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THE COVERING SPECTRUM
OF A COMPACT LENGTH SPACE

Christina Sormani & Guofang Wei

Abstract

We define a new spectrum for compact length spaces and Rie-
mannian manifolds called the “covering spectrum” which roughly
measures the size of the one dimensional holes in the space. More
specifically, the covering spectrum is a set of real numbers δ > 0
which identify the distinct δ covers of the space. We investigate
the relationship between this covering spectrum, the length spec-
trum, the marked length spectrum and the Laplace spectrum. We
analyze the behavior of the covering spectrum under Gromov–
Hausdorff convergence and study its gap phenomenon.

1. Introduction

One of the most important subfields of Riemannian Geometry is the
study of the Laplace spectrum of a compact Riemannian manifold. Re-
call that the Laplace spectrum is defined as the set of eigenvalues of the
Laplace operator. The elements of the Laplace spectrum are assigned a
multiplicity equal to the dimension of the corresponding eigenspace.

Another spectrum defined in an entirely different manner is the length
spectrum of a manifold: the set of lengths of smoothly closed geodesics.
There are various methods used to assign a multiplicity to each element
of the length spectrum. The simplest notion is to count all geodesics of
a given length. This becomes uninteresting when one has continua of
geodesics of the same length as in a torus, so that all or some multiplici-
ties become infinite. A common alternative definition of the multiplicity
of a given length is the number of free homotopy classes of geodesics
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that contain a smoothly closed geodesic sharing that length (cf. [14]).
We will use the latter definition.

It was proven by Colin de Verdiere [8] that the Laplace spectrum de-
termines the length spectrum of a generic manifold. (See also
Duistermaat–Guillemin’s paper [10].) In particular, the Laplace spec-
trum determines the length spectrum on negatively curved manifolds of
arbitrary dimension. However, there are pairs of isospectral manifolds
first constructed by Carolyn Gordon [14] that have different length spec-
tra when one takes multiplicity into account. These pairs are Heisen-
berg manifolds and Pesce has since shown that the length spectrum,
not counting multiplicity, is determined by the Laplace spectrum on
Heisenberg manifolds [23].

There is also a concept called the marked length spectrum which
gives the lengths of smoothly closed geodesics freely homotopic to a
representative of each element in the fundamental group. One has the
remarkable result that compact surfaces of negative curvature with same
marked length spectrum are isometric [22, 9, 12]. This is not true in
general, as the sphere and the Zoll sphere have same marked length
spectrum, but are not isometric [3]. Gornet has shown that Laplace
isospectral nilmanifolds with the same marked length spectrum need
not be isometric or have the same spectrum on one forms [17].

In this paper, we have defined a new spectrum for compact Riemann-
ian manifolds which we call the covering spectrum (see Definition 3.1).
In fact, this spectrum can be well defined on compact length spaces
(Definition 2.1). Note that it isn’t too difficult to extend the concept of
a length spectrum to such spaces, but there is no natural Laplace spec-
trum unless one adds an appropriately defined measure on the metric
space (see e.g., [7, Section 6]).

The authors first defined a special sequence of covering spaces for a
given complete length space, X, called the delta covers of X in [25]
(see Definition 2.3). We used these delta covers to study the funda-
mental groups of these spaces and their universal covers. In particular,
we proved that the universal cover of a compact length space X is a δ
cover for a sufficiently small real number δ [25, Proposition 3.2]. We
can now show that a compact length space X has a universal cover iff
there is only a finite set of distinct delta covers (Theorem 3.4). We have
named the corresponding finite list of distinct real numbers the “cover-
ing spectrum” of X (Definition 3.1). Roughly, this covering spectrum
lists the sizes of one dimensional holes in X. For example, the covering
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spectrum of a 1 × 3 flat torus is {1/2, 3/2} and the covering spectrum
of the standard RP 2 is {π/2}. Recall that if X is a compact Riemann-
ian manifold, then it is a length space and has a universal cover, so its
covering spectrum is well defined and finite.

Compact length spaces have grown in interest among Riemannian
Geometers in recent years because they are the natural limits of Rie-
mannian manifolds using Gromov’s compactness theorem [18]. Gromov–
Hausdorff limits of Cauchy sequences of Riemannian manifolds with a
uniform upper bound on diameter are compact length spaces and, with
appropriate curvature bounds on the manifolds, they are metric measure
spaces [18], [6]. Cheeger and Colding have proven Fukaya’s conjecture
that the Laplace spectra of a sequence of manifolds with a uniform lower
Ricci curvature bound converge to the Laplace spectrum of the metric
measure limit space [7]. It is important to note that one needs met-
ric measure convergence of the manifolds, not just Gromov–Hausdorff
convergence to control the Laplace spectrum in this way [13].

On the other hand, Gromov–Hausdorff convergence does not interact
well with length spectra in general. This is because closed geodesics
can disappear and appear in the limit and the length spectrum (even
the minimal length spectrum) of the sequence doesn’t converge to the
length spectrum of the limit (cf. Examples 8.1–8.3).

Here, we have shown that the covering spectrum interacts very nicely
with Gromov–Hausdorff convergence (Theorem 8.4) and is fairly easy
to define both on manifolds and limit spaces. This follows from the
fact that the delta covering spaces are well controlled when the base
spaces converge in the Gromov–Hausdorff sense (Theorem 7.3) and [25,
Theorem 3.6]. Another interesting property is that the covering spec-
trum, when assigned an appropriate multiplicity, may be used to study
fundamental groups (Definition 6.1, Proposition 6.4).

We prove that every element in the covering spectrum is (1/2) of
an element in the length spectrum (Theorem 4.7). We also prove that
the marked length spectrum determines the covering spectrum on any
compact length space with a universal cover (Theorem 5.7) . We also
discuss the relationship between the covering and the Laplace spectra
on compact Riemannian manifolds and give a number of examples as
described below. In particular, we construct Laplace isospectral Heisen-
berg manifolds with different covering spectra (Example 10.3).

The paper is organized as follows.



38 C. SORMANI & G. WEI

In Section 2, we provide all the necessary background including the
definition of delta covers and some key examples. In particular, we
recall that a universal cover is a cover of all covers and that the Hawaii
ring is a compact length space with no universal cover.

In Section 3, we define the covering spectrum, CovSpec (X), for an
arbitrary compact length space, X, and prove that CovSpec (X) is dis-
crete and Cl(CovSpec (X) ⊂ R) ⊂ CovSpec (X)∪{0} (Proposition 3.2).
We then prove that CovSpec (X) is finite iff X has a universal cover
(Theorem 3.4).

In Section 4, we restrict our attention to compact length spaces
that have a universal cover. We extend the definition of length spec-
trum, (Definition 4.2) to these spaces and prove Theorem 4.7 that
CovSpec (X) ⊂ (1/2)LengthSpec (X). We then further restrict our-
selves to compact length spaces with simply connected universal covers
and extend the definition of the minimal length spectrum (Defini-
tion 4.10). We prove this spectrum is closed and discrete and that
CovSpec (X) ⊂ (1/2)MinLengthSpec (X) (Theorem 4.12) .

In Section 5, we extend the definition of the marked length spectrum
to these compact length spaces with universal covers (Definition 5.1).
Note that to extend the definition of the marked length spectrum which
ordinarily depends on the fundamental group of the manifold, we use
the “revised fundamental group” instead. This is the group of deck
transforms of the universal cover (Definition 4.3).

We then prove Theorem 5.7 that the marked length spectrum de-
termines the covering spectrum. In fact, Theorem 5.7 also relates the
covering spectrum to a special sequence of subgroups of the revised
fundamental group, which is then used to define multiplicity for the
covering spectrum in Section 6.

As one would expect, the covering spectrum contains less information
than the length spectrum. This can be seen in our example of a smooth
one parameter family of non-isospectral tori with a common covering
spectrum (Example 5.6). Note that flat tori are isospectral iff they
share the same length spectrum, and are determined up to isometry by
their marked length spectrum [16]. On the other hand, length spectrum
alone does not determine the covering spectrum. We have examples of
compact Riemannian manifolds with a common length spectrum, but a
distinct covering spectrum (Example 5.10).

In Section 6, we define multiplicity (Definition 6.1) for the covering
spectrum, and find a bound on #m(CovSpec (X)∩[a, b]) for a > 0, where
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#m is the cardinality of the set counting multiplicity (Lemma 6.2). We
also define a special set of generators of the revised fundamental group
(Definition 6.1) that we call the short basis. Roughly, these are the
elements of the revised fundamental group represented by loops wrapped
one time around a single hole in the space. We prove this set generates
the revised fundamental group in Proposition 6.4, and show that the
number of elements in this set is #m(CovSpec (X)).

In Section 7, we focus on the relationship between the covering spec-
trum and Gromov–Hausdorff convergence. We begin by studying the
Gromov–Hausdorff convergence of the delta covers, proving that if Xi

converge to X in the GH sense, then a subsequence of the delta covers
X̃δ

i converges as well (Theorem 7.3). This involves reworking Gromov’s
precompactness theorem and carefully controlling the group of deck
transforms of a delta cover. In Example 7.4, we show it is necessary to
use a subsequence, and in Example 7.5, we show that universal covers
need not have converging subsequences. An immediate application is
that if we have a GH compact class of compact length spaces with uni-
versal covers, then for b > a > 0, #m(CovSpec (X)∩ [a, b]) is uniformly
bounded on this class (Corollary 7.7). One can also use the precom-
pactness of the δ-covers to show that the revised fundamental groups
of such a compact class with an additional uniform lower bound on the
first systole, have finitely many isomorphism classes extending Theorem
5 in [24].

In Section 8, we prove that if compact length spaces Xi converge to
a compact length space Y in the GH sense, then the covering spectra
converge (Theorem 8.4). In particular,

(1.1) lim
i→∞

dH(CovSpec (Xi) ∪ {0},CovSpec (Y ) ∪ {0}) → 0,

where dH is the Hausdorff distance between subsets of the real line
(Corollary 8.5). Note that it is easy to see that when 1/j × 1 tori
converge to a circle, there are elements of the covering spectrum which
converge to 0. Note also that if Mi are compact Riemannian manifolds
with Ricci (Mi) ≥ −(n−1)H and diam (Mi) ≤ D, such that Mi converge
to Y , then #(CovSpec (Mi)) ≥ #(CovSpec (Y )) for i sufficiently large
(not counting multiplicity) (Corollary 8.6).

We also prove that connected classes of compact length spaces with
a common discrete length spectrum, have a common covering spectrum
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(Theorem 8.7). In particular, a one parameter family of compact Rie-
mannian manifolds with a common length spectrum must have a com-
mon covering spectrum (Corollary 8.8).

In Section 9, we study the gap phenomenon of the covering spectrum
in certain classes of compact length spaces with universal covers (Propo-
sitions 9.2 and 9.6). We apply these results and [25, Theorem 1.1] to
describe the gap and clumping properties of the covering spectra of Rie-
mannian manifolds with Ricci (Mi) ≥ −(n − 1)H and diam (Mi) ≤ D
and their limit spaces (Corollary 9.5 and 9.7).

