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AN EMBEDDED MINIMAL SURFACE WITH NO
SYMMETRIES

MARTIN TRAIZET

Abstract
We construct embedded minimal surfaces of finite total curvature in eu-
clidean space by gluing catenoids and planes. We use Weierstrass Rep-
resentation and we solve the Period Problem using the Implicit Function
Theorem. As a corollary, we obtain the existence of minimal surfaces with
no symmetries.

1. Introduction

This paper describes a new method to construct minimal surfaces
in euclidean space which are complete, properly embedded and of finite
total curvature.

The first such example, besides the plane and catenoid, was con-
structed by C. Costa in 1984, and generalised by D. Hoffman and W.
Meeks. These surfaces, which are known as the Costa Hoffman Meeks
family, are constructed using Weierstrass Representation. Their sym-
metries are used in an essential way to reduce the number of periods to
2.

N. Kapouleas [6] was the first one to construct large families of
embedded minimal surfaces of finite total curvature. His examples may
be seen as desingularisation of a family of catenoids with the same axis.
They have (unestimably) high genus and order of dihedral symmetry.
The construction uses partial differential equations and a fixed point
theorem.
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Recently M. Weber and M. Wolf [11] have constructed minimal sur-
faces using Weierstrass Representation and Teichmuller Spaces tech-
niques to solve the Period Problem. Their examples have eight sym-
metries and low genus (in the sense that the example with N ends has
genus N−2, the smallest possible value according to the Hoffman Meeks
conjecture). They can handle an arbitrary large number of periods, but
it seems hard to prove that their examples are embedded.

In this paper we construct minimal surfaces with no restriction a
priori on the genus and the number of symmetries. The surfaces we
obtain may be seen as N parallel planes with small catenoidal necks
between them (the planes are perturbed to have logarithmic growth at
infinity).

As in the work of N. Kapouleas, they are obtained by perturbation
of a singular object. The method however, is completely different, and
is inspired from the proof of the uniqueness of the Riemann Example
by W. Meeks, J. Perez and A. Ros [8]. We define quite explicitly the
Weierstrass data of our surfaces and we solve the Period Problem using
the Implicit Function Theorem at a singular point.

As an application of our main theorem, we obtain the existence of
embedded minimal surfaces in R

3 which have no nontrivial symmetries
(by a trivial symmetry we mean the identity). The question of whether
such a surface might exist was raised in [5], Section 5.2.

1.1 The Costa Hoffman Meeks family

Before stating our general theorem, we describe in some detail the Costa
Hoffman Meeks family, which we will recover as a particular case. This
is the only case where pictures are available, and I hope Figure 1 will
help to visualise what the examples we construct look like.

The Costa Hoffman Meeks family depends on two parameters: an
integer m ≥ 2 and a real x ≥ 1. Each surface has genus m−1, three ends
and m vertical planes of symmetry. x is a modulus for the underlying
Riemann surface. m = 2, x = 1 yields the original Costa surface. See
[5] for the details of the construction of these examples.

What is relevant for us is the behaviour of the family as x → ∞.
What we observe in pictures is that for large values of x, the surface
looks like three “planes”, with one “neck” between the first and second
planes (we say this is the neck at level one) and m necks between the
second and third planes (we say these are the necks at level 2). After
suitable scaling, the three “planes” converge when x → ∞ to the hor-
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izontal plane x3 = 0, and the necks collapse to m + 1 distinct points
in this plane, which we call their limit position. From the symmetries
of the surface, it is clear that the top necks converge to the vertices of
a regular m-gon and the bottom neck converges to the center of this
polygon. In other words, the limit (after suitable scaling) of the Costa
Hoffman Meeks family when x → ∞ is a 3-sheeted plane with m + 1
singular points placed at the vertices and center of a regular m-gon.

Under a larger scale, each neck converges, after suitable translation,
to a catenoid (this follows, for instance, from compactness results [9]).
We call the radius of the neck of this catenoid the limit size of the neck.
What is relevant is the ratio between the limit sizes of the necks.

Figure 1: The genus 2 Costa Hoffman Meeks surface for large value of
the parameter x. Computer image by J. Hoffman.

1.2 Configurations

We generalise this situation by allowing more planes and necks. The
input data for our construction is the level, position and size of the necks.
We call this a configuration. The configuration describes the asymptotic
behaviour of the family of minimal surfaces we want to construct. More
formally a configuration is the following data:

• an integer N ≥ 2 (number of ends),

• a finite set I used to label the necks,

• for each i ∈ I, an integer �i, 1 ≤ �i ≤ N − 1 (level of the ith neck
— here the word level has a combinatorial meaning, as explained
in the Costa Hoffman Meeks case),

• for each i ∈ I, a complex number pi (position of the ith neck,
identifying R

2 with C ),
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• for each k, 1 ≤ k ≤ N − 1, a real number ck > 0 (size of the necks
at level k).

We use the following notation: Ik = {i ∈ I | �i = k}, nk = #Ik is the
number of necks at level k, n = #I is the number of necks. Note that
I0 = IN = ∅ and n0 = nN = 0.

1.3 Forces

The configuration must satisfy a balancing condition which we now
explain. Given i ∈ Ik, we define the force Fi by

Fi =
∑

j∈Ik, j �=i

2c2
k

pi − pj
−
∑

j∈Ik+1

ckck+1

pi − pj
−
∑

j∈Ik−1

ckck−1

pi − pj
.

For this to make sense we need to assume that pj �= pi whenever i �= j
and |�i − �j | ≤ 1. We say the configuration is nonsingular. A more
compact way to write Fi is to define, for any i ∈ I and 1 ≤ k ≤ N , the
charge Qi,k by

Qi,k =


−c�i

if k = �i

c�i
if k = �i + 1

0 otherwise.

Then for i ∈ I,

Fi =
N∑

k=1

∑
j �=i

Qi,kQj,k

pi − pj
.

One may think of pi as a particle living in an N -sheeted plane and Qi,k

as the charge of pi in the kth sheet. Then one may interpret F i as an
electrostatic force. The forces satisfy the following two basic equations∑

i∈I

Fi = 0,(1)

∑
i∈I

piFi =
N∑

k=1

∑
i

∑
j<i

Qi,kQj,k.(2)

In terms of the neck sizes ck, the second term in (2) is equal to

W :=
N−1∑
k=1

nk(nk − 1)c2
k −

N−2∑
k=1

nknk+1ckck+1.(3)
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Definition 1. We say the configuration is balanced if ∀i ∈ I, Fi =
0.

By (2), a necessary condition is that W = 0. This gives one re-
striction on the neck sizes. The balancing condition is invariant by
transformations of the form pi 	→ api + b, where a, b ∈ C , namely trans-
lation and complex scaling. Hence we may normalise two positions. The
balancing condition is then a set of n − 2 algebraic equations in n − 2
variables.

Definition 2. We say the configuration is nondegenerate if the
differential of p = (pi)i∈I 	→ F = (Fi)i∈I has complex rank n − 2.

This is the maximal rank it may have. Indeed, the invariance by
translation and complex scaling gives that (1, . . . , 1) ∈ C

n and p are in
its kernel. These vectors are independent unless n = 1, which we shall
exclude.

1.4 Main results

In Section 3 we prove:

Theorem 1. Consider a nonsingular, balanced, and nondegenerate
configuration. Assume moreover that the differential of (c1, . . . , cN−1)
	→ W has rank 1, i.e., ∂W/∂ck �= 0 for at least one k. Then there exists
a smooth family (Mt)0<t<ε of complete, unbranched minimal surfaces
of finite total curvature, whose asymptotic behaviour when t → 0 yields
the given configuration: the necks at level k converge, after suitable
translations, to catenoids of size ck, and Mt scaled by t converges to
an N -sheeted horizontal plane with n singular points at pi, i ∈ I. Mt

has genus n − N + 1 and N embedded ends whose logarithmic growths
converge when t → 0 to

Qk :=
∑
i∈I

Qi,k = nk−1ck−1 − nkck, 1 ≤ k ≤ N.

Moreover, if Q1 < · · · < QN then Mt is embedded for t small enough.

When this last condition is satisfied we say the configuration is em-
bedded. See Section 3.9 for a more detailed geometric description of Mt.
We will see in the proof of this theorem that the balancing condition
is necessary for the existence of the family Mt, as well as the fact that
necks at the same level have the same limit size (which is implicit in the
definition of a configuration).
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We will in fact prove the existence of a family of minimal surfaces
depending on t and N − 2 other parameters. These parameters are
the logarithmic growths of the ends: if ∂W/∂ck �= 0, we may prescribe
(locally) the logarithmic growths of all ends except the ends at levels k
and k + 1.

In Section 2 we discuss examples of configurations and prove:

Theorem 2. There exists a configuration which is nonsingular, bal-
anced, nondegenerate, embedded, and has no nontrivial symmetries.

Combining these two theorems we obtain:

Corollary 1. There exist minimal surfaces in R
3 which are com-

plete, properly embedded, have finite total curvature and no nontrivial
symmetries.

1.5 Example: The Costa Hoffman Meeks configuration

To recover the Costa Hoffman Meeks family, take N = 3, n1 = 1 and
n2 = m ≥ 2. Label the necks from 0 to m so that �0 = 1 and �1 = · · · =
�m = 2. To find the neck sizes we use (3). We may normalise c2 = 1.
Then W = 0 gives c1 = m − 1.

Take p0 = 0 and pi = ωi, 1 ≤ i ≤ m, where ω = exp(2πi /m). By
symmetry we have F0 = 0 and piFi = p1F1, 1 ≤ i ≤ m. Hence (2)
implies that F1 = 0, so the configuration is balanced. We will see in
Section 2.1 that it is nondegenerate.

• ◦

◦

◦

Figure 2: The Costa Hoffman Meeks configuration, m = 3.

Note that Theorem 1 only recovers the existence of the Costa Hoff-
man Meeks family for large values of the parameter x.

The limit of the logarithmic growths of the ends are Q1 = 1 − m,
Q2 = −1 and Q3 = m. So the configuration is embedded only if m ≥ 3.
In the case m = 2, Theorem 1 does not guarantee that the surface is
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embedded. It is known to be embedded, but the proof is more difficult
in this case (see [5], Remark 4.3).

1.6 Acknowledgements

As was already said, the method in this paper is inspired from the work
of W. Meeks, J. Perez and A. Ros [8]. The idea to interpret algebraic
equations as forces is reminiscent of the paper [1] by A. Douady and R.
Douady. I would like to thank M. Wolf and S. Wolpert for suggesting
the reference [7], and M. Weber for bringing [4] to my attention.

2. Examples

According to a theorem of R. Schoen, the only embedded minimal
surface with finite total curvature and two ends is the catenoid. There-
fore we should not expect any interesting configuration with N = 2.
Indeed in this case,

W = n1(n1 − 1)c2
1 = 0

implies that n1 = 1 so the configuration is trivial.
In Section 2.1, we classify all balanced configurations with N = 3

ends. We only find the Costa Hoffman Meeks configurations except
in the genus 2 case where we also find a quite annoying degenerate
configuration. Nevertheless, this gives some support to the conjecture
that the only embedded minimal surfaces with 3 ends are the Costa
Hoffman Meeks family (see [5], Section 5.2).

It is easy to compute balanced configuration with arbitrary number
of ends and the same symmetries as the Costa Hoffman Meeks con-
figurations. We will not discuss this here because embedded minimal
surfaces with arbitrary number of ends have been constructed by several
authors [6], [11]. It seems more interesting to investigate configurations
with as little symmetries as possible.

In Section 2.3, we give numerical examples of embedded configu-
rations with 4 ends, genus 8 and no nontrivial symmetries. Proving
without any numerical computation that these configurations have no
nontrivial symmetries seems hard.

