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Abstract
Using the L2 norm of the Higgs field as a Morse function, we study the
moduli spaces of U(p, q)-Higgs bundles over a Riemann surface. We require
that the genus of the surface be at least two, but place no constraints on
(p, q). A key step is the identification of the function’s local minima as
moduli spaces of holomorphic triples. In a companion paper [7] we prove
that these moduli spaces of triples are nonempty and irreducible.

Because of the relation between flat bundles and fundamental group rep-
resentations, we can interpret our conclusions as results about the num-
ber of connected components in the moduli space of semisimple PU(p, q)-
representations. The topological invariants of the flat bundles are used to
label subspaces. These invariants are bounded by a Milnor–Wood type
inequality. For each allowed value of the invariants satisfying a certain co-
primality condition, we prove that the corresponding subspace is nonempty
and connected. If the coprimality condition does not hold, our results apply
to the closure of the moduli space of irreducible representations.
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1. Introduction

The relation between Higgs bundles and fundamental group repre-
sentations provides a vivid illustration of the interaction between geom-
etry and topology. On the topological side we have a closed oriented
surface X and the moduli space (or character variety) of representations
of π1X in a Lie group G. We cross over to complex geometry by fixing
a complex structure on X, thereby turning it into a Riemann surface.
The space of representations, or equivalently the space of flat G-bundles,
then emerges as a complex analytic moduli space of G-Higgs bundles.
In this guise, the moduli space carries a natural proper function whose
restriction to the smooth locus is a Morse-Bott function. We can there-
fore use this function to determine topological properties of the moduli
space of representations. Our goal in this paper is to pursue these ideas
in the case where the group G is the real Lie group PU(p, q), the adjoint
form of the noncompact group U(p, q).

The relevant Higgs bundles in our situation are U(p, q)-Higgs bun-
dles. These can be seen as a special case of the G-Higgs bundles defined
by Hitchin in [22], where G is a real form of a complex reductive Lie
group. Such objects provide a natural generalization of holomorphic
vector bundles, which correspond to the case G = U(n) and zero Higgs
field. In particular, they permit an extension to other groups of the
Narasimhan and Seshadri theorem ([26]) on the relation between uni-
tary representations of π1X and stable vector bundles. By embedding
U(p, q) in GL(p+q) we can give a concrete description of a U(p, q)-Higgs
bundle as a pair (

V ⊕W,Φ =
(

0 β
γ 0

))
(1.1)

where V and W are holomorphic vector bundles of rank p and q respec-
tively, β is a section in H0(Hom(W,V )⊗K), and γ ∈ H0(Hom(V,W )⊗
K), so that Φ ∈ H0(End(V ⊕W ) ⊗K).

By the work of Hitchin [22, 23] Donaldson [12], Simpson [29, 30, 31,
32] and Corlette [10], we can define moduli spaces of polystable Higgs
bundles, and these can be identified with moduli spaces of solutions
to natural gauge theoretic equations. Moreover, since the gauge the-
ory equations amount to a projective flatness condition, these modu-
li spaces correspond to moduli spaces of flat structures. In the case
of U(p, q)-Higgs bundles, the flat structures correspond to semi-simple
representations of π1X into the group PU(p, q). The Higgs bundle
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moduli spaces can thus be used, in a way which we make precise in
Sections 2 and 3, to study the representation variety

R(PU(p, q)) = Hom+(π1X,PU(p, q))/PU(p, q),

where Hom+(π1X,PU(p, q)) denotes the set of semi-simple representa-
tions of π1X in PU(p, q), and the quotient is by the adjoint action.

Our main tool for studying the topology of the Higgs moduli space
is the function which measures the L2-norm of the Higgs field. When
the moduli space is smooth, this turns out to provide a suitably non-
degenerate Bott-Morse function which is, moreover, a proper map. In
some cases (cf. [22, 18, 20]) the critical submanifolds are well enough
understood to allow the extraction of topological information as detailed
as the Poincaré polynomial. In our case our understanding is confined
to the local minima of the function. This is sufficient to allow us to
count the number of components of the Higgs moduli spaces, and thus
of the representation varieties. A trivial but important observation is
that the properness of the function allows us to draw conclusions about
connected components also in the non-smooth case; we shall henceforth,
somewhat imprecisely, refer to the function as the “Morse Function”,
whether or not the moduli space is smooth.

The criterion we use for finding the local minima can be applied
more generally, for instance if U(p, q) is replaced by any real form of
a complex reductive group. This should provide an important tool for
future research. In the present case, this criterion allows us to iden-
tify the subspaces of local minima as moduli spaces in their own right,
namely as moduli spaces of the holomorphic triples introduced in [4]. In
a companion paper [7] we develop the theory of such objects and their
moduli spaces. Using the results of [7] we are able to deduce several
results about the Higgs moduli spaces and also about the corresponding
representation spaces.

The relation between Higgs bundles and surface group representa-
tions has been successfully exploited by others, going back originally to
the work of Hitchin and Simpson on complex reductive groups. The use
of Higgs bundle methods to study R(G) for real G was pioneered by
Hitchin in [23], and further developed in [18, 19]. It has also been used
by Xia and Xia-Markman (in [34, 35, 36, 24]) to study various special
cases of G = PU(p, q). None of these, though, address the general case
of PU(p, q), as we do in this paper.

We now give a brief summary of the contents and main results of
this paper.
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In Sections 2 and 3 we give some background and describe the basic
objects of our study. In Section 2 we describe the natural invariants
associated with representations of π1X into PU(p, q). We also discuss
the invariants associated with representations of Γ, the universal central
extensions of π1X, into U(p, q). The space of such representations is
denoted by RΓ(U(p, q)). In both cases, these involve a pair of integers
(a, b) which can be interpreted respectively as degrees of rank p and rank
q vector bundles over X. In the case of the PU(p, q) representations,
the pair is well-defined only as a class in a quotient Z ⊕ Z/(p, q)Z.
This leads us to define subspaces R[a, b] ⊂ R(PU(p, q)) and RΓ(a, b) ⊂
RΓ(U(p, q)). For fixed (a, b), the space RΓ(a, b) fibers over R[a, b] with
connected fibers.

In Section 3 we define U(p, q)-Higgs bundles and their moduli spaces
and establish their essential properties. Thinking of a U(p, q)-Higgs
bundle as a pair (V ⊕W,Φ), the parameters (a, b) appear here as the
degrees of the bundles V andW . The moduli space of polystable U(p, q)-
Higgs bundles with deg(V ) = a and degW = b, which we denote by
M(a, b), is the space that can be identified with the component RΓ(a, b)
of RΓ(U(p, q)). This, together with the fibration over RΓ(U(p, q)) are
the crucial links between the Higgs moduli and the surface group rep-
resentation varieties.

Fixing p, q, a and b, we begin the Morse theoretic analysis of M(a, b)
in Section 4. The basic results we need (cf. Proposition 4.3) are that the
L2-norm of the Higgs field has a minimum on each connected component
of M(a, b), and hence if the subspace of local minima is connected then
so is M(a, b). We identify the local minima, the loci of which we denote
by N (a, b), and prove (cf. Theorem 4.6 and Proposition 4.8) that these
correspond precisely to holomorphic triples in the sense of [4]. A full
treatment of holomorphic triples and their moduli spaces is given in [7].
We summarize the salient features of these moduli spaces in Section 5.

In Section 6 we knit together all the strands. Using the properties
of the moduli spaces of triples, we establish the key (for our purposes)
topological properties of the strata N (a, b). These lead directly to our
main results for the moduli spaces M(a, b). Some of the results depend
on (a, b) only in the combination

τ = τ(a, b) = 2
aq − bp

p+ q
,

known as the Toledo invariant. Indeed, (a, b) is constrained by the
bounds 0 � |τ | � τM , where τM = 2 min{p, q}(g−1). Originally proved
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by Domic and Toledo in [11], these bounds emerge naturally from our
point of view (cf. Corollary 3.27 and Remark 5.7). Bounds on invariants
of this type, for representations of finitely generated groups in U(p, q),
have also recently been studied using techniques from ergodic theory
(see [9]). Summarizing our main results, we prove:

Theorem A (Theorems 6.1 and 6.5). Fix positive integers (p,q).
Take (a, b) ∈ Z⊕Z and let τ(a, b) be the Toledo invariant. Let Ms(a, b) ⊆
M(a, b) denote the moduli space of strictly stable U(p, q)-Higgs bundles.

(1) M(a, b) is nonempty if and only if 0 � |τ(a, b)| � τM . If τ(a, b) =
0, or |τ(a, b)| = τM and p �= q then Ms(a, b) is empty; otherwise
it is nonempty whenever M(a, b) is nonempty.

(2) If |τ(a, b)| = 0 or |τ(a, b)| = τM and p �= q then M(a, b) is con-
nected.

(3) Whenever nonempty, the moduli space Ms(a, b) is a smooth man-
ifold of the expected dimension (i.e., 1+(p+q)2(g−1)), with con-
nected closure Ms(a, b) ⊆ M(a, b). In these cases, if M(a, b) has
more than one connected component, then GCD(p+ q, a+ b) �= 1
and, if p = q, 0 < |τ | � (p− 1)(2g − 2).

Theorem B (Theorem 3.32). Suppose that p �= q and (a, b) ∈ Z⊕Z

are such that |τ(a, b)| = τM . To be specific, suppose that p < q and
τ(a, b) = p(2g − 2). Then every element in M(a, b) decomposes as the
direct sum of a polystable U(p, p)-Higgs bundle with maximal Toledo
invariant and a polystable vector bundle of rank q − p. Thus

(1.2) M(p, q, a, b) ∼=
M(p, p, a, a− p(2g − 2)) ×M(q − p, b− a+ p(2g − 2)).

In particular, the smooth locus in M(p, q, a, b) has dimension 2 + (q2 +
5p2 − 2pq)(g − 1). This is strictly smaller than the expected dimension
if g � 2.

(A similar result holds if p > q, as well as if τ = −p(2g − 2).)

Since we identify M(a, b) = RΓ(a, b), we can translate these results
directly into statements about RΓ(a, b) (given in Theorems 6.6 and 6.7).7

The subspace in RΓ(a, b) which corresponds to Ms(a, b) ⊆ M(a, b) is
7Note added in proof: after this paper was submitted, M. Burger, A. Iozzi and

A. Wienhard published the note Surface group representations with maximal Toledo
invariant, Comptes Rendus 336 (2003) 387–390, in which they prove a result similar
to our Theorem 6.7.
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denoted by R∗
Γ(a, b). The representations it labels include all the sim-

ple representations. Defining R∗
Γ(U(p, q)) ⊂ RΓ(U(p, q)) to be the union

over all (a, b) of the components R∗
Γ(a, b) we thus obtain:

Theorem C (Corollary 6.16). The moduli space R∗
Γ(U(p, q)) has

2(p+ q) min{p, q}(g − 1) + GCD(p, q)

connected components.

Since RΓ(a, b) fibers over R[a, b] with connected fibers, we can ap-
ply our results to the latter. The results are given in Theorems 6.10
and 6.11.

The above results fall just short of saying that the full moduli spaces
M(a, b) (= R(a, b)) and R[a, b] are connected for all allowed choices of
(a, b). They show however that if any one is not connected then it
has one (nonempty) connected component which contains all the irre-
ducible objects. Any other components must thus consist entirely of
reducible (or strictly semisimple) elements. Theorem B and its analogs
for RΓ(a, b) and R[a, b] generalize rigidity results of Toledo [33] (when
p = 1) and Hernández [21] (when p = 2).

This paper, together with its companion [7] form a substantially
revised version of the preprint [6]. The main results proved in this paper
were announced in the note [5]. In that note we claim (without proof)
that the connectedness results for the moduli spaces R(a, b) and R[a, b]
hold without the above qualifications. This is a reasonable conjecture,
which we hope to come back to in a future publication.

We note, finally, that our methods surely apply more widely than
to U(p, q)-Higgs bundles and PU(p, q) representations (see, for example,
Remark 4.16). Moreover, careful scrutiny of the Lie algebra properties
used in the proofs suggests certain aspects can be generalized to repre-
sentations in any real group G for which G/H is hermitian symmetric,
where H ⊂ G is a maximal compact subgroup. This will be addressed
in a future publication.
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noma of Madrid and the University of Aarhus, the Department of Pure
Mathematics of the University of Porto, the Mathematical Sciences Re-
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versity of Oxford, and the Erwin Schrödinger International Institute
for Mathematical Physics in Vienna for their hospitality during various
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2. Representations of surface groups

In this section we record some general facts about representations of
a surface group in U(p, q) or PU(p, q) and set up our notation. A very
useful reference for the general theory is Goldman’s paper [16].

2.1 Moduli spaces of representations

Let X be a closed oriented surface of genus g � 2. By definition U(p, q)
is the subgroup of GL(n,C) (with n = p + q) which leaves invariant
a hermitian form of signature (p, q). It is a noncompact real form of
GL(n,C) with center U(1) and maximal compact subgroup U(p)×U(q).
The quotient U(p, q)/(U(p)×U(q)) is a hermitian symmetric space. The
adjoint form PU(p, q) is given by the exact sequence of groups

1 −→ U(1) −→ U(p, q) −→ PU(p, q) −→ 1,

and we have a standard inclusion PU(p, q) ⊂ PGL(n,C).

Definition 2.1. By a representation of π1X in PU(p, q) we mean
a homomorphism ρ : π1X → PU(p, q). We say that a representation of
π1X in PU(p, q) is semi-simple if the induced (adjoint) representation
on the Lie algebra of PU(p, q) is semi-simple. The group PU(p, q) acts
on the set of representations via conjugation. Restricting to the semi-
simple representations, we get the moduli space of representations,

R(PU(p, q)) = Hom+(π1X,PU(p, q))/PU(p, q).(2.1)

The moduli space of representations can be described more con-
cretely as follows. From the standard presentation

π1X =

〈
A1, B1, . . . , Ag, Bg |

g∏
i=1

[Ai, Bi] = 1

〉

we see that Hom+(π1X,PU(p, q)) can be embedded in PU(p, q)2g via

Hom+(π1X,PU(p, q)) → PU(p, q)2g

ρ 	→ (ρ(A1), . . . ρ(Bg)).
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We give Hom+(π1X,PU(p, q)) the subspace topology and R(PU(p, q))
the quotient topology. This topology is Hausdorff because we have
restricted attention to semi-simple representations.

Clearly any representation of π1X in U(p, q) gives rise to a repre-
sentation in PU(p, q); however, not all representations in PU(p, q) lift
to U(p, q). We are thus motivated to consider representations of the
central extension

0 −→ Z −→ Γ −→ π1X −→ 1.(2.2)

Such extensions are defined (as in [1]) by the generators A1, B1, . . . , Ag,
Bg and a central element J subject to the relation

∏g
i=1[Ai, Bi] = J .

With Γ thus defined, any representation of π1X in PU(p, q) can be lifted
to a representation of Γ in U(p, q).

In analogy with Definition 2.1 we make the following definition.

Definition 2.2. We define the moduli space of semi-simple repre-
sentations of Γ in U(p, q) by

RΓ(U(p, q)) = Hom+(Γ,U(p, q))/U(p, q),(2.3)

where semi-simplicity is defined with respect to the induced adjoint rep-
resentation. This space is topologized in the same way as R(PU(p, q)).

2.2 Invariants

Our basic objective is to study the number of connected components
of the spaces R(PU(p, q)) and RΓ(U(p, q)). The first step in the study
of topological properties of these spaces is to identify the appropriate
topological invariant of a representation ρ : π1X → G. For a general
connected Lie group G the relevant invariant is an obstruction class in
H2(X,π1G) ∼= π1G (see Goldman [16, 17]). In the following we give
an explicit description of this invariant in our case, using characteristic
classes of the flat bundles associated to representations of the funda-
mental group. In fact we shall not need the more general description of
the invariant.

