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THE EXISTENCE OF HYPERSURFACES OF
CONSTANT GAUSS CURVATURE WITH

PRESCRIBED BOUNDARY

BO GUAN & JOEL SPRUCK

Abstract
We are concerned with the problem of finding hypersurfaces of constant
Gauss curvature (K-hypersurfaces) with prescribed boundary Γ in Rn+1,
using the theory of Monge-Ampère equations. We prove that if Γ bounds
a suitable locally convex hypersurface Σ, then Γ bounds a locally convex
K-hypersurface. The major difficulty lies in the lack of a global coordinate
system to reduce the problem to solving a fixed Dirichlet problem of Monge-
Ampère type. In order to overcome this difficulty we introduced a Perron
method to deform (lift) Σ to a solution. The success of this method is due
to some important properties of locally convex hypersurfaces, which are of
independent interest. The regularity of the resulting hypersurfaces is also
studied and some interesting applications are given.

1. Introduction

In this paper we are concerned with the problem of finding hy-
persurfaces of constant Gauss-Kronecker curvature (K-hypersurfaces)
in R

n+1 (n ≥ 2) with prescribed boundary: given a disjoint collec-
tion Γ = {Γ1, . . . ,Γm} of closed smooth embedded (n − 1) dimen-
sional submanifolds of R

n+1, decide whether there exist (immersed)
K-hypersurfaces M in R

n+1 with ∂M = Γ. Locally this problem re-
duces to questions concerning Monge-Ampère type equations and we
seek solutions for which the resulting equation is elliptic. This means
that we must confine ourselves to the class of locally strictly convex hy-
persurfaces, i.e., those whose principal curvatures are all positive. Such
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hypersurfaces locally lie on one side of their tangent planes at any point
but need not do so globally as they have nonempty boundary.

Finding hypersurfaces with prescribed curvature and boundary has
been a major challenge in geometric analysis because of the highly non-
linear nature of the problem and the lack of variational methods. Begin-
ning around 1980, some success was achieved due to breakthroughs in
the theory of Monge-Ampère equations and general fully nonlinear equa-
tions, but only for hypersurfaces which are globally graphs of functions
over domains with geometric restrictions (e.g., strictly convex domains).
This was the case even for K-hypersurfaces where the only general ex-
istence results were consequences of the existence theory for Monge-
Ampère equations (see [6], [20], [23]), and was restricted to strictly
convex domains. This means that the resulting surfaces must be simply
connected graphs, a very strong restriction geometrically.

The first idea that a more general result was possible came in the pa-
per of Hoffman-Rosenberg-Spruck [18] and subsequently such a general
result was developed in [12] and [11]. In these papers, the authors proved
an essentially optimal existence theorem for Monge-Ampère equations in
domains of arbitrary geometry and thus the limit of our understanding
of K-hypersurfaces with boundary was reached, as far as global graphs
(including multi-sheeted radial graphs) are concerned. This theory al-
ready led to striking geometric applications [12], [28], [8].

To solve the problem in its full parametric generality seemed to re-
quire substantial new techniques. A necessary condition for Γ to bound a
locally strictly convex hypersurface is that its second fundamental form
(as a submanifold of R

n+1) is nondegenerate everywhere. This however,
is not a sufficient condition; Rosenberg [27] (see also [10]) shows there are
topological obstructions. It is natural to seek geometric conditions that
guarantee the existence of locally strictly convex K-hypersurfaces span-
ning a given Γ. Based on the results in [12], the second author [29] made
the following conjecture: Γ must bound an immersed K-hypersurface if
it bounds a locally strictly convex immersed hypersurface. The first
main result of the present paper settles this conjecture affirmatively.
More precisely, we will prove:

Theorem 1.1. Assume that there exists a locally convex immersed
hypersurface Σ in R

n+1 with ∂Σ = Γ and KΣ ≥ K everywhere, where
K is a positive constant. Suppose, in addition, that Σ is C2 and locally
strictly convex along its boundary. Then there exists a smooth (up to the
boundary) locally strictly convex immersed hypersurface M with ∂M = Γ
such that KM ≡ K. Moreover, M is homeomorphic to Σ.



hypersurfaces of constant gauss curvature 261

We note that this is a huge jump in generality from our previous
results in [12] as it deals with general immersed K-hypersurfaces and
not just graphs (or radial graphs). Because of the presence of bound-
ary, locally convex surfaces can be very complicated. In particular, in
Theorem 1.1 M need not be embedded even if Σ is embedded.

It is also important to understand hypersurfaces of vanishing Gauss
curvature. These hypersurfaces are clearly related to convex hulls of
codimension 2 submanifolds in space. Our second main result in this
article is the following

Theorem 1.2. Suppose Γ bounds a locally convex hypersurface
which is C2 and locally strictly convex along its boundary. Then there
exists a locally convex hypersurface M of Gauss curvature KM ≡ 0
with ∂M = Γ, and M is of class C1,1 up to the boundary. Moreover,
for any interior point p ∈ M , all the extreme points of the (intrinsic)
component of M ∩ TpM containing p lie on ∂M , where TpM denotes
the tangent plane of M at p. In particular, if Γ is extreme, i.e., Γ lies
on the boundary of its convex hull, then M coincides with part of the
boundary of the convex hull of Γ and, therefore, is globally convex.

The C1,1 regularity in Theorem 1.2 is optimal for hypersurfaces of
vanishing Gauss curvature, as shown by counterexamples (see [7]). We
also remark that Theorem 1.2 does not hold without the assumption
that Γ bounds a locally convex hypersurface which is locally strictly
convex near its boundary. Ghomi [8] has constructed a smooth extreme
Jordan curve γ in R

3 with the properties that:

(a) γ bounds a convex surface of vanishing Gauss curvature which is
not C1,1,

(b) γ does not bound any locally strictly convex surface, and

(c) γ does not bound any locally convex surface of class C1,1 with
vanishing Gauss curvature.

As a consequence of Theorem 1.2 we have

Corollary 1.3. Suppose Γ is extreme and let Σ be a locally convex
hypersurface with ∂Σ = Γ. If Σ is C2 up to the boundary and locally
strictly convex in a neighborhood of its boundary, then the interior of Σ
lies strictly outside the convex hull of Γ.

We remark that such a hypersurface need not be globally convex,
nor embedded. A somewhat stronger version of Corollary 1.3 has been
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proved by Alexander-Ghomi [1]. In [8], Ghomi made the following con-
jecture: every compact connected hypersurface of positive curvature
with connected extreme boundary is embedded and its interior lies out-
side the convex hull of its boundary. We see that Corollary 1.3 settles
affirmatively part of this conjecture. On the other hand, we will con-
struct an example which shows such a hypersurface may fail to be em-
bedded. Furthermore, using the bridge principle of Hauswirth [16], we
will show there exist smooth K-surfaces in R

3, with connected extreme
boundary, which are not embedded.

Suppose Γ is extreme and let HΓ be the boundary of its convex hull.
Theorem 1.2 indicates that if Γ bounds a locally convex hypersurface
which is C2 (up to the boundary) and locally strictly convex in a neigh-
borhood of its boundary, then one of the components of HΓ \Γ must be
C1,1 up to the boundary. However, as we will show by an example, the
other components may have interior singularities. A result of Ghomi [8]
states that every component of HΓ \ Γ is C1,1 up to the boundary if Γ
is strictly convex, i.e., through every point of Γ there passes a (global)
supporting hyperplane with first order contact.

Hypersurfaces of vanishing Gauss curvature are closely related to
the homogeneous degenerate Monge-Ampère equation

detD2u = 0.(1.1)

In general, the Dirichlet problem for (1.1), even with smooth boundary
data, does not have C2 solutions, as shown by an example of Urbas
(see [7]). Under suitable regularity assumptions on the boundary data,
the interior and global C1,1 regularity was established by Trudinger-
Urbas [30] and Caffarelli-Nirenberg-Spruck [7], respectively, for strictly
convex domains. Later the first author [11] extended the global regu-
larity result of [7] to non-convex domains. These regularity results will
play important role in our proof of Theorem 1.2. For more general (non-
homogeneous) degenerate Monge-Ampère equations, the C1,1 regularity
has been studied by Caffarelli-Kohn-Nirenberg-Spruck [5], Hong [19],
Krylov [24], P.-F. Guan [13] and Guan-Trudinger-Wang [14], etc.

