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Abstract
It is well-known that any 4-dimensional hyperkähler metric with two com-
muting Killing fields may be obtained explicitly, via the Gibbons-Hawking
Ansatz, from a harmonic function invariant under a Killing field on R3. In
this paper, we find all selfdual Einstein metrics of nonzero scalar curvature
with two commuting Killing fields. They are given explicitly in terms of
a local eigenfunction of the Laplacian on the hyperbolic plane. We dis-
cuss the relation of this construction to a class of selfdual spaces found by
Joyce, and some Einstein-Weyl spaces found by Ward, and then show that
certain ‘multipole’ hyperbolic eigenfunctions yield explicit formulae for the
quaternion-kähler quotients of HPm−1 by an (m− 2)-torus studied by Gal-
icki and Lawson. As a consequence we are able to place the well-known
cohomogeneity one metrics, the quaternion-kähler quotients of HP2 (and
noncompact analogues), and the more recently studied selfdual Einstein
Hermitian metrics in a unified framework, and give new complete examples.

1. Introduction

We present in this paper an explicit classification of 4-dimensional
Einstein metrics with selfdual Weyl curvature and two linearly inde-
pendent commuting Killing fields. We refer to these metrics as selfdual
Einstein metrics with torus symmetry, since they are the local form (on
a dense open set) of such metrics with an action of T 2, S1 ×R or R2 by
isometries.

When the selfdual Einstein metric g is scalar-flat, it is well-known
that g is locally hyperkähler and that some linear combination of the two
Killing fields is triholomorphic — hence g is determined by a harmonic
function on R3, via the Gibbons-Hawking Ansatz [21], and this harmonic
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function is invariant under the transrotation of R3 coming from the
second Killing field of g. Therefore we focus on the case that the selfdual
Einstein metric has nonzero scalar curvature.

Theorem 1.1. Let F (ρ, η) be a solution of the linear differential
equation

Fρρ + Fηη =
3F
4ρ2

on some open subset of the half-space ρ > 0, and consider the metric
g(ρ, η, φ, ψ) given by

g =
F 2 − 4ρ2(F 2

ρ + F 2
η )

4F 2

dρ2 + dη2

ρ2
(1.1)

+

(
(F − 2ρFρ)α− 2ρFηβ

)2 +
(−2ρFηα+ (F + 2ρFρ)β

)2

F 2
(
F 2 − 4ρ2(F 2

ρ + F 2
η )

) ,

where α =
√
ρ dφ and β = (dψ + η dφ)/

√
ρ. Then:

(i) On the open set where F 2 > 4ρ2(F 2
ρ +F 2

η ), g is a selfdual Einstein
metric of positive scalar curvature, whereas on the open set where
0 < F 2 < 4ρ2(F 2

ρ + F 2
η ), −g is a selfdual Einstein metric of

negative scalar curvature.

(ii) Any selfdual Einstein metric of nonzero scalar curvature with two
linearly independent commuting Killing fields arises locally in this
way, (i.e., in a neighbourhood of any point, it is of the form (1.1)
up to a constant multiple).

The metric g is sufficiently explicit to make it straightforward,
though tedious, to check that it is selfdual and Einstein, for instance,
by computing the curvature of the Levi-Civita connection of g on anti-
selfdual 2-forms using the Cartan calculus [37]. Hence the heart of the
above theorem is part (ii), so we concentrate on this and explain why
all selfdual Einstein metrics with torus symmetry are of this form. The
proof of (ii) will in fact encode the selfdual Einstein condition (using
work of Tod [39]), thus proving (i) at the same time.

There are three features of these metrics which need to be explained.
First, and most remarkable, is the fact that the equation for F is linear.
This means that we can “superpose” two such metrics to yield a third.

Second, the equation for F means that it is a local eigenfunction,
with eigenvalue 3/4, of the Laplacian ρ−2(∂2

ρ + ∂2
η) of the hyperbolic
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metric (dρ2 + dη2)/ρ2. In other words F satisfies a natural differential
equation on the hyperbolic plane.

Third, the level surfaces of constant φ, ψ are orthogonal to both
Killing fields ∂/∂φ and ∂/∂ψ, hence the orbits of the induced 2-dimen-
sional local symmetry group are surface-orthogonal, i.e., the orthogonal
distribution to the orbits is integrable.

These three features are closely related. We originally found an ex-
plicit form for selfdual Einstein metrics with torus symmetry by noticing
that the local quotient of such a metric by one of its Killing fields must
be an Einstein-Weyl space with an axial symmetry, i.e., one of the spaces
found by Ward [40] and studied in [9]. These Einstein-Weyl spaces are
given explicitly in terms of an axisymmetric harmonic function (AHF)
on R3, i.e., a solution of a linear differential equation. The geometry of
the hyperbolic plane H2 enters the picture because R3 � R is conformal
to H2 ×S1. Finally, these Einstein-Weyl spaces are the quotients of the
conformal metrics found by Joyce [26], who obtained a classification of
selfdual 4-manifolds with two commuting surface-orthogonal conformal
vector fields.

This original argument had the advantage of being an exercise in
pure thought, i.e., a combination of known results with no new compu-
tations. However, it led to a rather awkward description of the confor-
mally Einstein metrics among Joyce’s selfdual spaces.

Therefore, we shall present a different, more self-contained proof
of Theorem 1.1. Indeed, we proceed rather in reverse, by establishing
directly, in Section 3, the surface-orthogonality of the Killing fields. To
do this, we first review, in Section 2, an isomorphism between Killing
fields and twistors which plays an important role throughout the paper
— these twistors are essentially the same thing as compatible scalar-flat
Kähler metrics [33]. We discuss this in Section 4, together with Tod’s
description [39] of selfdual Einstein metrics with a Killing field in terms
of the SU(∞) Toda equation (see also [34, 15]).

Returning to the general argument, the surface-orthogonality of the
Killing fields shows that the conformal structure of a selfdual Einstein
metric with torus symmetry is a ‘Joyce space’ [26]. We review the theory
of Joyce spaces and their quotient Einstein-Weyl spaces in Section 5 and
explain how they are determined by two solutions of a spinor equation
on H2 which is equivalent to the equation for AHFs. On the other hand,
Tod’s analysis of selfdual Einstein metrics with a Killing field shows that
these two AHFs must be related in a special way. The essential idea is
that the AHFs are constructed from the eigenfunction F by a Bäcklund
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transformation, and a 2-dimensional family is obtained because this
transformation is coordinate dependent. In Sections 6 and 7 we use the
spin geometry of the hyperbolic plane to give a more natural description,
and this allows us to complete the proof of Theorem 1.1.

In Section 8 we discuss the Swann bundle [36] of our selfdual Ein-
stein metrics, cf. [13]. This hyperkähler 8-manifold with two commuting
triholomorphic Killing fields is given locally by the generalized Gibbons-
Hawking construction of [23, 32] and we establish the relationship be-
tween this construction and the eigenfunction F . Then, comparing the
Swann bundle with the hyperkähler quotients of Hm by an (m − 2)-
torus (see [5]), we are led, in Section 9, to define ‘multipole’ hyperbolic
eigenfunctions and prove the following theorem:

Theorem 1.2. The selfdual Einstein metrics arising as quaternion-
kähler quotients of quaternionic projective space HPm−1 by an (m− 2)-
dimensional family of commuting Killing fields are exactly the metrics
given by (1.1) where F is a ‘positive m-pole solution’ of the hyperbolic
eigenfunction equation on H2.

A more precise statement is given in Theorem 9.1. In particular, this
characterizes the m-pole solutions corresponding to quaternion-kähler
quotients of HPm−1 by an (m− 2)-torus, which yield the compact self-
dual Einstein orbifold metrics of Galicki-Lawson [19] when m = 3, and
Boyer-Galicki-Mann-Rees [7] in general.

Replacing Hm with Hp,q leads to noncompact analogues of these
metrics, among which there are examples of complete selfdual Einstein
metrics of negative scalar curvature. Some of these metrics are well-
known — and our approach provides a unified description of them —
but we also obtain new examples.
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2. Selfdual Einstein metrics, twistors and Killing fields

We begin by reviewing the relation between Killing fields and anti-
selfdual twistors on a selfdual Einstein manifold, following [4, 39]. Recall
that a vector field K is a Killing field of a metric g if and only if its co-
variant derivative DgK is a skew endomorphism of the tangent bundle
(the endomorphism is defined by X �→ Dg

XK).
In four dimensions skew endomorphisms decompose into selfdual and

antiselfdual parts: so(TM) = so+(TM)⊕so−(TM). This is related (via
the metric) to the decomposition ∧2T ∗M = ∧2

+T
∗M ⊕ ∧2

−T
∗M of the

bundle of 2-forms into eigenspaces of the Hodge ∗ operator. We denote
the decomposition of sections of these bundles by A = A+ +A−.

An antiselfdual endomorphism Ψ is called a twistor if there is a 1-
form γ such that Dg

XΨ = (γ �X)− for all vector fields X — here, for
vector fields X,Y , we define γ �X(Y ) = γ(Y )X − 〈X,Y 〉	γ. It follows
by taking a trace that γ is a multiple of the divergence δgΨ and so this
is a linear differential equation on Ψ, called the twistor equation.

For a selfdual Einstein metric, the curvature Rg ∈ C∞(M,∧2T ∗M⊗
so(TM)) has only two irreducible components: the selfdual Weyl cur-
vature W+ ∈ C∞(M,∧2

+T
∗M ⊗ so+(TM)), and the (normalized) scalar

curvature sg = 1
6scalg.

This has strong consequences for Killing fields and twistors.

