ADDING HANDLES TO NADIRASHVILI'S SURFACES

F.J. LÓPEZ, F. MARTÍN \& S. MORALES

Abstract

We construct complete bounded minimal surfaces in \mathbb{R}^{3} with arbitrary topological genus.

1. Introduction

The so called Calabi-Yau problem, which deals with the existence of complete nonflat minimal surfaces with bounded coordinate functions, has been the instigator of many interesting articles on the theory of minimal surfaces in \mathbb{R}^{3} over the last few decades.

Two articles, in particular, have made very important, if not fundamental, contributions. The first one was by L.P. Jorge and F. Xavier [2], who constructed examples in a slab. The second one was by N . Nadirashvili [5], who recently produced examples contained in a ball. In both cases, the key step was the ingenious use of Runge's classical theorem.

In respect to complete bounded minimal surfaces, an open question still remains as to whether information about their geometry can be obtained [8]. One approach to this problem consists of deciding whether Nadirashvili's surfaces with nontrivial topology exist or not. The first such surface, with the topology of a cylinder, was obtained in [4].

However, in general, constructing examples with nontrivial topology is a difficult matter because of the period conditions. This problem has been dealt with in depth over the last few years for several families of

[^0]minimal surfaces, including the parabolic case [7] and the hyperbolic one [3].

In this paper, we have proved the following theorem:
Theorem. For any genus $\sigma \geq 1$, there exists a complete bounded minimal surface in \mathbb{R}^{3} with genus σ and one end.

Our procedure works as follows:
Firstly, we deform the Weierstrass data of a given minimal surface of genus σ and nonempty boundary, $\sigma \geq 1$. In order to do this, we use the Implicit Function Theorem and Runge's theorem, in such a way that the resulting surface has no periods. The second step consists of adapting Nadirashvili's techniques to this more general setting of nontrivial topology. Hence, our deformation increases the intrinsic diameter, but it controls the Euclidean diameter in \mathbb{R}^{3}. In this way we construct a sequence of genus σ minimal sufaces contained in a fixed ball, which converges to a complete genus σ minimal surface lying in the same ball.

The paper is structured as follows. In Section 2 we introduce all the notation and concepts that we have used throughout the paper. Section 3 sets out the principal results in this paper: two lemmas and the main theorem. In this section, the main theorem has been proved by using Lemma 2. The proof of this lemma is quite technical and has been given in Section 5. Lemma 1 is a tool for getting Lemma 2 and has been proved in Section 4.

2. Background and notation

Let \mathcal{N} and $d \hat{s}^{2}$ be a Riemann surface and a Riemannian conformal metric on \mathcal{N}, respectively. Given a curve α in \mathcal{N}, by length $(\alpha, d \hat{s})$ we mean the length of α with the metric $d \hat{s}^{2}$. Given a subset $W \subset \mathcal{N}$, we define:

- $\operatorname{dist}_{(d \hat{s}, W)}(p, q)=\inf \{\operatorname{length}(\alpha, d \hat{s}) \mid \alpha:[0,1] \rightarrow W, \alpha(0)=p, \alpha(1)$ $=q\}$, for $p, q \in W$,
- $\operatorname{dist}_{(d \hat{s}, W)}\left(T_{1}, T_{2}\right)=\inf \left\{\operatorname{dist}_{(d \hat{s}, W)}(p, q): p \in T_{1}, q \in T_{2}\right\}$, for $T_{1}, T_{2} \subset W$,
- $\operatorname{diam}_{d \hat{s}}(W)=\sup \left\{\operatorname{dist}_{(d \hat{s}, W)}(p, q): p, q \in W\right\}$.

The concepts of (multiplicative) divisor on \mathcal{N}, integral divisor on \mathcal{N}, and the natural partial ordering, \geq, on divisors can be found in [1].

Let ω be a meromorphic function or 1-form on \mathcal{N}. Let $W \subset \mathcal{N}$ and suppose that ω has a finite number of zeroes, z_{1}, \ldots, z_{n}, and a finite number of poles, p_{1}, \ldots, p_{n}, in W. We denote by $\left(\omega_{\mid W}\right)_{0}=z_{1} \ldots z_{n}$, $\left(\omega_{\left.\right|_{W}}\right)_{\infty}=p_{1} \ldots p_{n}$, and $\left(\omega_{\left.\right|_{W}}\right)=\left(\omega_{\mid W}\right)_{0} /\left(\omega_{\left.\right|_{W}}\right)_{\infty}$, the zero divisor, the polar divisor, and the divisor of ω on W, respectively. When $W=\mathcal{N}$, we simply write $(\omega),(\omega)_{0}$, and $(\omega)_{\infty}$, respectively.

Throughout this paper, $\beta_{1}, \ldots, \beta_{2 \sigma+1}$ will denote a sequence of pairwise distinct complex numbers, and \bar{M} will be the algebraic hyperelliptic curve of genus σ given by:

$$
\bar{M}=\left\{(z, w) \in \overline{\mathbb{C}}^{2}: w^{2}=\prod_{i=1}^{2 \sigma+1}\left(z-\beta_{i}\right)\right\} .
$$

Let $A(z, w)=(z,-w)$ be the hyperelliptic involution on \bar{M}, and label $\infty=(\infty, \infty)$ and $M=\bar{M}-\{\infty\}$. If $h: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is a meromorphic function, we do not distinguish between h and $h \circ z: z^{-1}(\Omega) \subset M \rightarrow \mathbb{C}$.

Given $D \subset M$ a domain, we will say that a function, or a 1 -form, is harmonic, holomorphic, meromophic, ... on \bar{D}, if it is harmonic, holomorphic, meromorphic, ... on a domain containing \bar{D}.

Let $\Phi=\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ be the Weierstrass representation of a minimal immersion

$$
X: \bar{D} \rightarrow \mathbb{R}^{3}
$$

where $D \subset M$ is a domain invariant under A. If $A^{*} \Phi=-\Phi$, then we can write $\Phi_{j}=\varphi_{j}(z) \frac{d z}{w}$, where φ_{j} is a holomorphic funtion on $z(\bar{D}) \subset \mathbb{C}$, $j=1,2,3$. We will denote $\varphi \stackrel{\text { def }}{=}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$.

With this notation, if we write the Riemannian metric induced by X as $d s_{X}^{2}=\lambda_{X}^{2}\left\|\frac{d z}{w}\right\|^{2}$, then

$$
\begin{equation*}
\lambda_{X}=\frac{1}{\sqrt{2}}\|\varphi\|=\frac{1}{\sqrt{2}} \sqrt{\left|\varphi_{1}\right|^{2}+\left|\varphi_{2}\right|^{2}+\left|\varphi_{3}\right|^{2}} \tag{1}
\end{equation*}
$$

For the sake of simplicity, given $W \subset M, p, q \in W$ and $T \subset W$, we write $\operatorname{dist}_{(X, W)}(p, q)$ and $\operatorname{dist}_{(X, W)}(p, T)$ instead of $\operatorname{dist}_{\left(d s_{X}, W\right)}(p, q)$ and $\operatorname{dist}_{\left(d s_{X}, W\right)}(p, T)$, respectively.

Let P be a simple closed polygonal curve in \mathbb{C}. We denote $\operatorname{Int}(P)$ as the bounded connected component of $\mathbb{C} \backslash P$. Given $\xi>0$, small enough, we define P^{ξ} as the parallel polygonal curve in $\operatorname{Int}(P)$, satisfying that the distance between parallel sides is equal to ξ. Whenever we write P^{ξ} in the paper we are assuming that ξ is small enough to define the polygon properly. If $D=z^{-1}(\operatorname{Int}(P)) \subset M$, then we write $D^{\xi}=z^{-1}\left(\operatorname{Int}\left(P^{\xi}\right)\right)$.

3. The main theorem

In order to get the main theorem, we need the following two lemmas. We prove them in Sections 4 and 5 .

Lemma 1. Consider $\Omega \subset \mathbb{C}$ a simply connected domain with $\left\{\beta_{1}\right.$, $\left.\ldots, \beta_{2 \sigma+1}\right\} \subset \Omega, D=z^{-1}(\Omega)$ and $F: \bar{D} \rightarrow \mathbb{R}^{3}$ a minimal immersion whose Weierstrass representation Φ satisfies $A^{*}(\Phi)=-\Phi$, i.e., $\Phi_{3}=\varphi_{3}(z) \frac{d z}{w}$ and $g=G(z)$. Then for any K_{1}, K_{2} disjoint compact 1 -connected sets of \mathbb{C} with $\beta_{1}, \ldots, \beta_{2 \sigma+1} \in \stackrel{\circ}{K_{2}}$, and any $\alpha>0$, there exists $h: \bar{\Omega} \rightarrow \mathbb{C}$, a holomorphic function without zeroes, such that:

1. $|h-\alpha|<1 / \alpha$ in K_{1}.
2. $|h-1|<1 / \alpha$ in K_{2}.
3. The minimal immersion $\widetilde{F}: \bar{D} \rightarrow \mathbb{R}^{3}$ with Weierstrass representation $\widetilde{\Phi}$ given by $\widetilde{g}=g / h$ and $\widetilde{\Phi}_{3}=\Phi_{3}$ is well defined.