In Section 10, we relate the covering spectrum with the Laplace spec-
trum of a manifold. We first easily show that if we have a class of neg-
atively curved compact Riemannian manifolds with a common Laplace
spectrum, then there are only finitely many possible covering spectra in
this class (Proposition 10.1). We conjecture that this is true without
the negative sectional curvature condition, but with a uniform upper
bound on diameter (Conjecture 10.2). In Example 10.3, we give a pair
of Heisenberg manifolds which are Laplace isospectral and yet have dis-
tinct covering spectra. This example heavily uses the work of Carolyn
Gordon in [14], but it should be noted that her famous pairs of Laplace
isospectral Heisenberg manifolds with distinct length spectra, in fact,
have the same covering spectrum. We close by demonstrating that spe-
cial pairs of Sunada isospectral manifolds, the ones he attributes to
Komatsu [28, Example 3], always share the same covering spectrum
and, in fact, have only one element in that covering spectrum (Propo-
sition 10.5).

2. Background

First, we recall some basic definitions.

Definition 2.1. A complete length space is a complete metric space
such that every pair of points in the space is joined by a length minimiz-
ing rectifiable curve. The distance between the points is the length of
that curve. A compact length space is a compact complete length space
(cf. [5]).

Definition 2.2. We say X̄ is a covering space of X if there is a
continuous map π : X̄ → X such that ∀x ∈ X there is an open neigh-
borhood U such that π−1(U) is a disjoint union of open subsets of X̄
each of which is mapped homeomorphically onto U by π (we say U is
evenly covered by π).
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Let U be any open covering of Y . For any p ∈ Y , by [27, p. 81], there
is a covering space, ỸU , of Y with covering group π1(Y,U , p), where
π1(Y,U , p) is a normal subgroup of π1(Y, p), generated by homotopy
classes of closed paths having a representative of the form α−1 ◦ β ◦ α,
where β is a closed path lying in some element of U and α is a path
from p to β(0).

Now, let us recall the δ-covers we introduced in [25].

Definition 2.3. Given δ > 0, the δ-cover, denoted Ỹ δ, of a length
space Y , is defined to be ỸUδ

where Uδ is the open covering of Y con-
sisting of all balls of radius δ.

The covering group will be denoted π1(Y, δ, p) ⊂ π1(Y, p) and the
group of deck transformations of Ỹ δ will be denoted G(Y, δ) = π1(Y, p)/
π1(Y, δ, p).

It is easy to see that a delta cover is a regular or Galois cover. That
is, the lift of any closed loop in Y is either always closed or always open
in its delta cover.

We now state some very simple lemmas.

Lemma 2.4. If π : Ȳ → Y is a covering map between complete length
spaces and ∀y ∈ Y , π−1(By(r)) is a disjoint collection of balls of radius
r in Ȳ , then Ỹ r covers Ȳ .

Proof. Recall that in [27, Chapter 2, Section 5, Lemma 11], Spanier
shows that if π : Ȳ → Y is a covering projection and U is an open
covering of Y such that each of its open sets is evenly covered by π,
then ỸU covers Ȳ . Here U is the collection of balls of radius r, so we
need only show that these balls are evenly covered by π.

Let Bȳ(r) ⊂ π−1(By(r)). We need only show π : Bȳ(r) → By(r) is a
homeomorphism. In fact, by the hypothesis, it is a covering map. Thus,
if it is not 1:1, there are two preimages of y: ȳ1 and ȳ2. Note that Bȳi(r)
is a connected subset of π−1(By(r)), so it is a subset of Bȳ(r) in which
case ȳ = ȳi and π is 1:1. q.e.d.

Example 2.5. Suppose Y is a flat 3 × 2 torus: S1
3 × S1

2 , then it has
the following delta covers:

Ỹ δ = Y for δ > 3/2,

Ỹ δ = S1
2 × R for δ ∈ (1, 3/2],

Ỹ δ = R
2 for δ ∈ (0, 1].
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Lemma 2.6. The δ covers of complete length spaces are monotone
in the sense that if r < t, then X̃r covers X̃t. In fact, X̃r is the r-cover
of the complete length space X̃t.

Proof. Let Yt = X̃t. We need only show Ỹt
r

= X̃r for r < t. Since
the balls of radius r in X lift to unions of disjoint balls of radius r in
Ỹt

r
, by applying Lemma 2.4 we have X̃r covers Ỹt

r
.

Recall from [27, Chapter 2, Section 5 and 8] that if V is an open
covering of X that refines U , then π1(X,V, p) ⊂ π1(X,U , p), or X̃V
covers X̃U .

Thus, clearly, X̃r covers Yt = X̃t.
Now, we apply Lemma 2.4 to balls of radius r in Yt. These must

lift to unions of disjoint balls of radius r in X̃r, as can be seen by first
projecting them down to X. Thus, Ỹt

r
covers X̃r and we are done. q.e.d.

In the following lemma, we restrict ourselves to compact length spaces.

Lemma 2.7. The δ-covers of a compact length space X are lower
semi-continuous. In fact, for any δ > 0, there exists ε ∈ (0, δ) such that
X̃ε = X̃δ.

Proof. If not, there is a sequence of δi → δ increasingly, such that
X̃δi 
= X̃δ for each i. Namely there exist a sequence of closed curves γi

in X with length l(γi) ≤ 2 diam (X) + 2δi, which lifts to an open curve
in X̃δi , but a closed curve in X̃δ . Parametrize each curve by the unit
interval [0, 1] with constant speed. Since X is compact, by Arzela–Ascoli
theorem, there is a subsequence of γi which converges to some closed
curve γ : [0, 1] → X uniformly. So d(γi(t), γ(t)) < δ/2 for all i large and
t ∈ [0, 1]. Hence, γi, γ lift the same to the covering spaces X̃δi , X̃δ for i

large. That is, γ lifts to an open curve in X̃δi for all i large and a closed
curved in X̃δ. From Definition 2.3, γ lies in some finite union of open
δ-balls in X, so it must also lie in some union of open δ′-balls for some
δ′ < δ, which contradicts to that γ lifts to an open curve in X̃δi for all
i large. q.e.d.

Example 2.8. The Hawaii ring (cf. [27]) is a compact length space
which consists of an infinite set of rings of radii ri decreasing to 0, all
joined at a common point. This space has an infinite sequence of distinct
δ covers as δ converges to 0.
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A modified complete non-compact Hawaii ring can be created by
taking an infinite set of rings of radius ri increasing to r0 = 1. This
space also has an infinite sequence of distinct δ covers as δ approaches
r0 and demonstrates that compactness is a necessary condition for lower
semi-continuity.

In both of these spaces, the X̃πri are all distinct covers.

This example demonstrates that the compactness hypothesis in
Lemma 2.7 is necessary.

3. The covering spectrum

We now define the covering spectrum by singling out the deltas where
the delta covering spaces change.

Definition 3.1. Given a complete length space X, the covering spec-
trum of X, denoted CovSpec (X) is the set of all δ > 0 such that

(3.1) X̃δ 
= X̃δ′

for all δ′ > δ.

Since the δ-covers are monotone, this is equivalent to, say, for any
ε > 0, there exists δ′ with 0 < δ′ − δ < ε such that

X̃δ 
= X̃δ′ .

In general, for a compact length space X, the CovSpec (X) lies in
(0, diam (X)).

In our above examples, the covering spectrum of the flat 3 x 2 torus
is {1, 3/2}, and the traditional Hawaii ring with infinite circles of radii
ri is {πri : i ∈ N}.

We have the following property of the covering spectrum.

Proposition 3.2. For a compact length space, X, its CovSpec (X)
is discrete and

(3.2) Cl(CovSpec (X) ⊂ R) ⊂ CovSpec (X) ∪ {0}.
Proof. Since zero is not in CovSpec (X), if CovSpec (X) is not dis-

crete, we can assume it has an accumulation at some δ > 0. In fact, we
can assume there is a strictly decreasing sequence of δi ∈ CovSpec (X)
converges to the δ > 0 since δ-covers are lower semi-continuous
(Lemma 2.7). Let γi be a loop at p ∈ X such that γi lifts trivially to X̃δi
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but non-trivially to X̃δi+1 with length l(γi) ≤ 2 diam (X)+2δi. Parame-
trize each curve in the sequence by the unit interval [0, 1] with constant
speed. Since X is compact, by the Arzela–Ascoli theorem, there is an
uniformly converging subsequence, which we will still call γi. So there
is an i sufficiently large that d(γi(t), γi+1(t)) < δ for all t ∈ [0, 1]. Since
δi > δ the covering maps are isometric on δ balls for all i, so γi, γi+1

lift the same to the covering spaces X̃δi , X̃δi+1 , contradicting that γi+1

lifts trivially to X̃δi+1 and γi lifts non-trivially to X̃δi+1 . Therefore,
CovSpec (X) is discrete. q.e.d.

The example of the Hawaii ring shows that 0 could be in the closure
of the covering spectrum of a compact length space. Proposition 3.2
is not true for a non-compact complete length space as another revised
Hawaii ring, the union of the sequence of circles with a common point
and radius ri decreasing to 1, shows.

We now turn to a discussion of the existence of universal covers. The
original compact Hawaii ring with ri → 0 is a classic example of a
compact length space with no universal cover. Recall the definition of
a universal cover.

Definition 3.3 ([27, pp. 62, 83]). We say X̃ is a universal cover of
X if X̃ is a cover of X such that for any other cover X̄ of X, there is a
commutative triangle formed by a continuous map f : X̃ → X̄ and the
two covering projections.

In [25, Proposition 3.2], we proved that if a compact length space
Y has a universal cover Ỹ , then Ỹ is a delta cover. In fact, Y has a
universal cover iff the delta covers stabilize: there exists a δ0 > 0 such
that Ỹ δ = Ỹ δ0 for all δ < δ0 [25, Theorem 3.7]. Clearly, the delta covers
of the Hawaii ring do not stabilize.

Theorem 3.4. For a compact length space X, its universal cover X̃
exists iff its covering spectrum, CovSpec (X), is finite.

Proof. If the CovSpec (X) is finite, then δ0 = min{CovSpec (X)}
is positive. So, the δ-covers stabilize and by [25, Theorem 3.7], the
universal cover of X exists.

If the universal cover X̃ of X exists, then CovSpec (X) lies in
[δX , diam (X)] for some δX > 0. By Proposition 3.2, the CovSpec (X)∩
[δX ,diam (X)] is closed and discrete. Thus, CovSpec (X) is finite. q.e.d.
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Although the covering spectrum is defined using layers of covering
spaces, #{CovSpec (X)} does not count the total number of covering
spaces of X. The δ covers are a very small selection of covering spaces.
Clearly, the 3 × 2 torus has many covering spaces that are tori and
cylinders which are not delta covers (i.e., S1

3i×S1
2j, R×S1

2j and S1
3j×R).

Furthermore, the lens spaces, S3 mod Z
k with the standard metric only

have one δ-cover, S3, although they often have many covering spaces.
The covering spectrum can intuitively be thought of as capturing

the size of holes in the length space. For the 2 × 3 torus, it captures
information about both of the holes in the torus: both of the generators
of the fundamental group. The fact that #{CovSpec (X)} = 2, in this
example, is strongly related to the fact that there are two generators of
the fundamental group.