Proposition 2.1. Let g be a selfdual Einstein metric.

(i) Suppose K is a Killing field of g and let Ψ = (DgK)−. Then
Dg
XΨ = 1

2s
g
(〈K, ·〉�X

)−
and so Ψ is a twistor.

(ii) Suppose Ψ is a twistor with Dg
XΨ = (γ �X)−. Then the dual

vector field 	gγ is a Killing field of g and (Dgγ)− = 1
2s
g〈Ψ(·), ·〉.

Proof. (i) Since K is Killing and g is selfdual Einstein, we have

Dg
XD

gK = RgX,K = W
+

X,K + 1
2s
g〈K, ·〉�X.

The antiselfdual part of this is what we want.

(ii) Differentiating the twistor equation again and skew symmetriz-
ing gives

(Dg
Xγ �Y )− − (Dg

Y γ �X)− = [RgX,Y ,Ψ] = −1
2
sg[〈X, ·〉�Y,Ψ].
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Contracting with another vector field Z and taking the trace over X
and Z, we obtain

symDgγ + 1
2δ
gγ + (dγ)− = sg〈Ψ(·), ·〉.

The right-hand side is skew, so Dgγ is skew, 	gγ is a Killing field and
2(Dgγ)− = sg〈Ψ(·), ·〉. q.e.d.

Corollary 2.2. Let g be a selfdual Einstein metric of nonzero scalar
curvature. Then there is a linear isomorphism from space of Killing
fields of g to the space of twistors.

This is not true if g has zero scalar curvature, when Dg is flat on
so−(TM) and g is locally hyperkähler. Then Proposition 2.1 (i) says
that (DgK)− is parallel, and so K is either triholomorphic, or (DgK)−

is a nonzero constant multiple of one of the complex structures. Propo-
sition 2.1 (ii) says that the Killing field associated to a twistor is tri-
holomorphic.

Let us remark, however, that this isomorphism does generalize to
quaternion-kähler manifolds of nonzero scalar curvature [35], and un-
derlies the quaternion-kähler quotient [19]. 4m-dimensional quaternion-
kähler manifolds with Tm+1-symmetry have beed studied in [13].

3. Surface-orthogonality

In this section we show that the orbits of two commuting Killing
fields of a selfdual Einstein metric with nonzero scalar curvature are
necessarily surface-orthogonal.

Recall that a Killing vector K is hypersurface-orthogonal if and only
if (DgK)(X,Y ) = 0 for all X,Y orthogonal to K. Here we view DgK
as a 2-form using the metric g; (DgK)(X,Y ) = −1

2〈K, [X,Y ]〉 and so
hypersurface-orthogonality means precisely that the orthogonal distri-
bution is integrable. Equivalently K is hypersurface-orthogonal if and
only if (∗DgK)(K) is zero. In four dimensions, this is a 1-form called
the twist of K.

Similarly, two linearly independent Killing vector fields K, K̃ are
(codimension 2-) surface-orthogonal if and only if (DgK)(X,Y ) = 0 and
(DgK̃)(X,Y ) = 0 for all X,Y orthogonal to both K and K̃. This means
that the orthogonal distribution is integrable, and holds if and only if
(∗DgK)(K, K̃) and (∗DgK̃)(K, K̃) are both zero. In four dimensions,
these are both scalars, the twist scalars.
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We first collect some simple facts about commuting Killing fields.

Lemma 3.1. Suppose K, K̃ are commuting Killing fields of a 4-
dimensional metric g and let Ψ = (DgK)−, Ψ̃ = (DgK̃)−. Then:

(i) (DgK)(K, K̃) = 0 and (DgK̃)(K, K̃) = 0.

(ii) d(|Ψ̃|2)(K) = 0 and d(|Ψ|2)(K̃) = 0.

Proof. (i) Since [K, K̃] = 0, we have (DgK)(K̃, ·) = (DgK̃)(K, ·).
The results follow by contracting with K and K̃ respectively.

(ii) Since LKg = 0 and LKK̃ = 0, we have LKDgK̃ = 0 and hence
LK(Ψ̃) = 0. We deduce that d(|Ψ̃|2)(K) = 0, and, in the same way,
d(|Ψ|2)(K̃) = 0. q.e.d.

Combining this with Proposition 2.1 yields the surface-orthogonality.

Proposition 3.2. Let g be a selfdual Einstein metric of nonzero
scalar curvature, and suppose K, K̃ are linearly independent commut-
ing Killing fields. Then the orthogonal distribution to 〈{K, K̃}〉 is inte-
grable.

Proof. Contracting the formula of Proposition 2.1 (i) with Ψ, we
obtain gradg|Ψ|2 = sg Ψ(K). Now d(|Ψ|2)(K̃) = 0 and sg is nonzero,
so we deduce that 〈Ψ(K), K̃〉 = 0. This implies that (∗DgK)(K, K̃) =
(DgK)(K, K̃) which vanishes by the above lemma. A similar argument
shows that the other twist scalar also vanishes. q.e.d.

In the zero scalar curvature case, the twist scalars are constant, but
they need not vanish.

4. Scalar-flat Kähler metrics and Toda structures

On any Riemannian 4-manifold (M, g), the twistor equation has a
geometric interpretation due to Pontecorvo.

Proposition 4.1 ([33]). Suppose that Ψ is a section of so−(TM)
satisfying the equation Dg

XΨ = (γ �X)− for all vector fields X, where
γ is a 1-form, and write, on the open set where Ψ is nonzero, Ψ = fJ
where J2 = −1.

Then (f−2g, J) is a (negatively oriented) Kähler metric. In partic-
ular the antiselfdual almost complex structure J is integrable.

Proof. Contracting the equation with Ψ, we deduce that γ = −2Jdf .
Hence fDg

XJ +df(X)J = −2(Jdf �X)−, which may be rewritten Dg
XJ
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+(f−1df �X) ◦ J − J ◦ (f−1df �X) = 0. This means that J is parallel
with respect to the Levi-Civita connection of f−2g. q.e.d.

Since the Kähler form of a negatively oriented Kähler metric ĝ is
parallel, it is a twistor with respect to ĝ. However, the twistor equation
is conformally invariant if Ψ has weight 1 (the other component of the
covariant derivative of Ψ, the divergence, is equivalently the exterior
derivative of the associated 2-form, and so it is conformally invariant if
Ψ has weight −2). This means that all compatible Kähler metrics arise
from twistors.

If (M, g) is selfdual, then (f−2g, J) is a scalar-flat Kähler metric [20].
Hence on a selfdual manifold, compatible scalar-flat Kähler metrics are
determined locally by solutions of a linear differential equation.

Now suppose that K is a Killing field of g, and that LKΨ = 0.
Then K is a holomorphic Killing field of the scalar-flat Kähler metric
(f−2g, J). LeBrun [29] shows that such a scalar-flat Kähler metric gJ
is locally of the form

gJ = weu(dx2 + dy2) + w dz2 + w−1(dt+A)2,

where ∂t is the Killing field, u is a solution of the SU(∞) Toda equation
uxx + uyy + (eu)zz = 0, and w is a solution of its linearization wxx +
wyy + (euw)zz = 0, which is the compatibility condition for the local
existence of A with dA = wxdy ∧ dz −wydx ∧ dz + (euw)zdx ∧ dy. The
scalar-flat Kähler metric is hyperkähler if and only if uz is a multiple of
w, when LeBrun’s construction reduces to that of Boyer and Finlay [6]
(or the Gibbons-Hawking Ansatz if uz = 0).

A geometrical interpretation of this construction is obtained by re-
lating it to the Jones-Tod correspondence [25]. Given a selfdual space
M with a nonvanishing conformal vector field K, the local quotient of
M by K is a 3-dimensional Einstein-Weyl space B — recall that this is
a conformal manifold equipped with a torsion-free conformal connection
D (a Weyl connection) such that the symmetric trace-free part of the
Ricci curvature of D vanishes [10]. Weyl connections on a conformal
manifold form an affine space modelled on the space of 1-forms. In the
Jones-Tod construction, there is a unique compatible metric for which
K is a vector field of constant length, and D differs from the Levi-Civita
connection of the quotient metric by a multiple of the twist of K (which
descends to a 1-form on B).

Conversely, given an Einstein-Weyl space B, selfdual spaces M with
a conformal vector field fibering over B are locally determined by solu-
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tions of the abelian monopole equation ∗Dw = dA (where w is a section
of L−1, i.e., a scalar of weight −1, and A is a 1-form).

In explicit terms, a Weyl structure may be specified by a choice of
representative metric h and a 1-form ω such that Dh = −2ω ⊗ h. The
Einstein-Weyl structure in LeBrun’s construction is given by

h = eu(dx2 + dy2) + dz2(4.1)
ω = −uzdz.

An Einstein-Weyl space which can be written in this form, for some
solution u of the SU(∞) Toda equation, is said to be Toda. These
Einstein-Weyl spaces were introduced by Ward [40].

The reduction to three dimensions of the twistor equation for Ψ gov-
erning scalar-flat Kähler metrics gives a linear description of compatible
‘Toda structures’ on an Einstein-Weyl space [9].

Definition 4.2. A Toda structure on an Einstein-Weyl is a section
X of L−1/2 ⊗ TB such that DX = σ id for some section σ of L−1/2.
In other words, X is a weighted vector field with tracelike covariant
derivative.

Using work of Tod [38] (see also [11]), it was shown in [9] that if X
is a nonvanishing Toda structure, then in the gauge (h, ω) with |X | = 1,
called the LeBrun-Ward gauge, the Einstein-Weyl space with is of the
form (4.1), for some solution of the SU(∞) Toda equation, and X = ∂z.