We begin by considering the case G = U(p, q). By the same ar-
gument as in [1]8, RΓ(U(p, q)) can be identified with the moduli space
of connections with central curvature on a fixed U(p, q)-bundle on X.

8While [1] gives the argument for U(n) and PU(n), there are no essential changes
to be made in order to adapt for the case of U(p, q) and PU(p, q).
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Taking a reduction to the maximal compact U(p)×U(q), we thus asso-
ciate to each class ρ̃ ∈ RΓ(U(p, q)) a vector bundle of the form V ⊕W ,
where V and W are rank p and q respectively, and thus a pair of integers
(a, b) = (deg(V ),deg(W )). There is thus a map

c̃ : RΓ(U(p, q)) → Z ⊕ Z

given by c̃(ρ̃) = (a, b). The corresponding map on Hom+(Γ,U(p, q)) is
clearly continuous and thus locally constant. Since U(p, q) is connected,
the map c̃ is likewise continuous and thus constant on connected com-
ponents. We make the following definition.

Definition 2.3. The subspace of RΓ(U(p, q)) corresponding to repre-
sentations with invariants (a, b) is denoted by

RΓ(a, b) = c̃−1(a, b)
= {ρ̃ ∈ RΓ(U(p, q)) | c̃(ρ̃) = (a, b) ∈ Z ⊕ Z}.

Note that RΓ(a, b) is a union of connected components, because c̃ is
constant on each connected component.

Next we consider the case G = PU(p, q). Any flat PU(p, q)-bundle
lifts to a U(p, q)-bundle with a connection with constant central curva-
ture. This lift is, however, not uniquely determined: in fact two such
U(p, q)-bundles give rise to the same flat PU(p, q)-bundle if and only if
one can be obtained from the other by twisting with a line bundle L
with a unitary connection of constant curvature. If the invariant of the
U(p, q)-bundle is (a, b) and the degree of L is l, then the invariant associ-
ated to the twisted bundle is (a+pl, b+ql). There is thus a well-defined
map

c : R(PU(p, q)) −→ (Z ⊕ Z)/(p, q)Z,(2.4)

where (Z ⊕ Z)/(p, q)Z denotes the quotient of Z ⊕ Z by the Z-action
l·(a, b) = (a+pl, b+ql). Notice that (Z⊕Z)/(p, q)Z can be identified with
π1(PU(p, q)). The invariant defined by c is the same as the obstruction
class defined by Goldman [16, 17].

Definition 2.4. Denote the image of (a, b) in (Z ⊕ Z)/(p, q)Z by
[a, b]. The subspace of R(PU(p, q)) corresponding to representations
with invariant [a, b] is denoted by

R[a, b] = c−1[a, b]
= {ρ ∈ R(PU(p, q)) | c(ρ) = [a, b] ∈ (Z ⊕ Z)/(p, q)Z}.
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The space R[a, b] is a union of connected components in the same
way as RΓ(a, b). In order to compare the spaces RΓ(a, b) and R[a, b]
notice that we have surjective maps

RΓ(a, b) → R[a, b].(2.5)

Moreover, the preimage

π−1(R[a, b]) =
⋃
(a,b)

RΓ(a, b)(2.6)

where the union is over all (a, b) in the class [a, b] ∈ (Z⊕Z)/(p, q)Z. As
mentioned above, tensoring by line bundles of degree l with constant
curvature connections gives an isomorphism

RΓ(a, b)
∼=−→ RΓ(a+ pl, b+ ql).

Notice that if c(ρ) = [a,−a] for a representation ρ ∈ R(PU(p, q)), then
the associated U(p, q)-bundle can be taken to have degree zero and the
projectively flat connection is actually flat. Then ρ defines a representa-
tion of π1X in U(p, q). Under the correspondence between R(PU(p, q))
and RΓ(U(p, q)), ρ corresponds to a Γ representation in which the cen-
tral element J acts trivially. Furthermore, the subspaces RΓ(a,−a) ⊂
RΓ(U(p, q)) can be identified with components of R(U(p, q)) (the moduli
space for representations of π1X in U(p, q)). Indeed, defining

R(a) = RΓ(a,−a),(2.7)

we see that R(U(p, q)) is a union over a ∈ Z of the subspaces R(a).
Finally, we observe that the moduli space of flat degree zero line

bundles acts by tensor product of bundles on RΓ(a, b). Since this modu-
li space is isomorphic to the torus U(1)2g, we get the following relation
between connected components.

Proposition 2.5. The map RΓ(a, b) → R[a, b] given in (2.5) de-
fines a U(1)2g-fibration. Thus the subspace R[a, b] ⊆ R(PU(p, q)) is
connected if RΓ(a, b) is connected.

3. Higgs bundles and flat connections

We study the moduli spaces of representations by choosing a com-
plex structure on X. This allows us to identify these spaces with cer-
tain moduli spaces of Higgs bundles. In this section we explain this
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correspondence and recall some general facts about Higgs bundles. Fol-
lowing this, we describe the special class of Higgs bundles relevant for
the study of representations in PU(p, q) and U(p, q) and derive some
basic results about these moduli spaces.

3.1 GL(n, C)-Higgs bundles

Give X the structure of a Riemann surface. We recall (from [10, 12, 22,
29, 31, 32]) the following definition and basic facts about GL(n,C)-Higgs
bundles.

Definition 3.1.

(1) A GL(n,C)-Higgs bundle on X is a pair (E,Φ), where E is a rank
n holomorphic vector bundle overX and Φ ∈ H0(End(E)⊗K) is a
holomorphic endomorphism of E twisted by the canonical bundle
K of X.

(2) The GL(n,C)-Higgs bundle (E,Φ) is stable if the slope stability
condition

µ(E′) < µ(E)(3.1)

holds for all proper Φ-invariant subbundles E′ of E. Here the slope
is defined by µ(E) = deg(E)/ rk(E) and Φ-invariance means that
Φ(E′) ⊂ E′ ⊗K. Semistability is defined by replacing the above
strict inequality with a weak inequality. A Higgs bundle is called
polystable if it is the direct sum of stable Higgs bundles with the
same slope.

(3) Given a hermitian metric on E, let A denote the unique unitary
connection compatible with the holomorphic structure, and let FA

be its curvature. Hitchin’s equations on (E,Φ) are

FA + [Φ,Φ∗] = −√−1µIdEω,(3.2)

∂AΦ = 0,

where µ is a constant, IdE is the identity on E, ∂A is the anti-
holomorphic part of the covariant derivative dA and ω is the Kähler
form on X. If we normalize ω so that

∫
X ω = 2π then, taking the

trace and integrating over X in the first equation, one sees that
µ = µ(E). A solution to Hitchin’s equations is irreducible if there
is no proper subbundle of E preserved by A and Φ.
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Theorem 3.2.

(1) Let (E,Φ) be a GL(n,C)-Higgs bundle. Then (E,Φ) is polystable
if and only if it admits a hermitian metric such that Hitchin’s
equations (3.2) are satisfied. Moreover, (E,Φ) is stable if and
only if the corresponding solution is irreducible.

(2) Fix a hermitian metric in a smooth rank n complex vector bundle
on X, then there is a gauge theoretic moduli space of pairs (A,Φ),
consisting of a unitary connection A and an endomorphism valued
(1, 0)-form Φ, which are solutions to Hitchin’s equations (3.2),
modulo U(n)-gauge equivalence.

(3) The moduli space of rank n degree d polystable Higgs bundles is
a quasi-projective variety of complex dimension 2(1 + n2(g − 1)).
There is a map from the gauge theoretic moduli space to this modu-
li space given by taking a solution (A,Φ) to Hitchin’s equations to
the Higgs bundle (E,Φ), where the holomorphic structure on E is
given by ∂A. This map is a homeomorphism, and a diffeomor-
phism on the smooth locus.

(4) If we define a Higgs connection (as in [31]) by

D = dA + θ(3.3)

where θ = Φ + Φ∗, then Hitchin’s equations are equivalent to the
conditions

FD = −√−1µIdEω,(3.4)
dAθ = 0,
d∗Aθ = 0.

In particular, D is a projectively flat connection. If deg(E) = 0
then D is actually flat. It follows that in this case the pair (E,D)
defines a representation of π1X in GL(n,C). If deg(E) �= 0, then
the pair (E,D) defines a representation of π1X in PGL(n,C), or
equivalently, a representation of Γ in GL(n,C). By the theorem of
Corlette ([10]), every semisimple representation of Γ (and there-
fore every semisimple representation of π1X) arises in this way.

(5) This correspondence gives rise to a homeomorphism between the
moduli space of polystable Higgs bundles of rank n and the moduli
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space of semisimple representations of Γ in GL(n,C). If the degree
of the Higgs bundle is zero, then the moduli space is homeomorphic
to the moduli space of representations of π1X in GL(n,C).

3.2 U(p, q)-Higgs bundles

If we fix integers p and q such that n = p + q, then we can isolate a
special class of GL(n,C)-Higgs bundles by the requirements that

E = V ⊕W(3.5)

Φ =
(

0 β
γ 0

)
where V and W are holomorphic vector bundles of rank p and q respec-
tively and the nonzero components in the Higgs field are

β ∈ H0(Hom(W,V ) ⊗K), and γ ∈ H0(Hom(V,W ) ⊗K).

The form of the Higgs field is determined by the Lie theory of the
symmetric space U(p, q)/(U(p)×U(q)). Recall that for any real form G
of a complex reductive group GC, with maximal compact subgroup H,
there is an Ad-invariant decomposition

g = h + m

where g=Lie(G), h=Lie(H) is the +1 eigenspace of the Cartan involu-
tion and m is the −1 eigenspace. This induces a decomposition

gC = hC + mC(3.6)

of gC=Lie(GC). In the case of G = U(p, q), where H = U(p)×U(q) and
thus hC = gl(p,C) ⊕ gl(q,C), the decomposition (3.6) becomes

gl(n,C) = (gl(p,C) ⊕ gl(q,C)) + mC.(3.7)

If we identify gl(p,C) ⊕ gl(q,C) with the block diagonal elements in
gl(n,C), then mC corresponds to the off diagonal matrices.

We can now describe the above Higgs bundles more intrinsically
as follows. Let PGL(p,C) and PGL(q,C) be the principal frame bundles
for V and W respectively. Let P = PGL(p,C) × PGL(q,C) be the fiber
product, and let AdP = P ×Ad gl(n,C) be the adjoint bundle, where
GL(p,C) × GL(q,C) ⊂ GL(n,C) acts by the adjoint action on the Lie
algebra of GL(n,C). This defines a subbundle

PmC = P ×Ad mC ⊂ AdP.(3.8)

We can then make the following definition.
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Definition 3.3. A U(p, q)-Higgs bundle9 on X is a pair (P,Φ)
where P is a holomorphic principal GL(p,C)×GL(q,C) bundle, and Φ
is a holomorphic section of the vector bundle PmC ⊗ K (where PmC is
the bundle defined in (3.8)).

Remark 3.4. We can always write P = PGL(p,C) × PGL(q,C). If we
let V and W be the standard vector bundles associated to PGL(p,C) and
PGL(q,C) respectively, then any Φ ∈ H0(PmC ⊗K) can be written as in
(3.5). We will usually adopt the vector bundle description of U(p, q)-
Higgs bundles.

Remark 3.5. Definition 3.3 is compatible with the definitions in
[23] and [18], where G-Higgs bundles are defined for any real form G
of a complex reductive Lie group GC. There, using the above notation,
a G-Higgs bundle is a pair (P,Φ), where P is a principal HC-bundle
and Φ is a holomorphic section of (P ×Ad mC) ⊗ K. From a different
perspective, Definition 3.3 defines an example of a principal pair in the
sense of [2] and [25]. Strictly speaking, since the canonical bundle K
plays the role of a fixed ‘twisting bundle’, what we get is a principal pair
in the sense of [8]. The defining data for the pair are then the principal
GL(p,C)×GL(q,C)×GL(1)-bundle PGL(p,C)×PGL(q,C)×PK (where PK

is the frame bundle for K), and the associated vector bundle PmC ⊗K.

Lemma 3.6. Let (E = V ⊕W,Φ) be a U(p, q)-Higgs bundle with a
hermitian metric such that V ⊕W is a unitary orthogonal decomposition.
Let A be a unitary connection and let D = dA + θ be the corresponding
Higgs connection, where θ = Φ + Φ∗. Then D is a U(p, q)-connection,
i.e., in any unitary local frame the connection 1-form takes its values in
the Lie algebra of U(p, q).

Proof. Fix a local unitary frame. Then D = d + A + θ, where A
takes its values in u(p) ⊕ u(q) ⊂ u(p, q), while θ takes its values in m,
where

u(p, q) = u(p) ⊕ u(q) + m

is the eigenspace decomposition of the Cartan involution. q.e.d.

Definition 3.7. Let (E,Φ) be a U(p, q)-Higgs bundle with E =
V ⊕W and Φ =

(
0 β
γ 0

)
. We say (E,Φ) is a stable U(p, q)-Higgs bundle

if the slope stability condition µ(E′) < µ(E), is satisfied for all Φ-
invariant subbundles of the form E′ = V ′ ⊕W ′, i.e., for all subbundles

9The reason for the name is explained by Remark 3.5 and Lemma 3.6
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V ′ ⊂ V and W ′ ⊂W such that

β : W ′ −→ V ′ ⊗K(3.9)
γ : V ′ −→W ′ ⊗K.(3.10)

Semistability for U(p, q)-Higgs bundles is defined by replacing the above
strict inequality with a weak inequality, and (E,Φ) is polystable if it is
a direct sum of stable U(p, q)-Higgs bundles all of the same slope. We
shall say that a polystable U(p, q)-Higgs bundle which is not stable is
reducible. A morphism between two U(p, q)-Higgs bundles (V ⊕W,Φ)
and (V ′⊕W ′,Φ′) is given by maps gV : V → V ′ and gW : W →W ′ which
intertwine Φ and Φ′, i.e., such that (gV ⊕ gW )⊗ IK ◦Φ = Φ′ ◦ (gV ⊕ gW )
where IK is the identity on K. In particular we have a natural notion
of isomorphism of U(p, q)-Higgs bundles.

Remark 3.8. The stability condition for a U(p, q)-Higgs bundle
is a priori weaker than the stability condition given in Definition 3.1
for GL(n,C)-Higgs bundles. However, it is shown in [19, Section 2.3]
that the weaker condition is in fact equivalent to the ordinary stability
of (E,Φ).

Proposition 3.9. Let (E,Φ) be a U(p, q)-Higgs bundle with E =
V ⊕W and Φ =

(
0 β
γ 0

)
. Then (E,Φ) is polystable if and only if it admits

a hermitian metric such that E = V ⊕W is an orthogonal decomposition
and such that Hitchin’s equations (3.2) are satisfied.

Proof. This is a special case of the correspondence invoked in [23]
for G-Higgs bundles where G is a real form of a reductive Lie group.
By Remark 3.5 it can also be seen as a special case of the Hitchin–
Kobayashi correspondence for principal pairs (cf. [2] and [25] and [8]).
We note finally that in one direction the result follows immediately from
Theorem 3.2 (1): if (V ⊕W,Φ) supports a compatible metric such that
(3.2) is satisfied, then it is polystable as a GL(n,C)-Higgs bundle, and
hence it is U(p, q)-polystable. q.e.d.

