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HITCHIN’S CONNECTION
AND DIFFERENTIAL OPERATORS WITH VALUES

IN THE DETERMINANT BUNDLE

Xiaotao Sun & I-Hsun Tsai

Abstract

For a family of smooth curves, we have the associated family
of moduli spaces of stable bundles with fixed determinant on the
curves. There exists a so called theta line bundle on the family of
moduli spaces. When the Kodaira–Spencer map of the family of
curves is an isomorphism, we prove in this paper an identification
theorem between sheaves of differential operators on the theta line
bundle and higher direct images of vector bundles on curves. As
an application, the so called Hitchin’s connection on the direct
image of (powers of) theta line bundle is derived naturally from
the identification theorem. A logarithmic extension of Hitchin’s
connection to certain singular stable curves is also presented in
this paper.

1. Introduction

Let M be a smooth variety over any algebraically closed field of char-
acteristic zero and S → M be a smooth, flat morphism. For a smooth
family π : X → S of curves and a vector bundle E on X, A. Beilin-
son and V. Schechtman defined in [3] (see also [4]) the so-called trace
complexes trA•

E/M, trA•
E on X, together with algebra structures on

them, such that R0π∗( trA•
E/M), R0π∗( trA•

E) are canonically isomor-
phic to the Atiyah algebras AλE/M, AλE

of the determinant bundle
λE = detRπ∗E of the family (see Proposition 3.3 for details), where
AλE

, as a sheaf on S, is just D≤1
S (λE), the sheaf of differential operators
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of order ≤ 1 with values in λE, and similarly AλE/M ⊂ AλE
corresponds

to relative differential operators. It is generalized by Y.-L. Tong and the
second author ([19]) to the families π : X̃ → S̃ of stable curves. In this
paper, we prove firstly, under the assumption that Kodaira–Spencer
maps of the families are isomorphisms, one can canonically produce lo-
cally free sheaves GE , S(GE) on X (resp. on X̃) instead of the above
trace complexes such that one has identification theorem

Theorem 1.1.

(i) If E is fiberwise stable and the Kodaira–Spencer map KS : TS/M →
R1π∗(E) is an isomorphism, where E := End0(E) is the trace free
part of End(E), then there exists a canonical isomorphism

φ : R1π∗(GE) ∼= D≤1
S/M(λE).

(ii) If KSS : TS → R1π∗A0
E/S is an isomorphism, then (after shrinking

M enough) φ extends to an isomorphism (cf. Theorem 2.5 for
details)

φ = φ−λ : R1π∗S(GE) ∼= D≤1
S (λE).

The most technical part of this paper is devoted to proof of the iden-
tification theorem and its generalization to stable curves π : X̃ → S̃
(cf. Theorem 2.13). There is an interesting example of the families
S → M, π : X → S which satisfy the assumptions in our theorem. Let
C → M be a family of smooth curves of genus g ≥ 2 and f : S → M
be the associated family of moduli spaces of stable bundles of rank
r ≥ 2 with a fixed determinant. Let π : X = C ×M S → S, E a
universal bundle on X. Then, KS : TS/M → R1π∗(E) is an isomor-
phism. If, furthermore, for any b ∈ M, TM,b

∼= H1(Cb, TCb
), then

KSS : TS → R1π∗A0
E/S is an isomorphism (cf. Proposition 4.5). A

family C → M as such (called good family for convenience) does ex-
ist in algebraic category of characteristic zero (in fact, M is a moduli
space of curves with level structures, which is a finite Galois cover of
the moduli space Mg of curves). We will fix such a family in (the
most part of) this paper. Let Θ be the theta line bundle on S and,
for any k, write Θk = λµ

E
for some µ ∈ Q. Then, our identification

theorem gives immediately a new construction of Hitchin’s connection
on Vk = f∗(Θk).
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Corollary 1.2. There exists a unique projective heat operator,

H : TM → f∗D≤2
S (Θk)/OM,

which lifts Hitchin’s symbol map f∗δH : TM → f∗S2TS/M.

The construction of the above heat operator is purely algebraic by
playing diagram game. The map δH : f∗TM → S2TS/M is a con-
necting map in a long exact sequence of cohomologies, which coincides
with Hitchin’s symbol map over complex number field. The reason
we restrict ourselves in characteristic zero is: the theory of Beilinson–
Schechtman (thus our identification theorem) is in characteristic zero.
On the other hand, Tsuchiya–Ueno–Yamada [20] construct a confor-
mal block space associated to each pointed-stable curve, these spaces
form a vector bundle on the moduli space of stable curves. They also
construct a logarithmic projective connection (WZW connection) on
this vector bundle of conformal blocks. It is proved that the algebro-
geometric analogues of conformal block spaces for smooth curves are
the spaces of global sections of Θk. Laszlo [13] proves that on the
moduli space Mg,1 of smooth curves with a point Hitchin’s connection
coincides with the WZW connection (note that Mg,1 is of dimension
larger than our M). However, for singular stable curves, the algebro-
geometric analogues of conformal block spaces are still unknown (by our
knowledge). One reason, among others, is simply that degeneration
of moduli spaces of stable SL(r)-bundles is still an open problem (cf.
[6], [7] for comments on this problem). Thus, it seems to us that a
geometrically meaningful extension of Vk = f∗(Θk) to the boundary
with logarithmic connection would be interesting. Indeed, the question
of studying the behaviour of spaces of generalized theta functions un-
der degeneration of the curves was already mentioned in [10], p. 350,
and the question of studying the (logarithmic) extension of the connec-
tion was asked in an unpublished manuscript of Beilinson and Kazhdan
[1], p. 27, where they produced the connection for the case of smooth
curves.

Let S̃, M̃ be smooth varieties and B = M̃ \M be a normal crossing
divisor. Let f̃ : S̃ → M̃ be a smooth flat morphism, π : X̃ → S̃ be
a family of stable curves and E a fiberwise stable vector bundle on X̃ .
Let W = f̃−1(B) ⊂ S̃. Then, the logarithmic identification theorem can
be proved similarly as in the smooth case.
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Theorem 1.3.

(i) If KS : T
�S/�M →R1π∗(E) is an isomorphism, where E := End0(E),

then there exists a canonical isomorphism

φ : R1π∗(GE) ∼= D≤1
�S/�M(λE).

(ii) If KS
�S

: T
�S
(logW ) → R1π∗A0

E/�S
(logD) is an isomorphism, then

(after shrinking M̃ enough) φ extends to an isomorphism (cf. The-
orem 2.13 for details)

φ = φ−λ : R1π∗S(GE) ∼= D≤1
�S

(λE)(logW ).

If C̃ → M̃ is a family of stable curves, let U(r, d) → M̃ be the family
of moduli spaces of semistable (for canonical polarization) torsion free
sheaves of rank r and degree d. Fix a line bundle N on C̃ of relative
degree d, let f : S → M be the family of moduli spaces of stable bundles
of rank r with fixed determinant N|C ([C] ∈ M). Let Z ⊂ U(r, d) be the
Zariski closure of S in U(r, d) and fZ : Z → M̃ the induced morphism.
Let f̃ : S̃ ⊂ Z → M̃ be the open set of Z consisting of stable bundles.
Let π : X̃ = C̃ ×M S̃ → S̃ and E the universal bundle on X̃. Note that
for general reducible stable curves C̃b (b ∈ B), the (open) moduli spaces
f̃−1(b) has not been well understood yet, and in particular, we do not
know if the Kodaira–Spencer map in Theorem 1.3, (i) is an isomorphism.
On the other hand, it is better understood for those irreducible stable
curves and reducible stable curves whose dual diagrams are trees. Thus,
we will assume in this paper that the singular fibers of C̃ → M̃ are
(irreducible or reducible) stable curves with only one node. Then f̃ :
S̃ → M̃ is smooth and the Kodaira–Spencer map in Theorem 1.3, (i)
is an isomorphism (cf. Lemma 4.4). Let M̃g be the moduli space of
stable curves with level structures as in Looijenga’s paper [14], with the
universal family Π : C̃ → M̃g. On a neighbourhood of m ∈ M̃g, the
family is the versal deformation of C̃m. In particular, KS : T

�M(B) →
R1Π∗ω−1

�C/�M is an isomorphism, which implies that the Kodaira–Spencer

map in Theorem 1.3, (ii) is an isomorphism (cf. Proposition 4.5). We
will fix M̃ ⊂ M̃g consisting of stable curves with at most one double
point and also fix the family C̃ → M̃ in this paper. It is known that
B = M̃ \M is a normal crossing divisor (cf. [14]).



HITCHIN’S CONNECTION AND 2ND ORDER OPERATORS 339

Corollary 1.4. There exists a unique projective heat operator

H̃ : T
�M(B) → f̃∗D≤2

�S
(Θk)/O

�M

that lifts Hitchin’s symbol map (in the extended sense) f̃∗δH : T
�M(B) →

f̃∗S2T
�S/�M. Moreover, f̃∗(Θk) is a coherent sheaf on M̃.

After defining the extended Hitchin’s symbol map, the proof goes
through by using the logarithmic version of identification theorem. It
is important that the vanishing of R1f∗OS is not needed in our proof
both for smooth case and singular case (so that our method can be
extended to some stable curves, where such a vanishing may not hold).
The non-trivial part is the proof of coherence of f̃∗(Θk) on M since
f̃ : S̃ → M̃ is not proper. To prove it, we prove (cf. Proposition 4.9)
that the fibres of f̃ : S̃ → M̃ is dense in the fibres of fZ : Z → M̃, which
partially confirms a conjecture of Nagaraj and Seshadri (cf. Conjecture
(a) at page 136 of [15]). We believe that such a coherent extension
remains true on M̃g of all stable curves; this is not, however, proved
in the present paper. On the other hand, if it can be proved that the
compactification Z is Cohen–Macaulay with vanishing H1(f−1

Z (b),Θk)
(b ∈ B), then the coherent extension is a vector bundle whose fibers
are spaces of generalized theta functions on certain moduli spaces. This
seems to be true for rank two case.

Basically, our approach works equally well for both the general case
[10] (g ≥ 3) and special cases (e.g., g = 2 and r = 2) [9], with the
difference arising from the fact that in g = r = 2 case, our approach shall
work with a Quot scheme Rss which has a good quotient Rss → S where
S is the family of moduli spaces of S-equivalence classes of semistable
vector bundles. As this will introduce additional details, we leave the
case g = r = 2 to future discussions.