On the other hand, the covering spectrum of a 1 × 1 torus has only
one element because both holes in this torus have the same size. Later
on, we will define multiplicity for the elements of the covering spectrum,
which will better enable us to capture the fact that there are two “holes”
in this torus as well.

4. The covering spectrum and length spectrum

In this section, we restrict our attention to complete length spaces X
which have a universal cover.

First, recall that a geodesic in a length space is a curve which is
locally a distance minimizer in the following sense [5].

Definition 4.1. A curve γ : I → X is called a geodesic if for every
t ∈ I, there exists an interval J containing a neighborhood of t in I such
that γ|J is a shortest path. A closed geodesic is a geodesic loop which
is minimizing in a neighborhood of its end point.

It is easy to use the definition of a covering space to show that a
length minimizing curve in a covering space projects to a geodesic, and
that geodesics lift to geodesics.

Then, one can naturally extend the definition of length spectrum from
manifolds to complete length spaces.

Definition 4.2. The length spectrum, Length(X), of a complete
length space, X, is the set of lengths of closed geodesics. It is counted
with multiplicity where the multiplicity refers to the number of distinct
free homotopy classes that contain a closed geodesic of that length.
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We recall the definition of the revised fundamental group from [25].

Definition 4.3. The revised fundamental group, π̄1(X), of a com-
plete length space, X, with a universal cover, X̃, is the group of deck
transforms of the universal cover. Given an element, g ∈ π̄1(X), and
a base point x ∈ X a representative loop of g based at x is a curve, c,
such that c(0) = x whose lift c̃ to the universal cover runs from a point
c̃(0) to gc̃(0). If one does not mention the basepoint, a representative
loop depends only on the conjugacy class of g and can be based at any
point in X.

For simplicity, the reader may wish to assume that X has a sim-
ply connected universal cover, or equivalently, that X is semi-locally
simply connected. In that case, the fundamental group π1(X) of X is
isomorphic to π̄1(X).

In general, however, the universal cover of a compact length space
may not be simply connected. One example is the double suspension
over the Hawaii Ring (cf. [27]) which is its own universal cover, but has
an infinite fundamental group because the infinite alternation of loops
in the Hawaii rings are not contractible. These loops are homotopic to
loops in an arbitrarily small neighborhood, but not to a single point.

When the universal cover is not simply connected, the representive
loops of the identity element are the projections of arbitrary loops in
the universal cover, which are not necessarily contractible. Thus, the
equivalence class of representative loops corresponding to an element
g ∈ π̄1(X) and a point x ∈ X is not a homotopy equivalence class, but
rather a collection of homotopy equivalence classes.

The following lemma is easy to prove using the fact that the universal
cover is a δ-cover and using the compactness of X.

Lemma 4.4. Given a compact length space X with a universal cover
X̃, for all non-trivial elements g ∈ π̄1(X), we have

(4.1) m(g) := min
x̃∈X̃

dX̃(x̃, gx̃) ⊂ Length (X).

If γg is the projection of a minimizing curve joining a minimizing pair
of points x̃ and gx̃, then γg is a closed geodesic in X of length m(g)
which is a shortest representative of g and a shortest curve in its free
homotopy class.
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Proof. There exists δ > 0 such that the universal cover is a δ cover.
Thus,

(4.2) m(g) = inf
x̃∈X̃

dX̃(x̃, gx̃) ≥ 2δ > 0.

Let x̃i ∈ X̃ approach this infimum. Since X is compact, a subsequence of
xi = π(x̃i) converges to some x whose lift x̃ then achieves this infimum.
Then, γg defined above is the shortest representative of g for any base
point, it has length m(g) and it is the projection of a geodesic to a
loop. Extending the definition of γg periodically, we can see that it is a
representative of g based at γg(t) as well. So, it must be the projection
of a length minimizing curve between γ̃g(t) and gγ̃g(t) which implies
that it is a closed geodesic. q.e.d.

Thus, we have the following useful map.

Definition 4.5. The minimum marked length map of a compact
length space X with a universal cover is the function m : π̄1(X) →
LengthSpec (X) ∪ {0} defined in Lemma 4.4.

Remark. The minimum marked length map is closely related to the
translative delta length l(g, δ) we defined in [25, Definition 3.2]. Recall

(4.3) l(g, δ) = min
q∈X̃δ

dỸ δ(q, g(q)).

and l(g, δ) ≥ 2δ for all g which act non-trivially on X̃δ. Note that, since
covering maps are distance decreasing,

(4.4) m(g) ≥ l(g, δ) for all g ∈ π̄1(X).

So, m(g) ≥ 2δ for the largest δ > 0 such that a representative loop of g

lifts to a curve with distinct endpoints in X̃δ.

Lemma 4.6. When X is compact, the set Im (m) = {m(g) : g ∈
π̄1(X)} is closed and discrete. Furthermore, m(g) = 0 iff g = e.

Proof. First note that, by the Arzela–Ascoli theorem, sequences of
length minimizing curves have subsequences which converge to length
minimizing curves, so if mi ∈ Im(m) converge to m∞, then we have a
subsequence of xi in the fundamental domain of X̃ converging to x∞,
and gixi converging to some y∞ such that dX̃(x∞, y∞) = m∞. Since the
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universal cover is a delta cover, if g−1
j gi 
= e, then it must move points

at least a distance δ. However,

d(g−1
j gixi, xi) ≤ d(g−1

j gixi, xj) + d(xj , xi)

= d(gixi, gjxj) + d(xi, xj)
< δ/2 + δ/2 for i, j sufficiently large.

So gj = gi and mi = mj for i sufficiently large. Thus, m∞ = mi for all
i large and Im(m) is closed and discrete.

We know m(g) = 0 iff g = e because only a trivial deck transform
fixes a point. q.e.d.

This leads to our first theorem.

Theorem 4.7. When X is a compact length space with a universal
cover, then

(4.5) 2CovSpec (X) ⊂ Im (m(π̄1(X)) ⊂ LengthSpec (X) ∪ {0},
where m is the minimum marked length map defined in Definition 4.5.

This theorem follows from the following definition and lemma.

Definition 4.8. If X is a complete length space and δ > 0, then we
say a δ-pair is a pair of points {x1, x2} in X̃δ which are not equal, but
are projected to the same point in X̃δ′ for all δ′ > δ.

Lemma 4.9. Fix a compact length space with a universal cover X,
and δ ∈ CovSpec (X). Let hδ = inf dX̃δ (x1, x2) over all δ-pairs x1, x2.
Then, this infimum is achieved, and there is an element g ∈ π̄1 such
that m(g) = hδ and hδ = 2δ.

Proof. By compactness, it is easy to show that there exists a δ pair
x1, x2 which achieves this infimum. It is not necessarily a unique pair
even up to deck transforms.

First, hδ ≥ 2δ, else a minimizing curve from x1 to x2 would have
length < 2δ and its projection to X would fit in Bπ(x1)(δ), so it would
be lifted as a loop to X̃δ making x1 = x2 by Definition 2.3.

Now, we will show h = hδ ≤ 2δ. By Theorem 3.4, the covering
spectrum is finite, so there is ε > δ such that for all δ′ ∈ (δ, ε), X̃δ′ = X̃ε.
Naturally, X̃δ is a non-trivial cover of X̃ε.

Note that y1 and y2 are a δ pair iff they are not equal, but project
to the same point in X̃ε. So, we have for all y1 
= y2 ∈ X̃δ such that
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πε(y1) = πε(y2) ∈ X̃ε, By1(h/2) and By2(h/2) are disjoint. So, for
all z ∈ X̃ε, Bz(h/2) lifts to a disjoint union of balls in X̃δ . Thus, by
Lemma 2.4, applied to Ȳ = X̃δ as a cover of Y = X̃ε, we get Ỹ h/2

covers Ȳ = X̃δ. If h/2 > ε, then Ỹ h/2 = X̃ε, which means X̃δ = X̃ε.
This is a contradiction. So, we have h/2 ≤ ε, then Ỹ h/2 = X̃h/2, so,
X̃h/2 covers X̃δ. Therefore, h ≤ 2δ. So, hδ = 2δ.

Now, let C be a minimal geodesic connecting x1 and x2 and g an
element in π̄1(X) which is represented by the projection of C. Then,
m(g) ≤ 2δ. But g acts non-trivially on X̃δ, so l(g, δ) ≥ 2δ. Therefore,
m(g) ≥ 2δ by (4.4). Thus, m(g) = 2δ. q.e.d.

Another standard length spectrum defined on manifolds is the mini-
mal length spectrum.

Definition 4.10. The minimal length spectrum is the set of lengths
of closed geodesics which are the shortest in their free homotopy class.

If a compact length space X is semilocally simply connected, or equiv-
alently has a simply connected universal cover, then the above defini-
tion makes sense and each homotopy class contains a curve of minimum
length. In fact, the minimal length spectrum agrees with im(m) \ {0}
as can be seen in the following lemma combined with Lemma 4.4.

Lemma 4.11. For a compact length space with a simply connected
universal cover, the minimum marked length map m maps surjectively
onto the minimal length spectrum ∪{0}.

Proof. Given any L in the minimal length spectrum, there is a free
homotopy class of loops whose minimum length is L. Let c1 be the
shortest such loop. It defines a deck transform g and m(g) ≤ L(c) = L.
Suppose m(g) < L, then there exists x̃ ∈ X̃ such that d(gx̃, x̃) < L.
Join this pair of points by a length minimizing curve c̃2.

If the universal cover is simply connected, then the projection c2 is a
loop freely homotopic to c1 and we have a contradiction. q.e.d.

Theorem 4.7 and Lemmas 4.6 and 4.11 combine to give us the follow-
ing theorem.

Theorem 4.12. When X is a compact length space with a simply
connected universal cover, then the minimum length spectrum is closed
and discrete and

(4.6) 2CovSpec (X) ⊂ MinLengthSpec (X).
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5. The marked length spectrum

A stronger concept than the length spectrum of a manifold is the
marked length spectrum which includes information about the funda-
mental group itself. Here, we will study arbitrary compact length spaces
with universal covers. The natural extension of the definition of marked
length spectrum to such spaces involves the revised fundamental group
π̄1(X) instead of the fundamental group (Definition 4.3). For simplicity,
the reader may wish to assume the universal cover is simply connected,
in which case, the revised fundemantal group is just the fundamental
group of the space.

Definition 5.1. Given a complete length space X, the marked length
spectrum of X is a function MLS that associates to each element g
in π̄1(X) the set of lengths, MLS(g), of the closed geodesics freely
homotopic to a representative loop of g. Clearly, this map only depends
on the conjugacy class of g.

Two spaces X1 and X2 are said to have the same marked length
spectrum iff there is an isomorphism between their revised fundamen-
tal groups which commutes with their marked length maps MLS1 and
MLS2.

Recall the definition of the minimum marked length map, m : π̄1(X)
→ (0,∞), in Definition 4.5 and Lemma 4.4. Since the image MLS(g)
includes the lengths of all geodesics representing g, we have m(g) =
min(MLS(g)).

