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EXISTENCE OF DIFFUSION ORBITS
IN A PRIORI UNSTABLE HAMILTONIAN SYSTEMS

Chong-Qing Cheng & Jun Yan

Abstract

Under open and dense conditions we show that Arnold diffusion
orbits exist in a priori unstable and time-periodic Hamiltonian
systems with two degrees of freedom.

1. Introduction and results

By the Kolmogorov, Arnold and Moser (KAM) theory we know that
there are many invariant tori in nearly integrable Hamiltonian systems
with arbitrary n degrees of freedom. These tori are of n dimensions and
occupy a nearly full Lebesgue measure set in the phase space. As an
important consequence, all orbits are stable in autonomous system with
two degrees of freedom, or time-periodic system with one degree of free-
dom, in the sense that the actions do not change much along the orbits.
However, the KAM theory does not guarantee such stability when the
system has three or more degrees of freedom for the autonomous case
or when it has two or more degrees of freedom for the time-periodic
case, simply because the KAM torus cannot separate the phase space
(or integral manifold) into two disconnected parts.

In his celebrated paper [1], Arnold constructed an example of nearly
integrable Hamiltonian system, where some orbits are unstable. His
example is a time periodic system with two degrees of freedom. In
Arnold’s example, the perturbations are chosen so specifically that all
hyperbolic invariant tori preserve in the perturbed system. Hence,
one can use the so called Melnikov method to construct transition
chain along which the action has substantial variation. However, in
a generic case, the perturbed systems do not possess such a good prop-
erty; some resonant gaps between invariant tori break up the transition
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chain. Thus, it seems unclear whether one can apply Arnold’s method
to find diffusion orbits. Despite this technical difficulty, Arnold asked
whether there is such a phenomenon for a “typical” small perturbation.
After nearly four decades of study, some remarkable generalizations of
Arnold’s result have been announced [8],[16],[20]. A few years ago, Xia
[20] announced that Arnold diffusion exists in generic a priori unstable
systems. Recently, Mather announced [16] that under so-called cusp
residual condition, Arnold diffusion exists in a priori stable systems
with two degrees of freedom in time-periodic case, or with three degrees
of freedom in autonomous case. They claim that diffusion orbits can
be constructed by variational method. Using geometrical method, some
demonstration was provided in [9] to show that diffusion orbits exist in
some types of a priori unstable and time-periodic Hamiltonian systems
with two degrees of freedom.

In this paper, we study generic perturbations of a priori unstable
Hamiltonian systems which have two degrees of freedom and are time-
periodic, and give a complete proof of the existence of diffusion orbits by
using variational method. The approach of our proof is different from
the approaches proposed by Mather and by Xia (cf. [16] and [20]).
The starting point of our proof is based on the previous work of Mather
([14], [15]). With his deep insight, Mather developed a new varia-
tional method to study Hamiltonian dynamics in higher dimensions. In
[14], Mather established the variational set-up of time-dependent pos-
itive definite Lagrangian systems and showed the existence of minimal
measures. By exploiting the properties of barrier functions in [15], he
introduced the idea of C-equivalence and pointed out a possible way
to construct connecting orbits. However, the difficulty in applying this
method to interesting problems in higher dimensions is that we do not
know the structures of related c-minimal orbit sets. In this paper, we
have succeeded in getting sufficient information about the topological
structure of the relevant Mañé sets and in providing the proof of a the-
orem of connecting C-equivalent Mañé sets formulated by Mather in
[15]. Consequently, we are able to construct the diffusion orbits cross-
ing the gaps. However, it appears unclear whether such C-equivalence
can be established at the place where uncountably many whiskered tori
cluster together. Fortunately, this is the place where there is no big
gap. Arnold’s mechanism can be used here because a transition chain
of whisker tori clearly exists in this case. Crucially relying on such geo-
metric structure, we are able to establish local variational principle (cf.
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[5], [6]), the local minimum corresponds to some diffusion orbits crossing
these whisker tori. It is the variational version of Arnold’s mechanism.
Another step in our proof is to show that we can join the orbits con-
structed by C-equivalence smoothly with the orbits which realize the
minimum of the local variational principle. In this way, we do find some
diffusion orbits in generic systems.

Given a Hamiltonian functionH(p, q, t) the Hamiltonian equation has
the form:

(1.1) q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

The Hamiltonian function studied here has the following form:

(1.2) H(p, q, t) = f(p1) + g(p2, q2) + P (p, q, t),

where p = (p1, p2) ∈ R2, q = (q1, q2) ∈ T2, H ∈ Cr (r ≥ 3), P is a
time-1-periodic small perturbation. We assume it satisfies the following
conditions:

1. f + g is a convex function in p i.e., the Hessian matrix ∂pp(f + g)
is positive definite, finite everywhere and has superlinear growth
in p, (f + g)/‖p‖ → ∞ as ‖p‖ → ∞,

2. it is a priori unstable in the sense that g has non-degenerate saddle
critical point, i.e., ∂p2q2g

2 − ∂p2p2g∂q2q2g > 0 at (p∗2, q∗2). The
function g(p∗2, q2) : T → R attains its maximum at q∗2: g(p∗2, q∗2) =
maxq2 g(p

∗
2, q2). Without loss of generality, we assume (p∗2, q∗2) = 0.

Let Bε,K denote a ball in the function space Cr({(p, q) ∈ T2 × R2 :
‖p‖ ≤ K} → R), centered at the origin with radius of ε. Now, we can
state the theorem which was formulated by Arnold in [1].

Theorem 1.1. Let A < B be two arbitrarily given numbers and as-
sume H satisfies the above two conditions. There exists a small number
ε > 0, a large number K > 0 and an open and dense set Sε,K ⊂ Bε,K

such that for each P ∈ Sε,K there exists an orbit of the Hamiltonian
flow which connects the region with p1 < A to the region with p1 > B.

We shall use variational argument to complete the proof. In Sec-
tion 2, by using Legendre transformation we follow Mather’s work [15]
and put this problem into the Lagrangian formalism. The diffusion or-
bits are found by searching for the minimal action of the Lagrangian.
Some properties such as upper semi-continuity of some set-valued func-
tions are also proved in this section. In Section 3, we investigate the
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topological structure of some relevant Mañé sets. Section 4 is devoted
to the study of the barrier function when the Aubry set contains a codi-
mension one torus. In Section 5, by making use of the semi-continuity
property shown in Section 2, we obtain the proof of a theorem of con-
necting C-equivalent Mañé sets, formulated by Mather in [15]. Based on
the understanding of the topological structure of the relevant Mañé sets
shown in Section 3, we establish the C-equivalence among those relevant
Mañé sets and use this C-equivalence to construct the diffusion orbits
crossing resonant gaps. In virtue of the techniques developed in [6] and
the analytic expression of the barrier function obtained in Section 4, we
join the orbits constructed by C-equivalence smoothly with the orbits
constructed via transition chain. Thus, we obtain the diffusion orbits.
In Section 6, we show the open and dense property.

2. Variational set-up

Roughly speaking, the diffusion orbits are constructed by connecting
different c-minimal orbit sets, along which the Lagrange action takes its
minimum. Therefore, we shall study the Lagrangian equation equivalent
to the Hamiltonian equation (1.1):

(2.1)
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0,

where the Lagrangian function L(q̇, q, t) is obtained from the Hamil-
tonian function (1.1) by using Legendre transformation L: (p, q, t) →
(q̇, q, t) such that

(2.2) L(q̇, q, t) = max
p

{〈p, q̇〉 −H(p, q, t)}.

Here, q̇ = q̇(p, q, t) is implicitly determined by q̇ = ∂H
∂p . Since we study

a nearly integrable system, the Lagrangian has the form of

L = L0(q2, q̇) + L1(q, q̇, t),

where L0 corresponds to f + g through the Legendre transformation.
Throughout this paper, we use φt to denote the Euler–Lagrange flow

determined by L, use Φt to denote the Hamiltonian flow determined by
H. To specify the Euler–Lagrange (Hamiltonian) flow determined by
other functions, we add the subscript, e.g. φt

L0
, Φt

f+g, etc.
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Clearly, Equation (2.1) corresponds to the critical point of the func-
tional

A(γ) =
∫
L(γ, γ̇, t)dt.

We can think that L is a function defined on TM × T where M = T2.
As f + g is an integrable system and H is its small perturbation, every
solution of H is well defined for t ∈ R. By the assumptions on H, we
see that L satisfies the following conditions introduced by Mather [14].

Positive definiteness. For every (q, t) ∈ M × T, the Lagrangian
function is strictly convex in velocity: the Hessian Lq̇q̇ is positive defi-
nite.

Superlinear growth. We suppose that L has fiber-wise superlinear
growth: for every (q, t) ∈M × T, we have L/‖q̇‖ → ∞ as ‖q̇‖ → ∞.

Completeness. All solutions of the Lagrange equations are well
defined for all t ∈ R.

Under these conditions, Mather established the theory of c-minimal
measure and c-minimal orbits [14, 15]. To introduce some basic results
of Mather, let us observe the fact that the functional

∫
Ldt has the same

critical point as
∫

(L−ηc)dt does if ηc is a closed 1-form on M×T, whose
first de Rham co-homology class is c, i.e., [ηc] = c, in other words, their
Lagrange equations are the same.

Let I = [a, b] be a compact interval of time. A curve γ ∈ C1(I,M)
is called a c-minimizer or a c-minimal curve if it minimizes the action
among all curves ξ ∈ C1(I,M) which satisfy the same boundary condi-
tions:

(2.3) Ac(γ) = min
ξ(a)=γ(a)
ξ(b)=γ(b)

∫ b

a
(L− ηc)(dξ(t), t)dt.

As we have the condition of completeness, the minimizer must be a C1-
curve by Tonelli’s theorem. Without the completeness, the minimizer
can fail to be [2]. If J is a non-compact interval, the curve γ ∈ C1(J,M)
is said a c-minimizer if γ|I is c-minimal for any compact interval I ⊂
J . An orbit X(t) of φt is called c-minimizing if the curve π ◦ X is
c-minimizing, where the operator π is the standard projection from
tangent bundle to the underlying manifold along the fibers; a point
(z, s) ∈ TM ×R is c-minimizing if its orbit φt(z, s) is c-minimizing. We
use G̃L(c) ⊂ TM × R to denote the set of minimal orbits of L− ηc (the
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c-minimal orbits of L). We shall drop the subscript L when it is clear
which Lagrangian is under consideration. It is not necessary to assume
the periodicity of L in t for the definition of G̃. When it is periodic in
t, G̃(c) ⊂ TM ×R is a non-empty compact subset of TM ×T, invariant
for the Euler–Lagrange flow φt.

We can extend the definition of action along a C1-curve to the action
on a probability measure. Let M be the set of Borel probability mea-
sures on TM × T. For each ν ∈ M, the action Ac(ν) is defined as the
following:

(2.4) Ac(ν) =
∫

(L− ηc)dν.

Mather has proved [14] that for each first de Rham cohomology class c,
there is a probability measure µ which minimizes the actions over M

Ac(µ) = inf
ν∈M

∫
(L− ηc)dν.

This µ is invariant to the Euler–Lagrange flow. We use M̃(c) to de-
note the closure of the union of the support of all such measures, use
−α(c) = Ac(µ) to denote the minimum c-action. It defines a function
α: H1(M,R) → R, usually called α-function. Its Legendre transforma-
tion β: H1(M,R) → R is usually called β-function. Both functions are
convex, finite everywhere and have super-linear growth [14]. As M̃(c)
is defined as the limit measure of c-minimal orbits, the following lemma
is a straightforward result of topological dynamics:

Lemma 2.1. For each co-homological class c and each positive num-
ber ε, there exists a positive number T0 = T0(c, ε), such that if T ≥ T0

and γ: [0, T ] → M × T is a curve minimizing the action of L − ηc,
[ηc] = c, then there is t ∈ [0, T ] such that

d(dγ(t),M̃(c)) ≤ ε.

Before starting the existence proof of diffusion orbits, we need to
introduce some more concepts and investigate some relevant properties,
which shall be made use of below for our purpose.

We have defined the sets M̃(c) and G̃(c). It is easy to see that M̃(c)
is contained in the set G̃(c). Between the set G̃ and set M̃, we can also
define so-called Aubry set Ã(c) and Mañé set Ñ (c) as well as the limit
point set L̃(c).



EXISTENCE OF DIFFUSION ORBITS 463

As all orbits are well defined on the whole R, they have ω-limit sets
and α-limit sets. Let ω̃(c) be the union of ω-limit points of c-minimal
orbits X(t) : [0,∞) → TM×T, let α̃(c) be the union of α-limit points of
c-minimal orbits X(t) : (−∞, 0] → TM ×T. We call L̃(c) = ω̃(c)∪ α̃(c)
the limit set.

To define the Aubry set and the Mañé set, let us define

(2.5) hc(x, x′, t, t′) = min
γ∈C1([t,t′],M)

γ(t)=x,γ(t′)=x′

∫ t′

t
(L− ηc)(dγ(s), s)ds+ (t′ − t)α(c),

Fc(x, x′, s, s′) = inf
s=t mod 1

s′=t′ mod 1
t′≥t+1

hc(x, x′, t, t′).

(2.6) hc(x, x′) = hc(x, x′, 0, 1), Fc(x, x′) = Fc(x, x′, 0, 0).

Let

hn
c (x, x′) = min

{ n−1∑
i=0

hc(mi,mi+1) : m0 = x, mn = x′

and mi ∈M for 0 ≤ i ≤ n

}

and let

h∞c (x, x′) = lim inf
n→∞ hn

c (x, x′),(2.7)

dc(x, x′) = h∞c (x, x′) + h∞c (x′, x).(2.8)

Mather showed in [15] that dc is a pseudo-metric on the set {x ∈ M :
h∞c (x, x) = 0}. A curve γ ∈ C1(R,M) is called c-semi-static if

Ac(γ|[a,b]) + α(c)(b − a) = Fc(γ(a), γ(b), amod 1, bmod 1)

for each [a, b] ⊂ R. A curve γ ∈ C1(R,M) is called c-static if, in addition

Ac(γ|[a,b]) + α(c)(b − a) = −Fc(γ(b), γ(a), bmod 1, amod 1)

for each [a, b] ⊂ R. An orbit X(t) = (dγ(t), tmod 1) is called static
(semi-static) if γ is static (semi-static). We call the Mañé set Ñ (c) the
union of global c-semi-static orbits, the set Ã(c) is defined as the union
of global c-static orbits, we call it Aubry set.
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We use M(c), L(c), A(c), N (c) and G(c) to denote the standard
projection of M̃(c), L̃(c), Ã(c), Ñ (c) and G̃(c) from TM × T to M ×T
respectively. We have the following inclusions [4].

(2.9) M̃(c) ⊆ L̃(c) ⊆ Ã(c) ⊆ Ñ (c) ⊆ G̃(c).

The set G̃(c) and Ñ (c) have the good property of upper semi-continuity
in c. Restricted on A(c), the map π−1 : A(c) → Ã(c) is Lipschitz. We
use Ñs(c) = Ñ (c)|t=s to denote the time section, and so on.

When necessary, we use the symbols G̃L(c), ÑL(c), ÃL(c) and M̃L(c)
to denote the minimal orbit set, Mañé sets, Aubry set and Mather set
determined by some Lagrangian L respectively, omitting the subscript
L when the Lagrangian is clearly defined.

To describe these minimal orbit sets, Mather introduced two kinds of
barrier functions Bc and B∗

c , it is defined as follows

Bc(q) = h∞c (q, q)

(2.10) B∗
c (q) = min{h∞c (ξ, q) + h∞c (q, η) − h∞c (ξ, η) : ∀ ξ, η ∈ M0(c)}.

Clearly, we have 0 ≤ B∗
c ≤ Bc. When dc(ξ, η) = 0 for all ξ, η ∈ M0(c),

then Bc = B∗
c [15]. It is not hard to see that A0(c) = {x ∈M : Bc(x) =

0}. The following lemma is a modified version of the Proposition 2.1 in
[4].

Lemma 2.2. Let M be a compact, connected Riemannian mani-
fold. Assume L ∈ Cr(TM × R,R) (r ≥ 2) satisfies the positive defi-
nite, superlinear-growth and completeness conditions. Considered as the
function of t, L is assumed periodic for t ∈ (−∞, 0] and for t ∈ [1,∞).
Then, the map L → G̃L ⊂ TM × R is upper semi-continuous. As an,
immediate consequence, G̃(c) is a non-empty compact set in TM × T
and the map c→ G̃(c) is upper semi-continuous if L is periodic in t.

We can consider t is defined on (T∨ [0, 1]∨T)/∼, where ∼ is defined
by identifying {0} ∈ [0, 1] with some point on one circle, and identifying
{1} ∈ [0, 1] with some point on another circle. Let Uk = {(ζ, q, t) :
(q, t) ∈ M × (T ∨ [0, 1] ∨ T)/ ∼, ‖ζ‖ ≤ k}, ∪∞

k=1Uk = TM × R. Let
Li ∈ Cr(TM × T,R). We say Li converges to L if for each ε > 0 and
each Uk, there exists i0 such that ‖L− Li‖Uk

≤ ε if i ≥ i0.

Proof. Since M is connected and compact, any two point x1, x2 ∈M
can be connected by a geodesic. Let 
(x1, x2) be the length of the
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shortest geodesic connecting these two points, there is an upper bound
K1 > 0 of 
(x1, x2) uniformly for all x1, x2 ∈M . Let

K = max
(q,t)∈T2×(T∨[0,1]∨T)/∼

‖ζ‖≤K1

L(q, ζ, t).

Given time interval [a, b] with b−a ≥ 1, if we reparametrize the shortest
geodesic γ(s) by γ̄(t) = γ(
(x1, x2)(t − a)/(b − a)), then γ̄(t) is a C1-
curve such that γ̄(a) = x1, γ̄(b) = x2. Clearly, the action of L along
this curve is not bigger than K(b − a). Obviously, there is an upper
bound uniformly for all minimizing action of L′ if they close to L on
{‖ζ‖ ≤ K1}, still denoted by K(b− a).

Since the super-linear growth is assumed, there are two constant C
and D such that L′(q, q̇, t) ≥ C‖q̇‖−D for all (q, q̇, t) ∈ TM × [a, b] and
for all L′ close to L. It follows that

(2.11)
dist(γ(a), γ(b))

b− a
≤ 1
b− a

∫ b

a
‖dγ‖ ≤ (K +D)

C

if γ is a minimizer. As (2.11) holds for any b−a ≥ 1, it implies that there
must be some τi ∈ [a+ i, a+ i+1] (i ∈ Z) such that ‖γ̇(τi)‖ ≤ C−1(K+
D). By the compactness ofM×(T∨[0, 1]∨T)/∼, we see that there exists
K2 > 0 such that ∪s∈[0,1]φ

s({q, ξ, t : (q, t) ∈M×(T∨[0, 1]∨T)/∼, ‖ξ‖ ≤
C−1(K +D)}) ⊂ {q, ξ, t : (q, t) ∈M × (T ∨ [0, 1] ∨ T)/∼, ‖ξ‖ ≤ K2}.