We end this section by stating the crucial result of Tod [39] which
characterizes selfdual Einstein metrics g of nonzero scalar curvature with
a Killing field K. Proposition 2.1 shows that these admit a solution Ψ
of the twistor equation, and it is clear that LKΨ = 0.

Proposition 4.3 ([39]). Let g be a selfdual Einstein metric of
nonzero scalar curvature with a Killing field K. Then g is locally iso-
metric to z−2gJ , where gJ is a scalar-flat Kähler metric arising from
LeBrun’s construction with w = 2 − zuz. Conversely, on any Toda
Einstein-Weyl space, 2−zuz is a solution of the abelian monopole equa-
tion and z−2gJ is Einstein.

Note that a Toda structure only determines z up to translation,
so this construction gives a one parameter family of selfdual Einstein
metrics over any Toda Einstein-Weyl space. However, it is very difficult
to obtain explicit solutions of the SU(∞) Toda equation! In this paper,
we are, in effect, exploiting some implicit solutions of the SU(∞) Toda
equation found by Ward [40].
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5. The Joyce Ansatz and Einstein-Weyl spaces

In [26], Joyce studied selfdual spaces with a surface-orthogonal ac-
tion of the 2-torus by conformal transformations and constructed self-
dual conformal metrics on connected sums of complex projective planes.
To do this, he first considered the local problem, and showed how self-
dual conformal metrics with a pair of surface-orthogonal commuting
conformal vector fields are generically determined by two solutions of a
linear equation for a spinor field Φ on the hyperbolic plane H2.

On the other hand, in [40], Ward gave examples of Toda Einstein-
Weyl spaces by taking quotients of Gibbons-Hawking metrics construct-
ed from axisymmetric harmonic functions (AHFs) on R3. These spaces
were studied further in [9], where it was shown that they are determined
by a single solution Φ of the same linear equation on H2.

We refer to this equation for Φ, which can be written ∂Φ = 1
2Φ, as

the Joyce equation.
The two constructions can be related using the Jones-Tod corre-

spondence. To do this in a symmetrical manner, we view the span of
two commuting conformal vector fields as a 2-dimensional linear family
Ks, s ∈ V, where V is a 2-dimensional real vector space on which we
fix an area form (i.e., ∧2V = R) once and for all. We say that Ks is a
pencil of conformal vector fields, since the nonzero elements up to scale
are parameterized by a real projective line.

We shall call a selfdual conformal manifold with a surface-orthogonal
pencil of conformal vector fields a Joyce space. A pencil of solutions Φ =
(Φs) of the Joyce equation determines a Joyce space. On the other hand,
a single solution Φ of the Joyce equation defines an Einstein-Weyl space
with an axial symmetry, i.e., admitting a surface-orthogonal divergence-
free conformal vector field K preserving the Weyl connection. We shall
see that the pencil of quotients of a Joyce space are the Einstein-Weyl
spaces with an axial symmetry defined by the components Φs of Φ
(in fact this pencil is parameterized by V∗, not V, which is why it is
convenient to fix an area form on V). First let us summarize the two
constructions.

Proposition 5.1. Suppose that (N, gN ) is a hyperbolic 2-manifold
with a spinor bundle W, i.e., a real rank 2 vector bundle with a complex
structure such that W ⊗C W = TN . Let gW be the induced Hermitian
metric on W.

(i) [9] Suppose that Φ ∈ C∞(N,W∗) is a solution of the Joyce equation
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which is nonvanishing on an open subset U of N , and let π : B → U be
a flat principal S1- or R-bundle with fibre coordinate ψ. Then

g = |Φ|2π∗gN + dψ2

ω = Φ2/|Φ|2

is an Einstein-Weyl space with an axial symmetry. Conversely any con-
nected Einstein-Weyl space with an axial symmetry is either flat with
translational symmetry, or is locally isomorphic to one of these.
(ii) [26] Suppose that Φ ∈ C∞(N,W∗)⊗V is a pencil of solutions of the
Joyce equation which induces a positive isomorphism Wx → V of real
vector spaces for all x in an open subset U of N , and let π : M → U
be a flat principal V/Λ-bundle where Λ is a discrete subgroup of (V,+).
Then the conformal class of the metric

π∗gN + gW(Φ−1(·),Φ−1(·))
(where we identify TM with π∗TN ⊕ (M ×V), using the principal con-
nection) is a Joyce space. Conversely, any connected Joyce space is
either locally conformally hyperkähler with a pencil of triholomorphic
Killing fields, or is locally isomorphic to one of these.
(For local questions we may as well take N = H2, B = U ×R and
M = U ×V.)

The conventions used to identify ∂Φ with 1
2Φ in the Joyce equation

are crucial. If the curvature of the hyperbolic metric is −1, the isomor-
phism from W∗ (which is just W∗ with the opposite complex structure)
to T ∗N ⊗C W∗ must have norm 1 (as an isomorphism of real vector
bundles) with respect to the Hermitian metrics gW and gN .

To clarify this, we follow Joyce by giving an explicit and purely real
interpretation of the Joyce equation. We take N to be the hyperbolic
plane H2 and introduce half-space coordinates (ρ > 0, η), so that gH2 =
(dρ2+dη2)/ρ2. The metric on W then has the form gW = µ2

0+µ2
1 where

µ2
0 − µ2

1 = dρ/ρ and 2µ0µ1 = dη/ρ is the identification of S2
0W∗ with

T ∗N .
We write the Joyce equation for the components Φ = A0µ0 + A1µ1

with respect to this orthonormal frame. The Levi-Civita connection of
the hyperbolic metric induces a Hermitian connection ∇ on W and it is
straightforward to compute the connection coefficients ∇µ0 = −dη

2ρ ⊗µ1

and ∇µ1 = dη
2ρ ⊗ µ0. Hence

∂Φ =
(
ρ(A0)ρ + ρ(A1)η − 1

2A0

)
µ0 −

(
ρ(A1)ρ − ρ(A0)η − 1

2A1

)
µ1,
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which equals 1
2(A0µ0 +A1µ1) if and only if

(A0)ρ + (A1)η = A0/ρ

(A0)η − (A1)ρ = 0.

By solving one of these equations, we can reduce the Joyce equation
to an equation for a single function. The most obvious way to do this
is to use the second equation to set A0 = Gρ and A1 = Gη so that the
first equation becomes Gρρ +Gηη = Gρ/ρ. If we set G = ρ1/2F then F
is an eigenfunction of the Laplacian on H2 with eigenvalue 3/4.

Alternatively we can use the first equation to put A0 = −ρVη and
A1 = ρVρ, so that the second equation becomes ρVηη+(ρVρ)ρ = 0. This
means that V is an AHF on R3 with metric dρ2 + dη2 + ρ2dθ2.

By construction, the equation for F is the integrability condition for
V and vice-versa, so the relation between F and V is a simple example
of a Bäcklund transformation.

Suppose now that we have two solutions A0µ0 + A1µ1 and B0µ0 +
B1µ1 of the Joyce equation. The corresponding Joyce space has a com-
patible metric

g0 = (A0B1 −A1B0)gH2 +
(A0dφ−B0dψ)2 + (A1dφ−B1dψ)2

A0B1 −A1B0
.(5.1)

Via the Jones-Tod correspondence [25], the quotient by ∂φ is an Ein-
stein-Weyl space, and we can compute it by rediagonalizing g0 and
rescaling by (A2

0 +A2
1)/(A0B1 −A1B0) to give

(A2
0 +A2

1)gH2 + dψ2 +
(

A2
0 +A2

1

A0B1 −A1B0

)2 (
dφ− (A0B0 +A1B1)dψ

A2
0 +A2

1

)2

.

In this form, we can read off the Einstein-Weyl space (gB, ωB) and
abelian monopole (w , A), using the abelian monopole equation ∗(dw −
ωBw) = dA to compute ωB. The result is:

gB = (A2
0 +A2

1)gH2 + dψ2, ωB =
2A0A1 dη + (A2

0 −A2
1)dρ

ρ(A2
0 +A2

1)
,(5.2)

w =
A1B0 −A0B1

A2
0 +A2

1

, A = −A0B0 +A1B1

A2
0 +A2

1

dψ.(5.3)

Hence, as expected, the result is the Einstein-Weyl space constructed
from the solution A0µ0 +A1µ1 of the Joyce equation. However, we also
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see explicitly how the second solution B0µ0+B1µ1 of the Joyce equation
determines an abelian monopole on this Einstein-Weyl space. In the
remainder of this section we discuss the scalar-flat Kähler metrics and
Toda structures that will enable us to characterize the case that (M, g0)
is conformally Einstein.

An important point is that any Joyce space admits a family of scalar-
flat Kähler metrics [26], and any Einstein-Weyl space with an axial sym-
metry admits a family of Toda structures [9]. In fact, Joyce observes
that each point at infinity of H2 determines a scalar-flat Kähler metric
in the conformal class on M : more precisely, for any half-space coordi-
nates (ρ, η) on H2, the metric ρg0 is scalar-flat Kähler. By Pontecorvo’s
work [33], this means that M has a 2-dimensional linear family of solu-
tions of the twistor equation, which we parameterize by a 2-dimensional
real vector space W.

Since these scalar-flat Kähler metrics are invariant under the entire
pencil of conformal vector fields, LeBrun’s work [29] shows that each
scalar-flat Kähler metric determines a Toda structure on each quotient
Einstein-Weyl space. This fits together with a further characterization
of Einstein-Weyl spaces with an axial symmetry [9]: they are precisely
the Einstein-Weyl spaces admitting a pencil of Toda structures. These
Toda structures are parameterized by the same 2-dimensional real vector
space W, and are obtained from a choice of half-space coordinates (ρ, η)
on H2 as follows.