Definition 5.2. We say two spaces with universal covers X1 and X2

have the same minimum marked length spectrum iff there is an isomor-
phism between their revised fundamental groups which commutes with
their minimum marked length maps m1 and m2.

We can also mark the covering spectrum of a compact length space
with a universal cover using the following simple map:

Definition 5.3. Given a complete length space X with a universal
cover, we define the covering spectrum map, f : π̄1(X) → CovSpec (X)∪
{0} as follows: given g ∈ π̄1(X), let f(g) be the unique δ in CovSpec (X)
such that g acts non-trivially on X̃δ , but trivially on X̃δ′ for all δ′ > δ.
That is, there exists a loop γg representing g in X lifts to a curve in X̃δ

that is not a loop, but lifts to a loop in X̃δ′ for all δ′ > δ. Note that all
loops freely homotopic to this one will then also share this property.
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Equivalently, f(g) is the largest δ such that the projections of gx and
x from X̃ to X̃δ are distinct points.

Note f(g) = 0 iff g = e and f(hgh−1) = f(g) for all h because the
definition of f is basepoint free.

Lemma 5.4. Given a compact length space X with a universal cover,
the covering spectrum map f : π̄1(X) → CovSpec (X)∪{0} is surjective.

Proof. If δ ∈ CovSpec (X), then X̃δ 
= X̃δ′ for all δ′ > δ. Since X is
compact, the covering spectrum is discrete away from 0 [Theorem 3.2],
so there exists ε > δ such that X̃ε = X̃δ′ for all δ′ ∈ (δ, ε]. Let x1 and x2

be a pair of distinct points in X̃δ which are mapped to the same point
in X̃ε. Let C be a curve joining x1 to x2. Then, C projects to a loop in
X, which lifts as a loop to X̃δ′ for all δ′ > δ and lifts to a curve that is
not a loop in X̃δ. Let g ∈ π̄1(X) which is represented by the projection
of C, then f(g) = δ. q.e.d.

Note that the compactness in this lemma is necessary as the following
example shows. Let X be a revised Hawaii ring with circles of radius
1 + 1/n all attached at one point, then X has a universal cover. Fur-
thermore, π is in CovSpec (X), but it does not lie in the image of f
since the circle of radius 1 is not in X.

Lemma 5.5. When X is a complete length space with a universal
cover and f is the covering spectrum map, then f−1([0, δ]) is a subgroup
of π̄1(X).

Proof. If g1, g2 ∈ f−1([0, δ]), suppose f(gi) = δi, then there are loops
γi which lift as closed loops to M̃ δ′ for δ′ > δi and as open curves to M̃ δi .
So, for any δ′ > max{δ1, δ2}, both curves γ1, γ2 lift as closed loops to
M̃ δ′ . Now, the element g1g2 can be represented by the loop γ1 following
γ2, so the lift of the combination is closed in M̃ δ′ . Thus,

(5.1) f(g1g2) ≤ max{δ1, δ2} = max{f(g1), f(g2)}.
q.e.d.

A non-positively curved metric on a surface of genus ≥ 2 with the set
where the curvature is 0 has empty interior is determined up to isometry
by its marked length spectrum [22, 9, 12]. The same is true for flat
tori [16]. The following example demonstrates that even on flat tori,
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the covering spectrum does not determine the isometry class. In fact, it
includes a smooth family of flat tori with a common covering spectra.

Example 5.6. Here, we examine a set of flat 2 dimensional tori, T 2
θ ,

defined as rhombi with side length 1 and a variable angle 0 < θ ≤ π
2

between the sides. Opposite sides are identified in the usual way and the
universal cover of any of these examples is the Euclidean plane. Note
that, in this case, the marked length spectrum has only one length per
element of the abelian fundamental group, so we can denote it as m(g).

If we locate the fundamental domain with corners at the points (0, 0),
(1, 0), (cos(θ), sin(θ)) and (1 + cos(θ), sin(θ)), then the group of deck
transforms is generated by g1 : (x, y) �→ (x + 1, y) and g2 : (x, y) �→
(x + cos(θ), y + sin(θ)).

Now, for θ ∈ [π/3, π/2], it is easy to see that

m(ga
1gb

2) =
√

a2 + b2 + 2ab cos(θ),

So, the length spectrum is

(5.2) {
√

a2 + b2 + 2ab cos(θ) : a, b ∈ Z \ {0}}.
Furthermore, f(ga

1gb
2) = 1/2, unless a = b = 0, so the covering spectrum

is just {1/2}. This provides us with a one parameter family of flat tori
with a common covering spectrum.

Now for θ ∈ (0, π/3), we get the same formula

m(ga
1gb

2) =
√

a2 + b2 + 2ab cos(θ),

So, the length spectrum is

(5.3) {
√

a2 + b2 + 2ab cos(θ) : a, b ∈ Z \ {0}}.
However, now

(5.4) f(ga
1gb

2) =
{

(1/2)
√

1 + 1 − 2 cos(θ) < 1/2 if a = −b,
1/2 otherwise.

So, the covering spectrum has two distinct elements.
Since these two families together form a single one parameter family,

we have also shown that the number of elements of the covering spec-
trum may change. It is nice to see that here the covering spectra do
vary continuously in Hausdorff sense.

In fact, the covering spectrum is determined by the minimum marked
length spectrum (Definition 5.2).
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Theorem 5.7. Let X1 and X2 be compact length spaces with uni-
versal covers. If they have the same minimum marked length spectrum,
then they have the same covering spectrum.

Moreover, if CovSpec (X) = {δ1 < δ2 < · · · < δk}, then there exists
a special sequence of subgroups {e} = G0 ⊂ G1 ⊂ G2 ⊂ · · ·Gk = π̄1(X)
such that each Gi is generated by

(5.5) Si = {h ∈ π̄1(X) : m(h) = 2δi}
combined with the elements of Gi−1. Furthermore, the covering map f
has the following property: f(g) = δi implies g ∈ Gi while g ∈ Gi \Gi−1

has f(g) = δi.

First, we state a simple lemma which we will need.

Lemma 5.8. Suppose C : [0, L] → Bq(δ) ⊂ X where X is a complete
length space, then C is freely homotopic to a product of curves of length
< 2δ based at q.

Proof. We assume C is parametrized by arclength. Since its image
is closed, it is in fact contained in Bq(δ − ε) for some ε > 0. Partition
[0, L] into pieces of length < ε: t1 = 0 < t2 < t3 < · · · < tk = L. Let σi

run minimally from q to C(ti) so it has length < δ− ε. Set σk = σ1. So,
Ci starting at q running along σi to C(ti) running along C to C(ti+1)
and running backwards along σi+1 to q is a closed curve of length < 2δ.

The product of these Ci is a curve which is freely homotopic to C
(where the homotopy runs along σ1 = σk). q.e.d.

Corollary 5.9. If C : [0, L] → Bq(δ) ⊂ X parametrized by arclength
is the shortest non-contractible curve in X, then L < 2δ.

Proof of Theorem 5.7. We will derive the marked covering map f: π̄1(X)
→ CovSpec (X) ∪ {0} from the marked shortest length spectrum m.

We first claim that

(5.6) f(g) ≤ (1/2)m(g) for all g ∈ π̄1(X).

If (1/2)m(g) < f(g), then there is a loop representing g of length
< 2f(g). Such a curve must be contained in a ball of radius f(g), so it
would lift as a closed curve to the f(g) cover of X, but it cannot by the
definition of f(g) (Definition 5.3).

Let G0 = {e} and δ0 = 0. We will construct the covering spectrum
and the map f by induction.
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5.1. Induction hypotheses. (a) We have defined distinct subgroups
∅ = G−1 ⊂ G0 ⊂ G1 ⊂ · · ·Gk ⊂ π̄1(X) and defined δ0 < δ1 < · · · < δk

such that each

(5.7) δi = min{(1/2)m(g) : g ∈ π̄1(X) \ Gi−1} ⊂ {0} ∪ CovSpec (X).

(b) Each Gi is generated by all the elements h ∈ π̄1(X) such that
m(h) = 2δi combined with the elements of Gi−1.

(c) Each Gi contains every element g ∈ π̄1(X) such that f(g) = δi and

(5.8) {δ0, δ1, . . . , δk} = CovSpec (X) ∩ [0, δk] ∪ {0}.
Note that for all g ∈ Gi \ Gi−1, we have f(g) = δi as a consequence of
the above hypotheses (b) and (c), and of (5.6) and (5.1).

First, the hypotheses (a)–(c) are trivially true for k = 0.

Next, we prove the induction step assuming (a)–(c) for k:
If Gk 
= π̄1(x), let

(5.9) δk+1 = min{(1/2)m(g) : g ∈ π̄1(X) \ Gk}.
Since {m(g)} is closed and discrete (Lemma 4.6), the minimum exists
and is achieved.

We will now show δk+1 ∈ CovSpec (X) thus completing the proof of
(a) for k + 1. To do so, we show f(h) = δk+1 for the h achieving the
minimum in (5.9).

We have h ∈ π̄1(X) \ Gk such that m(h) = 2δk+1. By (5.6), f(h) ≤
δk+1. Suppose, we assume that f(h) < δk+1. Then, for any f(h) < δ′ <

δk+1 h lifts trivially to X̃δ′ . So h is a product of elements g1g2...gl where
each gi has a representative curve based at p of the form α−1

i βiαi where
αi runs from p to some pi and βi is in a ball Bqi(δ

′). By Lemma 5.8, each
βi is freely homotopic to a product of curves of length < 2δ′ < 2δk+1.
Thus, each gi is a product of gi,j ∈ π̄1(X) which have representative
curves freely homotopic to curves of length < 2δk+1. So, m(gi,j) <
2δk+1. We also know by the definition of δk+1 in (5.9) that for any
g ∈ π̄1(X) \ Gk, we have m(g) ≥ δk+1. Thus, gi,j ∈ Gk and so are
their products gi and h = g1g2 · · · gl. This is a contradiction since h was
chosen to be in π̄1(X) \ Gk. So, f(h) = δk+1.

For (b), we just define Gk+1 to be the group generated by Gk and
elements h ∈ π̄1 such that m(h) = 2δk+1.

For (c), we first show (5.8) for k + 1. So, we must show that if
δ ∈ (δk, δk+1), then δ is not in CovSpec (X). Suppose δ ∈ (δk, δk+1)



THE COVERING SPECTRUM OF A COMPACT LENGTH SPACE 55

is in CovSpec (X). By Lemma 4.9, there exists an element g ∈ π̄1(X)
with f(g) = δ,m(g) = 2δ. So, 1

2m(g) < δk+1 and g must be in Gk. But
then, f(g) ≤ δk which is a contradiction.