A major difficulty in proving Theorems 1.1 and 1.2 lies in the lack
of global coordinate systems to reduce the problem to solving certain
boundary value problem for Monge-Ampère type equations. To over-
come this difficulty, we adopt a Perron method to deform (lift) Σ into
a K-hypersurface by solving the Dirichlet problem for the Gauss cur-
vature equation (2.1) locally. This approach, while classical for PDE’s,
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requires substantial technical work as we are dealing with general lo-
cally convex hypersurfaces in space. A key ingredient, among others, is
an a priori estimate for the local Lipschitz constants (C0,1 norms) of lo-
cally convex hypersurfaces spanning Γ. This is established in Section 3
where we also derive a priori estimates for the lower and upper bounds
of principal curvatures of locally strictly convex K-hypersurfaces span-
ning Γ. The Perron method is carried out in Section 4 where we define
the deformation space L of liftings of Σ and construct M as the limit
of a suitable sequence of hypersurfaces in L. In Section 5, we study
the regularity of the resulting hypersurface constructed in Section 4, to
complete the proofs of Theorems 1.1 and 1.2. Finally, in Section 6 we
prove Corollary 1.3 and construct an extreme curve in R

3 which bounds
a locally strictly convex K-surface with self-intersection and for which
the boundary of its convex hull has interior singularities.

For general Monge-Ampère equations, there is a vast literature, with
fundamental contributions from Pogorelov, Cheng-Yau, Lions, Ivochk-
ina, Krylov, Caffarelli-Nirenberg-Spruck, Trudinger, Urbas and others
in the 1970-1980’s, and that of Caffarelli [2], [3] on the regularity the-
ory. For further references the reader is referred to [9], [15] and the
expository article [25].

An earlier version of this article was circulated as a preprint starting
March 2001. At about the same time Trudinger-Wang [31] indepen-
dently proved Theorem 1.1.

2. Notation and preliminaries

Let Φ : Σn
0 → R

n+1 be an immersion where Σ0 is a manifold of
dimension n ≥ 2 with boundary ∂Σ0 which may be empty. We will
often identify Φ with its image Σ := Φ(Σ0) and call Σ a hypersurface
of R

n+1. Similarly, the boundary of Σ, ∂Σ, means the immersion Φ :
∂Σ0 → R

n+1. When we consider a point p ∈ Σ, it should be understood
as one of its preimages in Σ0. For a subset U of R

n+1, Σ∩pU will denote
the component of Σ∩U that contains p, that is, Σ∩p U = Φ(U0) where
U0 is the component of Φ−1(Σ∩U) that contains the point identified to
p in Φ−1(p) ⊂ Σ0. In this paper, all hypersurfaces in R

n+1 we consider
are assumed to be connected, orientable and compact with or without
boundary. Unless otherwise indicated, if two hypersurfaces have the
same boundary, they are assumed to be oriented in such a way that
they induce the same orientation on the boundary.
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Let Σ be a C2 hypersurface in R
n+1. We will use KΣ, νΣ and dΣ

to denote the Gauss curvature, the unit normal vector field, and the
extrinsic diameter of Σ, respectively. The orientation of Σ is assumed
to be consistent with νΣ which is continuously defined on entire Σ. At
a point on Σ the Gauss curvature KΣ is the product of the principal
curvatures which are the eigenvalues of the second fundamental form
of Σ computed with respect to νΣ. We denote by κmin[Σ] and κmax[Σ]
the minimum and maximum, respectively, of all principal curvatures of
Σ. We say Σ is locally convex (locally strictly convex) if κmin[Σ] ≥ 0
(κmin[Σ] > 0, respectively).

We will also need to consider hypersurfaces with less regularity. In
general, a hypersurface Σ in R

n+1 is said to be locally convex if at
every point p ∈ Σ there exists a neighborhood which is the graph of a
convex function xn+1 = u(x), x ∈ R

n, for a suitable coordinate system
in R

n+1, such that locally the region xn+1 ≥ u(x) always lies on a
fixed side of Σ. (Note that Σ is assumed to be orientable so it has two
sides; for convenience we will refer to the inner side as the one facing
xn+1 ≥ u(x).) The latter requirement that the region xn+1 ≥ u(x) lie
on one fixed side of Σ is to ensure that the local convexity at each point
is consistent with a fixed orientation; see [1] for a detailed discussion.
Note that a locally convex hypersurface is necessarily of class C0,1 in
the interior.

For a locally convex hypersurface Σ which is not necessarily C1, νΣ

is understood as the Gauss map from Σ to the subsets of S
n: for a point

p ∈ Σ, νΣ(p) is the set of all unit normal vectors of local supporting
hyperplanes of Σ at p. For convenience, we will say νΣ has a certain
property of a vector if every element of νΣ has that property. For the
definition in weak sense of Gauss curvature we refer to [26]. According to
Caffarelli [2], if Σ is the graph of a locally convex function xn+1 = u(x)
over a domain Ω in R

n then KΣ = K if and only if u is a viscosity
solution of the Gauss curvature equation

det(uij) = K(1 + |∇u|2)n+2
2 in Ω.(2.1)

One can similarly interpret the meanings of KΣ ≤ K and KΣ ≥ K. We
will need the following existence result which follows from, for example,
Theorem 1.1 of [11] by approximation.
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Theorem 2.1. Let Ω be a bounded domain in R
n with ∂Ω ∈ C0,1.

Suppose there exists a locally convex viscosity subsolution u ∈ C0,1(Ω)
of (2.1), i.e.,

det(uij) ≥ K(1 + |∇u|2)n+2
2 in Ω,

where K ≥ 0 is a constant. Then there exists a unique locally convex
viscosity solution u ∈ C0,1(Ω) of (2.1) satisfying u = u on ∂Ω.

3. A priori estimates and compactness

In this section we prove some important local properties of locally
convex hypersurfaces with boundary. Throughout the section, let Σ and
M be locally convex hypersurfaces in R

n+1 with ∂Σ = ∂M and assume
that there exists a fixed constant δ > 0 such that the hypersurface

Σδ := {x ∈ Σ : distΣ(x, ∂Σ) < δ}

is C2 up to the boundary and locally strictly convex, where distΣ denotes
the intrinsic distance on Σ. We furthermore assume that M locally lies
on the inner side of Σ along the boundary and any neighborhood of
∂M in M does not intersect Σδ in the interior. By this we mean that
νΣ(p) · (q − p) > 0 for all p ∈ Σδ and q ∈ M near ∂M . In particular,
both Σ and M locally lie on the same side of the tangent plane to Σ at
any point of ∂Σ. Let Π denote the second fundamental form of ∂Σ (as
a submanifold of R

n+1). The main result of this section, which plays
a key role in our proof of Theorems 1.1 and 1.2 and is of independent
interest, may be stated as follows.

Theorem 3.1. At every point on M , locally M can be represented
as the graph of a convex function u defined in a domain Ω ⊂ R

n of
a fixed lower bound in size (depending only on δ, κmin[Σδ], κmax[Σδ],
max∂Σ |Π| and dM ) such that

‖u‖C0,1(Ω) ≤ C1(3.1)

where C1 depends on δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π| and dM .

