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ON KNOTS WITH TRIVIAL ALEXANDER
POLYNOMIAL

Stavros Garoufalidis & Peter Teichner

Abstract

We use the 2-loop term of the Kontsevich integral to show that
there are (many) knots with trivial Alexander polynomial which
do not have a Seifert surface whose genus equals the rank of the
Seifert form. This is one of the first applications of the Kontsevich
integral to intrinsically 3-dimensional questions in topology.

Our examples contradict a lemma of Mike Freedman, and we
explain what went wrong in his argument and why the mistake is
irrelevant for topological knot concordance.

1. A question about classical knots

Our starting point is a wrong lemma of Mike Freedman in [5,
Lemma 2], dating back before his proof of the 4-dimensional topological
Poincaré conjecture. To formulate the question, we need the following:

Definition 1.1. A knot in 3-space has minimal Seifert rank if it has
a Seifert surface whose genus equals the rank of the Seifert form.

Since the Seifert form minus its transpose gives the (non-singular)
intersection form on the Seifert surface, it follows that the genus is
indeed the smallest possible rank of a Seifert form. The formula which
computes the Alexander polynomial in terms of the Seifert form shows
that knots with minimal Seifert rank have trivial Alexander polynomial.
Freedman’s wrong lemma claims that the converse is also true. However,
in the argument, he overlooks the problem that S-equivalence does not
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preserve the condition of minimal Seifert rank. It turns out that not just
the argument, but also the statement of the lemma is wrong. This has
been overlooked for more than 20 years, may be because none of the
classical knot invariants can distinguish the subtle difference between
trivial Alexander polynomial and minimal Seifert rank.

In the last decade, knot theory was overwhelmed by a plethora of new
“quantum” invariants, most notably the HOMFLY polynomial (special-
izing to the Alexander and the Jones polynomials), and the Kontsevich
integral. Despite their rich structure, it is not clear how strong these
invariants are for solving open problems in low dimensional topology. It
is the purpose of this paper to provide one such application.

Theorem 1.2. There are knots with trivial Alexander polynomial
which do not have minimal Seifert rank. More precisely, the 2-loop part
of the Kontsevich integral induces an epimorphism Q from the monoid
of knots with trivial Alexander polynomial, onto an infinitely generated
abelian group, such that Q vanishes on knots with minimal Seifert rank.

The easiest counterexample is shown in Figure 1, drawn using surgery
on a clasper. Surgery on a clasper is a refined form of Dehn surgery
(along an embedded trivalent graph, rather than an embedded link)
which we explain in Section 5. Clasper surgery is an elegant way of
drawing knots that amplifies the important features of our example
suppressing irrelevant information (such as the large number of crossings
of the resulting knot). For example, in Figure 1, if one pulls the central
edge of the clasper out of the visible Seifert surface, one obtains an
S-equivalence to a non-trivial knot with minimal Seifert rank.

Figure 1. The simplest example, obtained by a clasper
surgery on the unknot.

Remark 1.3. All of the above notions make sense for knots in ho-
mology spheres. Our proof of Theorem 1.2 works in that setting, too.
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Since [5, Lemma 2] was the starting point of what eventually became
Freedman’s theorem which states that all knots with trivial Alexander
polynomial are topologically slice, we should make sure that the above
counterexamples to his lemma do not cause any problems in this im-
portant theorem. Fortunately, an argument independent of the wrong
lemma can be found in [6, Theorem 7], see also [7, 11.7B]. However,
it uses unnecessarily the surgery exact sequence and some facts from
L-theory.

In an appendix, we shall give a more direct proof that Alexander
polynomial 1 knots are topologically slice. We use no machinery, except
for a single application of Freedman’s main disk embedding theorem
[6] in D4. To satisfy the assumptions of this theorem, we employ a
triangular base change for the intersection form of the complement of a
Seifert surface in D4, which works for all Alexander polynomial 1 knots.
By Theorem 1.2, this base change does not work on the level of Seifert
forms, as Freedman possibly tried to anticipate.

2. A relevant quantum invariant

The typical list of knot invariants that might find its way into a
text book or survey talk on classical knot theory, would contain the
Alexander polynomial, (twisted) signatures, (twisted) Arf invariants,
and may be knot determinants. It turns out that all of these invariants
can be computed from the homology of the infinite cyclic covering of
the knot complement. In particular, they all vanish if the Alexander
polynomial is trivial. This condition also implies that certain “non-
commutative” knot invariants vanish, namely all those calculated from
the homology of solvable coverings of the knot complement, like the
Casson–Gordon invariants [2] or the von Neumann signatures of [4]. In
fact, the latter are concordance invariants and, as discussed above, all
knots with trivial Alexander polynomial are topologically slice.

Thus, it looks fairly difficult to study knots with trivial Alexander
polynomial using classical invariants. Nevertheless, there are very nat-
ural topological questions about such knots like the one explained in the
previous section. We do not know a classical treatment of that question,
so we turn to quantum invariants.

One might want to use the Jones polynomial, which often distin-
guishes knots with trivial Alexander polynomial. However, it is not
clear which knots it distinguishes, and which values it realizes, so the
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Jones polynomial is of no help to this problem. Thus, we are looking
for a quantum invariant that relates well to classical topology, has good
realization properties, and is one step beyond the Alexander polynomial.

In a development starting with the Melvin–Morton–Rozansky con-
jecture and going all the way to the recent work of [10] and [11], the
Kontsevich integral has been reorganized in a rational form Zrat which is
closer to the algebraic topology of knots. It is now a theorem (a restate-
ment of the MMR Conjecture) that the “1-loop” part of the Kontsevich
integral gives the same information as the Alexander polynomial [1, 17].

The quantum invariant in Theorem 1.2 is the “2-loop” part Q of
the rational invariant Zrat of [11]. We consider Q as an invariant of
Alexander polynomial 1 knots K in integral homology spheres M3, and
summarize its properties:

• Q takes values in the abelian group

ΛΘ :=
Z[t±1

1 , t±1
2 , t±1

3 ]
(t1t2t3 − 1, Sym3 × Sym2)

.

The second relations are given by the symmetric groups Sym3

which acts by permuting the ti, and Sym2 which inverts the ti
simultaneously.