Hitchin remarked in [10], p. 350, “Many aspects of the connection
have so far resisted attack by the methods presented here...”. Besides
the degeneration problem treated here, it seems that two major prob-
lems remain poorly understood (i) the unitary structure of the connec-
tion, (ii) (local) monodromy representation of the connection, although
there are discussions on these problems in the literature. For (ii), we
refer to [9] for interesting results for g = r = 2 case along the line of
Hitchin’s approach; for comments on more general cases, see [9], Section
4.5 and references therein. We content ourselves by remarking that the
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methods for studying the monodromy representation (of the mapping
class group) have largely been confined to those of topology and con-
formal field theory. An algebro-geometric picture is still lacking for the
understanding (note that [9] merely found local monodromy representa-
tion; “local” means at ∞). In the spirit of the work [10], [13] and [9], we
feel it worthy of being presented, among other things, the present proof
of the existence of the logarithmic Hitchin’s connection (beyond the ex-
plicit g = r = 2 case of [9]), as a further step towards algebro-geometric
aspects of these development. In our opinion, it seems plausible that
some explicit information about the (local) monodromy representation
could be available via our approach. Indeed, in the first version of this
paper, we produced a more explicit formula of the connection, at the
expense that a lot more technical computations would be performed,
while the present approach simplified considerably via use of Proposi-
tion 2.3 which we later discovered to be useful (in fact we came to pay
more attention to this proposition via discussions with Hélène Esnault
when we finished the first version including the case g = r = 2). For the
sake of conceptual simplicity, we decided to take the present approach,
and leave the more technical treatment (including the case g = r = 2) to
future discussions. We remark that there has been a speculation about
whether monodromy representations factor through a finite group; see
[2] where this speculation was attributed to Kontsevich. We had also
met with mathematicians who asked about (and/or suggested the study
of) the characteristic p > 0 situation, including the related issues such as
the notion of p-curvature of the connection, in connection to the highly
speculative relation between the above Kontsevich conjecture and some
conjectures of Grothendieck (cf. [12]). Unfortunately, at this time of
writing, we are not feeling competent enough to comment on any one of
these issues, based on results of the present work. Perhaps, some further
studies along these directions might be interesting. Besides generalizing
Beilinson–Schechtman theory (thus our construction) to characteristic
p > 0, the logarithmic extension suggests that residue of the connection
at the boundary gives an operator on the (projective) space of gener-
alized theta functions on certain moduli space, which should be (direct
sum of) spaces of generalized theta functions on moduli spaces of par-
abolic bundles over a smooth curve of lower genus (normalization of
the singular curve C̃b). It would be interesting to understand the re-
lationship between the residue operator and the above factorization of
generalized theta functions.
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Those who want to know some historical accounts of Hitchin’s con-
nection and its relation to other branches of mathematics, are referred
to [10], [9] and references therein.

In Section 2, we construct Hitchin’s connection and its logarithmic
extension under assumption of Theorem 2.5, Lemma 2.4 and Theorem
2.13. It is enough to read this section for a reader who is only interested
in Hitchin’s connection. Section 3 is devoted to the proof of Theorem
2.5 and Lemma 2.4. In Section 4, we indicate the modifications of
arguments in Section 3 to prove Theorem 2.13. Most of Section 4 is
devoted to proof of the coherence of f̃∗(Θk) on M̃.

Remark that some ideas closely related to Section 3 of this paper
were briefly discussed in Sections 9, 10 of [8] where the subject matter is
considered for moduli space of (stable) G-bundles, withG being complex
semisimple, connected and simply-connected.

2. Heat operators and cohomology of sheaves

As in the introduction, M ⊂ M̃g denote the smooth moduli spaces of
curves with level structures [14]. Let M̃ ⊂ M̃g be the open set consist-
ing of stable curves with at most one double point (thus codim (M̃g \
M̃) ≥ 2). We will fix the families of curves C → M, C̃ → M̃ which
satisfy the assumptions on Kodaira–Spencer maps. Fix a line bundle N
of relative degree d on C̃ → M̃, let f : S → M be the family of moduli
spaces of stable bundles of rank r with fixed determinant Nb := N|Cb

(b ∈ M) on Cb. Let π : X = C ×M S → S be the pull-back of C → M
via f : S → M.

Remark 2.1. If (d, r) = 1, there exists a universal bundle E on X.
In general, S is a good quotient of a Hilbert quotient scheme, denoted
by Rs, such that there is a universal bundle E on XRs := C ×M Rs.
E may not descend to X, but objects such as End0(E), GE , trA•

E (and
other relevant constructions that will be discussed later in this section)
do descend. Recall that a sheaf F on XRs descends to X if the action,
of scalar automorphisms of E (relative to Rs), on F is trivial, e.g., [11].

Without the danger of confusion, we will henceforth be working as if
a universal bundle E existed on X.
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Let Θ be the theta line bundle on S. For a sheaf F on X,

λF =
⊗
q≥0

detRqπ∗F (−1)q

denotes the Knudsen–Mumford determinant bundle on S (cf. [3]). As
usual, TS , KS denote tangent bundle, canonical bundle; TS/M, KS/M
denote the relative counterparts. Assume that KS/M = Θ−λ, where
λ = 2(r, d) is the same notation used by Hitchin (cf. (2.8) in [10]). Let
D≤i
S (Θk) be the sheaf of differential operators on Θk of order ≤ i, and

by ε the symbol map of differential operators. Let W(Θk) := D≤1
S (Θk)+

D≤2
S/M(Θk) (cf. [9], [10]), one has an exact sequence

0 → D≤2
S/M(Θk) → W(Θk) σ−→ f∗TM → 0.(2.1)

Definition 2.2 (cf. [9], 2.3.2). A heat operator H on Θk is an OS-map
f∗TM

H−→ W(Θk) which, while composed with σ above, is the identity.
A projective heat operator H : TM → f∗W(Θk)/OM is an OM-map
such that any local lifting is a heat operator. The symbol map of H
is ε ◦ H : f∗TM → S2TS/M. A heat operator H induces an OM-map
(denoted by the same H) H: TM → f∗W(Θk). The heat operator and
the preceding induced map will be used interchangeably throughout. A
(projective) heat operator on Θk determines a (projective) connection
∇H on f∗Θk in a natural way [9].

We recall, firstly, a general result (forget moduli) of G. Faltings (cf.
Proposition IV.5 of [5]). Let Z → S be smooth and K = KZ/S . For any
line bundle L, consider

0 → D≤1
Z/S(L) → D≤2

Z/S(L) ε2−→ S2TZ/S → 0,

0 → D≤1
Z/S(L) → S2D≤1

Z/S(L) S2ε1−−−→ S2TZ/S → 0.

For any ρ ∈ H0(Z,S2TZ/S), let a(L, ρ), b(L, ρ) be the obstruction
classes to lift ρ to H0(Z,D≤2

Z/S(L)) and to H0(Z,S2D≤1
Z/S(L)), respec-

tively. Then,

Proposition 2.3. Under D≤1
Z/S(Lk) ∼= D≤1

Z/S(L), one has

(i) b(Lk, ρ) = kb(L, ρ) for any k ∈ Q.
(ii) a(OZ , ρ) ∈ H1(OZ) ⊕H1(TZ/S) has zero projection in H1(OZ).



HITCHIN’S CONNECTION AND 2ND ORDER OPERATORS 343

(iii) There is a class c(K, ρ) ∈ H1(OZ), independent of L, such that

2a(L, ρ) = b(L, ρ) + tb(L−1 ⊗K, ρ) + c(K, ρ).
We come back to construct the projective connection. Recall that

X = C ×M S
π−−−−→ S

p

� f

�
C −−−−→ M.

For simplicity, we assume that there exists a universal bundle E on X,
let E = End0(E). We will arrive at a subsheaf GE ⊂ trA−1

E (see [3] for
details of trA−1

E ) fitting into an exact sequence

0 → ωX/S → GE res−−→ E → 0,(2.2)

which induces, by taking 2nd symmetric tensor, the exact sequence

0 → GE → S2(GE) ⊗ TX/S
Sym2(res)⊗id−−−−−−−−→ S2(E) ⊗ TX/S → 0.

Define S(GE) := (Sym2(res) ⊗ id)−1(id ⊗ TX/S), which fits into

0 → GE ι−→ S(GE)
q−→ TX/S → 0,(2.3)

where q = Sym2(res) ⊗ id, ι(α) = Sym2(α⊗ dt) ⊗ ∂t locally. Let

0 → R1π∗(ωX/S) → R1π∗(GE) res−−→ R1π∗(E) → 0,(2.4)

0 → R1π∗(GE) ι−→ R1π∗S(GE)
q−→ R1π∗(TX/S) → 0(2.5)

be the exact sequences induced by (2.2), (2.3). Let ∆ ⊂ X ×SX be the
diagonal, consider the induced diagram

0 −−−−→ GE � GE −−−−→ GE � GE(∆) −−−−→ GE � GE(∆)|∆ −−−−→ 0� � �
0 −−−−→ E � E −−−−→ E � E(∆) −−−−→ E � E(∆)|∆ −−−−→ 0

on X×SX (E�E denotes p∗1E⊗p∗2E). All vertical maps are induced by
GE res−−→ E → 0. Thus, (2.3) is a sub-sequence of the rightmost vertical
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map above. Let F1 ⊂ GE � GE(∆), F2 ⊂ E � E(∆) be subsheaves
satisfying

0 −−−−→ GE � GE −−−−→ F1 −−−−→ S(GE) −−−−→ 0� � q

�
0 −−−−→ E � E −−−−→ F2 −−−−→ TX/S −−−−→ 0.

Taking direct images, considering the connecting maps, we have

R1π∗S(GE) δ̃−−−−→ S2R1π∗(GE)

q

� S2(res)

�
R1π∗(TX/S) δ−−−−→ S2R1π∗(E),

which induces the commutative diagram

R1π∗(GE) δ1−−−−→ R1π∗(GE)

ι

� Sym2

�
R1π∗S(GE) δ̃−−−−→ S2R1π∗(GE)

q

� S2(res )

�
R1π∗(TX/S) δ−−−−→ S2R1π∗(E),

where δ1 is defined such that the diagram is commutative, the first verti-
cal exact sequence is (2.5), the second vertical exact sequence is induced
by taking 2nd symmetric tensor of (2.4) (note that OS

∼= R1π∗(ωX/S)).
For Sym2, see Remark 2.6.

Lemma 2.4. The map δ1 : R1π∗(GE) → R1π∗(GE) is the identity
map.

Proof. See Lemma 3.18. q.e.d.



HITCHIN’S CONNECTION AND 2ND ORDER OPERATORS 345

Theorem 2.5.

(i) There is an isomorhism φ : R1π∗(GE) ∼= D≤1
S/M(λE) such that the

following diagram is commutative

0−−−−→ OS =R1π∗ωX/S −−−−→ R1π∗(GE) res−−−−→ R1π∗(E) −−−−→ 0

(2r)·id
� φ

� ϑ

�
0−−−−→ OS =R0π∗ωX/S [1] −−−−→ D≤1

S/M(λE) ε1−−−−→ TS/M −−−−→ 0,

where ϑ is Kodaira–Spencer type identification.
(ii) For any affine covering {Mi}i∈I of M, on each Si := f−1(Mi),

there is an isomorphism φi : R1π∗S(GE) ∼= D≤1
S (λE) such that

0−−−−→ R1π∗(GE) 2·ι−−−−→ R1π∗S(GE)
q−−−−→ R1π∗(TX/S) −−−−→ 0

φ

� φi

� �
0−−−−→ D≤1

S/M(λE) −−−−→ D≤1
S (λE) σ−−−−→ f∗TM −−−−→ 0

is commutative on Si. Moreover, {φi − φj} define a class in
H1(Ω1

M).