In Section 2.4, we study in details a family of configurations with 4
ends and one nontrivial symmetry. As a corollary we obtain embedded
minimal surfaces whose catenoidal ends have distinct axes. This answers
a question raised in [5], Section 5.2.
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In Section 2.5, we study configurations which are close to being
singular: under suitable hypotheses, a singular configuration may be
perturbed into a nonsingular configuration by perturbing the neck sizes.

In Section 2.6, we combine the results of Sections 2.4 and 2.5 to
obtain configurations with no symmetries.

2.1 Classification of examples with 3 ends

Assume the number of ends is N = 3. Without loss of generality we
may assume that n1 ≤ n2 and c2 = 1. Equation (3) gives

n1(n1 − 1)c2
1 + n2(n2 − 1) − n1n2c1 = 0,

∆ = n1n2(−3n1n2 + 4n1 + 4n2 − 4).

If n1 ≥ 2 and n2 ≥ 3, then ∆ < 0 so the above equation has no real
solution. Hence we are left with two cases:

• n1 = 1, n2 ≥ 2 and c1 = (n2 − 1),

• n1 = n2 = 2 and c1 = 1.

We treat each case separately.

Proposition 1. Assume that n1 = 1, n2 = m ≥ 2, c1 = (m − 1)
and c2 = 1. Then the only balanced configuration is, up to translation,
complex scaling and permutation of the points at each level, the Costa
Hoffman Meeks configuration defined in the introduction. Moreover, the
Costa Hoffman Meeks configuration is nondegenerate.

Proof. Assume we have a balanced configuration p0, . . . , pm. We
may assume by translation that p0 = 0. Then

Fi =
∑
j �=i,0

2
pi − pj

− (m − 1)
pi − 0

, 1 ≤ i ≤ m.

Let

P (z) =
m∏

i=1

(z − pi).

A straightforward computation gives, since the zeros of P are simple,

P ′′(pi)
P ′(pi)

=
∑
j �=i

2
pi − pj

.
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Hence Fi = 0 is equivalent to

piP
′′(pi) − (m − 1)P ′(pi) = 0, 1 ≤ i ≤ m.

Hence
zP ′′(z) − (m − 1)P ′(z) ≡ 0.

(Proof: this polynomial has m distinct zeros and has degree ≤ m−1, so
it is zero.) This gives by integration P (z) = Azm +B which proves that
up to complex scaling, the configuration is the Costa Hoffman Meeks
configuration.

This argument is inspired from Heine and Stieltjes who gave an
electrostatic interpretation of the zeros of certain classical polynomials
[4]. This was explained to me by Matthias Weber.

The Costa Hoffman Meeks configuration is nondegenerate. Our
uniqueness proof can be adapted to prove non-degeneracy. This is sim-
pler than a matrix computation.

Let pi(t) be a deformation of the Costa Hoffman Meeks configuration
such that Ḟi(0) = 0 (the dot means derivative with respect to t). We
may normalise translation and scaling by p0(t) = 0 and p1(t) × · · · ×
pm(t) = 1. The goal is to prove that ṗi(0) = 0. Let

Pt(z) =
m∏

i=1

(z − pi(t)).

Then Fi = o(t) gives

pi(t)P ′′
t (pi(t)) − (m − 1)P ′

t(pi(t)) = o(t).

Hence
zP ′′

t (z) − (m − 1)P ′
t(z) = o(t)

in the sense that the coefficients of this polynomial are o(t). (Proof: the
operator Lt : C m−1[z] → C

m defined by

Lt(Q) = (Q(p1(t)), . . . , Q(pm(t)))

is an isomorphism and the norm of its inverse is bounded independently
of t for t small enough. Hence Lt(Q) = o(t) implies Q = o(t).) Write

Pt(z) =
m∑

k=0

ak(t)zk.
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We get
k(k − 1)ak(t) − (m − 1)kak(t) = o(t).

Hence ak(t) = o(t) if 1 ≤ k ≤ m − 1, so Pt(z) = P0(z) + o(t) by the
normalisation. Since the zeros are simple, they depend analytically on
the coefficients, so pi(t) = pi(0) + o(t). This proves that the Costa
Hoffman Meeks configuration is nondegenerate. q.e.d.

Proposition 2. Assume that n1 = n2 = 2 and c1 = c2 = 1. Label
the necks from 1 to 4 so that �1 = �2 = 1 and �3 = �4 = 2. Then the
only balanced configurations are, up to translation and complex scaling,

p1 = 1, p2 = −1, p3 = α, p4 = 1/α

where α ∈ C \ {0,±1} is a free parameter.

Proof. This is an elementary computation. We omit the details.
q.e.d.

This configuration has a nontrivial free parameter α so it is degen-
erate and we cannot tell whether the corresponding family of minimal
surfaces exists or not. In the most symmetrical case, it is proven not
to exist in [10]. This non existing surface is usually called the Horgan
surface. Actually the fact that the configuration is balanced explains
why it is possible to make really good computer pictures of it. Observe
that

W(c1, c2) = 2(c1 − c2)2 ⇒ dW(1, 1) = 0

so this configuration also fails to satisfy the last hypothesis of Theo-
rem 1.

2.2 A differential equation equivalent to the balancing
condition

Consider a configuration {pi}i∈I with N ends. Let

Pk(z) =
∏
i∈Ik

(z − pi).

Following the proof of the uniqueness of the Costa Hoffman Meeks con-
figurations, we want to write the balancing condition in function of the
coefficients of the polynomials P1, . . . , PN−1 instead of the points pi.
Write

P (z) =
N−1∏
k=1

Pk(z) =
∏
i∈I

(z − pi).



an embedded minimal surface 113

It will be convenient to write P0 = PN = 1. Observe that if i ∈ Ik,

P ′
k±1(pi)

Pk±1(pi)
=
∑

j∈Ik±1

1
pi − pj

P ′′
k (pi)

P ′
k(pi)

=
∑

j∈Ik,j �=i

2
pi − pj

Fi = c2
k

P ′′
k

P ′
k

− ckck−1

P ′
k−1

Pk−1
− ckck+1

P ′
k+1

Pk+1
evaluated at z = pi.

Assume now that all points pi are distinct, so P ′
k × P/Pk is nonzero at

pi. Multiplying by P ′
k × P/Pk, Fi = 0 is equivalent to

c2
kP

′′
k

P

Pk
−ckck−1P

′
k−1P

′
k

P

Pk−1Pk
−ckck+1P

′
kP

′
k+1

P

PkPk+1
= 0 at z = pi.

So the configuration is balanced if and only if

N−1∑
k=1

c2
kP

′′
k

P

Pk
−

N−2∑
k=1

ckck+1P
′
kP

′
k+1

P

PkPk+1
≡ 0.(4)

(Proof: again this polynomial vanishes at the n points pi, and has de-
gree ≤ n − 2, so it is identically zero). Equation (4) is a system of
algebraic equations with unknowns the coefficients of the polynomials
P1, . . . , PN−1. Observe that the coefficient of the highest order term in
(4) is

N−1∑
k=1

nk(nk − 1)c2
k −

N−2∑
k=1

nknk+1ckck+1

so we recover Equation (3).
Equation (4) does not have the geometrical flavour of the equation

Fi = 0 but is much easier do deal with algebraically. The reason for this
is clear: to one solution of (4) correspond n1! . . . nN−1! configurations
by permutation of the points at each level.

One word of caution: (4) is equivalent to the balancing condition
only if all the points pi are distinct. For instance, (4) always has the triv-
ial solution Pk = znk where all points pi are equal to 0. Such unwanted
solutions will be ruled out by suitable normalisation in the examples we
will consider.
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2.3 Numerical examples

Equation (4) is easy to solve numerically for small values of the numbers
of ends and necks. Figure 3 shows a beautiful example in the case N = 4,
n1 = 1, n2 = 7, n3 = 3. The neck sizes are c1 = 27/7, c2 = 1, c3 = 5/2.
The logarithmic growths are Q1 = −27/7, Q2 = −22/7, Q3 = −1/2,
Q4 = 15/2. The corresponding minimal surfaces have 4 ends, genus 8,
are embedded and have no nontrivial symmetry.

•◦ ◦

◦

◦

◦

◦ ◦

�

�

�

Figure 3: A numerical configuration of type (1, 7, 3) with no symme-
tries. The dots, circles and stars represent the necks at level 1, 2 and 3
respectively.

Figure 4 shows another example in the case N = 4, n1 = 1, n2 = 4,
n3 = 6. The neck sizes are c1 = 7/3, c2 = 1, c3 = 2/3. The logarithmic
growths are Q1 = −7/3, Q2 = −5/3, Q3 = 0, Q4 = 4.

◦ ◦

◦

◦�
�

�

�

�

�

•

Figure 4: A numerical configuration of type (1, 4, 6) with no symmetries.

As far as mathematical proof is concerned, these examples may be
studied along the lines of the next section. One can prove that for
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generic values of the neck sizes, these configurations are nonsingular
and nondegenerate. The hard point is to prove that they have no sym-
metries. This cannot be obtained by a genericity argument (because
these configurations are symmetric for many values of c3). To decide
whether the configuration is symmetric or not, one needs to compute
quite explicitly the coefficient of the polynomials involved, but this can-
not reasonably be done by hand.

2.4 Configurations of type (1, m, 2)

Assume that N = 4, n1 = 1, n2 = m ≥ 2 and n3 = 2. We may assume
by scaling that c2 = 1. Equation (3) gives

c1 = m − 1 − 2c3 +
2c2

3

m
(5)

We study the configurations depending on the free parameter c3 (in
general, configurations with N ends depend on N − 3 real parameters).
Consider a configuration p0, . . . , pm+2 and assume that these points are
distinct. We label the necks so that �0 = 1, �1 = · · · = �m = 2 and
�m+1 = �m+2 = 3. We may assume by scaling and translation that
pm+1pm+2 = 1 and p0 = 0. Let X = pm+1 + pm+2. Write

P2(z) =
m∏

i=1

(z − pi) =
m∑

k=0

akz
k,

P3(z) = (z − pm+1)(z − pm+2) = z2 − Xz + 1.

By (4), the configuration is balanced if and only if P2 satisfies the dif-
ferential equation

(z3 −Xz2 + z)P ′′
2 − (c1(z2 − Xz + 1) + c3(2z2 − Xz)

)
P ′

2 +2c2
3z P2 ≡ 0.

The coefficient of zm+1 is zero by (5). Looking at the coefficient of zk+1

for 0 ≤ k ≤ m − 1 gives(
k(k − 1) + 2c2

3 − c1k − 2c3k
)
ak(6)

= (k + 1)(k − c1 − c3)Xak+1 − (k + 2)(k + 1 − c1)ak+2.

Provided the coefficients involved are nonzero (which is true for generic
values of c3), this determines am−1, . . . , a0 by descending induction on
k, starting with am = 1 and am+1 = 0. This gives ak = Ak(X), 0 ≤ k ≤
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m − 1, where Ak(X) is a polynomial of degree m − k in the variable X
with the same parity as m − k. The coefficients of Ak(X) are rational
functions of c3.

The coefficient of z0 in the differential equation is −c1a1, so the
configuration is balanced if and only if X satisfies A1(X) = 0.

Let us for example carry out the computation explicitly in the case
m = 3, c3 = 2. Equation (5) gives c1 = 2/3. Equation (6) gives

a2 = −3X, a1 =
−6
5

+ 3X2, a0 =
X

4
+

8
3
Xa1.

Solving a1 = 0 gives X = ±√
10/5. With X =

√
10/5 we obtain

P2 = z3 − 3
√

10
5

z2 +
√

10
20

P3 = z2 −
√

10
5

z + 1.