More precisely, that Ω is of a lower bound in size means that there
exists some constant δ0 > 0 such that Ω contains a ball of radius δ0 or
a portion of a ball of radius δ0 separated by a smooth hypersurface (in
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R
n) with controlled geometric quantities, with the center of the ball in

Ω.
Proof.
Step 1. We first note the following simple fact. Let p be an arbitrary

point on ∂Σ and X a unit tangent vector to ∂Σ at p . Since Σ is locally
strictly convex near ∂Σ, we have

νΣ(p) ·Π(X,X) ≥ κmin[Σδ] > 0.(3.2)

Throughout this proof let β = 1
2 sin−1(κmin[Σδ]/max∂Σ |Π|). Then

νΣ(p) ·Π(X,X)
|Π(X,X)| ≥ κmin[Σδ]

max∂Σ |Π| = sin 2β > 0.(3.3)

Thus the angle between νΣ(p) and Π(X,X) does not exceed π
2 − 2β.

Now, for a fixed point p ∈ ∂Σ, we take p to be the origin and choose
a coordinate system of R

n+1 such that en and en+1 are normal to ∂Σ
at p and

νΣ(p) = en cosβ + en+1 sinβ.(3.4)

Here ek is the unit vector in the positive xk-axis direction (1 ≤ k ≤
n+1). For later reference we will call this the special coordinate system
at p. It follows that Σ (locally at p) can be represented as the graph of
a strictly convex function xn+1 = u(x) over a domain Ω′ with a lower
bound in size which depends on δ, β and κmax[Σδ]. In particular, ∂Σ is
locally a graph over a portion, which we denote as Γ′, of ∂Ω′. By (3.3)
and (3.4), the angle between en and Π(X,X) does not excess π

2 − β,
that is

en ·Π(X,X) ≥ |Π(X,X)| sinβ ≥ κmin[Σδ] sinβ(3.5)

for any unit tangent vector X to ∂Σ at p. Consequently, (possibly after
a rotation of the (x1, . . . , xn−1) coordinates) we may represent Γ′ as a
graph

xn = ϕ(x′) ≡
n−1∑
i=1

aix
2
i + o(|x′|2), x′ = (x1, . . . , xn−1) ∈ R

n−1(3.6)

for some constants ai, 1 ≤ i ≤ n− 1, satisfying

0 < κmin[Σδ] sinβ ≤ ai ≤ max
∂Σ

|Π|, 1 ≤ i ≤ n− 1.(3.7)
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By shrinking the size of Ω′ as necessary, we may assume Ω′ = {ϕ <
xn < 2r} for some uniform constant r > 0.

Let v be the convex function defined on Ω′ by

v(x) = sup{L(x) : L is an affine function, L ≤ u on Γ′}.(3.8)

We have

u ≤ v ≤ max
Γ′ u in Ω′, v = u on Γ′

and

LipΩ′(v) ≤ max
Γ′ |∇u| + C

where LipΩ′(v) denotes the Lipschitz coefficient of v on Ω′.
By the local convexity of M we have νM · Π(X,X) ≥ 0 for any

tangent vector X to ∂Σ. From (3.3) we see that the angle between νM

and νΣ at any point on ∂Σ does not exceed π − 2β. Therefore,

νM (p) · en+1 ≥ sinβ.

That is, the angle between νM (p) and en+1 does not exceed π
2 − β.

Consequently, M locally (near p) can be represented as the graph of a
convex function xn+1 = u(x). Since M is locally convex, we see that u
is defined on a smooth strictly convex domain Ωp satisfying

{ϕ < xn < r} ⊂ Ωp ⊂ {ϕ < xn < 2r}(3.9)

with

u ≤ u ≤ v in Ωp and LipΩp
(u) ≤ C(3.10)

where C depends on r and ‖u‖C1(Ω′). For later reference we set

∂′Ωp := {xn = ϕ|0 ≤ xn ≤ r} ⊂ ∂Ωp

and by Γ(p) the graph of u over ∂′Ωp. Note that Γ(p) ⊂ ∂M .

Step 2. Next, let q be an interior point of M . We will consider
two different cases. We first assume that there exists a hyperplane P
through q, which either is a local supporting hyperplane or is transversal
to M at q, such that

Ut ∩ ∂M = ∅ for all t > 0 sufficiently small(3.11)

where Ut = M ∩q {z ∈ R
n+1 : (z− q) · νP ≤ t}. We first note the follow-

ing fact which will often be used in the sequel without being explicitly
referred to.
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Lemma 3.2. Suppose s > 0 such that (3.11) holds for all nonneg-
ative t ≤ s. Then Us is transversal to Ps := {z ∈ R

n : (z − q) · νP = s}.
Proof. We note that Ut is transversal to Pt for all t > 0 sufficiently

small. Suppose s > 0 is the first value such that (3.11) holds for all
nonnegative t ≤ s while Us is not transversal to Ps at a point p ∈ ∂Us.
By the local convexity of M , Ps is a local supporting hyperplane to M
at p where M locally lies in the half space (z − q) · νP ≤ s. For ε > 0
small enough,

Vε := M ∩p {(z − p) · (−νP ) ≤ ε}

is transversal to Ps−ε and is a convex disk. Moreover, ∂Vε = ∂Us−ε,
for ∂Us−ε is a globally convex disk as its boundary is contained in a
hyperplane (see [17]). This implies M = Vε ∪ Us−ε and therefore is a
closed convex sphere without boundary, which is a contradiction. q.e.d.

We now return to the proof of Theorem 3.1. Let t0 > 0 be the
smallest value such that Ut0 ∩ ∂M �= ∅ and choose a point p ∈ Ut0 ∩
∂M . Note that U := Ut0 is globally convex. We consider the special
coordinate system at p which satisfies (3.4). Under this coordinate
system, q lies in the region |xn+1| ≤ xn cotβ. In particular, xn(q) > 0.
We also note that

νP = en cos θ + en+1 sin θ

for some θ ∈ [β, π − β]. Moreover, M locally (near p) is given as the
graph of a function u on a domain Ωp as in (3.9) satisfying (3.1).

Let r > 0 be as in (3.9). We see from above that if xn(q) < r/2
then q is on the graph of u over Ωp and we are done. So we next
consider the case that xn(q) ≥ r/2. Let Cq = Cq(∂U) be the convex
cone generated by ∂U with vertex q. We will show that Cq contains
a nondegenerate cone of fixed size that contains p. This means there
exists a point q0 ∈ R

n+1, |q0 − q| = 1, and a uniform constant δ0 > 0
such that p ∈ Cq(Bδ0(q0)) ⊂ Cq where Cq(Bδ0(q0)) is the cone generated
by Bδ0(q0) with vertex q. Since |q − p| ≥ r/2, this will complete our
proof under assumption (3.11).

Choose new coordinates (y1, . . . , yn+1) in R
n+1 with origin at p such

that yi = xi (1 ≤ i ≤ n − 1), yn(q) > 0, yn+1(q) = 0 and let τi denote
the unit vector in the positive yi direction (0 ≤ i ≤ n + 1). We have
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yn(q) ≥ xn(q) ≥ r
2 and hence

(τk · (q − p))2

|q − p|2 =
(ek · (q − p))2

|q − p|2 ≤ 1 −
( r

2dM

)2
, ∀ 1 ≤ k ≤ n− 1.

(3.12)

From the convexity of U we see that Cq contains the cone generated
by Γ(p) with vertex q since Γ(p) and q are separated by the hyperplane
containing ∂U . By (3.6), (3.7) and (3.12) the projection of Cq to the
hyperplane R

n ≡ {yn+1 = 0} contains an n-ball Bρ(0) in R
n where

ρ ≥ c0 for a uniform constant c0 > 0. To complete the proof, therefore,
we only have to find a point p0 with

yn+1(p0) > 0 and
yn(q) − yn(p0)
yn+1(p0)

≤ C0(3.13)

for some uniform constant C0 > 0 such that the cone generated by the
convex hull of Γ(p) ∪ {p0} with vertex q is contained in Cq. (We note
that it is always possible to find such p0 on Γ(p) with C0 = C0(t0)
depending on t0; C0(t0) may, however, tend to infinity as t0 → 0.)