Let Li ∈ Cr(TM × R,R) be a sequence converging to L, let γi:
[a, b] → M be the minimizer of Li with b − a ≥ 1. By the argument
above, we see there exists some Uk ⊃ {ξ, q, t : (q, t) ∈M×R, ‖ξ‖ ≤ K2},
so that ‖(L(z, t) − Li(z, t)‖Uk

≤ εi. Here, εi → 0 as i→ ∞. Thus,

(2.12)
∫ b

a
L(dγi(t), t)dt ≤ (K + εi)(b− a).

As all γi is a C1-curve and the actions of L on each γi are bounded
by (2.12), the set {γi}i∈Z+ is compact in the C0-topology (cf [14]).
Moreover, this set is compact in the C1([a, b],M)-topology as we have
‖γ̇i‖ ≤ K2 and as ∂2L/∂q̇2 is positive definite. So, we can write the
Lagrange equations in the form of q̈ = f(q, q̇, t), which implies γi is
bounded in C2-topology.

Let γ: [a, b] → M be one of the accumulation points of this set.
Clearly, γ: [a, b] →M is the minimizer of L and we have

Ac(γ) = lim
i→∞

∫ b

a
Li(dγi(t), t)dt.



466 C.-Q. CHENG & J. YAN

We let Ii = [−Ti, Ti] and let Ti → ∞, there is a sequence of minimizers
of Li, γi: Ii → M . By diagonal extraction argument, we can find a
subsequence of γi which converges C1 uniformly on each compact set
to a C1-curve γ: R → M which is the minimizer of L on any compact
interval of R. This proves the upper semi-continuity of L→ G̃L.

Given L periodic in t, we let Lc = L − ηc where ηc is a closed one
form such that [ηc] = c. ηc is a linear function in q̇. If ci → c, we
can choose a sequence of closed 1-form ηci such that [ηci ] = ci and
|ηci − ηc|‖q̇‖≤K1

→ 0. In this case, Lci → Lc implies ci → c. Since
the c-minimal orbits are independent of the choice of ηi, applying the
argument above, we obtain the upper semi-continuity c→ G̃(c). q.e.d.

In the application, the set G̃(c) seems too big to be used for the
construction of connecting orbits in interesting problems. Mañé sets
seem good candidates. In the time-periodic case, Mañé set can be a
proper subset of G̃(c), Ñ (c) � G̃(c). It is closely related to the problem
whether the Lax–Oleinik semi-group converges or not, some example
can be found in [10]. To establish the connection between two Mañé
sets, we consider a modified Lagrangian

Lη,µ = L− η − µ,

where η is a closed 1-form on M such that [η] = c, µ is a 1-form de-
pending on t in the way that the restriction of µ on {t ≤ 0} is 0, the
restriction on {t ≥ 1} is a closed 1-form µ̄ on M with [µ̄] = c′ − c. Let
m0,m1 ∈M , we define

hT0,T1
η,µ (m0,m1) = inf

γ(−T0)=m0
γ(T1)=m1

∫ T1

−T0

(L− η − µ)(dγ(t), t)dt(2.13)

+ T0α(c) + T1α(c′).

Clearly, ∃ m∗ ∈M and some constants Cµ, Cη,µ, independent of T0, T1,
such that

hT0,T1
η,µ (m0,m1) ≤ hT0

c (m0,m
∗) + hT2

c′ (m∗,m2) + Cµ

≤ Cη,µ.

Thus, its limit infimum is bounded

h∞η,µ(m0,m1) = lim inf
T0,T1→∞

hT0,T1
η,µ (m0,m1)(2.14)

≤ Cη,µ.
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Let {T i
0}i∈Z+ and {T i

1}i∈Z+ be the sequence of positive integers such
that T i

j → ∞ (j = 0, 1) as i→ ∞ and the following limit exists

lim
i→∞

h
T i
0,T i

1
η,µ (m0,m1) = h∞η,µ(m0,m1).

Let γi(t,m0,m1): [−T i
0, T

i
1] → M be a minimizer connecting m0 and

m1

h
T i
0 ,T i

1
η,µ (m0,m1) =

∫ T i
1

−T i
0

(L− η − µ)(dγi(t), t)dt + T i
0α(c) + T i

1α(c′).

From the proof of Lemma 2.2, we can see that for any compact interval
[a, b], there is some I ∈ Z+ such that the set {γi}i≥I is pre-compact in
C1([a, b],M).

Lemma 2.3. Let γ: R → M be an accumulation point of {γi}. If
s ≥ 1, then

ALη,µ(γ|[s, τ ]) = inf
τ1−τ∈Z,τ1>s

γ∗(s)=γ(s)

γ∗(τ1)=γ(τ)

∫ τ1

s
(L− η − µ)(dγ∗(t), t)dt(2.15a)

+ (τ1 − τ)α(c′),

if τ ≤ 0, then

ALη,µ(γ|[s, τ ]) = inf
s1−s∈Z,s1<τ

γ∗(s1)=γ(s)

γ∗(τ)=γ(τ)

∫ τ

s1

(L− η − µ)(dγ∗(t), t)dt(2.15b)

− (s1 − s)α(c),

if s ≤ 0 and τ ≥ 1, then

ALη,µ(γ|[s, τ ]) = inf
s1−s∈Z,τ1−τ∈Z

s1≤0,τ1≥1

γ∗(s1)=γ(s)

γ∗(τ1)=γ(τ)

∫ τ1

s1

(L− η − µ)(dγ∗(t), t)dt(2.15c)

− (s1 − s)α(c) − (τ1 − τ)α(c′).

Proof. To show that, let us suppose the contrary, for instance, (2.15b)
does not hold. Thus, there would exist ∆ > 0, s < τ ≤ 0, s1 < τ ≤ 0,
s1−s ∈ Z and a curve γ∗: [s1, τ ] →M with γ∗(s1) = γ(s), γ∗(τ) = γ(τ)
such that

ALη,µ(γ|[s, τ ]) ≥
∫ τ

s1

(L− η − µ)(dγ∗(t), t)dt − (s1 − s)α(c) + ∆.
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Let ε = 1
4∆. By the definition of limit infimum, there exist T i0

0 > 0 and
T i0

1 > 0 such that

(2.16) hT0,T1
η,µ (m0,m1) ≥ h∞η,µ(m0,m1) − ε ∀ T0 ≥ T i0

0 , T1 ≥ T i0
1 ,

there exist subsequences T ik
j (j = 0, 1, k = 0, 1, 2, . . .) such that for all

k > 0

T ik
0 − T i0

0 ≥ s− s1,(2.17)

|hT
ik
0 ,T

ik
1

η,µ (m0,m1)−h∞η,µ(m0,m1)| < ε.(2.18)

By taking a further subsequence, we can assume γik → γ. In this
case, we can choose sufficiently large k such that γik(s) and γik(τ) are
so close to γ(s) and γ(τ), respectively that we can construct a curve
γ∗ik : [s1, τ ] → M which has the same endpoints as γik : γ∗i (s1) = γi(s),
γ∗i (τ) = γi(τ) and satisfies the following

ALη,µ(γik |[s, τ ]) ≥
∫ τ

s1

(L− η − µ)(dγ∗ik(t), t)dt − (s1 − s)α(c) +
3
4
∆.

(2.19)

Let T ′
0 = T ik

0 + (s− s1), if we extend γ∗ik to R →M such that

γ∗ik =



γik(t− s1 + s), t ≤ s1,

γ∗ik(t), s1 ≤ t ≤ τ,

γik(t), t ≥ τ,

then, we obtain from (2.18) and (2.19) that

h
T ′
0,T

ik
1

η,µ (m0,m1) ≤ ALη,µ(γ∗ik |[−T ′
0, T

ik
1 ]) − T ik

1 α(c′) − T ′
0α(c)

≤ ALη,µ(γik |[−T ik
0 , T

ik
1 ]) − T ik

1 α(c′) − T ik
0 α(c) − 3

4
∆

≤ h∞η,µ(m0,m1) − 2ε.

but this contradicts (2.16) since T ′
0 ≥ T i0

0 and T ik
1 ≥ T i0

1 , guaranteed by
(2.17). (2.15a) and (2.15c) can be proved in the same way. q.e.d.

We define

Ñη,µ = {dγ ∈ G̃Lη,µ : (2.15a), (2.15b) and (2.15c) hold}.
This definition is similar to the definition of a Mañé set, but L is replaced
by Lη,µ.
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Lemma 2.4. The map (η, µ) → Ñη,µ is upper semi-continuous.
Ñη,0 = Ñ (c) if [η] = c. Consequently, the map c → Ñ (c) is upper
semi-continuous.

Proof. Let ηi → η and µi → µ, let γi ∈ Ñηi,µi and let γ be an
accumulation point of the set {γi ∈ Ñηi,µi}i∈Z+ . Clearly, γ ∈ Ñη,µ. If
γ /∈ Ñη,µ, there would be two points γ(s),γ(τ) ∈M such that one of the
following three possible cases takes place. Either γ(s) and γ(τ) ∈ M
can be connected by another curve γ∗: [s + n, τ ] → M with smaller
action

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s + n, τ ]) − nα(c),

in the case τ < 0; or there would a curve γ∗: [s, τ + n] →M such that

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s, τ + n]) − nα(c′),

in the case s ≥ 1, or when s ≤ 0 and τ ≥ 1, there would be a curve γ∗:
[s+ n1, τ + n2] →M such that

Aη,µ(γ|[s, τ ]) < Aη,µ(γ∗|[s+ n1, τ + n2]) − n1α(c) − n2α(c′),

where s + n1 ≤ 0, τ + n2 ≥ 1. Since γ is an accumulation point of
γi, for any small ε > 0, there would be sufficiently large i such that
‖γ − γi‖C1[s,t] < ε, it follows that γi /∈ Ñηi,µi , but that is absurd.

Let us consider the case that µ = 0. In this case, L− η is periodic in
t. If some orbit γ ∈ Ñη,0: R → M is not semi-static, then there exist
s < τ ∈ R, n ∈ Z, ∆ > 0 and a curve γ∗: [s, τ + n] → M such that
γ∗(s) = γ(s), γ∗(τ + n) = γ(τ) and

Aη,0(γ|[s, τ ]) ≥ Aη,0(γ∗|[s, τ + n]) − nα(c) + ∆.

We can extend γ∗ to [s1, τ1 + n] → M such that s1 ≤ min{s, 0},
min{τ1, τ1 + n} ≥ 1, τ1 ≥ τ and

γ∗ =



γ(t), s1 ≤ t ≤ s,

γ∗(t), s ≤ t ≤ τ + n,

γ(t− n), τ + n ≤ t ≤ τ1 + n.

Since L− η is periodic in t, we would have

Aη,0(γ|[s1, τ1]) ≥ Aη,0(τ∗γ|[s1, τ1 + n]) − nα(c) + ∆.

but this contradicts to (2.15c). q.e.d.
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The upper semi-continuity of c → Ñ (c) will be fully exploited to
build the C-equivalence among some Ñ (c), the construction of diffusion
orbits in this paper depends crucially on this property. Towards that, we
shall also make use of the Lipschitz property of the Aubry sets. Let π:
TM×T →M×T be the projection along the fibers. Mather discovered
the following (cf. [14, 15]).

Lemma 2.5. π: Ã(c) → M × T is injective. Its inverse (considered
as a map from A(c) = πÃ(c) to Ã(c)) is Lipschitz, i.e., ∃ a constant
CL such that for any x, y ∈ A(c), we have

dist(π−1(x), π−1(y)) ≤ CLdist(x, y).

The concept of regular Lagrangian is useful for us in this paper. L is
said to be c-regular if the following limit exists for all (x, x′, s, s′)

(2.20) h∞c (x, x′, s, s′) = lim
k→∞

hk
c (x, x

′, s, s′).

Lemma 2.6 ([4]). If M̃(c) is minimal in the sense of topological
dynamics and if there exists a sequence γn of n-periodic curves such that
Ac(γn) → 0 as n→ ∞, then Lc is regular, hence Ã(c) = Ñ (c) = G̃(c).

For the completeness sake, we shall present his proof in the appendix.
Applying this lemma to the area-preserving twist map, we have the
following:

Corollary 2.7. Let ω ∈ R\Q be the rotation number and c = β′(ω),
then Lc is regular and G̃(c) = Ã(c).

3. Structure of some c-minimal orbit sets

Our construction of connecting orbits between different c-minimal or-
bit sets exploits fully the upper-semi continuity of the set-valued func-
tion c→ Ñ (c), and the structure of the relevant Mañé sets.

Let us consider the Hamiltonian flow Φt which is a small perturbation
of Φt

f+g. Let Φ and Φf+g be their time-1-maps. As the cylinder T×R×
{(q2, p2) = (0, 0)} = Σ0 is the normally hyperbolic invariant manifold
for Φf+g and the a priori unstable condition is assumed, it follows from
the fundamental theorem of normally hyperbolic invariant manifold (cf.
[11]) that there is ε = ε(A,B) > 0 such that if ‖P‖Cr ≤ ε on the region
{|p| ≤ max(|A|, |B|)+1} the map Φs+k (k ∈ Z) also has a Cr−1 invariant
manifold Σ(s) ⊂ R2 ×T2, provided that r ≥ 2. This manifold is a small
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deformation of the manifold Σ0|{|p1|≤max(|A|,|B|)+1}, and is also normally
hyperbolic and time-1-periodic. Let Σ = Σ(0), it can be considered as
the image of a map ψ: Σ0 → R2 ×T2, Σ = {p1, q1, p2(p1, q1), q2(p1, q1)}.
This map induces a 2-form ψ∗ω on Σ0

ψ∗ω =
(

1 +
∂(p2, q2)
∂(p1, q1)

)
dp1 ∧ dq1.

Since the second de Rham co-homology group of Σ0 is trivial, by using
Moser’s argument on the isotopy of symplectic forms [17], we find that
there exists a diffeomorphism ψ1 on Σ0|{|p1|≤max(|A|,|B|)+1} such that

(3.1) (ψ ◦ ψ1)∗ω = dp1 ∧ dq1.
Since Σ is invariant for Φ and Φ∗ω = ω, we have(

(ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1)
)∗
dp1 ∧ dq1 = dp1 ∧ dq1

i.e., (ψ ◦ ψ1)−1 ◦ Φ ◦ (ψ ◦ ψ1) preserves the standard area. Clearly, it
is exact and twist since it is a small perturbation of Φf . In this sense,
we say that the restriction of Φ on Σ is obviously area-preserving and
twist. If r > 4, there are many invariant homotopically non-trivial
curves, including many KAM curves. As it still remains open whether
the invariant curves of irrational rotation number must be differentiable,
we can only assume all these curves are Lipschitz. Given ρ ∈ R, there
is an Aubry–Mather set with rotation number ρ, which is either an
invariant circle, or a Denjoy set if ρ ∈ R\Q, or periodic orbits if ρ ∈ Q.
Under the generic condition, we can assume there are no homotopically
non-trivial invariant curves with rational rotation number for Φ|Σ, and
there is only one minimal periodic orbit on Σ for each rational rotation
number.

Let us consider the Legendre transformation L. By abuse of termi-
nology, we continue to denote Σ(s) and its image under the Legendre
transformation by the same symbol. Let

Σ̃ =
⋃
s∈T

(Σ(s), s),

which has the normal hyperbolicity as well. Under the Legendre trans-
formation, those Aubry–Mather sets (invariant curves, Denjoy sets or
minimal periodic orbits) on Σ correspond to the support of some c-
minimal measures. Recall H1(M,R) = R2. We claim that each of these
sets corresponds to an interval or a rectangle in H1(M,R). In other
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words, for all c in this interval (rectangle), the time-1-section of the
support of the c-minimal measure is exactly this Aubry–Mather set.

Towards that goal, we introduce the coordinate transformation

(p1, q2, p2, q2) → (p1, q2, p2 + ζ(q2), q2),

where ζ is defined in the way such that

(3.2)
∂g

∂p2
(ζ(q2), q2) = 0

and let g′(p2, q2) = g(p2 + ζ(q2), q2). By the assumption on g, we now
have

∂2g′

∂q22
(0, 0) < 0,

∂2g′

∂p2∂q2
(0, q2) = 0.

To simplify the notation, we still use g to denote the function g′. Let
L0 be the Lagrangian obtained from f + g by Legendre transformation.
It has the form

L0(q2, q̇) = 
1(q̇1) + 
2(q2, q̇2),
where 
1 and 
2 are the Legendre transformation of f and g, respectively.
As g is a convex function in p2, q̇2 = q̇2(p2, q2) = ∂p2g(p2, q2), we find
from (3.2) and the convexity of g that q̇2(0, q2) = 0 and ∂q̇2/∂p2 > 0.
Thus, 
2 can be written in the form


2(q2, q̇2) = V (q2) + U(q2, q̇2),

where V (q2) = −g(0, q2), U ≥ 0 is a convex function in q̇2 with super-
linear growth, attains its minimum at q̇2 = 0 (∀q2 ∈ T). By the assump-
tion, V has a global minimum at q2 = 0 which is non-degenerate.

Now, let us consider the β function of L0. Under the flow φt
L0

, an
invariant circle on Σ with irrational rotation number ρ is the support of
a unique minimal measure µ(ρ,0) whose rotation vector is (ρ, 0). There
exist c1 ∈ R and −∞ < c−2 < 0 < c+2 < ∞ such that µ(ρ,0) is c-minimal
for c ∈ {c1} × [c−2 , c

+
2 ]. We have c−2 < c+2 since the β function of the

twist map has corner at rational numbers. β is differentiable at some
rational number p/q if and only if there exists a homotopically non-
trivial invariant curve of rotation number p/q, and consists entirely of
periodic orbits of period q [3], [13]. From the property that both α and
β functions are finite everywhere and has super-linear growth we find
that −∞ < c−2 and c+2 <∞.

Next, let us consider the α function of L. We use c = (c1, c2) ∈ R2 to
denote a first de Rham cohomology class ofM . For each c ∈ R×(c−2 , c

+
2 ),
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the action variable on each c-minimal orbit of L0 takes value (p1, 0)
which is independent of t. Let A∗, B∗ be such numbers that for each
c ∈ [A∗, B∗] × (c−2 , c

+
2 ) the corresponding p1 satisfies the condition

A− 1 ≤ p1 ≤ B + 1.