Solving P2(z) = 0 and P3(z) = 0 gives, scaling all points by
√

10,

p0 = 0, p1 = 1, p2 =
5 + 3

√
5

2
,

p3 =
5 − 3

√
5

2
, p4 = 1 + 3i , p5 = 1 − 3i .

This configuration has only one nontrivial symmetry. The logarithmic
growths are Q1 = −2/3, Q2 = −7/3, Q3 = −1 and Q4 = 4, so unfor-
tunately it is not embedded. In fact we will see in Proposition 6 that a
configuration of type (1, m, 2) cannot be embedded if m ≤ 8.

◦ ◦ ◦

�

�

•

Figure 5: A configuration of type (1, 3, 2) with c3 = 2.

Returning to the general case, we need to prove that the configura-
tion is nonsingular and nondegenerate.
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Proposition 3. For generic values of c3, the following is true: for
each X such that A1(X) = 0, the points p0, . . . , pm+2 are distinct.

Proof. Using the resultant, this statement may be written in the
form f(c3) �= 0, f a rational function. Either f ≡ 0 or f has only a
finite number of zeros. Hence it suffices to prove that the statement
is true for at least one value of c3. Unfortunately there seems to be
no particular value of c3 for which the coefficients of A1 are easy to
compute in function of m, except c3 = 0 which is a singular value. So
we prove the statement is true when c3 → 0, c3 �= 0. Let x = c3. Using
(6) with k = m − 1 and k = m − 2 gives

(m − 1)am−1 � −mxX

2(m − 2)am−2 � mx(−X2 + 2).

For 1 ≤ k ≤ m − 3,

k(m − k)ak � (k + 1)(m − k − 1)Xak+1 − (k + 2)(m − k − 2)ak+2.

And for k = 0,

2x2 a0 � −X(m − 1)a1 + 2(m − 2)a2.

This implies that for 1 ≤ j ≤ m − 1, the limit

αj = lim
x→0

j(m − j)am−j

mx

exists and satisfies the induction formulae

α1 = −X, α2 = −X2 + 2, αj = Xαj−1 − αj−2.

Hence αj = −2Tj(X/2), where Tj is the jth classical Chebyschev poly-
nomial. Let X be a zero of A1. For x → 0, X/2 is close to a zero of
Tm−1. By the above formula we have Ak(X) = O(x) if 1 ≤ k ≤ m − 1,
and A0(X) � λ/x, with λ = −mTm−2(X/2). Since two consecutive
Chebyschev polynomials have no common zeros, λ �= 0. Hence the ze-
ros of P2 are equivalent when x → 0 to the zeros of zm + λx−1, so they
are distinct and go to ∞ when x → 0. Since ±1 is not a zero of the
Chebyschev polynomials, we have X �= ±2 for x small enough, hence
the zeros of P3 are simple, nonzero, and bounded when x → 0. Hence
the points p0, . . . , pm+2 are distinct if x is small enough. q.e.d.
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Proposition 4. For generic values of c3, the polynomial A1(X)
has simple zeros.

Proof. Again, it suffices to prove that this is true for at least one
value of c3. Since the Chebyschev polynomials have simple zeros, this
is true for c3 small enough. q.e.d.

Proposition 5. For generic values of c3, the configuration is
nondegenerate.

Proof. The proof is similar to the Costa Hoffman Meeks case. Con-
sider a zero X0 of A1. By Proposition 4 we may assume that X0 is sim-
ple. Let p0, . . . , pm+2 be the corresponding configuration. Consider a de-
formation p0(t), . . . , pm+2(t) such that ∀i, Ḟi = 0. We may normalise by
p0(t) = 0 and pm+1(t)pm+2(t) = 1. Let Xt = pm+1(t) + pm+2(t). Define
the polynomials P2,t and P3,t in the obvious way. Then Fi = o(t) gives
A1(Xt) = o(t). Observe that c3 is fixed here so the polynomial A1 does
not depend on t. Since X0 is simple, this gives Xt = X0 + o(t). Hence
P2,t = P2 + o(t) and P3,t = P3 + o(t). This gives ∀i, pi(t) = pi + o(t).

q.e.d.

Proposition 6. The configuration is embedded if and only if

m

4
< c3 <

m −√
2m

2
or

m +
√

2m

2
< c3 <

√
m(m + 1)

2
.

When m ≤ 8, the above intervals are empty so the configuration is never
embedded.

Proof. This is a straightforward computation. We omit the details.
The values m/4, (m ± √

2m)/2 and
√

m(m + 1)/2 correspond respec-
tively to the equality cases Q3 = Q4, Q1 = Q2 and Q2 = Q3. q.e.d.

Define µ1, . . . , µ4 by

µk =

(
m+2∑
i=0

Qi,kpi

)/(
m+2∑
i=0

Qi,k

)

where the charges Qi,k are defined in the introduction.

Proposition 7. For generic values of c3 the following is true.
For each zero of A1(X) if m is odd and of A1(X)/X if m is even, the
numbers µ1, . . . , µ4 are distinct.
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Corollary 2. There exists embedded minimal surfaces whose four
catenoidal ends have distinct axes.

Proof. The numbers µ1, . . . , µ4 determine the axes of the ends. See
Proposition 15. q.e.d.

Proof of the Proposition. It suffices to prove that this is true for at
least one value of c3, and we prove this is true for c3 = x → 0. Using
the computations of Proposition 3, we have

m∑
i=1

pi = −am−1 � mxX

m − 1
.

This gives

µ1 = 0, µ2 � mxX

m − 1
, µ3 � xX

m(m − 1)
, µ4 =

X

2
.

q.e.d.

Proposition 8. Let X1, X2 be two zeros of A1(X). If X1 = ±X2

(resp. X1 = ±X2), then the corresponding configurations are congruent
by z 	→ ±z (resp. z 	→ ±z). Conversely if the two configurations are
congruent by a transformation z 	→ az + b (resp. z 	→ az + b), then
X1 = ±X2 (resp. X1 = ±X2).

Proof. The proof is straightforward. We omit the details. (It is
understood that a congruence preserves the level of the necks.) q.e.d.

Take X1 = X2 = X in this proposition. Let Γ be the symmetry
group of the configuration.

• If X = 0, then Γ = {z 	→ ±z, z 	→ ±z},
• if X ∈ R

∗, then Γ = {id, z 	→ z},
• if X ∈ i R∗ then Γ = {id, z 	→ −z},
• if X �∈ R and X �∈ i R then Γ = {id}.
Numerically, it seems that the zeroes of A1(X) are always either

real or imaginary, but this is hard to prove. Indeed, one cannot use
genericity arguments as above, so one has to compute explicitly the
coefficients of A1(X).
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◦
◦ ◦

◦

◦

◦

◦ ◦
◦

�

�

•

Figure 6: Configuration of type (1, 9, 2) with c3 = 20/3, X �
1.02223115 i .

◦
◦ ◦

◦

◦

◦

◦ ◦
◦

�

�

•

Figure 7: Configuration of type (1, 9, 2) with c3 = 20/3, X �
.17786964 i .

◦ ◦ ◦
◦
◦
◦ ◦ ◦ ◦

�

�

•

Figure 8: Configuration of type (1, 9, 2) with c3 = 20/3, X � .18731052.
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◦◦
◦
◦
◦ ◦ ◦ ◦ ◦

�

�

•

Figure 9: Configuration of type (1, 9, 2) with c3 = 20/3, X � .47637921.

•
◦

◦

◦

◦

◦

◦

◦

◦

◦�
�

Figure 10: Configuration of type (1, 9, 2) with c3 = 10−3, X � 1.961678.

•◦

◦

◦

◦

◦

◦

◦

◦

◦

�

�

Figure 11: Configuration of type (1, 9, 2) with c3 = 3.001, X � 0.315153.
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If all the zeroes of A1(X) are simple and either real or imaginary,
the number of non-congruent configurations that we obtain is [m/2].

Pictures. Figures 6 to 9 show the four configurations we obtain
in the case m = 9, c3 = 20/3. This is in the range of Proposition 6
so these configurations yield embedded minimal surfaces. We will use
these configurations in Section 2.6 to construct a configuration with no
nontrivial symmetries.

Figure 10 shows a configuration with m = 9 and c3 close to 0. This
illustrates the computation in the proof of Proposition 3.

Figure 11 shows a configuration with m = 9 and c3 close to 3. Ob-
serve that the two groups of five points look like small copies of the
genus 3 Costa Hoffman Meeks configuration. When c3 → 3, the con-
figuration converges to a singular configuration with four points, two
of which have multiplicity 5. This suggests a method to construct bal-
anced configurations: start with a singular configuration, and perturb
the neck sizes to obtain a nonsingular configuration. This is the subject
of the next section.

2.5 Perturbation of a singular configuration

In this section we consider configurations pi,µ of the form

pi,µ = p̂ i + λip̃ i,µ, 1 ≤ i ≤ n, 1 ≤ µ ≤ mi

where λi are complex numbers close to zero, so the configuration is
close to be singular. I = {(i, µ) | 1 ≤ i ≤ n, 1 ≤ µ ≤ mi} is a set of
multi-indices used to label the necks.

Assume we have a family of such configurations, depending on the
neck sizes c = (c1, . . . , cN−1) in a neighborhood of c0 = (c0

1, . . . , c
0
N−1).

Assume that λi = 0 when c = c0, so the configuration p0
i,µ is singular.

Define charges Qi,µ,k in function of c as in the introduction. Then

Fi,µ =
∑

k

∑
(j,ν) �=(i,µ)

Qi,µ,kQj,ν,k

pi,µ − pj,ν

=
1
λi

F̃i,µ +
∑

k

∑
j �=i

∑
ν

Qi,µ,kQj,ν,k

p̂ i − p̂ j
+ O(λ)

where
F̃i,µ =

∑
k

∑
ν �=µ

Qi,µ,kQi,ν,k

p̃ i,µ − p̃ i,ν
.
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Assume that the configuration (pi,µ)(i,µ)∈I is balanced for all c. In the
limit c → c0, we obtain F̃i,µ = 0, so each sub-configuration (p̃ 0

i,µ)1≤µ≤mi

is balanced.

Remark 1. Together with our classification of examples with three
ends, this explains why the Costa Hoffman Meeks configuration shows
up in Figure 11. Quite interesting, the Horgan configuration (Proposi-
tion 2) often appears as a sub-configuration.

From (1) and the above equation we obtain∑
µ

F̃i,µ = 0 ⇒
∑

µ

Fi,µ = F̂i + O(λ)

where
F̂i =

∑
k

∑
j �=i

Qi,kQj,k

p̂ i − p̂ j
, Qi,k =

∑
µ

Qi,µ,k.

In the limit c → c0 we obtain F̂i = 0 so the configuration (p̂ 0
i )1≤i≤n

is balanced. This is very similar to the dipole computation of classical
electrostatics. We can also compute the equivalent of λi when c → c0

using ∑
µ

p̃ i,µFi,µ =
1
λi

W̃i + Λi + O(λ)

where, using (2)

W̃i =
∑

µ

p̃ i,µF̃i,µ =
∑

k

∑
µ

∑
ν<µ

Qi,µ,kQi,ν,k

Λi =
∑

k

(∑
µ

Qi,µ,kp̃ i,µ

)∑
j �=i

Qj,k

p̂ i − p̂ j

 .