For 0 ≤ t ≤ yn(q), let Wt = {yn ≥ t} ∩q M . If Wyn(q) ∩ ∂U �= ∅
then we are done since ∂U lies in the upper half space {yn+1 ≥ 0}.
We thus may assume Wyn(q) ∩ ∂U = ∅. Note that then Wyn(q) ⊂ U
and is therefore a convex cap. We may find t1 ∈ [0, yn(q)) such that
Wt ∩ ∂M = ∅ for all t1 < t ≤ yn(q) and Wt1 ∩ ∂M �= ∅. Note that Wt1

is also a convex cap and Wt1 \ U ⊂ Cp by convexity.
If t1 = 0 then

τn ·Π(X,X) ≤ 0, ∀ X ∈ Tp∂M(3.14)

since Γ(p) lies in the half space yn ≤ 0. (This implies that Γ(p) is
contained in the half space xn+1 ≥ 0.) It follows from (3.5) that τn+1 ·
en ≥ sinβ, that is, the angle between τn+1 and en does not exceed π

2 −β.
Consequently,

yn+1(z) = z · τn+1 ≥ xn(z)en · τn+1 ≥ xn(z) sinβ, ∀ z ∈ Γ(p)

since xn+1(z) ≥ 0. We see any point p0 on Γ(p) with xn(p0) ≥ r
2 must

satisfy (3.13).
We now assume t1 > 0 and take an arbitrary point p1 ∈Wt1 ∩ ∂M .

We have p1 ∈ (Wt1 \ U) ∪ ∂U ⊂ Cq and, similarly to (3.14),

τn ·X = 0 and τn ·Π(X,X) ≤ 0, ∀ X ∈ Tp∂M.(3.15)
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Moreover, since Wt1 ∩ {yn+1 ≤ 0} ⊂ U ,

yn+1(p1) > 0 and 0 < yn(p1) = t1 < yn(q).(3.16)

We may further assume that there exists a uniform constant ε0 > 0 such
that

|X · τn+1| ≤ ε0(3.17)

and

|Π(X,X) · τn+1| ≤ ε0(3.18)

for all unit tangent vector X to ∂M at p1. This can be seen as follows.
Suppose there is a unit vector X ∈ Tp1∂M which does not satisfy (3.17)
or (3.18) and let γX be the geodesic on Γ(p1) tangential to X at p0. We
can then find a point p0 ∈ γX near p1 such that, if (3.17) is violated
then (3.13) holds for C0 = C0(ε0), while if (3.18) fails,

|Y · τn+1| ≥ ε1

for some unit tangent vector Y to ∂M at p0 and some uniform constant
ε1 > 0.

Note that (3.17) and (3.18) imply

νΣ(p1) · τn ≤ 0(3.19)

when ε0 is sufficiently small, since the angle between Π(X,X) and −τn
is sufficiently small while that between Π(X,X) and νΣ(p1) does not
exceed π

2 − 2β. By (3.16) and (3.19) we obtain

νΣ(p1) · τn+1 ≤ 0,(3.20)

since the segment joining p1 and q locally lies on the inner side of Σ
near p1. Finally, by (3.19), (3.20) and the local strict convexity of Σ
near boundary there exists a point z ∈ Σδ ∩ V with

yn+1(p1) − yn+1(z) ≥ c0

for some uniform constant c0 > 0 depending on δ and κmin[Σδ], where
V is the vertical 2-plane (in y-coordinates) through p1 and q. Since
z must lie above the line through q and p1 by the convexity of M
and the assumption that Σδ does not intersect M in interior, we have
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yn+1(z) ≥ yn+1(q) = 0. Thus yn+1(p1) ≥ c0 and p0 := p1 satisfies (3.13)
where C0 > 0 depends on δ and κmin[Σδ].

Step 3. We now assume there is no hyperplane through q satisfy-
ing assumption (3.11). We will first prove that M has a unique local
supporting hyperplane (thus a tangent hyperplane) at q.

Let P be a local supporting hyperplane at q to M and let E denote
the set of points on ∂M that (intrinsically) belong to P ∩q M . Clearly
E �= ∅. We claim that q is contained in the convex hull of E. Indeed, if
this is not the case, that is, q and E are separated by a hyperplane, we
may assume P = {xn+1 = 0} and q lies in the region xn > ε while E in
xn < −ε for some ε > 0. Then M ∩q {xn+1 ≤ axn} does not intersect
∂M where a > 0 is sufficiently small, which is a contradiction.

By Caratheodory’s theorem (cf. [22]) q is contained in an l-dimen-
sional simplex S with vertices in E for some 1 ≤ l ≤ n. We have
S ⊆ P ∩q M by the local convexity of M .

Let p be a vertex of S and consider the special coordinate system at
p. We note that, by the local convexity of M , P is a local supporting
hyperplane to M at every point on the segment pq joining p and q. It
follows that

νP = en cos θ + en+1 sin θ(3.21)

for some θ ∈ [β, π−β]. Recall M locally near p is the graph of a convex
function over a domain Ωp in {xn+1 = 0}. Since Ωp is strictly convex
the segment pq is transversal to ∂M at p. For otherwise pq would be
contained in {xn+1 = 0} and tangential to ∂Ωp at p, resulting in a con-
tradiction as Ωp would contain points on pq other than p. Consequently,
P is the tangent hyperplane to M at p as P contains pq and is tangential
to ∂M at p.

Next, assume furthermore that pq ⊂ pp1 ⊆ S for some p1 �= q. Let
Q be a local supporting hyperplane to M at q. Then pp1 ⊂ Q and
therefore Q is a local supporting hyperplane to M at every point on
pp1. We have Q = P since both are the tangent hyperplane to M at p.
This also shows that P is the tangent hyperplane of M at every point
on pp1 (except possibly p1). Consequently, u extends along pp1.

As we can always find a point p ∈ E such that the segment pq
extends in S, we have proved the uniqueness of the local supporting
plane to M at q. Using induction on l we will next prove the assertion
in the Theorem at point q.
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Let us first consider the case l = 1, that is, S = pp1 where p, p1 ∈
∂M . Suppose |p − q| ≤ |p1 − q| and let Ω̃ be the convex hull (in R

n =
{xn+1 = 0}) of {p′1} ∪ Ωp where p′1 ∈ R

n with p1 = (p′1, xn+1(p1)).
(Similar meaning for q′ below.) As in Step 2 we may assume xn(q) ≥ r

2
where r as in (3.9). This implies (3.12), that is the angle between pq
and ek has a uniform positive lower bound for all 1 ≤ k ≤ n− 1.

Let

(3.22) v(x) = sup{L(x) : L is an affine function,

L ≤ u at p′1 and on Ωp}, x ∈ Ω̃.

Then v is a convex function and detD2v = 0 in Ω̃. We have u ≤ v where
u is defined in Ω̃. Since |p1 − q| ≥ |p − q| ≥ r

2 , by (3.12) there exists a
uniform constant λ > 0 depending on r and max∂M |Π|, such that the
n-ball Bλ(q′) is contained in Ω̃. By the local convexity of M we see u
is defined on Bλ/2(q′) ⊂ Ω̃ with a uniform bound on ‖ũ‖C0,1(Bλ/2(q′)).
This completes the proof for l = 1.

Assume now l > 1 and suppose we have proved the assertion for any
point in a simplex of dimension less than l with vertices in E. Choose
p ∈ E and p1 on an (l − 1) dimensional face of S such that q ∈ pp1.
If |p − q| ≤ |p1 − q| then the proof follows as exactly in case l = 1.
Let us therefore assume |p − q| ≥ |p1 − q|. By induction, in a suitable
coordinate system (y, yn+1), y ∈ R

n with origin at p1, M locally near
p1 is the graph of a convex function yn+1 = u(y) with a uniform C0,1

bound in an n-ball BR(0) where R is a uniform constant. Since P is
the tangent hyperplane to M at any point on pp1 (except possibly p1),
we have νP · (0, . . . , 0, 1) ≥ c0 for some uniform constant c0 > 0. Thus
u extends along pp1. Replacing the convex function v in (3.22) by

v(y) = sup{L(y) : L is an affine function, L ≤ u at p and on BR(0)},
(3.23)

defined in the convex hull of {p} ∪BR(0), the rest of proof follows that
of case l = 1. This, finally, completes our proof. q.e.d.