Lemma 2. Let P be a polygon on \mathbb{C} satisfying $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\} \subset$ $\operatorname{Int}(P)$ and let $r>0$. Consider $D=z^{-1}(\operatorname{Int}(P))$ and $X: \bar{D} \rightarrow \mathbb{R}^{3} a$ minimal immersion satisfying:

1. $X=\operatorname{Re}\left(\int_{p_{0}} \Phi\right)$, where $p_{0}=\left(\beta_{1}, 0\right)$ and $A^{*} \Phi=-\Phi$.
2. $\|X\|<r$ in \bar{D}.

Then, for any $\varepsilon, s>0$ such that $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\} \subset \operatorname{Int}\left(P^{\varepsilon}\right)$, there exist a polygon $\widetilde{\sim}$ and a conformal minimal immersion $Y: \widetilde{D} \rightarrow \mathbb{R}^{3}, \widetilde{D}=$ $z^{-1}(\operatorname{Int}(\widetilde{P}))$ such that:

1. $\overline{\operatorname{Int}\left(P^{\varepsilon}\right)} \subset \operatorname{Int} \widetilde{P} \subset \overline{\operatorname{Int} \widetilde{P}} \subset \operatorname{Int}(P)$.
2. $Y=\operatorname{Re}\left(\int_{p_{0}} \widetilde{\Phi}\right)$, where $\widetilde{\Phi}$ satisfies $A^{*}(\widetilde{\Phi})=-\widetilde{\Phi}$.
3. $\operatorname{dist}_{(Y, \widetilde{D})}\left(\partial(\widetilde{D}), \partial\left(D^{\varepsilon}\right)\right)>s$.
4. $Y(\widetilde{D}) \subset B_{R}, \quad R=\sqrt{r^{2}+(2 s)^{2}}+\varepsilon$.
5. $\|Y-X\|<\varepsilon$ in D^{ε}.

At this point, we state and prove our main result.

Theorem 1. There exist a simply connected domain $\Sigma \subset \mathbb{C}$ containing $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\}$ and a complete bounded minimal immersion $X: S=z^{-1}(\Sigma) \rightarrow \mathbb{R}^{3}$.

Proof. Let $r_{1}>1$ and $\rho_{1}>0$ to be specified later, and define $r_{n}=\sqrt{r_{n-1}^{2}+(2 / n)^{2}}+1 / n^{2}$, and $\rho_{n}=\rho_{1}+\sum_{i=2}^{n} 1 / i, n \geq 2$. Our strategy consists of using Lemma 2 to define a sequence:

$$
\chi_{n}=\left(X_{n}: \bar{D}_{n} \rightarrow \mathbb{R}^{3}, P_{n}, \varepsilon_{n}, \xi_{n}\right)
$$

where X_{n} is a conformal minimal immersion, $D_{n}=z^{-1}\left(\operatorname{Int}\left(P_{n}\right)\right), P_{n}$ is a polygon enclosing $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\},\left\{\varepsilon_{n}\right\},\left\{\xi_{n}\right\}$ are decreasing sequences of nonvanishing terms satisfying $\varepsilon_{n}, \xi_{n}<1 / n^{2}$, and:
$\left(\mathrm{A}_{n}\right) \rho_{n}<\operatorname{dist}_{\left(X_{n}, \overline{D_{n}^{\xi_{n}}}\right)}\left(p_{0}, \partial\left(D_{n}^{\xi_{n}}\right)\right)$.
$\left(\mathrm{B}_{n}\right) X_{n}\left(D_{n}\right) \subset B_{r_{n}}$.
$\left(\mathrm{C}_{n}\right) X_{n}(p)=\operatorname{Re}\left(\int_{p_{0}}^{p} \Phi^{n}\right)$, where $A^{*}\left(\Phi^{n}\right)=-\Phi^{n}$.
$\left(\mathrm{D}_{n}\right)\left\|X_{n}-X_{n-1}\right\|<\varepsilon_{n}$ in $D_{n-1}^{\xi_{n-1}}$.
(E_{n}) $\lambda_{X_{n}} \geq \alpha_{n} \lambda_{X_{n-1}}$ in $D_{n-1}^{\xi_{n-1}}$, where $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}}$ is a sequence of real numbers such that $0<\alpha_{i}<1$ and $\left\{\prod_{i=1}^{n} \alpha_{i}\right\}_{n}$ converges to $1 / 2$.
$\left(\mathrm{F}_{n}\right) \overline{\operatorname{Int}\left(P_{n-1}^{\xi_{n-1}}\right)} \subset \operatorname{Int}\left(P_{n}^{\xi_{n}}\right) \subset \overline{\operatorname{Int}\left(P_{n}\right)} \subset \operatorname{Int}\left(P_{n-1}\right)$.
The choice of the first element of the sequence is not difficult. For instance, and just for completeness, we suggest the following. Take $\bar{M}=\left\{(z, w) \in \overline{\mathbb{C}}^{2} w^{2}=(z-2)^{2 \sigma+1}+1\right\}, g^{1}=(z-2)^{2 \sigma+1}, \quad \Phi_{3}^{1}=$ $(z-2)^{4 \sigma+1} \frac{d z}{w}$. Let P_{1} be a polygon enclosing the zeroes $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\}$ of $(z-2)^{2 \sigma+1}+1$, but leaving 2 in the exterior domain. Note that Φ^{1} is exact. So, if $D_{1} \stackrel{\text { def }}{=} z^{-1}\left(\operatorname{Int}\left(P_{1}\right)\right)$ then $X_{1}(p)=\operatorname{Re}\left(\int_{p_{0}}^{p} \Phi^{1}\right), p \in \overline{D_{1}}$, is well defined. Finally, we choose $\rho_{1}<\operatorname{dist}_{\left(X_{1}, \overline{D_{1}}\right)}\left(p_{0}, \partial\left(D_{1}\right)\right)$ and $r_{1}>1$ such that $X_{1}\left(D_{1}\right) \subset B_{r_{1}}$. We also choose $\xi_{1}<1$ small enough satisfying $\left(\mathrm{A}_{1}\right)$. The choice of $\varepsilon_{1}<1$ is irrelevant.

Suppose that we have $\chi_{1}, \ldots, \chi_{n}$. Now, we construct the $(n+1)$-th term.

Take a sequence $\left\{\widehat{\varepsilon}_{m}\right\} \searrow 0$, with $\widehat{\varepsilon}_{m}<\frac{1}{(n+1)^{2}}, \forall m$. For each m, we consider $Y_{m}: \widetilde{D}_{m} \rightarrow \mathbb{R}^{3}$ and \widetilde{P}_{m} given by Lemma 2 , for the data:

$$
X=X_{n}, P=P_{n}, r=r_{n}, s=1 /(n+1), \varepsilon=\widehat{\varepsilon}_{m} .
$$

If m is large enough, Assertions 1 and 5 in Lemma 2 tell us that $\overline{D_{n}^{\xi_{n}}} \subset \widetilde{D}_{m}$ and the sequence $\left\{Y_{m}\right\}$ converges to X_{n} uniformly in $\overline{D_{n}^{\xi_{n}}}$. In particular, $\left\{\lambda_{Y_{m}}\right\}$ converges uniformly to $\lambda_{X_{n}}$ in $\overline{D_{n}^{\xi_{n}}}$. Therefore there is a $m_{0} \in \mathbb{N}$ such that:

$$
\begin{gather*}
\overline{D_{n}^{\xi_{n}}} \subset D_{n}^{\hat{\varepsilon}_{m_{0}}} \subset \widetilde{D}_{m_{0}}, \tag{2}\\
\rho_{n}<\operatorname{dist}_{\left(Y_{m_{0}}, \overline{\left.D_{n}^{\xi_{n}}\right)}\right.}\left(p_{0}, \partial\left(D_{n}^{\xi_{n}}\right)\right), \tag{3}\\
\lambda_{Y_{m_{0}}} \geq \alpha_{n+1} \lambda_{X_{n}} \quad \text { in } D_{n}^{\xi_{n}} . \tag{4}
\end{gather*}
$$

We define $X_{n+1}=Y_{m_{0}}, P_{n+1}=\widetilde{P}_{m_{0}}$, and $\varepsilon_{n+1}=\widehat{\varepsilon}_{m_{0}}$. From (2), (3) and Assertion 3 in Lemma 2, it is not hard to see that $\rho_{n+1}<$ $\operatorname{dist}_{\left(X_{n+1}, \overline{D_{n+1}}\right)}\left(p_{0}, \partial\left(D_{n+1}\right)\right)$. Finally, take ξ_{n+1} small enough such that $\left(\mathrm{A}_{n+1}\right)$ and $\left(\mathrm{F}_{n+1}\right)$ hold. The remaining properties directly follow from (2), (4) and the aforementioned lemma. This concludes the construction of the sequence $\left\{\chi_{n}\right\}_{n \in \mathbb{N}}$.