Definition 3.10. We define M(a, b) to be the moduli space of
polystable U(p, q)-Higgs bundles with deg(V ) = a and degW = b.
We denote by Ms(a, b) the subspace parameterizing the strictly sta-
ble U(p, q)-Higgs bundles.

The construction of M(a, b) is essentially the same as in Section 9
of [32]. There the moduli space of G-Higgs bundles is constructed for



126 s. bradlow, o. garcia-prada & p. gothen

any reductive group G. We take G = GL(p,C) × GL(q,C). The differ-
ence between a U(p, q)-Higgs bundle and a GL(p,C) × GL(q,C)-Higgs
bundle is entirely in the nature of the Higgs fields. Taking the stan-
dard embedding of GL(p,C)×GL(q,C) in GL(p+ q,C) we see that in a
GL(p,C) × GL(q,C)-Higgs bundle the Higgs field Φ takes its values in
the subspace (gl(p)⊕ gl(q)) ⊂ gl(p+ q), while in a U(p, q)-Higgs bundle
the Higgs field Φ takes its values in the complementary subspace mC (as
in (3.7)). Since both subspaces are invariant under the adjoint action
of GL(p,C)×GL(q,C), the same method of construction works for the
moduli spaces of both types of Higgs bundle.

We can describe the gauge theory version of the moduli space M(a, b)
using standard methods; see Hitchin [22] for a construction in the case
of ordinary rank 2 Higgs bundles. To adapt to our case we proceed as
follows. Let E = V ⊕W be a smooth complex vector bundle with a
hermitian metric such that the direct sum decomposition is orthogonal.
We let A denote the space of connections on E which are direct sums
of unitary connections on V and W and we let Ω denote the space of
Higgs fields Φ ∈ Ω1,0(End(E)) of the form Φ =

(
0 β
γ 0

)
. The corre-

spondence between unitary connections and holomorphic structures via
∂-operators turns A × Ω into a complex affine space which acquires a
hermitian metric using the metric on E and integration over X. The
group G of U(p)×U(q)-gauge transformations acts on the configuration
space C ⊆ A × Ω of solutions (A,Φ) to Hitchin’s equations (3.2). The
quotient C/G is, by definition, the gauge theory moduli space. As in
[22], the open subset of C/G corresponding to irreducible solutions has
a Kähler manifold structure.

To see that the gauge theory moduli space is homeomorphic to
M(a, b) we can consider this latter space from the complex analytic
point of view (cf. Remark 3.23 below): consider triples (∂V , ∂W ,Φ),
where ∂V and ∂W are ∂-operators on V andW , respectively, and Φ ∈ Ω.
Let CC be the set of such triples for which Φ is holomorphic and the as-
sociated U(p, q)-Higgs bundle is polystable. We can then view M(a, b)
as the quotient of CC by the complex gauge group. We clearly have
an inclusion C ↪→ CC which descends to give a continuous map from
the gauge theory moduli space to M(a, b). The Hitchin-Kobayashi cor-
respondence of Proposition 3.9 now shows that this map is in fact a
homeomorphism.

For a third perspective, we observe that provided that V and W
are not isomorphic bundles, i.e., provided p �= q or a �= b, we can view
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Ms(a, b) as a subvariety of a moduli space of stable GL(p + q)-Higgs
bundle. If V �W , then Ms(a, b) is a finite cover of a subvariety in the
larger moduli space:

Proposition 3.11. With n = p+q and d = a+b, let Ms(d) denote
the moduli space of stable GL(n,C)-Higgs bundles of degree d. If p �= q
or a �= b then Ms(a, b) embeds as a closed subvariety in Ms(d). If
p = q and a = b, then there is an involution on Ms(a, a) such that the
quotient injects into Ms(d).

Proof. Let [V ⊕W,Φ]p,q denote the point in Ms(a, b) represented by
the U(p, q)-Higgs bundle (V ⊕W,Φ). Then (E = V ⊕W,Φ) is a stable
GL(n,C)-Higgs bundle and the map Ms(a, b) → M(d) is defined by

[V ⊕W,Φ]p,q 	→ [E,Φ]n,

where [, ]n denotes the isomorphism class in M(d). The only question
is whether this map is injective. Suppose that (E = V ⊕ W,Φ) and
(E′ = V ′ ⊕W ′,Φ′) are isomorphic as GL(n,C)-Higgs bundles. Let the
isomorphism be given by a complex gauge transformation g : E → E′. If
g is not of the form ( gV 0

0 gW
) then the off diagonal components determine

morphisms ξ : V → W ′ and σ : W → V ′. Let N = ker(ξ) ⊕ ker(σ) be
the subbundle of V ⊕W determined by the kernels of ξ and σ. If p �= q
then N is a nontrivial proper subbundle. Moreover, using the fact that
gΦ = Φ′g, we see that it is Φ-invariant. Since (V ⊕W,Φ) is stable, it
follows that

µ(N) < µ(E).(3.11)

Similarly, the images of ξ and σ determine a proper Φ′-invariant
subbundle of E′, say I, for which

µ(I) < µ(E′).(3.12)

But if µ(E) = µ(E′) then (3.11) and (3.12) cannot both be satisfied.
Thus ξ and σ must both vanish and hence [V ⊕W,Φ]p,q = [V ′⊕W ′,Φ′]p,q.

If p = q, then this argument can fail, but only if ξ and σ are both
isomorphisms. In that case, N = 0 and I = E. This also requires
a = b. Under these conditions, if V and W are non-isomorphic, then
[V ⊕W, ( 0 β

γ 0 )]n = [W ⊕V, ( 0 γ
β 0 )]n but the Higgs bundles are not isomor-

phic as U(p, q)-Higgs bundles. Hence the last statement of the Propo-
sition follows taking the involution [V ⊕W, ( 0 β

γ 0 )] 	→ [W ⊕ V, ( 0 γ
β 0 )] on

Ms(a, a). q.e.d.
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Proposition 3.12. If GCD(p + q, a + b) = 1 then Ms(a, b) =
M(a, b).

Proof. If GCD(p + q, a + b) = 1 then for purely numerical reasons
there are no strictly semistable U(p, q)-Higgs bundles in M(a, b). q.e.d.

The link to moduli spaces of representations is provided by the next
result.

Proposition 3.13. There is a homeomorphism M(a, b) ∼= RΓ(a, b).

Proof. Suppose that (E = V ⊕W,Φ) represents a point in M(a, b),
i.e., suppose that it is a U(p, q)-polystable Higgs bundle, and suppose
that E has a hermitian metric such that the direct sum decomposition
is orthogonal and Hitchin’s equations (3.2) are satisfied. Rewriting the
equations in terms of the Higgs connection D = dA + θ, where A is the
metric connection and θ = Φ+Φ∗, we see that D is projectively flat. By
Lemma 3.6 it is a projectively flat U(p, q)-connection, and thus defines
a point in RΓ(a, b). Conversely by Corlette’s theorem [10], every repre-
sentation in Hom+(π1X,PU(p, q)), or equivalently every representation
in Hom+(Γ,U(p, q)), arises in this way. The fact that this correspon-
dence gives a homeomorphism follows by the same argument as the one
given in [32] for ordinary Higgs bundles. q.e.d.

Definition 3.14. Define the subspace R∗
Γ(a, b) to be the subspace

corresponding to Ms(a, b) via the homeomorphism in Proposition 3.13.
Using the fibration of RΓ(a, b) over R[a, b], define R∗[a, b] ⊂ R[a, b] to
be the image of R∗

Γ(a, b).

Remark 3.15. Thus R∗
Γ(a, b) parameterizes the representations

which give rise to stable U(p, q)-Higgs bundles. Recall from Remark 3.8
that a U(p, q)-Higgs bundle is stable (in the sense of Definition 3.7) if
and only if its is stable as an ordinary GL(n,C)-Higgs bundle. Now,
a GL(n,C)-Higgs bundle is stable if and only if the corresponding rep-
resentation of Γ on Cn is irreducible (cf. Corlette [10]). Hence we see
that the subspace R∗

Γ(a, b) corresponds to the representations of Γ in
U(p, q) which are irreducible as GL(n,C) representations. Similarly, the
subspace R∗[a, b] corresponds to the representations of π1X which are
irreducible as PGL(n,C) representations.

We point out, moreover, that the subspace R∗
Γ(a, b) includes as a

dense open set the representations whose induced adjoint representa-
tions on the Lie algebra of PU(p, q) are irreducible. It may also contain
some representations whose induced adjoint representation is reducible
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for the following reason. If (E = V ⊕W,Φ) is the U(p, q)-Higgs bun-
dle corresponding to a representation in R∗

Γ(a, b), then (End(E),Φ) is a
polystable Higgs bundle but it is not necessarily stable. The represen-
tations with reducible induced adjoint representation are the ones for
which (End(E),Φ) is strictly polystable.

3.3 Deformation theory

The results of Biswas and Ramanan [3] and Hitchin [23] readily adapt
to describe the deformation theory of U(p, q)-Higgs bundles.

Definition 3.16. Let (E = V ⊕W,Φ) be a U(p, q)-Higgs bundle.
We introduce the following notation:

U = End(E),
U+ = End(V ) ⊕ End(W ),
U− = Hom(W,V ) ⊕ Hom(V,W ).

With this notation, U = U+ ⊕ U−, Φ ∈ H0(U− ⊗ K), and ad(Φ)
interchanges U+ and U−. We consider the complex of sheaves

C• : U+ ad(Φ)−−−→ U− ⊗K.(3.13)

Lemma 3.17. Let (E,Φ) be a stable U(p, q)-Higgs bundle. Then

ker
(
ad(Φ): H0(U+) → H0(U− ⊗K)

)
= C,(3.14)

ker
(
ad(Φ): H0(U−) → H0(U+ ⊗K)

)
= 0.(3.15)

Proof. By Remark 3.8 (E,Φ) is stable as a GL(n,C)-Higgs bundle.
Hence it is simple, that is, its only endomorphisms are the nonzero
scalars. Thus,

ker
(
ad(Φ): H0(U) → H0(U ⊗K)

)
= C.

Since U = U+ ⊕ U− and ad(Φ) interchanges these two summands, the
statements of the lemma follow. q.e.d.

Proposition 3.18 (Biswas-Ramanan [3]).

(1) The space of endomorphisms of (E,Φ) is isomorphic to the zeroth
hypercohomology group H0(C•).
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(2) The space of infinitesimal deformations of (E,Φ) is isomorphic to
the first hypercohomology group H1(C•).

(3) There is a long exact sequence

(3.16) 0 −→ H
0(C•) −→ H0(U+) −→ H0(U− ⊗K) −→ H

1(C•)

−→ H1(U+) −→ H1(U− ⊗K) −→ H
2(C•) −→ 0,

where the maps H i(U+) −→ H i(U− ⊗K) are induced by ad(Φ).

Proposition 3.19. Let (E,Φ) be a stable U(p, q)-Higgs bundle,
then:

(1) H0(C•) = C (in other words (E,Φ) is simple) and

(2) H2(C•) = 0.

Proof. (1) Follows immediately from Lemma 3.17 and Proposi-
tion 3.18 (3).

(2) We have natural ad-invariant isomorphisms U+ ∼= (U+)∗ and
U− ∼= (U−)∗. Thus

ad(Φ): H1(U+) → H1(U− ⊗K)

is Serre dual to ad(Φ): H0(U−) → H0(U+ ⊗ K). Hence Lemma 3.17
and (3) of Proposition 3.18 show that H2(C•) = 0. q.e.d.

Proposition 3.20. The moduli space of stable U(p, q)-Higgs bun-
dles is a smooth complex variety of dimension 1 + (p+ q)2(g − 1).

Proof. By Proposition 3.19 (2) H2(C•) = 0 at all points in the
moduli space of stable U(p, q)-Higgs bundles. Smoothness is thus a
consequence of the results of [3], as follows. Let e ∈ M(a, b) be the
point corresponding to a stable U(p, q)-Higgs bundle (E,Φ) and let F
be the infinitesimal deformation functor of (E,Φ) as in [3]. Then the
completion of the local ring Oe pro-represents F (cf. Schlessinger [28]).
Now Proposition 3.19 and Theorem 3.1 of [3] show that the completion
of Oe is regular and hence Oe is itself regular. Thus M(a, b) is smooth
at e.

Using (2) and (3) of Proposition 3.18, Proposition 3.19 and the
Riemann-Roch Theorem, the dimension of the moduli space is given
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by

dim H
1(C•) = 1 − χ(U+) + χ(U− ⊗K)

= 1 + (p2 + q2)(g − 1) + 2pq(g − 1)

= 1 + (p+ q)2(g − 1).

q.e.d.

Remark 3.21. The dimension of the moduli space of stable U(p, q)-
Higgs bundles is half that of the moduli space of stable GL(p + q,C)-
Higgs bundles.

Remark 3.22. By Proposition 3.12 M(a, b) is smooth if GCD(p+
q, a+ b) = 1.

Remark 3.23. As an alternative to the algebraic arguments of
[3], the fact that the deformation theory of a U(p, q)-Higgs bundle is
controlled by the complex of sheaves (3.13) can be seen from the complex
analytic point of view as follows. As in the gauge theory construction
of M(a, b) (cf. Section 3.2) let V ⊕ W be a smooth complex vector
bundle, and consider a U(p, q)-Higgs bundle as being given by a triple
(∂V , ∂W ,Φ). Now write down a Dolbeault resolution of the complex C•:

Ω0(U+)
ad(Φ)−−−→ Ω1,0(U−)∂

−∂

Ω0,1(U+)
ad(Φ)−−−→ Ω1,1(U−) 

0 −−−→ 0

.

Consider the associated total complex C0 D0→ C1 D1→ C2. Then C0 is
the Lie algebra of the GL(p,C) × GL(q,C)-gauge group and C1 is the
tangent space to the affine space of triples (∂V , ∂W ,Φ). Furthermore,
D0 is the infinitesimal action of the complex gauge group, while D1

is the derivative of the holomorphicity condition: this gives the desired
interpretation of the deformation complex C• in complex analytic terms.

To conclude this line of thought we give an alternative argument
for the smoothness of the moduli space of stable U(p, q)-Higgs bundles:
suppose that (∂V , ∂W ,Φ) corresponds to a stable U(p, q)-Higgs bundle
(E,Φ). Proposition 3.19 shows that H0(C•) = C and H2(C•) = 0. The
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differential of the holomorphicity condition is thus surjective and (E,Φ)
has no nontrivial automorphisms. It follows by standard arguments that
the moduli space can be constructed as a smooth complex manifold near
(E,Φ).

3.4 Bounds on the topological invariants

In this section we show how the Higgs bundle point of view provides an
easy proof of a result of Domic and Toledo [11] which allows us to bound
the topological invariants deg(V ) and deg(W ) for which U(p, q)-Higgs
bundles may exist. The lemma is a slight variation on the results of [19,
Section 3] (cf. also Lemma 3.6 of Markman and Xia [24]).

Lemma 3.24. Let (E,Φ) be a semistable U(p, q)-Higgs bundle.
Then

p(µ(V ) − µ(E)) � rk(γ)(g − 1),(3.17)
q(µ(W ) − µ(E)) � rk(β)(g − 1).(3.18)

If equality occurs in (3.17) then either (E,Φ) is strictly semistable or
p = q and γ is an isomorphism. If equality occurs in (3.18) then either
(E,Φ) is strictly semistable or p = q and β is an isomorphism.