To finish (c), we need only show Gk+1 includes all g such that f(g) =
δk+1. Let h ∈ π̄1(X) be an element such that f(h) = δk+1. Then, for
any δ′ > δk+1, h lifts trivially to X̃δ′ . By Lemma 4.6, we can choose

(5.10) δk+1 < δ′ < (1/2)min({m(g) : g ∈ π̄1(X)} ∩ (2δk+1,∞))

so that if m(g) < 2δ′ then m(g) ≤ 2δk+1.
Now, h is a product of elements g1g2 · · · gl where each gi has a rep-

resentative curve based at p of the form α−1
i βiαi where αi runs from p

to some pi and βi is in a ball Bqi(δ
′). By Lemma 5.8, each βi is freely

homotopic to a product of curves of length < 2δ′ and, by the choice
of δ′, to a product of curves of length ≤ 2δk+1. So, h is a product
of elements of π̄1 which have representative curves freely homotopic to
curves of length ≤ 2δk+1 so m of these elements is ≤ 2δk+1. Thus, h is
a product of elements in Gk+1 and h itself is in Gk+1.

This completes the proof of the induction hypothesis.
Finally, using the finiteness of the covering spectrum [Lemma 3.4],

we know that this process must terminate. Thus, by (c), eventually Gk

must equal π̄1(X). So, we have determined the value of f for every
element of π̄1(X) and determined the marked covering spectrum of X.

q.e.d.

The following examples demonstrate that the length spectrum alone
does not determine the covering spectrum. We have many more ex-
amples in Section 10 which have the same Laplace spectra and length
spectra, but different covering spectra.

Example 5.10. Let M1 = S2
π/2 be the standard sphere of diameter

π/2, M2 = RP 2
π = S2

π/Z2. Then, the length spectra of both M1 and
M2 are {lπ : l ∈ N}, while the covering spectrum of M1 is empty and
the covering spectrum of M2 is {π/2}. Here, M1,M2 have different
fundamental groups.

There are also examples with the same fundamental group. The
product spaces M1 = RP 2

π×S2
π and M2 = RP 2

2π×S2
π/2 are diffeomorphic

and share the following length spectrum:

(5.11)
{√

(kπ)2 + (2lπ)2 : k, l ∈ N ∪ {0}
}
\ {0}.
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The covering spectrum of M1 is {π/2} while the covering spectrum of
M2 is {π}.

6. Counting generators of fundamental groups

In this section, we restrict ourselves to compact length spaces X which
have universal covers.

The sequence of groups Gi and sets Si in Theorem 5.7 give us a way
to construct a short basis of π̄1(X) and to define the multiplicity of the
covering spectrum.

Definition 6.1. For each δj ∈ CovSpec (X), the basis multiplicity of
δj is the minimum number of g ∈ Sj required to generate Gj .

Let S̄j ⊂ Sj be a list of such generators. Let a short basis of π̄1(X)
be S =

⋃
S̄j.

Note that the covering space of a compact length space with lifted
metric is a locally compact complete length space, therefore by the Hopf-
Rinow theorem for metric spaces (see [18] or [5, Theorem 2.5.28]), each
bounded closed domain is compact. Hence, we show below that the
multiplicity in the above is always finite for compact length spaces. In
fact, we have the following lemma:

Lemma 6.2. Let X be a compact length space with a universal cover
X̃. For b ≥ a > 0 and D = diam (X),

(6.1) #m{CovSpec (X) ∩ [a, b]} =
∑

j:δj∈[a,b]

#S̄j ≤ Ñ(a, 2b + 2D + a),

where Ñ(a, b) is the maximum number of disjoint balls of radius a that
fit in a ball of radius b in X̃.

This estimate, in particular, gives an estimate on the multiplicity of
a fixed element δ. Lemma 6.2 will be improved later, see Corollary 7.7.

Proof of Lemma 6.2. Let {λ1, . . . , λk} = CovSpec (X) ∩ [a, b] counted
with multiplicity. By Lemma 4.9 for each λi, there is a gi in π̄1(X)
such that a ≤ f(gi) = 1

2m(gi) ≤ b. By the proof of Theorem 5.7,
1
2m(g−1

i gj) ≥ f(g−1
i gj) ≥ a for all i 
= j. Fix p̃ ∈ X̃, we have d(p̃, gp̃)) ≤

m(g) + 2D for any g ∈ π̄1(X). Therefore, each ball B(gip̃, a) is disjoint
from each other for i = 1, . . . , k and all are isometric and lie in the ball
B(p̃, 2b + 2D + a). This gives (6.1). q.e.d.
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The following example shows that the multiplicities of short elements
of the covering spectrum can grow to infinity, while elements in the
covering spectrum converge to 0.

Example 6.3. Let M2
j be a handlebody with j handles which looks

like a standard 2 sphere with many small handles on the scale of 1/j.
The multiplicity of 1/j goes to infinity as j goes to infinity.

Note that the multiplicity in Definition 6.1 does not agree with the
multiplicity of the length spectrum. We have deliberately related it
to the revised fundamental group rather than to free homotopy classes
of loops. This way, Theorem 5.7 immediately gives us the following
proposition.

Proposition 6.4. For a compact length space X with a universal
cover, π̄1(X) can be generated by the short basis S of Definition 6.1 and
#S = #m{CovSpec (X)}.

Note that the number of generators of a fundamental group π1(X, p)
may not be finite for a compact length space, X, with a non-simply
connected universal cover. The double cone over the Hawaiian earring
is its own universal cover, so #{CovSpecX} = 0, but its fundamental
group is uncountable and, in particular, not finitely generated.

7. Gromov–Hausdorff convergence and δ covers

Here, we first prove a convergence property of δ-covering spaces which
does not hold for universal covers. Then, we show that, unlike the length
spectrum, the covering spectrum behaves nicely under Gromov–Haus-
dorff convergence. We begin with the definition of the Gromov–Haus-
dorff distance between compact length spaces.

Definition 7.1 ([18, Definition 3.4]). Given two metric spaces X
and Y the Gromov Hausdorff distance between them is defined,
(7.1)

dGH(X,Y ) = inf


dZ

H(f(X), f(Y )) :
all metric spaces, Z, and
all isometric embeddings:
f : X → Z, g : Y → Z


 ,

where, dZ
H is the Hausdorff distance between subsets of Z,

(7.2) dZ
H(A,B) = inf{ε > 0 : B ⊂ Tε(A) and A ⊂ Tε(B)}.

Here, Tε(A) = {x ∈ Z : dZ(x,A) < ε}.
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It is then clear what we mean by the Gromov–Hausdorff convergence
of compact metric spaces. However, for non-compact metric spaces, the
following looser definition of convergence was defined by Gromov.

Definition 7.2 ([18, Definition 3.14]). We say that non-compact
length spaces (Xn, xn) converge in the pointed Gromov–Hausdorff sense
to (Y, y) if for any R > 0, there exists a sequence εn → 0 such that
Bxn(R + εn) converges to By(R) in the Gromov–Hausdorff sense.

It is easy to see that neither the topology of a metric space nor the di-
mension is conserved under Gromov–Hausdorff convergence. Two com-
pact spaces are close in the GH sense if they look almost the same
with “blurry vision” so that “small holes” cannot be seen. A sequence
of 1 × 1/j tori collapses to a circle losing both dimension and topol-
ogy. The sequence of handlebodies, M2

j , of Example 6.3 converges to
a standard sphere, thus losing topology without collapsing to a lower
dimension. One also can lose regularity, as can be seen, when taking a
sequence of one-sheeted hyperboloids converging to a cone.

Proposition 7.3. If a sequence of compact length spaces Xi con-
verges to a compact length space X in the Gromov–Hausdorff topology,
then for any δ > 0 there is a subsequence of Xi such that their δ-covers
also converges in the pointed Gromov–Hausdorff topology.

This answers a question in [26]. Compare Proposition 3.1 in there.
By Theorem 3.6 in [25], the limit of the δ-covers (if it exists) is

always a cover of X, but note that two different subsequences could
have different limits as the next example shows.

Example 7.4. Let Xi be tori of side lengths 1 by (n+1)/(2n) alter-
nating with the tori of length 1 by (n − 1)/(2n). Then Xi converges to
the 1 by 1/2 torus. For δ = 1/2, we get two limits of the δ-covers: one
is the cylinder and the other is Euclidean space.

In the following examples, we demonstrate that universal covers may
not have any converging subsequences. Recall that Gromov’s Precom-
pactness Theorem [18] states that a set, S, of compact length spaces is
precompact iff there is a uniform upper bound, N(r,R), on the number
of disjoint r balls contained in a ball of radius R, NX(r,R):
(7.3)
∀r,R > 0 ∃N(r,R) ∈ N s.t. we have NX(r,R) ≤ N(r,R) ∀X ∈ S.
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Example 7.5. Let M j
j be a flat j dimensional 1 × (1/j) × (1/j) ×

· · · × (1/j) torus. Then the Gromov–Hausdorff limit of M j
j is a circle.

The universal covers of the M j
j are Euclidean j dimensional spaces, so

NMj(1, 5) ≥ 2j and the Mj do not have a converging subsequence.

Other examples include the sequence of spheres with small handles,
M2

j in Example 6.3, which converges in the Gromov–Hausdorff sense to
the standard two sphere and a sequence of finite sets of circles joined at
a common point which converges to the standard Hawaii ring. In both
cases, the sequences of universal covers do not having any converging
subsequences.

Gromov proved that if Mj are closed manifolds with Ricci curvature
uniformly bounded from below and dimension bounded above, then by
the Bishop Gromov Volume Comparison Theorem, NMj (r,R) is uni-
formly bounded [18]. Since the universal covers of the Mj share these
curvature and dimension bounds, they do have converging subsequences.
However, even in this case, the limits of universal covers are not neces-
sarily covers of the limit space. An example is a sequence of flat 1×1/j
tori which collapse to a circle. The limit of the universal covers is the
Euclidean plane which is not a cover of a circle.

Proof of Proposition 7.3. It is enough to show that the set of δ-covers
of Xi is precompact by finding a uniform bound on NX̃δ

i
(r,R). Since

Xi converge to a limit space X in the GH sense, they also converge
in the pointed GH sense, so there exists xi ∈ Xi and x ∈ X such that
(Xi, xi) converges to (X,x). So, we need only prove that for all ε,R > 0,
the number of disjoint balls of radius ε centered in Bx̃i(R) is uniformly
bounded. In fact, we can fix ε < δ < R since bounds for these ε and R
will control the others.

Let x̃i ∈ X̃δ
i be a lift of xi. Let FDi be a (closed) fundamental domain

of Xi based at x̃i. Let the ε almost adjacent generators

(7.4) Fε,i = {g ∈ G(Xi, δ) : gTε(FDi) ∩ Tε(FDi) 
= ∅},
and, let the adjacent generators be the set

(7.5) Fi = {g ∈ G(Xi, δ) : g(FDi) ∩ (FDi) 
= ∅} ⊂ Fε,i.

Now, examine B(x̃i, R) ⊂ X̃δ
i . By Milnor’s lemma [21, Lemma 2], if

d(x̃i, gx̃i) < δk for some positive integer k, then g can be expressed as a
k-fold product, g = h1h2 · · ·hk, with h1, . . . , hk ∈ Fi. Let k = [R/δ]+ 1,
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where [R/δ] is the integer part of R/δ. Thus, the number of fundamental
domains gFDi intersecting B(x̃i, R) is bounded by (#Fi)[R/δ]+1.