Proof. See Theorem 3.7, Corollary 3.12 and Remark 3.17. q.e.d.

By Theorem 2.5, on each Si, we get commutative diagram

D≤1
S/M(λE)

φ−1

−−−−→ R1π∗(GE) δ1−−−−→ R1π∗(GE)
2r·φ−−−−→ D≤1

S/M(λE)� 2·ι
� Sym2

� �
D≤1
S (λE)

φ−1
i−−−−→ R1π∗S(GE) δ̃−−−−→ S2R1π∗(GE)

S2(φ)−−−−→S2D≤1
S/M(λE)

σ

� � q

� S2ε1

�
f∗TM

∼=−−−−→R1π∗(TX/S) δ−−−−→ S2R1π∗(E)
∼=−−−−→ S2TS/M.

Remark 2.6.

(i) For a precise definition of Sym2 above, we refer to proof of Lemma
3.18.

(ii) The insertion of 2r in 2r · φ in the 1st row is due to Theorem 2.5
(i) combined with the definition of Sym2.
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The above diagram gives the following commutative diagram on Si

0 −−−−→ D≤1
S/M(λE) −−−−→ D≤1

S (λE) σ−−−−→ f∗TM −−−−→ 0∥∥∥ δ̃i
H

� δH

�
0 −−−−→ D≤1

S/M(λE) −−−−→ S2D≤1
S/M(λE) S2ε1−−−−→ S2TS/M −−−−→ 0,

where δH, δ̃iH are defined in a clear way such that each δ̃iH induces an
identity map on D≤1

S/M(λE).

Proposition 2.7. Replace M by an affine open set. For any ρ =
δH(v) ∈ H0(S, S2TS/M), where 0 �= v ∈ H0(S, f∗TM), one has

(i) 2a(L, ρ) = b(L, ρ) + tb(L−1 ⊗KS/M, ρ).
(ii) When L = Kµ

S/M, where µ ∈ Q and µ �= 1, one has

a(Kµ
S/M, ρ) =

2µ− 1
2µ

b(Kµ
S/M, ρ).

Proof. To prove (i), by Proposition 2.3 (iii), it is enough to show that
c(K, ρ) = 0. The class is independent of L. Thus, by taking L = OS

and using Proposition 2.3 (ii), it is enough to show that
tb(K, ρ) ∈ H1(D≤1

S/M(OS)) = H1(OS) ⊕H1(TS/M)

has trivial projection in H1(OS) where K = KS/M. Using Theorem
2.5 (we need here that M be replaced by an affine open set), we have
(noting K = λE)

D≤1
S/M(K) D≤1

S/M(K)� �
D≤1
S (K) δ̃H−−−−→ S2D≤1

S/M(K)

σ

� S2ε1

�
f∗TM

δH−−−−→ S2TS/M.

Let {Ui}i∈I be an affine covering of S and vi ∈ TS(Ui) be local liftings of
v ∈ f∗TM(S). Let {di ∈ D≤1

S (K)(Ui)}i∈I be such that ε1(di) = vi (i ∈
I). Then, by the above diagram, b(K, ρ) = {di−dj ∈ D≤1

S/M(K)(Ui∩Uj)}.
Thus, the class tb(K, ρ) ∈ H1(D≤1

S/M(OS)) = H1(OS) ⊕ H1(TS/M) is
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defined by the cocycle { tdi− tdj}, where tdi := Ai−vi ∈ D≤1
S (OS)(Ui).

Thus, the projection of tb(K, ρ) in H1(OS) is defined by {Ai − Aj},
which is a trivial class.

To show (ii), we remark that for any non-zero µ ∈ Q, through canon-
ical isomorphisms ψµ : D≤1(K) ∼= D≤1(Kµ), the above diagram induces

D≤1
S/M(Kµ)

•µ−−−−→ D≤1
S/M(Kµ)� �

D≤1
S (Kµ)

δ̃µ
H−−−−→ S2D≤1

S/M(Kµ)

σ

� S2ε1

�
f∗TM

δH−−−−→ S2TS/M,

where δ̃µH = S2ψµ ◦ δ̃H ◦ψ−1
µ . Using the above diagram, we can compute

tb(K1−µ, ρ). Let {di ∈ D≤1
S (K1−µ)(Ui)}i∈I be such that ε1(di) = vi

(i ∈ I). Then, b(K1−µ, ρ) = (1 − µ){di − dj}, which implies that
tb(K1−µ, ρ) = (1 − µ){ tdi − tdj}.

On the other hand, {− tdi ∈ D≤1
S (Kµ)(Ui)}i∈I are local liftings of v,

which means that b(Kµ, ρ) = −µ{ tdi − tdj} = µ
(µ−1)

tb(K1−µ, ρ). Thus

a(Kµ, ρ) =
2µ− 1

2µ
b(Kµ, ρ).

q.e.d.

Theorem 2.8. Replace M by an affine open set, and let {Ui}i∈I be
an affine open covering of S. Then, for any 0 �= v ∈ f∗TM(S), there
are

diS ∈ D≤1
S (Kµ)(Ui), diS/M ∈ D≤1

S/M(Kµ)(Ui), Di
S/M ∈ D≤2

S/M(Kµ)(Ui),
where K := KS/M, such that{

H(v)i := diS − diS/M +
2

1 − 2µ
Di
S/M ∈ D≤2

S (Kµ)(Ui)
}
i∈I

form a global section H(v) ∈ H0(S,D≤2
S (Kµ)) with

σ(H(v)) = v, ε2(H(v)) =
2

1 − 2µ
δH(v).
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Proof. Let {diS ∈ D≤1
S (Kµ)(Ui)}i∈I be such that σ(diS) = v|Ui . Then,

{µ(diS − djS) ∈ D≤1
S/M(Kµ)(Ui ∩ Uj)}

defines the class b(Kµ, δH(v)) ∈ H1(S,D≤1
S/M(Kµ)), which is the obstruc-

tion for lifting δH(v) ∈ H0(S, S2TS/M) to H0(S, S2D≤1
S/M(Kµ)). Let

{Di
S/M ∈ D≤2

S/M(Kµ)(Ui)}i∈I
be local liftings of δH(v). Then, by Proposition 2.7,

{diS − djS} =
2

2µ− 1
{Di

S/M −Dj
S/M}

as cohomology classes. Thus, there are {diS/M ∈ D≤1
S/M(Kµ)(Ui)}i∈I

satisfying the requirements in the theorem. q.e.d.

Corollary 2.9. There exists a unique projective heat operator,

H : TM → f∗W(Θk)/OM
(where M is global) such that (f∗ε2) · H : TM → f∗S2TS/M coincides
with f∗δH.

Proof. For any open set U ⊂ M and v ∈ TM(U), by Theorem 2.8, we
can construct a H(v) ∈ f∗W(Θk)(U). If H(v)′ is another such operator,
H(v) − H(v)′ must have symbol in H0(f−1(U), TS/M) = 0, so

H(v) − H(v)′ ∈ H0(f−1(U),OS) = f∗OS(U) = OM(U).

Hence, a unique map TM → f∗W(Θk)/OM. q.e.d.

Now, we construct the logarithmic extension of above operator. Let
C̃ → M̃ be the family in Introduction. Let U(r, d) → M̃ be the family
of moduli spaces of semistable (for canonical polarization) torsion free
sheaves of rank r and degree d. Fix a line bundle N on C̃ of relative
degree d, let f : S → M be the family of moduli spaces of stable bundles
of rank r with fixed determinant N|C ([C] ∈ M).

Notation 2.10. Let fZ : Z → M̃ be defined as the Zariski closure of
S in U(r, d) and fT : T → M̃ be the open set of Z consisting of locally
free sheaves. Let f̃ : S̃ ⊂ T → M̃ be the open set of stable bundles.
Then, f̃ : S̃ → M̃ is smooth (cf. Lemma 4.4).
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Let E be the universal bundle on X̃ , where X̃ is defined by

X̃ = C̃ ×
�M S̃

π−−−−→ S̃� �f

�
C̃ −−−−→ M̃.

Let D ⊂ X̃ be the divisor of singular curves. Then, we have

GE ⊂ trA−1
E (logD)

fitting into the exact sequence

0 → ω
�X/�S → GE res−−→ E := End0(E) → 0.(2.6)

Similarly, there is a sheaf S(GE) ⊂ Sym2(GE) ⊗ ω−1
�X/�S

fitting into

0 → GE ι−→ S(GE)
q−→ ω−1

�X/�S
→ 0.(2.7)

They induce the following exact sequences

0 → R1π∗(ω �X/�S) → R1π∗(GE) res−−→ R1π∗(E) → 0,(2.8)

0 → R1π∗(GE) ι−→ R1π∗S(GE)
q−→ R1π∗(ω−1

�X/�S
) → 0.(2.9)

Let ∆̃ ⊂ X̃ ×
�S X̃ := P be the diagonal and O(∆̃) be the dual of

its ideal sheaf. Then, 0 → ωP/�S → ωP/�S(∆̃) → Ext1P (O
�∆, ωP/�S) → 0,

one checks that the relative dualizing sheaf ω
P/�S

is ω
�X/�S

� ω
�X/�S

and

Ext1P (O
�∆
, ω

P/�S
) is the relative dualizing sheaf of ∆̃/S̃. Thus, we have

0 → O → O(∆̃) → ω−1
�X/�S

→ 0,(2.10)

which similarly induces the commutative diagram

R1π∗(GE) δ1−−−−→ R1π∗(GE)

ι

� Sym2

�
R1π∗S(GE) δ̃−−−−→ S2R1π∗(GE)

q

� S2(res )

�
R1π∗(ω−1

�X/�S
) δ−−−−→ S2R1π∗(E),
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where δ1 denote the map induced by δ̃, the first vertical exact sequence
is (2.9), the second vertical exact sequence is induced by taking 2nd
symmetric tensor of (2.8) (note that O

�S
∼= R1π∗(ω �X/�S)).

Let B = M̃ \M and W = f̃−1(B) ⊂ S̃. Consider

0 → T
�S/�M → T

�S

d �f−→ f̃∗T
�M → 0,

0 → D≤1
�S/�M(L) → D≤1

�S
(L) σ−→ f̃∗T

�M → 0.

Notation 2.11. Let T
�M(B) ⊂ TM be the subsheaf of vector fields

that preserve B. Let T
�S(logW ) ⊂ T

�S , D≤1
�S

(L)(logW ) ⊂ D≤1
�S

(L) be the
subsheaves such that the following are exact sequences

0 → T
�S/�M → T

�S(logW )
d �f−→ f̃∗T

�M(B) → 0,(2.11)

0 → D≤1
�S/�M(L) → D≤1

�S
(L)(logW ) σ−→ f̃∗T

�M(B) → 0.(2.12)

Lemma 2.12. The map δ1 : R1π∗(GE) → R1π∗(GE) is identity.

