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EQUIVALENCES OF REAL SUBMANIFOLDS IN
COMPLEX SPACE

M.S. BAOUENDI, LINDA PREISS ROTHSCHILD
& DMITRI ZAITSEV

Abstract
We show that for any real-analytic submanifold M in CN there is a proper
real-analytic subvariety V ⊂ M such that for any p ∈ M \ V , any real-
analytic submanifold M ′ in CN , and any p′ ∈ M ′, the germs (M, p) and
(M ′, p′) of the submanifolds M and M ′ at p and p′ respectively are formally
equivalent if and only if they are biholomorphically equivalent. As an ap-
plication, for p ∈ M \ V , the problem of biholomorphic equivalence of the
germs (M, p) and (M ′, p′) is reduced to that of solving a system of polyno-
mial equations. More general results for k-equivalences are also stated and
proved.

1. Introduction

This paper studies equivalences between real-analytic submanifolds
in complex vector spaces. If M and M ′ are two such submanifolds with
p ∈ M and p′ ∈ M ′, the germs (M,p) and (M ′, p′) of M and M ′ at p
and p′ respectively are said to be biholomorphically equivalent if there
exists a germ of a biholomorphism at p sending (M,p) onto (M ′, p′).
The problem of determining when two such germs are biholomorphically
equivalent has been extensively studied for many years. It was already
observed by Poincaré [21] that there exist infinitely many germs of real
hypersurfaces in C

2 that are pairwise biholomorphically inequivalent.
For Levi-nondegenerate hypersurfaces in C

2, E. Cartan [11] constructed
a complete system of analytic invariants. Tanaka [22] and Chern and
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Moser [13] obtained a deep generalization of Cartan’s work in higher di-
mensional complex spaces. The present paper gives an appproach to the
equivalence problem that is valid for any pair of real-analytic subman-
ifolds without any nondegeneracy assumptions, whenever the reference
point (in one of them) is outside an explicitly described exceptional
real-analytic subvariety. This subvariety is defined in terms of integer
biholomorphic invariants obtained by taking Lie brackets of (0, 1) vec-
tor fields (see §2). Our results reduce the problem of the existence of
a biholomorphic equivalence between germs (M,p) and (M ′, p′) to that
of the existence of a biholomorphic map sending (M,p) into (M ′, p′) up
to a finite order k. We call such a map a k-equivalence (see below for
precise definitions). The existence of a k-equivalence H is reduced to
the solvability of a system of polynomial equations in finitely many co-
efficients of the Taylor series of H. Reducing biholomorphic equivalence
to k-equivalence is not possible for an arbitrary reference point p ∈ M
since there exist pairs of germs of real-analytic submanifolds (M,p) and
(M ′, p′) which are k-equivalent for each k (and even formally equiva-
lent) but biholomorphically inequivalent (see the reference to the work
of Moser and Webster [18] mentioned below). We consider such points
p ∈ M as exceptional and prove that, for nonexceptional points, the
existence of k-equivalences for each k is necessary and sufficient for the
existence of a biholomorphic equivalence.

We now give precise definitions needed for the statement of our main
results. A formal map H : (CN , p) → (CN , p′), with p and p′ in C

N , is
a C

N -valued formal power series

H(Z) = p′ +
∑
|α|≥1

aα(Z − p)α, aα ∈ C
N , Z = (Z1, . . . , ZN ).

The map H is invertible if there exists a formal map H−1 : (CN , p′) →
(CN , p) such that H(H−1(Z)) ≡ H−1(H(Z)) ≡ Z (which is equivalent
to the nonvanishing of the Jacobian of H at p). Suppose M and M ′ are
real-analytic submanifolds in C

N of the same dimension given by real-
analytic (vector valued) local defining functions ρ(Z,Z) and ρ′(Z,Z)
near p ∈ M and p′ ∈ M ′ respectively. A formal invertible map H
as above is called a formal equivalence between the germs (M,p) and
(M ′, p′) if

ρ′
(
H(Z(x)), H(Z(x))

)
≡ 0

in the sense of formal power series in x for some (and hence for any)
real-analytic parametrization x �→ Z(x) of M near p = Z(0). If, in
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addition, H is convergent, we say that H is a biholomorphic equivalence
between (M,p) and (M ′, p′). More generally, for any integer k > 1, we
call a formal invertible mapping H : (CN , p) → (CN , p′) a k-equivalence
between (M,p) and (M ′, p′) if

ρ′
(
H(Z(x)), H(Z(x))

)
= O(|x|k);

see Lemma 4.2 for equivalent definitions. Hence a formal invertible map
H is a formal equivalence between (M,p) and (M ′, p′) if and only if it
is a k-equivalence for every k > 1.

If M and M ′ are as above, we shall say that (M,p) and (M ′, p′) are
formally equivalent (resp. biholomorphically equivalent or k-equivalent)
if there exists a formal equivalence (resp. biholomorphic equivalence
or k-equivalence) between (M,p) and (M ′, p′). As mentioned above,
our main result shows, in particular, that for “most” points p ∈ M ,
the notions of formal and biholomorphic equivalences coincide. More
precisely, we prove the following.

Theorem 1.1. Let M ⊂ C
N be a connected real-analytic submani-

fold. Then there exists a closed proper real-analytic subvariety V ⊂ M
such that for every p ∈M\V , every real-analytic submanifold M ′ ⊂ C

N ,
every p′ ∈ M ′, and every integer κ > 1, there exists an integer k > 1
such that if H is a k-equivalence between (M,p) and (M ′, p′) then there
exists a biholomorphic equivalence Ĥ between (M,p) and (M ′, p′) with
Ĥ(Z) = H(Z) +O(|Z − p|κ).

In fact, a real-analytic subvariety V ⊂ M , for which Theorem 1.1
holds will be explicitly described in §2 below. An immediate conse-
quence of Theorem 1.1 is the following corollary.

Corollary 1.2. Let M ⊂ C
N be a connected real-analytic subman-

ifold, V ⊂ M the real-analytic subvariety given by Theorem 1.1, and
p ∈ M \ V . Then for every real-analytic submanifold M ′ ⊂ C

N , and
every p′ ∈M ′, the following are equivalent:

(i) (M,p) and (M ′, p′) are k-equivalent for all k > 1.

(ii) (M,p) and (M ′, p′) are formally equivalent.

(iii) (M,p) and (M ′, p′) are biholomorphically equivalent.

It should be noted that in general, the integer k in Theorem 1.1
must be chosen bigger than κ. For example, if M = M ′ = {Z =
(z, w) : Imw = |z|2} ⊂ C

2, one can easily check that the map H(z, w) :=
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(z, w+w3) is a 4-equivalence between (M, 0) and (M ′, 0). However, there
is no biholomorphic equivalence Ĥ between (M, 0) and (M ′, 0) such that
Ĥ(Z) −H(Z) = O(|Z|4). Indeed, it is known that any biholomorphic
equivalence Ĥ between (M, 0) and (M ′, 0) that differs from the identity
(and hence from H) by O(|Z|3) must be the identity (see [13]), and
hence necessarily Ĥ(z, w) − H(z, w) = −w3. This proves that for this
example if κ = 4, one cannot take k = 4.