Proof. If γ = 0 then V is Φ-invariant. By stability, µ(V ) � µ(E)
and equality can only occur if (E,Φ) is strictly semistable. This proves
(3.17) in the case γ = 0. We may therefore assume that γ �= 0. Let
N = ker(γ) ⊆ V and let I = im(γ) ⊗K−1 ⊆W . Then

rk(N) + rk(I) = p(3.19)

and, since γ induces a nonzero section of det((V/N)∗ ⊗ I ⊗K),

deg(N) + deg(I) + rk(I)(2g − 2) � deg(V ).(3.20)

The bundles N and V ⊕ I are Φ-invariant subbundles of E and hence
we obtain by semistability that µ(N) � µ(E) and µ(V ⊕ I) � µ(E) or,
equivalently, that

deg(N) � µ(E) rk(N),(3.21)
deg(I) � µ(E)(p+ rk(I)) − deg(V ).(3.22)

Adding (3.21) and (3.22) and using (3.19) we obtain

deg(N) + deg(I) � 2µ(E)p− deg(V ).(3.23)
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Finally, combining (3.20) and (3.23) we get

deg(V ) − rk(I)(2g − 2) � 2µ(E)p− deg(V ),

which is equivalent to (3.17) since rk(γ) = rk(I). Note that equality
can only occur if we have equality in (3.21) and (3.22) and thus either
(E,Φ) is strictly semistable or neither of the subbundles N and V ⊕ I
is proper and nonzero. In the latter case, clearly N = 0 and I = W
and therefore p = q; furthermore we must also have equality in (3.20)
implying that γ is an isomorphism. An analogous argument applied to
β proves (3.18). q.e.d.

Remark 3.25. The proof also shows that if we have equality in,
say, (3.17) then γ : V/N → I ⊗K is an isomorphism. In particular, if
p < q and µ(V ) − µ(E) = g − 1 then γ : V

∼=−→ I ⊗K.

We can re-formulate Lemma 3.24 to obtain the following corollary.

Corollary 3.26. Let (E,Φ) be a semistable U(p, q)-Higgs bundle.
Then

q(µ(E) − µ(W )) � rk(γ)(g − 1),(3.24)
p(µ(E) − µ(V )) � rk(β)(g − 1).(3.25)

Proof. Use µ(W ) − µ(E) = p
q

(
µ(E) − µ(V )

)
to see that (3.24) is

equivalent to (3.17). Similarly (3.25) is equivalent to (3.18). q.e.d.

An important corollary of the lemma above is the following Milnor–
Wood type inequality for U(p, q)-Higgs bundles (due to Domic and
Toledo [11], improving on a bound obtained by Dupont [13] in the case
G = SU(p, q)). This result gives bounds on the possible values of the
topological invariants deg(V ) and deg(W ).

Corollary 3.27. Let (E,Φ) be a semistable U(p, q)-Higgs bundle.
Then

pq

p+ q
|µ(V ) − µ(W )| � min{p, q}(g − 1).(3.26)

Proof. Since µ(E) = p
p+qµ(V ) + q

p+qµ(W ) we have µ(V ) − µ(E) =
q

p+q (µ(V ) − µ(W ) and therefore (3.17) gives

pq

p+ q
(µ(V ) − µ(W )) � rk(γ)(g − 1).
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A similar argument using (3.18) shows that

pq

p+ q
(µ(W ) − µ(V )) � rk(β)(g − 1).

But, obviously, rk(β) and rk(γ) are both less than or equal to min{p, q}.
q.e.d.

Definition 3.28. The Toledo invariant of the representation cor-
responding to (E = V ⊕W,Φ) is

τ = τ(a, b) = 2
qa− pb

p+ q
(3.27)

where a = deg(V ) and b = deg(W ).

Remark 3.29. Since

τ = 2
pq

p+ q
(µ(V ) − µ(W )) = −2p(µ(E) − µ(V )) = 2q(µ(E) − µ(W )),

the inequalities in Lemma 3.24 and Corollary 3.26 can be written as
τ

2
� rk(γ)(g − 1),(3.28)

−τ
2

� rk(β)(g − 1).(3.29)

Similarly the inequality (3.26) can be written |τ | � τM , where

τM = min{p, q}(2g − 2).(3.30)

3.5 Rigidity and extreme values of the Toledo invariant

If |τ | = τM then the moduli space M(a, b) has special features. These
depend on whether p = q or p �= q.

Consider first the case p = q. Notice that if p = q then τ(a, b) = a−b
and τM = p(2g − 2). We thus examine the moduli space M(a, b) when
|a − b| = p(2g − 2). Before giving a description we review briefly the
notion of L-twisted Higgs pairs. Let L be a line bundle. An L-twisted
Higgs pair (V, θ) consists of a holomorphic vector bundle V and an L-
twisted homomorphism θ : V −→ V ⊗ L. The notions of stability,
semistability and polystability are defined as for Higgs bundles. The
moduli space of semistable L-twisted Higgs pairs has been constructed
by Nitsure using Geometric Invariant Theory [27]. Let ML(n, d) be the
moduli space of polystable L-twisted Higgs pairs of rank n and degree
d.
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Proposition 3.30. Let p = q and |a− b| = p(2g − 2). Then

M(a, b) ∼= MK2(p, a) ∼= MK2(p, b).

Proof. Let (E = V ⊕ W,Φ) ∈ M(a, b). Suppose for definiteness
that b − a = p(2g − 2). From (3.18) it follows that γ : V −→ W ⊗K
is an isomorphism. We can then compose β : W −→ V ⊗ K with
γ ⊗ IdK : V ⊗K −→ W ⊗K2 to obtain a K2-twisted Higgs pair θW :
W −→ W ⊗ K2. Similarly, twisting β : W −→ V ⊗ K with K and
composing with γ, we obtain aK2-twisted Higgs pair θV : V −→ V⊗K2.
Conversely, given an isomorphism γ : V −→ W ⊗K, we can recover β
from θV as well as from θW . It is clear that the (poly)stability of (E,Φ)
is equivalent to the (poly)stability of (V, θV ) and to the (poly)stability
of (W, θW ), proving the claim. q.e.d.

Remark 3.31. The moduli space MK2(p, a) contains an open (ir-
reducible) subset consisting of a vector bundle over the moduli space
of stable bundles of rank p and degree a. This is because the stabili-
ty of V implies the stability of any K2-twisted Higgs pair (V, θV ), and
H1(EndV ⊗ K2) = 0. The rank of the bundle is determined by the
Riemann–Roch Theorem.

Now consider the case p �= q. For definiteness, we assume p < q.
We use the more precise notation M(p, q, a, b) for the moduli space of
U(p, q)-Higgs bundles such that deg(V ) = a, and deg(W ) = b, and write
the Toledo invariant as

τ = τ(p, q, a, b) = 2
qa− pb

p+ q
.(3.31)

Theorem 3.32. Suppose (p, q, a, b) are such that p < q and |τ(p, q,
a, b)| = p(2g − 2). Then every element in M(p, q, a, b) is strictly semi-
stable and decomposes as the direct sum of a polystable U(p, p)-Higgs
bundle with maximal Toledo invariant and a polystable vector bundle of
rank (q − p). If τ = p(2g − 2), then

(3.32) M(p, q, a, b) ∼=
M(p, p, a, a− p(2g − 2)) ×M(q − p, b− a+ p(2g − 2)),

where M(q− p, b− a+ p(2g− 2)) denotes the moduli space of polystable
bundles of rank q − p and degree b − a + p(2g − 2). In particular, the
dimension at a smooth point in M(p, q, a, b) is 2+(p2+5q2−2pq)(g−1),
and it is hence strictly smaller than the expected dimension.

(A similar result holds if τ = −p(2g − 2) and also if p > q.)
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Proof. Let (E = V ⊕W,Φ) ∈ M(p, q, a, b) and suppose τ(p, q, a, b) =
p(2g − 2). Then µ(V ) − µ(E) = g − 1 and µ(E) − µ(W ) = p

q (g − 1).
Since rk(β) and rk(γ) are at most p, it follows from (3.17) and (3.25)
that rk(β) = rk(γ) = p. Let Wγ = im(γ) ⊗K−1 and let Wβ = ker(β).
Then V ⊕Wγ is a Φ-invariant subbundle of V ⊕W , and µ(V ⊕Wγ) =
µ(0 ⊕ Wβ) = µ(E). We see that (E,Φ) is strictly semistable (as we
already knew from Lemma 3.24). Since it is polystable it must split as

(V ⊕Wγ ,Φ) ⊕ (0 ⊕W/Wγ , 0).

It is clear that (V ⊕Wγ ,Φ) ∈ M(p, p, a, a − p(2g − 2)) and that (V ⊕
Wγ ,Φ) has maximal Toledo invariant, that is, τ(p, p, a, a− p(2g− 2)) =
2p(g − 1). Also, using

0 −→ ker(Φ) −→ V ⊕W −→ (V ⊕Wγ) ⊗K −→ 0.

we see that W/Wγ ∈M(q− p, b−a+ p(2g− 2)). To complete the proof
we observe that

dimMs(p, p, a, a− p(2g − 2)) + dimM s(q − p, b− a+ p(2g − 2))

= 1 + (2p)2(g − 1) + 1 + (q − p)2(g − 1) = 2 + (p2 + 5q2 − 2pq)(g − 1).

Since q > 1, this is smaller than 1 + (p + q)2(g − 1), the dimension of
M(p, q, a, b) when the Toledo invariant is not maximal. q.e.d.

Remark 3.33. The fact the moduli space has smaller dimension
than expected may be viewed as a certain kind of rigidity. This phe-
nomenon (for large Toledo invariant) has been studied from the point
of view of representations of the fundamental group by D. Toledo [33]
when p = 1 and L. Hernández [21] when p = 2. We deal here with the
general case which, as far as we know, has not appeared previously in
the literature.

Corollary 3.34. Fix (p, q, a, b) such that p < q and τ(p, q, a, b) =
p(2g − 2). Then

M(p, q, a, b) ∼= MK2(p, a− p(2g − 2)) ×M(q − p, b− a+ p(2g − 2)).

Proof. It follows from Theorem 3.32 and Proposition 3.30. q.e.d.
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4. Morse theory

Morse theoretic techniques for studying the topology of moduli
spaces of Higgs bundles were introduced by Hitchin [22, 23]. Though
standard Morse theory cannot be applied to M(a, b) when it is not
smooth, as we shall see in the following, we can still use Morse theory
ideas to count connected components. Throughout this section we as-
sume that p and q are any positive integers and that (a, b) ∈ Z ⊕ Z is
such that |τ | � τM , where τ is as in Definition 3.28 and τM is given by
(3.30).

4.1 The Morse function

Consider the moduli space M(a, b) from the gauge theory point of view
(cf. Section 3.2). We can then define a real positive function

f : M(a, b) → R(4.1)

[A,Φ] 	→ 1
π‖Φ‖2,

where the L2-norm of Φ is ‖Φ‖2 =
√−1

2

∫
X tr(ΦΦ∗).

We have the following result due to Hitchin [22].

Proposition 4.1.

(1) The function f is proper.

(2) The restriction of f to Ms(a, b) is a moment map (up to a constant)
for the Hamiltonian circle action [A,Φ] 	→ [A, eiθΦ].

(3) If M(a, b) is smooth, then f is a perfect Bott-Morse function.

Thus, if the moduli space is smooth, then its number of connected
components is bounded by the number of connected components of the
subspace of local minima of f . However, even if M(a, b) is not smooth,
f can be used to obtain information about the connected components
of M(a, b) using the following elementary result.

Proposition 4.2. Let Z be a Hausdorff space and let f : Z → R be
proper and bounded below. Then f attains a minimum on each connected
component of Z and, furthermore, if the subspace of local minima of f
is connected then so is Z.

In particular this applies to our situation, giving:
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Proposition 4.3. The function f : M(a, b) → R defined in (4.1)
has a minimum on each connected component of M(a, b). Moreover, if
the subspace of local minima of f is connected then so is M(a, b).

Definition 4.4. Let

N (a, b) = {(E,Φ) ∈ M(a, b) | β = 0 or γ = 0}.(4.2)

Proposition 4.5. For all (E,Φ) ∈ M(a, b)

f(E,Φ) � |τ(a, b)|
2

(4.3)

with equality if and only if (E,Φ) ∈ N (a, b).

Proof. Writing out the first of Hitchin’s equations (3.2) for a U(p, q)-
Higgs bundle (E,Φ) in its componenents on V and W we get the pair
of equations

F (AV ) + ββ∗ + γ∗γ = −√−1µ IdV ω,

F (AW ) + γγ∗ + β∗β = −√−1µ IdW ω,

where AV and AW are the components on V and W , respectively, of the
unitary connection A on E = V ⊕W . Taking the trace and integrating
over X in the first of these equations we get from Chern-Weil theory

deg(V ) = µp− 1
π‖β‖2 + 1

π‖γ‖2,

where we have used
∫
X ω = 2π. Since µ = µ(E), this is equivalent to

1
π‖β‖2 − 1

π‖γ‖2 = p(µ(E) − µ(V )) = −τ
2
.

But f(E,Φ) = 1
π‖β‖2 + 1

π‖γ‖2 and thus

f(E,Φ) = 2
π‖γ‖2 − τ

2
(4.4)

= 2
π‖β‖2 +

τ

2
,

from which the result is immediate. q.e.d.

The above proposition identifies N (a, b) as the set of global minima
of f . The following theorem, which is of fundamental importance to our
approach, shows that there are no other local minima.
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Theorem 4.6. Let (E,Φ) be a polystable U(p, q)-Higgs bundle in
M(a, b). Then (E,Φ) is a local minimum of f : M(a, b) → R if and
only if (E,Φ) belongs to N (a, b).

Proof. This follows directly from Proposition 4.5 above and Proposi-
tions 4.17 and 4.20, which are given in Sections 4.4 and 4.5, respectively.

q.e.d.

Remark 4.7. This Theorem was already known to hold when
p, q � 2 (by the results of [19], Hitchin [22], and Xia [36]), and also
when p = q and (p− 1)(2g− 2) < |τ | � p(2g− 2) by Markman-Xia [24].

Which section actually vanishes for a minimum is given by the fol-
lowing.

Proposition 4.8. Let (E,Φ) ∈ N (a, b). Then:

(1) γ = 0 if and only if a/p � b/q (i.e., τ � 0). In this case,

f(N (a, b)) = b− q(a+ b)/(p+ q) = −τ
2
.

(2) β = 0 if and only if a/p � b/q (i.e., τ � 0). In this case,

f(N (a, b)) = a− p(a+ b)/(p+ q) =
τ

2
.

In particular, β = γ = 0 if and only if a/p = b/q (i.e., τ = 0) and, in
this case, f(E,Φ) = 0.

Proof. The relation between the conditions on τ and those on
a/p− b/q follows directly from the definition of τ (cf. (3.27)). The rest
follows immediately from (4.4) and the fact that f is, by definition, non-
negative. Alternatively one can argue algebraically, using Lemma 3.24
and polystability. q.e.d.

Corollary 4.9. If a/p = b/q then N (a, b) ∼= M(p, a) ×M(q, b).

Proof. If a/p = b/q, then any (E,Φ) ∈ N (a, b) has E = V ⊕W and
Φ = 0. Polystability of (E,Φ) is thus equivalent to the polystability of
V and W . q.e.d.

4.2 Critical points of the Morse function

In this section we recall Hitchin’s method [22, 23] for determining the
local minima of f and spell out how this works in the case of U(p, q)-
Higgs bundles.
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Since f is a moment map, a smooth point of the moduli space is a
critical point if and only if it is a fixed point of the circle action. To
determine the fixed points, note that, if (A,Φ) represents a fixed point
then there must be a 1-parameter family of gauge transformations g(θ)
taking (A,Φ) to (A, eiθΦ). This gives an infinitesimal U(p)×U(q)-gauge
transformation ψ = ġ which is covariantly constant (i.e., dAψ = 0) and
such that [ψ,Φ] = iΦ. (Note that we can take ψ to be trace-free.)
It follows that we can decompose E in holomorphic subbundles Fλ on
which ψ acts as iλ and furthermore that Φ maps Fλ to Fλ+1 ⊗K. We
thus have the following result.