• Under connected sums and orientation-reversing, Q behaves as
follows:

Q(M#M ′,K#K ′) = Q(M,K) + Q(M ′,K ′)
Q(M,−K) = Q(M,K) = −Q(−M,K).

• If one applies the augmentation map

ε : ΛΘ → Z, ti �→ 1,

then Q(M,K) is mapped to the Casson invariant λ(M), normal-
ized by λ(S3

Right Trefoil,+1) = 1.
• Q has a simple behavior under surgery on null claspers, see Sec-

tion 6.
All these properties are proven in [10] and in [11].

Proposition 2.1 (Realization). Given a homology sphere M3, the
image of Q on knots in M with trivial Alexander polynomial is the
subspace ε−1(λ(M)) of ΛΘ.

Remark 2.2. The realization in the above proposition is concrete,
not abstract. In fact, to realize the subgroup ε−1(λ(M)) one only needs
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(connected sums of) knots which are obtained as follows: Pick a stan-
dard Seifert surface Σ of genus one for the unknot in M , and do a surgery
along a clasper G with one loop and two leaves which are meridians to
the bands of Σ, just like in Figure 1. The loop of G may intersect Σ
and these intersection create the interesting examples. Note that all of
these knots are ribbons which implies unfortunately that the invariant
Q does not factor through knot concordance, even though it vanishes
on knots of the form K# − K.

Together with the following finiteness result, the above realization
result proves Theorem 1.2, even for knots in a fixed homology sphere.

Proposition 2.3 (Finiteness). The value of Q on knots with mini-
mal Seifert rank is the subgroup of ΛΘ, (finitely) generated by the three
elements

(t1 − 1), (t1 − 1)(t−1
2 − 1), (t1 − 1)(t2 − 1)(t−1

3 − 1).

This holds for knots in 3-space, and one only has to add λ(M) to all
three elements to obtain the values of Q for knots in a homology sphere
M .

Corollary 2.4. If a knot K in S3 has minimal Seifert rank, then
Q(S3,K) can be computed in terms of three Vassiliev invariants of de-
gree 3, 5, 5.

The Q invariant can be in fact calculated on many classes of examples.
One such computation was done in [8]: The (untwisted) Whitehead
double of a knot K has minimal Seifert rank and K �→ Q(S3,Wh(K))
is a non-trivial Vassiliev invariant of degree 2.

Remark 2.5. Note that K has minimal Seifert rank if and only
if it bounds a certain grope of class 3. More precisely, the bottom
surface of this grope is just the Seifert surface, and the second stages
are embedded disjointly from the Seifert surface. However, they are
allowed to intersect each other. So, this condition is quite different from
the notion of a “grope cobordism” introduced in [3].

In a forthcoming paper, we will study related questions for boundary
links. This is made possible by the rational version of the Kontsevich
integral for such links recently defined in [11]. The analogue of knots
with trivial Alexander polynomial are called good boundary links. In [7,
11.7C], this term was used for boundary links whose free cover has triv-
ial homology. Unfortunately, the term was also used in [5] for a class of
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boundary links which should be rather called boundary links of minimal
Seifert rank. This class of links is relevant because they form the atomic
surgery problems for topological 4-manifolds, see Remark A.4. By The-
orem 1.2, the two definitions of good boundary links in the literature
actually differ substantially (even for knots). One way to resolve the
“Schlamassel” would be to drop this term all together.

3. S-equivalence in homology spheres

We briefly recall some basic notions for knots in homology spheres.
We decided to include the proofs because they are short and might not
be well known for homology spheres, but we claim no originality. Let
K be a knot in a homology sphere M3. By looking at the inverse image
of a regular value under a map M\K → S1, whose homotopy class
generates

[M\K,S1] ∼= H1(M\K; Z) ∼= H1(K; Z) ∼= Z

(Alexander duality in M)

one constructs a Seifert surface Σ for K. It is a connected oriented sur-
face embedded in M with boundary K. Note that a priori the resulting
surface is not connected, but one just ignores the closed components.
By the usual discussion about twistings near K, one sees that a collar
of Σ always defines the linking number zero pushoff of K.

To discuss uniqueness of Seifert surfaces, assume that Σ0 and Σ1 are
both connected oriented surfaces in M with boundary K.

Lemma 3.1. After a finite sequence of “additions of tubes”, i.e.,
ambient 0-surgeries, Σ0 and Σ1 become isotopic.

Proof. Consider the following closed surface in the product M × I
(where I = [0, 1]):

Σ0 ∪ (K × I) ∪ Σ1 ⊂ M × I.

As above, relative Alexander duality shows that this surface bounds
an connected oriented 3-manifold W 3, embedded in M × I. By general
position, we may assume that the projection p : M×I → I restricts to a
Morse function on W . Moreover, the usual dimension counts show that
after an ambient isotopy of W in M × I, one can arrange for p : W → I
to be an ordered Morse function, in the sense that the indices of the
critical points appear in the same order as their values under p. This
can be done relative to K × I ⊂ W since p has no critical points there.
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Consider a regular value a ∈ I for p between the index 1 and 2 critical
points. Then, Σ := p−1(a) ⊂ M × {a} = M is a Seifert surface for K.
By Morse theory, Σ is obtained from Σ0 by

• A finite sequence of small 2-spheres Si in M being born, disjoint
from Σ0. These correspond to the index 0 critical points of p.

• A finite sequence of tubes Tk, connecting the Si to (each other
and) Σ0. These correspond to the index 1 critical points of p.

Since W is connected, we know that the resulting surface Σ must be
connected. In case there are no index 0 critical points, it is easy to see
that Σ is obtained from Σ0 by additions of tubes. We will now reduce
the general case to this case. This reduction is straight forward if the
first tubes Ti that are born have exactly one end on Si, where i runs
through all index 0 critical points. Then, a sequence of applications of
the lamp cord trick (in other words, a sequence of Morse cancellations)
would show that up to isotopy, one can ignore these pairs of critical
points, which include all index 0 critical points.