It follows from M. Artin’s celebrated approximation theorems, [1, 2],
that systems of analytic equations which have solutions of arbitrarily
high (but finite) order necessarily have convergent solutions. How-
ever, Artin’s general theory cannot be directly applied to the case of
mappings between real submanifolds, because the equations are real-
analytic, whereas the solutions are complex-analytic and hence defined
over a different ground field. The main part of the proof of Theorem 1.1
is devoted to the derivation of an equivalent system of real-analytic equa-
tions in appropriate jet spaces whose real-analytic solutions may be used
to construct biholomorphic equivalences (see Theorem 11.1). The Artin
and Wavrik [24] theorems can then be applied to the latter system of
equations to obtain a real-analytic solution and hence the conclusion of
Theorem 1.1.

The problem of formal versus biholomorphic equivalence has been
studied by a number of mathematicians. It has been known since the
fundamental work of Chern and Moser [13] that if M and M ′ are real-
analytic hypersurfaces in C

N which are Levi nondegenerate at p and p′

respectively, then the germs (M,p) and (M ′, p′) are formally equivalent
if and only if they are biholomorphically equivalent. It should be men-
tioned here that Theorem 1.1 and its corollary are new even in the case
of a hypersurface. In fact, we believe that the equivalence of (i) with (ii)
and (iii) in Corollary 1.2 is new even for Levi nondegenerate hypersur-
faces. (See also Remark 5.2 below.) Although it had been known (e.g.,
in dynamical systems, celestial mechanics, and partial differential equa-
tions) that there exist pairs of structures which are formally equivalent
(in an appropriate sense) but not biholomorphically equivalent, to our
knowledge the first examples of pairs (M,p) and (M ′, p′) of germs of
real-analytic submanifolds in C

N which are formally equivalent but not
biholomorphically equivalent are due to Moser and Webster [18]. The
examples in that paper consist of real-analytic surfaces M and M ′ in
C

2 with isolated “complex tangent” at p and p′ respectively. (It is fairly
easy to prove Theorem 1.1 above in the case of real-analytic surfaces in
C

2, since outside a real-analytic set such a surface is either totally real
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or complex.) The work [18] also contains positive results for surfaces
in C

2, i.e., cases in which formal and biholomorphic equivalence coin-
cide at some complex tangent points. We should also mention further
related work by X. Gong [16] as well as recent work by Beloshapka [9]
and Coffman [14].

In other recent work of the first two authors jointly with Ebenfelt [7],
[5] and [6], it has been shown that there are many classes of pairs (M,p)
and (M ′, p′), where M and M ′ are real-analytic generic submanifolds
of C

N , for which any formal equivalence is necessarily convergent (see
also Corollary 10.3). In particular it follows that the notions of formal
equivalence and biholomorphic equivalence for such pairs coincide. The
present paper treats the more general case where nonconvergent formal
equivalences may exist between (M,p) and (M ′, p′). Given such a formal
equivalence H, Theorem 1.1 implies the existence of a possibly different
biholomorphic equivalence that coincides with H up to an arbitrarily
high preassigned order. For instance, any formal power series in one
variable of the form

∑∞
j=1 ajz

j , a1 �= 0, aj ∈ R, may be regarded as
a formal equivalence between (R, 0) (considered as a germ of a real
submanifold in C) and itself . By truncating this power series to any
order, one obtains a biholomorphic equivalence which agrees with the
formal equivalence to that order.

The organization of the paper is as follows. In §2 through §5 the vari-
ety V is constructed, and a local description ofM near a point p ∈M \V
is given. The proof of Theorem 1.1 is then reduced to the case where
M and M ′ are generic submanifolds which are finitely nondegenerate
at p and p′ respectively. In §6 through §13 we prove Theorem 1.1 in
that case. For the proof, we first obtain a universal parametrization of
k-equivalences between (M,p) and (M ′, p′) in terms of their jets. The
construction of this parametrization is in the spirit of that given in [7]
for formal equivalences between hypersurfaces, and in [25] and [5] for
formal equivalences between generic submanifolds of higher codimen-
sion. However, the approach used here is somewhat different and deals
with more general situations. The main difference is due to the fact
that the parametrization is obtained in terms of finite order jets along
a certain submanifold rather than in terms of single jets at a point p.
From this parametrization we obtain a system of real-analytic equations
in the product of the above submanifold and the space of jets, whose
exact solutions correspond to biholomorphic equivalences and whose
approximate solutions of finite order correspond to k-equivalences. As
mentioned above, for this system we apply approximation theorems due
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to Artin [1], [2] and a variant due to Wavrik [24]. The proof is then
completed in §13. We conclude the paper in §14 by giving a version of
Corollary 1.2 for CR maps between CR submanifolds.

The authors wish to thank Leonard Lipshitz for pointing out to us
the article [24], as well as his related joint work with Denef [15].

2. Construction of the real subvariety V

For the remainder of this paper M and M ′ will always denote con-
nected real-analytic submanifolds of C

N of the same dimension. For
any p ∈M , we shall define three nonnegative integers: r1(p), the excess
codimension of M at p, r2(p), the degeneracy of M at p, and r3(p), the
orbit codimension of M at p. We shall show that these integers reach
their minima outside proper real-analytic subvarieties V1, V2, V3 ⊂ M
respectively and shall prove Theorem 1.1 for V := V1 ∪ V2 ∪ V3.

Let M be as above, d be the codimension of M in C
N , and p0 ∈M

be fixed. Recall that a (vector valued) local defining function ρ =
(ρ1, . . . , ρd) near p0 is a collection of real valued real-analytic functions
defined in a neighborhood of p0 in C

N such that M = {Z : ρ(Z,Z) = 0}
near p0 and dρ1 ∧ . . .∧ dρd �= 0. We associate to M a complex subman-
ifold M ⊂ C

2N (called the complexification of M) in a neighborhood of
(p0, p0) in C

N × C
N defined by M := {(Z, ζ) : ρ(Z, ζ) = 0}. Observe

that a point p ∈ C
N is in M if and only if (p, p) ∈ M. We also note that,

if ρ̃ = (ρ̃1, . . . , ρ̃d) is another local defining function of M near p0, then
ρ̃(Z,Z) = a(Z,Z)ρ(Z,Z) in a neighborhood of p0 in C

N , where a(Z,Z)
is a d× d invertible matrix, whose entries are real valued, real-analytic
functions in a neighborhood of p0.

2.1 CR points of M

For p ∈ M near p0, the excess codimension r1(p) of M at p is defined
by

r1(p) := d− dim spanC

{
ρj

Z(p, p) : 1 ≤ j ≤ d
}
.(2.1)

Here ρj
Z = (∂ρj/∂Z1, . . . , ∂ρ

j/∂ZN ) ∈ C
N denotes the complex gra-

dient of ρj with respect to Z = (Z1, . . . , ZN ). It is easy to see that
r1(p) is independent of the choice of the defining function ρ and of the
holomorphic coordinates Z. A point p0 ∈ M is called a CR point (or
M is called CR at p0) if the mapping p �→ r1(p) is constant for p in a
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neighborhood of p0 in M . The submanifold M is called CR if it is CR
at all its points and hence, by connectedness, r1 := r1(p) is constant on
M . If in addition r1 = 0, then M is said to be generic in C

N . We set

V1 := {p ∈M : M is not CR at p}.(2.2)

It is easy to see that the function r1(p) is upper-semicontinuous on M
and, since M is connected, the complement M \V1 agrees with the set of
all points in M , where r1(p) reaches its minimum. The following lemma
is a consequence of the fact that r1(p) is upper-semicontinuous for the
Zariski topology on M and its proof is left to the reader.