An important consequence of Theorem 3.1 is a compactness result
(Theorem 3.4) which we will need in the next section. First, it follows
immediately from Theorem 3.1 that:
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Corollary 3.3. There exist uniform constants R, r > 0 depending
on δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π| and dM such that for any p ∈
M , M ∩p BR(p) is embedded and the convex body in BR(p) bounded by
M ∩p BR(p) contains a ball of radius r.

According to a convergence theorem of Alexander-Ghomi [1] we thus
have:

Theorem 3.4. Let {Mk} be a sequence of locally convex hypersur-
faces contained in a bounded region in R

n+1 with ∂Mk = ∂Σ for all k.
Suppose each Mk lies on the inner side of Σ and does not intersect Σδ.
Then there exists a subsequence {Mki

} converging in Hausdorff metric
to a locally convex hypersurface M with ∂M = ∂Σ. Moreover, for each
i there exists a homeomorphism from Mki

on to M with boundary fixed.

Proof. We refer to [1] (Theorem 7.1) for the major part of the
proof. Here we only point out that by Corollary 3.3 the conditions
of Theorem 7.1 in [1] are satisfied, and give a brief proof of the fact
∂M = ∂Σ and thatM is C0,1 up to the boundary. Given a point p ∈ ∂Σ,
we consider the special coordinates at p satisfying (3.4). Then each
Σk locally near p can be represented as a convex graph xn+1 = uk(x)
over a domain Ωp of form (3.9) with a uniform C0,1 norm bound. By
compactness there exists a subsequence of {uk} converging to a convex
function u ∈ C0,1(Ωp). Moreover, we have u = u on {x ∈ ∂Ωp : xn = ϕ}
since u ≤ uk ≤ v in Ωp where v is as in (3.8), ϕ as in (3.6) and the graph
of u represents Σ. Note that M must coincide with the graph of u near
p. Consequently, M is a locally convex hypersurface of class C0,1 up to
the boundary and ∂M = ∂Σ. q.e.d.

We next derive a priori bounds for all principal curvatures for smooth
locally strictly convex K-hypersurfaces.

Theorem 3.5. Assume in addition that M is a smooth locally
strictly convex hypersurface of constant Gauss curvature K > 0. Then

1
C2

≤ κmin[M ] ≤ κmax[M ] ≤ C2

where C2 > 0 depends on K, K−1, δ, κmin[Σδ], κmax[Σδ], max∂Σ |Π|,
and dM .

Proof. We first establish the estimates on the boundary. Given
any point p ∈ ∂M , by Theorem 3.1 we may write M locally (near
p) as a graph xn+1 = u(x) with an a priori gradient bound over a
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smooth strictly convex domain Ωp where u satisfies the Gauss curvature
equation (2.1). As ∂Ωp is strictly convex we may appeal to the boundary
estimates for |∇2u| due to Caffarelli-Nirenberg-Spruck [6] (which is local
in nature) to obtain

|uij(0)| ≤ C(3.24)

where C depends on ‖u‖C1(Ωp) and geometric quantities of Σδ and ∂Σ.
Since the principal curvatures ofM at p are the eigenvalues of the matrix{

(1 + |∇u|2)− 1
2uij

}
(with respect to {δij + uiuj}, the metric of M), the desired estimates
follow from (3.24) and the fact that the Gauss curvature is the product
of all principal curvatures.

Turning to the global estimates, consider Λ := maxκeρ where

ρ(x) = |x − x0|2, x ∈ R
n+1

(x0 is a fixed point in R
n+1), and the maximum is taken for all normal

curvatures κ over M . As we already have estimates for principal curva-
tures on ∂M , we may assume Λ is attained at an interior point p ∈M .
Choose coordinates in R

n+1 with origin at p such that the tangent hy-
perplane of M at p is given by xn+1 = 0 and M locally is written as
a strictly convex graph xn+1 = u(x) where x = (x1, . . . xn) ∈ R

n. We
may also assume the Hessian matrix {uij} to be diagonal at 0 with
u11(0) ≥ uii(0) > 0 for all 1 < i ≤ n. Note that, since Du(0) = 0, uii(0)
(1 ≤ i ≤ n) are the principal curvatures of M at p. Thus Λ is achieved
at p with respect to the normal curvature in x1 direction which is locally
given by

κ =
u11

(1 + u2
1)w

, w = (1 + |∇u|2) 1
2 .

Since the function log u11−log(1+u2
1)−logw+ρ then has a maximum

at the origin where Du = 0, w = 1, Dw = 0 and wii = u2
ii for all

1 ≤ i ≤ n, we have at 0,

u11i

u11
− wi

w
− 2u1u1i

1 + u2
1

+ ρi = 0, 1 ≤ i ≤ n(3.25)

and

u11ii

u11
−

(
u11i

u11

)2

− u2
ii − 2u2

1i + ρii ≤ 0, 1 ≤ i ≤ n.(3.26)



hypersurfaces of constant gauss curvature 275

Multiplying (3.26) by u11/uii and taking sum over i from 1 to n, one
obtains ∑ u11ii

uii
−

∑ (u11i)2

u11uii
− u11∆u− 2u2

11 +
∑ ρii

uii
≤ 0.(3.27)

Differentiating Equation (2.1) we have for 1 ≤ k ≤ n,

uijuijk = (n+ 2)
wk

w

and

uijuijkk − uilujmuijkulmk = (n+ 2)
wkk

w
− (n+ 2)

w2
k

w2
,

where {uij} is the inverse matrix of {uij}. Combining these and (3.27)
we obtain

nu2
11 − u11∆u+

∑ ρii

uii
≤ 0.(3.28)

Next,

ρ(x) = |x− x0|2 + (u(x) − x0
n+1)

2, x ∈ R
n

where x0 = (x0, x0
n+1), and therefore,

ρii = 2 + 2(u(x) − x0
n+1)uii + u2

i .

Since ∆u ≤ nu11, by (3.28) one sees that at 0,

0 ≥
n∑

i=1

ρii

uii
≥

n∑
i=2

2
uii

− 2nx0
n+1

≥ 2

(u22 . . . unn)
1

n−1

− 2nx0
n+1

≥ 2
( u11

detuij

) 1
n−1 − C

= 2
(u11

K

) 1
n−1 − C.

It follows that

u11(0) ≤ CK.

This proves an upper bound for κmax[M ], from which a lower bound for
κmin[M ] can be derived in terms of K−1. The proof is complete. q.e.d.
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Remark 3.6. Using an estimate of Guan-Trudinger-Wang [14]
in place of that of [6], it is possible to obtain an upper bound for the
principal curvatures which does not depend on the lower bound of Gauss
curvature.

4. Deformation to K-hypersurfaces

The primary purpose of this section is to prove the existence part
in Theorems 1.1 and 1.2. Throughout the section, let Σ be a locally
convex immersed hypersurface in R

n+1 with embedded boundary ∂Σ
and Gauss curvature KΣ ≥ K everywhere on Σ, where K is a fixed
nonnegative constant. Our idea is to deform Σ to a locally convex
immersed hypersurface M with KM ≡ K and ∂M = ∂Σ.

Let D ⊆ Σ be a disk on Σ which, as a hypersurface in R
n+1, may be

represented as the graph of a convex function u defined in a domain Ω
(in some hyperplane) with Lipschitz boundary. By Theorem 2.1, there
is a unique function u ∈ C0,1(Ω) whose graph is a convex hypersurface
D̃ of constant Gauss curvature K with ∂D̃ = ∂D. By the maximum
principle, we have u ≥ u in Ω. Thus D̃ lies on the inner side of D.