To deal with the general case, consider the level just after all Si were
born and add “artificial” thin tubes (in the complement of the expected
Tk) to obtain a connected surface. By the lamp cord trick, this surface is
isotopic to Σ0, and the Tk are now tubes on Σ0, producing a connected
surface Σ′

0. Since by construction the tubes Tk do not go through the
artificial tubes, we can cut the artificial tubes to move from Σ′

0 back to
Σ (through index 2 critical points).

We can treat Σ1 exactly as above, by turning the Morse function
upside down, replacing index 3 by index 0, and index 2 by index 1
critical points. The result is a surface Σ′

1, obtained from Σ1 by adding
tubes, and such that Σ is obtained from Σ′

1 by cutting other tubes.
Collecting the above information, we now have an ambient Morse

function with only critical points of index 1 and 2, connecting Σ0 and
Σ1 (rel K), and a middle surface Σ which is tube equivalent to Σ0 and
Σ1. The result follows. q.e.d.

The above proof motivates the definition of S-equivalence, which is
the algebraic analogue, on the level of Seifert forms, of the geometric
addition of tubes. Given a Seifert surface Σ for K in M , one defines the
Seifert form

SΣ : H1Σ × H1Σ → Z



174 S. GAROUFALIDIS & P. TEICHNER

by the formula SΣ(a, b) := lk(a, b↓). These are the usual linking num-
bers for circles in M and b↓ is the circle b on Σ, pushed slighly off the
Seifert surface (in a direction given by the orientations). The down-
arrow reminds us that in the case of a and b being the short and long
curve on a tube, we are pushing b into the tube, and hence the resulting
linking number is one.

It should be clear what it means to “add a tube” to the Seifert form
SΣ: The homology increases by two free generators s and l (for “short”
and “long” curve on the tube), and the linking numbers behave as fol-
lows:

lk(s, s↓) = lk(l, l↓) = lk(l, s↓) = lk(s, a↓) = 0, lk(s, l↓) = 1 ∀a ∈ H1Σ.

Note that there is no restriction on the linking numbers of l with curves
on Σ, reflecting the fact that the tube can wind around Σ in an arbitrary
way.

Observing that isotopy of Seifert surfaces gives isomorphisms of their
Seifert forms, we are lead to the following algebraic notion. It abstracts
the necessary equivalence relation on Seifert forms coming from the
non-uniqueness of the Seifert surface.

Definition 3.2. Two Seifert surfaces (for possibly distinct knots) are
called S-equivalent if their Seifert forms become isomorphic after a finite
sequence of (algebraic) additions of tubes.

4. Geometric basis for Seifert surfaces

It is convenient to discuss Seifert forms in terms of their corresponding
matrices. So, for a given basis of H1Σ, denote by SMΣ the matrix
of linking numbers describing the Seifert form SΣ. For example, the
addition of a tube has the following effect on a Seifert matrix SM :

SM �→


SM 0 ρ

0 0 1
ρT 0 0


 .

Here, we have used the short and long curves on the tube as the last two
basis vectors (in that order). ρ is the column of linking number of the
long curve with the basis elements of H1Σ and ρT is its transposed row.
It is clear that, in general, this operation can destroy the condition of
having minimal Seifert rank as defined in Definition 1.1. An important
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invariant of S-equivalence is the Alexander polynomial, defined by

(1) ∆K(t) := det(t1/2 · SM − t−1/2SMT )

for any Seifert matrix SM for K. One can check that this is unchanged
under S-equivalence, it lies in Z[t±1] and satisfies the symmetry relations
∆K(t−1) = ∆K(t) and ∆K(1) = 1.

Definition 4.1. Let Σ be a Seifert surface of genus g. The following
basis of H1Σ will be useful.

• A geometric basis is a set of embedded simple closed curves {s1, . . . ,
sg, �1, . . . , �g} on Σ with the following geometric intersections

si ∩ sj = ∅ = �i ∩ �j, and si ∩ �j = δi,j

Note that the Seifert matrix SMΣ for a geometric basis always
satisfies

SMΣ − SMT
Σ =

(
0 11
−11 0

)
.

• A trivial Alexander basis is a geometric basis such that the corre-
sponding Seifert matrix can be written in terms of four blocks of
g × g-matrices as follows:(

0 11 + U
UT V

)
.

Here, U is an upper triangular matrix (with zeros on and below
the diagonal), UT is its transpose, and V is a symmetric matrix
with zeros on the diagonal.

• A minimal Seifert basis is a trivial Alexander basis such that the
matrices U and V are zero, so the Seifert matrix looks as simply
as could be: (

0 11
0 0

)
.

By starting with a disk, and then adding tubes according to the
matrices U and V , it is clear that any matrix for a trivial Alexander
basis can occur as the Seifert matrix for the unknot. The curves si

above are the short curves on the tubes, and �j are the long curves.
The matrix U must be lower triangular because the long curves can
only link those short curves that are already present. The following
lemma explains our choice of notation above:
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Lemma 4.2. Any Seifert surface has a geometric basis. Moreover,
• A knot has trivial Alexander polynomial if and only if there is

Seifert surface with a trivial Alexander basis.
• A knot has minimal Seifert rank if and only if it has a Seifert

surface with a minimal Seifert basis.

Proof. By the classification of surfaces, they always have a geomet-
ric basis. If a knot has a trivial Alexander basis, then an elementary
computation using Equation (1) implies that it has trivial Alexander
polynomial. Finally, the Seifert matrix for a minimal Seifert basis obvi-
ously has minimal rank.

So, we are left with showing the two converses of the statements
in our lemma. Start with a knot with trivial Alexander polynomial.
Then, by Trotter’s theorem [23], it is S-equivalent to the unknot, and
hence its Seifert form is obtained from the empty form by a sequence
of algebraic additions of tubes. Then, an easy induction implies that
the resulting Seifert matrix SMΣ is as claimed, so we are left with
showing that the corresponding basis can be chosen to be geometric on
Σ. But since SMΣ - SMT

Σ is the standard (hyperbolic) form, we get
a symplectic isomorphism of H1Σ which sends the given basis into a
standard (geometric) one. Since the mapping class group realizes any
such symplectic isomorphism, we see that the given basis can be realized
by a geometric basis.

Finally, consider a Seifert surface with minimal Seifert rank. By
assumption, there is a basis of H1Σ so that the Seifert matrix looks like

SMΣ =
(

0 A
0 B

)
.