First introduce the functions G,V with Gρ = A0 = −ρVη and Gη =
A1 = ρVρ. (Note that G is determined by V up to translation: one way
to define G is to choose an AHF U with Uη = V , so that G = ρUρ.)
Then, after a conformal rescaling by ρ2, the Einstein-Weyl structure
may be written in the form (4.1),

h = ρ2(dV 2 + dψ2) + dG2, ω =
2Vη

ρ2(V 2
ρ + V 2

η )
dG,

where we set x = V , y = ψ, z = G, and eu = ρ2.

We know that uz is an abelian monopole giving rise to hyperkähler
metric [6], while the Einstein metrics we seek are obtained from a 2−zuz
monopole (once we have fixed the Toda structure and the translational
freedom in the z coordinate). The conformal rescaling by ρ2 multiplies
the abelian monopoles w by (a constant multiple of) 1/ρ, so in the
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original gauge, these monopoles may be written

ρ

2
uz =

A0

A2
0 +A2

1

ρ

2
(2 − zuz) =

ρ(A2
0 +A2

1) −GA0

A2
0 +A2

1

.

Clearly (from (5.3)) the first of these is the abelian monopole associated
to the solution µ1 of the Joyce equation. The second turns out to
be associated to the solution B0µ0 + B1µ1 with B0 = ρA1 − ηA0 and
B1 = G−ρA0−ηA1. This latter formula is rather mysterious at present,
though one easily checks that it does satisfy the Joyce equation, and that
A1B0 − A0B1 = ρ(A2

0 + A2
1) − GA0. The origin of this transformation

of the Joyce equation will be explained later.

H2

Bs

gt

tX

Ks

����
����
����
����

����
����
����
����

M , g

t

s

Figure 1.

Let us now summarize the discussion of this section (see Figure 1).
First, each solution Φ of the Joyce equation determines an Einstein-
Weyl space with an axial symmetry. A pencil of solutions Φ = (Φs)
defines a pencil of Einstein-Weyl spaces Bs and a selfdual space M with
a surface-orthogonal pencil of conformal vector fields Ks, having the
Einstein-Weyl spaces Bs as quotients. On the other hand, any such
selfdual space M has a pencil of compatible scalar-flat Kähler metrics
gt and these determine a pencil of Toda structures Xt on each quotient
Einstein-Weyl space Bs. The choice of a scalar-flat Kähler metric or
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Toda structure is given, up to homothety, by a point t at infinity on the
hyperbolic plane H2. We can fix the homothety freedom by introducing
half-space coordinates for the given point at infinity. We shall see in the
next section how to regard points at infinity of H2 as a pencil.

6. Spin geometry of the hyperbolic plane

The hyperbolic plane H2 is most naturally described as the space of
timelike lines in a 3-dimensional Lorentzian vector space: it inherits a
Riemannian metric from the observation that each timelike line meets
the hyperboloid of two sheets at two points, one in each sheet; thus
we may identify H2 with one of these sheets, with the induced metric.
Planar models (such as the Poincaré disc or half-plane) are obtained by
introducing coordinates (pairs of real-valued functions with independent
differentials) on H2.

In this section we describe the geometry of spinors on the hyper-
bolic plane by equipping the Lorentzian vector space with some extra
structure, following Iversen [24].

Let W be a 2-dimensional real vector space with an area form ε (so
∧2W = R). Then S2W is a (++−) Lorentzian vector space with metric
〈v1v2, w1w2〉 = −ε(v1, w1)ε(v2, w2) − ε(v1, w2)ε(v2, w1). Alternatively,
we can use ε to identify S2W with sl(W), the Lie algebra of traceless
linear maps A : W → W, so that the Lorentzian quadratic form is A �→
−detA, i.e., the timelike vectors have positive determinant.

This linear algebra is a manifestation of the well-known isomorphism
between Spin(2, 1) and SL(2,R): W is the space of spinors of S2W. The
hyperboloid of two sheets is the surface detA = 1 and so we use this
description to identify H2 with the positive definite elements of S2W of
determinant one.

In more concrete terms, choosing a unimodular basis of W, we can
parameterize H2 in S2W by the matrices

A(ρ, η) =
1
ρ

[
1 η
η ρ2 + η2

]
.

Note that the corresponding traceless matrices are obtained by multi-
plying these symmetric matrices by J =

[
0 −1
1 0

]
, which has determinant
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one. We easily compute that

dA =
dρ

ρ

[−1/ρ −η/ρ
−η/ρ (ρ2 − η2)/ρ

]
+
dη

ρ

[
0 1
1 2η

]

〈dA, dA〉 =
dρ2 + dη2

ρ2
.so that

Thus ρ and η are functions on H2 identifying it with the standard half-
space model of the hyperbolic plane. They are only defined once we
have chosen the unimodular basis of W.

The advantage of this model of the hyperbolic plane is that spinors
are easy to handle. Indeed we can identify H2×W with the spinor bundle
by noting that for each A ∈ H2, A−1 is, by definition, a positive definite
unimodular inner product on W, and this equips W = H2 ×W with a
metric. The induced complex structure evidently satisfies W2 = TH2,
since W2

A consists of the symmetric elements in W ⊗
R

W which are
traceless with respect to the inner product A−1, i.e., orthogonal to A,
and this is the tangent plane TAH2.

In terms of a half-space model, a frame for W is given by the vectors

m0 =
[ 0√

ρ

]
, m1 =

[1/√
ρ

η
/√
ρ

]

with dual frame

µ0 =
[−η/√ρ

1
/√
ρ

]
, µ1 =

[√ρ
0

]
.

One easily sees that these are orthogonal and of unit length with respect
to A, and that

m2
0 −m2

1 = dA(ρ∂ρ), 2m0m1 = dA(ρ∂η).

We refer to the “constant” sections of W = H2 ×W as twistors —
they are certainly not parallel with respect to the induced Hermitian
connection on W, since the hyperbolic metric is not flat. We shall not
need to discuss what equation they satisfy, since we have an explicit
description of them in terms of the orthonormal frame m0,m1: they are
the sections of the form[a

b

]
= −aη − b√

ρ
m0 + a

√
ρm1,
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for a, b ∈ R. In particular, the norm of [ ab ] is
√
a2ρ2 + (aη − b)2/

√
ρ.

For a geometric interpretation, note that P (W) is the space of null
lines in S2W, which are the points at infinity of the hyperbolic plane.
A point at infinity identifies the hyperbolic plane with the half-space
model. The inverse square norm of a twistor gives a ‘ρ’ coordinate
for this half-space model. Evidently, the ‘ρ’ coordinate determines the
twistor up to a sign.

7. A tale of two pencils

We have introduced two pencils, parameterized by the vector spaces
V and W. The first vector space V parameterizes the pencils of:

• conformal vector fields on the selfdual space M with torus sym-
metry;

• Einstein-Weyl spaces with an axial symmetry arising as quotients
of M ;

• solutions of the Joyce equation determining these Einstein-Weyl
spaces.

The second vector space W parameterizes the pencils induced by (de-
projectivized) points at infinity of the hyperbolic plane, i.e., the pencils
of:

• compatible scalar-flat Kähler metrics on M ;

• Toda structures on the Einstein-Weyl spaces;

• twistors on the hyperbolic plane.

The idea now is that when the selfdual space M is given by a selfdual
Einstein metric g of nonzero scalar curvature, these pencils are the same:

• each Killing field determines a scalar-flat metric;

• each Einstein-Weyl space has one of its Toda structures distin-
guished;

and therefore there must be a field on H2 which determines a linear
map from twistors to solutions of the Joyce equation, and the resulting
linear family of solutions is the pencil defining the underlying conformal
structure of the Einstein metric. In this section we prove that this field
is the eigenfunction F . The heart of the argument is the following result:
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Proposition 7.1. Let F be an eigenfunction of the Laplacian on
the hyperbolic plane with eigenvalue 3/4 and let ϕ be a twistor. Then
Φ = 1

2F �ϕ + dF ·ϕ is a solution of the Joyce equation, where dF ·ϕ
denotes the natural pairing T ∗H2 ⊗W → W∗.

Proof. Given a twistor ϕ, we can use the freedom in the choice of
half-space model to set ϕ = m0/

√
ρ. In these half-space coordinates F

satisfies the equation

Fρρ + Fηη =
3F
4ρ2

.

Since dF = ρFρ(µ2
0 − µ2

1) + 2ρFηµ0µ1 direct calculation yields Φ =
(ρ1/2F )ρµ0 + (ρ1/2F )ηµ1, so Φ satisfies the Joyce equation. q.e.d.

Proof of Theorem 1.1. Suppose that g is a selfdual Einstein metric
of nonzero scalar curvature on M with two commuting Killing fields.
Let us review what we have proven so far about g. Firstly, by Proposi-
tion 3.2, the Killing fields are surface orthogonal, and therefore, by [26],
the conformal class of g is a Joyce space. (If g is conformally hy-
perkähler, it must be conformally flat, i.e., locally isometric to S4 or
H4, but then the Killing fields of g cannot all be triholomorphic with
respect to the flat hyperkähler metric.)