This gives λi(c) � −W̃i(c)/Λi, provided Λi �= 0.
Our objective in this section is to go backwards. Assume we are

given neck sizes (c0
1, . . . , c

0
N−1), n sub-configurations p̃ 0

i,µ and a config-
uration p̂ 0

i . We want to recover a family of balanced configurations
pi,µ depending on the parameter c = (c1, . . . , cN−1). We assume that
p̂ 0

1, . . . , p̂
0
n are distinct, and p̃ 0

i,1, . . . , p̃
0
i,mi

are distinct for all i. Some
of the sub-configurations may have only one point, in which case we
say they are trivial. Let n′ be the number of nontrivial configurations.
We assume that the sub-configurations p̃ 0

i,µ are nontrivial (mi ≥ 2) if
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1 ≤ i ≤ n′ and trivial (mi = 1) if n′ + 1 ≤ i ≤ n. We use vector
notations

p = (pi,µ)(i,µ)∈I , p̂ = (p̂ 1, . . . , p̂ n), λ = (λ1, . . . , λn′)

p̃ i = (p̃ i,3, . . . , p̃ i,mi), p̃ = (p̃ 1, . . . , p̃ n′).

The variables in this construction are (c, p̃ , p̂ , λ). We fix the value of
the remaining parameters as follows: for nontrivial sub-configurations
we take p̃ i,1 = p̃ 0

i,1 and p̃ i,2 = p̃ 0
i,2, for trivial sub-configurations we

take p̃ i,1 = 0 and λi = 0. Then by a straightforward application of
the Inverse Function Theorem, (p̃ , p̂ , λ) 	→ p is a diffeomorphism in a
neighborhood of any point such that λi �= 0 for all i ≤ n′. Let

W =
∑
i,µ

pi,µFi,µ =
∑

k

∑
i,µ

∑
(j,ν)<(i,µ)

Qi,µ,kQj,ν,k.

Theorem 3. Assume that all given configurations are balanced,
namely

∀i ≤ n′ ∀µ F̃i,µ(c0, p̃ 0
i ) = 0 and ∀i ≤ n F̂i(c0, p̂ 0) = 0

and nondegenerate. Assume that

∀i ≤ n′ Λi(c0, p̃ 0
i , p̂

0) �= 0.

Then there exists analytic maps p̃ (c), p̂ (c) and λ(c), defined in a neigh-
borhood of c0, such that p̃ (c0) = p̃ 0, p̂ (c0) = p̂ 0, λ(c0) = 0, and for
any c in a neighborhood of c0 the following is true: if W(c) = 0 and
λi(c) �= 0 for all i ≤ n′, the configuration pi,µ(c) = p̂ i(c) + λi(c)p̃ i,µ(c)
is nonsingular, balanced (namely Fi,µ(c, p(c)) = 0), and nondegenerate.
Moreover, we have

λi(c) =
W̃i(c)

Λi(c0, p̃ 0
i , p̂

0)
+ o(c − c0)

which may be used to guarantee that λi �= 0.

Remark 2. If a sub-configuration is invariant by a nontrivial rota-
tion, we may assume that the rotation fixes the origin, then

∀k
∑

µ

Qi,µ,kp̃
0
i,µ = 0

which implies that Λi = 0. So we cannot use this theorem in the case of
sub-configuration with rotational symmetry, such as the Costa Hoffman
Meeks configurations. A result is possible in this case but one has to
look at higher order terms and this is quite technical.
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Proof. Define functions of the variables (c, p̃ , p̂ , λ), λi �= 0, by

Fi,µ = λiFi,µ, Gi =
∑

µ

Fi,µ, Hi =
∑

µ

λip̃ i,µFi,µ

By the above computation, these functions extend analytically to λi = 0,
with

λi = 0 ⇒ Fi,µ = F̃i,µ, Gi = F̂i, Hi = W̃i.

Let

F = (Fi,µ)1≤i≤n′, 3≤µ≤mi
G = (Gi)3≤i≤n H = (Hi)1≤i≤n′ .

The value of the map (F ,G,H) at (c0, p̃ 0, p̂ 0, 0) is zero. Its partial
differential with respect to (p̃ , p̂ , λ) at this point has the form Diag(∂F̃i/∂p̃ i) 0 ·

0 ∂F̂/∂p̂ ·
0 0 Diag(Λi)

 .

By non-degeneracy, ∂F̃i/∂p̃ i is an isomorphism (thanks to the fact that
we took µ ≥ 3 in the definition of Fi,µ and p̃ i) and ∂F̂/∂p̂ is surjective
with a 2-dimensional kernel (see Remark 6). By the implicit function
theorem, there exists analytic maps p̃ (c), p̂ (c), λ(c), such that (F ,G,H)
is zero at (c, p̃ (c), p̂ (c), λ(c)).

We now prove that if W(c) = 0, and λi(c) �= 0, the configuration
pi,µ(c) is balanced. From (1) and (2) we have

0 =
∑
i,µ

Fi,µ =
∑

i

Gi

0 = W(c) =
∑
i,µ

pi,µFi,µ =
∑

i

p̂ iGi +
∑

i

Hi.

Hence
G1 + G2 = 0, p̂ 1G1 + p̂ 2G2 = 0 ⇒ ∀i, Gi = 0.

If i ≤ n′, we have

Fi,1 + Fi,2 = Gi = 0, λip̃ i,1Fi,1 + λip̃ i,2Fi,2 = Hi = 0 ⇒ ∀µ, Fi,µ = 0.

If n′ + 1 ≤ i ≤ n, we have Fi,1 = Gi = 0. So the configuration is
balanced.
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It remains to prove it is nondegenerate. By continuity, the partial
differential of (F ,G,H) remains surjective when c is in a neighborhood of
c0. Since (p̃ , p̂ , λ) 	→ p is a local diffeomorphism, the partial differential
of (F ,G,H) with respect to p at p(c) is surjective, so it has a two
dimensional kernel. Write D for the partial differential with respect to
p at p(c). Let X be a vector in the kernel of DF . Then DFi,µ(X) = 0,
DGi(X) = 0 and DHi(X) = 0. Hence DF has a kernel of dimension at
most 2, so the configuration is nondegenerate. q.e.d.

2.6 An embedded non-symmetric configuration

It is now rather clear that configurations with no symmetries should
exist: consider the Costa Hoffman Meeks configuration and replace the
necks at level 2 by small copies of the configurations of Section 2.4.
Theorem 3 guarantees that this may be perturbed into a balanced con-
figuration. If the sub-configurations are non-congruent the resulting
configuration will have no symmetries. In this way, non-symmetry is a
consequence of non-uniqueness.

Proposition 9. There exists a configuration with N = 5, n1 = 4,
n2 = 36, n3 = 8, n4 = 1, which is nonsingular, balanced, nondegenerate,
embedded, and has no nontrivial symmetries.

Proof. We use Theorem 3 using four sub-configurations of type
(1, 9, 2) and one sub-configuration consisting of one single point at level
4. We choose the sub-configurations p̃ 0

i,µ, i ≤ 4, as follows. As in Sec-
tion 2.4 we take c0

2 = 1, c0
3 is a free parameter and c0

1 is determined by
solving W̃i = 0, so c0

1 is given in function of c0
3 by (5). For each i ≤ 4

we choose a nonzero number Xi such that A1(Xi) = 0 and let p̃ 0
i,µ be

the corresponding configuration.
The configuration p̂ 0

1, . . . , p̂
0
5 is determined as follows. A necessary

condition for F̂i = 0 is

Ŵ =
∑

k

∑
i<j

Qi,kQj,k = 0

which determines c0
4 in function of the other neck sizes. Then since all

sub-configurations have the same number of necks and neck sizes, we
have Q1,k = Q2,k = Q3,k = Q4,k. Hence p̂ 0

i must be the Costa Hoffman
Meeks configuration:

p̂ 0
1 = 1, p̂ 0

2 = i , p̂ 0
3 = −1, p̂ 0

4 = −i , p̂ 0
5 = 0,
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and it is non degenerate.
For generic values of c0

3, the following is true: if Xi �= 0 then

Λi(c0, p̃ 0
i , p̂

0) �= 0

Indeed, as in the Proposition 7, it suffices to prove that this is true for
one value of c0

3. We find, after some computations similar to those of
Proposition 7, when c0

3 → 0,

Λi � −3(m2 − m + 1) Xi

2p̂ 0
i

�= 0 (where m = 9).

Consider a value of c0
3 such that all generic statements we have seen are

true. Theorem 3 gives the existence of a family of (possibly singular)
configurations pi,µ(c) for c in a neighborhood of c0. Take c2 = c0

2 = 1,
c3 = c0

3, c1 = c0
1 + x where x is a free parameter. We find c4 in function

of x by solving W = 0. Then W̃i = −9x so λi = 9x/Λi + o(x) �= 0
when x �= 0 is small enough. By Theorem 3, the configuration pi,µ is
nonsingular, balanced, and nondegenerate when x is small enough.

Embeddedness. If we take c0
3 = 20/3 and x = 0 we find

c1 =
368
81

, c4 =
777673
29160

Q1 =
−1472

81
, Q2 =

−1444
81

, Q3 =
−1404

81
,

Q4 =
777527
29160

, Q5 =
777673
29160

so the configuration is embedded. This remains true if c0
3 is a generic

value close enough to 20/3 and x is small enough.

Symmetries. One of the following alternatives holds:

• All zeros of A1(X) are real or pure imaginary, in which case we
may choose X1, . . . , X4 so that the corresponding sub-configurations
are non-congruent (see the discussion after Proposition 8) hence
the configuration pi,µ has no nontrivial symmetries.

• A1(X) has a zero, say X1, which is neither real nor pure imaginary,
in which case we can take X2 = X3 = X4 different from ±X1,
±X1, and the configuration again has no symmetries (numerically,
this case does not seem to happen).

q.e.d.
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Remark 3. In the same way we can use n′ configurations of type
(1, m, 2) with n′ ≥ 2 and m ≥ 3. We obtain non-symmetric configura-
tions provided n′ ≥ 3 and m ≥ 7, and embedded configurations provided
n′ ≥ 4 and m ≥ 9.

3. Proof of Theorem 1

We use the Weierstrass Representation of minimal surfaces, which
may be written

X1(z) + iX2(z) =
1
2

(∫ z

z0

g−1dh −
∫ z

z0

gdh

)
, X3(z) = Re

∫ z

z0

dh

where z ∈ Σ, Σ is a Riemann Surface, g is a meromorphic function (the
Gauss map) and dh is a holomorphic 1-form on Σ (usually called the
height differential, but dh is not exact). X = (X1, X2, X3) : Σ → R

3 is
well defined provided∫

γ
g−1h −

∫
γ
gdh = 0 and Re

∫
γ
dh = 0

for any cycle γ on Σ: this is the Period Problem. X is regular (i.e., an
immersion) with embedded ends provided the divisors of g and dh satisfy
some well known conditions: we call them the zero/pole equations. A
good reference on Weierstrass Representation is [5].

We define (Σ, g, dh) depending on the parameter t > 0 (which is the
same as t in the statement of Theorem 1) and some other parameters. Σ
and g are defined by explicit formulae. dh is defined in a more abstract
way by prescribing its residues and periods on the cycles γi of a canonical
homology basis γi, Γi. The key point is that when t → 0, we can
compute explicitly the limit of dh. Roughly speaking, when t → 0,
the Riemann surface Σ degenerates into a Riemann surface with nodes,
whose parts have genus zero. Using Algebraic Geometry results, we
prove that dh converges on each part to a meromorphic differential
with simple poles which we can compute explicitly (because the genus
is zero).

Using our explicit formulae for the Weierstrass data when t → 0,
we compute the limit of the zero/pole equation ands the periods of the
Weierstrass data. After suitable re-normalisation, we prove that each
equation extends smoothly to t = 0. We solve the equations when t = 0.
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We solve the equations for t in a neighbourhood of 0 using the Implicit
Function Theorem at t = 0.

Once this is done, we have a well defined minimal immersion X :
Σ → R

3, depending on the remaining parameter t. Using our asymp-
totic formulae for the Weierstrass data when t → 0, we prove that this
minimal surface satisfies all geometric conclusions of Theorem 1, in par-
ticular we prove embeddedness.