Since ∆(1) = 1, Equation (1) implies that A must be invertible, and
hence, there is a base change so that the Seifert matrix has the desired
form

SMΣ =
(

0 11
0 0

)
.

Just as above, one shows that this matrix is also realized by a geometric
basis. q.e.d.

Corollary 4.3. Every knot in S3 with minimal Seifert rank g can
be constructed from a standard genus g Seifert surface of the unknot,
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by tying the 2g bands into a 0-framed string link with trivial linking
numbers.

some  string−link

5. Clasper surgery

As we mentioned in Section 1, we can construct examples of knots
that satisfy Theorem 1.2 using surgery on claspers. Since claspers play
a key role in geometric constructions, as well as in realization of quan-
tum invariants, we include a brief discussion here. For a reference on
claspers1 and their associated surgery, we refer the reader to [14, 15, 16]
and also [3, 9].

Surgery is an operation of cutting, twisting and pasting within the
category of smooth manifolds. A low dimensional example of surgery
is the well-known Dehn surgery, where we start from a framed link L
in a 3-manifold M , we cut out a tubular neighborhood of L, twist the
boundary using the framing, and glue back. The result is a 3-dimen-
sional manifold ML.

Clasper surgery is entirely analogous to Dehn surgery, except that it
is operated on claspers rather than links. A clasper is a thickening of a
trivalent graph, and it has a preferred set of loops, called the leaves. The
degree of a clasper is the number of trivalent vertices (excluding those
at the leaves). With our conventions, the smallest clasper is a Y-clasper
(which has degree one and three leaves), so we explicitly exclude struts
(which would be of degree zero with two leaves).

A clasper of degree 1 is an embedding G : N → M of a regular neigh-
borhood N of the graph Γ (with four trivalent vertices and six edges)
into a 3-manifold M . Surgery on G can be described by removing the
genus 3 handlebody G(N) from M , and regluing by a certain diffeo-
morphism of its boundary (which acts trivially on the homology of the
boundary). We will denote the result of surgery by MG. To explain the

1By clasper, we mean precisely the object called clover in [9]. For the sake of Peace
in the World, after the Kyoto agreement of September 2001 at RIMS, we decided to
follow this terminology.
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regluing diffeomorphism, we describe surgery on G by surgery on the
following framed six component link L in M : L consists of a 0-framed

N

Γ

N
L

Borromean ring and an arbitrarily framed three component link, the
so-called leaves of G, see the figure above. The framings of the leaves
reflect the prescribed neighborhood G(N) of Γ in M .

If one of the leaves is 0-framed and bounds an embedded disk disjoint
from the rest of G, then surgery on G does not change the 3-manifold
M , because the gluing diffeomorphism extends to G(N). In terms of
the surgery on L, this is explained by a sequence of Kirby moves from
L to the empty link (giving a diffeomorphism MG

∼= M). However, if a
second link L′ in M\G(N) intersects the disk bounding the 0-framed leaf
of L, then the pairs (M,L′) and (MG, L′) might not be diffeomorphic.
This is the way how claspers act on knots or links in a fixed 3-manifold
M , a point of view which is most relevant to this paper.

A particular case of surgery on a clasper of degree 1 (sometimes called
a Y-move) looks locally as follows:

~~

In general, surgery on a clasper G of degree n is defined in terms of
simoultaneous surgery on n claspers G1, . . . , Gn of degree 1. The Gi

are obtained from G by breaking its edges and inserting 0-framed Hopf
linked leaves as follows.

~

In particular, consider the clasper G of degree 2 in Figure 1, which has
two leaves and two edges. We can insert two pairs of Hopf links in the
edges of G to form two claspers G1 and G2 of degree 1, and describe the
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resulting clasper surgery on G1 and G2 by using twice the above figure
on each of the leaves of G.

Exercise 5.1. Draw the knot which is described by surgery on a
clasper of degree 2 in Figure 1.

It should be clear from the drawing why it is easier to describe knots
by clasper surgery on the unknot, rather than by drawing them explic-
itly. Moreover, as we will see shortly, quantum invariants behave well
under clasper surgery.

6. The Q invariant

6.1. A brief review of the Zrat invariant. The quantum invariant we
want to use for Theorem 1.2 is the Euler-degree 2 part of the rational
invariant Zrat of [11]. In this section, we will give a brief review of
the full Zrat invariant. Hopefully, this will underline the general ideas
more clearly, and will be a useful link with our forthcoming work. Zrat

is a rather complicated object; however, it simplifies when evaluated
on Alexander polynomial 1 knots, as was explained in [11, Remark
1.6]. In particular, it is a map of monoids (taking connected sum to
multiplication)

Zrat : Alexander polynomial 1 knots −→ A(Λ),

where the range is a new algebra of diagrams with beads defined as
follows. We abbreviate the ring of Laurent polynomials in t as Λ :=
Z[t±1].

Definition 6.1. A(Λ) is the completed Q-vector space generated by
pairs (G, c), where G is a trivalent graph, with oriented edges and ver-
tices and c : Edges(G) → Λ is a Λ-coloring of G, modulo the relations:
AS, IHX, Orientation Reversal, Linearity, Holonomy and Graph Auto-
morphisms, (see Figure 2). A(Λ) is graded by the Euler degree (that is,
the number of vertices of graphs) and the completion is with respect to
this grading. A(Λ) is a commutative algebra with multiplication given
by the disjoint union of graphs.

Notice that a connected trivalent graph G has 2n vertices, 3n edges,
and its Euler degree equals to −2χ(G), where χ(G) is the Euler char-
acteristic of G. This explains the name “Euler degree”.
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= =1
1 1

=r r =r+s r +  s = tctb

taa

cb

Figure 2. The AS, IHX, orientation reversal, linearity,
and holonomy relations.

Where is the Zrat invariant coming from? There is an important hair
map

Hair : A(Λ) −→ A(∗),
which is defined by replacing a bead t by an exponential of hair:

↑|• t �→
∞∑

n=0

1
n! (n legs) .