Proposition 4.10. A U(p, q)-Higgs bundle (E,Φ) in M(a, b)
represents a fixed point of the circle action if and only if it is a sys-
tem of Hodge bundles, that is,

E = F1 ⊕ · · · ⊕ Fm(4.5)

for holomorphic vector bundles Fi such that the restriction

Φi := Φ|Fi
∈ H0(Hom(Fi, Fi+1) ⊗K),

and the Fi are direct sums of bundles contained in V and W . Further-
more, each Fi is an eigenbundle for an infinitesimal trace-free gauge
transformation ψ. If Φi �= 0, then the weight of ψ on Fi+1 is one plus
the weight of ψ on Fi. Moreover, if (E,Φ) is stable, then each restriction
Φi is nonzero and the Fi are alternately contained in V and W .

Proof. Only the last statement requires a proof. But if some com-
ponent of Φ vanished, or if some Fi had a nonzero component in both
V and W , then (E,Φ) would be reducible and hence not stable. q.e.d.

When (E,Φ) is stable the decomposition E = F1 ⊕ · · · ⊕ Fm gives a
corresponding decomposition of the bundle U = End(E) into eigenbun-
dles for the adjoint action of ψ:

U =
m−1⊕

k=−m+1

Uk,

where Uk =
⊕

i−j=k Hom(Fj , Fi) is the eigenbundle corresponding to
the eigenvalue ik.

By Hitchin’s calculations in [23, §8] (see also [18, Section 2.3.2])
the eigenvalues of the Hessian of f at a smooth critical point can be
determined in the following way.
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Proposition 4.11. Let (E,Φ) be a stable U(p, q)-Higgs bundle
which represents a critical point of f . Then the eigenspace of the Hessian
of f corresponding to the eigenvalue −k is H1 of the following complex:

C•
k : U+

k

ad(Φ)−−−→ U−
k+1 ⊗K,(4.6)

where we use the notation

U+
k = Uk ∩ U+,

U−
k = Uk ∩ U−,

with U+ and U− as defined in Definition 3.16. In particular (E,Φ)
corresponds to a local minimum of f if and only if

H
1(C•

k) = 0

for all k � 1.

Remark 4.12. When (E,Φ) is a stable U(p, q)-Higgs bundle, we
know from Proposition 4.10 that the Fi are alternately contained in V
and W . Thus we have

U+ =
⊕

k even

Uk ; U− =
⊕
k odd

Uk.(4.7)

In particular all the eigenvalues of the Hessian of f are even.

Remark 4.13. The description in Proposition 4.11 of the eigen-
space of the Hessian of f gives rise to the long exact sequence

0 −→ H
0(C•

k) −→ H0(U+
k ) −→ H0(U−

k+1 ⊗K) −→ H
1(C•

k)

−→ H1(U+
k ) −→ H1(U−

k+1 ⊗K) −→ H
2(C•

k) −→ 0.

Suppose that (E,Φ) is a stable U(p, q)-Higgs bundle. The vanishing
result of Proposition 3.19 shows that H0(C•

k) = H2(C•
k) = 0 for k �= 0

(while H0(C•
0 ) = C and H2(C•

0 ) = 0). Hence one can use this exact
sequence, Remark 4.12, and the Riemann–Roch formula to calculate
the dimension of H1(C•

k) for any k in terms of the ranks and the degrees
of the Fi. This provides a method for calculating the Morse index of f
at a critical point. However, we shall omit the formula since we have no
need for it.
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4.3 Local minima and the adjoint bundle

In this section we give a criterion for (E,Φ) to be a local minimum
in terms of the adjoint bundle. This is the key step in the proof of
Theorem 4.6. We use the notation introduced in Section 4.2.

Consider the complex C•
k defined in (4.6) and let

χ(C•
k) = dim H

0(C•
k) − dim H

1(C•
k) + dim H

2(C•
k).

Proposition 4.14. Let (E,Φ) be a polystable U(p, q)-Higgs bundle
which is a fixed point of the S1-action on M(a, b). Then χ(C•

k) � 0 and
equality holds if and only if

ad(Φ): U+
k → U−

k+1 ⊗K

is an isomorphism.

Proof. For simplicity we shall adopt the notation

Φ±
k = ad(Φ)|U±

k
: U±

k −→ U∓
k+1 ⊗K.

The key fact we need is that there is a natural ad-invariant isomorphism
U ∼= U∗ under which we have U+ ∼= (U+)∗, U− ∼= (U−)∗ and U±

k
∼=

(U±
−k)

∗. Since ad(Φ)t = ad(Φ) ⊗ 1K−1 under this isomorphism we have

(Φ±
k )t = Φ∓

−k−1 ⊗ 1K−1 .(4.8)

We have the short exact sequence

0 −→ ker(Φ+
k ) −→ (U−

k+1 ⊗K)∗ −→ im(Φ+
k ) −→ 0.

From (4.8) we have ker(Φ+,t
k ) ∼= ker(Φ−

−k−1)⊗K−1. Thus, tensoring the
above sequence by K, we obtain the short exact sequence

0 −→ ker(Φ−
−k−1) −→ (U−

k+1)
∗ −→ im(Φ+

k ) ⊗K −→ 0.

It follows that

deg(im(Φ+
k )) � deg(U−

k+1) + (2g − 2) rk(Φ+
k ) + deg(ker(Φ−

−k−1)).

Combining this inequality with the fact that

deg(U+
k ) � deg(ker(Φ+

k )) + deg(im(Φ+
k )),(4.9)
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we obtain

deg(U+
k ) � deg(U−

k+1) + (2g − 2) rk(Φ+
k )(4.10)

+ deg(ker(Φ−
−k−1)) + deg(ker(Φ+

k )).

Since (E,Φ) is semistable, so is the Higgs bundle (End(E), ad(Φ)).
Clearly the kernel ker(Φ±

k ) ⊆ End(E) is Φ-invariant and hence, from
semistability,

deg(ker(Φ±
k )) � 0,

for all k. Substituting this inequality in (4.10), we obtain

deg(U+
k ) � deg(U−

k+1) + (2g − 2) rk(Φ+
k ).(4.11)

From the long exact sequence (4.6) and the Riemann–Roch formula we
obtain

χ(C•
k) = χ(U+

k ) − χ(U−
k+1 ⊗K)

= (1 − g)
(
rk(U+

k ) + rk(U−
k+1)

)
+ deg(U+

k ) − deg(U−
k+1).

Using this identity and the inequality (4.11) we see that

χ(C•
k) � (g − 1)

(
2 rk(Φ+

k ) − rk(U+
k ) − rk(U−

k+1)
)
.

Hence χ(C•
k) � 0. Furthermore, if equality holds we have

rk(Φ+
k ) = rk(U+

k ) = rk(U−
k+1)

and also equality must hold in (4.11) and so deg(im(Φ+
k )) = deg(U−

k+1⊗
K), showing that Φ+

k is an isomorphism as claimed. q.e.d.

Corollary 4.15. Let (E,Φ) be a stable U(p, q)-Higgs bundle which
represents a critical point of f . This critical point is a local minimum
if and only if

ad(Φ): U+
k → U−

k+1 ⊗K

is an isomorphism for all k � 1.

Proof. By Proposition 3.19 we have H0(C•
k) = H2(C•

k) = 0 for
k � 1. Hence we have −χ(C•

k) = H1(C•
k) and the result follows from

Propositions 4.11 and 4.14. q.e.d.
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Remark 4.16. Let (P,Φ) be a G-Higgs bundle as defined in
Remark 3.5 and define

U = P ×Ad gC,

U+ = P ×Ad hC,

U− = P ×Ad mC.

Then U = U+ ⊕ U− and if (P,Φ) is fixed under the circle action we
can write U =

⊕
Uk as a direct sum of eigenbundles for an infinitesimal

gauge transformation as before. Thus we can define a complex C•
k as

in (4.6). If (P,Φ) is a stable G-Higgs bundle, then the Higgs vector
bundle (U, ad(Φ)) is semistable and so the proof of Proposition 4.14 goes
through unchanged. Thus this key result is valid in the more general
setting.

4.4 Stable Higgs bundles

In this section we prove Theorem 4.6 for stable Higgs bundles. The re-
ducible (polystable) ones are dealt with in the next section. We continue
to use the notation of Section 4.2.

Proposition 4.17. Let (E,Φ) = (F1 ⊕ · · · ⊕ Fm,Φ) be a stable
U(p, q)-Higgs bundle representing a critical point of f such that m � 3.
Then (E,Φ) is not a local minimum of f .

Proof. Note that Uk = 0 for |k| � m; in particular Um = 0. We
shall consider the cases when m is odd and even separately.

The case m odd. In this case m − 1 is even and so, using Re-
mark 4.12 we see that U+

m−1 = Um−1 �= 0 while U−
m ⊆ Um = 0. Hence

ad(Φ): U+
m−1 → U−

m ⊗K cannot be an isomorphism and we are done by
Corollary 4.15.

The case m even. From Remark 4.12 we see that

U−
m−1 = Um−1 = Hom(F1, Fm),

U+
m−2 = Um−2 = Hom(F1, Fm−1) ⊕ Hom(F2, Fm).

Thus, by Corollary 4.15 it suffices to prove that

ad(Φ): Um−2 → Um−1 ⊗K

is not an isomorphism. In fact the restriction of ad(Φ) to a fiber
cannot even be injective. Indeed, if it were, then its restriction to
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Hom(F1, Fm−1) would be injective and hence Φm−1 would also be in-
jective. Take a nonzero element η ∈ Hom(F2, Fm) whose image is con-
tained in the image of Φm−1. Define ζ = Φ−1ηΦ ∈ Hom(F1, Fm−1).
Then ad(Φ)(η + ζ) = 0 which is a contradiction. q.e.d.

Remark 4.18. Let (E,Φ) be a stable U(p, q)-Higgs bundle with
β = 0 or γ = 0. Then, as pointed out above, Proposition 4.5 shows
that (E,Φ) is a local minimum of f . This can also be seen from the
Morse theory point of view, as follows. Such a Higgs bundle either
has β = γ = 0 or it is a Hodge bundle of length 2. In the former
case, clearly we have End(E) = U0. In the latter case, E = F1 ⊕ F2

with F1 = V and F2 = W (if β = 0) or vice-versa (if γ = 0). Hence
End(E) = U−1 ⊕ U0 ⊕ U1. Hence, in both cases Uk = 0 for |k| > 1.
It follows that the complex C•

k is zero for any k > 0 and hence all
eigenvalues of the Hessian of f are positive.

4.5 Reducible Higgs bundles

In this section we shall finally conclude the proof of Theorem 4.6 by
showing that it also holds for reducible Higgs bundles. First we shall
show that a reducible Higgs bundle which is not of the form given in
Theorem 4.6 cannot be a local minimum of f ; for this we use an ar-
gument similar to the one given by Hitchin [23, §8] for the case of
G = PSL(n,R).

Let (E,Φ) be a strictly polystable U(p, q)-Higgs bundle which is a
local minimum of f . Since f(E,Φ) is the sum of the values of f on
each of the stable direct summands (on the corresponding lower rank
moduli space), it follows that each stable direct summand must be a
local minimum in its moduli space and, therefore, a fixed point of the
circle action. Hence (E,Φ) is itself fixed and thus (cf. Proposition 4.10)

E =
⊕

Fλ,

where each Fλ is an iλ-eigenbundle for an infinitesimal trace-free U(p)×
U(q)-gauge transformation ψ. Moreover, if Φ|Fλ

�= 0, then its image is
contained in Fλ+1 ⊗K. In analogy with the case of stable U(p, q)-Higgs
bundles we write

EndE =
⊕

Uµ,
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where Uµ is the iµ-eigenbundle for the adjoint action of ψ. Let

U+
µ = Uµ ∩ U+,

U−
µ = Uµ ∩ U−,

then we can define a complex of sheaves

C•
>0 :

⊕
µ>0

U+
µ

ad(Φ)−−−→
⊕
µ>1

U−
µ ⊗K.(4.12)

In this language Hitchin’s criterion [23, §8] for showing that a given
fixed point is not a local minimum can be expressed as follows.

Lemma 4.19. Let (Et,Φt) be a 1-parameter family of polystable
U(p, q)-Higgs bundles such that (E0,Φ0) is a fixed point of the circle
action. If the tangent vector (Ė, Φ̇) at 0 is nontrivial and lies in the
subspace

H
1(C•

>0)

of the infinitesimal deformation space H1(C•) of (E0,Φ0), then (E0,Φ0)
is not a local minimum of f .

Proposition 4.20. Let (E,Φ) be a reducible U(p, q)-Higgs bundle.
If β �= 0 and γ �= 0 then (E,Φ) is not a local minimum of f .

Proof. As we noted above, each stable direct summand of (E,Φ) is a
local minimum on its moduli space and therefore (by Proposition 4.17)
it has β = 0 or γ = 0. Hence we can choose two stable direct summands
(E′ = V ′⊕W ′,Φ′) and (E′′ = V ′′⊕W ′′,Φ′′) such that γ′ �= 0 and β′′ �= 0
and β′ = γ′′ = 0. It is clearly sufficient to show that (E′ ⊕E′′,Φ′ ⊕Φ′′)
is not a local minimum of f on the corresponding moduli space and
we can therefore assume that (E,Φ) = (E′ ⊕ E′′,Φ′ ⊕ Φ′′) without loss
of generality. We shall construct a family of deformations (Et,Φt) of
(E,Φ) satisfying the conditions of Lemma 4.19.

By Lemma 4.21 both H1(Hom(W ′′,W ′)) and H1(Hom(V ′, V ′′)) are
non-vanishing, so let η ∈ H1(Hom(V ′, V ′′)) and σ ∈ H1(Hom(W ′′,W ′))
be nonzero. We can then define a deformation of (E,Φ) by using that
η defines an extension

0 −→ V ′′ −→ V η −→ V ′ −→ 0,

while σ defines an extension

0 −→W ′ −→W σ −→W ′′ −→ 0.
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Let E(η,σ) = V η ⊕W σ and define Φ(η,σ) by the compositions

b(η,σ) : W σ −→W ′′ β′′
−→ V ′′ → V η,

c(η,σ) : V η −→ V ′ γ′
−→W ′ −→W σ.

Note that (E0,Φ0) = (E,Φ) (the Higgs fields agree since β′ = γ′′ = 0).
It is then easy to see that (Eη,σ,Φη,σ) is stable: the essential point is that
the destabilizing subbundles V ′ and W ′′ of (E,Φ) are not subbundles
of the deformed Higgs bundle; we leave the details to the reader.

Now define the family (Et,Φt) = (E(ηt,σt),Φ(ηt,σt)). It is clear that
the induced infinitesimal deformation of E is

Ė = (η, σ) ∈ H1(Hom(V ′, V ′′)) ⊕H1(Hom(W ′′,W ′)) ⊆ H1(End(E)).