Lemma 2.1.The subset V1 ⊂M defined by (2.2) is proper and real-
analytic.

2.2 The (0, 1) vector fields on M

In order to define the functions r2(p) and r3(p), we shall need the notion
of (0, 1) vector fields on a real submanifold M ⊂ C

N . For M not
necessarily CR and U ⊂M an open subset, we call a real-analytic vector
field of the form L =

∑N
j=1 aj(Z,Z) ∂

∂Zj
, with aj(Z,Z) real-analytic

functions on U , a (0, 1) vector field on U if

(Lρ)(Z,Z) ≡ 0,(2.3)

for any local defining function ρ(Z,Z) of M . For p ∈ M , we denote by
T 0,1

M,p the vector space of all germs at p of (0, 1) vector fields on M and
by T 0,1

M the corresponding sheaf on M whose stalk at any p is T 0,1
M,p. It

is easy to see that T 0,1
M is independent of the choice of ρ(Z,Z). Observe

that T 0,1
M,p is closed under commutation and hence is a Lie algebra. If L

is a (0, 1) vector field on an open set U of M , i.e., L ∈ T 0,1
M (U), denote

by Lp ∈ T 0,1
M,p the germ of L at p for p ∈ U . If M is a CR submanifold

in C
N , the above definition of (0, 1) vector fields on M coincides with

the standard one and in this case the sheaf T 0,1
M is the sheaf of sections

of a complex vector bundle on M , called the CR bundle of M .
The following consequence of the coherence theorem of Oka-Cartan

(see [20] and [12], Proposition 4) will be essential for the proof that the
subvariety V ⊂M is real-analytic.

Lemma 2.2. Given p0 ∈M , there exists a neighborhood U ⊂M of
p0, an integer m > 0 and (0, 1) vector fields L1, . . . , Lm ∈ T 0,1

M (U) such
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that for any p ∈ U , any germ L ∈ T 0,1
M,p can be written in the form

L = g1L1,p + · · · + gmLm,p

with g1, . . . , gm germs at p of real-analytic functions on M .

Proof. For p ∈ M denote by AM,p the ring of germs at p of real-
analytic functions on M . For p near p0, we can think of an element
L =

∑N
j=1 aj

∂
∂Zj

in T 0,1
M,p as an N -tuple (a1, . . . , aN ) ∈ AN

M,p satisfying

the condition in (2.3). Hence the subsheaf T 0,1
M ⊂ AN

M coincides with
the sheaf of relations

N∑
j=1

aj

(
∂ρr

∂Zj

)
p

= 0, r = 1, . . . , d.

Since the sheaf AM is coherent by the theorem of Oka-Cartan, it follows
that T 0,1

M is locally finitely generated over AM which proves the lemma.
q.e.d.

2.3 Degeneracy and orbit codimension

As above let p0 ∈M be fixed and ρ(Z,Z) be a local defining function of
M near p0. For p ∈M near p0, we define a vector subspace E(p) ⊂ C

N

by

(2.4) E(p) := spanC

{
(L1 . . .Lsρ

j
Z)(p, p) : 1 ≤ j ≤ d; 0 ≤ s <∞;

L1, . . . ,Ls ∈ T 0,1
M,p

}
.

As before ρj
Z(Z,Z) ∈ C

N denotes the complex gradient of ρj with re-
spect to Z. We leave it to the reader to check that E(p) is independent
of the choice of the defining function ρ and its dimension is independent
of the choice of holomorphic coordinates Z near p. We call the number

r2(p) := N − dimCE(p),(2.5)

the degeneracy of M at p. We say that M is of minimum degeneracy
at p0 if p0 is a local minimum of the function p �→ r2(p). If r2(p0) = 0,
we say that M is finitely nondegenerate at p0. We say that M is l-
nondegenerate at p0 if M is finitely nondegenerate at p0 and l is the
smallest integer such that the vectors (L1 . . .Lsρ

j
Z)(p0, p0) span C

N for
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0 ≤ s ≤ l and 1 ≤ j ≤ d. When M is generic, the latter definition
coincides with the one given in [4]. (See also, e.g., [8].)

We denote by CTpM := C ⊗R TpM the complexified tangent space

of M at p and by T 0,1
M,p the complex conjugates of elements in T 0,1

M,p. Let
gM (p) be the complex vector subspace of CTpM generated by the values

at p of the germs of vector fields in T 0,1
M,p, T

0,1
M,p and all their commutators.

We call

r3(p) := dimRM − dimC gM (p)(2.6)

the orbit codimension of M at p and say that M is of minimum orbit
codimension at p0 if p0 is a local minimum of the function p �→ r3(p).
The use of this terminology will be justified in §2.4. We say that M
is of finite type at p0, if r3(p0) = 0. When M is generic, this defini-
tion coincides with the finite type condition of Kohn [17] and Bloom-
Graham [10].

The following result can be obtained by applying Lemma 2.2, using
the fact that T 0,1

M,p is a Lie algebra and by induction on s ≥ 0 in (2.4).
We leave the details to the reader.

Lemma 2.3. For M ⊂ C
N , p0 ∈ M and ρ(Z,Z) as above, there

exist an open neighborhood U of p0 in M , an integer m > 0, and
L1, . . . , Lm ∈ T 0,1

M (U) such that for every p ∈ U , one has

E(p) = spanC

{
(Lαρj

Z)(p, p) : α ∈ Z
m
+ ; 1 ≤ j ≤ d

}
,(2.7)

where Lα := Lα1
1 . . . Lαm

m , α = (α1, . . . , αm), and

(2.8) gM (p) = spanC

{
[Xi1 , . . . , [Xir−1 , Xir ] . . . ](p) : r ≥ 1;

Xij ∈ {L1, . . . , Lm, L1, . . . , Lm}
}
.

Proposition 2.4. Let M ⊂ C
N be a connected real-analytic sub-

manifold. Then the subsets V2, V3 ⊂M given by

V2 := {p ∈M : M is not of minimum degeneracy at p}(2.9)

and

V3 := {p ∈M : M is not of minimum orbit codimension at p}(2.10)

are proper and real-analytic.
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Proof. Define ri := minp∈M ri(p), i = 2, 3, where r2(p) and r3(p)
are the integer valued functions defined by (2.5) and (2.6) respectively.
Given p0 ∈ M , choose U and L1, . . . , Lm ∈ T 0,1

M (U) as in Lemma 2.3.
Now consider the set of vector valued real-analytic functions Lαρj

Z (as
in (2.7)) defined in U . For each subset of N − r2 functions in this
set, we take all possible (N − r2) × (N − r2) minors extracted from
their components. Then by Lemma 2.3, the set V2 ∩ U is given by the
vanishing of all such minors. Since p0 ∈ M is arbitrary, V2 ⊂ M is
a real-analytic subvariety. To show that V3 ⊂ M is also real-analytic,
we repeat the above argument for the set of vector valued real-analytic
functions p �→ [Xi1 , . . . , [Xir−1 , Xir ] . . . ](p) (as in (2.8)). Both subsets
V2, V3 ⊂M are proper by the choices of r2 and r3. q.e.d.