3.1 The Gauss map

It will be convenient to assume that the set used to label the necks
is I = {1, . . . , n}. The parameters needed to define the Gauss map
are t > 0 and 4n complex numbers ai, bi, αi, βi, 1 ≤ i ≤ n. Consider N
copies of the complex plane, labelled C 1, . . . , C N . Define a meromorphic
function g on the disjoint union C 1 ∪ . . . ∪ C N by

g(z) =

{
tgk(z) if z ∈ C k, k odd
(tgk(z))−1 if z ∈ C k, k even

gk(z) =
∑
i∈Ik

αi

z − ai
+
∑

i∈Ik−1

βi

z − bi
.

Here we see ai, i ∈ Ik and bi, i ∈ Ik−1 as points in C k, and we assume
these points are distinct. We also assume αi and βi are nonzero.

To define Σ, we identify pairs of points z, z′ in C 1 ∪ . . . ∪ C N to
create necks. The points we identify should satisfy g(z) = g(z′) so that
g is well defined in Σ.

Consider some i ∈ Ik. Use vi = 1/gk and wi = 1/gk+1 as local
complex coordinates in a neighborhood of ai and bi respectively. If
z ∈ C k and z′ ∈ C k+1 are respectively in a neighborhood of ai and bi,
and k is, say, odd,

g(z) = g(z′) ⇐⇒ t

vi(z)
=

wi(z′)
t

⇐⇒ vi(z)wi(z′) = t2.

So the definition of Σ is as follows. Take C 1 ∪ . . . ∪ C N . Consider a
fixed small enough ε > 0. For each i ∈ I, remove the disks |vi| ≤ t2/ε
and |wi| ≤ t2/ε. Identify the points z and z′ such that

t2

ε
< |vi(z)| < ε,

t2

ε
< |wi(z′)| < ε, vi(z)wi(z′) = t2.
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1

3

2

C

C

C

a3a2 b1 a4

b4b3b2

a1

Figure 12: Left: definition of Σ. Each circle is identified with the circle
above it (plain with plain, dots with dots). Right: topological picture
of Σ̂.

This defines a Riemann Surface Σ (see Figure 12). This is the con-
formal model for the minimal surface we want to construct. By con-
struction g is a well defined meromorphic function on Σ. Let Σ̂ =
Σ∪ {∞1, . . . ,∞N} be the compactification of Σ, where ∞k is the point
at infinity in C k. We have g(∞k) = 0 if k is odd and g(∞k) = ∞ if k
is even.

3.2 The height differential

We need to define a meromorphic 1-form dh with (at most) simple poles
at ∞1, . . .∞N . Let me recall some standard complex analysis. Let Σ̂
be a compact Riemann Surface of genus G.

• A canonical homology basis of Σ̂ is a set of 2G closed curves γi,
Γi, 1 ≤ i ≤ G such that γi intersects Γi with intersection number
1 and all other intersection numbers are zero.

• The space of holomorphic 1-forms on Σ̂ has complex dimension G.
An isomorphism with C

G is given by integration along the curves
γ1, . . . , γG.

• The space of meromorphic 1-forms with simple poles at given
points q1, . . . , qm has complex dimension G + m − 1. One may
prescribe the integrals along the curves γ1, . . . γG and the residues
at the poles, with the only condition that the sum of the residues
be zero.

In our case, it follows from the topological picture that Σ̂ has genus
n − N + 1. We define a canonical basis as on Figure 13. γi is a small
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circle around ai with the negative orientation. It is homologous in Σ to
a small circle around bi with the positive orientation. We think of γi as
a curve around the ith neck. A formal definition of Γi will be given in
Section 3.6 when we compute the periods along Γi of the Weierstrass
data. Let i0(k) = min Ik and J = {i ∈ I | i > i0(�i)}. Then {γi, Γi}i∈J

is a canonical homology basis of Σ̂.

Γ3
γ3

Γ3

Γ4

Γ4

γ4

Figure 13: canonical homology basis (genus 2).

We define the height differential dh as the unique meromorphic 1-
form on Σ with simple poles at ∞1, . . . ,∞N such that

∀i ∈ J,

∫
γi

dh = 2πi ri

∀k, 1 ≤ k ≤ N, Res∞k
dh = −Rk

where ri, i ∈ J are positive real numbers and R1, . . . ,RN are real num-
bers whose sum is zero. Geometrically, ri is the size of the ith neck and
Rk is the logarithmic growth of the catenoidal end ∞k. If i �∈ J , we
define ri by

∫
γi

dh = 2πi ri. Then

∀k,
∑
i∈Ik

ri −
∑

j∈Ik−1

rj = −Rk.(7)

Proof. Use the Residue Theorem in the domain Ωk ⊂ C k defined in
Section 3.3, and observe that homologically speaking,

∂Ωk =
∑
i∈Ik

γi −
∑

i∈Ik−1

γi
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3.3 Parameters

We use vector notations for the parameters: a = (a1, . . . , an), r = (ri)i∈J

and so on. What we have done so far is define triples (Σ, g, dh) depend-
ing on t > 0 and the parameters α, β, a, b, r, R. When needed we write
X for the collection of all parameters. Let p0

i , c0
k and Q0

k be the neck
positions, sizes and logarithmic growths of the given configuration. We
will solve the period problem using the Implicit Function Theorem at
the point X0 defined by

t0 = 0, R0
k = Q0

k

∀i ∈ Ik, −α0
i = β0

i = r0i = c0
k

∀i ∈ Ik, a0
i = −b0

i =

{
p0

i if k odd
−p0

i if k even.

Let Ωk be the domain in C k defined by ∀i ∈ Ik, |z − a0
i | > ε and

∀i ∈ Ik−1, |z − b0
i | > ε, where ε is a fixed small number. If X is close

enough to X0, the disks that were removed when defining Σ are outside
Ωk, so we may see Ωk as a domain in Σ. Note that Ωk does not depend
on any parameter, and all surfaces Σ have the domain Ωk in common.

The restriction of dh to Ωk depends analytically on all parameters,
in the sense that if z ∈ Ωk, the function (z,X) 	→ dh(z)/dz is analytic.
Analytic dependence of Abelian differentials on moduli is a classical
problem. This may be proven using, for instance, Theta functions.
From a modern Algebraic Geometry point of view this is a consequence
of coherent sheaf results (Grauert’s Semi-continuity Theorem). In the
next section we will see that the map (z,X) 	→ dh extends analytically
to t = 0.

Remark 4. The parameters (t, α, β, a, b) are not moduli for the
couples (Σ, g) because different values of the parameters may give iso-
morphic (Σ, g). To see this, fix some k and let

a′i = Aai + B, α′
i = Aαi, i ∈ Ik

b′i = Abi + B, β′
i = Aβi, i ∈ Ik−1

where A, B are complex numbers, A �= 0. Let g′k, g′ and Σ′ be the
corresponding objects. Then g′k(Az+B) = gk(z) so the map ϕ : Σ → Σ′

defined by z 	→ Az+B in C k is a well defined isomorphism and g′◦ϕ = g.
As a consequence, we may normalise complex scaling and translation
in C k by fixing the value of certain parameters. We will do this when
needed.
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3.4 The height differential extends analytically to t = 0

In this section we write Σ = Σt and dh = dht to emphasise the depen-
dence of the Riemann Surface and the height differential on t. All other
parameters have fixed value.

Proposition 10. When t → 0, dht converges uniformly on com-
pacts subsets of Ωk to ∑

i∈Ik

−ri dz

z − ai
+
∑

i∈Ik−1

ri dz

z − bi
.

Proof. To prove the proposition we follow Fay [2] and Masur [7].
The situation is as follows. Consider N Riemann spheres S1, . . . SN

and 2n distinct points a1, . . . , an, b1, . . . , bn in the disjoint union S1 ∪
. . . ∪ SN . Consider some fixed local complex coordinates vi and wi in
a neighborhood of ai and bi respectively, vi(ai) = wi(bi) = 0. Given
some small complex number s �= 0 we define Σs by removing the disks
|vi| ≤ |s| and |wi| ≤ |s| and identifying points z and z′ such that for
some i,

|s| < |vi(z)| < 1, |s| < |wi(z′)| < 1, vi(z)wi(z′) = s.

We assume that the coordinates vi and wi are chosen so that the above
annular regions are disjoint. This defines a compact Riemann Surface
Σs. (Compare with Section 3.2: t was real and the identification rule
was viwi = t2.)

The first step is to see each Σs as the level set of a holomorphic
function f : S → C , i.e., Σs = f−1(s), S a 2-dimensional complex
manifold. From an Algebraic Geometry point of view this is precisely
the definition of a holomorphic family of complex curves. This is the
meaning of the sentence: Σs depends holomorphically on s.

Let Ω be the domain |vi| ≥ 1
2 , |wi| ≥ 1

2 of S1∪ . . .∪SN . Let D be the
unit disk in C . Let U1, . . . , Un be n copies of {(v, w, s) ∈ D3 | vw = s}.
(Note that this is a regular surface in C

3, which is the reason why we
write viwi = s instead of viwi = t2.)

Let S = (Ω×D)∪ (U1 ∪ . . .∪Un) where we identify a point (z, s) ∈
Ω × D such that 1

2 < |vi(z)| < 1 with the point (vi(z), s/wi(z), s) of
Ui, and in the same way we identify a point (z, s) ∈ Ω × D such that
1
2 < |wi(z)| < 1 with the point (s/wi(z), wi(z), s) of Ui. This defines
a complex analytic 2-manifold. We define a holomorphic function f :
S → D by f(z, s) = s on Ω × D and f(v, w, s) = s = vw on Ui.
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Σs is clearly isomorphic to f−1(s) if s �= 0, so we may identify
Σs = f−1(s). The level set f−1(0) is a singular complex curve. It
has an ordinary double point at the point (0, 0, 0) of each Ui. From the
Riemann Surface point of view, we may see Σ0 = f−1(0) has S1∪. . .∪SN

with ai identified with bi, 1 ≤ i ≤ n. The point ai = bi is called a node.
Σ0 is a Riemann Surface with nodes.

Let G be the genus of Σs, s �= 0. Consider a canonical homology
basis γ1, . . . , γG, Γ1, . . . ,ΓG as in Section 3.2, namely, such that all cycles
γi may be represented by fixed (i.e., independent of s) circles in Ω. Fay
proves the following ([2], Proposition 3.7)

For each i, 1 ≤ i ≤ G, there exists a unique holomorphic 2-form ωi

on S whose residue along each Σs, s �= 0, is the unique holomorphic
1-form ωi,s, such that ∫

γj

ωi,s = δi,j .

In other words, ωi,s is a normalised Abelian differential of the first
kind on Σs. Masur proves the following ([7], Proposition 4.2):

Given two fixed points p, q in Ω, there exists a unique meromorphic
2-form ωp,q on S, which has a simple pole along {p} × D and {q} × D,
and whose residue along each Σs, s �= 0, is the unique meromorphic
1-form ωp,q,s which has simple poles at p and q with respective residues
1 and −1, and such that ∫

γi

ωp,q,s = 0.

In other words, ωp,q,s is a normalised Abelian differential of the third
kind. Since any meromorphic 1-form with simple poles may be written
as a linear combination of normalised Abelian differentials of the first
and third kind, we obtain:

Given some fixed points q1, . . . , qm in Ω, complex numbers R1, . . . ,
Rm such that R1 + · · ·+Rm = 0, and complex numbers r1, . . . , rG, there
exists a unique meromorphic 2-form on S whose residue along each Σs,
s �= 0, is the unique meromorphic 1-form ωs which has simple poles at
each qi, with residue Ri, and such that∫

γi

ωs = ri.
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In term of local complex coordinates z1, z2 on S, if we write ω =
h(z1, z2)dz1 ∧ dz2, the residue of ω along Σs0 = f−1(s0) is the 1-form

ωs0 =
h(z1, z2)dz1

∂f/∂z2

∣∣∣∣
Σs0

= −h(z1, z2)dz2

∂f/∂z1

∣∣∣∣
Σs0

.