Now, we define

$$
\Sigma=\bigcup_{n=1}^{\infty} \operatorname{Int}\left(P_{n}^{\xi_{n}}\right)
$$

Σ is a simply connected domain in \mathbb{C} containing $\left\{\beta_{1}, \ldots, \beta_{2 \sigma+1}\right\}$. Label $S=z^{-1}(\Sigma)$.

Properties $\left(\mathrm{D}_{n}\right)$ and the fact that $\varepsilon_{n}<1 / n^{2}$ give us that the sequence of minimal immersion $\left\{X_{n}\right\}$ is a Cauchy sequence, uniformly on compact sets of S, and so $\left\{X_{n}\right\}$ converges.

Let $X: S \rightarrow \mathbb{R}^{3}$ be the limit of $\left\{X_{n}\right\} . X$ has the following properties:

- X is an immersion. Indeed, for any $p \in S$ there exists $n \in \mathbb{N}$ such that $p \in D_{n}^{\xi_{n}}$. From Properties $\left(\mathrm{E}_{i}\right), i=k, \ldots, n+1$ we get:

$$
\begin{aligned}
\lambda_{X_{k}}(p) & \geq \alpha_{k} \lambda_{X_{k-1}}(p) \geq \cdots \geq \alpha_{k} \ldots \alpha_{n+1} \lambda_{X_{n}}(p) \\
& \geq \alpha_{k} \ldots \alpha_{1} \lambda_{X_{n}}(p), \quad \forall k>n .
\end{aligned}
$$

Taking limit as $k \rightarrow \infty$, we deduce:

$$
\begin{equation*}
\lambda_{X}(p) \geq \frac{1}{2} \lambda_{X_{n}}(p)>0, \tag{5}
\end{equation*}
$$

and so X is an immersion.

- X is minimal and conformal.
- $X(S)$ is bounded in \mathbb{R}^{3}. Let $p \in S$ and $n \in \mathbb{N}$ such that $p \in D_{n}^{\xi_{n}}$, then

$$
\|X(p)\| \leq\left\|X(p)-X_{n}(p)\right\|+\left\|X_{n}(p)\right\| \leq \frac{1}{2}+r_{n}
$$

for an n large enough. From the definition, the sequence $\left\{r_{n}\right\}$ is bounded in \mathbb{R}.

- The surface S is complete with the metric induced by X. Indeed, if n is large enough, and taking (5) and (A_{n}) into account, one has:

$$
\operatorname{dist}_{\left(X, \overline{\left.D_{n}^{\xi^{n}}\right)}\right.}\left(p_{0}, \partial D_{n}^{\xi_{n}}\right)>\frac{1}{2} \operatorname{dist}_{\left(X_{n}, \overline{\left.D_{n}^{\xi_{n}}\right)}\right.}\left(p_{0}, \partial D_{n}^{\xi_{n}}\right)>\frac{1}{2} \rho_{n} .
$$

The completeness is due to the fact that $\left\{\rho_{n}\right\}_{n \in \mathbb{N}}$ diverges.
This concludes the proof. q.e.d.

4. Proof of Lemma 1

Lemma 1 tells us that the set of funtions given by Runge's theorem on M is large enough to provide us with a solution to our period problem.

The proof of this lemma requires of several claims about meromorphic one forms on the surface \bar{M}.

Along this section, $\mathcal{B}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 \sigma}\right\}$ will represent a basis of the homology of \bar{M} contained in $z^{-1}\left(K_{2}\right)$. In Figure 1 you can see the z-projection of γ_{i}, that we have called $\delta_{i}, i=1, \ldots, 2 \sigma$. Note that \mathcal{B} is also an homology basis of M.

Let us define \mathcal{H}_{∞} as the complex vector space of the meromorphic 1 -forms τ on \bar{M} with poles only at ∞, and satisfying $\tau=-A^{*} \tau$. Notice that a nonexact element of \mathcal{H}_{∞} has the form $P(z) \frac{d z}{w}$, where $P(z)$ is a non-null polynomial.

Claim 1. Consider $\left(a_{1}, \ldots, a_{2 \sigma}\right) \in \mathbb{C}^{2 \sigma}-\{(0, \ldots, 0)\}$ and $c=$ $\sum_{j=1}^{2 \sigma} a_{j} \gamma_{j}$. Then there exists $\tau \in \mathcal{H}_{\infty}$ satisfying $\int_{c} \tau \neq 0$.

Proof. As a consequence of Riemann-Roch theorem, the first holomorphic De Rham cohomology group, $H_{\text {hol }}^{1}(M)$, is generated by

$$
\mathcal{V}=\left\{\left[z^{j-1} \frac{d z}{w}\right], j=1, \ldots, 2 \sigma\right\}
$$

Figure 1: Curves $\delta_{1}, \delta_{2}, \ldots, \delta_{2 \sigma}$.

See [1] for the details. Therefore, the map $I: H_{\text {hol }}^{1}(M) \longrightarrow \mathbb{C}^{2 \sigma}$, given by $I([\psi])=\left(\int_{\gamma_{j}} \psi\right)_{j=1, \ldots, 2 \sigma}$ is a linear isomorphism. Thus, there is $[\psi] \in$ $H_{\text {hol }}^{1}(M)$ such that $I([\psi]) \notin\left\{\left(z_{1}, \ldots z_{2 \sigma}\right) \in \mathbb{C}^{2 \sigma}: \sum_{j=1}^{2 \sigma} a_{j} z_{j}=0\right\}$. As \mathcal{V} is a basis of $H_{\text {hol }}^{1}(M)$, there is $\tau \in \mathcal{H}_{\infty} \cap[\psi]$, and so, $\int_{c} \tau \neq 0$. This proves the claim.
q.e.d.

Furthermore, we are interested in controling the zeroes of the oneform τ given in the above claim. This is possible thanks to the next result.

Claim 2. Let τ be a meromorphic 1-form in \mathcal{H}_{∞} and $p \in M$. Then there is a meromorphic function $H: M \rightarrow \mathbb{C}$ satisfying:
(i) $H \circ A=-H$.
(ii) $(H)_{\infty}=\infty^{k}, k \in \mathbb{N}$.
(iii) $(\tau+d H)_{0} \geq(\tau)_{0} \cdot p \cdot A(p)$.

Proof. We know that $\tau=P(z) \frac{d z}{w}$, where $P(z)$ is a polynomial. Write $(\tau)_{0}=p^{n(p)} \cdot A(p)^{n(p)} \cdot D$, where D is an integral divisor not containing
either p or $A(p)$. Define

$$
J= \begin{cases}\frac{P(z)^{2}}{(z-z(p))^{n(p)-1}} w, & p \neq A(p) \\ \frac{P(z)^{2}}{(z-z(p))^{n(p)}} w, & p=A(p)\end{cases}
$$

Notice that J satisfies (i) and (ii). Moreover $(J)_{0} \geq p^{n(p)+1} \cdot A(p)^{n(p)+1}$. D^{2}. As the order of p (and $\left.A(p)\right)$ as zero of $d(J)$ and τ is the same, then there exists $\lambda \in \mathbb{C}$ such that $(\tau+\lambda d J)_{0} \geq p^{n(p)+1} \cdot A(p)^{n(p)+1} \cdot D$. This concludes the claim.
q.e.d.