The quotient of g by one of its Killing fields is an Einstein-Weyl space
B with an abelian monopole w [25]. The work of Tod [39] shows that
the choice of Killing field determines a compatible scalar-flat Kähler
metric on M , a Toda structure on B, and a coordinate z on B such
that the monopole w is 2 − zuz. On the other hand, we showed in
Section 5 that B is an Einstein-Weyl space with an axial symmetry.
Since the Toda structure is invariant under this symmetry, it is one of the
Toda structures determined by a point at infinity on H2. Introducing
compatible half-space coordinates we may write the solution of the Joyce
equation corresponding to this Einstein-Weyl space as Φ = A0µ0+A1µ1

and then z = G for some function G on H2 with Gρ = A0 and Gη = A1.
Now set F = ρ−1/2G. Then Fρρ + Fηη = 3

4F/ρ
2 and Φ is obtained

by applying F to the twistor m0/
√
ρ as in Proposition 7.1. On the

other hand, applying F to (−ηm0 + ρm1)/
√
ρ yields the solution Φ̃ =

(ρA1 − ηA0)µ0 + (G − ρA0 − ηA1)µ1, which is precisely the solution
needed to construct the 2 − zuz monopole on B.

Hence F generates the pencil of solutions of the Joyce equation yield-
ing the underlying conformal structure of the selfdual Einstein metric
g. The distinguished scalar-flat Kähler metric is ρg0 and rescaling this
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by 1/z2, according to Proposition 4.3, we recover the selfdual Einstein
metric F−2g0. The explicit formula (1.1) is obtained from (5.1) by direct
substitution.

As we remarked in the introduction, the reader who is not convinced
that we really have encoded the entire selfdual Einstein condition in the
construction can easily verify this directly. Such calculations amount to
reproving Tod’s result [39] in this special case. q.e.d.

In the next section we shall be able to obtain a better understanding
of formula (1.1) after studying the Swann bundle. We will also indicate
there how to check directly that the metric is selfdual and Einstein.

8. The Swann bundle

The Swann bundle U(M) of a selfdual Einstein manifold (M, g) with
nonzero scalar curvature is defined to be the principal CO(3)-bundle of
conformal frames of ∧2T ∗

−M . In [36], Swann showed how to define
a canonical (pseudo-)hyperkähler metric on a similar bundle over any
quaternion-kähler manifold.

The hyperkähler structure on U(M) is obtained as follows. The Levi-
Civita connection induces a principal CO(3) connection on π : U(M) →
M . The horizontal bundle of U(M) is isomorphic to π∗TM , which has
three tautological 2-forms (determined by the frame of ∧2T ∗

−M at each
point of U(M)), whereas the vertical bundle of U(M) is isomorphic to
U(M) ×H, since CO(3) ∼= H×/{±1}, and this has a standard triple
of 2-forms. Adding suitable multiples of the horizontal and vertical
components gives the three symplectic forms.

In order to describe this more explicitly, identify U(M) locally with
M ×CO(3) by choosing a frame Θ of ∧2T ∗

−M . We view Θ as a 2-form
on M with values in Im H. The connection on ∧2T ∗

−M is given by an
Im H-valued 1-form ω satisfying

dΘ − ω ∧ Θ + Θ ∧ ω = 0

where (ω ∧ Θ)(X,Y ) = ω(X)Θ(Y ) − ω(Y )Θ(X) is the usual wedge
product of quaternion-valued forms. The selfdual Einstein equation is
now

dω − ω ∧ ω + sΘ = 0

where s is a constant — up to a positive numerical factor it is the scalar
curvature of the selfdual Einstein metric g.
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Passing to a double cover, we have an H-valued coordinate q given
by the projection M ×H× → H×. The hyperkähler metric is then

g̃ = s|q|2g + |dq + qω|2

with Im H-valued Kähler form Ω = s qΘq + (dq + qω) ∧ (dq + qω). An
easy computation gives

dΩ = dq ∧ (sΘ − ω ∧ ω + dω)q + q(sΘ + dω − ω ∧ ω) ∧ dq
+ q(s dΘ + ω ∧ dω − dω ∧ ω)q

which vanishes if g is a selfdual Einstein metric.
Let us turn now to the examples of Theorem 1.1. In this case a

frame for ∧2
−T

∗M is given by

Θ =
1
F 2

((−1
4F

2 + ρ2(F 2
ρ + F 2

η )
)dρ ∧ dη

ρ2
+ α ∧ β

)
i

+
1
F 2

((
ρFρ + iρFη

)
(α− iβ) − 1

2F (α+ iβ)
)
∧ dρ− idη

ρ
j

where i, j,k are the imaginary quaternions. A tedious computation is
rewarded by a remarkably simple formula for the connection 1-form:

ω =
1
F

(
−ρFη dρ

ρ
+

(
1
2F + ρFρ

)dη
ρ

)
i − 1

F
(α− iβ)j.

Computing dω − ω ∧ ω, we can check that the metric g is selfdual and
Einstein with s = 1.

Since the construction of the Swann bundle is canonical, the com-
muting Killing fields of g lift to give commuting trihamiltonian vector
fields of g̃. Now any hyperkähler 8-manifold with two commuting tri-
hamiltonian vector fields is given explicitly by a generalized Gibbons-
Hawking Ansatz [23, 32]: it is isometric to

Φij〈dxi, dxj〉 + Φ−1
ij(dti +Ai)(dtj +Aj)

where (Φij , Ai) is a solution of a generalized abelian monopole equation
on R2 ⊗ Im H, whose coordinates (x1,x2) are the Im H-valued momen-
tum maps of the trihamiltonian vector fields (∂t1 , ∂t2). In more invariant
language, the matrix Φ is a section of S2V over V∗⊗Im H, where V is the
2-dimensional real vector space of Killing fields. Our notation Φ = (Φij)
is meant to suggest that this matrix is essentially the same object as
the pencil Φ = (Φs) of solutions of the Joyce equation, as we shall see
at the end of this section. First, using the nonconstant frame (α, β) for
V = W∗ (instead of (dφ, dψ)), we obtain the following result:
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Proposition 8.1. Let F be a local eigenfunction of the Laplacian on
H2. Then the hyperkähler metric on the Swann bundle of the associated
selfdual Einstein metric is given by the generalized Gibbons-Hawking
Ansatz with

Φ =
F

|q|2
(

1
2F + ρFρ ρFη
ρFη

1
2F − ρFρ

)
.

Furthermore, the Im H-valued momentum maps of ∂ψ and ∂φ are

xψ =
qkq√
ρF

and xφ =
q(η + ρi)kq√

ρF
.

Proof. For the first part we show that Φ−1 is the metric on U(M)×W

induced by g̃. Let Q be the matrix
( 1

2
F−ρFρ −ρFη

−ρFη
1
2
F+ρFρ

)
, so that the

selfdual Einstein metric is

g =
1
F 2

[
detQgH2 +

1
detQ

(α β)Q2
(α
β

)]
.

Then the metric on the torus induced by g̃ = |q|2g + |dq + qΘ|2 is

|q|2
F 2 detQ

(α β)
(
detQ id +Q2

)(α
β

)

and detQ id + Q2 = (trQ)Q = F Q by the Cayley-Hamilton theorem.
This is what we want, because Φ−1 = |q|2Q/(F detQ).

For the momentum maps, we must compute the contraction of the
Im H-valued symplectic form qΘq + (dq + qω) ∧ (dq − ωq) with ∂ψ and
∂φ. The contraction with any vector field X in the torus is q

(
Θ(X) +

ω(X)ω−ω ω(X)
)
q+qω(X)dq+dq ω(X)q. It is straightforward to com-

pare this with dxψ or dxφ when X = ∂ψ or ∂φ: in particular note that
ω(∂ψ) = k/

√
ρF and ω(∂φ) = (η + ρi)k/

√
ρF . q.e.d.

We summarize this discussion of the Swann bundle by the following
diagram:

U(M)8
CO(3)� M4

Im H ⊗0 W

T 2

� CO(3)� H2.

T 2

�
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Here we denote by Im H ⊗0 W the elements of Im H ⊗ W which are
not decomposable. In terms of a basis for W, this means the points
where the coordinates x1 and x2 are linearly independent. Clearly the
momentum maps xφ and xψ are linearly independent.

In order to understand the bottom arrow in this diagram, consider
the Grammian map Im H ⊗ W → S2W given in components by

(x1,x2) �→
[ |x1|2 〈x1,x2〉
〈x1,x2〉 |x2|2

]
.

The determinant of this matrix is |x1 ∧x2|2, which is nonnegative, and
vanishes if and only if x1 and x2 are linearly dependent. Otherwise
the matrix is positive definite, and so on dividing by |x1 ∧x2|, we get a
well-defined map Im H⊗0W → H2. This map is CO(3)-invariant, where
CO(3) acts diagonally on Im H ⊗ W ∼= Im H ⊕ Im H, and applying it to
(xφ,xψ) gives the matrix

1
ρ

[
1 η
η ρ2 + η2

]

so the diagram commutes.
We now attempt to justify our use of the same letter both for solu-

tions of the Joyce equation defining selfdual Einstein metrics, and for
generalized monopoles defining their Swann bundles. Given any hyper-
bolic eigenfunction F on H2, define F̃ : S2W+ → R, where S2W+ denote
the space of timelike elements of S2W (i.e., matrices of positive determi-
nant), by requiring that F̃ has homogeneity 1/2, i.e., F̃ (λv) = λ1/2F̃ (v),
and that F̃ |H2 = F . Then dF̃ is a function on S2W+ with values in
S2W and its matrix with respect to the (homogeneity 1/2) orthonormal
frame (m0,m1) of S2W+ ×W is

1√
detA

(
1
2F + ρFρ ρFη
ρFη

1
2F − ρFρ

)
at

A =

√
detA
ρ

[
1 η
η ρ2 + η2

]
∈ S2

W+.