On the other hand, if Ni(ε,D) is the number of maximal disjoint
ε-balls in Xi, then if ε < δ, we claim the maximal number of disjoint
ε-balls centered in each fundamental domain FDi is bounded by N =
Ni(ε,D) ·#Fε,i. If not, then let ỹ1, . . . , ỹN+1 be the centers of these balls
and y1, . . . , yN+1 be their projections to Xi. Since the covering map X̃δ

i
is isometric on δ balls,

(7.6) Byj(ε) ∩ Byk
(ε) = ∅ iff Bỹj (ε) ∩ Bgỹk

(ε) = ∅ ∀g ∈ G(Xi, δ).

which is equivalent to checking that

(7.7) Bỹj(ε) ∩ Bgỹk
(ε) = ∅ ∀g ∈ Fi,ε.

So, we can select Ni(ε,D) disjoint ε balls in Xi by first choosing y1 and
eliminating the at most #Fε,i yk that fail to satisfy (7.7) for y1, then
choosing the next remaining yj and eliminating the at most #Fε,i yk

that fail to satisfy (7.7) for that yj, and so on. This is a contradiction.
So, the total number of balls of radius ε in Bx̃i(R) is bounded by

(#Fi)[R/δ]+1 · Ni(ε,D) · #Fε,i. Since Fi ⊂ Fε,i, we need only bound
#Fε,i uniformly in i.

Note that by Theorem 3.4 in [25], we have surjective homomorphisms

(7.8) Φi : G(X, δ/2) → G(Xi, δ)

for all i large. We can assume that diam Xi ≤ D. If ᾱ ∈ Fε,i ⊂ G(Xi, δ),
then it can be represented by a closed curve σ̄ passing through xi = π(x̃i)
of length ≤ 2(D + ε). From the proof of surjectivity in [25, Theorem
3.4 ], we can take an ε partition of σ̄ and get a curve σ passing through
π(x̃) ∈ X such that Φi(σ) = ᾱ and the length of σ is at most 5 times
as long as σ̄. Thus, each element g ∈ Fε,i ⊂ G(Xi, δ) is mapped to by
Φi of some element h ∈ G(X, δ/2) such that dX̃δ/2(hx̃, x̃) < 10(D + ε).

Now, if g1 and g2 are two distinct elements in G(Xi, δ) and Φi(h1) =
g1 and Φi(h2) = g2, then h1h

−1
2 ∈ G(X, δ/2) is non-trivial. Any non-

trivial element h ∈ G(X, δ/2) has dX̃δ/2(hx, x) ≥ δ. So, dX̃δ/2(h1x, h2x) ≥
δ.

Hence, for all i large

(7.9) #{Fε,i} ≤ Ñ(δ/2, 10(D + ε) + δ/2),

where Ñi(δ/2, R′) is the maximal number of disjoint balls of radius δ/2
that fit in a ball, B(x̃, R′) ⊂ X̃δ/2, in the limit spaces δ cover. q.e.d.
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An immediate corollary of this is the following.

Corollary 7.6. Let M be a GH compact set of length spaces and Mδ

be the set consisting of their delta covers. Then, Mδ is precompact and
Ñ(ε,R) is uniformly bounded on Mδ.

Note that Mδ need not be compact since a limit of δ covers need not
be a δ cover. See the example in [25] immediately above Theorem 3.6.

Corollary 7.6 enables us to give an improvement of Lemma 6.2.

Corollary 7.7. For all X in a Gromov–Hausdorff compact set M
of compact length spaces with universal covers and b > a > 0, #m

(CovSpec (X) ∩ [a, b]) is uniformly bounded.

As another nice application of Corollary 7.6 we have the following.

Proposition 7.8. The revised fundamental groups of a Gromov–
Hausdorff compact set of complete length spaces with a uniform lower
bound on their first systole have finitely many isomorphism classes.

Here, the first systole of (X) = inf CovSpec (X), which is a natural
way of extending the definition of first systole to length spaces that are
not semilocally simply connected.

This result generalizes Theorem 5 in [24] on manifolds. The same
proof in [24] carries over once we have a uniform bound for Ñ(ε,R) on
the universal covers.

8. Convergence of the covering spectrum

Note that the length spectrum can change dramatically under Gro-
mov–Hausdorff convergence as the following examples show. First, we
see that lengths can disappear in the limit.

Example 8.1. Let Xn be the boundary of the 1/n-neighborhood of
the closed planar unit disk in R

3 with the induced length metric, then
Xn converges to the double disk (identification of two closed unit disks
along the boundary circles). The circle x2 + y2 = (1 + 1/n)2 is a closed
geodesic in Xn, but the limit curve x2 + y2 = 1 is not a geodesic in the
limit space. In fact, 2π(1+ 1/n) ∈Length Spectrum of Xn, but its limit
2π is not. Xn can be easily approximated by 2-dimensional smooth
manifolds with same properties.

The following example shows that even minimal length spectrum may
not converge.
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Example 8.2. Let M be a smooth manifold which is S2 with two
small handles: one near the pole and one near the equator, and Mi is a
sequence of M as the handles getting smaller and smaller and converges
to Y = S2 in Gromov–Hausdorff sense (see Figure 1).

Figure 1.

Let γi be the shortest curve in the free homotopy class represent-
ing the non-trivial loop passing through the two holes. The γi’s are
closed geodesics with length almost π. The limit of γi is a back and
forth curve on a geodesic segment. So, we have minimal lengths λi ∈
MinLengthSpec (Mi) with λi → π /∈ LengthSpec (S2).

Next is an example with the sudden appearance of elements in the
limit’s length spectrum far from elements in the sequences’ spectra.
Note this occurs even with smooth convergence.

Example 8.3. Let Mi be a sequence of rotationally symmetric man-
ifolds diffeomorphic to S2, which have annular regions that are annuli in
flat cones with the shorter end capped off smoothly with positive curva-
ture and the wide end capped with a region of negative curvature glued
to a large sphere (see Figure 2). As i increases, the cones converge to a
cylinder and the Mi converge to a space Y which is a capped off cylinder
attached smoothly to a large sphere. A new geodesic appears on the
cylinder with a length not approximated by lengths in the spectrum of
the Mi.

Using the result [25, Theorem 3.6] that the Gromov–Hausdorff limit
of the δ-covers of a sequence is almost the δ-cover of their limit space, we
can show that the covering spectrum of the sequence and the covering
spectrum of the limit space are very closely related. Note that the
counting here is without multiplicity.
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Figure 2.

Theorem 8.4. If Xi is a sequence of compact length spaces converg-
ing to a compact length space Y , then for each δ ∈ CovSpecY , there is
δi ∈ CovSpecXi such that δi → δ. Conversely, if δi ∈ CovSpecXi and
δi → δ > 0, then δ ∈ CovSpecY . Moreover, if the universal cover of the
sequence and Y exist, then #{CovSpecXi} ≥ #{CovSpecY } for all i
large.

Proof. Let us prove the first statement. If it is not true, there is a
δ ∈ CovSpecY such that no subsequence of CovSpec (Xi) converges to
δ, namely there exists an ε > 0 such that

(8.1) CovSpec (Xi) ∩ [δ − ε, δ + ε] = ∅
for all except finitely many Xi. So X̃δ−ε

i = X̃δ+ε
i for all except finite

many i. Now, by Proposition 7.3, a subsequence of the covers converges
(for both δ − ε and for δ + ε). Therefore, their limits Y δ−ε = Y δ+ε. By
[25, Theorem 3.6] Ỹ δ = Ỹ δ+ε/2, contradicting to δ ∈ CovSpecY .

To prove the second statement, note that X̃δi
i → X̃i

δ′
is non-trivial

for all δ′ > δi and δi converges to δ > 0. So, for all δ′ > δ > 0 and
ε ∈ (0, δ), we have δ−ε < δi < δ′ for i sufficiently large and X̃δ−ε

i → X̃δ′
i

is non-trivial. Now, take the limit as i → ∞ and we get Y δ−ε → Y δ′

is non-trivial. This is true for all ε ∈ (0, δ) and δ′ > δ. Now, by the
properties of limit covers [25, Theorem 3.6], we have for all ε ∈ (0, δ)
and δ′ > δ, Ỹ δ−ε → Ỹ δ′ is non-trivial. So, CovSpec (Y ) ∩ [δ − ε, δ′] is
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non-empty. But CovSpec (Y ) is discrete at δ, so this forces CovSpec (Y )
to include δ. q.e.d.

An immediate corollary of this is as follows.

Corollary 8.5. If Xi is a sequence of compact length spaces converg-
ing to a compact length space Y , then the covering spectra converge in
the Hasudorff sense as subsets of R:

(8.2) lim
i→∞

dH(CovSpec (Xi) ∪ {0},CovSpec Y ∪ {0}) = 0.

Proof. By the definition of Hausdorff convergence (see inside Defini-
tion 7.1), we need only show that for all ε > 0, there exists Nε ∈ N such
that for all i ≥ Nε,

CovSpec (Xi) ⊂ Tε(CovSpec (Y ) ∪ {0}),(8.3)

CovSpec (Y ) ⊂ Tε(CovSpec (Xi) ∪ {0}).(8.4)

If (8.3) is not true, then there is an ε > 0 and a subsequence of the i
such that there exists

(8.5) λi ∈ CovSpec (Xi) \ Tε(CovSpec (Y ) ∪ {0}).
Since the Xi converge to Y , they have a uniform upper bound on diam-
eter, D, and the λi ∈ (0,D], so a subsequence converges to some

(8.6) λ ∈ [0,D] \ Tε(CovSpec (Y ) ∪ {0}).
Thus λ /∈ CovSpec (Y ) ∪ {0} contradicting Theorem 8.4.

If (8.4) is not true, then there is an ε > 0 and a subsequence of the i
such that there exists

(8.7) λi ∈ CovSpec (Y ) \ Tε(CovSpec (Xi) ∪ {0}).
Since λi ∈ [ε,D], where D = diam (Y ), and (CovSpec (Y )) ∩ [ε,D] is
closed by Proposition 3.2, a subsequence of λi converges to some λ ∈
CovSpec (Y )∩ [ε,D]. In particular, for i sufficiently large |λi −λ| < ε/2
and

(8.8) λ ∈ CovSpec (Y ) \ Tε/2(CovSpec (Xi) ∪ {0}).
Then, by Theorem 8.4, we know there exists δi ∈ CovSpec (Xi) converg-
ing to λ which is a contradiction. q.e.d.

Applying Theorem 8.4 to manifolds with Ricci curvature lower bound
and combining Theorem 1.1 in [25], we have the following.
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Corollary 8.6. If Mn
i is a sequence of manifolds with Ric ≥ (n −

1)H converges to a compact length space Y , then #{CovSpecMi} ≥
#{CovSpecY } for all i large.

Another useful application of Theorem 8.4 concerns the covering spec-
tra of classes of isolengthspectral manifolds:

Theorem 8.7. If M is a Gromov–Hausdorff connected class of com-
pact length spaces with a common discrete length spectrum, then all
compact length spaces in Cl(M) have the same covering spectrum as
well.

Proof. We need only show that all the spaces in M have the same
covering spectrum. Then, the same holds true for all compact Y in the
closure by Theorem 8.4 since there will be Xi with uniform covering
spectra converging to Y .