Remark 2.5. For M ⊂ C
N a connected real-analytic submanifold,

it follows from the definition of r1(p) and from the proof of Proposi-
tion 2.4 that the sets {p ∈ M : ri(p) ≤ s}, i = 1, 2, 3, are also real-
analytic subvarieties of M for any integer s ≥ 0. In particular, for each
i = 1, 2, 3, the function ri(p) is constant in M \ Vi.

2.4 CR orbits in real-analytic submanifolds

Let M ⊂ C
N be a real-analytic submanifold (not necessarily CR) and

p0 ∈ M . By a CR orbit of p0 in M we mean a germ at p0 of a real-
analytic submanifold Σ ⊂ M through p0 such that CTpΣ = gM (p) for
all p ∈ Σ. The existence (and uniqueness) of the CR orbit of any point
in M follows by applying a theorem of Nagano ([19], see also [4], §3.1) to
the Lie algebra spanned by the real and imaginary parts of the vector
fields L1, . . . , Lm given by Lemma 2.3. The terminology introduced
above for the orbit codimension is justified by the fact that the (real)
codimension of the CR orbit of p in M coincides with the (complex)
codimension of gM (p) in CTpM .

3. Local structure of M at a point of M \ V

We keep the notation introduced in §2. As before we let ri =
minp∈M ri(p), i = 1, 2, 3. The following proposition gives the local struc-
ture of a manifold near a point which is CR and also of minimum de-
generacy.

Proposition 3.1. Let M ⊂ C
N be a connected real-analytic sub-

manifold and p0 ∈ M \ (V1 ∪ V2). Then there exist local holomorphic
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coordinates Z = (Z1, Z2, Z3) ∈ C
N1 × C

N2 × C
N3 vanishing at p0 with

N1 := N − r1 − r2, N2 := r2, N3 := r1,

a generic real-analytic submanifold M1 ⊂ C
N1 through 0, finitely non-

degenerate at 0, and an open neighborhood O ⊂ C
N of p0 such that

M ∩ O =
{
(Z1, Z2, Z3) ∈ O : Z1 ∈M1, Z

3 = 0
}
.

Equivalently, in the coordinates Z, the germ of M at 0 and that of
M1 × C

N2 × {0} coincide.

Remark 3.2. Suppose that M ⊂ C
N is a connected real-analytic

submanifold and p0 ∈ M \ V2, i.e., M is of minimum degeneracy at
p0 but not necessarily CR. One can still ask whether there exist local
holomorphic coordinates Z = (Z1, Z2) ∈ C

N1 × C
N2 , vanishing at p0,

with N2 = r2 and a submanfold M1 ⊂ C
N1 through 0 which is finitely

nondegenerate at 0 such that, in the coordinates Z, the germ of M at
0 and that of M1 × C

N2 coincide. Observe that Proposition 3.1 implies
that this is the case if, in addition, M is CR at p0. The following
example shows that it is not the case in general. Let M ⊂ C

3 be
given by M := {(z1, z2, w) ∈ C

3 : w = z1z2}. M is CR precisely at
those points where z1 �= 0. The (0, 1) vector fields on M are multiples
of L = ∂z1

+ z2∂w. The degeneracy is everywhere 1 and the orbit
dimension is everywhere 2. However, as the reader can easily check, the
answer to the question above is negative in this example with p0 = 0.

Proof of Proposition 3.1. We may assume p0 = 0. Since M is CR at
0, there is a neighborhood of 0 in C

N such that the piece of M in that
neighborhood is contained as a generic submanifold in a complex sub-
manifold of C

N (called the intrinsic complexification of M) of complex
dimension N − r1 (see, e.g., [4]). By a suitable choice of holomorphic
coordinates (Z1, Z2, Z3) ∈ C

N1 × C
N2 × C

N3 with N1, N2, N3 as in the
proposition, we may assume that the intrinsic complexification is given
by Z3 = 0 near 0. Then M is a generic submanifold of the subspace
{Z3 = 0}. Hence in the rest of the proof it suffices to assume that
M ⊂ C

N is generic and 0 ∈ M . We may therefore find holomorphic
coordinates Z = (z, w) ∈ C

n × C
d, with d being the codimension of M

in C
N and n := N − d, such that if ρ = (ρ1, . . . , ρd) is a local defining

function of M near 0, then ρw(0) is an invertible d× d matrix. By the
implicit function theorem, we can write M near 0 in the form

M = {(z, w) : w −Q(z, z, w) = 0} = {(z, w) : w −Q(z, z, w) = 0},
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where Q is a C
d-valued holomorphic function defined in a neighborhood

of 0 in C
2n+d and vanishing at 0. We now apply the definition of mini-

mum degeneracy given in §2.3 to the (complex valued) defining function
of M given by

Θ(z, w, z, w) := w −Q(z, z, w).(3.1)

It can be easily checked that the identity (2.7) holds with ρ(z, w, z, w)
replaced by Θ(z, w, z, w) (even though here Θ(z, w, z, w) is complex val-
ued). Consider the basis of (0, 1) vector fields on M given by

Lj :=
∂

∂zj
+

d∑
i=1

Q
i
zj

(z, Z)
∂

∂wi
, 1 ≤ j ≤ n,

where, as above, Z = (z, w). Observe that since Q is independent of w,
for α ∈ Z

n
+ and 1 ≤ j ≤ d,

LαΘj
Z(Z,Z) = −Qj

Z,zα(z, Z).

Since M is of minimum degeneracy at 0, it follows that for Z in a
neighborhood of 0 in M ,

dim spanC{Q
j
Z,zα(z, Z) : α ∈ Z

n
+; 1 ≤ j ≤ d} = N − r2.

By a standard complexification argument (see, e.g., Lemma 11.5.8 in
[4]), we conclude that for χ ∈ C

n and Z ∈ C
N near the origin, we also

have

dim spanC{Q
j
Z,χα(χ,Z) : α ∈ Z

n
+; 1 ≤ j ≤ d} = N − r2.

Hence there exists an integer l ≥ 0 such that for Z ∈ C
N in a neighbor-

hood of 0,

dim spanC{Q
j
Z,χα(0, Z) : 0 ≤ |α| ≤ l; 1 ≤ j ≤ d} = N − r2.

In particular, if K is d times the number of multi-indices α ∈ Z
n
+ with

0 ≤ |α| ≤ l, the map ψ given by

Z �→ ψ(Z) = (Qj
χα(0, Z))0≤|α|≤l,1≤j≤d ∈ C

K

is of constant rank equal to N − r2 for Z in a neighborhood of 0 in C
N .

By the implicit function theorem, there exists a holomorphic change
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of coordinates Z = Φ(Z̃1, Z̃2) with (Z̃1, Z̃2) ∈ C
N−r2 × C

r2 such that
ψ(Φ(Z̃1, Z̃2)) ≡ ψ(Φ(Z̃1, 0)). It follows that Qχα(0,Φ(Z̃1, Z̃2)) is inde-
pendent of Z̃2 for all α, 0 ≤ |α| ≤ l, and hence, by the choice of l, for
all α ∈ Z

n
+. Therefore, if we write the complexification of (3.1) in the

form

Θ(Z, ζ) = τ −Q(χ, z, w), Z = (z, w) ∈ C
n ×C

d, ζ = (χ, τ) ∈ C
n ×C

d,

we conclude that Θ(Φ(Z̃1, Z̃2), ζ) is independent of Z̃2. Hence the (com-
plex valued) function given by

Θ̃(Z̃1, Z̃2, ζ̃1, ζ̃2) := Θ(Φ(Z̃1, Z̃2),Φ(ζ̃1, ζ̃2))

is independent of Z̃2, and M is given by Θ̃
(
Z̃1, Z̃2, Z̃1, Z̃2

)
= 0. Thus

all vector fields ∂/∂Z̃2
j , 1 ≤ j ≤ r2, are tangent to M and hence so

are the vector fields ∂/∂Z̃2
j . After a linear change of the coordinates

Z̃1 = (Z̃11, Z̃12) ∈ C
n−r2 × C

d we can write M near 0 in the form

M =
{

(Z̃11, Z̃12, Z̃2) : Im Z̃12 = φ(Z̃11, Z̃11,Re Z̃12)
}
,

where φ is a real-analytic, real vector valued function. Hence the sub-
manifold M1 ⊂ C

N1 given by M1 := M ∩{Z̃2 = 0} satisfies the required
assumptions. q.e.d.