This naturally induces a C0,1-diffeomorphism ΨD : Σ → Σ̃ := D̃ ∪
(Σ \D) which is fixed on Σ \D. The hypersurface Σ̃ is locally convex
with K

Σ̃
≥ K and ∂Σ̃ = ∂Σ. We call Σ̃ a basic lifting of Σ (by D̃

over D). A lifting of Σ is a hypersurface which is obtained by a finite
number of basic liftings starting from Σ. We introduce a partial order
� between liftings of Σ: Σ1 � Σ2 if and only if Σ2 is a lifting of Σ1 or
Σ2 = Σ1.

Lemma 4.1. Let Σ1 and Σ2 be any two liftings of Σ. Then there
exists a unique lifting, which we denote as Σ1 ∨ Σ2, of Σ such that
Σ1 � Σ1 ∨ Σ2, Σ2 � Σ1 ∨ Σ2, and Σ1 ∨ Σ2 � N for any lifting N with
Σ1 � N and Σ2 � N .

Proof. We first assume Σ1 is a basic lifting of Σ by D̃1 over a disk
D1 ⊆ Σ and let A be the open region in R

n+1 bounded by D1 ∪ D̃1.
Assume Σ2 to be a lifting of Σ over a region D2. (D2 is not necessarily
a disk.) Intuitively, if Σ, Σ1 and Σ2 are all embedded, then it is obvious
that the hypersurface

Σ1 ∨ Σ2 := (Σ2 \ (Σ2 ∩A)) ∪ (D̃1 \ (D̃1 ∩B))

where B is the open regions in R
n+1 bounded by Σ2 ∪ Σ, is a lifting of
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Σ with the desired properties. In the general case when some of these
hypersurfaces may be immersed, we view Σ as an immersion

Φ0 : Σ0 → Σ ⊂ R
n+1(4.1)

of a differentiable manifold Σ0 and let

Φi : Σ0 → Σi ⊂ R
n+1, i = 1, 2(4.2)

be the immersions induced from the liftings. (Note that Φi = Φ0 on
Σ0 \ Φ−1

0 (Di).) The lifting Σ1 ∨ Σ2 is then given by the immersion

Φ : Σ0 → Σ1 ∨ Σ2 := Φ(Σ0) ⊂ R
n+1

defined as

Φ(p) :=



Φ1(p), if p ∈ Φ−1

0 (D1) \ Φ−1
0 (D2),

Φ1(p), if p ∈ Φ−1
0 (D1) ∩ Φ−1

0 (D2) and Φ2(p) ∈ A,
Φ2(p), otherwise,

(4.3)

for p ∈ Σ0. The general case now can be proved by induction. q.e.d.

The next lemma, which states that volume decreases under lifting,
is well-known; for completeness we include a proof.

Lemma 4.2. Let Σ1 and Σ2 be liftings of Σ. If Σ1 � Σ2 then
Vol(Σ1) ≥ Vol(Σ2). Moreover, the equality holds if and only if Σ1 = Σ2.

Proof. Obviously we may assume Σ2 is a basic lifting of Σ1 over a
disk D1 ⊂ Σ1. Suppose D1 and its lifting D2 ⊂ Σ2 are the graphs of
convex functions u1 and u2 over a domain Ω ⊂ R

n, respectively. We
have u1 ≤ u2 on Ω and u1 = u2 ∂Ω.

Let

N(x, z) =
(∇u2,−1)√
1 + |∇u2|2

, (x, z) ∈ Ω × R.

denote the downward unit normal vector to D2 at (x, u2(x)). Thus
divN(x, z), the distributional mean curvature of D2 at the point (x,
u2(x)) with respect to the upward normal vector, is nonnegative almost
everywhere since u2 is a convex function. Let

ω = {(x, z) ∈ R
n+1 : u1(x) < z < u2(x), x ∈ Ω}.
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By the divergence theorem we have

0 ≤
∫

ω
divNdv =

∫
D1

N · ν1dσ −
∫

D2

dσ

= Vol(D1) − Vol(D2) +
∫

D1

(N · ν1 − 1)dσ

where ν1 is the downward unit normal vector to D1. Since 0 ≤ N ·ν1 ≤ 1
on D1 we have Vol(D1)−Vol(D2) ≥ 0; obviously, the equality holds only
when D1 = D2. q.e.d.

We need one more lemma which states that volume is continuous
under uniform convergence of uniformly Lipschitz convex functions.

Lemma 4.3. Let wk be a sequence of uniformly Lipschitz convex
functions on Ω converging uniformly to w. Then∫

Ω

√
1 + |∇w|2 dx = lim

k→∞

∫
Ω

√
1 + |∇wk|2 dx.(4.4)

Proof. Let Wk =
√

1 + |∇wk|2 ; then |∇Wk| ≤ |∇2wk| ≤ ∆wk a.e.
in Ω since wk is convex. Therefore,∫

Ω
|∇Wk| dx ≤ sup

Ω
|∇wk||∂Ω|.

Hence Wk are uniformly bounded in W 1,1 and so converge in L1 to√
1 + |∇w|2. q.e.d.

We are now ready to prove the main result of this section. Let L be
the collection of liftings of Σ and set

µ := inf
L∈L

Vol(L).

Theorem 4.4. Suppose Σδ is C2 and locally strictly convex up
to the boundary for some fixed δ > 0. There exists a locally convex
hypersurface M in R

n+1 of class C0,1 up to the boundary with ∂M = ∂Σ
and KM ≡ K. Moreover, M is homeomorphic to Σ and Vol(M) = µ.

Proof. For each k ≥ 1 choose Σk ∈ L such that

Vol(Σk) ≤ µ− 1
k
.

By Lemmas 4.1 and 4.2 we may assume Σk � Σk+1 for all k ≥ 1.
According to Theorem 3.4 after passing to a subsequence we may assume



hypersurfaces of constant gauss curvature 279

{Σk} converges in Hausdorff metric to a locally convex hypersurface M
which, in addition, is homeomorphic to each Σk. Clearly ∂M = ∂Σ. It
remains to show Vol(M) = µ and KM ≡ K.

Consider a point p ∈ M . There exists a sequence pk ∈ Σk, k =
1, 2, . . . , converging to p (in R

n+1) such that Σk ∩pk
BR(pk) converges

to M ∩p BR(p) in Hausdorff metric where R > 0. According to The-
orem 3.1, when R is chosen sufficiently small each Σk ∩pk

BR(pk) can
be represented as the graph of a convex function wk with a uniform
C0,1 norm bound (independent of k). By compactness we may choose
a coordinate system in R

n+1 such that, after possibly passing to sub-
sequences, all the functions wk are defined in a fixed domain Ω ∈ R

n

satisfying

‖wk‖C0,1(Ω) ≤ C0 independent of k(4.5)

and wk converges uniformly to a function w ∈ C0,1(Ω) whose graph
obviously locally represents M . Hence by Lemma 4.3 and a covering
argument, Vol(M) = µ.

Consider now the Dirichlet problem for the Gauss curvature equation
(2.1) in Ω. Using wk as a subsolution for each k ≥ 1, by Theorem 2.1 we
obtain a unique convex solution uk ∈ C0,1(Ω) of (2.1) satisfying uk = wk

on ∂Ω. We have uk ≥ wk on Ω and by (4.5)

‖uk‖C0,1(Ω) ≤ C0 independent of k.

Thus there exists a subsequence, which we still denote by {uk}, con-
verging to a convex function u in C0,1(Ω). We see u satisfies (2.1) and
u ≥ w on Ω with u = w on ∂Ω.