Proof. Since S ⊂ S̃ is dense in S̃ by definition (cf. Notation 2.10),
the lemma follows from Lemma 2.4. q.e.d.

Theorem 2.13.
(i) There is an isomorhism φ : R1π∗(GE) ∼= D≤1

�S/�M(λE) such that the
following diagram is commutative

0−−−−→ O
�S=R1π∗ω �X/�S −−−−→ R1π∗(GE) res−−−−→R1π∗(E)−−−−→ 0

(2r)·id
� φ

� ϑ

�
0−−−−→O

�S=R0π∗ω �X/�S [1]−−−−→ D≤1
�S/�M(λE) ε1−−−−→ T

�S/�M −−−−→ 0.

(ii) For any affine covering {M̃i}i∈I of M̃, on each S̃i := f̃−1(M̃i),
there is an isomorphism φi : R1π∗S(GE) ∼= D≤1

�S
(λE)(logW ) such

that

0−−−−→ R1π∗(GE) 2·ι−−−−→ R1π∗S(GE)
q−−−−→ R1π∗(ω−1

�X/�S
) −−−−→ 0

φ

� φi

� �
0−−−−→D≤1

�S/�M(λE)−−−−→D≤1
�S

(λE)(logW ) σ−−−−→ f̃∗T
�M(B) −−−−→ 0
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is commutative on S̃i, and {φi−φj} define a class in H1(Ω1
�M(logB)).

Proof. See Proposition 4.5 and Theorem 4.8. q.e.d.

Similarly, we have the commutative diagram on each S̃i

0−−−−→ D≤1
�S/�M(λE) −−−−→D≤1

�S
(λE)(logW ) σ−−−−→ f̃∗T

�M(B) −−−−→ 0∥∥∥ δ̃i
H

� δH

�
0−−−−→ D≤1

�S/�M(λE) −−−−→ S2D≤1
�S/�M(λE) S2ε1−−−−→ S2T

�S/�M −−−−→ 0.

Proposition 2.14. For any ρ = δH(v) ∈ H0(S̃, S2T
�S/�M), where M̃

is replaced by an affine open set and v ∈ H0(S̃, f̃∗T
�M(B)), one has

(i) 2a(L, ρ) = b(L, ρ) + tb(L−1 ⊗K
�S/�M, ρ).

(ii) When L = Kµ
�S/�M, where µ ∈ Q and µ �= 1, one has

a
(
Kµ
�S/�M, ρ

)
=

2µ− 1
2µ

b
(
Kµ
�S/�M, ρ

)
.

Proof. Note that we still have K = K
�S/�M = λE, the proof is the same

as that of Proposition 2.7 by using Theorem 2.13. We just remark two
points:

(1) For any operator d of D≤1
�S

(L)(logW ) ⊂ D≤1
�S

(L), its adjoint oper-

ator td is still in D≤1
�S

(L−1 ⊗K)(logW ).
(2) For any non-zero µ ∈ Q, the canonical isomorphism ψµ :

D≤1
�S

(K) ∼= D≤
�S

(Kµ) induces an isomorphism D≤1
�S

(K) (logW ) ∼=
D≤1
�S

(Kµ)(logW ).

q.e.d.

Theorem 2.15. Replace M̃ by an affine open set, and let {Ui}i∈I be
an affine open covering of S̃. Then, for any v ∈ f̃∗T

�M(B)(S̃), there are

di
�S
∈ D≤1

�S
(Kµ)(logW )(Ui), di

�S/�M ∈ D≤1
�S/�M(Kµ)(Ui),

and Di
�S/�M ∈ D≤2

�S/�M(Kµ)(Ui) such that{
H(v)i := di

�S
− di

�S/�M +
2

1 − 2µ
Di
�S/�M ∈ D≤2

�S
(Kµ)(Ui)

}
i∈I
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form a global section H(v) ∈ H0(S̃,D≤2
�S

(Kµ)) with

σ(H(v)) = v, ε2(H(v)) =
2

1 − 2µ
δH(v).

Proof. Let {di
�S
∈ D≤1

�S
(Kµ)(logW )(Ui)}i∈I be such that σ(di

�S
) = v|Ui .

Then, {
µ
(
di
�S
− dj

�S

)
∈ D≤1

�S/�M(Kµ)(Ui ∩ Uj)
}

defines the class b(Kµ, δH(v)) ∈ H1(S̃,D≤1
�S/�M(Kµ)), which is the obstruc-

tion for lifting δH(v) ∈ H0(S̃, S2T
�S/�M) to H0(S̃, S2D≤1

�S/�M(Kµ). Let{
Di
�S/�M ∈ D≤2

�S/�M(Kµ)(Ui)
}
i∈I

be local liftings of δH(v). Then, by Proposition 2.5,{
di
�S
− dj

�S

}
=

2
2µ− 1

{
Di
�S/�M −Dj

�S/�M

}
as cohomology classes. Thus, there are {di

�S/�M ∈ D≤1
�S/�M(Kµ)(Ui)}i∈I

satisfying the requirements in the theorem. q.e.d.

Corollary 2.16. There exists a unique projective heat operator

H̃ : T
�M(B) → f̃∗D≤2

�S
(Θk)/O

�M

such that (f̃∗ε2) · H̃ : T
�M(B) → f̃∗S2T

�S/�M coincides with f̃∗δH. More-

over, f̃∗(Θk) is a coherent sheaf on M̃.

Proof. The coherence of f̃∗(Θk) follows from Theorem 4.10. Since
f̃∗T�S/�M = 0 is still true, the rest follows the same proof of Corollary

2.9 if f̃∗O�S = O
�M. We will prove (cf. Proposition 4.9) that the fibres

of f̃ : S̃ → M̃ is dense in the fibres of fZ : Z → M̃. Thus, Z \ S̃ has
codimension at least 2. By passing to the normalization ι : Z̃ → Z,
ι−1(S̃) ∼= S̃ and codim(Z̃ \ ι−1(S̃)) ≥ 2 since S̃ is the open set of smooth
points of Z and ι is finite. We have f̃∗O�S = (fZ · ι)∗O �Z = O

�M. q.e.d.
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3. First order differential operators of the determinant
bundle

We give at first a short review of what we need from [3]. Let π : X →
S be a smooth proper morphism of relative dimension 1 between smooth
varieties in characteristic 0. We write KX/S or ωX/S interchangeably
for the dualizing sheaf. One has an exact sequence

0 → TX/S → TX
dπ−→ π∗TS → 0.(3.1)

As in [3], one defines the subsheaf π−1TS ⊂ π∗TS and its preimage
Tπ = dπ−1Tπ ⊂ TX , defining the exact sequence

0 → TX/S → Tπ
dπ−→ π−1TS → 0.(3.2)

Let E be a vector bundle on X, and λE = detRπ∗E be its determinant
bundle. The Atiyah algebra AE is the subalgebra of the sheaf of first
order differential operators on E with symbolic part in (id⊗TX) ∼= TX .
The relative Atiyah algebra AE/S ⊂ AE consists of those differential
operators with symbolic part in TX/S , and AE,π ⊂ AE with symbolic
part in Tπ. Let trA−1

E be the subquotient of the sheaf defined in [3]

E �OS
(E∗ ⊗ ωX/S)(2∆)/E �OS

(E∗ ⊗ ωX/S)(−∆),

where ∆ ⊂ X ×S X denotes the diagonal, which fits into an exact
sequence

0 → ωX/S → trA−1
E

res−→ AE/S → 0.(3.3)

The trace complex is defined by

trA•
E : OX

dX/S−−−→ trA−1
E

res−→ AE,π(3.4)

with AE,π in degree 0. One has

Proposition 3.1. tr A•
E carries an algebra structure for which

R0π∗(trA•
E) is canonically isomorphic to AλE

([3], 2.3.1, see also [4]).

For the purpose of this paper, it is more convenient to define the trace
complex concentrated only on i = −1 and i = 0 of the original trace
complex. This modified trace complex is still denoted by trA•

E whose
0-th direct image is easily seen to be the same as that of the original
one. With the modified trace complex, one has now an exact sequence

0 → ωX/S [1] → trA•
E → A•

E,π → 0,(3.5)
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where the complex A•
E,π is defined by

A•
E,π : AE/S → AE,π(3.6)

and thus is quasi-isomorphic to π−1TS .

Notation 3.2. Let π : X → S be as before, and f : S → M be a
smooth morphism where M is a smooth variety. Denote by

AE,π/M ⊂ AE,π, Tπ/M ⊂ TX/M ⊂ Tπ

the pullback of π−1TS/M ⊂ π−1TS . Let
trA•

E/M := ( tr A−1
E → AE,π/M), A•

E,π/M := (AE/S → AE,π/M).

Proposition 3.3. The exact sequences

0 → ωX/S [1] → trA•
E → A•

E,π → 0

0 → ωX/S [1] → trA•
E/M → A•

E,π/M → 0

have 0-th direct images (via π) isomorphic to

0 → OS → D≤1
S (λE) → TS → 0

0 → OS → D≤1
S/M (λE) → TS/M → 0.

Furthermore, we need to review the description of trA•
E in terms

of local coordinates, [3], p. 660. Let t be a local coordinate (along
the fiber), and a trivilization I : On

X
∼= E; s a local coordinate on S.

Note t naturally induces local coordinates (t1, t2) around the diagonal
of X ×S X. One has isomorphisms via t and I,

(t, I)−1 : OX ⊕ Matn(OX) ⊕OX(3.7)
∼= trA−1

E , (t, I)−1(χ,B, ν) = (χ,B, ν)(t,I)

= I

[
χ(t1)

(t2 − t1)2
+

B(t1)
(t2 − t1)

+ ν(t1)
]
dt2;

(t, I)0 : Tπ ⊕ Matn(OX)
∼= trA0

E = AE,π, (t, I)0(τ,A)

= (τ,A)I = (t, I)0
[
τ(t, s)∂t + µ(s)∂s +A

]
.

For different choices of coordinates and trivializations, one has the gauge
change and coordinate change formulas: with g ∈ GLr(OX) and y =
y(t) (the notation below being slightly different from that of [3])

(3.8) (τ,A) := α
g−→ (τ,−τ(g)g−1 + gAg−1) := β(⇔ αIg = βI),
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(χ,B, ν)
g−→
(
χ,−χg′g−1 + gBg−1,

Tr
(
− 1

2
χg′′g−1 + χ(g′g−1)2 −Bg−1g′

)
+ ν

)
,

(χ,B, ν)
y(t)−→

(
χy′−1

, B, rχ

(
1
6
y′′′

y′2
− 1

4
y′′2

y′3

)
+

1
2
y′′

y′
TrB + νy′

)
.

The main result of this section is Theorem 3.7 which enables us to
take care of Theorem 2.5. Follow the notation of Section 2, let

p : X = C ×M S → C
be the projection.