• Pulling dF̃ back to Im H ⊗0 W gives the generalized monopole Φ,
since

√
detA pulls back to |xψ ∧ xφ| = |q|2/F .

• Restricting dF̃ to H2 gives the pencil of solutions Φ of the Joyce
equation and this explains the form of the metric in (1.1).
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Hence Φ and Φ are different manifestations of the same object. Further-
more, this description in terms of a homogeneity 1/2 function F̃ gives a
natural interpretation of the equation for F : F = F̃ |H2 is a hyperbolic
eigenfunction with eigenvalue 3/4 if and only if F̃ is a (homogeneity
1/2) solution of the wave equation.

9. Quaternion-kähler and hyperkähler quotients

Our motivation for constructing the Swann bundle of the selfdual
Einstein metrics of this paper is to provide an explicit relation between
these metrics and the quaternion-kähler quotients of quaternionic pro-
jective space HPm−1. In [16, 19] Galicki and Lawson defined an analogue
of the hyperkähler quotient [23] in quaternion-kähler geometry, in which
the quotient of a 4(m− 1)-dimensional quaternion-kähler manifold by a
k-dimensional group of symmetries is (at least locally) a 4(m− k − 1)-
dimensional quaternion-kähler manifold.

This is of interest here, because quaternion-kähler quotients of
HPm−1 by an (m − 2)-dimensional subtorus of a maximal torus Tm

in Sp(m) are selfdual Einstein metrics of positive scalar curvature with
T 2 symmetry. These quotients were first studied by Galicki-Lawson [19]
and Boyer-Galicki-Mann-Rees [7]; they are globally defined on compact
orbifolds. Hence if we could obtain explicitly the relation between these
quaternion-kähler quotients and Theorem 1.1, then we would have ex-
plicit formulae for the (hithertoo only implicit) Galicki-Lawson metrics
and their generalizations.

Quaternion-kähler quotients of a quaternion-kähler manifold Q may
be related to hyperkähler quotients of its Swann bundle U(Q). In-
deed the symmetry group lifts to an action on U(Q) preserving the
hyperkähler structure, and commuting with the CO(3)-action. The
momentum map of this action is a CO(3)- and G-equivariant map
µ : U(Q) → Im H ⊗ g∗, where Im H carries the standard representation
of CO(3) and g is the Lie algebra of G, so that g∗ is the coadjoint rep-
resentation. The hyperkähler quotient of U(Q), given by U(Q)///G =
µ−1(0)/G, is therefore hyperkähler with a CO(3)-action. (It may or may
not be a manifold, but in any case the geometry of the local quotient is
well-defined.) Swann proved that U(Q)///G is the Swann bundle of the
quaternion-kähler quotient of Q [36]. Indeed, when taking quotients of
HPm−1 one often works in homogeneous coordinates, and this amounts
to working on (the double cover of) the Swann bundle (Hm�{0})/{±1}.
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Now hyperkähler quotients of Hm by tori are well understood. Let
Tm be the maximal torus of Sp(m) acting on Hm by (q1, . . . qm) �→
(eit1q1, . . . eitmqm). We can describe an (m − 2)-subtorus of Tm by
declaring that its Lie algebra is the kernel of a map Rm → R2 sending
the standard basis e1, . . . em (the generators of the chosen m-torus) to
some given α1, . . . αm ∈ R2. Evidently α1, . . . αm must be rational (up
to an overall factor) in order that the kernel of the map Rm → R2 is
the Lie algebra of a subtorus. However, even without this condition, we
can still consider the local hyperkähler quotient of Hm by an (m − 2)-
dimensional family of commuting triholomorphic Killing fields.

Specializing a result of Bielawski-Dancer [5] to the case of interest,
we learn that the hyperkähler quotient of Hm � {0} by this subtorus
(with zero momentum map in order to obtain the Swann bundle of a
quaternion-kähler quotient) is given by the generalized Gibbons-Hawk-
ing Ansatz with

Φij =
m∑
k=1

(αk)i(αk)j
rk

,

where rk = |(αk)1x1 + (αk)2x2|.
Note that R2 here is the Lie algebra of the quotient torus. In our

setting this is the vector space W. Then α1, . . . αm define m twistors
on H2, which we write as ϕk =

[ ak
bk

]
, where ak = −(αk)2, bk = (αk)1.

These m twistors must determine the hyperbolic eigenfunction F in
some way. Since Φ is dF̃ , we compute that

F̃ =
m∑
k=1

rk =
m∑
k=1

|bkx1 − akx2|

and therefore

F =
m∑
k=1

√
a2
kρ

2 + (akη − bk)2√
ρ

=
m∑
k=1

|ϕk|,

where |ϕk| is the pointwise norm of the twistor
[ ak
bk

]
. Indeed, it is

straightforward to check that the norm of a twistor ϕ is a hyperbolic
eigenfunction: without loss of generality we can take ϕ =

[
0
1

]
= m0/

√
ρ,

so that F = 1/
√
ρ.

For this ‘monopole solution’ F , the pencil of solutions of the Joyce
equation degenerates: applying F to

(−(aη − b)m0 + aρm1

)
/
√
ρ, using

Proposition 7.1, gives Φ = 2aµ1, which is the solution of the Joyce
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equation found by Joyce [26]. Joyce superposed this solution with its
image under hyperbolic isometries in order to obtain his explicit metrics
on nCP2.

The same trick yields interesting metrics here. For the monopole
solution, F = 1/

√
ρ, 1

4F
2 − ρ2(F 2

ρ + F 2
η ) is identically zero, and so we

only obtain a selfdual Einstein metric only on the empty set! However
for m > 1 the ‘m-pole’ solutions F =

∑m
k=1 |ϕk| yield quaternion-kähler

quotients of HPm−1. Let us state our result more precisely.

Theorem 9.1. Let Rm be the Lie algebra of the maximal torus of
Sp(m) which acts on HPm−1 by [q1 : . . . : qm] �→ [eit1q1 : . . . : eitmqm]. Let
M4 be the local quaternion-kähler quotient of HPm−1 by the (m − 2)-
dimensional family of Killing fields in the kernel of the map Rm → W

sending the standard basis e1, . . . em to ϕ1, . . . ϕm ∈ W.
Then the selfdual Einstein metric on M4 is given by (1.1) with F =∑m
k=1 |ϕk|.
The solutions corresponding to reductions of HPm−1 by an (m −

2)-torus yield the compact selfdual Einstein orbifolds we seek. These
global reductions arise when ϕ1, . . . ϕm ∈ W span a 2-dimensional vector
space over the rationals, i.e., when they can be chosen to have rational
components.

The description of these metrics in terms of the hyperbolic plane
links the geometry to the topological analysis of Boyer-Galicki-Mann-
Rees [7], who describe a T 2-invariant cell decomposition of their orb-
ifolds over the closed disc, where the principal orbits fibre over the open
disc and the special orbits fibre over the boundary. If we identify the
open disc with the hyperbolic plane H2, then the boundary is the circle
at infinity P (W). The m twistors determine m marked points on this
circle, corresponding to the fixed points of the action.

Non-compact analogues of these metrics may be obtained by taking
quaternion-kähler quotients of quaternionic hyperboloids HHp−1,q and
HHp,q−1 by an (m−2)-subtorus of a Cartan subgroup of Sp(p, q), p+q =
m. This includes, for instance, quotients of quaternionic hyperbolic
space HHm−1 when {p, q} = {m− 1, 1} [17, 18].

Such metrics may also be viewed as analytic continuations. In-
deed, both the constructions of this paper and the hyperkähler and
quaternion-kähler quotients may be carried out in the holomorphic cat-
egory, and from this point of view real metrics are obtained by taking
real slices of such complex metrics. In the holomorphic category, |ϕ|
must be taken to be a choice of branch of the square root of the com-
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plex bilinear pointwise inner product of ϕ with itself. Other real slices
are obtained by replacing a sum of real twistors either by a sum of com-
plex conjugate twistors, or by a difference of real twistors, leading to
multipole solutions of the form

F =
r∑

k=1

(|ϕ2k−1 + iϕ2k| + |ϕ2k−1 − iϕ2k|
)

+
p∑

k=r+1

(|ϕ2k−1| − |ϕ2k|
)

+
p+q∑

k=2p+1

|ϕk|,

where ϕ1, . . . ϕp+q are real and 0 � r � p. (The norm of a complex
twistor vanishes on the hyperbolic plane and so the complex conjugate
pairs are only defined on a branched cover.)

The freedom here corresponds to the fact that Sp(p, q) does not have
a unique Cartan subgroup up to conjugacy: for each Sp(1, 1) factor, we
can take either an S1×R subgroup or a T 2 subgroup, using (for instance)
elements of the form(

eit1 cosh t2 eit1 sinh t2
eit1 sinh t2 eit1 cosh t2

)
or

(
eit1 0
0 eit2

)

in U(1, 1). Hence if we suppose p � q and write Hp,q = (H1,1)p ×Hq−p,
then we obtain a Cartan subgroup of Sp(1, 1)×. . .×Sp(1, 1)×Sp(q− p)
of the form

(S1 ×R)r ×T 2(p−r) ×T q−p � Sp(1, 1)r ×Sp(1, 1)p−r ×Sp(q − p).