Considering the holomorphic structure as given by a ∂-operator on
the underlying smooth bundle, our definition of (E(η,σ),Φ(η,σ)) did not
change the Higgs field but only the holomorphic structure on E. Thus,
taking a Dolbeault representative (cf. Remark 3.23) for (Ė, Φ̇) ∈ H1(C•)
we see that the weights of ψ on (Ė, Φ̇) are given by its weights on
Ė. From Proposition 4.10 we have decompositions E′ =

⊕
F ′

k and
E′′ =

⊕
F ′′

k into eigenspaces of infinitesimal trace-free gauge transfor-
mations ψ′ and ψ′′. Note that the infinitesimal gauge transformation
producing the decomposition of E is ψ = ψ′ + ψ′′. Clearly we have

F ′
1 = V ′, F ′

2 = W ′,
F ′′

1 = W ′′, F ′′
2 = V ′′.

Let λ′V and λ′W be the weights of the action of ψ′ on V ′ and W ′ respec-
tively, and analogously for E′′. We then have that

λ′W = λ′V + 1, λ′′V = λ′′W + 1.

and, since trψ′ = trψ′′ = 0,

λ′V p
′ + λ′W q′ = 0,

λ′′V p
′′ + λ′′W q′′ = 0,

where p′ = rk(V ′), q′ = rk(W ′), p′′ = rk(V ′′) and q′′ = rk(W ′′). From
these equations we conclude that

λ′W − λ′′W =
p′

p′ + q′
+

p′′

p′′ + q′′
> 0,

λ′′V − λ′V =
q′′

p′′ + q′′
+

q′

p′ + q′
> 0.
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It follows that the weights of ψ on H1(Hom(W ′′,W ′)) and H1(Hom(V ′,
V ′′)) are both positive and hence that (Ė, Φ̇) lies in a direct sum of
positive weight spaces of ψ. This concludes the proof of the proposition.

q.e.d.

Lemma 4.21 Let (E′ = V ′ ⊕ W ′,Φ′) and (E′′ = V ′′ ⊕ W ′′,Φ′′)
be stable U(p, q)-Higgs bundles of the same slope. Then the cohomolo-
gy groups H1(Hom(V ′, V ′′)) and H1(Hom(W ′′,W ′)) are both non-vani-
shing.

Proof. Since γ′′ = 0, V ′′ is a Φ-invariant subbundle of E′′. Thus
µ(V ′′) < µ(E′′). Using the Riemann–Roch formula and the equality
µ(E′′) = µ(E′) we obtain

h0(Hom(V ′, V ′′) − h1(Hom(V ′, V ′′) = p′p′′(1 − g + µ(V ′′) − µ(V ′))
< p′p′′(1 − g + µ(E′) − µ(V ′)).

Since rk(β′) � p′ the inequality (3.25) of Corollary 3.26 shows that
µ(E′) − µ(V ′) � g − 1 and we therefore deduce that

h0(Hom(V ′, V ′′) − h1(Hom(V ′, V ′′) < 0,

from which it follows that H1(Hom(V ′, V ′′) �= 0.
Similarly one sees that H1(Hom(W ′′,W ′)) �= 0. q.e.d.

4.6 Local minima and connectedness

In this section we obtain connectedness results on Ms(a, b) and its clo-
sure Ms(a, b). We denote by N s(a, b) ⊆ N (a, b) the subspace consisting
of stable U(p, q)-Higgs bundles, and denote its closure by N s(a, b).

The invariants (a, b) will be fixed in the following and we shall oc-
casionally drop them from the notation and write M = M(a, b), etc.

Proposition 4.22. The closure of N s in M coincides with N s

and

N s = Ms ∩N .

Proof. Clear. q.e.d.

Now consider the restriction of the Morse function to Ms,

f : Ms → R.
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Proposition 4.23. The restriction of f to Ms is proper and the
subspace of local minima of this function coincides with N s.

Proof. Properness of the restriction follows from properness of f and
the fact that Ms is closed in M. By Proposition 4.5 f is constant on N
and its value there is its global minimum on M. Thus N s is contained
in the subspace of local minima of f .

It remains to see that f has no other local minima on Ms. We
already know that the subspace of local minima on Ms is N s. Thus,
since Ms is open in Ms, there cannot be any additional local minima
on Ms. We need to prove therefore that there are no local minima in
(Ms � Ms) � N s. So let (E,Φ) be a strictly poly-stable U(p, q)-Higgs
bundle representing a point in this space. From Proposition 4.22 we see
that β �= 0 and γ �= 0. In the proof of Proposition 4.20 we constructed a
family (Et,Φt) of U(p, q)-Higgs bundles such that (E,Φ) = (E0,Φ0) and
(Et,Φt) is stable for t �= 0. Furthermore we showed that the restriction
of f to this family does not have a local minimum at (E0,Φ0). It follows
that (E,Φ) is not a local minimum of f on Ms. q.e.d.

Proposition 4.24.

(1) If N (a, b) is connected, then so is M(a, b).

(2) If N s(a, b) is connected, then so is Ms(a, b).

Proof. (1) In view of Proposition 4.3, this follows from Theorem 4.6.
(2) If N s(a, b) is connected, then so is its closure N s(a, b). But

from Proposition 4.23, N s(a, b) is the subspace of local minima of the
proper positive map f : Ms(a, b) → R. Hence the result follows from
Proposition 4.2. q.e.d.

5. Local minima as holomorphic triples

The next step is to identify the spaces N (a, b) and N s(a, b) as modu-
li spaces in their own right. By definition (cf. Definition 4.4), the Higgs
bundles in N (a, b) all have β = 0 or γ = 0 in their Higgs fields. Suppose
first that (E,Φ) is a U(p, q)-Higgs bundle with γ = 0. Then (E,Φ)
determines the triple T = (E1, E2, φ) where

E1 = V ⊗K,

E2 = W,

φ = β.
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Conversely, given two holomorphic bundles E1, E2 of rank p and q re-
spectively, together with a bundle endomorphism Φ ∈ H0(Hom(E2, E1)),
we can use the above relations to define a U(p, q)-Higgs bundle with
γ = 0. Similarly, there is a bijective correspondence between U(p, q)-
Higgs bundles with β = 0 and holomorphic triples in which

E1 = W ⊗K,

E2 = V,

φ = γ.

The triples (E1, E2,Φ) are examples of the holomorphic triples studied
in [4] and [15].

5.1 Holomorphic triples

We briefly recall the relevant definitions, referring to [4] and [15] for
details. A holomorphic triple on X, T = (E1, E2, φ), consists of two
holomorphic vector bundles E1 and E2 on X and a holomorphic map
φ : E2 → E1. Denoting the ranks E1 and E2 by n1 and n2, and their
degrees by d1 and d2, we refer to (n,d) = (n1, n2, d1, d2) as the type of
the triple.

A homomorphism from T ′ = (E′
1, E

′
2, φ

′) to T = (E1, E2, φ) is a
commutative diagram

E′
2

φ′
−−−→ E′

1 
E2

φ−−−→ E1.

T ′ = (E′
1, E

′
2, φ

′) is a subtriple of T = (E1, E2, φ) if the homomorphisms
of sheaves E′

1 → E1 and E′
2 → E2 are injective.

For any α ∈ R the α-degree and α-slope of T are defined to be

degα(T ) = deg(E1) + deg(E2) + α rk(E2),

µα(T ) =
degα(T )

rk(E1) + rk(E2)

= µ(E1 ⊕ E2) + α
rk(E2)

rk(E1) + rk(E2)
.

The triple T = (E1, E2, φ) is α-stable if

µα(T ′) < µα(T )(5.1)
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for any proper sub-triple T ′ = (E′
1, E

′
2, φ

′). Define α-semistability by
replacing (5.1) with a weak inequality. A triple is called α-polystable
if it is the direct sum of α-stable triples of the same α-slope. It is
strictly α-semistable (polystable) if it is α-semistable (polystable) but
not α-stable.

We denote the moduli space of isomorphism classes of α-polystable
triples of type (n1, n2, d1, d2) by

Nα = Nα(n,d) = Nα(n1, n2, d1, d2).(5.2)

Using Seshadri S-equivalence to define equivalence classes, this is the
moduli space of equivalence classes of α-semistable triples. The isomor-
phism classes of α-stable triples form a subspace which we denoted by
N s

α.

Proposition 5.1 ([4, 15]). The moduli space Nα(n1, n2, d1, d2) is
a complex analytic variety, which is projective when α is rational. A
necessary condition for Nα(n1, n2, d1, d2) to be nonempty is{

0 � αm � α � αM if n1 �= n2

0 � αm � α if n1 = n2

(5.3)

where

αm = µ1 − µ2,(5.4)

αM =
(

1 +
n1 + n2

|n1 − n2|
)

(µ1 − µ2)(5.5)

and µ1 = d1
n1

, µ2 = d2
n2

.

Within the allowed range for α there is a discrete set of critical
values. These are the values of α for which it is numerically possible to
have a subtriple T ′ = (E′

1, E
′
2, φ

′) such that µ(E′
1 ⊕ E′

2) �= µ(E1 ⊕ E2)
but µα(T ′) = µα(T ′). All other values of α are called generic. The
critical values of α are precisely the values for α at which the stability
properties of a triple can change, i.e., there can be triples which are
strictly α-semistable, but either α′-stable or α′-unstable for α′ �= α.

Strict α-semistability can, in general, also occur at generic values
for α, but only if there can be subtriples with µ(E′

1 ⊕E′
2) = µ(E1 ⊕E2)

and n′
2

n′
1+n′

2
= n2

n1+n2
. In this case the triple is strictly α-semistable for all

values of α. We refer to this phenomenon as α-independent semistability.
This cannot happen if GCD(n2, n1 + n2, d1 + d2) = 1.
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5.2 Identification of N (a, b)

The following result relates the stability conditions for holomorphic
triples and that for U(p, q)-Higgs bundles.

Proposition 5.2. A U(p, q)-Higgs bundle (E,Φ) with β = 0 or
γ = 0 is (semi)stable if and only if the corresponding holomorphic triple
is α-(semi)stable for α = 2g − 2.

Proof. Let T = (E1, E2, φ) be the triple corresponding to the Higgs
bundle (V ⊕ W,Φ). For definiteness we shall assume that γ = 0 (of
course, the same argument applies if β = 0). Thus E1 = V ⊗ K and
E2 = W and, hence,

deg(E1) = deg(V ) + p(2g − 2).

Since p = rk(E1) and q = rk(E2) it follows that

µα(T ) = µ(E) +
p

p+ q
(2g − 2) +

q

p+ q
α.(5.6)

If we set α = 2g − 2 we therefore have

µα(T ) = µ(E) + 2g − 2.(5.7)

Clearly the correspondence between holomorphic triples and U(p, q)-
Higgs bundles gives a correspondence between sub-triples T ′ = (E′

1, E
′
2,

φ′) and Φ-invariant subbundles of E which respect the decomposition
E = V ⊕W (i.e., subbundles E′ = V ′⊕W ′ with V ′ ⊆ V and W ′ ⊆W ).
Now, it follows from (5.7) that µ(E′) < µ(E) if and only if µα(T ′) <
µα(T ) (and similarly for semistability), thus concluding the proof. q.e.d.

We thus have the following important characterization of the sub-
space of local minima of f on M(a, b).

Theorem 5.3. Let N (a, b) be the subspace of local minima of f on
M(a, b) and let τ be the Toledo invariant as defined in Definition 3.28.

If a/p � b/q, or equivalently if τ � 0, then N (a, b) can be identified
with the moduli space of α-polystable triples of type (p, q, a+p(2g−2), b),
with α = 2g − 2.

If a/p � b/q, or equivalently if τ � 0, then N (a, b) can be identified
with the moduli space of α-polystable triples of type (q, p, b+q(2g−2), a),
with α = 2g − 2.
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That is,

N (a, b)

∼=
{
N2g−2(p, q, a+ p(2g − 2), b) if a/p � b/q (equivalently τ � 0)
N2g−2(q, p, b+ q(2g − 2), a) if a/p � b/q (equivalently τ � 0).

Proof. This follows from Theorem 4.6, Proposition 4.8, and Propo-
sition 5.2. q.e.d.

Thus, combining Proposition 4.24 and Theorem 5.3, we get:

Theorem 5.4.

(1) Suppose a/p � b/q. If N2g−2(p, q, a+p(2g−2), b) is connected then
M(a, b) is connected. If N s

2g−2(p, q, a + p(2g − 2), b) is connected
then Ms(a, b) is connected.

(2) Suppose a/p � b/q. If N2g−2(q, p, b+q(2g−2), a) is connected then
M(a, b) is connected. If N s

2g−2(q, p, b + q(2g − 2), a) is connected
then Ms(a, b) is connected.

5.3 The Toledo invariant, 2g−2, and α-stability for triples

In view of Theorems 5.3 and 5.4, it is important to understand where
2g − 2 lies in relation to the range (given by Proposition 5.1) for the
stability parameter α. Recall that for given (p, q, a, b), the Toledo invari-
ant (Definition 3.28) is constrained by 0 � |τ | � τM , where (see (3.30))
τM = min{p, q}(2g−2). Recall also that α is constrained by the bounds
given in Proposition 5.1. Whenever necessary we shal indicate the de-
pendence of αm and αM on (p, q, a, b) by writing αm = αm(p, q, a, b),
and similarly for αM .

Lemma 5.5. Fix (p, q, a, b). Then

αm(p, q, a, b) = (2g − 2) − p+ q

2pq
|τ |(5.8)

where τ is the Toledo invariant. If p �= q then

αM (p, q, a, b) =
(

2 max{p, q}
|p− q|

)
αm(p, q, a, b).(5.9)

If p = q then αM (p, q, a, b) = ∞.
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Proof. By Theorem 5.3 the type of the triple is determined by the
sign of τ . The result thus follows by applying (5.3) and (5.4) to triples
of type (p, q, a+ p(2g− 2), b) (if τ � 0) or type (q, p, b+ q(2g− 2), a) (if
τ � 0). q.e.d.

Proposition 5.6. Fix (p, q, a, b). Then

0 � |τ | � τM ⇔
{

0 < αm(p, q, a, b) � 2g − 2 � αM (p, q, a, b) if p �= q

0 � αm(p, q, a, b) � 2g − 2 if p = q

(5.10)

Furthermore,

τ = 0 ⇔ 2g − 2 = αm(5.11)

and

|τ | = τM ⇔
{

2g − 2 = αM if p �= q

αm = 0 if p = q.
(5.12)

Proof. Using (5.8) and (5.9) we see that 0 � |τ | � τM is equivalent
to

2g − 2 � αm �
( |p− q|

2 max{p, q}
)

(2g − 2),(5.13)

and hence also (assuming p �= q) to(
2 max{p, q}

|p− q|
)

(2g − 2) � αM � (2g − 2).(5.14)

In both (5.13) and (5.14), we get equality in the first place if and only
if τ = 0, and in the second place if and only if |τ | = τM . Notice that

|p−q|
2 max{p,q} is strictly positive if p �= q and is zero if p = q. The results
follow. q.e.d.

These results are summarized in Figure 1, which can be used as
follows. For any allowed value of τ , draw a horizontal line at height τ .
The corresponding range for α and the relative location of 2g − 2 are
then read off from the α-axis.

Remark 5.7. The above proposition gives another explanation for
the Milnor–Wood inequality in Corollary 3.27. Using the fact that the
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p �= q

�τ

−τM

0

τM

�
α0 |p−q|

2 max{p,q}(2g − 2) 2g − 2

αm αM

p = q�τ

−τM

0

τM

�
α0 2g − 2

αm d1 − d2

�

�

�

Figure 1: Range for the stability parameter α for triples in N (a, b),
displayed as functions of τ = 2pq

p+q (a
p − b

q ), and showing the relative
location of 2g − 2.
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non-emptiness of M(a, b) is equivalent to the non-emptiness of N (a, b)
and hence to that of either N2g−2(p, q, a+p(2g−2), b) or N2g−2(q, p, b+
q(2g − 2), a), we see that the Milnor–Wood inequality is equivalent to
the condition that 2g−2 lies within the range where α-polystable triples
of the given kind exist.