Definition 3.4. End(E)−1 := res−1(End(E)) ⊂ trA−1
E , and

GE := res−1(E) ⊂ End(E)−1,

where End(E) = E⊕OX with its trace free part E := End0(E) and the
trivial bundle OX . There are exact sequences

0 → ωX/S → GE res−→ E → 0,

0 → ωX/S → End(E)−1 res−→ End(E) → 0.

Consider the natural morphism

S2(GE) ⊗OX
TX/S

q−→ S2(E) ⊗OX
TX/S → 0

induced by GE res−−→ E. Denote the kernel of q by K. There is a canonical
isomorphism ι : GE ∼= K, that is ι(s) = Sym2(dt ⊗ s) ⊗ ∂t locally.

Definition 3.5. q−1(id ⊗ TX/S) := S(GE) where id ∈ S2(E) is the
identity element. It follows that we have the exact sequence

0 → GE ι−→ S(GE) → TX/S → 0.(3.9)

Locally, for chosen coordinate and trivilization (cf. (3.7)), any local
section s ∈ S(GE) is of the form

s =


χ
∑
a

(0, Ja, 0) ⊗ (0, Ja, 0) +
∑
a

µa(0, Ja, 0) ⊗ (0, 0, 1)

+
∑
a

νa(0, 0, 1) ⊗ (0, Ja, 0) + w(0, 0, 1) ⊗ (0, 0, 1)

⊗ ∂t,
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where Ja is a (local) basis of E (which we assume to be orthonormal
under Trace( · )) such that

∑
a Ja ⊗ Ja = id (such a canonical choice of

Ja will simplify computations later).

We will need the Kodaira–Spencer maps

KSS : TS → R1π∗A0
E/S, A0

E/S = AE/S/OX ,(3.10)

KSM : f∗TM → R1π∗TX/S .

They fit into the following commutative diagram

0 −−−−→ R1π∗(E) −−−−→ R1π∗A0
E/S −−−−→ R1π∗TX/S −−−−→ 0

KS

� KSS

� KSM

�
0 −−−−→ TS/M −−−−→ TS −−−−→ f∗TM −−−−→ 0.

Remark 3.6. One way to see KSS of (3.10) is via the natural map
(with cohomology) A•

E,π → A0
E/S[1] from (3.6); similarly KSM is via

(TC/M → Tπ) → TC/M[1] (with cohomology) combined with its pullback
via f : S → M. The diagram (3.10) via natural maps TS → f∗TM and
R1π∗A0

E/S → R1π∗TX/S , for Kodaira-Spencer maps commute.

Theorem 3.7.
(i) If the Kodaira–Spencer map KS : TS/M → R1π∗(E) is an isomor-

phism, then there exists a canonical isomorphism

φ : R1π∗(GE) ∼= R0π∗(End(E)−1 → AE,π/M) ∼= R0π∗ trA•
E/M.

(ii) If KSS is an isomorphism and shrink M enough, then the above
φ extends to an isomorphism

φ = φ−λ : R1π∗S(GE) ∼= R0π∗( trA−1
E

→ AE,π).

(The RHS of (i), (ii) are canonically identified with D≤1
S/M(λE), D≤1

S (λE)
respectively, cf. Proposition 3.3.)

Remark 3.8. R0π∗(End(E)−1 → AE,π/M) ∼= R0π∗(End(E)−1 →
AE,π) holds under AE,π/M → AE,π, cf. the proof of (i) of Proposition
4.5.

Corollary 3.9. Assumptions being as in (ii) of Theorem 3.7, suppose
λE

∼= Θ−λ (λ = 2(r, d)). For k ∈ Z, one has an isomorphism denoted
by

φk : R1π∗S(GE) ∼= D≤1
S (Θk),

extending Theorem 3.7. (If k = −λ, write φ for φ−λ.)



HITCHIN’S CONNECTION AND 2ND ORDER OPERATORS 357

Proposition 3.10.

(i) The morphism E → End0(E) induced by the adjoint representa-
tion extends naturally to a canonical morphism ad : AE → AE

(preserving algebra structures).
(ii) The morphism ad has a natural lifting ãd : GE → GE, which in-

duces (2r) · id on ωX/S.

Proof.
(i) For any D ∈ AE, L ∈ E, ad(D)(L) := D ◦ L − L ◦D is a section

of E (note that Tr(D ◦ L− L ◦D) = ε1(D)Tr(L)). Thus, ad(D) defines
a map E → E, which is a differential operator since ad(D)(λ · L) =
λ · ad(D)(L) + ε1(D)(λ) · L.

(ii) This can be proved via the local formulas given in (3.7), namely
a local element of GE is expressed as (0, B, ν) (with B ∈ Matr(OX) and
ν ∈ OX). Define a lifting by sending (0, B, ν) to (0, adB, 2rν). We will
show by using formulase in (3.8) that the above lifting is in fact globally
defined. Using χ = 0, TrB = 0 and Tr(adB) = 0 in (3.8), we have

(0, B, ν)
g−→ (

0, gBg−1,Tr(−Bg−1g′) + ν
)
,(3.11)

(0, B, ν)
y(t)−→ (

0, B, νy′
)
,

(0, adB, ν)
g−→
(
0, ad(gBg−1),Tr

(− adB ad(g−1g′)
)

+ ν
)
,

(0, adB, ν)
y(t)−→ (0, adB, νy′).

If the trivialization of E is changed by g, the induced trivialization of
End(E) will be changed by eg : Mr(OX) → Mr(OX), where eg(B) =
gBg−1. It is easy to check that e−1

g e′g = ad(g−1g′), thus we obtain the
term Tr

(− adB ad(g−1g′)
)

in the 3rd row above. One knows that

Tr(adM adN) = 2rTr(MN)(3.12)

for traceless matrices M , N of rank r. Let (g−1g′)0 be the trace-
less compoment of g−1g′. Note TrB = 0, ad(g−1g′) = ad((g−1g′)0),
and Tr(Bg−1g′) = Tr(B(g−1g′)0) etc. It follows that the morphism
(0, B, ν) → (0, adB, 2rν) as given is well-defined (globally). q.e.d.

Lemma 3.11. R0π∗AE,π
∼= OS and R0π∗A0

E,π = 0 provided KSS
being injective, where A0

E,π := AE,π/OX .
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Proof. It suffices to prove, by using an exact sequence similar to (3.2)
(with T • replaced by A•), that (i) π∗π−1TS → R1π∗AE/S is injective
and (ii) π∗AE/S

∼= OS . But the map in (i) composed withR1π∗AE/S →
R1π∗A0

E/S is nothing but KSS , hence (i). (ii) is from π∗TX/S = 0 (genus
≥ 2) and π∗End(E) = OS (E is fiberwise stable). q.e.d.

We are ready to give a proof of (i) of Theorem 3.7.

Proof. First, we remark that morphisms in Proposition 3.10 make the
following diagram of complexes commutative

( trA−1
E

res−→ AE,π/M) −−−−→ (AE/S → AE,π/M)� ad

�
(GE res−→ AE,π/M) −−−−→ (A0

E/S → A0
E,π/M).

Second, we observe that the commutative diagram

0 −−−−→ E −−−−→ A0
E,π/M −−−−→ Tπ/M −−−−→ 0∥∥∥ � �

0 −−−−→ E −−−−→ A0
E/S −−−−→ TX/S −−−−→ 0

induces a commutative diagram

TS/M π∗Tπ/M
KS−−−−→ R1π∗(E) −−−−→ R1π∗A0

E,π/M� ∥∥∥ �
0 −−−−→ R1π∗(E) −−−−→ R1π∗A0

E/S.

Thus, R1π∗(E) vanishes in R1π∗A0
E,π/M since KS is an isomorphism.

We construct φ for any affine open set U i ⊂ S. Let {Ui, Ẋi} be
an affine covering of π−1(U i), let U̇i = Ui ∩ Ẋi. For any Čech cocy-
cle rU̇i

∈ GE(U̇i) in C1(GE), the class [res(rU̇i
)] ∈ R1π∗(E)(U i) van-

ishes in R1π∗A0
E,π/M(U i). Thus, there exists τẊi

∈ A0
E,π/M(Ẋi), τUi ∈

A0
E,π/M(Ui) such that τẊi

− τUi = res rU̇i
on U̇i. For given rU̇i

, the
choice of τẊi

and τUi is unique (by Lemma 3.11). Then

{ad(τẊi
), ad(τUi); ãd(rU̇i

)}(3.13)
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is a Čech cocycle in C0(GE → AE,π/M) (cf. [3], p. 673). It is easily
checked that the assignment

φ̃ : rU̇i
→ {ad(τẊi

), ad(τUi); ãd(rU̇i
)} ∈ C0( trA•

E/M)(3.14)

preserves the respective coboundaries. Hence, it descends to a map

φ : R1π∗(GE) → R0π∗ trA•
E/M.

By the same way, we construct ϑ : R1π∗(E) → R0π∗A•
E,π/M such that

0−−−−→ R1π∗ωX/S −−−−→ R1π∗(GE) res−−−−→ R1π∗(E) −−−−→ 0

(2r)·id
� φ

� ϑ

�
0−−−−→R0π∗ωX/S [1]−−−−→R0π∗ trA•

E/M
res−−−−→R0π∗A•

E,π/M−−−−→ 0

is commutative. The map ϑ is the composition of

KS−1 : R1π∗(E) → TS/M = R0π∗(A0
E/S → A0

E,π/M)

and the map R0π∗(A0
E/S → A0

E,π/M) → R0π∗A•
E,π/M, which is induced

by the quasi-isomorphism ad of complexes at the begining of our proof
(it is a quasi-isomorphism since ad(D) has the same symbol with D ∈
AE). Thus ϑ is an isomorphism, then φ has to be an isomorphism.
q.e.d.

Both R1π∗(GE) and R0π∗(End(E)−1 → AE,π/M) = R0π∗ trA•
E/M de-

fine extension classes in H1(S,ΩS/M). One has (by the preceding proof
combined with proof of Proposition 3.10 for the constant 2r)

Corollary 3.12. The extension classes (e.c.[•] for short) satisfy

e.c.[R1π∗(GE)] =
1
2r

e.c.[D≤1
S/M(λE)]

in H1(S,ΩS/M), where D≤1
S/M(λE) = R0π∗(End(E)−1 → AE,π/M).

For (ii) of the theorem, our proof will need the following result.

Proposition 3.13. There exisits r̃es : S(GE) → A0
E/S such that

0 −−−−→ ωX/S −−−−→ S(GE) �res−−−−→ A0
E/S −−−−→ 0� ∥∥∥ �

0 −−−−→ GE ι−−−−→ S(GE) −−−−→ TX/S −−−−→ 0
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is commutative. If KSS in (3.10) is an isomorphism, then

0 → OS → R1π∗S(GE) → TS → 0.