Claim 3. Let $H(\bar{\Omega})$ be the real vector space of the holomorphic functions on $\bar{\Omega}$. Then the linear map $F: H(\bar{\Omega}) \rightarrow \mathbb{R}^{4 \sigma}$, given by:

$$
\begin{aligned}
F(t)=\left(\operatorname{Re}\left[\int_{\gamma_{j}} t \Phi_{3}\left(\frac{1}{g}+g\right)\right]_{j=1, \ldots, 2 \sigma}\right. & \\
& \left.\operatorname{Im}\left[\int_{\gamma_{j}} t \Phi_{3}\left(\frac{1}{g}-g\right)\right]_{j=1, \ldots, 2 \sigma}\right)
\end{aligned}
$$

is surjective.
Proof. We proceed by contradiction. Assume F is not onto. Then, there is $\left(\mu_{1}, \ldots, \mu_{4 \sigma}\right) \in \mathbb{R}^{4 \sigma}-\{(0, \ldots, 0)\}$, such that $F(H(\bar{\Omega})) \subseteq$ $\left\{\left(x_{1}, \ldots, x_{4 \sigma}\right) \in \mathbb{R}^{4 \sigma} / \sum_{j=1}^{4 \sigma} \mu_{j} x_{j}=0\right\}$. This is equivalent to say that

$$
\begin{equation*}
\sum_{j=1}^{2 \sigma}\left[u_{j} \int_{\gamma_{j}} \frac{t}{g} \Phi_{3}+\overline{u_{j}} \int_{\gamma_{j}} t g \Phi_{3}\right]=0 \quad \forall t \in H(\bar{\Omega}), \tag{6}
\end{equation*}
$$

where $u_{j}=\mu_{j}-i \mu_{2 \sigma+j}, j=1, \ldots, 2 \sigma$.
Claims 1 and 2 guarantee the existence of a differential $\tau \in \mathcal{H}_{\infty}$ satisfying:
(i) $(\tau)_{0} \geq\left(\left(\frac{1}{g} \Phi_{3}\right)_{\left.\right|_{\bar{\Omega}}}\right)_{0}^{2}\left((g d g)_{\left.\right|_{\bar{\Omega}}}\right)_{0}$.
(ii) $\sum_{j=1}^{2 \sigma} \overline{u_{j}} \int_{\gamma_{j}} \tau \neq 0$.

If we define $f \stackrel{\text { def }}{=} \frac{\tau}{2 g d g}$, then $t=\frac{g d(f)}{\Phi_{3}}$ belongs to $H(\bar{\Omega})$. In this case, and integrating by parts, (6) becomes

$$
\sum_{j=1}^{2 \sigma} \overline{u_{j}} \int_{\gamma_{j}} t g \Phi_{3}=-\sum_{j=1}^{2 \sigma} \overline{u_{j}} \int_{\gamma_{j}} \tau=0
$$

which is absurd. This contradiction proves the claim.
q.e.d.

Using the above claim we have the existence of $\left\{t_{1}, \ldots, t_{4 \sigma}\right\} \subset H(\bar{\Omega})$ such that $\operatorname{det}\left(F\left(t_{1}\right), \ldots, F\left(t_{4 \sigma}\right)\right) \neq 0$. Up to changing $t_{i} \leftrightarrow t_{i} / x, x>0$ large enough, we can assume that

$$
\begin{equation*}
\left|\exp \left(\sum_{i=1}^{4 \sigma} x_{i} t_{i}(z)\right)-1\right|<1 /(2 \alpha) \tag{7}
\end{equation*}
$$

$\forall\left(x_{1}, \ldots, x_{4 \sigma}\right) \in \mathbb{R}^{4 \sigma},\left|x_{i}\right|<1, i=1, \ldots, 4 \sigma, \quad \forall z \in \bar{\Omega}$.
Given $n \in \mathbb{N}$, we apply Runge's theorem and obtain a holomorphic function $t_{0}^{n}: \bar{\Omega} \rightarrow \mathbb{C}$ satisfying:

- $\left|t_{0}^{n}-n\right|<1 / n$ in K_{1}.
- $\left|t_{0}^{n}\right|<1 / n$ in K_{2}.

For $\Theta=\left(\lambda_{0}, \ldots, \lambda_{4 \sigma}\right) \in \mathbb{R}^{4 \sigma+1}$, we define

$$
h^{\Theta, n}(z) \stackrel{\text { def }}{=} \exp \left[\lambda_{0} t_{0}^{n}(z)+\sum_{j=1}^{4 \sigma} \lambda_{j} t_{j}(z)\right], \quad \forall z \in \bar{\Omega} .
$$

Label $g^{\Theta, n}=g / h^{\Theta, n}$ and $\Phi_{3}^{\Theta, n}=\Phi_{3}$. As $\left\{\left.t_{0}^{n}\right|_{K_{2}}\right\}_{n \in \mathbb{N}}$ is uniformly bounded, then, up to a subsequence, we have $\left\{t_{\left.0\right|_{K_{2}}}^{n}\right\} \rightarrow t_{0}^{\infty} \equiv 0$, uniformly on K_{2}. We also define on K_{2} the following Weierstrass data $g^{\Theta, \infty}=g / h^{\Theta, \infty}, \Phi_{3}^{\Theta, \infty}=\Phi_{3}$, where

$$
h^{\Theta, \infty}(z) \stackrel{\text { def }}{=} \exp \left[\sum_{j=1}^{4 \sigma} \lambda_{j} t_{j}(z)\right], \quad \forall z \in K_{2}
$$

The period problems of all these Weierstrass representations are not solved, except for the third coordinates.

Therefore, we have to deal with the periods of $\Phi_{j}^{\Theta, n}, j=1,2$. To do this, we define the map $\mathcal{P}_{n}: \mathbb{R}^{4 \sigma+1} \rightarrow \mathbb{R}^{4 \sigma}, n \in \mathbb{N} \cup\{\infty\} ;$

$$
\mathcal{P}_{n}(\Theta)=\left(\operatorname{Re}\left[\int_{\gamma_{j}} \Phi_{1}^{\Theta, n}\right]_{j=1, \ldots, 2 \sigma}, \operatorname{Re}\left[\int_{\gamma_{j}} \Phi_{2}^{\Theta, n}\right]_{j=1, \ldots, 2 \sigma}\right)
$$

Since the immersion X is well defined, then one has $\mathcal{P}_{n}\left(0,{ }_{(4 \sigma}^{+. .1)}, 0\right)=0$, $\forall n \in \mathbb{N} \cup\{\infty\}$. Moreover, it is not hard to check that

$$
\begin{aligned}
\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{n}\right)\left(0,{ }^{(4 \sigma} \ldots+.{ }^{1)}, 0\right)=\operatorname{det}\left(F\left(t_{1}\right), \ldots, F\left(t_{2 \sigma}\right)\right) & \neq 0, \\
& \forall n \in \mathbb{N} \cup\{\infty\} .
\end{aligned}
$$

So, we can find $\epsilon>0$ and $1>r>0$ such that

- $\left.\left(\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{\infty}\right)\right)\right|_{[-\epsilon, \epsilon] \times \bar{B}(0, r)} \neq 0 ;$
- the map $\left.\mathcal{P}_{\infty}(0, \cdot)\right|_{\bar{B}(0, r)}$ is injective,
where $\bar{B}(0, r)=\left\{\Lambda \in \mathbb{R}^{4 \sigma} /\|\Lambda\| \leq r\right\}$.
As $\left\{t_{0}^{n}\right\}_{n \in \mathbb{N}}$ uniformly converges to $t_{0}^{\infty} \equiv 0$ on K_{2} and $\delta_{i}=z\left(\gamma_{i}\right)$ is contained in $K_{2}, i=1, \ldots, 2 \sigma$, then it is not hard to see that $\left\{\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{n}\right)\right\}_{n \in \mathbb{N}}$ uniformly converges to $\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{\infty}\right)$ on $[-\epsilon, \epsilon]$ $\times \bar{B}(0, r)$. Therefore, there exists $n_{0} \in \mathbb{N}$ such that

$$
\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{n}\right)\left(\lambda_{0}, \Lambda\right) \neq 0, \quad \forall\left(\lambda_{0}, \Lambda\right) \in[-\epsilon, \epsilon] \times \bar{B}(0, r), \quad n \geq n_{0} .
$$

At this point we can apply the Implicit Function Theorem to the map \mathcal{P}_{n} at $\left(0,{ }^{\left(4 \sigma .+{ }^{1)},\right.} 0\right) \in[-\epsilon, \epsilon] \times \bar{B}(0, r)$, in order to get a smooth function $L_{n}: I_{n} \rightarrow \mathbb{R}^{4 \sigma}$, satisfying $\mathcal{P}_{n}\left(\lambda_{0}, L_{n}\left(\lambda_{0}\right)\right)=0, \forall \lambda_{0} \in I_{n}$, where I_{n} is an open interval containing 0 . We can also assume that I_{n} is maximal, in the sense that L_{n} can not be regularly extended beyond I_{n}.