In other words ωs0 is the Poincaré residue of ω/(f − s0) (see [3] page
147). This is easily seen to be independent of the chosen coordinates
z1, z2.

If z0 ∈ Ω, we may use (z, s) as local coordinates on S in a neighbor-
hood of (z0, s0). Since f(z, s) = s, this gives

ωs0 = h(z, s0)dz.

From this formula we see that ωs depends holomorphically on s. In
a neighborhood of the point (0, 0, 0) ∈ Ui we may use v, w as local
coordinates. Since f(v, w) = vw we obtain

ω0 = h(v, 0)
dv

v
= −h(0, w)

dw

w
.

Hence ω0 has a simple pole at v = 0 in the component w = 0 of the
set vw = 0, and a simple pole at w = 0 in the component v = 0, with
opposite residues. So ω0 has two simple poles at ai and bi.

Returning to the situation at hand, we see that dht depends holo-
morphically on s = t2, hence on t, t in a neighborhood of 0. Restrict-
ing t to real numbers, we obtain that dht depends analytically on t.
dh0 is a meromorphic 1-form on C 1 ∪ . . . ∪ C N with simple poles at
a1, . . . , an, b1, . . . , bn and ∞1, . . .∞N . From the definition of dht and by
continuity we obtain

Res aidh0 = −ri, Res bi
dh0 = ri, Res∞k

dh0 = Rk.

This determines dh0 and completes the proof of Proposition 10. q.e.d.

3.5 The zero/pole equation

We recall the conditions that the zeros and poles of g and dh must
satisfy.

1. The zeros of dh in Σ must be precisely the zeros and poles of g,
with the same multiplicity.



136 martin traizet

2. At each end ∞k, if g has a simple zero or pole, dh needs a simple
pole, while if g has a zero or pole of multiplicity m ≥ 2, then dh
needs a zero of multiplicity m − 2. This insures that the end is
embedded (asymptotic to a half catenoid in the first case, and a
plane in the other one).

Since dz has a double pole at ∞, these conditions are equivalent to: the
zeros of dh/dz are precisely the zeros and poles of g (the zeros of dh/dz
makes sense, although dz is not globally defined in Σ).

Proposition 11. For (t, a, b, r, R) in a neighborhood of (0, a0, b0,
r0, R0), there exists α = (α1, . . . , αn), β = (β1, . . . , βn), depending an-
alytically on (t, a, b, r, R), such that the corresponding Weierstrass data
satisfies Conditions 1 and 2 above. Moreover, when t = 0, we have
αi = −ri and βi = ri.

Proof. In this section we write dh = dhX, where X = (t, α, β, a, b,
r, R) is the set of all parameters. The first step is to write Conditions 1
and 2 in the form F(X) = 0, F an analytic map in a neighborhood of
X0.

The number of zeros of dh minus the number of poles, counting
multiplicities, is equal to 2G − 2, G the genus of Σ. Hence the number
of zeros of dh/dz is 2G−2+2N = 2(n−N +1)−2+2N = 2n. Since the
degree of g is 2n, it suffices to prove that at each zero of dh/dz, g has
a zero or pole, with greater or equal multiplicity (the multiplicities will
then be equal and g will have no further zeros and poles by the above
counting argument).

We first prove the proposition in the case where all zeros of dhX0/dz,
including ∞k, are simple. Then for X close to X0, the zeros of dhX/dz
will be simple, and depend analytically on X (this is a consequence of the
Weierstrass Preparation Theorem, see below). By Proposition 10, dhX0

has nk−1 + nk − 1 finite zeros in C k. By taking ε small enough we may
assume that all these zeros are in Ωk. For X close to X0, dhX will have
nk−1 +nk −1 zeros in Ωk. Let ζk,i be these zeros, 1 ≤ i ≤ nk−1 +nk −1.
Let

Fk,i(X) = gk(ζk,i), F(X) = (Fk,i) ∈ C
2n−N .

Conditions 1 and 2 are equivalent to F(X) = 0. F is an analytical
map. From our choice of α0

i = −r0
i , β0

i = r0
i , we have dh = gkdz when

X = X0. Hence F(X0) = 0.
We normalise the parameters α, β as follows. For each k ≤ N − 1,

choose an integer i ∈ Ik and fix αi = −ri. For k = N , choose an integer
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i ∈ IN−1 and fix βi = ri. This normalises scaling in C k (see Remark 4).
Let L be the partial differential of F with respect to the remaining

2n − N variables α, β at X0. I claim that L : C
2n−N → C

2n−N is an
isomorphism. To see this, assume that (α, β) ∈ KerL. Note that when
t = 0, dh does not depend on (α, β), so F is linear in the variables
(α, β). Hence L(α, β) = 0 means that for each k, the functions∑

i∈Ik

−r0i
z − a0

i

+
∑

i∈Ik−1

r0i
z − b0

i

and ∑
i∈Ik

αi

z − a0
i

+
∑

i∈Ik−1

βi

z − b0
i

have the same zeros. Since they have the same poles, they are propor-
tional, so that

αi = −λkr0i , i ∈ Ik, βj = λkr0i , i ∈ Ik−1.

By normalisation, λk = 0. Hence L is an isomorphism.
By the Implicit Function Theorem, there exists a unique analytical

map (t, a, b, r, R) 	→ (α, β) defined in a neighborhood of (0, a0, b0, r0, R0)
such that F(t, α, β, a, b, r, R) = 0. The last statement of the proposi-
tion is a consequence of uniqueness and normalisation. This proves the
proposition in the case where all zeros are simple.

In the case where dhX0 has a multiple zero at some point ζ ∈ C k,
with multiplicity m, we modify the definition of F as follows. By the
Weierstrass Preparation Theorem ([3] page 8), we may write, for z in a
neighborhood of ζ and X in a neighborhood of X0,

dhX = f(z,X)PX(z)dz

where f does not vanish and PX(z) is a Weierstrass Polynomial, namely
a unitary z-polynomial of degree m whose coefficients are analytic func-
tions of X. From this we see that for X close to X0, dh has m zeros
close to ζ, counting multiplicity. (In case m = 1, we also see that the
simple zeros of dh depend analytically on X, as claimed above). Let

QX(z) = gk(z)
∏
i∈Ik

(z − ai)
∏

i∈Ik−1

(z − bi).

This is a z-polynomial whose zeros are the zeros of gk. Let Fζ(X) ∈
C m−1[z] � C

m be the remainder of QX/PX. Since PX is unitary, Fζ
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is a polynomial function of the coefficients of PX and QX, hence an
analytical function of X.

If dhX0/dz has a zero of multiplicity m ≥ 2 at ∞k (which means
that dh has no pole at ∞k, so the residue Rk = 0), we do the same thing
using w = 1/z as a local coordinate in a neighborhood of ∞k. Note that
whatever the value of the parameters, both dh/dz and gk have a zero
at ∞k. By the Weierstrass Preparation Theorem, we may write, in a
neighborhood of w = 0 and X = X0,

dhX

dz
= f(w,X) w PX(w)

gk = f̃(w,X) w QX(w).

Let F∞k
(X) ∈ C m−2[z] � C

m−1 be the remainder of QX/PX. Let
F(X) ∈ C

2n−N be the collection of all the maps defined above. The
proof of Proposition 11 is exactly the same in this case. q.e.d.

3.6 Γ-periods of the height differential

We now start to solve the period problem.

Proposition 12. Assume that α, β are given by Proposition 11.
For (t, a, b,R) in a neighborhood of (0, a0, b0, R0), there exists a unique
r = (ri)i∈J such that the corresponding Weierstrass data satisfies

∀i ∈ J, Re
∫

Γi

dh = 0.

Moreover, when t = 0, we have ri = c�i
where c1, . . . , cN−1 are defined

in function of R1, . . . ,RN by c0 = 0 and the induction formula

ck−1nk−1 − cknk = Rk, 1 ≤ k ≤ N − 1.

The proof of this proposition is similar to the proof of Proposition 11.
We first write the period condition in the form F(X) = 0 and then we
use the Implicit Function Theorem at X0 (note that the F in this section
has nothing to do with F in the previous section). To define F we need:

Lemma 1. Consider some k, 1 ≤ k ≤ N − 1. Let i0 = i0(k) =
min Ik. Given i ∈ Ik such that i > i0, we have∫

Γi

dh = (ri − ri0) log t2 + analytic

where analytic means a (bounded ) analytic function of X in a neighbor-
hood of X0.
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Proof. We first make more precise the definition of Γi. We define Γi

as the composition of the following four paths:

1. A path from vi = ε/2 to vi0 = ε/2, contained in Ωk, depending
continuously on X.

2. The path from vi0 = ε/2 to wi0 = ε/2 parametrised by

vi0 = (1 − s)
ε

2
+ s

2t2

ε
, s ∈ [0, 1].

3. A path from wi0 = ε/2 to wi = ε/2, contained in Ωk+1, depending
continuously on X.

4. The path from wi = ε/2 to vi = ε/2 parametrised by

vi = s
ε

2
+ (1 − s)

2t2

ε
, s ∈ [0, 1].

Remark 5. Note that the second path stays in the annular region
t2/ε < |vi0 | < ε because t is real, so this defines a path on Σ (which
goes through the neck). If t were, say, pure imaginary, this path would
hit vi0 = 0, which is not a point on Σ. In fact, when t is complex there
is no way to define Γi as a continuous function of t, for if t2 makes one
turn around 0, Γi increases by γi. This multi-valuation is clear on the
formula for

∫
Γi

dh because of the log t2 term.

The integral of dh on the first and third paths is an analytic function
of X because these paths are contained in Ω where dh is an analytic
function of (z,X). To estimate the integral of dh on the fourth path we
write the Laurent series of dh in the annular region t2/ε < |vi| < ε

dh =
∑
n∈Z

anvn
i dv

where an depends on all parameters (including t) and is given by

an =
1

2πi

∫
|vi|=ε

dh

vn+1
i

=
1

2πi

∫
|vi|=t2/ε

dh

vn+1
i

.

From the first equality we see that an is an analytic function of X. Since
the circles |vi| = ε and |wi| = ε are included in Ω, we have∫

|vi|=ε
|dh| ≤ 2πC∫

|vi|=t2/ε
|dh| =

∫
|wi|=ε

|dh| ≤ 2πC
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for some constant C. This gives the estimates

|an| ≤ C

εn+1
, |an| ≤ C

( ε

t2

)n+1
.(8)

The first one is useful if n ≥ 0, the second one if n ≤ −2. Now we
compute, if t �= 0,∫ vi=ε/2

wi=ε/2
dh =

∫ v=ε/2

v=2t2/ε

∑
n∈Z

anvndv

= a−1 log
ε2

4t2
+
∑

n�=−1

an

n + 1
(
(ε/2)n+1 − (2t2/ε)n+1

)
.

Using the above estimates we get, provided |t| < ε/2, that

∑
n�=−1

∣∣an(ε/2)n+1
∣∣ ≤ ∑

n<−1

C

(
ε2

2t2

)n+1

+
∑

n>−1

C (1/2)n+1 ≤ C ′

∑
n�=−1

∣∣an(2t2/ε)
∣∣n+1 ≤

∑
n<−1

C 2n+1 +
∑

n>−1

C(2t2/ε2)n+1 ≤ C ′

for some constant C ′. Hence the second term in the integral of dh
extends analytically to t = 0. (Proof: think of t as a complex number,
then this is a well defined bounded holomorphic function if t �= 0, so it
extends holomorphically to t = 0 by the Riemann Extension Theorem
in several complex variables [3], page 9). This gives∫ vi=ε/2

wi=ε/2
dh = −ri log

ε2

4t2
+ analytic.