The following proposition gives the structure of a generic submani-
fold at a point of minimum orbit codimension. Recall that we have used
the notation r3 = minp∈M r3(p), where r3(p) is the orbit codimension of
p.

Proposition 3.3. Let M ⊂ C
N be a be a connected real-analytic

generic submanifold and p0 ∈M . The following are equivalent:

(i) p0 ∈M \ V3.

(ii) There is an open neighborhood U of p0 in M and a real-analytic
mapping

h : U → R
r3 , h(p0) = 0,

of rank r3, which extends holomorphically to an open neighborhood
of U in C

N , such that h−1(0) is a CR manifold of finite type.

(iii) In addition to the assumptions of Condition (ii), for all u in a
neighborhood of 0 in R

3, h−1(u) is a CR manifold of finite type.



314 m.s. baouendi, l.p. rothschild, d. zaitsev

Proof. Since M is generic, and hence CR, we can choose a frame
(L1, . . . , Ln) of real-analytic (0, 1) vector fields on M near p0, spanning
the space of all (0, 1) tangent vectors to M at every point near p0. (Here
n = N − d, where d is the codimension of M .) We write Lj = Xj +√
−1Xj+n, whereXj , 1 ≤ j ≤ 2n, are real valued vector fields. We prove

first that (i) implies (iii). By the condition that M is of minimum orbit
codimension r3 at p0, it follows that the collection of the vector fieldsXj ,
1 ≤ j ≤ 2n, generates a Lie algebra, whose dimension at every point near
p0 is 2n+d−r3. Therefore, by the (real) Frobenius theorem, we conclude
that there exist r3 real-analytic real valued functions h1, . . . , hr3 with
independent differentials, defined in a neighborhood of p0, vanishing at
p0 and such that Ljhm ≡ 0 (i.e., hm is a CR function) for all 1 ≤
j ≤ n and 1 ≤ m ≤ r3. Moreover, the local orbits of the Xj , 1 ≤
j ≤ 2n, are all of the form Mu = {p ∈ M : h(p) = u} with h =
(h1, . . . , hr3) and u ∈ R

r3 sufficiently small. By a theorem of Tomassini
([23], see also [4], Corollary 1.7.13), the functions h1, . . . , hr3 extend
holomorphically to a full neighborhood of p0 in C

N . This proves that
(i) implies (iii). For the proof that (ii) implies (i), we observe that since
h extends holomorphically, we have Ljhm ≡ 0 for all 1 ≤ j ≤ n and
1 ≤ m ≤ r3. By the reality of hm it follows that Xjhm ≡ 0 for all
1 ≤ j ≤ 2n and 1 ≤ m ≤ r3. Hence the set M0 := h−1(0) is the
CR orbit of M at p0 and is of dimension r3, which proves (i). Since
the implication (iii) =⇒ (ii) is trivial, the proof of the proposition is
complete. q.e.d.

The following proposition gives useful local holomorphic coordinates
for a generic submanifold around a point of minimum orbit codimension.

Proposition 3.4. Let M be a connected generic real-analytic sub-
manifold of C

N of codimension d and p0 ∈ M \ V3. Set n := N − d,
d2 := r3 and d1 := d − r3. Then there exist holomorphic local coordi-
nates Z = (z, w, u) ∈ C

N = C
n × C

d1 × C
d2 vanishing at p0, an open

neighborhood O = O1×O2 ⊂ C
n+d1×C

d2 of p0, and a holomorphic map
Q from a neighborhood of 0 in C

n × C
n × C

d1 × C
d2 to C

d1 satisfying

Q(z, 0, τ, u) ≡ Q(0, χ, τ, u) ≡ τ(3.2)

such that

M ∩ O =
{
(z, w, u) ∈ O : u ∈ R

d2 , w = Q(z, z, w, u)
}
,

and for every u ∈ R
d2 close to 0 the submanifold

Mu :=
{
(z, w) ∈ O1 : w = Q(z, z, w, u)

}
⊂ C

n+d1(3.3)
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is generic and of finite type.

Proof. We take normal coordinates Z ′ = (z′, w′) ∈ C
n×C

d vanishing
at p0 (see, e.g., [4], §4.2), i.e., we assume that M is given by w′ =
Q′(z′, z′, w′) near 0, where Q′ is a germ at 0 in C

2n+d of a holomorphic
C

d-valued function satisfying

Q′(z′, 0, τ ′) ≡ Q′(0, χ′, τ ′) ≡ τ ′.(3.4)

We may choose a frame (L1, . . . , Ln) spanning the space of all (0, 1)
vector fields on M of the form Lj = ∂

∂z′j
+
∑d

i=1Q
′i
z′j

(z′, z′, w′) ∂
∂w′ for

1 ≤ j ≤ n. In particular, Lj(0) = ∂
∂z′j

. Let h = (h1, . . . , hd2) be the

functions given by (iii) in Proposition 3.3. Since, for 1 ≤ m ≤ d2,
the functions hm are real and extend holomorphically, we conclude that
Ljhm ≡ Ljhm ≡ 0. We denote again the by h1, . . . , hd2 the extended
functions. By the choice of the coordinates, ∂hm/∂z

′
j(0) = 0, 1 ≤

m ≤ d2, 1 ≤ j ≤ n. By using the independence of the differentials of
h1, . . . , hd2 and reordering the components w′

1, . . . , w
′
d if necessary, we

may assume that

det

(
∂hm

∂w′
j

(0)

)
1≤m≤d2, d1+1≤j≤d

�= 0.

We make the following change of holomorphic coordinates in C
N near

0:

z′′ = z′, w′′
j = w′

j for 1 ≤ j ≤ d1,(3.5)

w′′
j = hj−d1(z

′, w′) for d1 + 1 ≤ j ≤ d.