Here, A(∗) is the completed (with respect to the Vassiliev degree, that is
half the number of vertices) Q-vector space spanned by vertex-oriented
unitrivalent graphs, modulo the AS and IHX relations. It was shown
in [11] that when evaluated on knots of Alexander polynomial 1, the
Kontsevich integral Z is determined by the rational invariant Zrat by:

(2) Z = Hair ◦ Zrat.

Thus, in some sense Zrat is a rational lift of the Kontsevich integral.
Note that although the Hair map above is not 1–1 [20], the invariants
Z and Zrat might still contain the same information. The existence of
the Zrat invariant was predicted by Rozansky, [21], who constructed a
rational lift of the colored Jones function, i.e., for the image of the Kont-
sevich integral on the level of the sl2 Lie algebras. The Zrat invariant
was constructed in [11].

How can one compute the Zrat invariant (and therefore, also the
Kontsevich integral) on knots with trivial Alexander polynomial? This
is a difficult question; however, Zrat is a graded object, and in each
degree, it is a finite type invariant in an appropriate sense. In order to
explain this, we need to recall the null move of [10], which is defined
in terms of surgery on a special type of clasper. Consider a knot K in
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a homology sphere M and a clasper G ⊂ M\K whose leaves are null
homologous knots in the knot complement X = M\K. We will call such
claspers null and will denote the result of the corresponding surgery
by (M,K)G. Surgery on null claspers preserves the set of Alexander
polynomial 1 knots. Moreover, by results of [18] and [19], one can untie
every Alexander polynomial 1 knot via surgery on some null clasper, see
[10, Lemma 1.3].

As usual, in the world of finite type invariants, if G = {G1, . . . , Gn}
is a collection of null claspers, we set

[(M,K), G] :=
∑

I⊂{0,1}n

(−1)|I|(M,K)GI
,

where |I| denotes the number of elements of I and (M,K)GI
stands for

the result of simultaneous surgery on Gi for all i ∈ I. A finite type
invariant of null-type k by definition vanishes on all such alternating
sums with k < deg(G) :=

∑n
i=1 deg(Gi).

Theorem 6.2 ([11]). Zrat
2n is a finite type invariant of null-type 2n.

Furthermore, the degree 2n term (or symbol) of Zrat
2n can be computed

in terms of the equivariant linking numbers of the leaves of G, as we
explain next. Fix an Alexander polynomial 1 knot (M,K), and consider
a null homologous link C ⊂ X of two ordered components, where X =
M\K. The lift C̃ of C to the Z-cover X̃ of X is a link. Since H1(X̃) = 0
(due to our assumption that ∆(M,K) = 1) and H2(X̃) = 0 (true for
Z-covers of knot complements) it makes sense to consider the linking
number of C̃. Fix a choice of lifts C̃i for the components of C. The
equivariant linking number is the finite sum

lkZ(C1, C2) =
∑
n∈Z

lk(C̃1, t
n C̃2) tn ∈ Z[t±1] = Λ.

Shifting the lifts C̃i by ni ∈ Z multiplies this expression by tn1−n2 .
There is a way to fix this ambiguity by considering an arc-basing of C,
that is a choice of disjoint embedded arcs γ in M\(K ∪ C) from a base
point to each of the components of C. In that case, we can choose a lift
of C ∪ γ to X̃ and define the equivariant linking number lkZ(C1, C2).
The result is independent of the lift of C ∪ γ, but of course depends on
the arc-basing γ.

It will be useful for computations to describe an alternative way of
fixing the ambiguity in the definition of equivariant linking numbers.



182 S. GAROUFALIDIS & P. TEICHNER

Given (M,K), consider a Seifert surface Σ for (M,K), and a link C of
two-ordered components in M\Σ. We will call such links Σ-null. Notice
that a Σ-null link is (M,K)-null, and conversely, every (M,K)-null link
is Σ-null for some Seifert surface Σ of (M,K). Given a Σ-null link C of
two-ordered components, one can construct the Z-cover X̃ by cutting X
along Σ, and then putting Z copies of this fundamental domain together
to obtain X̃. It is then obvious that there are canonical lifts of Σ-null
links which lie in one fundamental domain and using them, one can
define the equivariant linking number of C without ambiguity.

This definition of equivariant linking number agrees with the previous
one if we choose basing arcs which are disjoint from Σ.

Example 6.3. Consider a standard Seifert surface Σ for the unknot
O. Let Ci be two meridians of the bands of Σ; thus, (C1, C2) is Σ-null.
If these bands are not dual, then (O, C1, C2) is an unlink and hence
lkZ(C1, C2) = 0. If the bands are dual, then this 3-component link is
the Borromean rings. Recall that the Borromean rings are the Hopf link
with one component Bing doubled (and the other one being O). Then,
one can pull apart that link, in the complement of O, by introducing
two intersections (of opposite sign) between C1 and C2, differing by the
meridian t to O. This shows that in this case,

lkZ(C1, C2) = t − 1.

In order to give a formula for the symbol of Zrat
2n , we need to recall

the useful notion of a complete contraction of an (M,K)-null clasper
G of degree 2n, [10, Section 3]. Let Gbreak = {G1, . . . , G2n} denote
the collection of degree 1 claspers Gi which are obtained by inserting
a Hopf link in the edges of G. Choose arcs from a fixed base point to
the trivalent vertex of each Gnl

i , which allows us to define the equivari-
ant linking numbers of the leaves of Gbreak. Let Gnl = {Gnl

1 , . . . , Gnl
2n}

denote the collection of abstract unitrivalent graph obtained by remov-
ing the leaves of the Gi (and leaving one leg, or univalent vertex, for
each leave behind). Then, the complete contraction 〈G〉 ∈ A(Λ) of G is
defined to be the sum over all ways of gluing pairwise the legs of Gnl,
with the resulting edges of each summand labelled by elements of Λ as
follows: pick orientations of the edges of Gnl such that pairs of legs that
are glued are oriented consistently. If two legs l and l′ are glued, with
the orientation giving the order, then we attach the bead lkZ(l, l′) on
the edge created by the gluing.
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The result of a complete contraction of a null clasper G is a well-
defined element of A(Λ). Changing the edge orientations is taken care
of by the symmetry of the equivariant linking number as well as the
orientation reversal relations. Changing the arcs is taken care by the
holonomy relations in A(Λ).