Suppose there are at least two distinct covering spectra C1 and C2

for spaces in M. Let Mi be the subset of M of spaces with covering
spectra Ci. Clearly, these are disjoint sets. Each is closed as a subset
of M by Theorem 8.4. Thus, we need only show each is relatively open
to get a contradiction.

Suppose M1 is not relatively open. Then, there is a space Y ∈ M1

which can be approximated by Xj ∈ M such that CovSpec (Xj) 
= C1.
Thus, for each j either there exists cj ∈ C1 \ CovSpecXj or there

exists cj ∈ CovSpecXj \ C1.
Since Y is compact, there is a D such that diam Xj ≤ D. Further-

more, all the spaces share the same discrete length spectrum, L, and
length spectra are closed sets. Thus 1

2L ∩ (0,D] is finite and, by The-
orem 4.7, cj ⊂ 1

2L ∩ (0,D]. Thus, by the pigeonhole principle, there
exists c > 0 and a subsequence of the j such that cj = c.

If c ∈ C1 \ CovSpec (Xj) for this subsequence, then by Theorem 8.4,
there exists δj ∈ CovSpec (Xj) such that δj converges to c. But these
δj ⊂ (1/2)L ∩ [0,D], so eventually they must repeat and we have a
contradiction.

Thus, c ∈ CovSpec (Xj) \ C1 for this subsequence. By Theorem 8.4
again, c ∈ CovSpec (Y ) = C1 (since c > 0) which is also a contradiction.

q.e.d.

This leads immediately to the following corollary.
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Corollary 8.8. If Mt is a one parameter family of compact Riemann-
ian manifolds with a common discrete length spectrum (not counting
multiplicity), then they have the same covering spectrum.

9. Gaps in the covering spectrum

In this section, we discuss gap and clumping phenomenon in the cov-
ering spectra of compact length spaces.

Theorem 8.4 immediately gives us the following gap phenomenon near
0.

Proposition 9.1. Given a sequence of compact length spaces Xi

which converges to a compact length X that has a universal cover, there
is λX > 0 such that for all 0 < ε < λX , ∃Nε ∈ N such that the Covering
Spectum of Xi has a gap at (ε, λX) for all i ≥ Nε:

(9.1) CovSpec (Xi) ∩ (ε, λX ) = ∅.
Note that the gap here depends on the limit space. The simplest

example which illustrates the restrictions on this gap, is a sequence of
tori collapsing to a circle. The size of the limit circle determines λX and
the speed of collapse determines the relationship between ε and Nε.

In the following, we show there are many gaps in the covering spec-
trum which are uniform in size for a compact class of length spaces.
Note that a Gromov–Hausdorff compact set of compact length spaces
have a uniform upper diameter bound.

Proposition 9.2. Let M be a Gromov–Hausdorff compact set of
compact length spaces with universal covers and diam ≤ D, and let S ⊂
[L1, L2] ⊂ [0,D] be a discrete set which includes the end points L1 and
L2, then if

(9.2) gapN (X,S) = Nth largest element in {λi − λi−1}
among all λi ∈ (CovSpec (X) ∩ [L1, L2]) ∪ S in increasing order, then
gap#S−1(X,S) has a uniform lower bound for all X ∈ M. This lower
bound depends on S. In particular,

(9.3) gap1(X,S) = max{λi −λi−1 : λi ∈ (CovSpec (X)∩ [L1, L2])∪S}
is uniformly bounded below depending on S.

Note that the importance of this result is that the length of the gap
interval of the covering spectrum is uniform for all X ∈ M. On the
other hand, the exact location of the gap can not be uniform as one
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can see if we take M to be the set including all flat 2-dimensional tori,
circles and the one point space.

Note that if S = {0,D}, then for simply connected length spaces,
gap #S − 1 (X, S) = D, for X with CovSpec (X) = {λ1}, then
gap#S−1(X,S) = max{λ1,D− λ1} ≥ D/2. So, it is not a strong bound
for these length spaces. But then, as we progress to length spaces with
large numbers of elements in the covering spectrum, this will force at
least one gap which will be significantly larger than the average distance
between elements.

By taking S = {0,D/N, 2D/N . . . D}, we only start getting inter-
esting controls over spaces with more than N elements in the covering
spectrum.

Proposition 9.2 implies that there are sequences of gaps approaching
0. That is, for any L > 0, there exists a δM,L > 0 such that for any
X ∈ M, CovSpec (X) has a gap of size δM,L between 0 and L.

We now prove the gap theorem. Note that when S = {L1, L2} with
L1 > 0, the lower bound for gap1(X,S) also follows from Corollary 7.7.

Proof of Proposition 9.2. We already know that when Xi converge to X
in the GH sense, then the CovSpec (Xi)∪{0} converges to CovSpecX∪
{0} in the Hausdorff sense [Corollary 8.5]. So, (CovSpec (Xi)∩[L1, L2])∪
{L1, L2} converges to (CovSpec (X)∩[L1, L2])∪{L1, L2} for any [L1, L2]
⊂ [0,D].

Since S includes the endpoints, L1 and L2, the set (CovSpec (Xi) ∩
[L1, L2]) ∪ S converges to the set (CovSpec (X) ∩ [L1, L2]) ∪ S in the
Hausdorff sense.

When two discrete sets of numbers in [L1, L2] are close in the Haus-
dorff sense, then the gaps are close as well. That is, the largest gaps are
close, and the second largest and so on. Eventually, many of the gaps
will be close to 0 or non-existent.

So gapN (Xi, S) converges to gapN (X,S) as long as N ≤ #S, and
in fact, converges for all N , if we set the gap to 0 when there are not
enough elements in the set.

On the other hand, all the covspecs in M are closed and discrete and
so is S, so for each X, gap#S−1(X,S) > 0. Since a positive continuous
function defined on a compact set has a uniform positive lower bound,
we are done. q.e.d.
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Example 9.3. If we look at the following compact set of metric
spaces: Xi Hawaii ring with rings of radius 1/i2, 2/i2....(i− 1)/i2, 1/i, 1,
and X, a circle of radius 1, then this space is compact and all elements
have discrete covering spectra. There is no uniform bound on the num-
ber of elements in the covering spectra.

The largest gap in CovSpec (Xi) is π(1−1/i) and the rest of the gaps
are the same size, π/i2.

Taking S = {0, π}, our uniform lower bound on the largest gap exists
and is π(1/2).

Taking S = {0, π
2 , π}, our uniform bound on the largest gap is π(1/2)

and on the second largest gap is π(1/4). But this second largest gap
just records the fact that the covering spectra are below π/2.

Taking Sj = {0, π/j} says more, since we know there is a uniform
lower bound on the largest gap between 0 and π/j. But, in fact, this
gap is basically above the majority of the spectra for all but finitely
many of the Xi.

This theorem can also be used to show sets of complete metric spaces
are not compact in the Gromov–Hausdorff sense.

Example 9.4. Let Xj be a compact length space formed by 2j circles
of radii

(9.4) {1/2j , 2/2j , 3/2j , . . . , (2j − 1)/2j , 1}
joined at a common point. Then,

(9.5) CovSpec (Xj) = {π/2j , 2π/2j , 3π/2j , . . . , (2j − 1)π/2j , π}
and gap1(X, {0, π}) = π/2j is not uniformly bounded below. Sure
enough, this sequence has no converging subsequence in the Gromov–
Hausdorff sense.

Applying Proposition 9.2 to the compact class of manifolds with a
uniform lower bound on Ricci curvature, we have the following.

Corollary 9.5. For all H ∈ R, D > 0, n ∈ N, L > 0, there ex-
ists a δ(H,D,L, n) > 0 such that for any compact manifolds Mn with
diam (M) ≤ D, Ric (Mn) ≥ (n − 1)H, ∃λM < L such that

(9.6) CovSpec (M) ∩ [λM , λM + δ(H,D,L, n)] = ∅.
In addition to showing the existence of gaps of a certain size, one can

study the location of elements in the covering spectrum. We call the
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following theorem a clumping theorem, since it shows that elements in
the covering spectra have tendencies to clump around certain locations.

Proposition 9.6. If M is a Gromov–Hausdorff compact set of com-
pact length spaces with universal covers and diam ≤ D, then for all
ε > 0, there exists Nε ∈ N and subsets S1, S2, . . . , SNε ⊂ [0,D] such that
m(Si) < ε and each Si is a finite set of intervals of the form:

Si = [0, εi) ∪
Ni⋃
j=1

(di
j − εi, d

i
j + εi)

and for all X ∈ M,∃i ∈ 1, . . . , Nε s.t. CovSpecX ⊂ Si.

Proof. Let D be the set of discrete subsets of [0,D] which include
{0}. Let F : M → D be defined as F (X) = CovSpec (X) ∪ {0}.

By Corollary 8.5, F is a continuous map when the metric on D is
the Hausdorff metric. Now, the continuous image of compact set is
compact, so F (M) is compact. In particular, any open cover of F (M)
has a finite subcover.

Fix X ∈ M, denote CovSpec (X) = {d1, d2, . . . , dN}. Define UX ⊂
D = BF (X)(rh,X), where rh,X = hmin{d1, d2−d1, . . . , dN −dN−1}. Note
that Wh = [0, ε)∪⋃N

j=1(dj − ε, dj + ε) is an open subset of [0,D], and for
h < 1/2, this is a disjoint collection of intervals. For fixed ε > 0, choose
h > 0 very small so that m(Wh) < ε. This determines rh,X for each X.

Now, UX form an open cover of F (M), so there is a finite subcover.
Let UX1 , . . . , UXNε

be that finite subcover and let εi = rh,Xi
and di

j the
jth element in CovSpec (Xi). Then,

(9.7) Si = BF (Xi)(εi) = UXi .

So for every X ∈ M, there is an i ∈ 1, . . . , Nε such that CovSpec (X)
⊂ UXi = Si. q.e.d.

One can easily see that Example 9.4 also fails to satisfy this clumping
phenomenon.

Corollary 9.7. For all H ∈ R, D > 0, n ∈ N, ε > 0, there exists
N = N(ε,H,D, n) ∈ N and subsets S1, S2, . . . , SN ⊂ [0,D] depending
on ε,H,D and n such that m(Si) < ε and each Si is a finite set of
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intervals of the form:

Si = [0, εi) ∪
Ni⋃
j=1

(di
j − εi, d

i
j + εi),

and such that for any compact manifold Mn with diam (M) ≤ D,
Ric (Mn) ≥ (n − 1)H

(9.8) ∃i ∈ 1, . . . , Nε s.t. CovSpecMn ⊂ Si.

10. The Laplace spectrum

In this section, we discuss the relationship between the Laplace spec-
trum and the covering spectrum of a compact Riemannian manifold. Re-
call that the Laplace spectrum is defined as the set of eigenvalues of the
Laplace operator. The elements of the Laplace spectrum are assigned a
multiplicity equal to the dimension of the corresponding eigenspace.