5.4 Moduli spaces of triples

Proposition 5.6 shows that in order to study N (a, b) for different values
of the Toledo invariant, we need to understand the moduli spaces of
triples for values of α that may lie anywhere (including at the extremes
αm and αM ) in the α-range given in Proposition 5.1. The information
we need can be found in [7]. From the results in [7] we get the following
for triples of type (n1, n2, d1, d2).

Theorem 5.8 (Theorem A in [7]).

(1) A triple T = (E1, E2, φ) of type (n1, n2, d1, d2) is αm-polystable if
and only if φ = 0 and E1 and E2 are polystable. We thus have

Nαm(n1, n2, d1, d2) ∼= M(n1, d1) ×M(n2, d2).

where M(n, d) denotes the moduli space of polystable bundles of
rank n and degree d. In particular, Nαm(n1, n2, d1, d2) is nonempty
and irreducible.

(2) If α > αm is any value such that 2g − 2 � α (and α < αM

if n1 �= n2)) then N s
α(n1, n2, d1, d2) is nonempty and irreducible.

Moreover:

• If n1 = n2 = n then N s
α(n, n, d1, d2) is birationally equivalent

to a PN -fibration over M s(n, d2)×Symd1−d2(X), where M s(n, d2)
denotes the subspace of stable bundles of type (n, d2), Symd1−d2(X)
is the symmetric product, and the fiber dimension is N = n(d1 −
d2) − 1.

• If n1 > n2 then N s
α(n1, n2, d1, d2) is birationally equivalent to

a PN -fibration over M s(n1 − n2, d1 − d2) ×M s(n2, d2), where the
fiber dimension is N = n2d1 −n1d2 +n2(n1 −n2)(g− 1)− 1. The
birational equivalence is an isomorphism if GCD(n1−n2, d1−d2) =
1 and GCD(n2, d2) = 1.

• If n1 < n2 then N s
α(n1, n2, d1, d2) is birationally equivalent to

a PN -fibration over M s(n2 − n1, d2 − d1) ×M s(n1, d1), where the
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fiber dimension is N = n2d1 −n1d2 +n1(n2 −n1)(g− 1)− 1. The
birational equivalence is an isomorphism if GCD(n2−n1, d2−d1) =
1 and GCD(n1, d1) = 1.

In particular, if n1 �= n2 then N s
α(n1, n2, d1, d2) is a smooth man-

ifold of dimension (g − 1)(n2
1 + n2

2 − n1n2) − n1d2 + n2d1 + 1.

(3) If n1 �= n2 then NαM (n1, n2, d1, d2) is nonempty and irreducible.
Moreover

NαM (n1, n2, d1, d2)(5.15)

∼=
{
M(n2, d2) ×M(n1 − n2, d1 − d2) if n1 > n2

M(n1, d1) ×M(n2 − n1, d2 − d1) if n1 < n2.

Theorem 5.9 (Corollary 8.2 and Theorem 8.10 in [7]). If n1

= n2 = n then:

(1) If αm = 0, i.e., if d1 = d2 (= d), then Nα(n, n, d, d) ∼= M(n, d) for
all α > 0. In particular Nα(n, n, d, d) is nonempty and irreducible.

(2) If 0 < d1 − d2 < α, then Nα(n, n, d1, d2) is nonempty and irre-
ducible.

Remark 5.10. Notice that if n1 = n2 and αm = 0, then Nα(n, n, d,
d) ∼= M(n, d) for all α > 0, while N0(n, n, d, d) ∼= M(n, d) ×M(n, d).
The picture is quite different if we restrict to the stable points in the
moduli spaces. In fact there are no stable points in N0(n, n, d, d), i.e.,
N s

0 (n, n, d, d) is empty, while N s
α(n, n, d, d) ∼= M s(n, d) for α > 0.

Proposition 5.11 (Proposition 2.6 and Lemma 2.7 in [7]).

(1) If α ∈ [αm, αM ] is generic and GCD(n1, n1 + n2, d1 + d2) = 1,
then

Nα(n1, n2, d1, d2) = N s
α(n1, n2, d1, d2).

In particular, the moduli space Nα(n1, n2, d1, d2) is nonempty and
irreducible if in addition 2g − 2 � α.

(2) Let m ∈ Z be such that GCD(n1 + n2, d1 + d2 −mn1) = 1. Then
α = m is not a critical value and there are no α-independent
semistable triples.
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6. Main results

We now use the results of Section 5.4, applied to the case α =
2g − 2, to deduce our main results on the moduli spaces of U(p, q)-
Higgs bundles, and hence for the representation spaces R(PU(p, q)) and
RΓ(U(p, q)) (defined in Section 2). Recall that we identified components
of R(PU(p, q)) labeled by [a, b] ∈ Z⊕Z/(p+q)Z, and similarly identified
components of RΓ(U(p, q)) labeled by (a, b) ∈ Z ⊕ Z. Our arguments
proceed along the following lines:

• By Proposition 2.5 RΓ(a, b) is a U(1)2g-fibration over R[a, b]. The
number of connected components of RΓ(a, b) is thus greater than
or equal to that of R[a, b]. In particular, R[a, b] is connected
whenever RΓ(a, b) is.

• By Proposition 3.13 there is a homeomorphism between RΓ(a, b)
and the moduli space M(a, b) of U(p, q)-Higgs bundles. This re-
stricts to give a homeomorphism between R∗

Γ(a, b) and Ms(a, b).

• By Proposition 4.3 the number of connected components of M(a, b)
is bounded above by the number of connected components in the
subspace of local minima for the Bott-Morse function defined in
Section 4.1. By Proposition 4.24 the same conclusion holds for
Ms(a, b).

• By Theorems 4.6 and 5.3 we can identify the subspace of local
minima as a moduli space of α-stable triples, with α = 2g − 2.

Summarizing, we have:

|π0(R[a, b])| � |π0(RΓ(a, b))| = |π0(M(a, b))|
� |π0(N (a, b))| = |π0(N2g−2(n1, n2, d1, d2))|

where |π0(·)| denotes the number of components, and (in the notation
of Section 5) the moduli space of triples which appears in the last line
is either N2g−2(p, q, a + p(2g − 2), b) (if a/p � b/q) or N2g−2(q, p, b +
q(2g − 2), a). Similarly, we get that

|π0(R∗[a, b])| � |π0(R∗
Γ(a, b))| = |π0(Ms(a, b))|

� |π0(N s(a, b))| = |π0(N s
2g−2(n1, n2, d1, d2))|

In particular, if the moduli spaces of triples are connected, then so are
the Higgs moduli spaces and the moduli spaces of representations.
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6.1 Moduli spaces of Higgs bundles

We begin with results for the U(p, q)-Higgs moduli spaces. Recall from
Proposition 3.20 that, whenever the moduli space Ms(a, b) of stable
U(p, q)-Higgs bundles with invariants (a, b) is nonempty, it is a smooth
complex manifold of dimension 1 + (p + q)2(g − 1). We shall refer to
this dimension as the expected dimension in the following.

Theorem 6.1. Let (p, q) be any pair of positive integers and let
(a, b) ∈ Z ⊕ Z be such that 0 � |τ(a, b)| � τM .

(1) If either of the following sets of conditions apply, then the modu-
li space Ms(a, b) is a nonempty smooth manifold of the expected
dimension, with connected closure Ms(a, b):

(i) 0 < |τ(a, b)| < τM ,

(ii) |τ(a, b)| = τM and p = q.

(2) If any one of the following sets of conditions apply, then the moduli
space M(a, b) is nonempty and connected:

(i) τ(a, b) = 0,

(ii) |τ(a, b)| = τM and p �= q,

(iii) (p− 1)(2g − 2) < |τ | � τM = p(2g − 2) and p = q.

Proof. (1) By Proposition 5.6 condition (i) implies that αm <
2g − 2 < αM for the triples corresponding to points in N (a, b). Thus
Theorem 5.8(2) (together with Theorem 5.3) implies that N (a, b) is
nonempty and connected. Similarly, condition (ii) implies that αm = 0,
and we can apply Theorem 5.9(1). The rest follows from Theorem 5.4.

(2) By Proposition 5.6, the conditions in (i) and (ii) are equivalent
to αm = 2g − 2 and αM = 2g − 2 respectively. It follows by parts (1)
and (3) of Theorem 5.8 (together with Theorem 5.3) that N (a, b) is
nonempty and connected. The rest follows from Theorem 5.4.

For (iii), we use the fact that |τ | = |b−a| if p = q. The condition on
|τ | is thus equivalent to d1 − d2 < 2g − 2 for the triples corresponding
to points in N (a, b). The result thus follows by Theorem 5.9(2). q.e.d.

Remark 6.2. Combining (1) and (i)-(ii) of (2) in Theorem 6.1, we
see that the moduli space M(a, b) is nonempty for all (p, q, a, b) such
that 0 � |τ | � τM .
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Remark 6.3. In Theorem 3.32 we gave a detailed description for
M(a, b) in the case that p �= q and |τ(a, b)| = τM . The description
was complete, provided that the space was nonempty. By the previous
remark we can now remove this caveat.

In general, the stable locus Ms(a, b) is not the full moduli space
and the full moduli space M(a, b) is not smooth. Singularities can
occur at points representing strictly semistable objects, and these can
also account for singularities in N (a, b), the space of local minima (as
in Section 5). These types of singularities are prevented by a certain
coprimality condition:

Proposition 6.4. Suppose that GCD(p+ q, a+ b) = 1. Then:

(1) M(a, b) is smooth.

(2) α = 2g−2 is not a critical value for triples of type (p, q, a+p(2g−
2), b) or (q, p, b+ q(2g − 2), a).

(3) The moduli spaces N2g−2(p, q, a+ p(2g− 2), b) and N2g−2(q, p, b+
q(2g − 2), a) are nonempty, smooth and irreducible.

Proof.

(1) This is simply a re-statement of Proposition 3.12.

(2) Apply Proposition 5.11 (2) with (n1, n2, d1, d2) equal to (p, q, a+
p(2g − 2), b) or (q, p, b+ q(2g − 2), a) and m = 2g − 2.

(3) Since GCD(p+q, a+b) = 1 implies GCD(p, p+q, b+a+q(2g−2)) =
1 (or GCD(q, p+ q, b+ a+ p(2g− 2)) = 1), the result follows from
(2) and Proposition 5.11 (1).

q.e.d.

Theorem 6.5. Let (p, q) be any pair of positive integers and let
(a, b) be such that 0 � |τ(a, b)| � τM . Suppose also that GCD(p +
q, a + b) = 1. Then the moduli space M(a, b) is a (nonempty) smooth,
connected manifold of the expected dimension.

Proof. Combine Proposition 6.4 and Theorem 5.4. q.e.d.

Theorems 6.1 plus 6.5 are equivalent to Theorem A in the Introduc-
tion.



surface group representations 161

6.2 Moduli spaces of representations

Using Proposition 3.13 we can translate the results of Section 6.1 into re-
sults about the representation spaces RΓ(a, b) and R∗

Γ(a, b) (for U(p, q)
representations of the surface group Γ). We denote the closure of
R∗

Γ(a, b) in RΓ(a, b) by R∗
Γ(a, b).

Theorem 6.6. Let (p, q) be any pair of positive integers and let
(a, b) ∈ Z ⊕ Z be such that 0 � |τ(a, b)| � τM .

(1) The moduli space RΓ(a, b) is nonempty.

(2) If either of the following sets of conditions apply, then the modu-
li space R∗

Γ(a, b) is a nonempty smooth manifold of the expected
dimension, with connected closure R∗

Γ(a, b) in RΓ(a, b):

(i) 0 < |τ(a, b)| < τM ,

(ii) |τ(a, b)| = τM and p = q.

(3) If any one of the following sets of conditions apply, then the moduli
space RΓ(a, b) is connected:

(i) τ(a, b) = 0,

(ii) |τ(a, b)| = τM and p �= q,

(iii) (p− 1)(2g − 2) < |τ | � τM = p(2g − 2) and p = q,

(iv) GCD(p+ q, a+ b) = 1

(4) If GCD(p+ q, a+ b) = 1 then RΓ(a, b) is a smooth manifold of the
expected dimension.

Proof. By Proposition 3.13, this follows from Theorem 6.1 and 6.5.
q.e.d.

Theorem 6.7. Let (p, q) be any pair of positive integers such that
p �= q, and let (a, b) be such that |τ(a, b)| = τM . Then every represen-
tation in RΓ(a, b) is reducible (i.e., R∗

Γ(a, b) is empty). If p < q, then
every such representation decomposes as a direct sum of a semisim-
ple representation of Γ in U(p, p) with maximal Toledo invariant and a
semisimple representation in U(q−p). Thus, if τ = p(2g−2) then there
is an isomorphism

RΓ(p, q, a, b) ∼=
RΓ(p, p, a, a− p(2g − 2)) ×RΓ(q − p, b− a+ p(2g − 2)),
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where the notation RΓ(p, q, a, b) indicates the moduli space of represen-
tations of Γ in U(p, q) with invariants (a, b), and RΓ(n, d) denotes the
moduli space of degree d representations of Γ in U(n).

(A similar result holds if p > q, as well as if τ = −p(2g − 2).)

Proof. Proposition 3.13 and Theorem 3.32. q.e.d.

As observed in Section 2.2 (cf. (2.7)), the spaces R(a) = RΓ(a,−a)
can be identified with components of R(U(p, q)), i.e., with components
of the moduli space for representations of π1X in U(p, q). Applying
Theorems 6.6 and 6.7, together with the observation that τ(a,−a) = 2a
in the special case where b = −a, we thus obtain the following results
for R(U(p, q)). Notice that the condition GCD(p+ q, a+ b) = 1 is never
satisfied if a+ b = 0.

Theorem 6.8. Let (p, q) be any pair of positive integers and let
a ∈ Z ⊕ Z be such that |a| � min{p, q}(g − 1).

(1) The moduli space RΓ(a) is nonempty.

(2) If either of the following sets of conditions apply, then the modu-
li space R∗(a) is a nonempty, smooth manifold of the expected
dimension, with connected closure R∗(a) in R(a):

(i) 0 < |a| < min{p, q}(g − 1), or

(ii) |a| = p(g − 1) and p = q.

(3) If any one of the following sets of conditions apply, then the moduli
space R(a) is connected:

(i) a = 0,

(ii) |a| = min{p, q}(g − 1) and p �= q,

(iii) (p− 1)(g − 1) < |a| � p(g − 1) and p = q.

Theorem 6.9. Let (p, q) be any pair of positive integers such that
p �= q. If |a| = min{p, q}(g − 1) then R∗(a) is empty and every rep-
resentation in R(a) is reducible. If p < q, then every such representa-
tion decomposes as a direct sum of a semisimple representation of Γ in
U(p, p) with maximal Toledo invariant and a semisimple representation
in U(q − p). Thus, if a = p(g − 1) then there is an isomorphism

R(a) ∼= RΓ(p, p, a, a− p(2g − 2)) ×RΓ(q − p, p(2g − 2)),



surface group representations 163

where the notation RΓ(p, q, a, b) indicates the moduli space of represen-
tations of Γ in U(p, q) with invariants (a, b), and RΓ(n, d) denotes the
moduli space of degree d representations of Γ in U(n).

(A similar result holds if p > q, as well as if a = −p(g − 1).)