Then, the complete contraction 〈G〉 ∈ A(Λ) of a single clasper G
with Σ-null leaves is easily checked to be the sum over all ways of gluing
pairwise the legs of Gnl, with the resulting edges of each summand
labelled by elements of Λ as follows: First, pick orientations of the edges
of Gnl such that pairs of legs that are glued are oriented consistently.
If two legs l and l′ are glued, with the orientation giving the order,
then we attach the bead lkZ(l, l′) on the edge created by the gluing. In
addition, each internal edge e of Gnl is labelled by tn, where n ∈ Z is
the intersection number of e with the Seifert surface Σ.

One can check directly that this way of calculating a complete con-
traction of a clasper G with Σ-null leaves is a well-defined element of
A(Λ): Changing the edge orientations is taken care of by the symme-
try of the equivariant linking number as well as the orientation reversal
relations. The holonomy relations in A(Λ) correspond beautifully to
Figure 3 in which a trivalent vertex of G is pushed through Σ.

tt

t

Figure 3. A surface isotopy that explains the holonomy relation.

Finally, we can state the main result on calculating the invariant Zrat.

Theorem 6.4 ([11, Theorem 4]). If (M,K) is a knot with trivial
Alexander polynomial and G is a collection of (M,K)-null claspers of
degree 2n, then

Zrat
2n ([(M,K), G]) = 〈G〉 ∈ A2n(Λ).

6.2. A review of the Q invariant. We will be interested in Q = Zrat
2 ,

the loop-degree 2 part of Zrat. It turns out that Q takes values in a
lattice A2,Z(Λ), that is the abelian subgroup of A(2,Λ) generated by
integer multiples of graphs with beads. Lemma 6.5 (taken from [12,
Lemma 5.9]) explains the definition of ΛΘ.
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Lemma 6.5. There is an isomorphism of abelian groups:

(3) ΛΘ −→ A2,Z(Λ) given by: α1 α2 α3 �→ αα α
1 2 3.

Proof. Since Aut(Θ) ∼= Sym3 × Sym2, it is easy to see that the above
map is well-defined. There are two trivalent graphs of degree 2, namely
Θ and . Using the Holonomy Relation, we can assume that the
labeling of the middle edge of is 1. In that case, the IHX relation
implies that

= − =

p

q qq

p p

q

p − p

This shows that the map in question is onto. It is also easy to see
that it is a monomorphism. q.e.d.

Let us define the reduced groups

Ã(Λ) = Ker(A(Λ) → A(φ))

induced by the augmentation map ε : Λ → Z. Let Λ̃Θ := Ker(ε : ΛΘ →
Z). The proof of Lemma 6.5 implies that there is an isomorphism:

Λ̃Θ
∼= Ã2,Z(Λ).

6.3. Realization and finiteness.

Proof of Proposition 2.1. (Realization). Let us first assume that the
ambient 3-manifold M = S3. It is easy to see that Λ̃Θ is generated
by (t1 − 1)tn2 tm3 for n,m ∈ Z, so we only need to realize these values.
Consider a standard genus one Seifert surface Σ of an unknot with bands
{α, β} and the clasper G

of degree 2 (with two leaves shown as ellipses above). Choose an em-
bedding of G into S3\O in such a way that the two leaves are 0-framed
meridians of the two bands of Σ and the two internal edges of G inter-
sect Σ algebraically n respectively m times. Then, G is a Σ-null clasper
and Theorem 6.4, together with Example 6.3 we get

Q(S3,OG) = −Q([(S3,O), G]) = (1 − t1)tn2 tm3 ∈ Λ̃Θ.
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The realization result follows for M = S3. For the case of a general
homology sphere M , use the behavior of Q under connected sums. To
show that the constructed knots are ribbon, we refer to [13, Lemma 2.1,
Theorem 5], or [3, Theorem 4]. q.e.d.

Lemma 6.6 gives a clasper construction of all minimal Seifert rank
knots. We first introduce a useful definition. Consider a surface Σ ⊂ S3

and a clasper G ⊂ S3\∂Σ. We say that G is Σ-simple if the leaves of G
are 0-framed meridians of the bands of Σ and the edges of G are disjoint
from Σ.

Lemma 6.6. Every knot in S3 with minimal Seifert rank can be
constructed from a standard Seifert surface Σ of the unknot, by surgery
on a disjoint collection of Σ-simple Y-claspers.

Proof. The result follows by Lemma 4.3 and the fact, proven by
Murakami–Nakanishi [19], that every string-link with trivial linking
numbers can be untied by a sequence of Borromean moves. In terms of
O, these Borromean moves are Σ-simple Y-clasper surgeries (with the
leaves being 0-framed meridians to the bands of Σ). q.e.d.

Proof of Proposition 2.3. (Finiteness) Consider a knot K in S3 with
minimal Seifert rank. By Lemma 6.6, it is obtained from a standard
Seifert surface Σ of an unknot O by surgery on a disjoint collection G of
Σ-simple Y-claspers. The fact that Q is an invariant of type 2 implies
that

Q(S3,K) = −Q((S3,O) − (S3,O)G)

= −
∑

G′⊂G

Q([(S3,O), G′]) +
∑

G′′⊂G

Q([(S3,O), G′′]),

where the summation is over all claspers G′ and G′′ of degree 1 and 2,
respectively. The Q([(S3,O), G′′]) terms can be computed by complete
contractions and using Example 6.3, it follows that they contribute only
summands of the form (ti − 1).

Next, we simplify the remaining terms, which are given by Σ-simple
Y-claspers G′ ⊂ G. Note that we can work modulo Σ-simple claspers
of degree > 1 by the above argument. Using the Sliding Lemma [10,
Lemma 2.5], we can move around all edges and finally put G′ into a
standard position as in Figure 4.
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Figure 4. The remaining knots, possibly with half-
twists (not shown) on the edges of the clasper.

We are reduced to Σ of genus one because if the three leaves of G′ are
meridians to three distinct bands of Σ, the unknot O would slip off the
clasper altogether, i.e., surgery on the simplified G′ does not alter O.