The integral on the second path is evaluated in the same way. q.e.d.

Proof of Proposition 12. Assume that α and β are given by Propo-
sition 11. Let

Fi(t, a, b, r, R) =
1

log t
Re
∫

Γi

dh.

The problem is that Fi is not differentiable with respect to t at t = 0. We
solve this problem by writing t = exp(−1/τ2) where τ is a real number
in a neighborhood of 0. From now on our parameter is τ instead of t.
Note that t is a smooth function of τ , with t = 0 when τ = 0. Then

Fi(τ, a, b, r, R) = 2(ri − ri0) − τ2 × analytic(t, a, b, r, R)
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is a smooth function.
When τ = 0 we have Fi = 2(ri − ri0). Hence Fi(X0) = 0. The

partial differential of (Fi)i∈J with respect to (ri)i∈J at X0 is an isomor-
phism from R

n−N+1 to R
n−N+1. By the Implicit Function Theorem,

there exists a (unique) smooth map (τ, a, b,R) 	→ r = (ri)i∈J such that
F(τ, a, b, r, R) = 0.

When τ = 0, we have by uniqueness ri = ri0 , so all necks at the
same level have the same size. Let ck be the size of the necks at level k.
By (7) we have

−nkck + nk−1ck−1 = Rk.

This proves the last statement of Proposition 12. q.e.d.

3.7 Horizontal Γ-periods

We continue with the period problem. We define the horizontal period
along a cycle c by

P (c) =
(∫

c
g−1dh −

∫
c
gdh

)
.

Proposition 13. Assume that α and β are given by Proposition 11
and r is given by Proposition 12. For (τ, a,R) in a neighborhood of
(0, a0, R0), there exists b = (b1, . . . , bn), depending smoothly on (τ, a,R),
such that the corresponding Weierstrass data satisfies

∀i ∈ J, P (Γi) = 0.

Moreover, when τ = 0, we have bi = −ai.

We need:

Lemma 2. Assume that α and β are given by Proposition 11. Con-
sider some k, 1 ≤ k ≤ N − 1. Let i0 = min Ik. Consider some i ∈ Ik

such that i > i0. Then if k is odd (resp. even), P (Γi) (resp. −P (Γi)) is
equal to

t−1(bi0 + ai0 − bi − ai) + analytic + t log t × analytic.

Proof. We see Γi as the composition of a path from vi = t to vi0 = t,
contained in Ωk, and a path from wi0 = t to wi = t, contained in Ωk+1.
(Think of the point vi = wi = t as the middle of the neck.) First a fast
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computation. By Proposition 11, we have, when t = 0, dh = gkdz in
C k. If k is odd, we have, in C k

g−1dh − g dh = t−1g−1
k dh − t gkdh

t→0� t−1dz.(9)

If k even, we have in C k

g−1dh − g dh = t gkdh − t−1g−1
k dh

t→0� −t−1dz.(10)

Hence if k is odd,

P (Γi) �
∫ vi0

=t

vi=t
t−1dz +

∫ wi=t

wi0
=t

−t−1dz � t−1(ai0 − ai − bi + bi0).

If k is even,

P (Γi) �
∫ vi0

=t

vi=t
−t−1dz +

∫ wi=t

wi0
=t

t−1dz � t−1(−ai0 + ai + bi − bi0).

These computations are of course not correct because (9) and (10) only
hold on Ωk, and not up to the middle of the necks. To correct these
computations we use a Laurent series expansion of dh as in Section 3.6.
Assume for example that k is odd and consider the integral from vi = t
to vi = ε/2.∫ vi=ε/2

vi=t
g−1dh−

∫ vi=ε/2

vi=t
g dh =

1
t

(∫ vi=ε/2

vi=t
g−1
k dh − t2

∫ vi=ε/2

vi=t
gkdh

)
.

With the notations of Section 3.6, we have in the domain |t| < |vi| < ε/2,

g−1
k dh =

∑
n∈Z

anvn+1
i dv

t2gkdh =
∑
n∈Z

t2anvn−1
i dv.

Using the estimates (8), we have, if 0 < |t| < |vi| < ε/2

∑
n∈Z

|anvn+1
i | ≤

∑
n≤−1

C

(
ε2

2t2

)n+1

+
∑

n>−1

C(t/ε)n+1 ≤ C ′

∑
n∈Z

|t2anvn−1
i | ≤

∑
n≤1

Cε2

(
ε2

2t2

)n−1

+
∑
n>1

C(t/ε)n+1 ≤ C ′
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for some constant C ′. Hence∫ vi=ε/2

vi=t

∑
n�=−1

anvn+1
i dvi and

∫ vi=ε/2

vi=t

∑
n�=1

t2anvn−1
i dvi

extend analytically to t = 0. (Proof: again think of t as a complex
parameter and use the Riemann Extension Theorem.) Not so for the
terms a−2 log(ε/2t) and t2a0 log(ε/2t) because these are multi-valued
functions of t, seen as a complex number, so Riemann Extension The-
orem cannot be used. But using (8), we see that t−2a−2 is bounded,
so extends analytically to t = 0. So the log terms are of the form
t2 log t × analytic. This proves Lemma 2. q.e.d.

Proof of Proposition 13. Assume that α, β are given by Proposi-
tion 11, r is given by Proposition 12 and t = exp(−1/τ2). Define

Fi(τ, a, b,R) = tP (Γi), F = (Fi)i∈J .

By the lemma, Fi is a smooth function and

Fi(0, a, b,R) = bi0 + ai0 − bi − ai

up to sign and conjugation, depending on whether �i is odd or even.
Hence F(0, a0, b0, R0) = 0. We normalise the b parameters by fixing

∀k, 1 ≤ k ≤ N − 1, bi0(k) = −ai0(k).

This normalises translation in C k (see Remark 4). The partial differ-
ential of F with respect to the remaining b parameters is an (R-linear)
isomorphism from C

n−N+1 to C
n−N+1. By the Implicit Function Theo-

rem, for (τ, a,R) in a neighborhood of (0, a0, R0), there exists a unique b,
satisfying the above normalisation, such that F(τ, a, b,R) = 0. The last
statement of the proposition follows from uniqueness and normalisation.

q.e.d.

3.8 Horizontal γ-periods

The last equations we have to solve are

∀i ∈ J, P (γi) = 0 and ∀k, 1 ≤ k ≤ N, P (δk) = 0

where δk is a small circle around ∞k. Using the Residue Theorem, these
equation are equivalent to

∀i ∈ I, P (γi) = 0.
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Proposition 14. Assume that α, β are given by Proposition 11,
r is given by Proposition 12, b is given by Proposition 13 and t =
exp(−1/τ2). For τ in a neighborhood of 0, there exists a = (a1, . . . , an)
and R = (R1, . . . ,RN ), depending smoothly on τ , such that R1 + · · · +
RN = 0 and the corresponding Weierstrass data satisfies P (γi) = 0 for
all i ∈ I. Moreover, when τ = 0, we have a = a0 and R = R0.

We need:

Lemma 3. With the same hypotheses, consider some k, 1 ≤ k ≤
N − 1, and some i ∈ Ik. If τ �= 0, let

Fi(τ, a,R) =
1
t
P (γi).

Then Fi extends to a smooth function at τ = 0. Moreover,

Fi(0, a,R)

= 4πi (−1)k+1

 ∑
j∈Ik, j �=i

2c2
k

pi − pj
−
∑

j∈Ik−1

ckck−1

pi − pj
−
∑

j∈Ik+1

ckck+1

pi − pj


where ck is defined in function of R in Proposition 12 and pi is defined
in function of ai by

pi =

{
ai if i ∈ Ik, k odd
−ai if i ∈ Ik, k even.

Proof. First assume that k is odd, so g = tgk in C k and g =
(tgk+1)−1 in C k+1. Recall that γi is homologous to the circle |z−ai| = ε
in C k, with the negative orientation, and to the circle |z − bi| = ε in
C k+1, with the positive orientation. Hence

1
t

∫
γi

g dh = −
∫
|z−ai|=ε

gkdh

1
t

∫
γi

g−1dh =
∫
|z−bi|=ε

gk+1dh.

Since the circles are contained in Ω, the right terms are analytic func-
tions of all parameters (including at t = 0), hence smooth functions of
(τ, a,R) when t, α, β, r are as in the proposition. When τ = 0, we have
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dh = gkdz on C k so∫
|z−ai|=ε

gkdh = 2πi Res aig
2
k

= 2πi Res ai

∑
j∈Ik

−ck

z − aj
+
∑

j∈Ik−1

ck−1

z − bj

2

= 4πi

 ∑
j∈Ik , j �=i

c2
k

ai − aj
−
∑

j∈Ik−1

ckck−1

ai − bj


∫
|z−bi|=ε

gk+1dh = 4πi

 ∑
j∈Ik , j �=i

c2
k

bi − bj
−
∑

j∈Ik+1

ckck+1

bi − aj

 .

Hence using that bj = −aj we obtain

Fi(0, a,R) = 4πi

2
∑

j∈Ik, j �=i

c2
k

ai − aj
−
∑

j∈Ik+1

ckck+1

ai + aj
−
∑

j∈Ik−1

ckck−1

ai + aj

 .

When k is even the computation is similar:

1
t

∫
γi

g dh =
∫
|z−bi|=ε

gk+1dh

1
t

∫
γi

g−1dh = −
∫
|z−ai|=ε

gkdh

Fi(0, a,R) = 4πi

2
∑

j∈Ik, j �=i

c2
k

ai − aj
−
∑

j∈Ik+1

ckck+1

ai + aj
−
∑

j∈Ik−1

ckck−1

ai + aj

 .

This gives the formula of Lemma 3. q.e.d.

Proof of Proposition 14. Observe that

Fi(0, a,R) = 4πi (−1)k+1F (p)

where F is the force defined in the introduction. When a = a0 and
R = R0 we have p = p0 and c = c0, hence since the configuration p0

is balanced, Fi(0, a0, R0) = 0. Fix some indices i1, i2 and j1, j2 such
that pi1 �= pi2 and pj1 �= pj2 . By non-degeneracy (see Remark 6 be-
low), the partial differential of (Fi)i�=i1 , i�=i2 with respect to the variables
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(aj)j �=j1 , j �=j2 is an isomorphism from C
n−2 to C

n−2 (this operator is
only R-linear because of the conjugations).

We normalise the a parameters by fixing aj1 = a0
j1

, aj2 = a0
j2

. By
the Implicit Function Theorem, for (τ, R) in a neighborhood of (0, R0),
there exists n − 2 smooth functions aj , j �= j1, j �= j2, such that

∀i , i �= i1 , i �= i2, Fi(τ, a,R) = 0.

Remark 6. Let A be the complex matrix (∂Fi/∂pj)1≤i,j≤n. Non-
degenerate means that the matrix A has an invertible minor of size n−2.
However, from Equations (1) and (2), A satisfies

∀j,
∑

i

Ai,j = 0,
∑

i

pi Ai,j = 0.

Note also that A is symmetric. This implies that for any i1, i2 and j1,
j2 such that pi1 �= pi2 and pj1 �= pj2 , the minor obtained by removing
the rows i1, i2 and the columns j1, j2, is invertible.

It remains to prove that Fi1 = Fi2 = 0. We do this as follows. First
we find two equations (one complex, one real) satisfied by the periods.
Then we use the parameters Rk to obtain one more real relation.