From Theorem 6.6 and Proposition 2.5 we obtain the following theo-
rem about the moduli spaces for PU(p, q) representations of π1X. Note
that the closure R∗[a, b] in R[a, b] is the image of R∗

Γ(a, b) under the
map of Proposition 2.5, hence these two spaces have the same number
of connected components.

Theorem 6.10. Let (p, q) be any pair of positive integers and let
(a, b) ∈ Z ⊕ Z be such that 0 � |τ(a, b)| � τM .

(1) The moduli space R[a, b] is nonempty.

(2) If either of the following sets of conditions apply, then the modu-
li space R∗[a, b] is a nonempty smooth manifold of the expected
dimension, with connected closure R∗[a, b] in R[a, b]:

(i) 0 < |τ(a, b)| < τM , or
(ii) |τ(a, b)| = τM and p = q.

(3) If any one of the following sets of conditions apply, then the moduli
space R[a, b] of all semi-simple representations is connected:

(i) τ(a, b) = 0,
(ii) |τ(a, b)| = τM and p �= q,
(iii) (p− 1)(2g − 2) < |τ | � τM = p(2g − 2) and p = q,
(iv) GCD(p+ q, a+ b) = 1.

Theorem 6.11. Let (p, q) be any pair of positive integers such that
p �= q, and let (a, b) be such that |τ(a, b)| = τM . Then R∗[a, b] is
empty. If p < q, then every such representation reduces to a semisimple
representation of π1X in P(U(p, p) × U(q − p)), such that the PU(p, p)
representation induced via projection on the first factor has maximal
Toledo invariant. (A similar result holds if p > q.)

Remark 6.12. As explained by Hitchin in [22, Section 5], the
moduli space of irreducible representations in the adjoint form of a Lie
group is liable to acquire singularities, because of the existence of sta-
ble vector bundles which are fixed under the action of tensoring by a
finite order line bundle. For this reason we do not make any smoothness
statements in Theorem 6.10.
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6.3 Total number of components and coprimality condi-
tions

We end with some elementary observations about the total number
of components in the decomposition R(PU(p, q)) =

⋃
(a,b) R[a, b], and

about the number of such components for which the coprime condition
GCD(p+q, a+b) = 1 apply. We begin with the number of components.

By definition, τ(a, b) takes values in 2
nZ, where n = p+ q.

Proposition 6.13. Suppose that GCD(p, q) = k. Then the map

τ : Z ⊕ Z/(p, q)Z −→ 2
n

Z

[a, b] 	−→ 2
n

(aq − bp)

fits in an exact sequence

0 −→ Z/kZ
σ−→ Z ⊕ Z/(p, q)Z τ−→ 2k

n
Z −→ 0

where the map σ is [t] 	→ [t p
k , t

q
k ]. In particular, τ is a k : 1 map onto

the subset 2k
n Z ⊂ 2

nZ.

Proof. The map σ is clearly injective, and τ ◦ σ = 0. To see that
ker(τ) = im(σ), observe that if τ [a, b] = 0 then either a = b = 0 or
a
b = p

q , i.e., [a, b] = [t p
k , t

q
k ] for some t ∈ Z. Finally, if a0q−b0p = k, then

for any l ∈ Z we have τ [la0, lb0] = 2k
n l. Thus τ is surjective onto 2k

n Z.
q.e.d.

Remark 6.14. Proposition 6.13 shows why10 we must use [a, b]
rather than τ to label the components of R(PU(p, q)) or of RΓ(U(p, q)).

Definition 6.15. Suppose that GCD(p, q) = k. Define

C = τ−1([−τM , τM ] ∩ 2k
n

Z),(6.1)

where τ is the map defined in Proposition 6.13.

The following is then an immediate corollary of Proposition 6.13.

10Unless p and q are coprime, in which case there is a bijective correspondence
between [a, b] and τ .
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Corollary 6.16. Suppose that GCD(p, q) = k and C is as above.
Then C is precisely the set of all the points in Z⊕Z/(p, q)Z which label
components R[a, b] in R(PU(p, q)). The cardinality of C is

|C| = 2nmin{p, q}(g − 1) + k

= |([−τM , τM ] ∩ 2
n

Z)| + GCD(p, q) − 1.

Proof. The first statement is a direct consequence of Proposition 6.13
and the bound on τ . Suppose for definiteness that min{p, q} = p. Then
since τM = 2 min{p, q}(g − 1) = 2k

n (n p
k (g − 1)) ∈ 2k

n Z, the number of
points in [−τM , τM ] ∩ 2k

n Z is 2n p
k (g − 1) + 1. The second statement

now follows from the fact that τ is a k : 1 map. The proof is similar if
min{p, q} = q. q.e.d.

Finally, we examine the coprime condition GCD(p+q, a+b) = 1. We
regard p and q as fixed, but allow [a, b] to vary. The coprime condition
GCD(p + q, a + b) = 1 can thus be satisfied on some components but
not on others.

Definition 6.17. Fix p and q and let C ⊂ Z ⊕ Z/(p+ q)Z be as in
Definition 6.15. Define C1 to be the subset of classes [a, b] ∈ C for which
the condition GCD(p+ q, a+ b) = 1 is satisfied.

Proposition 6.18. Fix p and q and let C and C1 be as above. Both
C1 and its complement in C are nonempty.

Proof. If a = p and b = q − 1 then GCD(p + q, a + b) = 1. Also,
τ(p, q−1) = 2p

p+q , which is in [−τM , τM ]∩ 2k
n Z. Thus [p, q−1] is in C1. It

is similarly straightforward to see that (a, b) = (0, 0) defines an element
in C − C1, as does (a, b) = (p,−p) if p � q or (a, b) = (q,−q) if q � p.

q.e.d.

It seems somewhat complicated to go beyond this result and com-
pletely enumerate the elements in C1. The following result is, however,
a step in that direction.

Definition 6.19. Let Ω ⊂ R⊕R be the region depicted in Figure 2,
i.e., the region bounded by (i) the ray b = q and a � p, (ii) the ray a = p
and b � q, (iii) the ray a = 0 and b � 0, (iv) the ray b = 0 and a � 0,
(v) the line aq − bp = n

2 τM , and (vi) the line aq − bp = −n
2 τM , and

including all the boundary lines except the first two rays. Let ΩZ be
the set of integer points in Ω, i.e. ΩZ = Ω

⋂
Z ⊕ Z. We refer to Ω as

the fundamental region for (p, q) (see Figure 2). Then ΩZ is the integer
lattice inside the fundamental region.
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�
a−p+q

2q τM
0 p

�b

−p+q
2p τM

0

q

τ = 0

τ = τM

τ = −τM
d = q

d = 0

d = −p+q
2q τM

Figure 2: Fundamental region for (a, b). Components of R(PU(p, q))
correspond to the integer points in this region. Illustrative lines of con-
stant τ (at τ = −τM , 0, τM ) and lines of constant d (at d = − n

2q τM , 0, q)
are shown.
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Proposition 6.20. Suppose that p and q are integers with GCD(p, q)
= k.

(1) There is a bijection between C and ΩZ.

(2) If (a, b) lies in ΩZ then d = a+ b satisfies the bounds

−n(g − 1) � d < n.(6.2)

All values of d in this range occur.

(3) Let lt denote the line aq − bp = tk. Then the points on lt
⋂

ΩZ

define the locus of points (a, b) for which τ(a, b) = t2k
n .

(4) The line lt intersects ΩZ for − n
2kτM � t � n

2kτM . For each integer
t in this range, there are k points on lt

⋂
ΩZ.

(5) For a fixed t, GCD(a+b, n
k ) is the same for all integer points (a, b)

on lt
⋂

ΩZ.

(6) Fix t and let (a, b) be any point in the set lt
⋂

ΩZ. If GCD(a +
b, n

k ) �= 1 then GCD(a′ + b′, n) �= 1 for all (a′, b′) ∈ lt
⋂

ΩZ.

Proof. (1) Suppose first that a
p � b

q . Pick l such that 0 � a+ lp � p.
Then b + lq � q, so that (a + lp, b + lq) is in the fundamental region.
Similarly, if a

p � b
q then we pick l such that 0 � b + lq � q and see

that a + lp � p. In this way we get a well-defined map from C to the
fundamental region. The map is clearly injective. To see that it is
surjective, notice that the boundary lines aq − bp = ±n

2 τM correspond
to the conditions τ = ±τM .

(2) This is clear from a sketch of the fundamental region (see Fig-
ure 2), in which the loci of points with constant value of d = a + b
are straight lines of slope −1. The maximal value for d corresponds to
the line passing through the top right corner of the region, i.e., through
(p, q). Thus dmax = p + q = n. The minimal value for d corresponds
either to the line passing through (− n

2q τM , 0) or to the line through
(0,− n

2pτM ), depending on which yields the smaller value for d. Since
τM = 2 min{p, q}(g − 1), we find in all cases that dmin = −n(g − 1). It
is straightforward to see that all intermediate values for d occur.

(3)-(4) This is simply a restatement of Proposition 6.13.
(5)-(6) Both follow from the fact that for any two points (a, b) and

(a′, b′) on lt, we get d′ = d+ sn
k for some s ∈ Z. q.e.d.
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Remark 6.21. Part (6) says that for fixed t, if GCD(a+ b, n
k ) �= 1

for any point (a, b) ∈ lt
⋂

ΩZ, then GCD(a + b, n) �= 1 for all points
(a, b) ∈ lt

⋂
ΩZ. That is, we can detect the non-coprimality of (a+ b, n)

for all (a, b) ∈ lt
⋂

ΩZ by checking the non-coprimality of (a + b, n
k ) at

any one (a, b) ∈ lt
⋂

ΩZ. We cannot however check for coprimality in the
same way. If GCD(a + b, n

k ) = 1, it is possible that GCD(a′ + b′, n) �=
1 for some (a′, b′) ∈ lt

⋂
ΩZ. For example, take p = 2, q = 4, a =

−1, b = 0, a′ = 0, b′ = 2, and t = −2. Then GCD(a′ + b′, n) = 2 while
GCD(a+ b, n

k ) = 1.
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[15] O. Garćıa-Prada, Dimensional reduction of stable bundles, vortices and stable
pairs, Int. J. Math. 5 (1994) 1–52, MR 95d:32035, Zbl 0799.32022.

[16] W.M. Goldman, Representations of fundamental groups of surfaces, in ‘Geometry
and topology’, Proceedings, J. Alexander & J. Harer (eds.), University of Maryland
1983–1984, Lecture Notes in Mathematics, 1167, 95–117. Berlin-Heidelberg-New
York, Springer, 1985, MR 87j:32068, Zbl 0575.57027.

[17] W.M. Goldman, Topological components of spaces of representations, Invent.
Math. 93 (1988) 557–607, MR 89m:57001, Zbl 0655.57019.

[18] P.B. Gothen, The topology of Higgs bundle moduli spaces, Ph.D. Thesis, Mathe-
matics Institute, University of Warwick, 1995.

[19] P.B. Gothen, Components of spaces of representations and stable triples, Topology
40 (2001) 823–850, MR 2002k:14017.

[20] P.B. Gothen, Topology of U(2, 1) representation spaces, Bull. London Math. Soc.
34 (2002) 729–738, MR 2003f:14036.

[21] L. Hernández, Maximal representations of surface groups in bounded symmetric
domains, Transactions Amer. Math. Soc. 324 (1991) 405–420, MR 91f:32040,
Zbl 0733.32024.

[22] N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. London
Math. Soc. 55 (1987) 59–126, MR 89a:32021, Zbl 0634.53045.

[23] N.J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449–473,
MR 93e:32023, Zbl 0769.32008.

[24] E. Markman & E.Z. Xia, The moduli of flat PU(p, p) structures with large Toledo
invariants, Math. Z. 240 (2002) 95–109, MR 2003i:14009, Zbl 1008.32006.

[25] I. Mundet i Riera, A Hitchin–Kobayashi correspondence for Kahler fibrations, J.
Reine Angew. Math. 528 (2000) 41–80, MR 2002b:53035, Zbl 1002.53057.

[26] M.S. Narasimhan & C.S. Seshadri, Stable and unitary bundles on a compact Rie-
mann surface, Ann. of Math., 82, 540–564 (1965), MR 30 #588, Zbl 0171.04803.

[27] N. Nitsure, Moduli spaces of semistable pairs on a curve, Proc. London Math.
Soc. 62 (1991) 275–300, MR 92a:14010, Zbl 0733.14005.

http://www.emis.de/cgi-bin/MATH-item?0733.14005
http://www.ams.org/mathscinet-getitem?mr=92a:14010
http://www.emis.de/cgi-bin/MATH-item?0171.04803
http://www.ams.org/mathscinet-getitem?mr=30:588
http://www.emis.de/cgi-bin/MATH-item?1002.53057
http://www.ams.org/mathscinet-getitem?mr=2002b:53035
http://www.emis.de/cgi-bin/MATH-item?1008.32006
http://www.ams.org/mathscinet-getitem?mr=2003i:14009
http://www.emis.de/cgi-bin/MATH-item?0769.32008
http://www.ams.org/mathscinet-getitem?mr=93e:32023
http://www.emis.de/cgi-bin/MATH-item?0634.53045
http://www.ams.org/mathscinet-getitem?mr=89a:32021
http://www.emis.de/cgi-bin/MATH-item?0733.32024
http://www.ams.org/mathscinet-getitem?mr=91f:32040
http://www.ams.org/mathscinet-getitem?mr=2003f:14036
http://www.ams.org/mathscinet-getitem?mr=2002k:14017
http://www.emis.de/cgi-bin/MATH-item?0655.57019
http://www.ams.org/mathscinet-getitem?mr=89m:57001
http://www.emis.de/cgi-bin/MATH-item?0575.57027
http://www.ams.org/mathscinet-getitem?mr=87j:32068
http://www.emis.de/cgi-bin/MATH-item?0799.32022
http://www.ams.org/mathscinet-getitem?mr=95d:32035
http://www.emis.de/cgi-bin/MATH-item?0088.38002
http://www.ams.org/mathscinet-getitem?mr=24:A1730
http://www.emis.de/cgi-bin/MATH-item?0511.57018
http://www.ams.org/mathscinet-getitem?mr=81f:57021
http://www.emis.de/cgi-bin/MATH-item?0634.53046
http://www.ams.org/mathscinet-getitem?mr=88q:58040


170 s. bradlow, o. garcia-prada & p. gothen

[28] M. Schlessinger, Functors on Artin rings, Trans. Amer. Math. Soc. 130 (1968)
208–222, MR 36 #184, Zbl 0167.49503.

[29] C.T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory
and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867–918,
MR 90e:58026, Zbl 0669.58008.

[30] C.T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ.
Math. 75 (1992) 5–95, MR 94d:32027, Zbl 0814.32003.

[31] C.T. Simpson, Moduli of representations of the fundamental group of a smooth
projective variety I, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 47–129
MR 96e:14012, Zbl 0891.14005.

[32] C.T. Simpson, Moduli of representations of the fundamental group of a smooth
projective variety II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5–79,
MR 96e:14013, Zbl 0891.14006.

[33] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Dif-
ferential Geometry 29 (1989) 125–133, MR 90a:57016, Zbl 0676.57012.

[34] E.Z. Xia, Components of Hom(π1, PGL(2,R)), Topology 36 (1997) 481–499,
MR 97j:57002, Zbl 0872.57004.

[35] E.Z. Xia, The moduli of flat U(p, 1) structures on Riemann surfaces, preprint,
1999, math.AG/9910037.

[36] E.Z. Xia, The moduli of flat PU(2, 1) structures on Riemann surfaces, Pacific

Journal of Mathematics 195 (2000) 231–256, MR 2001q:32033.

Department of Mathematics
University of Illinois

Urbana, IL 61801
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