This means that we are left with a family of four examples, given by
the various possibilities of the half-twists in the three edges of the the
clasper in Figure 4. Let α and β denote the two bands of the standard
genus 1 surface Σ, and let mα,mβ (resp. �α, �β) denote the knots which
are meridians (resp. longitudes) of the bands.

Let G′ denote the Σ-simple clasper of degree 1 as in Figure 4. It has
3 leaves mα,mα and �β.

Claim 6.7. We have

[(S3,O), G′] = [(S3,O), G′′] + [(S3,O), G′′′]

modulo terms of degree 2, where G′′ is a Σ-simple clasper with leaves
mα,mα, �α and G′′′ is obtained from G′′ by replacing the edge of �α by
one that intersects Σ once.

Proof of the claim. Observe that mβ is isotopic to �α by an isotopy
rel Σ. Use this isotopy to move the leaf �β of G′ near the α handle,
and use the Cutting a Leaf lemma ([10, Lemma 2.4]) to conclude the
proof. q.e.d.

Going back to the proof of Proposition 2.3, we may apply the Cutting
a Leaf lemma once again to replace G′′ by a Σ-simple clasper with leaves
two copies of mα together with a meridian of one copy of mα. For this
clasper, the surface Σ can slide off, and as a result surgery gives back
the unknot. Work similarly for G′′′, and conclude that Q([(S3,O), G′])
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lies in the subgroup of ΛΘ which is generated by the elements

(tε11 − 1), (tε11 − 1)(tε22 − 1), (tε11 − 1)(tε22 − 1)(tε33 − 1)

for all εi = ±1. Using the relations in ΛΘ, it is easy to show that
this subgroup is generated by the three elements as claimed in Propo-
sition 2.3. This concludes the proposition for knots in S3.

In the case of a knot K with minimal Seifert rank in a general homol-
ogy sphere M , we may untie it by surgery on a collection of Σ-simple
Y-claspers, Σ a standard Seifert surface for the unknot O. That is, we
may assume that (M,K) = (S3,O)G for some Σ-null clasper G whose
leaves are meridians of the bands of Σ and have framing 0 or ±1. We
can follow the previous proof to conclude our result. q.e.d.

Proof of Corollary 2.4. As we discussed previously, the rational invari-
ant Zrat determines the Kontsevich integral via Equation (2). It follows
that Hair ◦ Q is a power series of Vassiliev invariants. Although the
Hair map is not 1–1, it is for diagrams with two loops, thus Hair ◦ Q
determines Q.

Consider the image of t1−1, (t1−1)(t−1
2 −1) and (t1−1)(t2−1)(t−1

3 −1)
under the Hair map in A(∗). It follows that the Vassiliev invariants of
degree 3, 5 and 5 which separate the uni-trivalent graphs

determine the value of Q on knots with minimal Seifert rank. q.e.d.

Appendix A. Knots with trivial Alexander polynomial
are topologically slice

A complete argument for this fact can be found in [6, Theorem 7], see
also [7, 11.7B]. However, that argument uses unnecessarily the surgery
exact sequence for the trivial as well as infinite cyclic fundamental group.
Moreover, one needs to know Wall’s surgery groups Li(Z[Z]) for i = 4, 5.

We shall give a direct argument in the spirit of [5] but without as-
suming that the knot has minimal Seifert rank (which Freedman did
assume indirectly). The simple new ingredient is the triangular base
change, Lemma A.2. Note that at the time of writing [5], the topo-
logical disk embedding theorem was not known, so the outcome of the
constructions below was much weaker than an actual topological slice.
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The direct argument uses a single application of Freedman’s main
disk embedding theorem [6]. In [6], it is not stated in its most general
form which we need here, so we really use the disk embedding theorem
[7, 5.1B]. So, let us first recall this basic theorem. It works in any 4-
manifold with good fundamental group, an assumption which up to day
is not known to be really necessary. In any case, cyclic groups are known
to be good which is all we need in this appendix. Note that the second
assumption, on dual 2-spheres, is well known to be necessary. Without
this assumption, the proof below would imply that every “algebraically
slice” knot, i.e., a knot whose Seifert form has a Lagrangian, is topolog-
ically slice. This contradicts for example the invariants of [2]. A more
direct reason that this assumption is necessary was recently given in
[22]: In the absence of dual 2-spheres, there are non-trivial secondary
invariants (in two copies of the group ring modulo certain relations),
which are obstructions to a disk being homotopic to an embedding.

Theorem A.1. [Disk embedding theorem [7, 5.1B]] Let ∆j : (D2, S1)
→ (N4, ∂N) be continuous maps of disks which are embeddings on the
boundary, and assume that all intersection and self-intersection numbers
vanish in Z[π1N ]. If π1N is good and there exist algebraically dual 2-
spheres, then there is a regular homotopy (rel. boundary) which takes
the ∆j to disjoint (topologically flat) embeddings.

The assumption on dual 2-spheres (which is an algebraic condition)
means that there are framed immersions fi : S2 → N such that the
intersection numbers in Z[π1N ] satisfy

λ(fi,∆j) = δi,j .

The following simple observation turns out to be crucial for Alexander
polynomial 1 knots.

Lemma A.2. There exist algebraically dual 2-spheres for ∆i if and
only if there exist framed immersions gi : S2 → N with

λ(gi,∆i) = 1 and λ(gi,∆j) = 0 for i > j.

So the matrix of intersection numbers of gi and ∆j needs to have zeros
only below the diagonal.

Proof. Define f1 := g1, and then inductively

fi := gi −
∑
k<i

λ(gi,∆k)fk.
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Then, one easily checks that λ(fi,∆j) = δi,j. q.e.d.

Remark A.3. The disk embedding theorem is proven by an appli-
cation of another embedding theorem [7, 5.1A], to the Whitney disks
pairing the intersections among the ∆i. Thus, [7, Theorem 5.1A] might
be considered as more basic. It sounds very similar to [7, Theorem 5.1B],
except that the assumptions on trivial intersection and self-intersection
numbers is moved from the ∆i to the dual 2-spheres. Hence, one looses
the information about the regular homotopy class of ∆i.