Label ϵ_{n} as the supremum of the connected component of $L_{n}^{-1}(\bar{B}(0, r)) \cap[0, \epsilon]$ that constains $\lambda_{0}=0$. Our next step consists of seeing that $\epsilon_{n} \in I_{n}$. Take a sequence $\left\{\lambda_{0}^{k}\right\}_{k \in \mathbb{N}} \nearrow \epsilon_{n}$. As $\left\{L_{n}\left(\lambda_{0}^{k}\right)\right\} \subset$ $\bar{B}(0, r)$, then we can assume, up to a subsequence, that $\left\{L_{n}\left(\lambda_{0}^{k}\right)\right\}_{k \in \mathbb{N}}$ converges to an element $\Lambda_{n} \in \bar{B}(0, r)$. Taking into account that $\operatorname{Jac}_{\lambda_{1}, \ldots, \lambda_{4 \sigma}}\left(\mathcal{P}_{n}\right)\left(\epsilon_{n}, \Lambda_{n}\right) \neq 0$, the local unicity of the curve $\left(\lambda_{0}, L_{n}\left(\lambda_{0}\right)\right)$ around the point $\left(\epsilon_{n}, \Lambda_{n}\right)$, and that I_{n} is maximal, we deduce that $\epsilon_{n} \in I_{n}$. Therefore, either $\epsilon_{n}=\epsilon$, or $L_{n}\left(\epsilon_{n}\right)=\Lambda_{n} \in \partial(B(0, r))$.

We are going to see that $\epsilon_{0} \stackrel{\text { def }}{=} \lim \inf \left\{\epsilon_{n}\right\}>0$. Otherwise, there is a subsequence $\left\{\epsilon_{n}\right\} \rightarrow 0$. Without loss of generality, $\epsilon_{n}<\epsilon, \forall n \in$ \mathbb{N}, and so $\Lambda_{n} \in \partial(B(0, r)), \forall n \in \mathbb{N}$. Up to a subsequence, $\left\{\Lambda_{n}\right\} \rightarrow$ $\Lambda_{\infty} \in \partial(B(0, r))$. The fact $\mathcal{P}_{\infty}(0,0)=\mathcal{P}_{\infty}\left(0, \Lambda_{\infty}\right)=0$ contradicts the injectivity of $\mathcal{P}_{\infty}(0, \cdot)$ in $\bar{B}(0, r)$.

We have proved the following assertion:
Claim 4. There exist $\epsilon_{0}>0$ and $n_{0} \in \mathbb{N}$ such that the function $L_{n}:\left[0, \epsilon_{0}\right] \rightarrow \bar{B}(0, r)$ is well defined, $\forall n \geq n_{0}$.

Label $\left(\lambda_{1}^{n}, \ldots, \lambda_{4 \sigma}^{n}\right)=L_{n}\left(\epsilon_{0}\right)$. From (7) we have $\mid \exp \left[\sum_{j=1}^{4 \sigma} \lambda_{j}^{n} t_{j}\right]-$ $1 \mid<1 /(2 \alpha)$ on $\bar{\Omega}$. Hence, if $n \geq n_{0}$ is large enough, the function:

$$
h(z) \stackrel{\text { def }}{=} \exp \left[\epsilon_{0} t_{0}^{n}(z)+\sum_{j=1}^{4 \sigma} \lambda_{j}^{n} t_{j}(z)\right]
$$

satisfies Statements 1 and 2 in Lemma 1. As the period function \mathcal{P}_{n} vanishes at $\Theta_{n}=\left(\epsilon_{0}, \lambda_{1}^{n}, \ldots, \lambda_{4 \sigma}^{n}\right)$, then the minimal immersion \widetilde{F} associated to the Weierstrass data $g^{\Theta_{n}, n}, \Phi_{3}^{\Theta_{n}, n}=\Phi_{3}$ is well defined. This proves Statement 3 in the lemma.

5. Proof of Lemma 2

Consider P, the polygon given in the statement of Lemma 2. In a first step, we are going to follow [4] to describe a labyrinth on $\operatorname{Int}(P)$ depending on P and a positive integer N. Later, we use Lemma 1 following Nadirashvili's ideas [5].

Let ℓ be the number of sides of P. Throughout this section, N will be a positive multiple of ℓ.

Remark 1. Along the proof of the lemma, a set of real positive constants $\left\{c_{i}, i=1, \ldots, 12\right\}$ depending on X, P, r, ε, and s will appear. It is important to note that the choice of these constants does not depend on the integer N.

Let $\zeta_{0}>0$ small enough so that $P^{\zeta_{0}}$ is well defined and $\overline{\operatorname{Int}\left(P^{\varepsilon}\right)} \subset$ $\operatorname{Int}\left(P^{\zeta_{0}}\right)$. From now on, we will only consider $N \in \mathbb{N}$ such that $2 / N<\zeta_{0}$. Let c_{1} be a lower bound for the length of the sides of polygon P^{ζ} for all $\zeta \leq \zeta_{0}$. Let $v_{1}, \ldots, v_{2 N}$ be a set of points in the polygon P (containing the vertices of P) that divide each side of P into $\frac{2 N}{\ell}$ equal parts. We can transfer this partition to the polygon $P^{2 / N}: v_{1}^{\prime}, \ldots, v_{2 N}^{\prime}$ (see Figure 2). We define the following sets:

- $L_{i}=$ the segment that joins v_{i} and $v_{i}^{\prime}, i=1, \ldots, 2 N$.
- $P_{i}=P^{i / N^{3}}, i=0, \ldots, 2 N^{2}$.
- $\mathcal{A}=\bigcup_{i=0}^{N^{2}-1} \overline{\operatorname{Int}\left(P_{2 i}\right) \backslash \operatorname{Int}\left(P_{2 i+1}\right)}$ and $\widetilde{\mathcal{A}}=\bigcup_{i=1}^{N^{2}} \overline{\operatorname{Int}\left(P_{2 i-1}\right) \backslash \operatorname{Int}\left(P_{2 i}\right)}$.
- $\mathcal{R}=\bigcup_{i=0}^{2 N^{2}} P_{i}$.
- $\mathcal{B}=\bigcup_{i=1}^{N} L_{2 i}$ and $\widetilde{\mathcal{B}}=\bigcup_{i=0}^{N-1} L_{2 i+1}$.
- $L=\mathcal{B} \cap \mathcal{A}, \widetilde{L}=\widetilde{\mathcal{B}} \cap \widetilde{\mathcal{A}}$, and $H=\mathcal{R} \cup L \cup \widetilde{L}$.
- $\Omega_{N}=\left\{z \in \operatorname{Int}\left(P_{0}\right) \backslash \operatorname{Int}\left(P_{2 N^{2}}\right): \operatorname{dist}_{d s_{0}, \mathbb{C}}(z, H) \geq \frac{1}{4 N^{3}}\right\}$, where $d s_{0}$ is the Euclidean metric on \mathbb{C}.

We define ω_{i} as the union of the segment L_{i} and those connected components of Ω_{N} that have nonempty intersection with L_{i} for $i=1, \ldots, 2 N$. Finally, we label $\varpi_{i}=\left\{z \in \mathbb{C}: \operatorname{dist}_{d s_{0}, \mathbb{C}}\left(z, \omega_{i}\right)<\delta(N)\right\}$, where $i=$ $1, \ldots, 2 N$, and $\delta(N)>0$ is chosen in such a way that the sets $\overline{\varpi_{i}}$ $(i=1, \ldots, N)$ are pairwise disjoint (see Figure 3). We denote ϖ_{i}^{1} and ϖ_{i}^{2} as the two connected component of $z^{-1}\left(\varpi_{i}\right)$.

The aim of all this construction is to guarantee the following claims for an N large enough.

Claim A There is a constant c_{2} such that $\operatorname{diam}_{d s}\left(\varpi_{i}^{j}\right) \leq c_{2} / N$, where $d s^{2}$ is the Riemannian metric $\|d z / w\|^{2}$ on M.

To see this, observe that $\operatorname{diam}_{d s_{0}}\left(\varpi_{i}\right) \leq \frac{\text { const }}{N}$. As we can find a positive constant c_{3} such that

$$
\begin{equation*}
\frac{1}{c_{3}}\left\|\frac{d z}{w}\right\| \leq\|d z\| \leq c_{3}\left\|\frac{d z}{w}\right\| \quad \text { in } \bar{D} \backslash D^{\varepsilon} \tag{8}
\end{equation*}
$$

and we have $z^{-1}\left(\varpi_{i}\right) \subset D \backslash D^{\varepsilon}$ for all $i=1, \ldots, 2 N$, the claim holds.
Claim B If $\lambda^{2}(z) d s^{2}$ is a conformal metric in \bar{D} and $\Upsilon \in \mathbb{R}^{+}$satisfies

$$
\lambda(z) \geq \begin{cases}\Upsilon & \text { in } \operatorname{Int} P \\ \Upsilon N^{4} & \text { in } \Omega_{N},\end{cases}
$$

and if α is a curve in D connecting $\partial\left(D^{\varepsilon}\right)$ and $\partial(D)$, then the length of α with this metric is greater than $c_{4} \Upsilon N$, where c_{4} is a positive constant not depending on Υ.