Proof. For any local section s ∈ S(GE) in Definition 3.5, we define

r̃es(s) = (χ∂t,
1
2

∑
a

(µa + νa)Ja),

which is independent of the choice of {Ja}, thus well-defined locally.
To show that it is well-defined globally, we need to check the invariance
under gauge and coordinate changes. The invariance under local coordi-
nate changes is straightforward. Under the gauge change g ∈ GLr(OX),
the section s ∈ S(GE) in Definition 3.5 becomes sg ⊗ ∂t, where sg is

χ
∑
a

(0, gJag−1, 0)⊗2 +
∑
a

(µa − χTr(Jag−1g′))(0, gJag−1, 0) ⊗ (0, 0, 1)

+
∑
a

(νa − χTr(Jag−1g′))(0, 0, 1) ⊗ (0, gJag−1, 0)

+

(
χ
∑
a

Tr(Jag−1g′)2 −
∑
a

(µa + νa)Tr(Jag−1g′) + w

)
(0, 0, 1)⊗2.

Then, r̃es (sg ⊗ ∂t) = (χ∂t, 1
2

∑
a (µa + νa − 2χTr (Jag−1g′)) gJa g−1)

coincides with (χ∂t,−χ∂t(g)g−1 + 1
2

∑
a(µa + νa)gJag−1) in A0

E/S =
AE/S/OX since χ∂t(g)g−1 = χg′g−1 =

∑
a χTr(Jag−1g′))gJag−1 mod-

ulo OX . Thus, r̃es is gauge invariant and defined globally. Then, the
rest of this proposition is obvious. q.e.d.

Remark 3.14.

(i) Sym2(a⊗ b) = 1
2(a⊗ b+ b⊗ a) for a, b ∈ GE .

(ii) Using Proposition 3.13 and assuming R1f∗OS = 0, one has a quick
interpretation of (ii) of Theorem 3.7.

Note both R1π∗S(GE) and R0π∗ trA•
E
∼= D≤1

S (λE) contain a subsheaf
R1π∗(GE) ∼= D≤1

S/M(λE). Given two extensions F , F ′ of TS by OS sup-
pose their subsheafs with symbolic part in TS/M are isomorphic, then
F ∼= F ′ (non-canonically) provided R1f∗OS = 0 (since H1(S,ΩS) →
H1(S,ΩS/M) is injective if R1f∗OS = 0 (and M is affine)). The (ii) of
Theorem 3.7 just proves an isomorphism of this kind without reference
to R1f∗OS = 0.
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In what follows, we will choose an open covering of C (shrink M if
necessary), fix a local coordinate (along the fiber) on each open set of
the covering and use the local description (3.7). Recall that

X = C ×M S
π−−−−→ S

p

� f

�
C −−−−→ M.

To simplify notation, we will cover C by two affine open sets V and
Ċ. Let V ⊂ C be an affine open set and t be a local coordinate (along
the fiber) on V . Let Ċ ⊂ C be an affine open set containing C \ V .
Then, we choose and fix the local coordinates (along the fibre) on V

and Ċ. Let U = p−1(V ), Ẋ = p−1(Ċ) (they are not affine but affine
over S). We start with the construction of γE,U : S(GE)|U → trA−1

E
|U

(resp. γ
E,Ẋ : S(GE)|Ẋ → trA−1

E
|Ẋ) such that the following diagram (∗)

is commutative over U (resp. over Ẋ)

0 −−−−→ ωX/S −−−−→ trA−1
E

res−−−−→ AE/S −−−−→ 0

r·id
� γE,U

� ad

�
0 −−−−→ ωX/S −−−−→ S(GE) �res−−−−→ A0

E/S −−−−→ 0� ∥∥∥ �
0 −−−−→ GE ι−−−−→ S(GE) −−−−→ TX/S −−−−→ 0,

where ad : A0
E/S → AE/S is induced by the morphism in Proposition

3.10 (i) that maps OX to zero. Note that, except γE,U (resp. γ
E,Ẋ),

other morphisms in the diagram are well defined over the global M
(i.e., need not shrink M).

Let {U i}i be an affine covering of S. Then, {Ui := U ∩ π−1(U i)}i
(resp. {Ẋi = Ẋ ∩ π−1(U i)}i) is an affine covering of U (resp. Ẋ).
We will define γE,U (resp. γ

E,Ẋ) on each Ui (resp. Ẋi) using the local
description (3.7), then prove it is defined globally on U (resp. Ẋ). It
is important to remark that on each Ui (resp. Ẋi), we use the local
coordinate pulling back from V (resp. Ċ). Thus, to prove it is well-
defined on U (resp. Ẋ), we only need to check the independence of
trivialization of E over Ui (resp. Ẋi). On each Ui, fix a trivilization
I of E on Ui and use the pullback coordinate (say, t) of V , we define



362 X. SUN & I-H. TSAI

the morphism by using the local description (3.7). For any local section
α ∈ S(GE)(Ui), with respect to I and t

α =


χ
∑
a

(0, Ja, 0) ⊗ (0, Ja, 0) +
∑
a

µa(0, Ja, 0) ⊗ (0, 0, 1)

+
∑
a

νa(0, 0, 1) ⊗ (0, Ja, 0) + w(0, 0, 1) ⊗ (0, 0, 1)

⊗ ∂t

(see the expression in Definition 3.5), one defines, where r = rank (E),

γE,U (α) = (χ,
1
2

∑
a

(µa + νa)adJa, rw)(t,I) ∈ trA−1
E

(Ui),(3.15)

where one uses the natural trivialization I of E induced from that of E.

Lemma 3.15. The assignment α → γE,U(α) constructed above is
bundle gauge-invariant; More precisely,

(i) under another choice of trivialization of E (on Ui), such that Ja →
gJag

−1 so that α→ αg, the assignment to αg becomes equal to the
eg-transformation of γE,U(α), where eg is the gauge of E induced
by g (cf. Proposition 3.10).

(ii) Under a coordinate change y = y(t), the difference of γE,U (α) is(
0, 0, rχ

(
1
6
y′′′

y′2
− 1

4
y′′2

y′3

))
(t,I)

∈ ωX/S(U).

If β ∈ GE(Ui), then γE,U (ι(β)) = 1
2 ãd(β), where ãd : GE → GE is the

morphism in (ii) of Proposition 3.10.

Proof. The proof is to check a straightforward commutativity relation
caused by the gauge change, hence we simplify the notation if there is
no danger of confusion. As in the proof of Proposition 3.13, use the
explicit expression of αg = sg ⊗ ∂t, one has

γE,U (αg) =
(
χ,

1
2

∑
a

(µa + νa − 2χTr(Jag−1g′))ad(gJag−1),

rχ
∑
a

Tr(Jag−1g′)2 − r
∑
a

(µa + νa)Tr(Jag−1g′) + rw

)
.



HITCHIN’S CONNECTION AND 2ND ORDER OPERATORS 363

The goal is to show γE,U (αg) equals the eg-transformation γE,U(α)g of
γE,U (α), which is

χ,−χe′ge−1
g +

1
2

∑
a

(µa + νa)egad(Ja)e−1
g , rw+

Tr

(
−1

2
χe′′ge

−1
g + χ(e′ge

−1
g )2 − 1

2

∑
a

(µa + νa)ad(Ja)e−1
g e′g

)
 .

Recall that eg : Mr(OX) → Mr(OX) means eg(B) = gBg−1, we have
egad(Ja)e−1

g = ad(gJag−1). Thus, the second components of γE,U (αg)
and γE,U (α)g will coincide if e′ge−1

g =
∑

a Tr(Jag−1g′)ad(gJag−1), which
is true since e′ge−1

g = ad(g′g−1), e−1
g e′g = ad(g−1g′). To finish the proof,

we will show that their third components coincide. Since
1
2

∑
a

(µa + νa)Tr
(

ad(Ja)e−1
g e′g) = r

∑
a

(µa + νa)Tr(Jag−1g′
)
,

it will be done if one can show the following identity

r
∑
a

Tr(Jag−1g′)2 = Tr
(

(e′ge
−1
g )2 − 1

2
e′′ge

−1
g

)
.(3.16)

Write e′′ge−1
g = (e′ge−1

g )′ − e′g(e−1
g )′ = (e′ge−1

g )′ + e′ge−1
g e′ge−1

g , then

Tr(e′′ge
−1
g ) = Tr((e′ge

−1
g )2) = Tr(ad(g′g−1)ad(g′g−1))

(using (ege−1
g )′ = 0 and Tr((e′ge−1

g )′) = Tr(e′ge−1
g )′ = 0 here). Let

(g′g−1)0 be the traceless part of g′g−1. Then RHS of (3.16) equals
1
2
Tr(ad(g′g−1)ad(g′g−1)) = rTr((g′g−1)0(g′g−1)0).

By the choice of {Ja}a, we have (g−1g′)0 =
∑

a Tr(Jag−1g′)Ja. Then,
LHS of (3.16) equals rTr((g−1g′)0g−1g′) = rTr((g−1g′)0(g−1g′)0). Thus,
(3.16) is true since g(g−1g′)0g−1 = (g′g−1)0. We are done with (i). The
assertion (ii) is a straightforward calculation using the coordinate change
formula (3.8) and ∂y = y′(t)−1∂t. For β = (0,

∑
a ξaJa, w) ∈ GE(Ui),

ι(β) = 1
2

(
(0,
∑

a ξaJa, w) ⊗ (0, 0, 1) + (0, 0, 1) ⊗ (0,
∑

a ξaJa, w)
) ⊗ ∂t

=


∑
a

1
2
ξa(0, Ja, 0) ⊗ (0, 0, 1) +

∑
a

1
2
ξa(0, 0, 1) ⊗ (0, Ja, 0)

+ w(0, 0, 1) ⊗ (0, 0, 1)

⊗ ∂t.

Thus, γE,U(ι(β)) = 1
2 (0, ad(

∑
a ξaJa), 2rw) = 1

2 ãd(β). q.e.d.
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We have constructed γE,U (the construction of γ
E,Ẋ is similar) such

that the above diagram (∗) is commutative over U (resp. over Ẋ).
However, on U̇ := U ∩ Ẋ, the difference (caused by the difference of
coordinates on U and Ẋ), γU̇ := γE,U − γ

E,Ẋ vanishes on GE|U̇ , but
may not vanish on S(GE)|U̇ (cf. (ii) of Lemma 3.15). It defines a
morphism γU̇ : S(GE)|U̇ → ωX/S |U̇ that induces γ̃U̇ : TX/S |U̇ → ωX/S |U̇ ,
i.e., a section γ̃U̇ ∈ Hom(TX/S , ωX/S)(U̇ ) = ω2

X/S(p−1(V̇ )), where V̇ :=

V ∩ Ċ. The [γ̃U̇ ] defines a class of H1(C, p∗ω2
X/S) = H1(C, ω2

C/M), which
vanishes when M is replaced by an affine open set. Thus, there exist

ψ̃U ∈ Hom(TX/S , ωX/S)(U), ψ̃Ẋ ∈ Hom(TX/S , ωX/S)(Ẋ)

such that γ̃U̇ = ψ̃U − ψ̃Ẋ . Let ψU , ψẊ denote the induced morphisms

ψU : S(GE)|U → S(GE)/GE |U ∼= TX/S |U
�ψU−→ ωX/S |U

ψẊ : S(GE)|Ẋ → S(GE)/GE |Ẋ ∼= TX/S |Ẋ
�ψẊ−→ ωX/S |Ẋ .