We should remark, however, that in addition to Cartan subgroups, there
are also maximal abelian subgroups containing nilpotent elements. We
believe these yield a mild generalization of m-pole solutions, in which
multipoles can become infinitesimal in a limiting process, such as the
dipole limε→0

1
ε (|ϕ1 + εϕ2| − |ϕ1 − εϕ2|). We shall not study this kind

of solution here.
The global behaviour of the m-pole solutions can be approached ei-

ther via the quaternion-kähler quotient, as in [7, 17, 18], or via compact-
ification arguments based on local models, as discussed by Joyce [26].
A detailed analysis of this would take us to far afield here, so we turn
instead to examples.
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10. Examples

In this section we study the simplest nontrivial examples of multipole
selfdual Einstein metrics. An m-pole solution F is determined, up to
sign and reality choices, by m distinct elements of the 2-dimensional
vector space W of twistors, and conversely F determines the twistors
up to sign. Concretely, with respect to a choice of unimodular basis, we
may write these elements as

[ ak
bk

]
. Now the group SL(W) acts naturally

on the set of m-tuples of elements of W, yielding equivalent solutions, so
there is really only a 2m−3 parameter family of solutions. Furthermore,
the solutions F and λF yield the same Einstein metric for any λ �= 0,
so the moduli space actually has dimension 2m− 4.

We first remark that the dipole solutions (m = 2) yield only hyper-
bolic and spherical metrics. More precisely, using the SL(W) freedom,
we take the two twistors to be [ a0 ] and [ 0

a ]. Allowing for the homothety
freedom, we are then left with three choices for the solution:

F+ =
1 +

√
ρ2 + η2

√
ρ

, F− =
1 −

√
ρ2 + η2

√
ρ

F c =

√
ρ2 + (η + i)2 +

√
ρ2 + (η − i)2√

ρ
.or

The first of these gives the spherical metric, while the other two give
the hyperbolic metric with inequivalent torus actions.

We now consider the case m = 3, when the moduli space is 2-
dimensional. This case is particular interesting since selfdual Einstein
metrics in this family have been studied in many places by diverse meth-
ods.

(i) In the context of finding selfdual Einstein metrics of negative
scalar curvature with prescribed conformal infinity [27], the sec-
ond author found complete examples on the 4-ball [31], depending
on a single parameter in (−1,∞) (denoted m2 there). It was later
realized [28, 22] that when this parameter is (2−n)/n (for n ∈ Z,
n � 3), analytic continuations of these metrics are complete on
O(n) → CP1 (and are conformally related to LeBrun’s scalar-flat
Kähler metrics on O(−n)).

(ii) By taking quaternion-kähler quotients of HP2 by S1, Galicki and
Lawson [19] found selfdual Einstein metrics of positive scalar cur-
vature on certain compact orbifolds Oq,p (p, q coprime with 0 <
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q/p � 1). Negative scalar curvature analogues and generalizations
have also been studied [17, 18].

(iii) A subfamily of the m = 3 metrics have local cohomogeneity one,
and are therefore bi-axial Bianchi metrics, which have been stud-
ied in many places, in particular [3]. The metrics in (i) are all
in this subfamily. Furthermore, the quaternion-kähler quotients
considered in detail in (ii) are mainly the local cohomogeneity
one examples, although the general case is analogous [19, Remark
4.27].

(iv) Apostolov and Gauduchon [2] classify explicitly selfdual Einstein
Hermitian metrics, i.e., admitting a selfdual complex structure:
such metrics automatically have torus symmetry. They are con-
formal to selfdual Kähler metrics, which have been classified by
Bryant [8] as the specialization to four dimensions of Kähler met-
rics with vanishing Bochner tensor. Conversely a generic self-
dual Kähler metric is locally conformally Einstein. Apostolov and
Gauduchon also show that quaternion-kähler quotients of HP2

and quaternionic hyperbolic space HH2 by S1 or R are selfdual
Hermitian (and the same is true for HH1,1). In particular the
3-pole solutions are all Hermitian.

(v) These solutions have recently been studied by Casteill, Ivanov and
Valent [12], using the harmonic superspace approach.

In view of all this work, we cannot claim that the m = 3 examples
are new. Nevertheless, in addition to presenting a unified treatment,
we are able to give explicitly the parameter values yielding complete
3-pole metrics on the 4-ball. At the end of the section, we shall use a
perturbation argument to obtain complete m-pole metrics on the 4-ball
for any m, showing that the moduli space is infinite dimensional.

Consider then the general 3-pole solution. Using the SL(W) freedom
we may write this in the form:

F =
a√
ρ

+
b+ c/m

2

√
ρ2 + (η +m)2√

ρ
+
b− c/m

2

√
ρ2 + (η −m)2√

ρ
,

where |m| = 1, but m can be imaginary or real, −m2 = ±1. We
refer to these as Type I and Type II solutions respectively, after the
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Eguchi-Hanson I and II metrics. It is convenient to work in (Eguchi-
Hanson)-like coordinates

ρ =
√
R2 ± 1 cos θ, η = R sin θ

with θ ∈ (−π/2, π/2) so that

√
ρF = a+ bR+ c sin θ

ρ−1
(

1
4F

2 − ρ2(F 2
ρ + F 2

η )
)

=
b(aR∓ b) + c(a sin θ + c)

R2 ± sin2 θ
.and

Note that the zero-set of F is a conformal infinity of the selfdual Einstein
metric, which has negative scalar curvature there. On the other hand
the zero-set of 1

4F
2 − ρ2(F 2

ρ + F 2
η ) is a singularity separating domains

of positive and negative scalar curvature, and the metric is incomplete
there. Let us consider the Type I and Type II metrics separately.

In the Type I case, F is only globally defined on a branched double
cover of the hyperbolic plane: we can regard R = 0 as the branch cut
between R � 0 and R � 0. Without loss of generality, we can assume
a is nonzero and use the homothety freedom to set a = 1. We can also
suppose b, c � 0 (using R �→ −R and θ �→ −θ).

When b is nonzero we have, for each θ ∈ (−π/2, π/2), a unique value
of R, namely R∞ = −(1+c sin θ)/b, at which F = 0, and a unique value
R± = (b2 + c2 + c sin θ)/b where 1

4F
2 − ρ2(F 2

ρ + F 2
η ) = 0. When c = 0,

R∞ = −1/b and R± = b: this is the case that the selfdual Einstein
metric is a bi-axial Bianchi IX metric, i.e., of local cohomogeneity one
under U(2), and the distinguished Einstein-Weyl quotient (by the centre
of U(2)) is S3 [31].

In general, one checks that R∞ < R± for all θ. Hence there are
three domains of definition:

• R ∈ (−∞, R∞): here the metric has negative scalar curvature and
yields a complete metric on the ball B4 with a conformal infinity
at R = R∞.

• R ∈ (R∞, R±): the metric still has negative scalar curvature, but
has an unremovable singularity at R = R±.

• R ∈ (R±,∞): the metric now has positive scalar curvature, again
with an unremovable singularity at R = R±.
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The complete domain was found by Galicki [18], although it is only more
recently that it has been noticed that these metrics are more general
than those of [31].

If b = 0 then there are two nontrivial cases: for c > 1, there is a
conformal infinity at sin θ = −1/c and no singularity, while for c < 1
there is a singularity at sin θ = −c and no conformal infinity. These
turn out to be Bianchi VIII metrics, i.e., have local cohomogeneity one
under GL(2,R), and the distinguished Einstein-Weyl quotient is H3 [11].
For c = 1 the metric is the Bergman metric on CH2. We illustrate
this discussion with a diagram (Figure 2) of the (b, c)-plane next to
which we give a heuristic picture of the behaviour of F on the branched
double cover of the hyperbolic plane by shading the domain over which
the Einstein metric has positive scalar curvature and indicating the
conformal infinity in the domain of negative scalar curvature.

2

CH2

CH

Figure 2.

For the Type II metrics the range of R is (1,∞) and F is glob-
ally defined on the hyperbolic plane. However the moduli space has a
much richer structure and the analysis is more involved. The homo-
thety freedom means that the Einstein metrics are parameterized by a
point [a, b+c, b−c] in RP2 �{[1, 0, 0], [0, 1, 0], [0, 0, 1]}. The lines joining
the points [1, 0, 0], [0, 1, 0] and [0, 0, 1] represent dipole solutions, so the
true moduli space is obtained by removing these lines and taking the
quotient by the permutation group Sym3 of the coordinates. For con-
venience we shall only remove the line a = 0, so that we can set a = 1
and use inhomogeneous coordinates (b, c) as in the Type I case. On the
lines b = ±c the selfdual Einstein metric is the hyperbolic metric for
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b < 0 and the spherical metric for b > 0.
First note that (b, c) = (1, 0) (the fixed point [1, 1, 1]) gives the

Fubini-Study metric on CP2, whereas the points (0, 1), (0,−1) and
(−1, 0) yield the Bergman metric on CH2 (cf. [19, 31]). Along the
lines joining these four points, we have bi-axial Bianchi metrics with
distinguished quotient H3: along the lines joining (1, 0) to the others,
the metric is Bianchi IX, whereas on the lines between (0, 1), (0,−1)
and (−1, 0), the metric is Bianchi VIII.

As in the Type I case, the zero-sets of F and 1
4F

2 − ρ2(F 2
ρ +F 2

η ) do
not meet. This is a matter of checking that there are no simultaneous
solutions of

bR+ cS + 1 = 0(10.1)

bR+ b2 − cS − c2 = 0

with S = sin θ ∈ (−1, 1), R > 1. The solution of (10.1) for b, c �= 0 is
R = −(1+b2−c2)/2b, S = −(1−b2 +c2)/2c which satisfies b2(R2−1) =
c2(S2 − 1). Hence we see that we cannot have S ∈ [−1, 1], R ∈ [1,∞]
unless (b, c) lies on one of the Bianchi VIII lines b = 0, b+ c+ 1 = 0 or
b− c+1 = 0, in which case there are solutions R = ∞, (R,S) = (1,−1)
and (R,S) = (1, 1) respectively, i.e., at the three marked points at
infinity.