In order to prove Claim B, if we denote $(z \circ \alpha)_{i}$ as the piece of $z \circ \alpha$ connecting $P_{2 i}$ with $P_{2 i+2}$, for $i=0, \ldots, N^{2}-1$, then either the Euclidean length of $(z \circ \alpha)_{i}$ is greater than $\frac{c_{1} \ell}{2 N}$ or the Euclidean length of $(z \circ \alpha)_{i} \cap \Omega_{N}$ is greater than $\frac{1}{2 N^{3}}$. These facts and inequalities (8) give us the existence of the constant c_{4}.

Now, our purpose is to construct (for N large enough) a sequence of conformal minimal immersions $F_{i}, i=0,1, \ldots, 2 N$, in $\bar{D}, F_{0}=X$, such that:

Figure 2: The polygons P and $P^{2 / N}$.

Figure 3: Distribution of the sets ϖ_{i}^{j}.
$\left(\mathrm{P}_{i}\right) F_{i}(p)=\operatorname{Re}\left(\int_{p_{0}}^{p} \Phi^{i}\right)$, where $A^{*}\left(\Phi^{i}\right)=-\Phi^{i}$, i.e., $\Phi^{i}=\left(\varphi_{1}^{i}(z), \varphi_{2}^{i}(z), \varphi_{3}^{i}(z)\right) \frac{d z}{w}$.
$\left(\mathrm{P} 2_{i}\right)\left\|\varphi^{i}(z)-\varphi^{i-1}(z)\right\| \leq 1 / N^{2}$ for all $z \in \operatorname{Int}(P) \backslash \varpi_{i}$.
$\left(\mathrm{P} 3_{i}\right)\left\|\varphi^{i}(z)\right\| \geq N^{7 / 2}$ for all $z \in \omega_{i}$.
$\left(\mathrm{P} 4_{i}\right)\left\|\varphi^{i}(z)\right\| \geq 1 / \sqrt{N}$ for all $z \in \varpi_{i}$.
$\left(\mathrm{P} 5_{i}\right) \operatorname{dist}_{\left(d s_{1}, \mathbb{S}^{2}\right)}\left(\mathcal{G}_{i}(z), \mathcal{G}_{i-1}(z)\right)<\frac{1}{N \sqrt{N}}$ for all $z \in \operatorname{Int}(P) \backslash \varpi_{i}$, where $d s_{1}$ is the usual Riemannian metric in \mathbb{S}^{2} and \mathcal{G}_{i} represents the Gauss map of the immersion F_{i}.
$\left(\mathrm{P} 6_{i}\right)$ there exists a orthogonal frame $S_{i}=\left\{e_{1}, e_{2}, e_{3}\right\}$ in \mathbb{R}^{3} and a real constant $c_{5}>0$ such that:
(P6.1i) If $p \in z^{-1}\left(\overline{\varpi_{i}}\right)$ and $\left\|F_{i-1}(p)\right\| \geq 1 / \sqrt{N}$, then

$$
\left\|\left(\left(F_{i-1}(p)\right)_{1},\left(F_{i-1}(p)\right)_{2}\right)\right\|<\frac{c_{5}}{\sqrt{N}}\left\|F_{i-1}(p)\right\| .
$$

$\left(\mathrm{P} 6.2_{i}\right)\left(F_{i}(p)\right)_{3}=\left(F_{i-1}(p)\right)_{3}$ for all $p \in \bar{D}$.
Here, $(\cdot)_{k}$ is the k-th coordinate function with respect to $\left\{e_{1}, e_{2}\right.$, $\left.e_{3}\right\}$.

Suppose that we have F_{0}, \ldots, F_{j-1} verifying the claims $\left(\mathrm{P} 1_{i}\right), \ldots,\left(\mathrm{P} 6_{i}\right)$, $i=1, \ldots, j-1$. Then, for an N large enough, there are positive constants c_{6}, \ldots, c_{9} such that the following statments hold:
(L1) $\left\|\varphi^{j-1}\right\| \leq c_{6} \operatorname{in} \operatorname{Int}(P) \backslash \bigcup_{k=1}^{j-1} \varpi_{k}$.
This follows easily from $\left(\mathrm{P} 2_{l}\right)$ for $l=1, \ldots, j-1$.
(L2) $\left\|\varphi^{j-1}\right\| \geq c_{7} \operatorname{in} \operatorname{Int}(P) \backslash \bigcup_{k=1}^{j-1} \varpi_{k}$.
To obtain this property, it suffices to apply $\left(\mathrm{P} 2_{l}\right)$ for $l=1, \ldots, j-1$ once again.
(L3) The diameter in \mathbb{R}^{3} of $F_{j-1}\left(\varpi_{j}^{l}\right)$ is less than $c_{8} / N, l=1,2$.
This is a consequence of (L1), the bound of $\operatorname{diam}_{d s}\left(\varpi_{j}^{l}\right)$ in Claim A, and equality (1).
(L4) The diameter in \mathbb{S}^{2} of $\mathcal{G}_{j-1}\left(z^{-1}\left(\varpi_{j}\right)\right)$ is less than c_{9} / \sqrt{N}.
Indeed, since $\operatorname{diam}_{d s_{0}}\left(\varpi_{j}\right) \leq \frac{\text { const }}{N}$, we have a bound of diameter of $\mathcal{G}_{0}\left(z^{-1}\left(\varpi_{j}\right)\right)$. From successive applications of ($\mathrm{P} 5_{l}$) we have that (L4) holds.

We shall now construct F_{j}. We look for a set of orthogonal coordinates $S_{j}=\left\{e_{1}, e_{2}, e_{3}\right\}$ in \mathbb{R}^{3} and a constant $c_{10}>0$ such that:
(D1) If $p \in z^{-1}\left(\varpi_{j}\right)$ and $\left\|F_{j-1}(p)\right\| \geq \frac{1}{\sqrt{N}}$, then $\min \left\{\angle\left(e_{3}, F_{j-1}(p)\right)\right.$,

$$
\left.\angle\left(-e_{3}, F_{j-1}(p)\right)\right\} \leq \frac{c_{10}}{\sqrt{N}} .
$$

$$
\begin{equation*}
\angle\left(\pm e_{3}, \mathcal{G}_{j-1}(z)\right) \geq \nu / \sqrt{N} \text { for all } z \in \varpi_{j} \tag{D2}
\end{equation*}
$$

Here, $\angle(a, b) \in\left[0, \pi\left[\right.\right.$ is the angle formed by a and b in \mathbb{R}^{3} and ν is a constant satisfying $\nu>1 / c_{7}$. Given $q \in \mathbb{S}^{2}$, we denote

$$
\operatorname{Con}(q, r)=\left\{x \in \mathbb{S}^{2}: \angle(x, q) \leq r\right\} .
$$

Let $g_{0} \in \mathcal{G}_{j-1}\left(\varpi_{j}\right)$. Taking (L4) into account, the condition (D2) holds if e_{3} is chosen in $\mathbb{S}^{2} \backslash \mathcal{C}$, where

$$
\mathcal{C}=\operatorname{Con}\left(g_{0}, \frac{c_{9}+\nu}{\sqrt{N}}\right) \cup \operatorname{Con}\left(-g_{0}, \frac{c_{9}+\nu}{\sqrt{N}}\right) .
$$

The next step is to find $e_{3} \in \mathbb{S}^{2} \backslash \mathcal{C}$ satisfying (D1) for a suitable $c_{10}>0$.
To do this, we define

$$
F=\left\{p /\|p\|: p \in F_{j-1}\left(\varpi_{j}^{1}\right) \text { and }\|p\| \geq \frac{1}{\sqrt{N}}\right\} .
$$

Let q a point in F. Taking into account (L3), we have that $F \subset$ Con $\left(q, \frac{2 c_{8}}{\sqrt{N}}\right)$. Choose c_{10} such that $2\left(c_{9}+\nu+1+c_{8}\right)<c_{10}$, and consider $e_{3} \in\left(\mathbb{S}^{2} \backslash \mathcal{C}\right) \cap \operatorname{Con}\left(q, \frac{c_{9}+\nu+1}{\sqrt{N}}\right)$. To check property (D1), we take $p \in \varpi_{j}^{1}$ verifying $\left\|F_{j-1}(p)\right\| \geq 1 / \sqrt{N}$, then a straightforward computation leads to

$$
\angle\left(e_{3}, p\right) \leq \angle\left(e_{3}, q\right)+\angle(q, p) \leq \frac{2\left(c_{9}+\nu+1\right)}{\sqrt{N}}+\frac{2 c_{8}}{\sqrt{N}}<\frac{c_{10}}{\sqrt{N}} .
$$

Thank to $F_{j-1} \circ A=-F_{j-1}$, we have $\angle\left(-e_{3}, p\right)<\frac{c_{10}}{\sqrt{N}}$ for all $p \in \varpi_{j}^{2}$, $\left(\varpi_{j}^{2}=A\left(\varpi_{j}^{1}\right)\right)$.