Lemma 3.1. There exists ε0 > 0, if ‖P‖C2 ≤ ε0 on the region {|p| ≤
max(|A|, |B|) + 1}, there is a strip C = [A∗, B∗]× [−c∗2, c∗2] ⊂ H1(M,R)
(c∗2 > 0), such that for each c ∈ C, the c-minimal orbit set G̃(c) ⊂ Σ̃.

Proof. Note the Lagrangian flow of L0 is integrable and is decoupled
between two phase sub-space (q1, q̇1) and (q2, q̇2). The second compo-
nent of the flow φt

L0
, φt

�2
has two homoclinic loops Γ+ and Γ−, which can

be thought as the graph of the functionsG±(q2), i.e., Γ± = {q2, G±(q2)}.
The orbit dq+2 on Γ+ encircles the cylinder T × R in counter clockwise
direction (q̇2 > 0), the orbit dq−2 on Γ− encircles the cylinder in clock-
wise direction (q̇2 < 0). Clearly, we have some positive numbers C±

A > 0
such that ∫ ∞

−∞

2(q±2 (t), q̇±2 (t))dt = C±

A .

Let

c+2 =
1
2π
C+

A , c−2 =
1
2π
C−

A .

It is obvious that for each c ∈ R × (−c−2 , c+2 ), G̃L0 is contained in Σ̃.
By the upper semi-continuity of the set function (c, L) → G̃L(c), there
exist ε = ε(A,B) > 0 and c∗2 > 0 such that if c ∈ [A∗, B∗] × [−c∗2, c∗2]
and if ‖L1‖C2 ≤ ε, then G̃(c) is contained in a small neighborhood of
G̃L0(c). Here, ‖ · ‖C2 is the norm in the function space C2({(q̇, q) ∈
R2 × T2 : ‖q̇‖ ≤ K},R), K > 0 is a sufficiently large number. Since
G̃(c) is invariant, by the normal hyperbolicity of the invariant cylinder,
L̃ ⊂ Σ̃. q.e.d.

Although the structure of minimal measures is unclear in general case,
we know very well the structures of those M̃(c) ⊂ Σ̃ since the time-1-
map Φ is an area-preserving twist map when it is restricted to Σ. Under
the projection from TM × T to TM × {t = 0}, the support of those c-
minimal measures are the image of those Aubry–Mather sets under the
Legendre transformation L, they are homotopically non-trivial invariant
curves, Denjoy sets or minimal periodic orbits on Σ. We use Γ to denote
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those Aubry–Mather sets on Σ in the Hamiltonian formalism, let Γ(t) =
Φt

H(Γ) ⊂ Σ(t), Γ̃ = ∪t∈T(L(Γ(t)), t).
Before going onto the study of some c-minimal measures, let us note

a fact as follows:

Proposition 3.2. Let c′, c∗ ∈ H1(M,R), µ′ and µ∗ be the correspond-
ing minimal measures respectively. If 〈c′− c∗, ρ(µ′)〉 = 〈c′− c∗, ρ(µ∗)〉 =
0, then α(c′) = α(c∗).

Proof. By the definition of the α function we find that

−α(c′) = inf
ν∈M

∫
(L− ηc′)dν =

∫
(L− ηc′)dµ′

=
∫

(L− ηc∗)dµ′ + 〈c∗ − c′, ρ(µ′)〉
≥ −α(c∗).

In the same way, we find that α(c∗) ≤ α(c′). q.e.d.

Lemma 3.3. Assume Γ̃ ∈ M̃(c̄) for some c̄ = (c̄1, c̄2) ∈ [A∗, B∗] ×
[−c∗2, c∗2]. There is an interval I = I(c̄1) = {(c1, c2) ∈ H1(M,R) : c1 =
c̄1, a(c1) ≤ c2 ≤ b(c1)} with −∞ < a(c1) < 0 < b(c1) < ∞, such that
M̃(c) = Γ̃ for all c ∈ IntI, M̃(c) ⊇ Γ̃ for c ∈ ∂I. If there is an invariant
curve containing Γ, we have further M̃(c) = Γ̃ for all c ∈ I.

Proof. Let µ̄ be a c̄-minimal measure. We have shown in the lemma 3.1
that the support of µ̄ must be contained in Σ̃. Note the time-1-map
is an area-preserving twist map when it is restricted on the cylinder,
supp(µ̄)|t=0 is exactly an Aubry–Mather set. When the rotation num-
ber is irrational, it follows from the theory for twist map that µ̄ is
uniquely ergodic; if the rotation number is rational, we have assumed
that there is only one minimal periodic orbit. Thus, the minimal mea-
sure of consideration here is always uniquely ergodic, i.e., supp(µ̄) = Γ̃.
Let φt(z, θ) ∈ TM×T be the Lagrangian flow, zt be the TM component,
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η̂ = dq2. For any invariant measure µ, if supp(µ) ⊂ Σ̃, we have∫
η̂dµ =

1
T

∫ T

0
ds

∫
(η̂ ◦ φs)dµ(3.3)

=
1
T

∫ T

0
ds

∫
〈η̂, zs〉dµ(z)

≤ 1
T

∫ ∣∣∣∣
∫ T

0
〈η̂, zs〉ds

∣∣∣∣ dµ(z)

≤ 2π
T

→ 0

as T → ∞. Since
∫
η̂dµ is independent of T ,

∫
η̂dµ = 0. Therefore,

it follows from the Proposition 3.2 that α(c̄) = α(ĉ) if both c̄- and ĉ-
minimal measures are on Σ̃ with c̄ − ĉ = (0, c2). As the β function
for a twist map is strictly convex, M̃(c̄) = M̃(ĉ). Let I(c̄1) = {c ∈
H1(M,R) : c1 = c̄1, M̃(c) ⊇ Γ̃}. As the α function is convex and has
super-linear growth, I is connected and −∞ < a < 0 < b < ∞. What
remains to show is that I is closed. If not, there was a sequence ck → c
such that Γ̃ ⊂ M̃(ck) and Γ̃ � M̃(c), consequently, there would exist µ
such that Ac(µΓ̃) > Ac(µ), where µΓ̃ is the invariant measure on Γ̃. Let
k be sufficiently large so that ck is sufficiently close to c, then

Ack
(µ) =

∫
Ldµ− 〈ρ(µ), ck〉 = Ac(µ) − 〈ρ(µ), ck − c〉 < Ac(µΓ̃).

On the other hand, it follows from 〈c − ck, ρ(µΓ̃)〉 = 0 that Ac(µΓ̃) =
Ack

(µΓ̃). Thus, we have Ack
(µΓ̃) > Ack

(µ), but it contradicts the fact
that µΓ̃ is ck-minimal measure.

If there is another measure µ which can also minimize the c-action
of L when a(c1) < c2 < b(c1), then 〈dq2, µ〉 = 0. Indeed, for all a(c1) <
c′2 < b(c1), we have∫ (

L− c1q̇1 − c′2q̇2
)
dµΓ

=
∫ (

L− c1q̇1 − c2q̇2

)
dµΓ

=
∫ (

L− c1q̇1 − c2q̇2

)
dµ (by assumption)

=
∫ (

L− c1q̇1 − c′2q̇2
)
dµ+ (c′2 − c2)〈dq2, µ〉.
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Thus, we can choose c′2 in the way that (c′2−c2)〈dq2, µ〉 > 0 if 〈dq2, µ〉 �=
0, but this contradicts to the minimality of µΓ. Consequently, we always
have ∫

(L− c1q̇1)dµ =
∫

(L− c1q̇1)dµΓ̃,

which is independent of the value c2 takes between a(c1) and b(c1),
it implies that µ = µΓ̃ since µΓ̃ is the only c-minimal measure when
|c2| ≤ c∗2.

Let us consider the case when Γ is contained in an invariant curve
and c2 ∈ ∂I. Recall that there exists an invariant curve if and only
if the Peierls’ barrier function is identically equal to zero, the Aubry
set Ã(c) contains a co-dimensional one torus in this case. Let π be the
projection TM × T → M × T. Because the inverse map π−1 defined
the Aubry sets is Lipschitz and πΓ̃ contains a codimension 1 torus, any
c-minimal curve γ ⊂ A(c) cannot cross the 2-torus πΓ̃ ⊂ T 2 ×T. Thus,
there exist δ > 0 such that for any T > 0

−δ ≤
∣∣∣∣
∫ T

−T

˙̄γ2(t)dt
∣∣∣∣ ≤ 2π + δ.

So, if µ is also a c-minimal measure and c′ = (c1, 0), then

Ac′(µΓ̃) =
∫

(L− c1q̇1)dµΓ̃

=
∫

(L− c1q̇1 − c2q̇2)dµ (by condition)

=
∫

(L− c1q̇1)dµ (by (3.3))

= Ac′(µ)

it implies that the only minimal measure is µΓ̃. q.e.d.

It follows from the lemma 3.3 that there is a strip S = {(c1, c2) ∈
H1(M,R) : c1 ∈ R, a(c1) ≤ c2 ≤ b(c1), A∗ < c1 < B∗, −∞ < a(c1) <
0 < b(c1) < ∞}, such that if c ∈ intS, the c-minimal measure is on Σ̃
and is uniquely ergodic. If c ∈ ∂S ∩ {A∗ < c1 < B∗} and Γ ⊂ M̃(c) is
contained in an invariant curve, the c-minimal measure is also uniquely
ergodic. In these cases, we have Ã(c) = Ñ (c).

In the following, we use I(c1) = {c = (c1, c2) : a(c1) ≤ c2 ≤ b(c1)} to
denote the maximal interval in the following sense: for each c′ = (c1, c′2)
with a(c1) < c′2 < b(c1), the c′-minimal measure has some Γ̃ ⊂ Σ̃ as
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its support, this Γ̃ is not contained in the support of any c∗-minimal
measure where c∗ = (c1, c∗2) with either c∗c < a(c1) or c∗2 > b(c1).

Lemma 3.4. Let Γ̃ ⊂ Σ̃ be the support of some minimal measure
for c̄ ∈ I(c1), we assume that it has dense orbit. Then, Ñ (c) ⊂ Σ̃
for each c ∈ intI(c1) = {(c1, c2) : a(c1) < c2 < b(c1)}. If Γ is an
invariant curve or a Denjoy set contained in an invariant curve, and if
c ∈ ∂I = {(c1, c2) : c2 = a(c1) or c2 = b(c1)}, we have further that Ñ (c)
consists of Γ̃ and the c-minimal orbits homoclinic to Γ̃.

Proof. Let us consider a c-minimal orbit dγ with c ∈ intI(c1) (c ∈
I(c1) if Γ is an invariant curve). If this orbit is not contained in M̃(c) =
Γ̃, then dγ is semi-asymptotic to Γ̃ as t → ±∞. We say an orbit
is semi-asymptotic to an invariant set Γ as t → ∞ if every invariant
subset of its ω-limit set that is minimal in Birkhoff sense is contained
in Γ. We use the argument in [7] to show it. Let N be a minimal (in
Birkhoff sense) invariant subset of the ω-limit set of dγ, there exists a
sequence tk → ∞ such that dist(dγ(tk), N) → 0. We claim that there
is a sequence Tk → ∞ such that

(3.4) lim sup
k→∞

{dist(dγ(t), N) : tk ≤ t ≤ tk + Tk} → 0.

If not, there exist d > 0, T > 0 and a subsequence tj of the sequence
tk such that dist(dγ(t), N) ≥ d for every j and some sj ∈ [tj , tj + T ].
As γ(t) is a c-minimal curve, dγ lies in a bounded region of TM × T,
the closure of the orbit is compact. Thus, for some subsequence ti of
the sequence tj, the sequence dγ(ti) and dγ(si) are convergent to some
points x ∈ N and y ∈ TM × T respectively, where dist(y,N) ≥ d.
Consequently, φt0(x) = y for some 0 < t0 ≤ T . This contradicts the
invariance of N to the Euler–Lagrange flow.

Let µn be the probability measure evenly distributed along dγ[tk, tk +
Tk], µ be an accumulation point of {µn}. As dγ is a c-minimal orbit of
the Lagrange system µ is a c-minimal measure, i.e., µ = µΓ̃. From (3.4),
we see dist(N, Γ̃) = 0. As Γ̃ has dense orbit, N = Γ̃, i.e., the ω-limit
set of dγ has only one minimal invariant subset Γ̃ (in Birkhoff sense).
In the same way, we can show that the α-limit set of dγ has only one
minimal invariant subset Γ̃ also.

Let c ∈ intI and dγ ∈ Ñ (c). Note Ñ (c) = Ã(c) in this case. For each
ξ ∈ π(Γ), if kij → ∞ (i = 1, 2) as j → ∞ are the two sequences such
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that dγ(−k1j), dγ(k2j) → π−1(ξ), then we claim that

(3.5) lim
j→∞

∫ k2j

−k1j

γ̇2(t)dt = 0.

In fact, for any ξ ∈ π(Γ), there exist two sequences kij → ∞ as j → ∞
(i = 1, 2) such that dγ(−kij) → π−1(ξ) and dγ(k2j) → π−1(ξ) as j → ∞.
It follows from the fact that γ is c-static that

h
k1j
c (γ(−k1j), γ(0)) + h

k2j
c (γ(0), γ(k2j )) → 0.

If (3.5) does not hold, by choosing a subsequence again (we use the same
symbol), we would have∣∣∣∣ limj→∞

∫ k2j

−k1j
γ̇2(t)dt

∣∣∣∣ ≥ 2π > 0.

In this case, let us consider the barrier function B∗
c′ where c′ = (c1, c′2).

Since c − c′ = (0, c2 − c′2), we obtain from Proposition 3.2 that α(c′) =
α(c), so

Bc′(γ(0)) ≤ lim inf
j→∞

∫ k2j

−k1j

(
L(dγ(t), t) − c1γ̇1(t) − c′2γ̇2(t) − α(c′)

)
dt

≤ lim inf
j→∞

∫ k2j

−k1j

(L(dγ(t), t) − c1γ̇1(t) − c2γ̇2(t) − α(c)) dt

+ (c2 − c′2) lim
j→∞

∫ k2j

−k1j

γ̇2(t)dt

≤ −2|c2 − c′2|π < 0

as we can choose c′2 > c2 or c′2 < c2 accordingly. But this is absurd since
barrier function is non-negative.

Now, let us derive from (3.5) that there is no c-semi-static orbit that
is not contained in Σ̃. In fact, we find that dγ ∈ Ñ ((c1, 0)). To see
that, we obtain from (3.5) that the term c2γ̇2 has no contribution to the
action along the curve γ|[−k1j ,k2j ]:

(3.6)
∫ k2j

−k1j

(L− c1γ̇1 − c2γ̇2)dt→
∫ k2j

−k1j

(L− c1γ̇1)dt as j → ∞.

Note kij → ∞ as j → ∞ (i = 1, 2). If dγ /∈ Ñ ((c1, 0)), there would
exist j′ ∈ Z+, k′ ∈ Z, E > 0 and a curve ζ: [−k1j , k2j + k′] → M such
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that ζ(−k1j′) = γ(−k1j′), ζ(k2j + k′) = γ(k2j′)∫ k2j′

−k1j′
(L(dγ(t), t) − c1γ̇1 + α((c1, 0)))dt(3.7)

≥
∫ k2j′+k′

−k1j′
(L(dζ(t), t) − c1ζ̇1 + α((c1, 0)))dt + E

≥ F(c1,0)(γ(−k1j′), γ(k2j)) + E

and

(3.8)

∣∣∣∣∣
∫ k2j′+k′

−k1j′
ζ̇2dt

∣∣∣∣∣→ 0.

The second condition (3.8) follows from the facts that Ñ ((c1, 0)) ⊂ Σ̃
and that γ(−kij) → ξ ∈ M0((c1, 0)) = M0(c). Let j − j′ be sufficiently
large, we construct a curve ζ ′: [−k1j , k2j + k′] →M such that

ζ ′(t) =



γ(t), t ∈ [−k1j ,−k1j′ ],
ζ(t), t ∈ [−k1j′ , k2j′ + k′],
γ(t− k′), t ∈ [k2j′ + k′, k2j + k′].

It follows from (3.5–3.8) that∫ k2j+k′

−k1j

(L(dζ ′(t), t) − 〈c, ζ̇ ′〉)dt

<

∫ k2j

−k1j

(L(dγ(t) − c1γ̇1)dt− E

≤
∫ k2j

−k1j

(L(dγ(t), t) − 〈c, γ̇〉)dt − E

2
,

but this contradicts the property that dγ ∈ Ñ (c).
Finally, let us consider the case when c ∈ ∂I and there is an invariant

circle containing Γ. In this case, we obtain from the Lemma 3.3 that
µΓ̃ is the only minimal measure still. According to the upper semi-
continuity of the set-valued function c → Ñ (c) that Ñ (c′) should be
in a small neighborhood of Ñ (c) if c′ is close to c. It implies that
Ñ (c) should contain some orbits outside of Σ̃. If this is not true, Ñ (c′)
would be in a small neighborhood of Σ̃ for some c′ = (c1, c′2) with
c2 < a(c1) or c2 > b(c1). As we have normally hyperbolic structure in
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the neighborhood of Σ̃, any invariant set should be on Σ̃, consequently,
we would have M̃(c′) = Γ̃ as the map induced by the Euler–Lagrange
flow on this manifold corresponds to a twist area-preserving map on Σ.
But this contradicts the definition of I(c1).

At the beginning of the proof, we have shown that any c-minimal
orbits must be semi-asymptotic to the support of the minimal measure
if it is uniquely ergodic. What remains to be shown is that such orbit is
homoclinic to the invariant circle in this case. As Γ is contained in an
invariant circle, denoted by Γ∗, the Aubry set contains a codimension 1
torus Γ̃∗ = ∪t∈[0,1](φt(L(Γ∗)), t), because Pω(q) = Bc(q) for all q ∈ π(Γ∗)
when ω = ∂1α(c) is irrational, and because the necessary and sufficient
condition for the existence of invariant circle is the Peierls’ barrier func-
tion is identically equal to zero. Due to the Lipschitz property of the
Aubry set, any c-minimal curve can not cross π(Γ̃∗), so∫ k

−k
γ̇2(t)dt ≤ 2π + O(‖P‖) ∀ k ∈ Z+.

As dγ is semi-asymptotic to Γ̃, dγ enters the small neighborhood of
Σ̃. If dγ does not fall either on the stable manifold or on the unstable
manifold, then it will go outside of the neighborhood again. It implies
that dγ is a multi-bump solution of the Lagrange equation. As we
did in the proof of the Lemma 3.1, we can construct a curve ζ by
cutting off all other bumps and leave only one bump. In this case,
the c-action of ζ is smaller than that of γ, but this is absurd. Thus,
dγ(t) ∈W s

loc(Γ̃
∗)∪W u

loc(Γ̃
∗)\{Γ̃∗} when dγ(t) is in a small neighborhood

of Σ̃. q.e.d.