On the other hand, for each k ≥ 1 let Σ̃k be the lifting of Σk obtained
by replacing Dk with D̃k, where Dk and D̃k are the graphs of wk and uk

over Ω, respectively. Similarly, let M̃ be the locally convex hypersurface
obtained from M by replacing the graph of w over Ω by that of u.
Clearly Σ̃k converges to M̃ as uk converges uniformly to u on Ω. Since by
Lemma 4.2 µ ≤ Vol(Σ̃k) ≤ Vol(Σk) for each k it follows that Vol(M̃) = µ
and therefore Vol(D̃) = Vol(D). As both u and w are convex functions,
this implies u ≡ w on Ω by the proof of Lemma 4.2. Since u satisfies
(2.1), M has constant Gauss curvature K in a neighborhood of p. q.e.d.
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5. Regularity

In this section we study the regularity of the hypersurface M con-
structed in the previous section to complete our proof of Theorems 1.1
and 1.2. Throughout this section, we assume that Σ is a locally convex
immersed hypersurface which is C2 and locally strictly convex along its
boundary ∂Σ. Thus Σ is C2 and locally strictly convex in a neighbor-
hood of, and up to, ∂Σ. In addition, we assume ∂Σ to be embedded
and smooth. Let K ≤ minKΣ be a nonnegative constant and let M the
locally convex hypersurface with KM ≡ K and ∂M = ∂Σ constructed
in Section 4. By Theorem 4.4, M is C0,1 up to the boundary.

Theorem 5.1. If K > 0 then M is smooth up to the boundary
and locally strictly convex.

Proof. Consider an interior point p ∈ M which we assume to be
the origin of R

n+1. Since M is of class C0,1, M locally near p can
be represented as a convex graph xn+1 = u(x) ≥ 0 over a domain
Ω1 ⊂ R

n ≡ {xn+1 = 0} with a C0,1 norm bound

‖u‖C0,1(Ω1) ≤ C1.

It follows that u satisfies the inequalities in the viscosity sense

K ≤ det(uij) ≤ K(1 + C2
1 )

n+2
2 in Ω1.

We may assume M ∩p {xn+1 = 0} ⊂ Ω1. By a theorem of Caffarelli [2],
the nodal set {u = 0} either is a single point, in which case M is
smooth and strictly convex at p (see [4]), or does not contain any interior
extreme points. So we will be done if we can show that {u = 0} = {0}.
Suppose this is not the case. Then we can find two points q1, q2 ∈ ∂M
such that q1q2 ⊆ M ∩ {xn+1 = 0} and xn+1 = 0 is a local supporting
plane ofM at every point on q1q2. By the proof (Step 3) of Theorem 3.1,
q1q2 is transversal to ∂M at the endpoints. Without loss of generality
we may assume

qi = (0, . . . , 0, (−1)ia, 0), i = 1, 2,

where a > 0. Consequently, there exists a constant δ > 0 such that, in
a neighborhood of q1q2, M is given as a convex graph xn+1 = u(x) ≥ 0
over a domain

Ω0 := {x := (x′, xn) ∈ R
n|ϕ1(x′) < xn < ϕ2(x′) for |x′| < δ}
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where ϕ1, ϕ2 are smooth functions since ∂M is smooth and transversal
to q1q2. Let ψ be a smooth function defined on ∂Br, where Br ⊂ Ω0 is
the n-ball of radius r ≤ δ centered at the origin, satisfying ψ(0,±r) = 0
and

ψ(x′, xn) ≥ max{u(x′, ϕ1(x′)), u(x′, ϕ2(x′))}, ∀ (x′, xn) ∈ ∂Br.

This is possible since both u(x′, ϕ1(x′)) and u(x′, ϕ2(x′)) are smooth in
x′ as ∂M is smooth and tangential to xn+1 = 0. By [6] there exists a
unique strictly convex solution v ∈ C∞(Br) to the Dirichlet problem of
the Monge-Ampère equation

det(vij) = K in Br, v = ψ on ∂Br.

Since det(vij) = K ≤ det(uij) in Br and, by the convexity of u,

u(x′, xn) ≤ max{u(x′, ϕ1(x′)), u(x′, ϕ2(x′))}, ∀ (x′, xn) ∈ Ω0

which implies v ≥ u on ∂Br, we have v ≥ u ≥ 0 on Br by the comparison
principle. Since v is strictly convex and v(0, a) = v(0,−a) = 0, however,
we have v(0) < 0 which is a contradiction. This proves that M is
strictly convex and smooth in any interior point. Finally the boundary
regularity follows from [6]. The proof is thus complete. q.e.d.

This completes the proof of Theorem 1.1. Turning to the case K = 0
we first prove the following lemma.

Lemma 5.2. Let N be a locally convex hypersurface with KN ≡ 0.
Let p be an interior point of N and P a local supporting hyperplane to
N at p. Then p is contained in a k-dimensional subsimplex of N ∩p P
with vertices on ∂N for some 1 ≤ k ≤ n.

Proof. This follows form the argument in Step 3 of the proof of
Theorem 3.1 as there is no hyperplane through p satisfying assumption
(3.11). We redo the proof here for the reader’s convenience. Since N is
locally convex, P is a local supporting hyperplane to N at every point
on N ∩p P . Let D be the set of points on ∂N that (intrinsically) belong
to N∩pP . It suffices to show that any point in N∩pP is contained in the
convex hull ofD. If this is not the case, there is a point q ∈ N∩pP which
is separated by a hyperplane from D. We may assume P = {xn+1 = 0}
and q lies in xn > ε while D lies in xn < −ε for some ε > 0. It then
follows that N ∩q {xn+1 < δxn} is contained in the interior of N when
δ is sufficiently small. This is a contradiction as the Gauss curvature of
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N ∩q {xn+1 < δxn} is zero everywhere while its boundary is contained
in the hyperplane xn+1 = δxn. q.e.d.

Theorem 5.3. If K = 0, then M is C1,1 up to the boundary.

Proof. Let p be an interior point of M . From Step 3 of the proof of
Theorem 3.1 we see that M has a tangent hyperplane at p. Suppose M
locally (near p) is written as a convex graph xn+1 = u(x) with u ≥ 0
over TpM := {xn+1 = 0}. Since TpM is the tangent hyperplane to M
at every point on M ∩p TpM , u is defined in a domain Ω ⊂ R

n such
that M ∩p TpM ⊂ {(x, 0) : x ∈ Ω}. By [7], in order to prove that M is
C1,1 it suffices to show that there exists a constant C, depending only
on ∂M , and ε = ε(p) > 0 such that

u(x) ≤ C|x|2(5.1)

for all x ∈ Bε(x0) ⊂ R
n where p = (x0, 0).

By Lemma 5.2, p is contained in a k-dimensional subsimplex, which
we denote as S, of M ∩p TpM with vertices on ∂M for some 1 ≤ k ≤ n.
According to [7], in order to prove (5.1) it suffices to consider the case
k = 1. Suppose now that S is a segment with end points q1 := (x1, 0),
q2 := (x2, 0) on ∂M . By the proof of Theorem 3.1, S is transversal to ∂Ω
at the end points and both ∂Ω and u|∂Ω are smooth in a neighborhood
of xi (i = 1, 2). Of the two end points, suppose that q2 is the closer to
p. We may assume x2 = 0 and en to be the interior unit normal to ∂Ω
at 0 where ek (1 ≤ k ≤ n+ 1) is the unit vector in the positive xk-axis
direction. Since xn+1 = 0 is a local supporting hyperplane to M at q2,
en+1 ·Π(X,X) ≥ 0 for any X ∈ Tq2∂M . On the other hand, from the
proof of Theorem 3.1 we see that the angle between Π(X,X) and νΣ at
q2 does not exceed π

2 − 2β for some uniform constant β > 0. It follows
that

νΣ(q2) = en cosα+ en+1 sinα(5.2)

where 2β − π
2 ≤ α ≤ π

2 . We distinguish two cases: (i) α ≤ β and (ii)
α > β.