Analysing the equations in (10.1) separately, we can determine for
which (b, c) the selfdual Einstein metric has positive and/or negative
scalar curvature domains, and whether there is a conformal infinity.
The Bianchi VIII lines b = 0, b± c+ 1 = 0 and the dipole lines b = ±c
divide the (b, c) plane into 1+3+3+6 = 13 regions of four different types
leading to the following picture of the (pre-)moduli space (Figure 3):

In this figure the Bianchi VIII lines are solid, the Bianchi IX lines are
dotted (and do not bound regions), while the dipole lines are dashed.
We label the type of the region by A,B,C,D and sketch the topology
of the zero sets in the hyperbolic disc as before. In these regions of the
moduli space the geometry of the selfdual Einstein metric is as follows:

(A) The metric has positive scalar curvature and no singularities for
R ∈ (1,∞). When (b, c) = (1, 0) it is the Fubini-Study metric,
while for other rational values the metric may be compactified
on a weighted projective space CP[p,q,r], and the selfdual Einstein
metrics are Hermitian [2, 8, 19].



516 d.m.j. calderbank & h. pedersen

SCH 4

CP

2

H4

2

4H

2CH 4S

2CH

A

B

B

C

C

D

D

D

D

C

D

D
B

Figure 3.

(B) The metric has a positive and a negative scalar curvature domain
separated by an unremovable singularity.

(C) The metric has two domains of negative scalar curvature separated
by a conformal infinity. On one side of the conformal infinity
the metric is complete on B4. For rational parameter values, the
metric on the other side yields a complete metric on O(n) → CP1

or an orbifold generalization of this [17, 22, 28, 31].

(D) The metric has two domains of negative scalar curvature and one
of positive scalar curvature. On one side of the conformal infin-
ity we obtain a complete metric on B4. This is similar to the
behaviour in the Type I case.

It is also fairly clear from Figure 3 what happens as (b, c) passes
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from one region to another. Along the dipole lines b = ±c, a bubble
of positive or negative scalar curvature appears or disappears at one
of the marked points, whereas along the Bianchi VIII lines, either the
singularity or the conformal infinity passes through one of the marked
points, creating or destroying a domain of positive or negative scalar
curvature as it does.

TheR,S coordinates give a reasonably simple formula for the metric.

g =
b2 − c2 + a(bR− cS)

(a+ bR+ cS)2
( dR2

R2 − 1
+

dS2

1 − S2

)

+
1

(a+ bR+ cS)2(b2 − c2 + a(bR− cS))(R2 − S2)

·
(
(R2 − 1)(1 − S2)

(
(bR− cS)dφ+ (cR− bS)dψ

)2

+
(
(b(R2 − 1)S + c(1 − S2)R)dφ

+ (c(R2 − 1)S + b(1 − S2)R+ a(R2 − S2))dψ
)2

)
.

In particular, the metric is rational. This is not surprising in view
of the work of Apostolov-Gauduchon [2] and Bryant [8]: the 3-pole
metrics are all Hermitian, and are given explicitly in terms of a fourth
order polynomial P (y) whose roots sum to zero. Despite the superficial
resemblence of this formula to [8, Section 4.3.2] (see also [1]), the precise
relationship is rather complicated. By computing the selfdual Weyl
curvature W+ of the Einstein metric g, we find that the selfdual Kähler
metric |W+|2/3g — see [2, 14] — is (a constant multiple of) (a + bR +
cS)2g/(b2 − c2 + a(bR− cS))2 with Kähler form

1
(b2 − c2 + a(bR− cS))2

·
(
(dφ ∧ (b dR− c dS) + dψ ∧ (

(c+ aS)dR− (b+ aR)dS)
))
.

The momentum maps of ∂φ and ∂ψ are therefore (up to an affine trans-
formation)

bR− cS

b2 − c2 + a(bR− cS)
and

cR− bS

b2 − c2 + a(bR− cS)
.

According to [8], these must be affine linear combinations of the trace
u1 = y1 + y2 and the pfaffian u2 = y1y2 of the normalized Ricci form
of the Kähler metric, and by [2, 14] u2

1 is the conformal factor from the
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Einstein metric to the Kähler metric. For generic a, b, c, this allows us
to put the Kähler metric into the form of [8, 1]:

(y1 − y2)
(

dy2
1

P (y1)
− dy2

2

P (y2)

)

+
1

y1 − y2

(
P (y1)(dt1 + y2dt2)2 − P (y2)(dt1 + y1dt2)2

)
where P (y) = (y−2ab− b2 + c2)(y+2ab− b2 + c2)(y−2ac+ b2− c2)(y+
2ac + b2 − c2). We interpret this formula abstractly by noting that
three twistors ϕ1, ϕ2, ϕ3 give rise to three SL(W)-invariants, namely the
determinants z1 = ε(ϕ2, ϕ3), z2 = ε(ϕ3, ϕ1) and z3 = ε(ϕ1, ϕ2). Up to
an overall sign, the roots of the polynomial P (y) are then

r0 = 1
2(z1 + z2 + z3), r1 = 1

2(z1 − z2 − z3),
r2 = 1

2(−z1 + z2 − z3), r3 = 1
2(−z1 − z2 + z3).

Hence we have related the generic Type II 3-pole Einstein metrics to
the Case 4 Kähler metrics of [8]. In a similar way, the generic Type
I 3-pole Einstein metrics are related to Bryant’s Case 1 Kähler met-
rics. The extra lines in our 3-pole moduli space are cohomogeneity one
metrics, which are treated separately in [2, 8] because the trace and the
pfaffian of the normalized Ricci form are not independent. On the other
hand Bryant’s Case 2 and Case 3 metrics are not covered by the 3-pole
metrics, because P (y) then has repeated roots. These correspond to
quaternion-kähler quotients of HH2 and HH1,1 by a non-semisimple S1

action. We could obtain them from a limiting process in which a dipole
becomes infinitesimal.

Let us end by remarking that it is straightforward to obtain many
complete selfdual Einstein metrics with T 2 symmetry on B4. Such met-
rics arise when there is a domain of negative scalar curvature surround-
ing a single marked point and bounded by a conformal infinity. Starting
with a known example we can deform F slightly by adding additional
monopole solutions at points on the other side of the conformal infinity.
The zero-set of F deforms smoothly and so the metric stays complete
until the conformal infinity hits a fixed point. This argument yields not
only the 3-pole solutions, butm-pole solutions for anym > 2. Hence the
moduli space of smooth and complete torus-symmetric selfdual Einstein
metrics on the ball is infinite dimensional, cf. [30].

We can also obtain infinite dimensional families of smooth complete
metrics with other topologies, but we postpone the discussion of these
examples to another occasion.
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[14] A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension
four, Compositio Math. 49 (1983) 405–433, MR 84h:53060, Zbl 0527.53030.

[15] J.D. Finley & M.V. Saveliev, Heavenly equation with one Killing vector and a
cosmological term, Phys. Lett. A 162 (1992) 1–4, MR 92k:83025.

http://www.ams.org/mathscinet-getitem?mr=92k:83025
http://www.emis.de/cgi-bin/MATH-item?0527.53030
http://www.ams.org/mathscinet-getitem?mr=84h:53060
http://www.ams.org/mathscinet-getitem?mr=2002e:81217
http://www.emis.de/cgi-bin/MATH-item?0977.83070
http://www.ams.org/mathscinet-getitem?mr=1843926
http://www.emis.de/cgi-bin/MATH-item?0970.53027
http://www.ams.org/mathscinet-getitem?mr=2001h:53058
http://www.ams.org/mathscinet-getitem?mr=2002b:53062
http://www.emis.de/cgi-bin/MATH-item?0979.53046
http://www.ams.org/mathscinet-getitem?mr=2001m:53083
http://www.ams.org/mathscinet-getitem?mr=2002i:53096
http://www.emis.de/cgi-bin/MATH-item?0901.53033
http://www.ams.org/mathscinet-getitem?mr=99b:53066
http://www.ams.org/mathscinet-getitem?mr=84f:53064
http://www.ams.org/mathscinet-getitem?mr=2002c:53078
http://www.emis.de/cgi-bin/MATH-item?0613.53001
http://www.ams.org/mathscinet-getitem?mr=88f:53087
http://www.emis.de/cgi-bin/MATH-item?0544.53038
http://www.ams.org/mathscinet-getitem?mr=85b:53048
http://arXiv.org/abs/math.DG/0003162
http://arXiv.org/abs/math.DG/0104233


520 d.m.j. calderbank & h. pedersen

[16] K. Galicki, A generalization of the momentum mapping construction for quater-
nionic Kähler manifolds, Comm. Math. Phys. 108 (1987) 117–138, MR 88f:53088,
Zbl 0608.53058.

[17] K. Galicki, New matter couplings in N = 2 supergravity, Nuclear Phys. B 289
(1987) 573–588, MR 88j:53076.

[18] K. Galicki, Multi-centre metrics with negative cosmological constant, Class. Quan-
tum Grav. 8 (1991) 1529–1543, MR 92i:53040, Zbl 0737.53061.

[19] K. Galicki & H.B. Lawson, Jr., Quaternionic reduction and quaternionic orbifolds,
Math. Ann. 282 (1988) 1–21, MR 89m:53075, Zbl 0628.53060.

[20] P. Gauduchon, Surfaces kähleriennes dont la courbure vérifie certaines condi-
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