Then, it is easy to see that γU̇ = γE,U − γ
E,Ẋ = ψU − ψẊ . Let

βU := γE,U − ψU , βẊ := γ
E,Ẋ − ψẊ .

Thus, by shrinking M, we have proved the following:

Proposition 3.16. The βU and βẊ define a morphism

β : S(GE) → trA−1
E
,

which induces (through ι) 1
2 ãd on GE, such that the following diagram

is commutative

0 −−−−→ ωX/S −−−−→ trA−1
E

res−−−−→ AE/S −−−−→ 0

r·id
� β

� ad

�
0 −−−−→ ωX/S −−−−→ S(GE) �res−−−−→ A0

E/S −−−−→ 0� ∥∥∥ �
0 −−−−→ GE ι−−−−→ S(GE) −−−−→ TX/S −−−−→ 0.

We shall now prove (ii) of Theorem 3.7.
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Proof. The proof is similar to that of (i) of the theorem. By

0 → A0
E/S → A0

E,π → π−1TS → 0(3.17)

and by identifying its connecting map TS → R1π∗A0
E/S with the Kodai-

ra–Spencer map KSS (which will be treated more generally for logD
in Proposition 4.5), we see that R1π∗A0

E/S vanishes in R1π∗A0
E,π if

KSS is an isomorphism. Thus, for any α ∈ S(GE)(U̇i), there exist
τẊi

∈ A0
E,π(Ẋi) and τUi ∈ A0

E,π(Ui) such that τẊi
− τUi = r̃es(α). Then,

by Proposition 3.16, we see that res(β(α)) = ad(r̃es(α)). Thus,

φ̃(α) := {ad(τẊi
), ad(τUi);β(α)}

is a cocycle in C0( trA−1
E

→ AE,π). It is clear that φ̃ induces a morphism

φ : R1π∗S(GE) → R0π∗( trA−1
E

→ AE,π) = R0π∗ trA•
E.

Similarly, we construct ϑ : R1π∗A0
E/S → R0π∗A•

E,π, which is the com-
position of

KS−1
S : R1π∗A0

E/S → TS = R0π∗(A0
E/S → A0

E,π)

and the isomorphism R0π∗(A0
E/S → A0

E,π) → R0π∗A•
E,π (induced by

ad). The ϑ is an isomorphism such that the following diagram

0 −−−−→ R1π∗ωX/S −−−−→ R1π∗S(GE) �res−−−−→ R1π∗A0
E/S −−−−→ 0

r·id
� φ

� ϑ

�
0 −−−−→ R0π∗ωX/S [1] −−−−→ R0π∗ trA•

E

res−−−−→ R0π∗A•
E,π −−−−→ 0

is commutaive. Thus φ must be an isomorphism. q.e.d.

Remark 3.17. The φ in (i) of Theorem 3.7 is defined globally over
M, but the one in (ii) of Theorem 3.7 is defined only over an open set
of M. More precisely, there is an affine covering {Mi}i∈I of M such
that on each C ×M f−1(Mi), we can choose a βi : S(GE) → trA−1

E
as

the β in Proposition 3.16. Then, by using βi and (ii) of Theorem 3.7,
we get the isomorphism φi : R1π∗S(GE) → R0π∗ trA•

E
= D≤1

S (λE) on
f−1(Mi). For another choice {β′i}i∈I , the map βi − β′i : S(GE) → ωX/S
induces

φi − φ′i : R1π∗S(GE) → R0π∗ωX/S [1] = OS
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on f−1(Mi), which vanishes on R1π∗(GE) (cf. i) of Theorem 3.7, which
is global on M), thus (φi−φ′i) ∈ Ω1

M(Mi). Similarly, on f−1(Mi∩Mj),
φij := φi − φj induces φ̃ij ∈ Ω1

M(Mi ∩Mj). Thus, {φ̃ij} defines a class
in H1(M,Ω1

M), which is the obstruction of extending the isomorphism
in (ii) of Theorem 3.7 to the global M.

To conclude this section, we describe the connecting maps δ̃ and prove
Lemma 2.4 (cf. Lemma 3.18).

Lemma 3.18. The map δ̃ induces the identity map on R1π∗(GE).
More precisely, δ̃ ◦ ι(•) = Sym2((•) ⊗ 1).

Proof. It is known (see Proposition 4.2 of [16]) that the connecting
map

δ̃ : R1π∗(GE � GE(∆)|∆) → R2(π × π)∗(GE � GE)
is dual (under Serre duality) to the restriction map

r : (π × π)∗(G∗
E � G∗

E ⊗ ωX/S � ωX/S) → π∗(G∗
E ⊗ G∗

E ⊗ ω2
∆/S).

Working locally on S, we can assume that X is covered by affine open
sets U and Ẋ. Let w ∈ ωX/S(U̇ ) be a base of ωX/S on U̇ := U ∩ Ẋ and
w∗ ∈ TX/S(U̇) be its dual base. Then, for any α ∈ GE(U̇),

ι([α]) = [Sym2(α⊗ w) ⊗ w∗] =
1
2
[(α⊗ w + w ⊗ α) ⊗ w∗].

We use the following identification

(π × π)∗(G∗
E � G∗

E ⊗ ωX/S � ωX/S) ∼= π∗(G∗
E ⊗ ωX/S) ⊗ π∗(G∗

E ⊗ ωX/S).

For any βi ∈ π∗(G∗
E ⊗ ωX/S) (i = 1, 2), let βi|U̇ = si ⊗ w, where si ∈

G∗
E(U̇) (i = 1, 2). Then, r(β1 ⊗ β2)|U̇ = s1 ⊗ s2 ⊗ w ⊗ w. Thus,

〈δ̃(ι([α])), β1 ⊗ β2〉 =
1
2
[(s1(α)s2(w) + s1(w)s2(α)) · w].(3.18)

By R1π∗ωX/S = OS , let [f · w] = 1 ∈ OS (f ∈ OX(U̇)), we have

〈Sym2([α] ⊗ [f · w]), β1 ⊗ β2〉(3.19)

=
1
2
([s1(α) · w][fs2(w) · w] + [fs1(w) · w][s2(α) · w]).

Note that si(w) = βi|U̇ (w ⊗ w∗) (i = 1, 2), we can see that si(w) =
βi(id)|U̇ , where the (global) section id is the image of 1 under OX →
GE ⊗ ω∗

X/S . Thus, si(w) ∈ OS since βi (i = 1, 2) are global sections
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of (GE ⊗ ω∗
X/S)∗. Then, [s1(α)s2(w) · w] = [s1(α) · w][fs2(w) · w] and

[s2(α)s1(w) · w] = [s2(α) · w][fs1(w) · w], which means that

〈δ̃(ι([α])), •〉 = 〈Sym2([α] ⊗ 1), •〉.
q.e.d.

4. Generalization to the singular case

Let π : X̃ → S̃ be a proper morphism of relative dimension 1 between
smooth varieties in characteristic 0 such that each fiber has at most
ordinary double points as singularities. Let f̃ : S̃ → M̃ be a smooth
morphism where M̃ is a smooth variety. Let B = M̃ \ M and W =
f̃−1(B) such that D = π−1(W ) consists precisely of singular fibres. As
before let ω

�X/�S
be the relative dualizing sheaf (which is locally free as is

well known). Let T
�M(B) ⊂ T

�M be the subalgebra of vector fields that
preserve B (cf. [3], Section 6).

Notation 4.1. In the notation of Section 3, define the following

T
�f
(logD) = d(f̃ ◦ π)−1((f̃ ◦ π)−1T

�M(B)) ⊂ T
�X ,

Tπ(logD) = T
�f
(logD) ∩ dπ−1(π−1T

�S
) ⊂ T

�X
,

T
�S(logW ) = dπ(Tπ(logD)) ⊂ T

�S ,

T
�X/�S(logD) = T

�X/�S ∩ Tπ(logD).

Notation 4.2. Let E be a vector bundle on X̃. Define the following:

AE,π(logD) = ε−1Tπ(logD) ⊂ AE,

A
E/�S

(logD) = ε−1T
�X/�S

(logD) ⊂ AE ,

AλE
(logW ) = ε−1T

�S
(logW ) ⊂ AλE

,

where “ε” denotes symbol maps.

The trA−1
E in Section 3 admits a generalization trA−1

E (logD) (cf.
[19], p. 593) such that

0 → ω
�X/�S

→ trA−1
E (logD) → A

E/�S
(logD) → 0,(4.1)

is exact. Furthermore, with trA•
E in Section 3 replaced by trA•

E(logD)
(with AE,π(logD) in degree 0), one has
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Proposition 4.3 (cf. [19]). There is a canonical isomorphism

R0πtr
∗ A•

E(logD) ∼= AλE
(logW )

that extends Proposition 3.1.

Now, go back to moduli situation, note T
�X/�S(logD) = ω−1

�X/�S
. Recall

Notation 2.10 and Kodaira–Spencer map (cf. [20], Remark 3.2.7)

KS : f̃∗T
�M(B) → R1π∗T �X/�S(logD).(4.2)

As the same is the situation of smooth curves, we have

Lemma 4.4. The morphism f̃ : S̃ → M̃ is smooth and

T
�S/�M = R1π∗End0(E).

Proof. When C is irreducible, its fibre f̃−1([C]) is the moduli space
of stable bundles with fixed determinant N|C . When C is reducible,
f̃−1([C]) have a few disjoint irreducible components and each compo-
nent consists of bundles with a fixed determinant that coincides with
N|C outside the node of C (cf. [18]). q.e.d.

Proposition 4.5.
(i) Assume the Kodaira–Spencer map KS (4.2) is injective. Then,

R0π∗(End(E)−1 → AE,π(logD)) → R0π∗(End(E) → AE,π(logD)) → 0

is canonically isomorphic to

D≤1
�S/�M(λE) → T

�S/�M → 0.

(ii) Assume that the KS (4.2) is an isomorphism. Then

R1π∗A0
E/�S

(logD) ∼= T
�S
(logW )

canonically, where A0
E/�S

(logD) = AE/�S(logD)/O
�X .

The following is left to the reader.

Lemma 4.6.

(A
E/�S

(logD) → AE,π(logD)) ∼=q.i. (T �X/�S(logD) → Tπ(logD))

∼=q.i. π
−1T

�S
(logW )

as quasi-isomorphisms.
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We prove now Proposition 4.5.

Proof.
(i) From the exact sequence

0 → (End(E)−1→ AE,π(logD)) →tr A•
E(logD) → T

�X/�S
(logD)[1] → 0,

and passage to cohomology

0 → R0π∗(End(E)−1 → AE,π(logD)) → AλE
(logW ) ε−→

R0π∗T �X/�S(logD)[1] → · · · ,
one has, via the injectivity of KS, that ε−1(0) has symbolic part in T

�S/�M.