Note that on M , we have w′′
j = w′′

j for d1 + 1 ≤ j ≤ d. The reader can
check that the new coordinates (z′′, w′′) ∈ C

n × C
d are again normal

for M . Indeed, M is given by w′′ = Q′′(z′′, z′′, w′′) where Q′′ satisfies
the analog of (3.4), with Q′′j(z′′, z′′, w′′) ≡ w′′

j for d1 + 1 ≤ j ≤ d.
The desired coordinates are obtained by taking (z, w, u) := (z′′, w′′) i.e.,
z = z′′ and (w, u) = w′′ with w ∈ C

d1 , u ∈ C
d2 . We take Qj := Q′′j

for 1 ≤ j ≤ d1. By the properties of the functions h1, . . . , hd2 , the
submanifold Mu given by (3.3), with u ∈ R

d2 close to 0, is of finite type
if O1 is a sufficiently small neighborhood of 0 in C

n+d1 . This completes
the proof of Proposition 3.4. q.e.d.
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4. Properties of k-equivalences between germs of real
submanifolds

We first observe that if (M,p) and (M ′, p′) are two germs in C
N of

real-analytic submanifolds at p and p′ respectively, then for any formal
k-equivalence H between (M,p) and (M ′, p′), the kth Taylor polyno-
mial of H is a convergent k-equivalence. Therefore we may, and shall,
assume all k-equivalences in the rest of this paper to be convergent. By
a local parametrization Z(x) of M at p we shall mean a real-analytic
diffeomorphism x �→ Z(x) between open neighborhoods of 0 in R

dim M

and of p in M satisfying Z(0) = p. We say that a function f(x) in a
neighborhood of 0 in R

m vanishes of order k at 0, if f(x) = O(|x|k).
One of the main results of this section is to show that k-equivalences,

for sufficiently large k preserve the integers rj(p), j = 1, 2, 3 introduced
in §2, and their minimality. For simplicity of notation we state the result
for p = p′ = 0.

Proposition 4.1. Let (M, 0) and (M ′, 0) be two germs at 0 in C
N

of real-analytic submanifolds which are k-equivalent for every k. Denote
by rj(0) and r′j(0), j = 1, 2, 3, the integers given by (2.1), (2.5), and (2.6)
for M and M ′ respectively. Then the following hold:

(i) r1(0) = r′1(0). Also M is CR at 0 if and only if M ′ is CR at 0.

(ii) If M is CR at 0 then r2(0) = r′2(0), and M is of minimum degen-
eracy at 0 if and only if M ′ is of minimum degeneracy at 0.

(iii) If M is CR at 0 then r3(0) = r′3(0), and M is of minimum orbit
codimension at 0 if and only if M ′ is of minimum orbit codimen-
sion at 0.

Before proving Proposition 4.1, we shall need some preliminary re-
sults. The following useful but elementary lemma gives alternative def-
initions of k-equivalences.

Lemma 4.2. Let H : (CN , 0) → (CN , 0) be an invertible germ of
a holomorphic map and (M, 0) and (M ′, 0) be two germs at 0 of real-
analytic submanifolds of C

N of the same dimension. Then for any in-
teger k > 1, the following are equivalent:

(i) H is a k-equivalence between (M, 0) and (M ′, 0).

(ii) There exist local parametrizations Z(x) and Z ′(x) at 0 of M and
M ′ respectively such that Z ′(x) = H(Z(x)) +O(|x|k).
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(iii) For every local parametrization Z(x) of M at 0, there exists a local
parametrization Z ′(x) of M ′ at 0 such that Z ′(x) = H(Z(x)) +
O(|x|k).

(iv) There exist local defining functions ρ(Z,Z) and ρ′(Z ′, Z ′) of M
and M ′ respectively near 0 such that ρ′(H(Z),H(ζ)) = ρ(Z, ζ) +
O(|(Z, ζ)|k).

(v) For every local defining function ρ(Z,Z) of M near 0, there ex-
ists a local defining function ρ′(Z ′, Z ′) of M ′ near 0 such that
ρ′(H(Z),H(ζ)) = ρ(Z, ζ) +O(|(Z, ζ)|k).

(vi) For any local defining functions ρ(Z,Z) and ρ′(Z ′, Z ′) of M and
M ′ respectively near 0, there exists a holomorphic function a(Z, ζ)
defined in a neighborhood of 0 in C

2N with values in the space of
d× d invertible matrices (where d is the codimension of M) such
that ρ′(H(Z),H(ζ)) = a(Z, ζ)ρ(Z, ζ) +O(|(Z, ζ)|k).

In particular, inverses and compositions of k-equivalences are also k-
equivalences.

Since the proof of Lemma 4.2 is elementary, it is left to the reader.
We shall also need the following two lemmas for the proof of Proposi-
tion 4.1.

Lemma 4.3. Let (vα(x))α∈A be a collection of real-analytic C
K-

valued functions in a neighborhood of 0 in R
m. If the dimension of

the span in C
K of the vα(x), α ∈ A, is not constant for x in any

neighborhood of 0, then there exists an integer κ > 1 such that, for any
other collection of real-analytic C

K-valued functions (v′α(x))α∈A in some
neighborhood of 0 with v′α(x) = vα(x) + O(|x|κ), the dimension of the
span in C

K of the v′α(x) is also nonconstant in any neighborhood of 0.

Proof. Denote by r the dimension of the span in C
K of the vα(0),

α ∈ A. By the assumption, there exists an (r+1)× (r+1) minor ∆(x),
extracted from the components of the vα(x), which does not vanish
identically. Note that ∆(0) = 0. Let γ ∈ Z

m
+ , |γ| ≥ 1, be such that

∂γ∆(0) �= 0. Then for κ := |γ|+1 and v′α(x) as in the lemma, it follows
that ∂γ∆′(0) �= 0, where ∆′(x) is the corresponding minor with vα(x)
replaced by v′α(x). On the other hand, the dimension of the span of the
v′α(0) is also r. Since ∆′(x) is an (r + 1) × (r + 1) minor that does not
vanish identically, the proof of the lemma is complete. q.e.d.
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Lemma 4.4. Let M1,M
′
1 ⊂ C

N1 be two generic real-analytic sub-
manifolds through 0, of the same dimension. Let M := M1 × {0} and
M ′ := M ′

1 × {0}, both contained in C
N = C

N1 × C
N2, and H a k-

equivalence between (M, 0) and (M ′, 0), with k > 1. Let Z = (Z1, Z2)
and H = (H1, H2) be the corresponding decompositions for the compo-
nents of Z and H. Then H2(Z1, 0) = O(|(Z1)|k) and Z1 �→ H1(Z1, 0)
is a k-equivalence between (M1, 0) and (M ′

1, 0).

Proof. We write Z ′ = (Z ′1, Z ′2) ∈ C
N1 × C

N2 . Let ρ′1(Z ′1, Z ′1) be a
local defining function for M ′

1 ⊂ C
N1 . Then

ρ′(Z ′, Z ′) := (ρ′1(Z
′1, Z ′1),Re Z ′2, Im Z ′2)(4.1)

is a local defining function for M ′ in a neighborhood of 0 in C
N . By the

definition of k-equivalence, we obtain

ρ′1(H
1(Z(x)), H1(Z(x))) = O(|x|k), H2(Z(x)) = O(|x|k),(4.2)

for any local parametrization Z(x) of M at 0. By the second identity in
(4.2), the holomorphic functionH2(Z1, 0) vanishes of order k at 0 on the
submanifoldM1 which is generic in C

N1 . This implies the first statement
of the lemma. Since H is invertible and by the first statement of the
lemma we have H2

Z(0) = 0, the map Z1 �→ H1(Z1, 0) must be invertible
at 0. Hence the first identity in (4.2) implies the second statement of
the lemma. q.e.d.