To each orbit dγ homoclinic to Γ̃, we can associate an element [γ] ∈
H1(M×T, Ũ ,Z) = Z where Ũ is a small neighborhood of π(Γ̃∗) ⊂M×T
when Γ is contained in an invariant circle Γ∗. We can see from this
lemma that the necessary condition for a homoclinic orbit {dγ} ⊂ Ñ (c)
is [γ] = ±1. In general, the time-1-section N0(c)\π(L(Γ)) is homotopi-
cally trivial. By definition, we mean that there exists an open neigh-
borhood U = ∪m

i=1Ui of N0(c) such that Ui ∩ Uj = ∅ if i �= j, U0 is an
open neighborhood of L(Γ) and each Ui (i �= 0) is contractible to one
point. In this case, we have

i∗H1(U,R) ⊂ span([ζ]),
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where i is the standard inclusion map, ζ = (ζ1, 0) : [0, 1] → M with
ζ1(0) = ζ1(1). By the Lipschitz property of Ã(c) = Ñ (c) in this case,
we may choose bounded, mutually disjoint open sets Ũi in TM such
that πŨi = Ui and ∪Ũi ⊃ Ñ0(c). Under this assumption, we have

Lemma 3.5. Assume c = (c1, b(c1)), M̃(c) = Γ̃ and N0(c)\π(Γ̃) is
homotopically trivial. Let c′ = (c1, c′2) with c′2 − b(c1) > 0 being suffi-
ciently small. If M̃(c′) is uniquely ergodic, then there exists a neighbor-
hood Nc′ of N0(c′) such that i∗H(Nc′ ,R) = 0.

Proof. By assumption, we can choose Ũ = ∪m
i=0Ũi, a neighborhood of

Ñ (c) such that π(Ũi)∩ π(Ũj) = ∅ if i �= j, Ũ0 is an open neighborhood
of L(Γ) and each Ui (i �= 0) is contractible to one point. By the upper-
semi continuity of c → Ñ (c), Ñ (c′) ⊂ Ũ if c′2 − b(c1) sufficiently small.
We claim that for each z ∈ Ũ0 ∩ Ñ (c′), ∃ an integer k(z) ∈ Z+ such
that φk(z)(z) /∈ Ũ0 and there is an uniform upper bound K ∈ Z+ for all
these k(z). If this is not true, for any k > 0, k ∈ Z there is zk ∈ Ũ0

such that φl(zk) ∈ Ũ0, ∀0 ≤ l ≤ k. Let νk be a probability measure
distributed evenly on φt(z) (0 ≤ t ≤ k) and let k → ∞, we find there is
an accumulation point ν, supp(ν) ⊂ Ũ0. Obviously, ν ∈ M̃(c). As there
is a normally hyperbolic structure on Σ̃, the invariant set in Ũ0 must
be on Σ̃, it follows that M̃(c) ⊂ Σ̃, but it contradicts the definition of
I(c1).

By the upper semi-continuity of c→ Ñ (c) and the assumption on the
intersection of the stable and unstable manifolds, we see that Ñ0(c′)\Ũ0

can be covered by finite mutually disjoint open sets, each of them is ho-
motopic to a point. As each point in Ũ0 shall go outside under the time-
1-map φ1, the whole Ñ0(c′) can be covered by finite mutually disjoint,
homotopically trivial open sets. Because M̃(c′) is assumed uniquely
ergodic, we obtain from Lemma 2.5 that Ñ (c′) = Ã(c′). The Lipschitz
property of A(c′) guarantees that N0(c′) = A0(c′) is also homotopically
trivial. q.e.d.

4. Some Barrier functions

In this section we consider a co-homology class c = (c1, b(c1)) such
that A(c) contains a 2-torus in T2 × T, i.e., its time-1-sections have an
invariant circle on the cylinder, and study the relevant barrier functions
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introduced in [15]. The study for c = (c1, a(c1)) is the same. According
to our assumptions, the rotation number of this circle is irrational. To
go further with our proof, let us turn back to the Hamiltonian formalism
temporarily to look at something.

Let ΦH = Φ1
H be the time-1-map of the Hamiltonian flow Φt

H . It
has an invariant cylinder Σ. Restricted to the cylinder Σ, this map is
clearly twist and area-preserving, thus the invariant circle Γ is Lipschitz.
When P = 0, we have the cylinder T × R × {q2 = p2 = 0} as the
normally hyperbolic manifold for Φf+g. Each orbit on this manifold
lies in an invariant circle and has zero Lyapunov exponent only. Both
the stable and unstable manifolds have two branches. Each of them
has an invariant fibration {q1 = p1 = constant, p2 = G̃±(q2)} if we use
{q2, G̃±(q2)} to denote the homoclinic loops of Φg in the space of (q2, p2).
Under a small perturbation, the invariant circle on Σ is the graph of a
small function, i.e., Γ = {q1 ∈ T, p = pΓ(q1), q2 = q2Γ(q1)}. From the
theory of normally hyperbolic manifolds, we know that the fibration
has Cr−2-smoothness on the base points. As Γ is an invariant circle, all
stable (unstable) fibers with base points on Γ constitute the local stable
(unstable) manifold W s,u

H (Γ) of Γ. Both the stable and the unstable
manifolds have two branches corresponding to (c1, b(c1)) and (c1, a(c1))
respectively. Let us consider the branch corresponding to (c1, b(c1)). In
the covering space T (T × R), one lift of a unstable manifold originates
from {p = pΓ(q1), q2 = q2Γ(q1)} and extends to right, one lift of stable
manifold originates from {p = pΓ(q1), q2 = q2Γ(q1)+2π} and extends to
left. When P = 0, these two manifolds coincide with each other and are
graphs above 0 ≤ q2 ≤ 2π. Thus, for suitably small a > 0, there exists
ε > 0 such that if ‖P‖ ≤ ε, the unstable manifold is a graph above the
region {q2Γ(q1) ≤ q2 ≤ 2π−a} and the stable manifold keeps horizontal
in the region {a ≤ q2 ≤ q2Γ(q1) + 2π}, i.e., they are the graphs of some
functions in the relevant regions,

W u(Γ) = {q, pu(q) : q1 ∈ T, q2Γ(q1) ≤ q2 ≤ 2π − a},(4.1)

W s(Γ) = {q, ps(q) : q1 ∈ T, a ≤ q2 ≤ q2Γ(q1) + 2π}.

Although each stable (unstable) fiber has Cr−2-smoothness, the base
points of these fibers fall on a circle for which we can only assume
Lipschitz smoothness, these manifolds are at least Lipschitz, i.e., ps,u(q)
in (4.1) are at least Lipschitz. We choose suitably small a > 0 such that
the time for any dγ2 to cross the strip {a ≤ q2 ≤ 2π− a} is longer than
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1. Such assumption is feasible as Φt
H is a small perturbation of Φt

f+g

for which this assumption is clearly true.
If there is another invariant circle Γ1 very close to Γ, by the smooth-

ness of the invariant fibration, we see that W s,u
H (Γ1) are also graphs

above the relevant region. Let Γ(A) be the highest circle on Σ where
p1 ≤ A, let Γ(B) be the lowest circle where p1 ≥ B. As all invariant
circles on Σ make up a closed set, it is reasonable to assert that we
have some ε > 0 such that if ‖P‖ ≤ ε, the stable and unstable mani-
folds of all Γ between Γ(A) and Γ(B) can keep horizontal in the region
{a ≤ q2 ≤ q2Γ(q1) + 2π} and {q2Γ(q1) ≤ q2 ≤ 2π − a}, respectively.

As the Hamiltonian system under study has standard symplectic
structure, each horizontal Lagrangian sub-manifold is a graph of some
closed 1-form defined on M . We know that the stable (unstable) mani-
fold of some smooth isotropic manifold is a Lagrangian manifold, there-
fore, if we use (q, p(q)) (p(q) ∈ C1) to denote such a smooth manifold,
then

(4.2)
∂p1

∂q2
=
∂p2

∂q1
,

it follows that there exists a C2-function S(q) and constant vector c ∈ R2

such that

(4.3)
∂S

∂q1
+ c1 = p1,

∂S

∂q2
+ c2 = p2.

If we consider the manifold as the graph of some closed 1-form, c ∈
H1(M,R) is the cohomology class of this closed 1-form. Since a Lip-
schitz function is differentiable almost everywhere, we claim that there
exists a C1,1-function S so that (4.3) holds. Here, we use Ck,α to denote
those functions whose kth derivative is α-Hölder.

Lemma 4.1. Let Γ be an invariant circle on the cylinder Σ, let
W s,u(Γ) be its stable (unstable) manifold, which is a graph over a con-
nected open set U ⊂M with π(Γ) ∈ U , then there exists C1,1 functions
Ss,u: U → R and a constant vector c ∈ R2 such that {W s,u

H : q ∈ U} =
{(q, dSs,u(q)) + c : q ∈ U}.

Proof. Let us consider the case of a stable manifold. By the condition
thatW s(Γ) is a graph, there is a Lipschitz function p = (p1, p2): U → R2

such that W s(Γ) = {(q, ps(q)) : q ∈ U}. Let γ be a closed curve which
is the boundary of some topological disk σ on W s. Since γ is on the
stable manifold, Φk

H(γ) approaches uniformly to Γ, it implies that Φk
H(γ)
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is such a closed curve going from a point to another point and returning
back along almost the same path when k is sufficiently large. As ΦH is
a symplectic diffeomorphism, k can be arbitrary large, we have

(4.4)
∫∫

σ
dp ∧ dq =

∮
γ
pdq =

∮
Φk

H(γ)
pdq = 0.

Note p is Lipschitz, by the theorem of Rademacher [18], p is differen-
tiable almost everywhere in U . As γ is arbitrarily chosen, (4.2) holds
for almost all q ∈ U . Consequently, there exists a C1,1-function Ss and
c ∈ R2 such that ps = dSs + c. In the same way, we obtain a C1,1-
function Su and c′ ∈ R2 such that pu = dSu + c′. As W s

H intersects W u
H

at the whole Γ, c′ = c. q.e.d.

In fact, for almost all initial points (q, ps(q)), p is differentiable at all
Φk

H(q, ps(q)) (∀k ∈ Z+). To see that, let O be an open set in U . For
each k ∈ Z+, there is a full Lebesgue measure set Ok ⊂ π(Φk

H{O, p(O)})
where p is differentiable. Since Φ is a diffeomorphism, the set

O∗ =
∞⋂

k=0

π
(
Φ−k

H {Ok, p
s(Ok)}

)
is a full Lebesgue measure subset of O. For any point q ∈ O∗, p is
differentiable at the points π(Φk

H(q, ps(q))) for all k ∈ Z+.
Let us consider the Hamiltonian flow. If the locally horizontal stable

(unstable) manifold has the form

W s,u
H = {(q, ps,u(q, t), t) : (q, t) ∈ U × T}

and if we call the 2-form Ω =
∑
dpi∧dqi−dH∧dt, then (ps,u, t)∗Ω = 0.

In the covering space R2 × R, we find that there exists S̄s,u(q, t) such
that dS̄s,u = ps,u(q, t)dq−H(ps,u(q, t), q, t)dt. By applying the standard
argument (see, for instance, the appendix 2 in [14]), we find that

(4.5) Ls,u = L− 〈∂qS̄
s,u, q̇〉 − ∂tS̄

s,u

attains its minimum at ∂qS̄
s,u as the function q̇. Note Ls,u

q̇ = Lq̇−∂qS̄
s,u

is Lipschitz, dLs,u
q̇ /dt and Ls,u

q exist almost everywhere. Since W s,u is
a manifold consisting of the trajectories of the Euler–Lagrange flow, it
follows from the Euler–Lagrange equation dLq̇/dt = Lq and (4.2) that
Ls,u

q = 0 almost everywhere. The absolute continuity of L implies that
Ls,u is a function of t alone. Therefore, by adding some function of t to
S̄s,u, we can make Ls,u = 0. Note the local stable (unstable) manifold
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can be thought as the graph of some function defined on {(q, t) ∈ T2×T :
a ≤ q2 ≤ q2Γ(q1, t) + 2π} ({(q, t) ∈ T2 × T : q2Γ(q1, t) ≤ q2 ≤ 2π − a}),
where q2Γ(q1, t) is such a function that π(Γ̃) = {(q, t) : q2 = q2Γ(q1, t)},
q2Γ(q1) = q2Γ(q1, 0). The first co-homology group is R×{0}×R. Thus,
there exists a function Su(q, t): {{(q, t) ∈ T2 × T : q2Γ(q1, t) ≤ q2 ≤
2π − a} → R, Ss(q, t): {(q, t) ∈ T2 × T : a ≤ q2 ≤ q2Γ(q1, t) + 2π} → R
and (c∗1, 0, α

∗) such that S̄s,u(q, t) = Ss,u(q, t)+c∗1q1+α
∗t, where we have

used the fact that both the stable and the unstable manifolds coincide
with each other at Γ̃. In this case, we obtain from (4.5) that

Ls,u = L− 〈(c∗1, 0), q̇〉 − 〈∂qS
s,u, q̇〉 − ∂tS

s,u

attains its minimum at W s,u as the function of q̇ with Ls,u|W s,u = α∗.
Thus, for all dγ on Γ̃ we have

(4.6)
∫ ∞

−∞

(
L(dγ(t), t) − 〈(c∗1, 0), γ̇〉 − 〈∂qS

s,u(γ(t), t), γ̇〉

− ∂tS
s,u(γ(t), t) − α∗

)
dt = 0.

We have mentioned before that the Euler–Lagrange equation for L−
ηc is the same as that for L if ηc is a closed 1-form. In local coordinates,
we can write ηc = 〈c(q), q̇〉. If we use Hηc(p, q, t) to denote the Legendre
transformation

Hηc(p, q, t) = max
p

{
〈p, q̇〉 −

(
L− 〈c(q), q̇〉

)}
,

then we obtain

p+ c(q) =
∂L

∂q̇
.

It implies that Hηc(p, q, t) = H(p + c(q), q, t). As ηc is closed, the co-
ordinate translation (p, q) → (p + c(q), q) is symplectic. Under such a
coordinate translation the horizontal stable (unstable) manifold is the
graph of the function ps,u(q) − c(q).

We know that Γ̃ is contained in some Aubry set A(c) = {Bc = 0}
where c = (c1, c′2) with a(c1) ≤ c′2 ≤ b(c1). From the above arguments
and the Proposition 3.2, we can see that c1 = c∗1 and α∗ = α(c).

To study the barrier function B∗
c , we consider the covering of T2 given

by T × R, let Γ̃k be the lift of Γ̃ which is close to T × {2kπ} × {p1 =
const., p2 = 0} × T. Without lose of generality, we single out one lift
of the unstable manifold W u that extends from Γ̃0 and keep horizontal
over {(q, t) ∈ T2 ×T : q2Γ(q1, t) ≤ q2 ≤ 2π−a} and single out one lift of
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the stable manifold W s that extends from Γ̃1 and keep horizontal over
{(q, t) ∈ T2 × T : a ≤ q2 ≤ q2Γ(q1, t) + 2π}.

Recall c = (c1, b(c1)). Since Ls,u attains its minimum on the local
horizontal stable (unstable) manifold, for q ∈ T × (a, 2π − a), we claim
that there exists only one c-minimal orbit dγs

c : R+ → TM as well as
only one c-minimal orbit dγu

c : R− → TM such that γs,u(0) = q. In fact,
such an orbit dγs,u

c lies on the local stable (unstable) manifold.
There are two steps to verify our claim. The first step is to show that

γs,u does not cross the codimension one torus Γ̃ ⊂ T2 × T. It follows
immediately from Lemma 4.2. To state this lemma, we define the set
of forward and backward semi-static curves:

Ñ+(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|[0,+∞) is c-semi-static},

Ñ−(c) = {(z, s) ∈ TM × T : π ◦ φt
L(z, s)|(−∞,0] is c-semi-static}.

Lemma 4.2. If M(c) is uniquely ergodic, u ∈ A0(c), then there exists
a unique v ∈ TuM such that (u, v) ∈ Ñ+

0 (c) (or Ñ−
0 (c)). Moreover,

(u, v) ∈ Ã0(c).

Proof. Let us suppose the contrary. Then, there would exist (u, v) ∈
Ã0(c) and a forward c-semi-static curve γ+(t) with γ+(0) = u and
γ̇+(0) �= v. In this case, for any u1 ∈ M0(c), there exist two sequences
ki, k

′
i → ∞ such that

π ◦ φki
L (u, v) → u1, γ+(k′i) → u1

and

lim
ki→∞

∫ ki

0
(L− ηc)(φt

L(u, v), t)dt + kiα(c)

= lim
k′

i→∞

∫ k′
i

0
(L− ηc)(dγ+(t), t)dt + kiα(c)

= h∞c (u, u1).

Thus, we obtain that

h∞c (π ◦ φ−1
L (u, v), u1)

= Fc(π ◦ φ−1
L (u, v), u) + h∞c (u, u1)

= Fc(π ◦ φ−1
L (u, v), u) + lim

k′
i→∞

∫ k′
i

0
(L− ηc)(dγ+(t), t)dt

> h∞c (π ◦ φ−1
L (u, v), u1),
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where the last inequality follows from the facts that γ̇+(0) �= v and the
minimizer must be a C1-curve. But this is absurd. q.e.d.

For the second step of the proof, we consider the problem in the cov-
ering space T×R and single out a lift of the stable (unstable) manifold
of the invariant circle. The stable (unstable) manifold has two branches:
W s,u

l,r

W s,u
r = W s,u ∩ {q2Γ(q1, t) ≤ q2 ≤ 2π − a},

W s,u
l = W s,u ∩ {−2π + a ≤ q2 ≤ q2Γ(q1, t)}.

These two branches of the manifold joined together smoothly at the in-
variant torus. Let us consider the unstable manifold. There is a smooth
function Su: {−2π + a ≤ q2 ≤ 2π − a} → R such that graph(dSu) =
W u

l ∪W u
r . Note W u

l |(q1,t)=constant is below the zero section of the cotan-
gent bundle whileW u

r |(q1,t)=constant is above the zero section if we restrict
them in the sub-cotangent bundle T ∗T. If L1 is sufficiently small, then
there exist some c′2 > 0 and a periodic function q2 = q2(q1, t) such that
q2(q1, t) ≤ a, |q2(q1, t) − a| very small and

Su(q1, 2π − q2(q1, t), t) − Su(q1,−q2(q1, t), t) − 2πc′2 = 0.