In most applications, one wants this homotopy information, hence
we have stated Theorem 5.1B as the basic disk embedding theorem.
However, in the application below, we might as well have used 5.1A
directly, by interchanging the roles of si and �i.

The following proof will be given for knots (and slices) in (D4, S3),
but it works just as well in (C4,M3) where M is any homology sphere
and C is the contractible topological 4-manifold with boundary M .

Proof of the appendix title. Since the knot K has trivial Alexander poly-
nomial, Lemma 4.2 shows that we can choose a Seifert surface Σ1 with
a trivial Alexander basis {s1, . . . , sg, �1, . . . , �g}. Pick generically im-
mersed disks ∆(sj) (respectively ∆(�j)) in D4 which bound sj

↓ (re-
spectively �j). So, these disks are disjoint on the boundary, and the
intersection numbers satisfy

∆(si) · ∆(sj) = lk(si
↓, sj

↓) = lk(si
↓, sj) = 0 and

∆(si) · ∆(�j) = lk(si
↓, �j).

By Definition 4.1, the latter is a triangular matrix, which will turn out
to be the crucial fact.

Now, we “push” the Seifert surface Σ1 slightly into D4 to obtain a
surface Σ ⊂ D4, and call N the complement of (an open neighborhood
of) Σ in D4. The basic idea of the proof is to use the disk embedding
theorem in N to show that Σ can be ambiently surgered into a disk
which will be a slice disk for our knot K.

To understand the 4-manifold N better, note that by Alexander du-
ality

H1N ∼= H2(Σ, ∂Σ) ∼= Z and H2N ∼= H1(Σ, ∂Σ) ∼= Z2g.

Moreover, a Morse function on N is given by restricting the radius
function on D4. Reading from the center of D4 outward, this Morse
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function has one critical point of index 0, one of index 1 (the minimum
of Σ), and 2g critical points of index 2, one for each band of Σ. Together
with the above homology information, this implies that N is homotopy
equivalent to a wedge of a circle and 2g 2-spheres.

To make the construction of N more precise, we prefer to add an
exterior collar (S3 × [1, 1.5],K × [1, 1.5]) to D4, i.e. we work with the
knot K in the 4-disk D1.5 of radius 1.5. Then, the pushed in Seifert
surface Σ ⊂ D1.5 is just (K × [1, 1.5])∪Σ1. The normal bundle of Σ1 in
D1.5 can then be canonically decomposed as

ν(Σ1,D1.5) ∼= ν(S3,D1.5) × ν(Σ1, S
3) =: Rx × Ry.

Since N4 is the complement of an open thickening of Σ in D1.5, we may
assume that for points on Σ1 the normal coordinates x vary in the open
interval (0.9, 1.1), and y in (−ε, ε). Here, ε > 0 is normalized so that for
a curve α = α × 1 × 0 on Σ1, one has

α × 1 ×−ε = α↓ and α × 1 × ε = α↑.

Note that by construction, the disks ∆(sj) lie in N and have their
boundary si

↓ in ∂N and hence one can attempt to apply the disk em-
bedding theorem to these disks. If we can do this successfully, then the
∆(sj) may be replaced by disjoint embeddings and hence, we can surger
Σ into a slice disk for our knot K.

Let us check the assumptions in the disk embedding theorem: As
mentioned above, π1N ∼= Z is a good group. By construction, the (self-
) intersections among the ∆(sj) vanish algebraically, even in the group
ring Z[π1N ], because these disks lie in a simply connected part of N .

Finally, we need to check that the ∆(sj) have algebraically dual 2-
spheres. Note that this must be the place where the assumption on the
Alexander polynomial is really used, since so far, we have only used that
K is “algebraically slice”. We start with 2-dimensional tori Ti which are
the boundaries of small normal bundles of Σ in D1.5, restricted to the
curves �i in our trivial Alexander basis of Σ1. More precisely,

Ti := �i × S1
t , where S1

t := [0.8, 1.2] × {−2ε, 2ε} ∪ {0.8, 1.2} × [−2ε, 2ε]

in our normal coordinates introduced above. Note that S1
t is a (square

shaped) meridian to Σ and freely generates π1N . By construction, these
Ti lie in our 4-manifold N . Moreover, they are disjointly embedded and
dual to ∆(sj) in the sense that the geometric intersections are

Ti ∩ ∆(sj) = (�i ∩ sj) × (0.8 ×−ε) = δi,j .
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Hence, the Ti satisfy all properties of dual 2-spheres, except that they
are not 2-spheres! However, we can use our disks ∆(�i) with boundary
�i as follows. First, remove collars �i× (0.8, 1] from these disks (without
changing their name) so that ∆(�i) have boundary equal to the “long
curve” �i × 0.8 on Ti. Using two parallel copies of ∆(�i), we can surger
the Ti into 2-spheres gi. These are framed because of our assumption
that the �i are “untwisted”, i.e., that lk(�i, �i

↓) = 0 (which is used only
modulo 2). The equivariant intersection numbers are

λ(gi,∆(sj)) = δi,j + ∆(�i) · ∆(sj)(1 − t)

= δi,j + lk(�i, sj
↓)(1 − t) ∈ Z[π1N ] = Z[t±1]

because the single intersection point of ∆(si) with Ti remains and any
geometric intersection point between ∆(�i) and ∆(sj) is now turned into
exactly two (oppositely oriented) intersections of gi with ∆(sj). These
differ by the group element t going around the short curve S1

t of Ti. By
our assumption on the linking numbers, the resulting 2-spheres gi satisfy
the triangular condition from Lemma A.2 and can hence be turned into
dual spheres for ∆(sj).

Thus, we have checked all assumptions in the disk embedding
theorem, and hence we may indeed surger Σ to a slice disk for K as
planned. q.e.d.

Remark A.4. Recall that the topological surgery and s-cobordism
theorems in dimension 4 (for all fundamental groups) are equivalent
to certain “atomic” links being free slice [7, Chapter 12]. These atomic
links are all boundary links with minimal Seifert rank in the appropriate
sense. In particular, if the disk embedding theorem above was true for
free fundamental groups, then the proof above (without needing our
triangular base change) would show how to find free slices for all the
atomic links. This shows how one reduces the whole theory to the disk
embedding theorem for free fundamental groups.
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