Proof of Proposition 4.1. We first observe that every 2-equivalence
between (M, 0) and (M ′, 0) induces a linear isomorphism between T0M
and T0M

′. Since (M, 0) and (M ′, 0) are k-equivalent for every k, this
implies r1(0) = r′1(0). To complete the proof of (i), we argue by contra-
diction. We assume that M ′ is CR at 0 but that M is not. If ρ(Z,Z)
is a local defining function for M and Z(x) is a local parametrization
of M at 0, we set vj(x) := ρj

Z(Z(x), Z(x)), 1 ≤ j ≤ d. Since M
is assumed not to be CR at 0, the collection of functions vj(x) sat-
isfies the assumptions of Lemma 4.3. Let κ be the integer given by
the lemma. We take k ≥ κ + 1 and let H be a k-equivalence between
(M, 0) and (M ′, 0). If we set M̃ := H−1(M ′), then the identity map
is a k-equivalence between (M, 0) and (M̃, 0). Hence, by Lemma 4.2
(iii,v), there exist a local parametrization Z̃(x) of M̃ at 0 and a local
defining function ρ̃ for M̃ near 0 such that Z̃(x) = Z(x) + O(|x|k) and
ρ̃(Z,Z) = ρ(Z,Z) + O(|Z|k). We apply Lemma 4.3 for the collection
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vj(x) defined above and v′j(x) := ρ̃j
Z(Z̃(x), Z̃(x)) and conclude that M̃

is not CR at 0. Thus we have reached a contradiction, since M̃ and M ′

are biholomorphically equivalent. This completes the proof of (i).
To prove (ii), suppose that M and M ′ are CR at 0. Since M and M ′

are CR and r1(0) = r′1(0) by (i), we may assume that M = M1 × {0}
and M ′ = M ′

1×{0}, both contained in C
N1 ×C

N2 with N1 := N−r1(0),
N2 := r1(0) and M1 and M ′

1 generic in C
N1 (cf. beginning of proof of

Proposition 3.1). By Lemma 4.4, M1 and M ′
1 are also k-equivalent for

every k > 1. We observe that M is of minimum degeneracy at 0 if and
only if M1 is of minimum degeneracy at 0 and the degeneracies of M
and M1 at 0 are the same. Therefore, by replacing M by M1 and M ′ by
M ′

1, we may assume that M and M ′ are generic (i.e., r1(0) = r′1(0) = 0)
in the rest of the proof.

We show first that r2(0) = r′2(0). From the definition (2.5) of these
numbers, there exists l ≥ 0 such that

dimCEl(0) = r2(0), dimCE
′
l(0) = r′2(0),(4.3)

where, for p ∈M ,

El(p) := spanC

{
(L1 . . .Lsρ

j
Z)(p, p) : 0 ≤ s ≤ l;

L1, . . . ,Ls ∈ T 0,1
M,p; 1 ≤ j ≤ d

}
,

with ρ(Z,Z) being a defining function for M near 0, and E′
l(p

′) ⊂ C
N

is the corresponding subspace for M ′. We may choose holomorphic
coordinates Z = (z, w) ∈ C

n × C
d vanishing at 0 such that the d × d

matrix ρw(0) is invertible. In these coordinates we take a basis of (0, 1)
vector fields on M in the form

Lj =
∂

∂zj
−τρzj

τ(ρ−1
w )

(
∂

∂w

)
, 1 ≤ j ≤ n,(4.4)

where we have used matrix notation so that
(

∂
∂w

)
=
(

∂
∂w1

, . . . , ∂
∂w1

)
is

viewed as a d× 1 matrix. We now choose a local parametrization Z(x)
of M at 0, and put

vj
α(x) := Lαρj

Z(Z(x), Z(x)), 1 ≤ j ≤ d, α ∈ Z
n
+, 0 ≤ |α| ≤ l.(4.5)

We then choose k > l+1 andH to be a k-equivalence between (M, 0) and
(M ′, 0) which exists by the assumptions of the proposition. Replacing
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M ′ by H−1(M ′) we may assume without loss of generality that H is
the identity map of C

N . By Lemma 4.2 (ii,v), we can find a local
parametrization Z ′(x) of M ′ at 0 satisfying Z ′(x) = Z(x)+O(|x|k) and
a local defining function ρ′ of M ′ near 0 satisfying ρ′(Z,Z) = ρ(Z,Z) +
O(|Z|k). Denote by L′

j , 1 ≤ j ≤ n, the local basis of (0, 1) vector fields
on M ′ given by the analog of (4.4) with ρ replaced by ρ′. (Observe that
ρ′w(0) coincides with ρw(0) and hence is invertible). By the choice of
ρ′, we have L′

j = Lj + Rj in a neighborhood of 0 in C
N , where Rj is a

vector field whose coefficients vanish of order k − 1 at 0. We put

v′jα(x) := L′αρ′jZ(Z ′(x), Z ′(x)), 1 ≤ j ≤ d, α ∈ Z
n
+, 0 ≤ |α| ≤ l.(4.6)

Then it follows from the construction that

v′jα(x) = vj
α(x) +O(k − l − 1)(4.7)

and, in particular, v′jα(0) = vj
α(0) for all j and α as in (4.5). Hence, by

making use of (4.3), we have r2(0) = r′2(0), which proves the first part
of (ii).

To prove the second part of (ii), assume that M ′ is of minimum
degeneracy at 0 and that M is not. We shall reach a contradiction
by again making use of Lemma 4.3. From the definition of minimum
degeneracy there exists an integer l′ ≥ 0 such that

dimE′
l′(p

′) ≡ dimE′
l′(0), dimEl′(p) �≡ dimEl′(0),(4.8)

for p ∈ M , and p′ ∈ M ′ near 0. Hence the collection of real-analytic
functions given by (4.5) with l replaced by l′ satisfies the assumption of
Lemma 4.3. We let κ > 1 be the integer given by that lemma and choose
H to be a k-equivalence with k satisfying κ = k − l′ − 1. As before,
we may assume that H is the identity. Using again Lemma 4.2 (ii,v),
we obtain the analogue of (4.7), with l replaced by l′. We conclude by
Lemma 4.3 that the dimension of the span of the v′jα(x) given by (4.6),
with l replaced by l′, is not constant in any neighborhood of 0. This
contradicts the first part of (4.8) and proves the second part of (ii).

The proof of (iii) is quite similar to that of (ii), and the details are
left to the reader. The proof of Proposition 4.1 is complete. q.e.d.
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5. Reduction of Theorem 1.1 to the case of generic, finitely
nondegenerate submanifolds

In this section we reduce Theorem 1.1 to the case where M and M ′

are generic and M ′ is finitely nondegenerate. For this case, the precise
statement is given in Theorem 5.1 below. After the reduction to this
case, the rest of the paper will be devoted to the proof of Theorem 5.1.

Theorem 5.1 (Main Technical Theorem). Let (M, 0) and (M ′, 0)
be two germs of generic real-analytic submanifolds of C

N of the same
dimension. Assume that M is of minimum orbit codimension at 0 and
that M ′ is finitely nondegenerate at 0. Then for any integer κ > 1, there
exists an integer k > 1 such that if H is a k-equivalence between (M, 0)
and (M ′, 0), then there exists a biholomorphic equivalence Ĥ between
(M, 0) and (M ′, 0) with Ĥ(Z) = H(Z) +O(|Z|κ).

Remark 5.2. We should mention here that the proof of Theo-
rem 5.1 is simpler when M and M ′ are hypersurfaces of C

N . In fact in
this case under the assumptions of the theorem, if H is a formal equiva-
lence between (M, 0) and (M ′, 0), then if follows from Theorem 5 in [7]
that H is convergent. Hence, in particular, the proof of the equivalence
of (ii) and (iii) in Corollary 1.2 is simpler in the case of hypersurfaces.