This gives one of the isomorphisms in (i) (the one with D≤1
�S/�M(λE)).

Further, by

0 → ω
�X/�S

[1] → (End(E)−1 → AE,π(logD))

→ (End(E) → AE,π(logD)) → 0

and R0π∗ω �X/�S [1] ∼= O
�S it follows

R0π∗(End(E)−1 → AE,π(logD)) → R0π∗(End(E) → AE,π(logD))

is nothing but the symbol map, completing the asserted isomorphisms.

(ii) Write B•(logD) for (End(E) → AE,π(logD)) and A•
E,π(logD)

for LHS of Lemma 4.6. The following exact sequence

0 → B•(logD) → A•
E,π(logD) → T

�X/�S(logD)[1] → 0(4.3)

projects to

0 → End0(E)[1] → A0
E/�S

(logD)[1] → T
�X/�S

(logD)[1] → 0(4.4)

Computing direct images of (4.3) and (4.4), by (i) just proved and
Lemma 4.6, yields that R0π∗ of (4.4) should be isomorphic to

0 → T
�S/�M → T

�S
(logW ) → f̃∗T

�M(B) → 0,

implying the assertion. q.e.d.

Remark 4.7.
(i) R1π∗(GE) ∼= R0π∗(End(E)−1 → AE,π(logD)) ∼= D≤1

�S/�M(λE) holds,
cf. Theorem 3.7 and Remark 3.8.
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(ii) For the family C̃ → M̃ there is a Kodaira–Spencer map (cf. [20],
3.1-2)

ρb : T
�M,b

→ Ext1O
�Cb

(Ω
�Cb
,O

�Cb
), b ∈ M̃.(4.5)

The family C̃ → M̃ is a local universal family if ρb is an isomorphism
at each b ∈ M̃. If C̃ → M̃ is a local universal family (cf. [20], Theorem
3.1.5 for the existence of such a family), then KS (4.2) is an isomorphism
(cf. [20], Theorem 3.2.6).

Combining the above with the 2nd half of Section 2, we are now ready
to generalize Theorem 3.7 in the context of log geometry.

Theorem 4.8. Suppose KS in (4.2) is an isomorphism (cf. ii) of
Remark 4.7). Then, over any affine open set Ui of M̃, there is an
isomorphism

φi : R1π∗S(GE) ∼= D≤1
�S

(λE)(logW ).

Proof. Note the above assumption for KS is via (ii) of Proposition 4.5,
in correspondence to KSS in Theorem 3.7. It follows that all key ingre-
dients in proof of Theorem 3.7 admit corresponding counterparts for log
geometry, such as Propositions 4.3 and 4.5. Thus, the generalization of
Theorem 3.7 in log context is immediate. q.e.d.

To complete this paper, we prove the coherence of fT∗Θk (for defini-
tions of fT and fZ , see Notation 2.10), for which our proof need a result
on the density of locally free sheaves.

Proposition 4.9. The fibre of fZ : Z → M̃ at any point of B =
M̃ \M has a dense open set of locally free sheaves.

Proof. Let X0 be a fibre of C → M̃ at 0 ∈ B. If X0 is reducible, the
lemma is known (see Theorem 1.6 and Lemma 2.2 of [18]). Thus, we
assume that X0 is irreducible. Let U0 be the moduli space of semistable
sheaves of rank r and degree d (without fixed determinant) on X0. We
need to show that Z0 := f−1

Z (0) (⊂ U) contains a dense set of locally
free sheaves with the fixed determinant N0. Let J(X0) be the Jacobian
of X0, which consists of line bundles of degree 0 (thus non-compact for
the singular curve X0). Then, we have a morphism

φ0 : Z0 × J(X0) → U0, where φ0(E,L) = E ⊗ L.
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Now, we prove that φ0 has fibre dimension at most 1, namely, for any
[F0] ∈ U0, the fibre

φ−1
0 ([F0]) = {(F,L)|F ⊗ L = F0} ⊂ Z0 × J(X0)

has at most dimension 1 (for simplicity, we assume that X0 has only
one node x0). One can check that for any [F ] ∈ Z0, it satisfies

∧rF
torsion

⊂ N0 and mr(F )
x0

N0 ⊂ ∧rF
torsion

,

where mx0 is the ideal sheaf of the node x0 ∈ X0 and r(F ) = d −
deg( ∧rF

torsion). Let ρ : X̃0 → X0 be the normalization and ρ−1(x0) =
{x1, x2}. Then, the above condition implies that

ρ∗(∧rF )
torsion

= ρ∗N0(−n1x1 − n2x2), n1 + n2 ≤ 2r(F ), n1 ≥ 0, n2 ≥ 0,

where r(F ) = d− deg( ∧rF0
torsion) = r(F0) since F ⊗ L = F0 and thus

∧rF0

torsion
=

∧rF
torsion

⊗ Lr.

Therefore for any (F,L) ∈ φ−1
0 (F0), L has to satisfy

(ρ∗L)r = (ρ∗N0)−1(n1x1 + n2x2) ⊗ ρ∗ ∧r F0

torsion
,

which is a finite set since there are only finitely many choices of (n1, n2).
The pullback map ρ∗ : J(X0) → J(X̃0) has 1-dimensional kernel. Thus,
dim(φ−1

0 ([F0])) ≤ 1. We shall now prove the density of locally free
sheaves.

Let Zi0 be an irreducible component of Z0, then

dim(Zi0 × J(X0)) ≥ dim(Zη × J(X0)) = dim(U0).(4.6)

If Zi0 contains no locally free sheaf, then φ(Zi0 × J(X0)) falls into the
subvariety Un0 ⊂ U0 of non-locally free sheaves. Un0 has a dense open set
Un0 (1) consisting of torsion free sheaves F of the following type, said to
be type 1. Namely,

F ⊗ ÔX0,x0 = Ô(r−1)
X0,x0

⊕ m̂x0.

If φ((F,L)) = F0 ∈ Un0 (1), then F is also of type 1 (tensoring a line
bundle does not change its type). By Remark 8.1 of [15],

L0 =
∧rF

torsion
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is a torsion free (but non-locally free) sheaf of degree d. But L0 ⊂ N0,
thus L0 = N0 since they have the same degree, a contradiction with
that L0 is not locally free. Thus, φ(Zi0 × J(X0)) falls into a subvariety
of codimension at least two, which contradicts the dimension of fibres
and (4.6). q.e.d.

Theorem 4.10.
(i) fT∗Θk is coherent,
(ii) fT∗Θk = f̃∗Θk if either g ≥ 3 or r ≥ 3.

Proof. Let ι : Z̃ → Z be the normalisation of Z and Θ̃ = ι∗(Θ).
Write f

�Z : Z̃ → M̃ and fι−1(T ) : ι−1(T ) → M̃. Then, ι−1(T ) ∼= T

since T is normal, and F := fT∗Θk ∼= fι−1(T )∗(Θ̃k). On the other hand,
since each fibre of fZ : Z → M̃ contains a dense open set of locally free
sheaves, we have codim(Z \ T ) ≥ 2. Thus, Z̃ \ ι−1(T ) = ι−1(Z \ T ) has
codimension at least 2 since ι : Z̃ → Z is a finite map. By Hartogs type
extension theorem,

F ∼= fι−1(T )∗(Θ̃k) ∼= f
�Z∗(Θ̃

k),

which is coherent, hence (i). The claim (ii) that fT∗Θk = f̃∗Θk follows
also from the Hartogs type theorem because T is normal and T \ S̃ is of
codimension at least 2 when g > 2 or r > 2 (cf. [10]). q.e.d.

Finally, we prove the following lemma, though not strictly needed for
this paper, which gives the relationships of S(GE), GE∗ and AE∗/S . We
remark that the morphism r̃es in Proposition 3.13 can be induced by
pairings in this lemma.

Lemma 4.11. There are canonical isomorphisms:
(i) S(GE)/ωX/S ∼= (GE∗)∗,
(ii) (GE)∗ ∼= A0

E∗/S where A0
E∗/S = AE∗/S/OX .

Proof.
(i) One constructs a non-degenerate pairing

GE∗ × S(GE)/ωX/S → OX

using local description (3.7) (also cf. [3]). We define

〈s1, s2〉 := χν +
1
2

∑
a

(νa + µa)Trace(Ja · tB)(4.7)
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for s1 = (0, B, ν) and

s2 =


χ
∑
a

(0, Ja, 0) ⊗ (0, Ja, 0) +
∑
a

µa(0, Ja, 0) ⊗ (0, 0, 1)

+
∑
a

νa(0, 0, 1) ⊗ (0, Ja, 0) + w(0, 0, 1) ⊗ (0, 0, 1)

⊗ ∂t.

One sees that ωX/S is contained in the kernel of the pairing (4.7). The
pairing is obviously invariant under coordinates change y(t). If the
trivialization of E is changed by a gauge g, then E∗ is changed by a
gauge (tg)−1. Thus, the verification of (4.7) being g-invariant is easily
reduced to an identity∑

a

Tr(−Jag−1g′) · Tr(Ja · tB) = Tr(B(tg)((tg)−1)′).(4.8)

The LHS of (4.8) equals Tr(−g−1g′ · tB) (B being traceless). The RHS
of (4.8), after transposition, is

Tr((g−1)′g · tB) = Tr
(
(−g−1g′g−1)g ·t B).

(ii) Define a non-degenerate pairing

GE ×A0
E∗/S → OX(4.9)

by 〈(0, B1, ν), (χ,B2)〉 = νχ + Trace(B1 ·t B2). We check that it is
independent of choices of coordinates and gauges.

(0, B1, ν) := s1
g−→ (

0, gB1g
−1,Tr(−B1g

−1g′) + ν
)
,(4.10)

(χ,B2) := s2
tg−1

−→
(
χ,−χ((tg−1)′ · tg)+ (tg−1)B2 ·t g

)
,

s1
y(t)−→ (0, B1, νy

′),

s2
y(t)−→ (

χy′−1
, B2

)
.

The y(t)-change is obvious. For g-change, we have

χν + Tr(B1 ·t B2) −→χν + χTr(−B1g
−1g′)(4.11)

+ Tr
(
gB1g

−1 ·t (− χ((tg−1)′ · tg))
+ Tr

(
gB1g

−1 ·t (tg−1B2 ·t g
))
.
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The 1st (resp. 2nd) term in the last line equals

−χTr
(
gB1g

−1 · g(g−1)′
)

= −χTr
(
gB1g

−1 · g(−g−1g′g−1)
)

(4.12)

= χTr
(
g(B1g

−1g′)g−1
)

= χTr(B1g
−1g′)(

resp. Tr(gB1 ·t B2g
−1) = Tr(B1 ·t B2)

)
.

It follows from (4.11) and (4.12) that the pairing χν + Tr(B1
tB2) in

(4.9) is globally defined. q.e.d.
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