We choose the indices i1 and i2 as follows. It is easy to see that if
nk = 1 for all k, the configuration cannot be balanced, unless n = 1,
which we excluded. Hence there exists k0 such that nk0 ≥ 2. Let
i1 = min Ik0 and choose i2 ∈ Ik0 , i2 > i1.

Lemma 4. Assume that all parameters are as above. Then

P (γi1) + P (γi2) = 0

Re

(
P (γi2)

∫
Γi2

g−1dh

)
= 0.

Proof. Note that g dh and g−1dh only have poles at ∞k. By the
residue Theorem,

∑
i∈Ik−1

P (γi) −
∑
i∈Ik

P (γi) =

{
2πi Res∞k

g−1dh if k odd
−2πi Res∞k

g dh if k even.

The left side is zero unless k = k0 or k = k0 + 1. Hence at most one
residue of g dh is nonzero and at most one residue of g−1dh is nonzero.
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Since the sum of the residues is zero, all residues of g±1dh are zero. This
implies the first statement.

The second statement comes from the Riemann Bilinear Relation for
a pair of meromorphic differentials ω, ω′ whose poles have no residues
(see [3] page 241)

G∑
i=1

∫
γi

ω

∫
Γi

ω′ −
∫

γi

ω′
∫

Γi

ω = 2πi
∑

Res (fω′)

where df = ω (f is well defined in a neighborhood of each pole). We
use this formula with ω = g dh and ω′ = g−1dh. We first compute the
residues. Assume that g has a simple zero at ∞k. Use w = g as a local
coordinate in a neighborhood of ∞. Since the residue of g−1dh is zero,

dh = (Rkw
−1 + O(w))dw

fω′ = (Rkw + O(w3))(Rkw
−2 + O(1))dw

Res fω′ = R2
k.

Similar computations give the same result with a minus sign when g
has a simple pole, and zero when g has a multiple zero or pole. The
important point for us is that the residue is real. Using that∫

Γi

g dh =
∫

Γi

g−1dh

∫
γi

g dh =
∫

γi

g−1dh − P (γi)

we obtain from Riemann Bilinear Relation

∑
i∈J

(
2i Im

(∫
γi

g−1dh

∫
Γi

g−1dh

)
− P (γi)

∫
Γi

g−1dh

)
= 2πi

N∑
k=1

±R2
k.

Taking the real part gives the second statement of Lemma 4. q.e.d.

End of proof of Proposition 14.
Assume all parameters are as above, so that Fi = 0 if i �= i1, i2. Let

G(τ, R) = Im

∑
k

∑
i∈Ik

(−1)k+1piFi

 .
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This is a smooth function with

G(0, R) = Im

(
4πi

∑
i∈I

piFi

)
= 4πW.

By hypothesis, the differential of W with respect to (c1, . . . , cN−1) is
surjective. Note that (c1, . . . , cN−1) 	→ (R1, . . . ,RN ) is an isomorphism
from R

N−1 to {R ∈ R
N | R1 + · · · + RN = 0}. Hence the partial dif-

ferential of G with respect to R is surjective. By the Implicit Function
Theorem, using a supplementary space of the kernel, for τ in a neigh-
borhood of 0, there exists R = (R1, . . . ,RN ) such that R1+ · · ·+RN = 0
and G(τ, R) = 0.

Let us now conclude. From G = 0 and the first statement of
Lemma 4, we have

Im((pi2 − pi1)Fi2) = 0.

From the second statement of Lemma 4, we have

Re(λFi2) = 0, with λ = t

∫
Γi2

g−1dh � (−1)k0(pi2 − pi1).

Hence Fi2 = 0 and Fi1 = 0. This concludes the proof of Proposition 14.
q.e.d.

Remark 7. The kernel of ∂G/∂R has dimension N − 2, so we have
N − 2 free parameters amongst the logarithmic growths. Together with
the parameter t, this gives a family depending on N−1 real parameters,
the expected dimension for the space of embedded minimal surfaces with
N ends modulo translation and rotation.

3.9 Geometry of Mt

What we have achieved so far is the following. For t > 0 close to 0 we
have found values of the parameters (α, β, a, b, r, R) depending smoothly
on t > 0 such that the corresponding Weierstrass data satisfies the
zero/pole condition and has no periods. When t → 0, the parameters
converge to the value (α0, β0, a0, b0, r0, R0) given in Section 3.3, but they
are not smooth functions of t at t = 0 (they only depend smoothly on
τ = 1/

√| log t|). What remains to be proven is that the minimal surface
Mt given by this Weierstrass data satisfies the conclusions of Theorem 1
and in particular prove embeddedness.
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Let 0k be the point z = 0 in C k (we may assume by translation
that 0k ∈ Ωk). The Weierstrass formula, starting integration at z0 =
01, defines a minimal immersion X = (X1, X2, X3) : Σ → R

3 with
embedded ends at ∞1, . . . ,∞N . If Rk �= 0, then the end at ∞k is
catenoidal with logarithmic growth Rk, while if Rk = 0, it is asymptotic
to a plane. Let

Ti = (Ti,1, Ti,2, Ti,3) =
1
2

(X(vi = t) + X(vi = −t)) .

Proposition 15.

1. When t → 0, we have, for 1 ≤ k ≤ N ,

(X1 + iX2)(0k) = o(t−1),
X3(0k) = 2| log t|(c1 + · · · + ck−1) + o(log t).

For each i ∈ Ik we have

Ti,1 + iTi,2 =
pi

2t
+ o(t−1),

Ti,3 =
1
2

(X3(0k) + X3(0k+1)) + o(log t).

Hence up to scaling by 2t, pi is the limit position of the ith neck
when t → 0.

2. Given δ > 1, for each i ∈ Ik, the image of the domain t/δ < |vi| <
δt, translated by −Ti, converges when t → 0 to the catenoid with
waist radius ck, with center at the origin, intersected with the slab
|x3| < ck log δ.

3. For each k, the image of the domain of C k defined by |vi| > t,
i ∈ Ik and |wi| > t, i ∈ Ik−1, is a graph over a domain in the
horizontal plane. Moreover, for any ε > 0 and δ > 1:

3a. The image of the domain of C k defined by |vi| > ε, i ∈ Ik

and |wi| > ε, i ∈ Ik−1, stays at bounded distance from the
graph

x3 = X3(0k) + Rk log(1 + t|x1 + ix2|).
3b. For i ∈ Ik, the image of the domain δt < |vi| < ε is inside the

cylinder with vertical axis passing through Ti and radius Cε/t
(where C is a constant independent of ε and t), intersected
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with the slab X3(0k) < x3 < Ti,3 − ck log δ. The image of the
domain δt < |wi| < ε is inside the same cylinder, intersected
with the slab Ti,3 + ck log δ < x3 < X3(0k+1).

4. If Q1 < Q2 < · · · < QN , then Mt is embedded for t small enough.

5. If Qk �= 0, let µk be the intersection of the axis of the catenoidal
end ∞k with the horizontal plane. Then

µk =
1
2t

(∑
i∈I

Qi,k pi

)/(∑
i∈I

Qi,k

)
+ o(t−1).

Note that we do not write the upper-scripts 0 in this proposition, so
for instance ck and pi are the size and position of the necks as given in
the configuration. Recall that for i ∈ Ik, the limit of ri when t → 0 is
ck, and the limit of Rk is Qk.

Proof of 1. By the computation of Section 3.6,

X3(0k+1) − X3(0k) = Re
∫ 0k+1

0k

dh = −ri log t2 + bounded

where i ∈ Ik (the result does not depend on i precisely because the real
period of dh along Γi is zero).

X3(vi = ±t) − X3(0k) = Re
∫ vi=±t

z=0k

dh = −ri log t + bounded.

By formula (9), if k is, say, odd,

(X1 + iX2)(0k+1) − (X1 + iX2)(0k)

=
1
2t

(∫ ai

0
dz +

∫ 0

bi

−dz

)
+ o(t−1) = o(t−1)

(X1 + iX2)(vi = ±t) − (X1 + iX2)(0k)

=
1
2t

∫ ai

0
dz + o(t−1) =

pi

2t
+ o(t−1).

Proof of 2. Let u = vi/t so 1/δ < |u| < δ in this domain. Using
the notations of Section 3.6 we have,

g = (t/vi)(−1)k+1
= u(−1)k



an embedded minimal surface 151

dh =
∑
n∈Z

anvn
i dvi =

∑
n∈Z

antn+1un du.

The estimate (8) imply that

|antn+1| ≤ C(ε/t)n+1 → 0 if n ≤ −2

|antn+1| ≤ C(t/ε)n+1 → 0 if n ≥ 0

a−1 = −ri → −ck.

So the Weierstrass data converges when t → 0 to the Weierstrass data
of a catenoid g = u±1, dh = −ckdu/u.

Proof of 3. By definition of the Gauss map we have, in this domain,
|g| < 1 if k is odd and |g| > 1 if k is even, so the normal stays in
either the lower or upper hemisphere. Hence the projection π on the
horizontal plane is a local diffeomorphism. From its behaviour in a
neighborhood of the boundary circles and at infinity, we conclude that
π is a diffeomorphism onto its image. (Proof. This is a topological
issue. From the convergence to catenoids, π maps homeomorphically
the circle |vi| = t to a circle in the plane, so we may extend π to a local
homeomorphism π̃ : C k → C . From the behaviour at the ends, π̃ :
C k ∪{∞k} → C ∪{∞} is a local homeomorphism. Compactness at the
source plus local homeomorphism implies that π̃ is a covering map. In
a neighborhood of ∞k there is only one sheet so π̃ is a homeomorphism,
hence π is a diffeomorphism onto its image.)

Proof of 3a. By (9) we have, for |z| � 1,

|(X1 + iX2)(z)| =
|z|
2t

+ o(t−1).

Since dh has a simple pole at ∞k with residue −Rk,

X3(z) − X3(0k) = Rk log(1 + |z|) + bounded
= Rk log(1 + t|X1 + iX2|) + bounded.

The estimate 3b is a consequence of (8).

Proof of 4. If Qk < Qk+1 then Rk ≤ Rk+1 for t small enough,
hence by 3a and 3b, the domains of point 3, for varying k, are disjoint.
This implies that Mt is embedded. (A formal proof may be written
as follows: Mt may be covered by suitable open sets of R

3 so that the



152 martin traizet

intersection of Mt with each set is included either in a domain of point
2 or point 3, so is embedded.)

Proof of 5. By definition (see [5], Section 2.3.2), µk is the unique
point in the horizontal plane such that Torque(µk, δk) = 0, where δk is
a small circle around the end ∞k, and Torque is the homology-invariant
vector

Torque(X0, γ) =
∫

γ
(X − X0) ∧ ν

where ν is the exterior conormal. Using the homology invariance in the
domain Ωk, this is equivalent to∑

i∈Ik

Torque(µk, γi) −
∑

i∈Ik−1

Torque(µk, γi) = 0.

We have the straightforward formula

Torque(µk, γi) = Torque(Ti, γi) + (Ti − µk) ∧ Flux(γi).

From the convergence to a catenoid with axis passing at Ti we obtain

lim
t→0

Torque(Ti, γi) = 0

lim
t→0

Flux(γi) = (0, 0, 2πck).

Looking at the horizontal part of the Torque, identifying R
2 with C , we

obtain

−2πi

∑
i∈Ik

ck

(pi

2t
− µk

)
−
∑

i∈Ik−1

ck−1

(pi

2t
− µk

) = o(t−1).

Recalling the definition of the charges Qi,k we obtain the result. This
concludes the proof of the proposition and Theorem 1. q.e.d.
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Université de Tours

37200 Tours, France