If α ≤ β, then for any X ∈ Tp∂M , the angle between Π(X,X) and
en is less than or equal to π

2 −β and, therefore, en ·Π(X,X) ≥ sinβ > 0.
This implies that ∂Ω∩Bδ(0) is uniformly strictly convex where δ > 0 is
a uniform constant. We therefore may follow the proof of [7] to derive
(5.1).
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We now suppose α > β. Then locally Σ is a strictly convex graph
xn+1 = u(x) over Ω ∩Bδ(0) for some uniform constant δ > 0. To prove
(5.1) we then can follow the proof of Theorem 3.2 in [11]. This proves
Theorem 5.3. q.e.d.

Remark 5.4. Theorem 1.2 follows from Lemma 5.2 and Theo-
rem 5.3. If minKΣ > 0, Theorem 5.3 may be proved by approximation
as follows. For any positive constant ε ≤ minKΣ, by Theorem 5.1 there
exists a smooth locally strictly convex hypersurface M ε with constant
Gauss curvature ε and ∂M ε = ∂Σ. By Theorem 3.5 (see Remark 3.6) we
obtain a subsequence εk → 0 such that {M εk} is convergent in local C1,1

norms. Clearly, the limiting hypersurface must be M . Consequently,
M is C1,1 up to the boundary.

Remark 5.5. We have the following characterization of M at
boundary (for K = 0). Let p ∈ ∂M and choose coordinates of R

n+1

with origin at p such that en+1 and en are the unit normal and interior
conormal to TpM , respectively, where ek as before is the unit vector in
the positive direction of xk axis.

Proposition 5.6. Let K = 0 and p ∈ M . Suppose M ∩p TpM
does not contain any point in ∂M ∩ {xn > 0}. Then there exists some
unit vector X ∈ Tp∂M such that θ(X) = 0 where θ(X) is defined by

(5.3) Π(X,X) = |Π(X,X)|(en cos θ(X) + en+1 sin θ(X)),
X ∈ Tp∂Σ, X �= 0.

Proof. Suppose

min{θ(X) : X ∈ Tp∂Σ, |X| = 1} > 0.

Then M∩p{0 ≤ xn+1 ≤ λxn} does not contain any point on ∂M∩{xn >
0} when λ > 0 is sufficiently small. By Lemma 5.2 this implies

(M ∩p {0 ≤ xn+1 ≤ λxn}) ∩ {xn > 0} = ∅,

contradicting the fact that TpM = {xn+1 = 0}. q.e.d.

6. Locally convex hypersurfaces with extreme boundary

We first give a brief proof of Corollary 1.3.
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Proof of Corollary 1.3. By Theorem 1.2 we obtain a globally convex
hypersurface M with KM ≡ 0 and ∂M = Γ. Moreover, M is on the
inner side of Σ along the boundary. Consider now an arbitrary interior
point q ∈ Σ and let P be a local supporting hyperplane to Σ at q. Since
Σ is C2 and locally strictly convex near the boundary, Σ ∩q P does not
(intrinsically) contain points on ∂Σ. Let t0 > 0 be the smallest value
such that Σt0 contains a point p on ∂Σ, where

Σt := Σ ∩q {z ∈ R
n+1 : (z − q) · νP ≤ t}, t ≥ 0.

We see that ∂Σ locally near p lies in the half space {z ∈ R
n+1 : (z− p) ·

νP ≥ 0}. Since M is globally convex, ∂M lies on one side of TpM . Let
us assume TpM = {xn+1 = 0} and that ∂M lies in xn+1 ≥ 0.

We now choose coordinates in R
n+1 such that en+1 and en are the

unit normal and interior conormal to ∂M at p, respectively. We claim
that

νP = en cosα+ en+1 sinα, for some 0 ≤ α ≤ π
2 .(6.1)

Note that this implies Σt0 ⊂ {xn+1 ≤ 0} and thus completes the proof.
For any 0 < t < t0, since Σt does not contain points on ∂M , it is easy

to see that (Σ\Σt)∪Dt is a lifting of Σ with respect toK = 0, whereDt is
the region on the hyperplane Pt := {z ∈ R

n+1 : (z−q) ·νP = t} bounded
by Σt ∩ Pt. Thus M ∩p {z ∈ R

n+1 : (z − q) · νP ≤ t0} does not intersect
the region bounded by Σt ∪Dt for any 0 < t < t0. Consequently, TpM
does not intersect the interior of Σt0 . This proves (6.1). q.e.d.

We next construct a smooth locally strictly convex, non-embedded,
surface M of Gauss curvature one in R

3 such that ∂M is strictly ex-
treme. Let S1 be the unit sphere centered at (1

2 , 0, 0). Cut off a small
cap from the top of S1 using a plane perpendicular to the line through
(0, 0, 2) and the center of S1. Let Σ1 be the resulting spherical cap and
Σ2 the reflection of Σ1 with respect to x1 = 0. Now, connecting the
boundary circles of Σ1 and Σ2 by a thin convex bridge, we obtain a
locally strictly convex surface Σ with self-intersection. Moreover, ∂Σ is
strictly extreme. According to the bridge principle of Hauswirth [16]
there exists a locally strictly convex surface M of constant Gauss cur-
vature one with the same boundary. It follows from [16] that M is a
small perturbation of Σ and therefore has self-intersection.

If we start with cutting a small cap from the top of S1 using a hor-
izontal plane and repeat the rest of the above procedure, we get a non-
embedded locally strictly convex K-surface M such that ∂M is extreme
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while the boundary of the convex hull of ∂M has interior singularities
along the bottom edges.

References

[1] S. Alexander & M. Ghomi, The convex hull property and the topology of hypersur-
faces with nonnegative curvature, Adv. in Math., to appear.

[2] L.A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère
equation and their strict convexity, Annals of Math. 131 (1990) 129–134,
MR 91f:35058, Zbl 0704.35045.

[3] L.A. Caffarelli, Interior W 2,p estimates for solutions of the Monge-Ampère equa-
tion, Annals of Math. 131 (1990) 135–150, MR 91f:35059, Zbl 0704.35044.

[4] L.A. Caffarelli, Monge-Ampère equation, div-curl theorems in Lagrangian coordi-
nates, compression and rotation, Lecture Notes, 1997.

[5] L.A. Caffarelli, J.J. Kohn, L. Nirenberg & J. Spruck, The Dirichlet problem for non-
linear second-order elliptic equations II. Complex Monge-Ampère and uniformly
elliptic equations, Comm. Pure Applied Math. 38 (1985) 209–252, MR 87f:35097,
Zbl 0598.35048.

[6] L.A. Caffarelli, L. Nirenberg & J. Spruck, The Dirichlet problem for nonlinear
second-order elliptic equations I. Monge-Ampère equations, Comm. Pure Applied
Math. 37 (1984) 369–402, MR 88k:35073, Zbl 0598.35047.

[7] L.A. Caffarelli, L. Nirenberg & J. Spruck, The Dirichlet problem for the Degener-
ate Monge-Ampère equation, Revista Matemática Iberoamericana 2 (1986) 19–27,
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MR 97k:35085, Zbl 0851.35036.

[30] N.S. Trudinger & J.I.E. Urbas, On second derivative estimates for equations of
Monge-Ampère type, Bull. Austral. Math. Soc., 30 (1984) 321–334, MR 86b:35064,
Zbl 0557.35054.

[31] N.S. Trudinger & X. Wang, On locally convex hypersurfaces with boundary, J.

Reine Angew. Math. 551 (2002) 11–32, MR 1 932 171.

University of Tennessee

Knoxville, TN 37996

Johns Hopkins University

Baltimore, MD 21218

http://www.ams.org/mathscinet-getitem?mr=1932171
http://www.emis.de/cgi-bin/MATH-item?0557.35054
http://www.ams.org/mathscinet-getitem?mr=86b:35064
http://www.emis.de/cgi-bin/MATH-item?0851.35036
http://www.ams.org/mathscinet-getitem?mr=97k:35085
http://www.emis.de/cgi-bin/MATH-item?0823.53047
http://www.ams.org/mathscinet-getitem?mr=95g:53007