Finally, we take e_{1}, e_{2} such that $S_{j}=\left\{e_{1}, e_{2}, e_{3}\right\}$ is a set of orthogonal coordinates in \mathbb{R}^{3}.

Let $\left(\Phi_{3}^{j-1}, g^{j-1}\right)$ be the Weierstrass data of the immersion F_{j-1} in the coordinate system S_{j}. Let h_{α} be the function given by Lemma 1, for $K_{1}=\omega_{j}, K_{2}=\overline{\operatorname{Int}(P)} \backslash \varpi_{j}$ and α large enough in terms of N. We define $\Phi_{3}^{j}=\Phi_{3}^{j-1}$ and $g^{j}=g^{j-1} / h_{\alpha}$. Lemma 1 also tell us that the Weierstrass data Φ^{j} has no real periods. Therefore, the minimal immersion F_{j} is well-defined and its expression in the set of coordinates S_{j} is

$$
F_{j}(p)=\operatorname{Re}\left(\int_{p_{0}}^{p} \varphi^{j}(z) \frac{d z}{w}\right)
$$

We shall now see that F_{j} satisfies the properties $\left(\mathrm{P}_{j}\right), \ldots,\left(\mathrm{P} 6_{j}\right)$. (Note that claims $\left(\mathrm{P} 1_{j}\right), \ldots,\left(\mathrm{P} 6_{j}\right)$ do not depend on changes of coordinates in \mathbb{R}^{3}). Claim ($\mathrm{P} 1_{j}$) easily holds.

Note that $h_{\alpha} \rightarrow 1$ (resp. $h_{\alpha} \rightarrow \infty$) uniformly on K_{2} (resp. on K_{1}), as $\alpha \rightarrow \infty$. Then $\left(\mathrm{P} 2_{j}\right),\left(\mathrm{P} 3_{j}\right)$, and ($\mathrm{P} 5_{j}$) easily hold for α large enough.

To verify ($\mathrm{P} 4_{j}$), one uses (D2) and obtains:

$$
\frac{\sin (\nu / \sqrt{N})}{1+\cos (\nu / \sqrt{N})} \leq\left|g^{j-1}\right| \leq \frac{\sin (\nu / \sqrt{N})}{1-\cos (\nu / \sqrt{N})} \quad \text { in } \varpi_{j}
$$

and so, taking (L2) into account one has:

$$
\begin{aligned}
\left\|\varphi^{j}\right\| \geq\left|\varphi_{3}^{j}\right|=\left|\varphi_{3}^{j-1}\right| & \geq \sqrt{2}\left\|\varphi^{j-1}\right\| \frac{\left|g^{j-1}\right|}{1+\left|g^{j-1}\right|^{2}} \\
& \geq c_{7} \sin \left(\frac{\nu}{\sqrt{N}}\right) \geq \frac{1}{\sqrt{N}} \quad \text { in } \varpi_{j}
\end{aligned}
$$

for N large enough, which proves $\left(\mathrm{P} 4_{j}\right)$.
Using (D1), we get (P6.1 $)$ for $c_{5}=c_{10}$. To obtain (P6.2j), use that $\Phi_{3}^{j-1}=\Phi_{3}^{j}$ in the frame S_{j}.

Hence, we have constructed the immersions $F_{0}, F_{1}, \ldots, F_{2 N}$ satisfying claims $\left(\mathrm{P} 1_{j}\right), \ldots,\left(\mathrm{P} 6_{j}\right)$ for $j=1, \ldots, 2 N$.

Lemma 2 is a consequence of the following proposition.
Proposition 1. If N is large enough, then $F_{2 N}$ satisfies:
(i) $2 s<\operatorname{dist}_{\left(F_{2 N}, \bar{D}\right)}\left(\partial(D), \partial\left(D^{\epsilon}\right)\right)$.
(ii) There is a constant $c_{11}>0$ such that $\left\|F_{j}(p)-F_{j-1}(p)\right\| \leq \frac{c_{11}}{N^{2}}$ in $D \backslash$ $z^{-1}\left(\varpi_{j}\right)$.
(iii) $\left\|F_{2 N}-X\right\| \leq \frac{2 c_{11}}{N}$ in $D \backslash \bigcup_{j=1}^{2 N}\left(z^{-1}\left(\varpi_{j}\right)\right)$.
(iv) There is a polygon \widetilde{P} satisfying:
(iv.1) $\overline{\operatorname{Int}\left(P^{\varepsilon}\right)} \subset \operatorname{Int}(\widetilde{P}) \subset \overline{\operatorname{Int}(\widetilde{P})} \subset \operatorname{Int}(P)$.
(iv.2) $s<\operatorname{dist}_{\left(F_{2 N}, \widetilde{D}\right)}\left(p, \partial\left(D^{\varepsilon}\right)\right)<2 s, \forall p \in \partial(\widetilde{D})$, where $\widetilde{D}=$ $z^{-1}(\operatorname{Int}(\widetilde{P}))$.
(iv.3) $F_{2 N}(\widetilde{D}) \subset B_{R}$, where $R=\sqrt{r^{2}+(2 s)^{2}}+\varepsilon$.

Proof. If $\lambda_{F_{2 N}}^{2}(z)\left\|\frac{d z}{w}\right\|^{2}$ is the conformal metric induced on \bar{D} by the immersion $F_{2 N}$, then Property (L2) implies

$$
\begin{equation*}
\lambda_{F_{2 N}}(z)=\frac{\left\|\varphi^{2 N}(z)\right\|}{\sqrt{2}} \geq \frac{c_{7}}{\sqrt{2}}>\frac{1}{2 \sqrt{N}} \quad \text { in } \operatorname{Int}(P) \backslash \bigcup_{k=1}^{2 N} \varpi_{k} \tag{9}
\end{equation*}
$$

for N large enough. Taking into account $\left(\mathrm{P} 4_{j}\right)$ and $\left(\mathrm{P} 2_{i}\right)$ for $i=j+$ $1, \ldots, 2 N$, we have

$$
\begin{align*}
\lambda_{F_{2 N}}(z) & \geq \frac{\left\|\varphi^{j}(z)\right\|-\left\|\varphi^{2 N}(z)-\varphi^{j}(z)\right\|}{\sqrt{2}} \tag{10}\\
& \geq \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{N}}-\frac{2}{N}\right) \geq \frac{1}{2 \sqrt{N}} \quad \text { in each } \varpi_{j} .
\end{align*}
$$

From $\left(\mathrm{P} 3_{j}\right)$ and $\left(\mathrm{P} 2_{i}\right)$ for $i=j+1, \ldots, 2 N$, we obtain

$$
\begin{align*}
\lambda_{F_{2 N}}(z) & \geq \frac{\left\|\varphi^{j}(z)\right\|-\left\|\varphi^{2 N}(z)-\varphi^{j}(z)\right\|}{\sqrt{2}} \tag{11}\\
& \geq \frac{1}{\sqrt{2}}\left(N^{7 / 2}-\frac{2}{N}\right) \geq \frac{1}{2 \sqrt{N}} N^{4} \quad \text { in each } \omega_{j} .
\end{align*}
$$

Using inequalities (9), (10), and (11) together with Claim B, for $\Upsilon=$ $1 /(2 \sqrt{N})$, we conclude the proof of assertion (i).

Now we shall prove (ii). Note that the set ϖ_{j} depends on N, and label $\Xi_{N}^{j}=\bar{D}-z^{-1}\left(\varpi_{j}\right)$. It is not hard to see that there exists c_{11} depending only on D such that

$$
\sup \left\{\operatorname{dist}_{\left(d s, \Xi_{N}^{j}\right)}\left(p_{0}, p\right): N \in \mathbb{N}, j \in\{1, \ldots, 2 N\}, p \in \Xi_{N}^{j}\right\} \leq c_{11}
$$

Therefore, for all $p \in \Xi_{N}^{j}$, there exists a curve α_{p} in Ξ_{N}^{j}, from p_{0} to p satisfying length $\left(\alpha_{p}, d s\right)<c_{11}$. Using the former, we obtain

$$
\left\|F_{j}(p)-F_{j-1}(p)\right\|=\left\|\operatorname{Re} \int_{\alpha_{p}}\left(\varphi^{j}(z)-\varphi^{j-1}(z)\right) \frac{d z}{w}\right\| \leq c_{11} \frac{1}{N^{2}},
$$

which proves assertion (ii). From (ii), it is not hard to deduce (iii).
We will construct the polygon \widetilde{P}. Let

$$
\mathcal{S}=\left\{p \in D \backslash \overline{D^{\varepsilon}}: s<\operatorname{dist}_{\left(F_{2 N}, \bar{D}\right)}\left(p, \partial\left(D^{\varepsilon}\right)\right)<2 s\right\}
$$

Note that \mathcal{S} is a nonempty open subset of $D \backslash \overline{D^{\varepsilon}}$. As a consequence of (i), we deduce that $z(\mathcal{S})$ contains a Jordan curve, Γ verifying $\overline{\operatorname{Int}\left(P^{\epsilon}\right)} \subset$ $\operatorname{Int}(\Gamma)$. Then we can aproximate Γ by a polygon $\widetilde{P} \subset z(S)$ satisfying statments (iv.1) and (iv.2).