Thus, we can extend Su−c′2q2 periodically so that Su−c′2q2 is a contin-
uous function defined on T2 × T. Note that this function is not differ-
entiable at the 2-dimensional torus {(q, t) ∈ T3 : q2 = q2(q1, t)}. Since
Lu+α(c) = 0} when it is restricted onW u∩{−q2(q1) ≤ q2 ≤ 2π−q2(q1)}
and strictly positive elsewhere, the backward c-semi static orbits must
lie on W u

r if it approaches Γ̃ from the right-hand side.
There might be another possibility that the backward c-semi-static

orbits approaches Γ̃ from the left-hand side. Similarly, there exist c̃2 < 0
and a periodic function q̃2 = q̃2(q1, t) with |q̃2(q1, t)− a| very small such
that

Su(q1, q̃2(q1, t), t) − Su(q1,−2π + q̃2(q1, t), t) − 2πc̃2 = 0.

In this case, we can also extend Su − c̃2q2 periodically so that Su − c̃2q2
is a continuous function defined on T2 × T. Because γu(0) ∈ {a < q2 <
2π − a}, and c = (c1, b(c1)), it is clear that the c-action along the orbit
lying on W u

l is bigger than the c-action along the orbit lying on W u
r .

This asserts our claim.
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Since Ls,u + α(c) = 0 on W s,u, for arbitrary T > 0, we have

∫ 0

−T

(
L(dγu

c (t), t) − 〈c, γ̇u
c (t)〉 − α(c)

)
dt(4.7)

= Su(γu
c (0), 0) − Su(γu

c (−T ),−T ) − b(c1)(γ̄u
c2(0) − γ̄u

c2(−T )),∫ T

0

(
L(dγs

c (t), t) − 〈c, γ̇s
c (t)〉 − α(c)

)
dt

= Ss(γs
c (T ), T ) − Ss(γs

c (0), 0) − b(c1)(γ̄s
c2(T ) − γ̄s

c2(0)).

Since Φ is an area-preserving twist map when it is restricted on the
cylinder, from the Lemma 2.6 and the Corollary 2.7, we see that Lc is
regular. Therefore, for any ε > 0, 0 ≤ s < 1, 0 ≤ t < 1 and q′, q∗ ∈ M ,
there exists K0 ∈ Z+ such that

|h∞c (q′, q∗, s, t) − hK
c (q′, q∗, s, t)| ≤ ε ∀K0 ≤ K ∈ Z.

Since M(c) is uniquely ergodic in this case, for any δ > 0, 0 ≤ t < 1,
γs: R+ → M with γs(0) = q ∈ T × (a, 2π − a) and q∗ ∈ Mt(c) there
exists a sequence of {Ki}∞i=1 (Ki ∈ Z+) such that

d(γs(t+Ki), q∗) ≤ δ.

It is easy to construct an absolutely continuous curve ζ: [s,Ki + t] →M
such that ζ(t) = γs(t) as s ≤ t ≤ Ki + t − 2, d(dζ(t), dγs(t)) ≤ δ as
Ki + t− 2 ≤ t ≤ Ki + t and ζ(Ki + t) = q∗. As L̄s attains its minimum
at W s for each (q, t) ∈ U , it follows from the convexity of L in q̇ and
(4.7) that

0 ≤
∫ Ki+t

s

(
Lc(dζ(t), t)) − α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q′, s) − b(c1)(q∗2 − q2)

≤ o(δ),
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where Lc = L − 〈c, q̇〉. If γs
Ki

: [s,Ki + t] → M is the minimizer of
hKi

c (q, q∗, s, t), then

0 ≤
∫ Ki+t

s

(
Lc(dγs

Ki
(t), t)) − α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q, s) + b(c1)
∫ Ki+t

s
γ̇s

Ki2(t)dt

≤
∫ Ki+t

s

(
Lc(dζ(t), t)) − α(c)

)
dt

− Ss(q∗ + (0, 2π), t) + Ss(q, s) + b(c1)(q∗2 − q2)

≤ o(δ).

It is easy to see that dγs
Ki

(t) keeps close to the branch of the stable
manifold which corresponds to the cohomology class c = (c1, b(c1)) if
Ki is sufficiently large. Thus, we have∫ Ki+t

s
γ̇s

Ki2(t)dt = q∗2 + 2π − q2.

Therefore, we assert that for all q ∈ T × (a, 2π − a), q∗ ∈ π(Γ̃t(c)) and
s, t ∈ T

h∞c (q, q∗, s, t) = Ss(q∗ + (0, 2π), t) − Ss(q, s) − b(c1)(q∗2 + 2π − q2),
(4.8)

h∞c (q∗, q, s, t) = Su(q, s) − Su(q∗, t) − b(c1)(q2 − q∗2).

In fact, we have seen that (4.8) holds for q∗ ∈ Mt(c), q ∈ T× (a, 2π−a)
or q ∈ π(Γ̃|s). As there exists an invariant circle on which the rotation
number is irrational, we see thatBc(q) = Pω(q) ≡ 0 for all q ∈ π(Γ), thus
dc(q̂, q∗) = 0 for all q∗ ∈ M(c) and q̂ ∈ π(Γ), where ω = ∂1α(c), Pω is the
Peierls’ barrier function. Consequently, we have h∞c (q, q̂) = h∞c (q, q∗) +
h∞c (q∗, q̂). Therefore, we obtain (4.8) for any q ∈ T × (a, 2π − a) and
any q∗ ∈ π(Γ̃t). As dSs|π(Γ) = dSu|π(Γ), by adding a constant, we
can assume that Ss(q + (0, 2π), t) = Su(q, t) if (q, t) ∈ π(Γ̃). Since the
c-minimal measure is uniquely ergodic, we have the following:

Lemma 4.3. Let q ∈ T × (a, 2π − a), then

(4.9) B∗
c (q) = Su(q, 0) − Ss(q, 0) − 2πb(c1).
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Proof. Since M̃(c) is uniquely ergodic, by definition of B∗
c , the prop-

erty Ss(q + (0, 2π), t) = Su(q, t) if (q, t) ∈ π(Γ̃) and (4.8), we have

B∗
c (q) = min

ξ,η

{
h∞c (ξ, q) + h∞c (q, η) − h∞c (ξ, η) : ξ, η ∈ M(c)

}
= min

ξ

{
h∞c (ξ, q) + h∞c (q, ξ) : ξ ∈ M(c)

}
= Su(q, 0) − Ss(q, 0) − 2πb(c1).

q.e.d.

Next, we consider the stable (unstable) manifold of all invariant cir-
cles. Different invariant circle determines different stable and unstable
manifold, so we have a family of these manifolds. We claim that this
family of stable (unstable) manifolds can be parameterized by some pa-
rameter σ so that both ps,u

1 and ps,u
2 have 1

2 -Hölder continuity in σ.
Indeed, we arbitrarily choose one circle Γ0 and parameterize another
circle Γσ by the algebraic area between Γσ and Γ0,

(4.10) σ =
∫ 1

0
(Γσ(q1) − Γ0(q1))dq1.

This integration is in the sense that we pull it back to the standard
cylinder by ψ ◦ ψ1 ∈ diff(Σ0,Σ) (cf. (3.1)). In this way, we obtain
one-parameter family curves Γ: T × S → Σ in which S ⊂ [A′, B′] is a
closed set. Usually, S is a Cantor with positive Lebesgue measure, A′
and B′ correspond to the curves where the action p1 ≤ A and p1 ≥ B
respectively. Clearly, for each σ ∈ S, there is only one c1 = c1(σ)
such that Γσ = M̃0(c) for all c ∈ I(c1(σ)) as the rotation number is
irrational. We can think Γσ as a map to function space C0 equipped
with supremum norm Γ: S → C0(T,R),

‖Γσ1 − Γσ2‖ = max
q1∈T

|Γ(q1, σ1) − Γ(q1, σ2)|.
Direct calculation shows

|σ1 − σ2| ≥ 1
2Ch

(
max
q1∈T

|Γ(q1, σ1) − Γ(q1, σ2)|
)2

,

where Ch is the Lipschitz constant for the twist map, it follows that

(4.11) ‖Γσ1 − Γσ2‖ ≤ Cs|σ1 − σ2|
1
2 ,

where Cs =
√

2Ch. Since the stable (unstable) fibers have Cr−2-smooth-
ness on their base points on Σ, ps,u

σ is also 1
2 -Hölder continuous in
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σ. Thus, there exist two families of C1,1 functions Su
σ(q, t): {(q, t) :

q2Γσ(q1, t) ≤ q2 ≤ 2π − a} → M and Ss
σ(q, t): {(q, t) : a ≤ q2 ≤

q2Γσ(q1, t)+2π} →M , which are also 1
2 -Hölder continuous in σ. Remem-

ber for each σ ∈ S, B∗
c(σ)(q) can always take the value zero as its mini-

mum in the region {a ≤ q2 ≤ 2π−a}, it follows from the 1
2 -Hölder conti-

nuity of Ss,u
c(σ) and the expression of B∗

c(σ) given by (4.9) that b(c1(σ)) also

has 1
2 -Hölder continuity in σ. For z ∈ T, there is unique zσ(t) ∈ π(Γ̃σt)

such that zσ(t) = (z, q2Γσ (z, t)). Let c(σ) = (c1(σ), b(c1(σ))), we have:

Lemma 4.4. For all q ∈ T × (a, 2π − a), z ∈ T and s, t ∈ T the
functions Ss,u

σ (q), h∞c(σ)(q, zσ(t), s, t), h∞c(σ)(zσ(t), q, s, t) and B∗
c(σ)(q) are

1
2-Hölder continuous in σ ∈ S.

Different from B∗
c , h∞c depends on the choice of the closed 1-form ηc

(cf. [15]). To guarantee the Hölder continuity, we choose ηc = 〈c(σ), q̇〉
in above lemma.

5. Construction of connecting orbits

Throughout this section, we shall make the following hypotheses,
their verification shall be postponed to Section 6.

(H1): For each σ ∈ S ⊂ [A′, B′], the set {B∗
c(σ) = 0} ∩ {a ≤ q2 ≤

2π − a} is totally disconnected.

Remark. By the choice of a, the set {B∗
c(σ) = 0}∩{a ≤ q2 ≤ 2π−a}

is not empty since dγ2 cannot cross the strip {a ≤ q2 ≤ 2π−a} under one
step of the map φ, there must be some points on time-1-section of the
minimal orbits whose projection fall into the strip. By the definition of
S, for each σ ∈ S, Ã0(c(σ)) contains an invariant circle on the cylinder.
In this case, we have an explicit expression of B∗

c (q) in the strip. The
hypothesis (H1) implies the minimal critical point set of Ss

c(σ) − Su
c(σ)

consists of discrete points, and there must be some minimal points in
the interior of this strip.

(H2): If the rotation number of Γ is rational, then the associated
c-minimal measure has its support only at a periodic orbit. The set of
minimal homoclinic orbits in Σ to this periodic orbit is topologically
trivial.

Before making the third hypothesis, let us note that the union of
all invariant circles on the cylinder forms a closed set. These circles do
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not intersect each other, so the complementary set consists of countably
many invariant annulus.

(H3): Let Γ be an invariant circle on Σ, associated with co-homology
class c. If this circle is on the boundary of a gap, then for small δ > 0,
there exists c′ = (c1, c′2) with either 0 < c′2 − b(c1) < δ or −δ < c′2 −
a(c1) < 0 such that M(c′) is uniquely ergodic.

According to the study in the last section, we know that Ñ0(c′) is
homotopically trivial, but this does not guarantee that N0(c′) is also ho-
motopically trivial onM , since the projection from Ñ (c′) → N (c′) is not
necessarily injective. If M̃(c′) is uniquely ergodic, then Ñ (c′) = Ã(c′).
The Lipschitz property of A(c′) implies that N0(c′) is homotopically
trivial in this case. Given arbitrary small d > 0, there are only finitely
many invariant circles which are the boundary of some annulus with
width not smaller than d. Actually, we require the third hypothesis
only for these tori.

The first task in this section is to build a C-equivalent sequence
{c(i)}m

i=1, where c(1)1 = c1(σ′), a(c
(1)
1 ) ≤ c

(1)
2 ≤ b(c(1)1 ), c(m)

1 = c1(σ∗),
a(c(m)

1 ) ≤ c
(m)
2 ≤ b(c(m)

1 ) and σ′ < σ∗ correspond to two invariant cir-
cles which make up the whole boundary of a gap. Thus, a theorem of
connecting C-equivalent Mañé sets is used to construct the diffusion or-
bits crossing this gap. This kind of theorem was discovered by Mather
in [15] where the proof was sketched. To make use of this theorem, we
shall give a complete proof first. A theorem of connecting different G(c)
was proved by Bernard recently [4].

To any subset A of M , we associate a subspace of H1(M,R)

(5.1) V (A) =
⋂{

iU∗H1(U,R) : U is an open neighborhood of A
}
,

where iU∗: H1(U,R) → H1(M,R) is the map induced by the inclusion.
Clearly, there exists an open neighborhood U of A such that V (A) =
iU∗H1(U). Let V ⊥(A) be the annihilator of V (A). In other words, if
c ∈ H1(M,R), then c ∈ V ⊥ if and only if 〈c, h〉 = 0 for all h ∈ V (A).
Given c ∈ H1(M,R), we define

(5.2) R(c) =
∑
t∈T

(V (Nt(c)))⊥.

In [4], R(c) is defined by using G(c) instead of using N (c).
We say a continuous curve Γ: R → H1(M,R) is admissible if for

each t ∈ R there exists δ > 0 such that Γ(t) − Γ(t0) ∈ R(Γ(t0)) for all
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t ∈ [t0 − δ, t0 + δ]. We say c, c′ ∈ H1(M,R) are C-equivalent if there is
an admissible curve Γ: [0, 1] →M such that Γ(0) = c and Γ(1) = c′.

Let U be an open subset of M×T, we can think it as the open subset
in M × R of points (q, t) such that (q, t mod 1) ∈ U . The 1-form µ on
M × R is called a U -step form if there is a closed form µ̄ on M × T,
also considered as a periodic 1-form on M ×R, such that the restriction
of µ to t ≤ 0 is 0, the restriction of µ to t ≥ 1 is µ̄, and such that
the restriction of µ to the set U ∪ {t ≤ 0} ∪ {t ≥ 1} is closed. In the
application in this paper, µ̄ is chosen as a closed form on M .

If the first de Rham cohomology class d ∈ R(c), then there exists
an open neighborhood U of N (c) and a U -step form µ such that [µ̄] =
d. Such a neighborhood U will be called an adapted neighborhood.
Indeed, similar to the arguments in [4], let us fix a time t ∈ [0, 1] and
a cohomology class d ∈ V (Nt(c))⊥. There exist an open neighborhood
Ω of Nt(c) and a δ > 0 such that V (Ω) = V (Nt(c)) and such that
Ns(c) ⊂ Ω for all s ∈ [t − δ, t + δ]. As d ∈ R(c), we can take a closed
form µ̄ on M whose support is disjoint from Ω and such that [µ̄] = d.
Let ρ: R → R be a smooth function such that ρ = 0 on (−∞, t − δ],
ρ = 1 on [t+ δ,∞) and 0 ≤ ρ ≤ 1 for all t ∈ R and let U = M × ((0, t−
δ) ∪ (t+ δ, 1)) ∪ Ω × [t− δ, t+ δ]. Obviously, the form

µ = ρ(t)µ̄

is an U -step form satisfying the required conditions.
Let Γ: [0, 1] → H1(M,R) be an admissible curve such that Γ(0) = c

and Γ(1) = c′. For each t ∈ [0, 1] and an adapted neighborhood U(t),
let η(t) be a closed 1-form on M such that [η(t)] = Γ(t). There exists
δ(t) > 0 such that Γ(s) − Γ(t) ∈ R(Γ(t)) and a U -step form µ(s) with
[µ̄(s)] = Γ(s) − Γ(t) if s ∈ (t − δ, t + δ). According to the upper semi-
continuity (η, µ) → Ñη,µ proved in Lemma 2.4, we can assume that

(5.3) π(Ñη(t),µ(s)) + ε(t) ⊂ U(t)

if we take suitably small δ(t). In this paper, we use U + a to denote
the set {x ∈ M : dist(x,U) ≤ a}. Clearly, there is a finite increasing
sequence {ti}0≤i≤N such that

N⋃
i=0

(ti − δ(ti), ti + δ(ti)) ⊃ [0, 1],(5.4)

ti−1 > ti − δ(ti), ti+1 < ti + δ(ti)
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and (5.3) holds for each ti, and each s ∈ (ti − δ(ti), ti + δ(ti)). In the
following, we shall use εi, δi, Ui, ηi and µi to denote ε(ti), δ(ti), U(ti),
η(ti) and µ(ti) respectively. Thus, we have

(5.5) ηi = η0 +
i−1∑
j=0

µ̄j.

Let us fix some 0 ≤ i ≤ N and consider the function hT0,T1
ηi,µi (m0,m1)

defined in (2.13). For each small ε∗i > 0 and (m0,m1) ∈ M ×M there
exists (T̆ i

0, T̆
i
1) = (T̆ i

0, T̆
i
1)(ε

∗
i ,m0,m1) ∈ Z+ such that

(5.6) hT0,T1
ηi,µi

(m0,m1) ≥ h∞ηi,µi
(m0,m1) − ε∗i ∀Tj ≥ T̆ i

j , j = 0, 1.

Obviously, there are infinitely many Tj ≥ T̆ i
j (j = 0, 1) such that

(5.7) |hT0,T1
ηi,µi

(m0,m1) − h∞ηi,µi
(m0,m1)| ≤ ε∗i .

Let γi (t, m0, m1, T0, T1) : [−T0, T1] → M be the minimizer of hT0,T1
ηi,µi

(m0,m1), it follows from Lemma 2.3 that if ε∗i > 0 is sufficiently small,
T̆ i

j (j = 0, 1) are sufficiently large, and T0, T1 are chosen so that (5.7)
holds, then

(5.8) dγi(t,m0,m1, T0, T1) ∈ Ñηi,µi(t) + εi ∀0 ≤ t ≤ 1.

