ1,
see Section 11.4. Note that Att (C∗(e)⊗Qe− , R

0, φ1) is nothing but the
mapping cone of the restriction of φ1 to C∗(e)⊗Qe− .
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Let x0 be any point in X(0). Then, using uniform acyclicity of Qx’s
and Lemma 11.9, one constructs (inductively, by attaching one C∗(e)⊗
Qe− at a time) a proper chain homotopy-equivalence

R1 h→ C∗(X(1))⊗Qx0

h̄→ R1

with uniform control of the displacement of h, h̄, h◦ h̄ ∼= id, h̄◦h ∼= id as
functions of the distance from projX(supp (σ)) to x0. These displace-
ment functions are independent of x0.

We continue inductively. Suppose that we have constructed Rm. We
also assume that for each x0 ∈ X(0), there is a proper chain homotopy-
equivalence

Rm h→ C∗(X(m))⊗Qx0

h̄→ Rm

with uniform control of the displacement for the chain homotopies h◦h̄ ∼=
id, h̄ ◦ h ∼= id as functions of the distance from projX(supp (σ)) to x0.
(Here, h = hx0 , h̄ = h̄x0 depend on x0 and m.) These displacement
functions are independent on x0.

For each m+1-simplex ∆m+1 in X, we choose a vertex v = v(∆m+1).
We define Pm+1 as

⊕∆m+1∈X(m+1)C∗(∆)⊗Qv(∆m+1).

Note that we have the maps C∗(∂∆)⊗Qv(∆m+1) → Rm constructed using
the maps h̄v. These maps composed with ∂ ⊗ id define the attaching
maps

φm+1 : Pm+1 → Rm.

Now, we define the complex Rm+1 as

Att (Pm+1, Rm, φm+1).

The proper chain homotopy-equivalences

Rm+1 h→ C∗(X(m+1))⊗Qx0

h̄→ Rm+1

are constructed using uniform acyclicity of Qx’s, the induction hypoth-
esis and Lemma 11.9.

As the result, we get the complex R := Rn which is a metric complex
over W . We also get the proper chain homotopy-equivalences hv, h̄v

between R and C∗(X) ⊗ Qv (v ∈ X(0)) with uniform control over the
displacement of the chain homotopies hv ◦ h̄v

∼= id, h̄v ◦ hv
∼= id as

functions of the distance from projX(supp (σ)) to v. These functions in
turn are independent of v.

Lemma 11.12. Assume that the complexes X, Hom c(Qx,Z) and
Hom c(C∗(X),Z) are uniformly acyclic. Then, the metric chain com-
plexes R and Hom c(R,Z) are also uniformly acyclic.
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Proof. The Künneth formula for C∗(X) ⊗ Qv implies the acyclicity
of the chain and cochain complexes. Uniform estimates follow from
uniform control on the chain homotopies hv ◦ h̄v

∼= id, h̄v ◦ hv
∼= id

above. q.e.d.

Recall that if we have an exact sequence of groups

1→ A→ B → C → 1

where A and C are PD(n) and PD(k) groups respectively, then B is a
PD(n+ k) group. The following is a geometric analogue of this fact.

Theorem 11.13. Assume that X is an n-dimensional metric sim-
plicial complex which is a coarse PD(n)-space and that each Qx is a
coarse PD(k) metric complex of dimension k:

0← Z← Qx,0 ← Qx,1 ← · · · ← Qx,k ← 0.

Then, the metric complex R, whose control space is the coarse fibration

W = W (X, {Yp}, {fpq}),
is a PD(n+ k) metric complex of dimension n+ k.

Proof. By construction, the complex R has dimension n + k. The
complexes X, Cc(X,Z), Hom c(Qx,Z) are uniformly acyclic. It now
follows from Lemma 11.12 and Lemma 6.2 that R is a coarse PD(n+k)
complex. We note that Lemma 6.2 was stated for metric simplicial
complexes. The proof for metric complexes is the same. q.e.d.

Remark 11.14. A version of this theorem was proven in [33], where
it was assumed that X is a contractible surface and the fibers Yx are
PD(n) groups each of which admits a compact Eilenberg–MacLane
space. Under these conditions, Mosher, Sageev and Whyte [33] prove
that W is quasi-isometric to a coarse PD(n+ k) space.
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