It was proven by Colin de Verdiere that the Laplace spectrum deter-
mines the length spectrum of a generic manifold [8]. A generic mani-
fold is one with a “bumpy metric” in the sense of Abraham and, given
any Riemannian manifold, there is a nearby generic manifold which is
close in the C5 sense [1]. In particular, negatively curved manifolds
are generic in this sense [2]. The generic manifolds are known to have
discrete length spectra [2]. Thus, the Laplace spectrum determines the
length spectrum on negatively curved manifolds of arbitrary dimension.

On Riemann surfaces, Huber proved the length and the Laplace spec-
trums determine each other completely [20]. Eberlein has shown that
on two step nilmanifolds, the marked length spectrum determines the
Laplace spectrum [11].

However, there are pairs of Laplace isospectral manifolds first con-
structed by Carolyn Gordon that have different length spectra when one
takes multiplicity into account [14].

The simplest result we can get from the above is the following.

Proposition 10.1. If M is a set of Laplace isospectral manifolds
which are negatively curved, then there are only finitely many distinct
covering spectra for the manifolds in this class.

By Proposition 6.4, this implies that there is a uniform bound on
the number of generators of the fundamental groups of these manifolds.
However, this last fact was already known, since this class of manifolds
is known to have only finitely many homeomorphism classes [4].
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Another application is that complete length spaces in the GH closure
of M have universal covers. Furthermore, Cl(M) also has only finitely
many distinct covering spectra and there is a uniform bound on the
number of generators of the revised fundamental groups of these spaces.

Proof. Since M ∈ M are negatively curved and Laplace isospectral,
they share the same length spectrum and this length spectrum is closed
and discrete. They also have a uniform upper bound on diameter by
[4]. The covering spectra are contained in one half times the length
spectrum ∩[0,D] by Theorem 4.7. Thus, there are only finitely many
possible covering spectra. q.e.d.

Since, as yet, all known examples of Laplace isospectral sets of mani-
folds share the same length spectrum not counting multiplicity, we make
the following conjecture.

Conjecture 10.2. If M is a set of Laplace isospectral manifolds
which are with a uniform upper bound on diameter, then there are only
finitely many distinct covering spectra for the manifolds in this class.

In the following example, we show that the Laplace spectrum does
not determine the covering spectrum. In particular, we find a pair
of Laplace isospectral Riemannian Heisenberg manifolds which do not
share the same covering spectrum. Note that Pesce has proven that
all Laplace isospectral Riemannian Heisenberg manifolds have the same
length spectrum not counting multiplicities [23].

Example 10.3. In [14], Gordon studied the Heisenberg manifolds
which are of the following form: Hn(Γ, g) = (Γ \ Hn, g) where

(10.1) Γ = Γr̄,s̄,c =
{
(x̄, ȳ, u) ∈ Hn : x̄ ∈ r1Z × · · · × rnZ,

ȳ ∈ s1Z × · · · × snZ, u ∈ cZ
}

where Hn is the (2n+1) dimensional Heisenberg group with multiplica-
tion

(10.2) (x̄, ȳ, u)(x̄′, ȳ′, u′) = (x̄ + x̄′, ȳ + ȳ′, u + u′ + x̄ȳ′)

and the metric g at TeHn is a diagonal matrix with diagonal {a1, a2, . . . ,
an, a1, . . . , an, 1} where we have 0 < a1 ≤ a2 ≤ ...an. Note that one
needs Γ is a subgroup of Hn which is true iff risi ∈ cZ.
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Then, the elements of the fundamental group of Hn(Γ, g) are elements
of Hn of the form (r1x1, . . . , rnxn, s1y1, . . . , snyn, cu) where xi, yi, u ∈ Z.
By [14] Corollary 2.9, if xi or yi is not zero, we have the simple formula:

(10.3) m((r1x1, . . . , rnxn, s1y1, . . . , snyn, cu)) =

√√√√ n∑
i=1

ai(r2
i x

2
i + s2

i y
2
i ).

Otherwise,

(10.4) m((0, . . . , 0, cz)) = min
{
|cz|, (4jπai(|cz| − jπai))1/2 : j ∈ Z,

i = 1, . . . , n, 2jπai < |cz|
}

.

For a proof of (10.4), see [11]. Since (4jπai(|cz|− jπai))1/2 is increasing
in j for 0 < j < (|cz|)/(2πai) we have

m((0, . . . , 0, 0, . . . , 0, cz))(10.5)

= min{|cz|, (4πai(|cz| − πai))1/2, i = 1, . . . , n}
and

(10.6) m(0, 0, cz) ≥ m(0, 0, c) for all integers z.

Note that the elements (riei, 0, 0) and (0, siei, 0) generate all the ele-
ments of Γ of the form (x̄, ȳ, 0), so the covering spectrum map is deter-
mined on these elements:

f((r1x1, . . . rnxn, s1y1, . . . , snyn, 0))(10.7)

∈
{

1
2
√

airi,
1
2
√

aisi : i = 1, . . . , n
}

,

Note also that (riei, 0, 0)(0, siei, 0) = (riei, siei, risi), so these elements
also generate elements in the center of the form (0, 0, krisi).

If c 
= krisi for all i and integer k and m(0, 0, c) 
∈ {√airi,
√

aisi : i =
1, . . . , n}, by (10.6) f(0, 0, cz) = m(0, 0, c) and the covering spectrum is

(10.8)
{

1
2
√

airi,
1
2
√

aisi,
1
2
m(0, 0, c) : i = 1, . . . , n

}
.

When there is an i and an integer k such that c = krisi and m(0, 0, c) ≥
max{√airi,

√
aisi} for that particular i, then f(0, 0, cz) = max{√airi,√

aisi} for that particular i, and then the covering spectrum is only
{1

2

√
airi,

1
2

√
aisi : i = 1, . . . , n}.
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This is particularly interesting because Gordon states that two Heisen-
berg manifolds Hn(Γ′, g′) and Hn(Γ, g) are Laplace isospectral iff ai =
a′i, c = c′ and {a1r

2
1, . . . , anr2

n, a1s
2
1, . . . , ans2

n} is a permutation of
{a1(r′1)

2, . . . , an(r′n)2, a1(s′1)
2, . . . , an(s′n)2}. Thus, the only way to get

an isospectral pair with different covering spectra is to have one which
includes m(0, 0, c) and one which does not.

Let a1 = 1/8, a2 = 1/2 and c = 1, by (10.5) m(0, 0, 1) = (π/2(1 −
π/4))1/2 ∼ .9767.

If we take r1 = 20, r2 = 1, s1 = 10 and s2 = 1, then c = r2s2 and

(10.9) m(0, 0, c) ≥ max{√a2r2,
√

a2s2} = 1/
√

2,

so

CovSpec (H2(Γ, c)) =
{
20/(2

√
8) = 5

√
2/2,(10.10)

1/(2
√

2) =
√

2/4, 10/(2
√

8) = 5
√

2/4
}

.

If we take r′1 = 2, r′2 = 10, s′1 = 10, and s′2 = 1, then c 
= r′is
′
i for any

i and

CovSpec (H2(Γ′, c))(10.11)

= {
√

2/4, 5
√

2/2, 5
√

2/4, 1/2(π/2(1 − π/4))1/2}.
It is easy to see that one can construct quite a number pairs of

isospectral Heisenberg manifolds with different covering spectra in this
manner. Interestingly, Gordon’s particular pair of isospectral Heisen-
berg manifolds with different length spectrum (counting multiplicity)
[14](Example 2.4 a) do share the same covering spectra: {1/2, 1}. So,
there are distinct pairs of Laplace isopectral manifolds that share the
same covering spectrum.

Next, one questions what happens to the covering spectra in a contin-
uous family of Laplace isospectral manifolds. Note that since Pesce has
shown Laplace isospectral Heisenberg manifolds share the same discrete
length spectrum, by Theorem 8.7, we know that a one parameter family
of Laplace isospectral Heisenberg manifolds must share the same cov-
ering spectrum. Thus, the two manifolds constructed in Example 10.3
are not joined by such a one parameter family.

The most explored method of constructing Laplace isospectral pairs of
Riemannian manifolds is using Sunada’s method [28]. Such isospectral
manifolds are called Sunada isospectal pairs:
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Definition 10.4. Sunada isospectral pairs of manifolds are pairs of
manifolds M1 = M/H1 and M2 = M/H2 with π : M → M/G is a finite
normal covering and Hi are subgroups of G such that for any conjugacy
class Gj ⊂ G,

(10.12) #(Gj ∩ H1) = #(Gj ∩ H2).

Sunada proved that these spaces are Laplace isospectral and length
isospectral.

A special case of Sunada isospectral pairs of manifolds are the exam-
ples Sunada attributes to Komatsu [28, Example 3].

Example 10.5. A Sunada isospectral pair of manifolds is a Komatsu
pair if H1 and H2 are any pair of finite groups of the same order with
exponents of the same odd prime p. Both are identified with a set S
and they are embedded into the symmetric group on S using the left
actions of the Hi on S.

Now, two permutations of the symmetric group are conjugate iff they
have the same cycle decomposition (cf. [19]). So a conjugacy class Gi

corresponds to a partition #S = p1 + · · · + pk, where pi ≥ 1. Since Hi

have exponents of order p, they only contain p cycles. And since they
act on the left on S, their non-trivial elements must move every point
in S, and thus they are complete sets of p cycles and they are all in the
same conjugacy class: G1 corresponding to #S = p + p + · · · + p. So,

(10.13) #(H1 ∩ G1) = #S − 1 = #(H2 ∩ G1)

and #(Hi ∩ Gj) = 0 otherwise.
Since every symmetric group can be shown to act by isometries on

some Riemannian manifold, this creates a Sunada isospectral pair. In
particular, they can be constructed as a Sunada isospectral pair whose
common finite cover, M , is a simply connected compact manifold.

Proposition 10.6. Komatsu pairs of Sunada isospectral manifolds
share the same covering spectrum which in fact consists of a single ele-
ment.

Proof. Let M1 = M/H1 and M2/H2 be the Komatsu pair with a
common simply connected finite cover M . Let M0 = M/G where G is
the symmetric group.

Now, let mi : Hi → R be the minimum marked length map for Mi

and m : G → R be the minimum marked length map for M/G. Note
that mi(h) = infx∈M dM (x, hx) = m(h). Furthermore, m(g1) = m(g2)
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whenever g1 and g2 are conjugate because this is the minimum length
of a loop freely homotopic to a loop representing gi.

However, every non-trivial element in either of the Hi is a member
of the same conjugacy class corresponding to #S = p + p + · · · + p.
So, m1(h1) = m(h1) = m(h2) = m2(h2) for all non-trivial hi ∈ Hi.
Thus, the covering maps are equal as well, and the only element in the
covering spectrum is this m(hi). q.e.d.

Note that Komatsu pairs of Sunada isospectral manifolds do not nec-
essarily have the same covering spectrum counting multiplicity. In [28,
Example 3], H1 = (Z/pZ)3 has three generators and thus the only ele-
ment in its covering spectrum must have multiplicity 3 while

H2 =
〈

a, b | ap = bp = (aba−1b−1)p = e,

a(aba−1b−1) = (aba−1b−1)a, b(aba−1b−1) = (aba−1b−1)b
〉

has two generators and thus the only element in its covering spectrum
must have multiplicity 2.
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