From the Lipschitz property of hT0,T1
ηi,µi (m0,m1) in (m0,m1) and the com-

pactness of M , we see that there are T̆ i
j = T̆ i

j (εi) (j = 0, 1), independent
of (m0,m1), so that (5.6) holds for all Tj ≥ T̆ i

j . We can see also that
there exist T̂ i

j (εi) > T̆ i
j (εi) (j = 0, 1) so that for any (m0,m1) ∈M ×M ,

there are Tj = Tj(m0,m1) with T̆ i
j ≤ Tj ≤ T̂ i

j (j = 0, 1) such that (5.7)
and consequently (5.8) hold. Note that for different (m0,m1), we may
need different Tj ≥ T̆ i

j .
We are now ready to construct a connecting orbit joining N (c0) and

N (cN ). We consider τi as the time translation (q, t) → (q, t + τi) on
M × R, and define the modified Lagrangian

(5.9) L̃ = L− η0 −
N−1∑
i=0

(−τi)∗µi.
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For each �τ = (τ0, τ1, . . . , τN−1), the following variational problem

hT0,TN

L̃
(m,m′, �τ)

= inf
γ(−T0)=m

γ(TN +τN−1)=m′

∫ TN+τN−1

−T0

(
L− η0 −

N−1∑
i=0

(−τi)∗µi

)
(dγ(t), t)dt

−
N−1∑
i=1

(τi − τi−1)α(ci) − T0α(c0) − TNα(cN )

has a C1-minimizer γ(t,m,m′, �τ , T0, TN ) which is clearly the solution
of the Euler–Lagrangian equation determined by L̃. We need to show
that it can be the extremal of L if we suitably choose �τ , T0 and TN . We
define

Λ =
{
�τ ∈ ZN : max{T̆ i

0, T̆
i−1
1 + 1} ≤ τi − τi−1 ≤ max{T̂ i

0, T̂
i−1
1 + 1}

∀1 ≤ i ≤ N − 1, τ0 = 0
}

and take the minimum of hT0,TN

L̃
(m,m′, �τ) over Λ

(5.10) FL̃(m,m′, T0, TN ) = min
�τ∈Λ

hT0,TN

L̃
(m,m′, �τ ).

Let �τ∗(T0, TN ) be the minimal point about �τ . If γ(t,m,m′, T0, TN ) is
the minimizer of FL̃(m,m′, T0, TN ), we claim that for t ∈ [τi, τi + 1] and
0 < i < N − 1

(5.11) dγ(t,m,m′, T0, TN ) ∈ (−τi)∗
(
Ñηi−1,µi |t

)
+ εi.

In fact, let us to choose mi = γ(τi−1+1), m′
i = γ(τi+1) for 0 < i < N−1.

Since γ(t,m,m′, T0, TN ) is the minimizer of FL̃(m,m′, T0, TN ), thus

Aηi−1,µi((−τi)∗γ|τi+1

τi−1+1) = inf
γ∗(−T0)=mi
γ∗(T1)=m′

i

T̆ i
0
≤T0≤T̂ i

0
T̆ i
1≤T1≤T̂ i

1

∫ T1

−T0

(L− ηi − µi)(dγ∗(t), t)dt

(5.12)

− T0α(ci) − T1α(ci+1).
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So, we obtain (5.11) from (5.6–5.8), (5.12) and the choice of T̆ i
j as well

as T̂ i
j (j = 0, 1). We define the infimum limit of FL̃(m,m′, T0, TN )

(5.13) h∞
L̃

(m,m′) = lim inf
T0,T1→∞

FL̃(m,m′, T0, TN ).

Let T k
j (j = 0, N) be the subsequences such that T k

j → ∞ as k → ∞
|FL̃(m,m′, T k

0 , T
k
N ) − h∞

L̃
(m,m′)| ≤ min{ε∗0, ε∗N} ∀ k,

as well as
lim

k→∞
FL̃(m,m′, T k

0 , T
k
N ) = h∞

L̃
(m,m′)

and let γk (t, m, m′) = γ (t, m, m′, T k
0 , T

k
N ) be the minimizer of

FL̃(m,m′, T k
0 , T

k
N ). It is easy to see that (5.11) holds also for i = 0, N .

From (5.3), (5.12) and the definition of Ui, we obtain that dγk(t) is
the extremal of L with the boundary condition γk(−T k

0 ) = m, γk(T k
N +

τ∗N−1) = m′. Clearly, for any compact interval [a, b] the set {γk}k≥k̄ is
pre-compact in the C1([a, b],M) topology if k̄ is suitably large. Let γ:
R → M be the accumulation point of {γk}, then dγ is the solution of
the Euler–Lagrange equation determined by L and

α(dγ) ⊆ Ã(c0), ω(dγ) ⊆ Ã(cN ).

Consider a bi-infinite sequence (. . . , ci, . . .) of C-equivalent cohomol-
ogy classes and a sequence (. . . , εi, . . .) of small positive numbers. Let
{τi}∞−∞ be a monotone sequence of integers such τ0 = 0, τi → ±∞ as
i→ ±∞. Let

νN =
N∑

i=−N

(−τi)∗µi.

For each �τN = (τ−N , . . . , τN−1), we consider the following variational
problem

h
T−N ,TN

L̃
(m,m′, �τN )

= inf
γ(−T−N −τ−N )=m

γ(TN +τN−1)=m′

∫ TN+τN−1

−T−N−τ−N

(
L− η0 − νN

)
(dγ(t), t)dt

−
N−1∑

i=−N+1

(τi − τi−1)α(ci) − T−Nα(c−N ) − TNα(cN ).
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Let ΛN be the set of 2N dimensional integer vectors defined in the same
way as for Λ with the subscripts ranging over (−N, . . . ,N − 1) instead
of (0, . . . , N − 1). Let γN (t,m,m′, T−N , TN ) be the minimizer of

FL̃(m,m′, T−N , TN ) = min
�τ∈ΛN

h
T−N ,TN

L̃
(m,m′, �τN ).

With the same arguments above, we can make γN (t,m,m′, T−N , TN ) be
the extremal of L by choosing suitably large T−N , and TN . From (5.3)
and (5.11), we can see that dγN passes within a distance of εi of each
L̃(ci) for −N ≤ i ≤ N if we set T̂ i

j suitably large for each j = 0, 1 and
each −N ≤ i ≤ N . Let γ: R →M be an accumulation point of the set
{ΓN}∞N≥N0

, dγ clearly determines a trajectory of the Euler–Lagrange
flow of L which passes within a distance of εi of each Ã(ci) for all i ∈ Z.
Therefore, we have proved the theorem:

Theorem 5.1 ([15]). Suppose c0 and cN are C-equivalent classes.
Then, there is a trajectory of the Euler–Lagrange flow of L whose α-
limit set lies in Ã(c0) and whose ω-limit set lies in Ã(cN ).

Consider a bi-infinite sequence (. . . , ci, . . .) of C-equivalent cohomol-
ogy classes and a sequence (. . . , εi, . . .) of small positive numbers. Then,
there is a trajectory of the Euler–Lagrange flow of L which passes within
a distance of εi of each Ã(ci) in turn.

The next step is to establish C-equivalence among some Mañé sets
of the special L given by (2.2). Let us consider the first de Rham
cohomology class c ∈ H1(M,R) such that the support of c-minimal
measure uniquely sits on Γ̃ ⊂ Σ̃. First, we consider the case that Γ is a
Denjoy set and there is no invariant circle containing Γ. The rotation
number of Γ is irrational. By the well-known knowledge, we see that the
β-function for the twist map is differentiable at the point of irrational
number, it implies that there is only one c1 such that Γ̃ is the support
of c-minimal measure if c ∈ intI(c1). We see from the Lemma 3.4
that Ñ (c) = M̃(c) when a(c1) < c2 < b(c1). By the upper semi-
continuity of c → Ñ (c), we find that there exists δ > 0, if c′ ∈ J =
((c1−δ, c1+δ)×(a(c1)+δ, b(c1)−δ), then N (c′) is in a small neighborhood
of π(Γ̃). Thus, each of such N0(c) is homotopically trivial. Therefore,
all c′ ∈ J are C-equivalent.

Next, let us consider the case when Γ consists of single periodic or-
bit. Since the β-function of the twist map has a corner at the ra-
tional rotation number, there is a flat piece of the α-function of the
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twist map, over the interval [c−1 , c
+
1 ]. Consequently, there is a rectangle

(c−1 , c
+
1 ) × (a(c1), b(c1)) ∈ H1(M,R) such that all c-minimal measures

have their support on Γ̃ if c is in this rectangle. When c−1 < c1 < c+1 ,
a(c1) < c2 < b(c1), Ñ (c) = M̃(c). When a(c1) < c2 < b(c1) and c1 = c−1
or c1 = c+1 , Ñ (c) = M̃(c)∪{minimal homoclinic orbit in Σ̃}. Due to the
upper semi-continuity of c→ Ñ (c) and the hypothesis of (H2), we find
that there exists δ > 0, if c′ ∈ J = ((c−1 −δ, c+1 +δ)×(a(c1)+δ, b(c1)−δ),
then N0(c) is homotopically trivial. Thus, all c′ ∈ J are C-equivalent.

Finally, we consider the case when Γ is contained in an invariant
circle on the boundary of a gap. In this case, Γ̃ is the support of that
c-minimal measure with c ∈ I(c̄1) = {(c̄1, c2) : a(c̄1) ≤ c2 ≤ b(c̄1)}.
Because of the hypotheses (H1), (H3) and in virtue of the Lemma 3.3–
3.5, we have N0(c) ⊂ U = ∪m

i=0Ui, where Ui ∩ Uj = ∅ if i �= j, U0 is an
open neighborhood of Γ, all other Ui (i �= 0) are open set contractible
to one point. Let J = (c̄1 − δ, c̄1 + δ) × (a(c̄1) − δ, b(c̄1) + δ). Due to
the upper semi-continuity of c → Ñ (c), we can see that N0(c) ⊂ U for
all c ∈ J if δ > 0 is sufficiently small. To establish the C-equivalent
relationship between any two c, c′ ∈ J , let us consider first the special
case when c, c′ ∈ J and c−c′ = (0, c2−c′2). Let Γ(s) = (c1, sc2+(1−s))c′2
for 0 ≤ s ≤ 1, obviously, [dq2] is the annihilator of VΓ(s)(t) ∀s ∈ [0, 1],
t ∈ T. Thus, Γ(s) is an admissible curve. Second, let us consider the
case when c = (c1, c2) ∈ J , but c2 > b(c̄1) or c2 < a(c̄1). Under the
hypotheses (H1) and (H3), for any δ > 0, there exists c = (c̄1, c2) with
b(c̄1) < c2 < b(c̄1) + δ or a(c̄1) − δ < c2 < a(c̄1) such that Nt(c) is
homopotically trivial for any t ∈ T. Therefore, ∃ δ′ > 0 such that for all
c′ ∈ Bδ′(c), N0(c′) is homotopically trivial. Replacing δ with δ′ in the
definition of J , we find that all c ∈ J are C-equivalent. In fact, given
any two c, c′ ∈ J , we can construct the admissible curve as follows. Let
Γ: [0, 3] → H1(M,R),

Γ(s) =



sc+ (1 − s)c̃, 0 ≤ s ≤ 1,
(s − 1)c̃ + (2 − s)c̃′, 1 ≤ s ≤ 2,
(s − 2)c̃′ + (3 − s)c′, 2 ≤ s ≤ 3

in which c̃ and c̃′ ∈ J are defined in the way c̃2 = c̃′2 > b(c̄1) or c̃2 =
c̃′2 < a(c̄1), c̃1 = c1 and c̃′1 = c′1, both Nt(c̃) and Nt(c̃′) are homotopically
trivial.
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Lemma 5.2. We assume the hypotheses (H1–H3). Let ĉ = (c1(σ′), 0)
and c̄ = (c1(σ∗), 0) be two co-homology classes such that Ñ0(ĉ) and Ñ0(c̄)
make up the whole boundary of some given gap with σ′ < σ∗. Then, ĉ
and c̄ are C-equivalent.

Proof. By assumption, there is no other invariant circle between N0(ĉ)
and N0(c̄). In this case, we have shown that for any c1(σ′) ≤ c1 ≤ c1(σ∗),
there is an open rectangle J(c1) ⊂ H1(M,R) containing (c1, 0) such
that all c ∈ J(c1) are C-equivalent. By the compactness of the inter-
val [c1(σ′), c1(σ∗)], there is a sequence {c(i)1 }m

i=0 such that ∪m
i=0J(c(i)1 ) ⊃

[c1(σ′), c1(σ∗)] × {0}. Obviously, the C-equivalence has transitivity.
q.e.d.

This C-equivalence establishes the existence of the diffusion orbits
crossing gaps as we have the Theorem 5.1.

To go further, we need to know more details of U -step forms. Let ηj

be any given closed 1-form such that [ηj ] = c(j) for j = 1, k. A natural
question is whether there exists such kind of µ(t) so that µ(t) = η1 for
t ≤ 0 and µ(t) = ηk for t ≥ τk + 1 even though c(1) is equivalent to c(k)?
In general, we do not know whether it is true or not, but in our case,
the answer is yes.

Lemma 5.3. Let c(1) = (c(1)1 , c
(1)
2 ), c(k) = (c(k)

1 , c
(k)
2 ) be two cohomol-

ogy classes connected by an admissible curve Γ, where a(c(1)1 ) ≤ c
(1)
2 ≤

b(c(1)1 ), a(c(k)
1 ) ≤ c

(k)
2 ≤ b(c(k)

1 ), and M̃(c(1)), M̃(c(k)) ⊂ Σ̃. Let η1, ηk

be two closed one forms such that [η1] = c(1), [ηk] = c(k). Then, there
exists a composition of finite U -step forms µ(t) such that µ(t) = η1 for
t ≤ 0 and µ(t) = ηk for t ≥ τk + 1.

Proof. Since Φ is an area-preserving twist map when it is restricted
on the cylinder, by the hypothesis (H2), there is some c with c

(1)
1 <

c1 < c
(k)
1 , c2 = 0 such that its semi-static minimal orbit set consists of

single m-periodic orbit with m > 1. Thus, for each s ∈ T, Ns consists
of several points, Ns(c) = ∪{qi(s)}. Consequently, there exist δ > 0,
and 0 < s1 < s2 < 1 such that(

∪ {qi(s1)} + 3δ
)
∩
(
∪ {qi(s2)} + 3δ

)
= ∅.

There also exists ε > 0 such that 0 < s1−ε < s1+ε < s2−ε < s2+ε < 1
and ∪{qi(s)} ⊂ ∪{qi(sj)} + 1

2δ when |s− sj| < ε for j = 1, 2.



500 C.-Q. CHENG & J. YAN

Let η be an any exact 1-form, we claim there exists a U -step form
ν such that ν(t) = 0 for t ≤ 0 and ν(t) = η for t ≥ 1, where U is
a neighborhood of N (c) = ∪s∈T ∪i {qi(s)}. Let F : M → R be the
function such that η = dF . Let λδ(q): M → R be a smooth function
λδ = 1 when ‖q‖ ≤ δ, 0 < λδ < 1 when δ < ‖q‖ < 2δ and λδ = 0 when
‖q‖ ≥ 2δ. Let

F ∗ =

(
1 −

k∑
i=1

λδ(q − qi(s1))

)
F, F̃ =

(
k∑

i=1

λδ(q − qi(s1))

)
F,

obviously, supp(dF ∗) ∩ (∪{qi(s1)} + 2δ) = ∅, supp(dF̃ ) ∩ (∪{qi(s2)} +
2δ) = ∅. If we choose

ν = ρ(t− s1 + ε)dF ∗ + ρ(t− s2 + ε)dF̃ ,

where ρ = 0 for t ≤ 0, 0 < ρ < 1 for 0 < t < 2ε and ρ = 1 for all
t ≥ 2ε, then ν(t) = 0 for t ≤ s1 − ε and ν(t) = dF for t ≥ s2 + ε. Let
U = ∪j=1,2((∪{qi(sj)} + δ) × [sj − ε, sj + ε]) ∪M × ([0, s1 − ε] ∪ [s1 +
ε, s2 − ε] ∪ [s2 + ε, 1]), then dν|U = 0.

Since both [η1] and [η2] are C-equivalent to c, there are two compo-
sitions of U -step forms ν1, ν2 such that

η1 + ν1(t) = 〈c, dq〉 + dF1, t ≥ τ1;

ν2(t) = 0, t ≤ τ1 + 1,

〈c, dq〉 + ν2(t) = η2 + dF2, t ≥ τ2.

By the demonstration above, there is a U -step form ν such that ν(t) =
−d(F1 + F2) when t ≥ 1. Clearly, the 1-form µ = (−τ1)∗ν + ν1 + ν2 is
what we are looking for. q.e.d.

The remaining work in this section is to join the orbit crossing the
gaps smoothly with the orbit constructed via Arnold’s mechanism. We
shall make use of some ideas developed in [5] and in [6], it is showed
that the diffusion orbits in several examples, constructed by transition
chains, are actually the orbits which locally minimize the Lagrangian
action.

Let us consider the barrier function of those cohomology classes cor-
responding to an invariant circle Γc on the cylinder. In this case,
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M0(c) ⊆ Γc and dc(ξ, ξ′) = 0 for all ξ, ξ′ ∈ π(Γc). Thus

B∗
c (q) = min

ξ,η∈M(c)
{h∞c (ξ, q) + h∞c (q, η) − h∞c (ξ, η)}(5.14)

= h∞c (ξ, q) + h∞c (q, ξ) ∀ ξ ∈ π(Γc).

Under the hypothesis (H1), the set {B∗
c(σ) = 0} ∩ T × (a, 2π − a) is

totally disconnected for all σ ∈ S. Thus, for any given σ ∈ S and any
ε > 0, there are finite and mutual disjoint balls Bε(qi) and δ = δ(σ, ε) > 0
such that ∪Bε(qi) ⊃ {B∗

c(σ) = 0} ∩ T × (a, 2π − a) and

min{B∗
c(σ)(q) : q ∈ ∂Bε(qi),∀i} ≥ 2δ, B∗

c(σ)(qi) = 0.

In other words, as a function of q. B∗
c(σ) reaches its minimum in {a ≤

q2 ≤ 2π − a} away from the boundary

(5.15) min
q∈∂Bε(qi)

B∗
c(σ)(q) − min

q∈Bε(qi)
B∗

c(σ)(q) ≥ 2δ.

Recall for each z ∈ T, there is unique zσ ∈ π(Γσ) such that zσ =
(z, q2Γσ (z)). From (5.14), (5.15) and the Hölder continuity guaranteed
by Lemma 4.4, we find that for each z ∈ T

(5.16) min
q∈∂Bε(qi)

h∞c(σ)(zσ , q) + h∞c(σ′)(q, zσ′)

− min
q∈Bε(qi)

h∞c(σ)(zσ, q) + h∞c(σ′)(q, zσ′) ≥ 3
2
δ,

provided that σ′ is sufficiently close to σ. As these functions depend on
the choice of closed 1-form ηc, to obtain (5.16) we choose ηc = 〈c(σ), q̇〉.
In general, h∞c(σ)(zσ , q) + h∞c(σ′)(q, zσ′) is also the function of z, but its
variation over z ∈ T is very small if σ′ is sufficiently close to σ, because
q2Γσ(z) has 1

2 -Hölder continuity in σ. Since S is compact, there exist
δ = δ(ε) and ε1 = ε1(ε, δ), independent of σ, such that (5.15) and (5.16)
hold if |σ − σ′| ≤ ε1.