Finally, we prove assertion (iv.3). Thanks to the Maximum Principle, we only need to check that $F_{2 N}(\partial(\widetilde{D})) \subset B_{R}$. Take $p \in \partial(\widetilde{D})$. If $p \in D \backslash \bigcup_{j=1}^{2 N} z^{-1}\left(\varpi_{j}\right)$, we have

$$
\left\|F_{2 N}(p)\right\| \leq\left\|F_{2 N}(p)-X(p)\right\|+\|X(p)\| \leq \frac{2 c_{11}}{N}+r \leq R
$$

Suppose now $p \in z^{-1}\left(\varpi_{j}\right), j \in\{1, \ldots, 2 N\}$. From (iv.2), it is possible to find a curve $\gamma:[0,1] \rightarrow D$ such that $\gamma(0) \in \partial\left(D^{\varepsilon}\right), \gamma(1)=p$, and $\operatorname{length}\left(\gamma, d s_{F_{2 N}}\right) \leq 2 s$. We define:

$$
\bar{t}=\sup \left\{t \in[0,1]: \gamma(t) \in \partial\left(z^{-1}\left(\varpi_{j}\right)\right)\right\}, \quad \bar{p}=\gamma(\bar{t})
$$

Let γ_{1} be the piece of γ from \bar{p} to p.
To continue, we need to demonstrate:

$$
\begin{equation*}
\left\|F_{j}(\bar{p})-F_{j}(p)\right\| \leq 4 \frac{c_{11}}{N}+2 s \tag{12}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \left\|F_{j}(\bar{p})-F_{j}(p)\right\| \\
& \leq\left\|F_{j}(\bar{p})-F_{2 N}(\bar{p})\right\|+\left\|F_{2 N}(\bar{p})-F_{2 N}(p)\right\|+\left\|F_{2 N}(p)-F_{j}(p)\right\|
\end{aligned}
$$

using (ii), we have

$$
\begin{aligned}
& \leq 2 \frac{2 c_{11}}{N}+\left\|F_{2 N}(\bar{p})-F_{2 N}(p)\right\| \\
& \leq 4 \frac{c_{11}}{N}+\operatorname{length}\left(\gamma_{1}, d s_{F_{2 N}}\right) \leq 4 \frac{c_{11}}{N}+2 s
\end{aligned}
$$

At this point, we distinguish two cases.

- Case 1: $\left\|F_{j-1}(\bar{p})\right\|<1 / \sqrt{N}$. Then

$$
\begin{aligned}
\left\|F_{2 N}(p)\right\| \leq & \left\|F_{2 N}(p)-F_{j}(p)\right\|+\left\|F_{j}(p)+F_{j}(\bar{p})\right\| \\
& +\left\|F_{j}(\bar{p})-F_{j-1}(\bar{p})\right\|+\left\|F_{j-1}(\bar{p})\right\| \\
\leq & \frac{2 c_{11}}{N}+4 \frac{c_{11}}{N}+2 s+\frac{c_{11}}{N^{2}}+\frac{1}{\sqrt{N}} \leq R
\end{aligned}
$$

for an N large enough.

- Case 2: $\left\|F_{j-1}(\bar{p})\right\|>1 / \sqrt{N}$. In this case, from $\left(\mathrm{P} 6.2_{j}\right)$ we have, in the frame S_{j},

$$
\begin{aligned}
\left|\left(F_{j}(p)\right)_{3}\right| & =\left|\left(F_{j-1}(p)\right)_{3}\right| \\
& \leq\left|\left(F_{j-1}(p)\right)_{3}-(X(p))_{3}\right|+\left|(X(p))_{3}\right| \\
& \leq \frac{2 c_{11}}{N}+r
\end{aligned}
$$

Using inequality (12), the fact that $\bar{p} \in D \backslash z^{-1}\left(\varpi_{j}\right)$, assertion (ii), and property $\left(\mathrm{P} 6.1_{j}\right)$, one has

$$
\begin{aligned}
& \|\left(\left(F_{j}(p)\right)_{1},\left(F_{j}(p)\right)_{2}\right) \| \\
& \leq\left\|\left(\left(F_{j}(p)\right)_{1},\left(F_{j}(p)\right)_{2}\right)-\left(\left(F_{j}(\bar{p})\right)_{1},\left(F_{j}(\bar{p})\right)_{2}\right)\right\| \\
& \quad+\left\|\left(\left(F_{j}(\bar{p})\right)_{1},\left(F_{j}(\bar{p})\right)_{2}\right)-\left(\left(F_{j-1}(\bar{p})\right)_{1},\left(F_{j-1}(\bar{p})\right)_{2}\right)\right\| \\
& \quad+\left\|\left(\left(F_{j-1}(\bar{p})\right)_{1},\left(F_{j-1}(\bar{p})\right)_{2}\right)\right\| \\
& \leq 4 \frac{c_{11}}{N}+2 s+\frac{c_{11}}{N^{2}}+\frac{c_{5}}{\sqrt{N}}\left\|F_{j-1}(\bar{p})\right\| \\
& \leq 4 \frac{c_{11}}{N}+2 s+\frac{c_{11}}{N^{2}}+\frac{c_{5}}{\sqrt{N}}\left(\frac{2 c_{11}}{N}+r\right) \\
& \leq 2 s+\frac{c_{12}}{\sqrt{N}}
\end{aligned}
$$

where $c_{12}=5 c_{11}+c_{5}\left(2 c_{11}+r\right)$. By Pythagoras' theorem,

$$
\begin{aligned}
\left\|F_{2 N}(p)\right\| & \leq\left\|F_{2 N}(p)-F_{j}(p)\right\|+\left\|F_{j}(p)\right\| \\
& \leq \frac{2 c_{11}}{N}+\sqrt{\left|\left(F_{j}(p)\right)_{3}\right|^{2}+\left\|\left(\left(F_{j}(p)\right)_{1},\left(F_{j}(p)\right)_{2}\right)\right\|^{2}} \\
& <\sqrt{r^{2}+(2 s)^{2}}+\varepsilon=R
\end{aligned}
$$

for an N large enough.
q.e.d.

In order to finish the proof of the lemma, we define Y as $Y=F_{2 N}$. It is straightforward to check that Y verifies all the claims in Lemma 2.

Remark 2. Nadirashvili's construction provides an example of a complete bounded minimal surface with strictly negative Gauss curvature, which gives a counter example to a conjecture by Hadamard. The method of construction that we use here never provides surfaces with strictly negative curvature. This is due to the fact that our Weierstrass representations always satisfy $A^{*}(\Phi)=-\Phi$. In particular, the Gauss map g only depends on z, and so it has branch points at $\left\{\left(\beta_{1}, 0\right), \ldots\right.$, $\left.\left(\beta_{2 \sigma+1}, 0\right)\right\}$.

The authors think that a method of obtaining examples with $K<$ 0 and nontrivial topology should be very different to that shown in this article. We would like to thank the referee for pointing out this possibility.

References

[1] H.M. Farkas, I. Kra, Riemann surfaces, Graduate Texts in Math., 72, Springer Verlag, Berlin, 1980.
[2] L.P. Jorge, F. Xavier, A complete minimal surface in \mathbb{R}^{3} between two parallel planes, Ann. of Math. 112 (1980) 203-206.
[3] F.J. López, Hyperbolic complete minimal surfaces with arbitrary topology, Trans. Amer. Math. Soc. 350 (May 1998) 1977-1990.
[4] F. Martín, S. Morales, A complete bounded minimal cylinder in \mathbb{R}^{3}, Michigan Math. J. 47(3) (2000) 499-514.
[5] N. Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces, Invent. Math. 126 (1996) 457-465.
[6] R. Osserman, A survey of minimal surfaces, Dover Publications, New York, second edition, 1986.
[7] M. Weber, M. Wolf, Teichmuller Theory and Handle Addition for Minimal Surfaces, Annals of Math., to appear.
[8] S.-T. Yau, Review of geometry and analysis, Mathematics: frontiers and perspectives, 353-401, Amer. Math. Soc., Providence, RI, 2000.

Departamento de Geometría y Topología
Facultad de Ciencias, Universidad de Granada 18071 - Granada, Spain

[^0]: Research partially supported by MCYT-FEDER Grant No. BFM2001-3489. Received March 13, 2002.