We say σj is linked with σj+1 by transition torus with some persis-
tency if σj+1 ∈ S is so close to σj such that

(5.17) |c1(σj) − c1(σj+1)| ≤ 1
4
δ

and (5.16) holds where we replace σ and σ′ by σj and σj+1, respectively.
We say σj is linked with σk by transition chain with some persistency if
there there is a sequence σj , σj+1, . . . , σk−1, σk in S such that for each j ≤
i < k σi is linked with σi+1 by transition torus with some persistency. To
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be brief, we shall say in the following that they are linked by transition
torus (chain). Note that S ⊂ [A′, B′] is compact, we can find finitely
many σk ∈ S (0 ≤ k ≤ K) such that we have one of the following
alternatives for each k < K: either σk is linked with σk+1 by transition
chain, or Γσk

and Γσk+1
make up the boundary of an annulus of Birkhoff

instability, i.e., there is no other invariant circle between Γσk
and Γσk+1

.
In the following, we shall use Γi to denote Γσi and use zi to denote zσi .

Let us consider a sequence of invariant circles Γi (i = 0, 1, . . . , 
, 
+1)
on the cylinder Σ such that Γ1 is linked with Γ� through the transition
chain Γ2, . . . ,Γ�−1, and there are two annuli of Birkhoff instability, one
has Γ0 and Γ1 as its boundary, another one has Γ� and Γ�+1 as its
boundary. By the construction of this transition chain, we know that
for each 1 ≤ i < 
 there is xi ∈ {B∗

c(σi)
= 0} ∩ (a, 2π − a) such that for

any z ∈ T

(5.16i) min
q∈∂Bε(xi)

h∞c(σi)
(zi, q) + h∞c(σi+1)(q, zi+1)

− min
q∈Bε(xi)

h∞c(σi)
(zi, q) + h∞c(σi+1)(q, zi+1) ≥ 3

2
δ.

As in [6], let us consider the covering of T2 given by M̄ = T × R. For
each xi, we identify it with its lift in the region T × (0, 2π) and single
out a point on its lift, x̄i = xi + (0, 2iπ). We also identify each zi with
its lift zi + (0, 2iπ). For i ∈ (1, 2, . . . , 
 − 1), we introduce a smooth
function Ψi: T × R → R which vanishes outside {q : |q − x̄i| ≤ 2ε} and
such that

(5.18) ∇Ψi(q) = c(σi+1) − c(σi) ∀q : |q − x̄i| ≤ ε.

If we set

(5.19) c̄i(q) = c(σi) + ∇Ψi(q),

then

h∞c̄i
(z, q) + h∞c̄i+1

(q, z) = h∞c(σi)
(z, q) + h∞c(σi+1)(q, z) + Ψi+1(q) − Ψi(q).

Note Ψi+1(q) = 0 as q ∈ Bε(qi). If we require further that σi+1 is so
close to σi that (5.17) holds, we obtain from (5.16i) and (5.18) that

(5.20) min
q∈∂Bε(xi)

h∞c̄i
(zi, q) + h∞c̄i+1

(q, zi+1)

− min
q∈Bε(xi)

h∞c̄i
(zi, q) + h∞c̄i+1

(q, zi+1) ≥ δ.
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Let B = Bε(x1) × Bε(x2) × · · · × Bε(x�−1), Q = (q1, . . . , q�−1), �n =
(n0, n1, . . . , n�) ∈ Z�+1 and define

h(Q, z1, z�, �n) =
�−2∑
i=1

h
ni+1−ni
c̄i+1

(qi, qi+1)(5.21)

+ hn1−n0
c̄1 (z1, q1) + h

n�−n�−1
c̄�

(q�−1, z�).

We see that h, as the function of Q, takes its local minimum in the
interior of B if ni+1 − ni is sufficiently large for all 1 ≤ i ≤ 
 − 1. In
fact, let x∗i be the point where the function of q h∞̄ci

(zi, q)+h∞̄ci+1
(q, zi+1)

attains its local minimum in Bε(xi), we find that the function of Q
�−1∑
i=1

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1)

takes its local minimum at the point (x∗1, x
∗
2, . . . , x

∗
�−1) which is obviously

in the interior of B. Thus, the local minimum of h is in the interior of
B if the following holds

(5.22) lim
ni+1−ni→∞h

ni+1−ni
c̄i+1

(qi, qi+1) = h∞c̄i+1
(qi, zi+1)+h∞c̄i+1

(zi+1, qi+1).

To show this, let us state a lemma.

Lemma 5.4. Assume M̃(c) has a dense orbit. For any m0,m1 ∈M ,
let γ: [0,K] → M be c-minimal curve connecting m0 and m1, γ(0) =
m0, γ(K) = m1. For any δ > 0, any K1 ∈ Z+ and any z ∈ M0(c), ∃
K0 ∈ Z+, if K ≥ K0, then there exists T ∈ Z+ such that γ(T ) ∈ Bδ(z),
T ≥ K1 and K0 − T ≥ K1.

Proof. For any δ∗ > 0, there is K0 ∈ Z+ and k ∈ Z+ such that
dγ(k) ∈ M̃0(c) + δ∗ if K ≥ K0, otherwise there would be another c-
minimal measure. For any z ∈ M0(c), by choosing sufficiently small
δ∗ and sufficiently large K0, there is some T ∈ Z+ so that γ(T ) is in
δ-neighborhood of z. Clearly, for any K1 ∈ Z+, there exists such T
so that T ≥ K1 and K0 − T ≥ K1, otherwise there would be another
c-minimal measure also. q.e.d.

Applying the lemma to this problem, we find that for each m ∈
M(ci), each small δ > 0 and each large K > 0, there exist n∗ ∈ Z+

such that if n ≥ n∗, then there exists zn ∈ Bδ(m) such that

hn
ci

(q, q′) = hn1
ci

(q, zn) + hn2
ci

(zn, q′),
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where n = n1 + n2 with n1, n2 ≥ K. Using the Lipschitz property of
hn

ci
(m,m′) in (m,m′) we find that for each small ε > 0 the following

holds ∣∣hn
ci

(q, q′) − hn1
ci

(q,m) − hn2
ci

(m, q′)
∣∣ < ε

if δ is sufficiently small and n∗ is sufficiently large. Since we consider
the M(ci) which is on the cylinder with irrational number, thanks to
the corollary 2.7, we know that L − 〈c̄i(q), q̇〉 is regular for each 0 ≤
i ≤ 
 + 1, (5.22) follows from the property that dci(m,m

′) = 0 for all
m,m′ ∈ π(Γi). Denote the corresponding minimizer by γ: [n0, n�] →M ,
we use γi(t) to denote its restriction on the time interval [ni, ni+1]. Once
γ(t) reaches its local minimum in the interior of B, standard argument
shows that

∂Lc̄i

∂q̇
(dγi(t), t) =

∂Lc̄i+1

∂q̇
(dγi+1(t), t)

holds at t = ni+1. Note that Lc̄i = Lc̄i+1 in the neighborhood of Bε(x̄i)
by the definition of Ψi(q), we get

γ̇i(ni+1) = γ̇i+1(ni+1),

thus, γ(t) is a solution of the Euler–Lagrange equation over the time
interval [n0, n�].

In fact, we can remove the restriction on z1 and z� that there is z ∈ T
so that zj = (z, q2Γj (z)) for j = 1, 
. We can replace zj by any point
z∗j ∈ M(cj) simply because dcj (m,m

′) = 0 for all m,m′ ∈ π(Γj). Thus,
the function of Q = (q1, . . . , q�−1)

�−2∑
i=2

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1) + h∞c̄1 (z∗1 , q1) + h∞c̄�
(q�, z∗� )

=
�−1∑
i=1

h∞c̄i
(zi, qi) + h∞c̄i+1

(qi, zi+1) + h∞c̄1 (z∗1 , z1) + h∞c̄�
(z�, z∗� )

also reaches its local minimum at the point (x∗1, x∗2, . . . , x∗�−1). So,
the Lipschitz property of hn

c enable us to assert that there exist large
(∆n1,∆n2, . . . ,∆n�) and small δ∗ > 0, if ni − ni−1 ≥ ∆ni, zj ∈ Bδ∗(z∗j )
for j = 1, 
, then as the function of Q, h(Q, z1, z�, �n) reaches its local
minimum in the interior of B.

Now, we are ready to construct an orbit γ: R →M such that α(dγ) ⊃
Γ0 and ω(dγ) ⊃ Γ�+1.
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By the condition, Γi and Γi+1 make up the boundary of the resonant
zone Zi for i = 0, 
. For i = 0, 
 + 1, we let c(i) be a co-homology class
such that {B∗

c(i)
= 0} = Γi. For i = 1, 
, we let c(i) be a co-homology

class such that c(i) = (c(i)1 , b(c(i)1 )), in this case, {B∗
c(i)

= 0} = Γi ∪
{its c(i)-minimal homoclinic orbits}. Since the C-equivalence between
c(i) and c(i+1)has been established for i = 0, 
, in analogy to the proof
of Theorem 5.1, we can find the composition of finite U -step forms νj

νj =
Nj∑
i=0

(−τ j
i )∗µj

i , j = 1, 2

such that their cohomology classes are [ν1(t)|t≤0] = 0, [ν1(t)|t≥τ1
N1

+1] =

c(1) − c(0), [ν2(t)|t≤0] = 0 and [ν2(t)|t≥τ2
N2

+1] = c(�+1) − c(�), where τ j
i is

the time translation (q, t) → (q, t + τ j
i ). Moreover, by Lemma 5.3, we

can choose those νj such that ν1(t)|t≤0 = 0, ν1(t)|t≥τ1
N1

+1 = 〈c̄1(q) −
c(σ0), dq〉, ν2(t)|t≤0 = 0 (see (5.18) for the definition of c̄i(q)) and
ν2(t)|t≥τ2

N2
+1 = 〈c(σ�+1)−c(σ�), dq〉. Let η1

0 = 〈c(σ0), dq〉, η2
0 = 〈c̄�(q), dq〉,

ηj
i = ηj

0 +
∑i−1

k=0 µ̄
j
k and cji = [ηj

i ], then η1
N1+1 = 〈c̄1(q), dq〉, η2

N2+1 =
〈c(σ�+1), dq〉. Based on the proof of Theorem 5.1, we can choose each
µj

i , the adapted neighborhood U j
i and εji > 0 so that

π(Ñ
ηj

i ,µj
i
) + εji ⊂ U j

i ∀ j = 1, 2, 0 ≤ i ≤ Nj.(5.6ij)

For each εj∗i > 0, there exist T̂ j
ki, T̆

j
ki ∈ Z+ with T̂ j

ki > T̆ j
ki, (k = 0, 1)

such that

hT0,T1

ηj
i ,µj

i

(m0,m1) ≥ h∞
ηj

i ,µj
i

(m0,m1) − εj∗i ∀ Tk ≥ T̆ j
ki, (k = 0, 1),

∀ (m0,m1) ∈M ×M

for any given (m0,m1) ∈ M ×M , there exists Tk = Tk(m0,m1) with
T̆ j

ki ≤ Tk ≤ T̂ j
ki such that∣∣∣∣hT0,T1

ηj
i ,µj

i

(m0,m1) − h∞
ηj

i ,µj
i

(m0,m1)
∣∣∣∣ ≤ εj∗i .(5.7ij)

Let γj
i (t, m0, m1, T0, T1) : [−T0, T1] → M be the minimizer of

hT0,T1

ηj
i ,µj

i

(m0,m1). Let T̆ j
ki be set so large and εj∗i > 0 be set so small such
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that if (5.7ij) holds, then

dγj
i (t,m0,m1, T0, T1) ∈ Ñ

ηj
i ,µj

i
+ εji ∀ 0 ≤ t ≤ 1.(5.8ij)

We define the index set for �τ j = (τ j
0 , τ

j
1 , . . . , τ

j
Nj

)

Λj =
{
�τ j ∈ ZNj : max{T̆ j

0(i−1), T̆
j
1i + 1}

≤ τ j
i − τ j

i−1 ≤ max{T̂ j
0(i−1), T̂

j
1i + 1},∀1 ≤ i ≤ Nj , τ

j
0 = 0

}
and introduce a modified Lagrangian depending on the parameters �τ j

(j = 1, 2) and �n

L̃ =



L− 〈c(σ0), q̇〉 − (τ1

N1
+ 1)∗ν1, t ≤ n1,

L− 〈c(σj) + �j(t)∇Ψj(q), q̇〉, nj−1 ≤ t ≤ nj,

2 ≤ j ≤ 
− 1,
L− 〈c(σ�), q̇〉 + (n� + τ2

N2
+ 1)∗ν2, t ≥ n�−1,

where �j is a smooth function such that �j(t) = 0 for t ≤ 1
2(nj+1 + nj),

0 < �j < 1 when 1
2 (nj+1 + nj) < t < 1

2(nj+1 + nj) + 1 and �j = 1 when
t ≥ 1

2 (nj+1 + nj) + 1, this function is well defined if nj − nj−1 ≥ 4.
Clearly, L̃ is smooth in

(q̇, q, t) ∈ TM ×
{

R\
�−1⋃
i=1

{ni}
}

∪
�−1⋃
i=1

TBε(xi) ×
(
ni − 1, ni + 1

)
For each (m,m′) ∈M ×M , Q = (q1, . . . , q�−1) ∈ B let

h
T0,T�+1

L̃
(m,m′, Q, �τ1, �τ2, �n)

= inf
γ(−T∗

0
)=m

γ(T∗
�+1

)=m′
γ(nj )=qj

j=1,...,�−1

∫ T ∗
�+1

−T ∗
0

L̃(dγ(t), t)dt

+
∑

1≤i≤Nj
j=1,2

(τ j
i − τ j

i−1)α(cji ) + n0α(c1)

+ (n� − n�−1)α(c�) + T0α(c0) + T�+1α(c�+1)

where T ∗
0 = T0 + τ1

N1
+ 1, T ∗

�+1 = T�+1 + n� + τ2
N2

+ 1 and T0, T�+1 > 0.
In virtue of the Lemma 5.4, we can take sufficiently large n′1 so that
any c(σ1)-minimal curve γ1: [0, n1] → M with n1 ≥ n′1 has a point
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γ1(n0) ∈ Bδ∗(z∗1) with n1−n0 ≥ ∆n1. Similarly, we can take sufficiently
large ∆n′� so that any c(σ�)-minimal curve γ�: [n�−1, n

′
�] → M with

n′� − n�−1 ≥ ∆n′� has a point γ�(n�) ∈ Bδ∗(z�+1) with n′� − n�−1 >
n� −n�−1 ≥ ∆n�. We can also take suitably large ni (i = 2, 3, . . . , 
− 1)
so that ni+1 −ni ≥ ∆ni for each 1 ≤ i ≤ 
− 1. Under these conditions,
we take the minimum of hT0,T�+1

L̃
(m,m′, Q, �τ1, �τ2, �n) over B

h
T0,T�+1

L̃
(m,m′, �τ1, �τ2, �n) = min

Q∈B

h
T0,T�+1

L̃
(m,m′, Q, �τ1, �τ2, �n).

Let γ(t) = γ(t,m,m′, �τ1, �τ2, �n) be the minimizer of hT0,T�+1

L̃
(m,m′, �τ1,

�τ2, �n). Recall that the support of Ψi is a small ball. For each cohomology
class under our consideration here, the support of the minimal measure
is on the cylinder, the hyperbolicity of the cylinder. Let us see that γ(t)
is outside of the support of ∇Ψi if both t−ni and ni+1 − t are suitably
large. In other words, for t ∈ [12 (ni+1 + ni), 1

2 (ni+1 + ni) + 1], γ(t)
falls into the area where 〈�i(t)∇Ψi(q), dq〉 is exact. Thus, dγ solves the
Euler–Lagrange equation of L for t ∈ [n0, n�] if we repeat the argument
for the function h(Q, z1, z�, �n).

Next, by choosing sufficiently large values for T̆ 1
1N1

, T̂ 1
1N1

, T̆ 2
00 and T̂ 2

00,
we can assume T̆ 1

1N1
≥ n′1 and T̆ 2

00 ≥ n�−1 + ∆n′�. In this case, let us

consider the minimum of hT0,T�+1

L̃
(m,m′, �τ1, �τ2, �n) over Λ1×Λ2×{T̆ 1

1N1
≤

n1 ≤ T̂ 1
1N1

} × {T̆ 2
00 + n�−1 ≤ n� ≤ T̂ 2

00 + n�−1}

h
T0,T�+1

L̃
(m,m′) = min

	τ1∈Λ1,	τ2∈Λ2

T̆1
1N1

≤n1≤T̂1
1N1

T̆2
00+n�−1≤n�≤T̂2

00+n�−1

h
T0,T�+1

L̃
(m,m′, �τ1, �τ2, �n).

Denote by �τ j∗, n∗1 and n∗� where the the minimum is reached. Let
γ(t) = γ(t,m,m′, T0, T�+1) be the minimizer of hT0,T�+1

L̃
(m,m′). Let

τ1j = τ1
j −τ1

N1
−1, τ2j = τ2

j +τ2
N2

+1+n�. From the proof of Theorem 5.1,
we can see that (5.6ij), (5.7ij) and (5.8ij) hold for (−τij)∗γ at j = 1, 2,
0 ≤ i ≤ Nj except for (i, j) = (0, 1), (N2, 2).

As the third step, we consider the limit infimum

h∞
L̃

(m,m′) = lim inf
T0→∞

T�+1→∞

h
T0,T�+1

L̃
(m,m′).
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Let T k
0 , T k

�+1 be the subsequence so that T k
0 → ∞, T k

�+1 → ∞ as k → ∞,

|hT k
0 ,T k

�+1

L̃
(m,m′) − h∞

L̃
(m,m′)| ≤ min{ε1∗0 , ε2∗N2

} ∀ k,
and

lim
k→∞

h
T k
0 ,T k

�+1

L̃
(m,m′) = h∞

L̃
(m,m′)

and let γk: [−T k∗
0 , T k∗

�+1] → M be the minimizer of h
T k
0 ,T k

�+1

L̃
(m,m′),

where T k∗
0 = T k

0 + τ1∗
N1 + 1, T k∗

�+1 = T k
�+1 + n∗� + τ2∗

N2
+ 1. By the similar

argument to prove Theorem 5.1, we can see (5.6ij), (5.7ij), (5.8ij) hold
for (−τij)∗γk at (i, j) = (0, 1), (N2, 2) also. In this case, dγk is a solution
of the Euler–Lagrange equation induced by L. For each small δ, dγk

connects Γ̃0 + δ with Γ̃�+1 + δ if k is sufficiently large. Let γ: R →M be
the accumulation point of {γk}k∈Z+ , then α(dγ) = Γ0 and ω(dγ) = Γ�+1

since Ã(ci) = Γi for i = 0, 
+ 1.
The construction of diffusion orbits can be done in the same way

when there are finitely many resonant gaps.

6. Generic property

The construction of diffusion orbits is under the hypotheses (H1)–
(H3). The task here is to show these hypotheses are dense properties
in Cr-topology for r ≥ 3. Since we are interested in the diffusion from
{p1 < A} to {p1 > B}, a compact domain for {‖p‖ ≤ K} × T2 satisfies
such an requirement if K > 0 is sufficiently large. The Cr-topology is
endowed in the usual sense for functions {‖p‖ ≤ K} × T2 → R.

The hypothesis (H1) is made only for those co-homology classes c =
(c1, b(c1)), such that M̃0(c) is contained in an invariant circle on the
cylinder. Its Mañé set Ñ (c) consists of the invariant circle and its
minimal homoclinic orbits, i.e., {B∗

c = 0}. Let us look at this issue from
the Hamiltonian dynamics point of view.

Since the system is positive definite in p, it has a generating function
G(q, q′)

(6.1) G(q, q′) = inf
γ∈C1([0,1],M̄)

γ(0)=q,γ(1)=q′

∫ 1

0
L(γ(s), γ̇(s), s)ds,

where (q, q′) is in the covering space M̄ = R2 × R2. Clearly, G(q +
2mπ, q′ +2mπ) = G(q, q′) for all m ∈ Z2. The map ΦH : (p, q) → (p′, q′)
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is given by

(6.2) p′ = ∂q′G(q, q′), p = −∂qG(q, q′).

Let π1 be the standard projection from R2 to T2, let c ∈ R2 and

Gc(q, q′) = G(q, q′) − 〈c, q′ − q〉
then

(6.3) hc(x, x′) = min
π1(q)=x

π1(q′)=x′

Gc(q, q′) − α(c) (see (2.6))

As the system is nearly integrable, the matrix ∂2
q′qG is non-degenerate

everywhere. Thus we can solve the second equation in (6.2) and obtain
somehow more explicit form of the map (6.2)

(6.4) p′ =
∂G

∂q′
(q, q′(p, q)), q′ = q′(p, q).

Let us consider a small perturbation G(q, q′) + κ(q − q′)G1(q′) of the
generating function in which 0 ≤ κ(q−q′) ≤ 1, κ(q−q′) = 1 if |q−q′| ≤ K
and κ(q − q′) = 0 if |q − q′| ≥ K + 1. We choose sufficiently large K so
that {‖p‖ ≤ max(|A|, |B|)+1} is contained in the set where |q−q′| ≤ K.
In this set, the map will have the form

(6.5) p′ =
∂G

∂q′
(q, q′(p, q)) +

∂G1

∂q′
(q′(p, q)), q′ = q′(p, q).

Note that both stable and unstable manifolds of Γ keep horizontal over
the strip U = {a ≤ q2 ≤ 2π− a}, restricting Φ to W s and to W u where
they keep horizontal, and projecting it to the underline manifold M
along the fibers, we obtain two maps f s and fu on M such that π ◦Φ =
f s,u ◦ π. We choose G1 ∈ Cr satisfying its support supp(G1) = Bb(q∗)
mod 2πm ⊂ U mod 2πm where m ∈ Z2. We see that (fu)−1(Bb(q∗)) ∩
Bb(q∗) = ∅ and f s(Bb(q∗))∩Bb(q∗) = ∅ if b > 0 is chosen suitably small.
Let us consider the problem in the covering space T × R and assume
one lift of the unstable manifold starting from q2 = 0 to the right, one
lift of the stable manifold starting from q2 = 2π to the left. From (6.5),
we can see that the local stable manifold is not deformed W s|[q∗2 − b ≤
q2 ≤ 2π + q2Γ(q1)] = {q, dSs + c(σ) : q∗2 − b ≤ q2 ≤ 2π + q2Γ(q1)},
but the unstable manifold undergoes slight deformation, W u|[q2Γ(q1) ≤
q2 ≤ q∗2 + b] = {q, dSu + dG1 + c(σ) : q2Γ(q1) ≤ q2 ≤ q∗2 + b}. It is easy
to see that the barrier function has the form:

(6.6) B∗
c(σ)(q) = Su

c(σ)(q)−Ss
c(σ)(q)−G1(q)+2πb(c1(σ)) if q ∈ Bb(q∗).
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We should note the total action of the minimal orbit may be changed
because of the perturbation, in other words, the associated cohomology
class may be subjected to a small perturbation (c1, b(c1)) → (c1, b(c1)±
ε).

Let Rd = {q ∈ M : |q1 − q∗1| ≤ d, |q2 − q∗2| ≤ d} ⊂ Bb(q∗), let
Sσ = Su

c(σ) − Ss
c(σ) −G1 we define

Z(σ) =
{
q ∈ Rd : Sσ(q) = min

q∈Rd

Sσ

}
.

We say a connected set V is non-trivial for Rd if either Π1(V ∩ Rd) =
{q∗1 −d ≤ q1 ≤ q∗1 +d} or Π2(V ∩Rd) = {q∗2 −d ≤ q2 ≤ q∗2 +d}, where Πi

is the standard projection from T2 to its i-th component (i=1,2). Let
Md,q∗(S) = {q : S(q) = minq∈Rd(q∗) S}, we define a set in the function
space F(d, q∗) = C0(Rd(q∗),R),

Z(d, q∗) =
{
S ∈ F(d, q∗) : Md,q∗(S)

contains a set non-trivial for Rd(q∗)
}
.

Let

Z1 =
{
S ∈ Z(d, q∗) : Π1(Md,q∗(S)) = {q∗1 − d ≤ q1 ≤ q∗1 + d}

}
,

Z2 =
{
S ∈ Z(d, q∗) : Π2(Md,q∗(S)) = {q∗2 − d ≤ q2 ≤ q∗2 + d}

}
,

then

Z(d, q∗) = Z1 ∪ Z2.

Our first task is to show for each generating function G ∈ Cr(M×M,R)
and each ε > 0, there is an open and dense set H(d, q∗) of Bε(0) ⊂
Cr(Rd(q∗),R), for each G1 ∈ H(d, q∗), the image of Sσ from [A′, B′] to
F has no intersection with the set Zi.

Obviously, the set Z1 is a closed set and has infinite co-dimensions in
the following sense, there exists N, an infinite dimension subspace of F,
such that (S + F ) /∈ Z for all S ∈ Z1 and F ∈ N\{0}. In fact, for each
non-constant function F (q1) ∈ C0([q∗1 − d, q∗1 + d],R) with F (q∗1) = 0
and each S ∈ Z1, we have S + F /∈ Z1. Thus, we can choose N =
C0([q∗1−d, q∗1+d],R)/R, which we think as the subspace of C0(Rd(q∗),R)
consisting of those continuous functions independent of q2.
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On the other hand, as Sσ: [A′, B′] → F has 1
2 -Hölder continuity, the

image is compact and its box dimension is not bigger than 2

(6.7) DB (Fσ) ≤ 2.

where Fσ = {Sσ : σ ∈ [A′, B′]}. Clearly, this set is determined by the
generating function G.

Lemma 6.1. There is an open and dense set N∗ ⊂ N such that for
all F ∈ N∗

(6.8) (Fσ + F ) ∩ Z = ∅.

Proof. The open property is obvious. If there were no density prop-
erty, there would be n-dimensional ε-ball Bε ⊂ N for some ε > 0,
such that for each F ∈ Bε, there exists S ∈ Fσ such that F + S ∈ Z1

or F + S ∈ Z2. For each S ∈ Fσ, there is at most one F ∈ Bε so that
S+F ∈ Z1, for, otherwise, there would be F ′ �= F such that F ′+S ∈ Z1,
but we can write F ′ + S = F ′ − F + F + S where F + S ∈ Z1 and
F ′−F ∈ N\{0}, it contradicts the definition of N. Given F ∈ Bε, there
might be more than one element in SF = SF = {S ∈ Fσ : S+F ∈ Z1}.
Given any two F1, F2 ∈ Bε, for any S1 ∈ SF1 and any S2 ∈ SF2 , we
have

d(S1, S2) = max
q∈Rd(q∗)

|S1(q) − S2(q)|(6.9)

≥ max
|q1−q∗1 |≤d

∣∣∣∣ min
|q2−q∗2 |≤d

S1(q1, q2) − min
|q2−q∗2 |≤d

S2(q1, q2)
∣∣∣∣

≥ 1
2
var|q1−q∗1 |≤d|F1(q1) − F2(q1)|

≥ 1
2
d(F1, F2),

where d(·, ·) is the C0-metric. It follows from (6.9) and the definition of
box dimension that

DB(Fσ) ≥ DB(Bε) = n,

but this is absurd if we choose n > 2. The same argument can be
applied to the set Z2. q.e.d.



512 C.-Q. CHENG & J. YAN

As Cr is dense in C0, an open and dense set H(d, q∗) of Bε ⊂
Cr(Rd(q∗),R) clearly exists such that for each perturbation of gener-
ating function G1 ∈ H(d, q∗), we have

Fσ ∩ Z(d, q∗) = ∅ ∀ σ ∈ S,

where, by abuse of terminology, we continue to denote Sσ and its re-
striction Rd(q∗) by the same symbol.

Recall we have defined the set U = T×[a, 2π−a] before. LetMU (S) =
{q : S(q) = minq∈U S} and

Z =
{
S ∈ C0(U,R) : MU (S) is totally disconnected

}
.

Given di > 0, there are finite qij such that ∪jRdi
(qij) ⊃ U . Thus, there

exists a sequence di → 0 and a countable set {qij} such that
 ∞⋂

i=1,j=1

H(di, qij)


⋂Z = ∅.

Therefore, there is a generic set in Bε ⊂ Cr(U,R), the hypothesis (H1)
holds for each G1 in this generic set. Note U is an annulus, we can write
G1 = G′

1 +G∗
1 so that both G′

1 and G∗
1 have simply connected support.

The perturbation to the generating function G can be achieved by
perturbing the Hamiltonian function H → H ′ = H + δH. Let Φ′ be the
map determined by the generating function G + κG′

1, the symplectic
diffeomorphism Ψ = Φ′ ◦ Φ−1 is close to identity. We choose a smooth
function ρ(s) with ρ(0) = 0 and ρ(1) = 1, let Φ′

s be the symplectic map
determined by G+ρ(s)κG′

1 and let Ψs = Φ′
s◦Φ−1. Clearly, Ψs defines a

symplectic isotopy between identity map and Ψ. Thus, there is a unique
family of symplectic vector fields Xs: T ∗M → TT ∗M such that

d

ds
Ψs = Xs ◦ Ψs.

By the choice of perturbation, there is a simply connected and com-
pact domain DK such that Ψs|T ∗M\DK

= id. It follows that there is a
Hamiltonian H1(p, q, s) such that dH1(Y ) = dp ∧ dq(Xs, Y ) holds for
any vector field Y . Re-parametrizing s by t, we can make H1 smoothly
and periodically depend on t. To see that dH1 is also small, let us make
use of a theorem of Weinstein [19]. A neighborhood of the identity in
the symplectic diffeomorphism group of a compact symplectic manifold
M can be identified with a neighborhood of the zero in the vector space
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of closed 1-forms on M. Since Hamiltomorphism is a subgroup of sym-
plectic diffeomorphism, there is a function H ′, sufficiently close to H,
such that ΦH1 ◦ ΦH = Φt

H′ |t=1.
Thus, the density of (H1) is proved.
For the hypothesis (H2), let us consider the twist map on the cylinder.

In this case, each co-homology class corresponds to a unique rotation
number. Given any rational number p/q ∈ Q, it is obvious that there is
an open dense set in the space of area-preserving twist map such that
there is only one minimal (p, q)-periodic orbit without homoclinic loop.
Taking the intersection of countably open dense set, we obtain that (H2)
is a generic property.

To verify the (H3), let us consider an invariant circle Γσ on Σ. There
is an interval I(c1) = {c = (c1, c2) ∈ R2 : a(c1) ≤ c2 ≤ b(c1)} such
that supp(M0(c)) ⊆ Γσ iff c ∈ I(c1). Let U be a small neighborhood
of π(Γσ). Under the hypothesis (H1), the set {B∗

c = 0}\U is homo-
topically trivial for c = (c1, a1(c1)) and for c = (c1, b1(c1)). By the
upper semi-continuity of Mañé sets c → Ñ (c), the set N0(c′) is in a
small neighborhood of {B∗

c = 0} if c′ = (c1, b(c1) + δ) with δ > 0 suf-
ficiently small. Let us consider such a minimal measure M̃(c′). Let
µ be an ergodic component of M̃(c′), there exists ε∗ > 0 such that
dist(suppµ, Γ̃σ) ≥ 3ε∗ for all σ ∈ S. For any ε > 0 with ε ≤ ε∗, we can
define a Cr-smooth function Lσ

k,ε: TM × T → R so that Lσ
k,ε(z, t) = 0

if (z, t) ∈ suppµ + 2−k−1ε, Lσ
k,ε = 2−kεr+1 if (z, t) /∈ suppµ + 2−kε and

Lσ
k,ε takes the value between 2−kεr+1 and 0 elsewhere. Obviously, µ is

the unique ergodic component of c′-minimal measure of the Lagrangian

Lσ
ε = L+

1
r!

∞∑
k=1

Lσ
k,ε

and ‖Lσ
ε −L‖Cr ≤ ε. Since (H3) is required only for countable σ ∈ S, we

can choose even smaller εσ so that the supports of these Lσ
εσ

− L have
no intersection.

Note the perturbation we introduced for (H1) has compact support
which has no intersection with the cylinder, the perturbation we intro-
duced for (H3) does not touch the set {B∗

c(σ) = 0} for all σ ∈ S, and
there is a dense set for P such that (H1)–(H3) hold. Thus, we obtain
the density of the perturbation. Since the time for each orbit drifts
from p1 < A to p1 > B is finite, the smooth dependence of solutions of
ODE’s on parameter guarantees the openness.
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Therefore, the proof of the Theorem 1.1 is completed.

Appendix

In this appendix, we present the proof of the Lemma 2.6, given by
Bernard [4], for the completeness sake.

Lemma 2.6. If M̃(c) is minimal in the sense of topological dy-
namics and if there exists a sequence γn of n-periodic curves such that
Ac(γn) → 0 as n→ ∞, then Lc is regular, hence Ã(c) = Ñ (c) = G̃(c).

Proof. As the first step, we show that the following limit exists for
all (x, t) ∈ M× T:

lim
n→∞Fc(x, x, t, t+ n) = 0.(A.1)

By the condition, we can suppose these n-periodic curves γn are mini-
mizers, their n-periodic orbits Xn(t) = (dγn(t), t) is a compact subset
of TM × T. Each subsequence of Xn has a convergent subsequence
in the sense of Hausdorff topology. The limit set of such a sequence
is obviously an invariant subset of M̃(c). Since M̃(c) is minimal, this
limit set has to be M̃(c) itself. Therefore, the sequence of subsets Xn

converges to M̃(c) in the Hausdorff topology. It follows that each point
(x, s) ∈ M̃(c) is the limit of a sequence (γ(tn), s) with tn = s mod 1 for
each n. As Fc is of Lipschitz, we have

lim sup
n→∞

Fc(x, x, t, t+ n) = lim sup
n→∞

Fc(γn(tn), γn(tn), t, t+ n)

= lim sup
n→∞

Ac(γn)

= 0,

which implies (A.1).
Next, we claim that (A.1) implies that L− ηc is regular, i.e., for any

(x, s), (x′, s′) ∈M × T, ε > 0, there exists T such that

Fc(x, x′, t, t′) ≤ hc(x, x′, t, t′) + ε

if t and t′ satisfy t = s mod 1, t′ = s′ mod 1 and t′ ≥ t+ T . Indeed, let
K be the common Lipschitz constant of all functions Fc(·, ·, t, t′) with
t′ ≥ t + 1, let t0 = s mod 1, t′0 = s′ mod 1, let γ: [t0, t′0] → M be a
minimizer with γ(t0) = x and γ(t′0) = x′, i.e., Ac(γ) = Fc(x, x′, t0, t′0).
We can make t′0 − t0 is sufficiently large so that ∃ t1 ∈ [t0, t′0] such that
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dist(γ(t1), y) ≤ ε/4K for some y ∈ M(c)|t=t1 , in virtue of standard ar-
gument of topological dynamics. Since hc(x, x′, s, s′) = lim inf Fc(x, x′,
t, t′), we can suppose in addition that

Fc(x, x′, t0, t′0) ≤ hc(x, x′, s, s′) +
ε

2
.

Let x1 = γ(t1), we have

Fc(x, x′, t0, t′0) = Fc(x, x1, t0, t1) + Fc(x1, x
′, t1, t′0).

It follows that:

|Fc(x, x′, t0, t′0) − Fc(x, y, t0, t1) − Fc(y, x′, t1, t′0)| ≤
ε

2
,

thus
Fc(x, y, t0, t1) + Fc(y, x′, t1, t′0) ≤ hc(x, x′, s, s′) + ε.

By the choice of t and t′, we know that ∃ n ∈ N such that t′ − t =
t′0 − t0 + n. So, we have

Fc(x, x′, t, t′) = Fc(x, x′, t0, t0 + n)

≤ Fc(x, y, t0, t1) + Fc(y, y, t1, t1 + n)

+ Fc(y, x′, t1 + n, t′0 + n).

Let n→ ∞, thanks to (A.1), we obtain

lim supFc(x, x′, t, t′) ≤ hc(x, x′, s, s′) + ε.

As this holds for arbitrary ε > 0, we see that L is regular.
As the third step, we claim that L is regular implies that G̃ = Ñ . Let

γ ∈ C1(R,M) be a minimizing curve, let tk → −∞ be a sequence such
that s = tk mod 1 for all k ∈ Z and such that α = lim γ(tk), let t′k → ∞
be a sequence such that s′ = t′k mod 1 and such that ω = lim γ(t′k). In
this case

A(γ|[tk ,t′k]) = F (γ(tk), γ(t′k), tk, t′k) → h(α, ω, s, s′).

Let us consider a compact interval of times [a, b], where s′ = a mod 1
and s = b mod 1. For k sufficiently large, we have

Ac(γ|[a,b]) = Ac(γ|[tk ,t′k]) −Ac(γ|[tk ,a]) −Ac(γ|[b,t′k ]).

Taking the limit, we obtain

Ac(γ|[a,b]) = hc(α, ω, s, s′) − hc(α, γ(a), s, s) − hc(γ(b), ω, s′, s′).

On the other hand, we observe that if L is regular, then

hc(α, ω, s, s′) ≤ hc(α, γ(a), s, s) + Φc(γ(a), γ(b), s, s′) + hc(γ(b), ω, s′, s′)
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it follows that
A(γ|[a,b]) ≤ Φc(γ(a), γ(b), s, s′),

hence γ is semi-static. It has been shown in [15] that Ñ (c) = Ã(c).
q.e.d.
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