In order to show that Theorem 1.1 is a consequence of Theorem 5.1,
we shall need the following.

Lemma 5.3. Let M1,M
′
1 ⊂ C

N1 be generic real-analytic submani-
folds through 0 and assume that M ′

1 is l-nondegenerate at 0. Let M :=
M1×C

N2 and M ′ := M ′
1×C

N2 (both contained in C
N = C

N1×C
N2), and

let H be a k-equivalence between (M, 0) and (M ′, 0) with k > l+ 1. Let
Z = (Z1, Z2) and H = (H1, H2) be the corresponding decompositions
for the components of Z and H. Then the following hold:

(i)
(
∂H1/∂Z2

)
(Z) = O(|(Z)|k−l−1).

(ii) Z1 �→ H1(Z1, 0) is a k-equivalence between (M1, 0) and (M ′
1, 0).

Proof. Observe that M and M ′ are generic submanifolds of C
N .

We write Z ′ = (Z ′1, Z ′2) ∈ C
N1 × C

N2 . Let ρ′1(Z ′1, Z ′1) be a local
defining function for M ′

1 ⊂ C
N1 . Then ρ′(Z ′, Z ′) := ρ′1(Z ′1, Z ′1) is a

local defining function for M ′ in a neighborhood of 0 in C
N . By the

definition of k-equivalence, we obtain

ρ′1(H
1(Z(x)), H1(Z(x))) = O(|x|k).(5.1)
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for any local parametrization Z(x) of M at 0. We choose Z(x) in the
form

R
dim M1 × R

N2 × R
N2 � x = (x1, x2, y2) �→ Z(x)(5.2)

=
(
Z1(x1), x2 + iy2

)
∈M,

where x �→ Z1(x1) is a local parametrization of M1 at 0. Similarly, we
choose a local defining function ρ1(Z1, Z1) for M1 near 0 in C

N1 and put
ρ(Z,Z) := ρ1(Z1, Z1). Since H is a k-equivalence between (M, 0) and
(M ′, 0), the identity map is a k-equivalence between (M, 0) and (M̃, 0)
with M̃ := H−1(M ′). We let Lj , 1 ≤ j ≤ n, be the (0, 1) vector fields
defined in a neighborhood of 0 in C

N given by (4.4) (after reordering
coordinates in the form Z = (z, w) ∈ C

N with ρw(0) invertible). Simi-
larly we define L̃j by an analogue of (4.4) with ρ replaced by ρ̃, where
ρ̃ is the defining function of M̃ given by Lemma 4.2 (v) for the identity
map so that ρ̃(Z,Z) = ρ(Z,Z) + O(|Z|k). (We may take the same de-
composition Z = (z, w) since ρ̃w(0) = ρw(0)). Hence L̃j = Lj +Rj with
Rj a (0, 1) vector field in a neighborhood of 0 in C

N whose coefficients
vanish of order k − 1 at 0. Observe that the vector fields L′

j := H∗L̃j

are tangent to M ′.
By Lemma 4.2 (vi), there exists a d× d real-analytic matrix valued

function a(Z,Z) such that

ρ′(H(Z),H(Z)) = a(Z,Z)ρ(Z,Z) +O(|Z|k).(5.3)

Differentiating (5.3) with respect to Z and applying Lα for |α| ≤ l, we
obtain

Lα
(
ρ′Z′(H(Z),H(Z))HZ(Z)

)
(5.4)

= a(Z,Z)(LαρZ)(Z,Z) +
∑

0≤|β|<|α|
Aβ(Z,Z)(LβρZ)(Z,Z)

+ Lα

 d∑
j=1

ρj(Z,Z)Bj(Z,Z)

+O(|Z|k−l−1),

where Aβ(Z,Z) and Bj(Z,Z) are real-analytic functions in a neighbor-
hood of 0 in C

N , valued in d × d and in d × N matrices respectively.
Using the relation L̃j = Lj + O(k − 1) and the definition of L′

j given
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above, we conclude

(L′αρ′Z′)(H(Z),H(Z))HZ(Z)(5.5)

= a(Z,Z)(LαρZ)(Z,Z) +
∑

0≤|β|<|α|
Aβ(Z,Z)(LβρZ)(Z,Z)

+ Lα

 d∑
j=1

ρj(Z,Z)Bj(Z,Z)

+O(|Z|k−l−1).

We now choose a local parametrization Z ′(x) of M ′ at 0 given by
Lemma 4.2 (iii), i.e., Z ′(x) = H(Z(x)) + O(|x|k), with Z(x) given by
(5.2). Since the Lj are tangent to M , we conclude from (5.5) that

(L′αρ′Z′)
(
Z ′(x), Z ′(x)

)
HZ(Z(x))(5.6)

= a(Z(x), Z(x))(LαρZ)(Z(x), Z(x))

+
∑

0≤|β|<|α|
Aβ(Z(x), Z(x))(LβρZ)(Z(x), Z(x)) +O(|x|k−l−1).

By the choices of ρ(Z,Z) and ρ′(Z ′, Z ′), we have the decompositions in
C

N1 × C
N2

Lαρj
Z = (Lαρj

Z1 , 0), L′αρ′jZ′ = (L′αρ′j
Z′1 , 0), j = 1, . . . , d.(5.7)

We multiply both sides of (5.6) on the right by the N × N2 constant
matrix C =

(
0
I

)
with I being the N2×N2 identity matrix. We conclude

that

(L′αρ′Z′1)(Z ′(x), Z ′(x))H1
Z(Z(x))C = O(|x|k−l−1).(5.8)

We now use the assumption that M ′
1 is l-nondegenerate. By this as-

sumption, we can choose multi-indices α1, . . . , αN1 and integers j1, . . . ,
jN1 , with 0 ≤ |αµ| ≤ l, 1 ≤ jµ ≤ d, such that the N1 ×N1 matrix given
by

B(x) :=
(
L′αµ

ρ′jµ

Z′1(Z ′(x), Z ′(x))
)

1≤µ≤N1

is invertible for x near 0. Since B(x)H1
Z(Z(x))C = O(|x|k−l−1) by

(5.8) and H1
Z2(Z(x)) ≡ H1

Z(Z(x))C, we conclude that H1
Z2(Z(x)) =

O(|x|k−l−1). Since M = M1 × C
N2 is generic in C

N = C
N1 × C

N2 , the
statement (i) follows.
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From (i) it follows in particular that H1
Z2(0) = 0. Since H is invert-

ible, we conclude that H1
Z1(0) is also invertible, and (ii) follows from

(5.1) by taking x2 = y2 = 0. This completes the proof of Lemma 5.3.
q.e.d.

We now give the proof of Theorem 1.1 assuming that Theorem 5.1
has been proved. As mentioned in the beginning of this section, the
proof of Theorem 5.1 will be given in the remaining sections.

Proof of Theorem 1.1. Set V := V1 ∪ V2 ∪ V3 ⊂M , where V1, V2, V3

are defined by (2.2), (2.9) and (2.10) respectively. Let p ∈M \ V , M ′ a
real-analytic submanifold of C

N and p′ ∈ M ′. We may assume that M
and M ′ have the same dimension, since otherwise there is nothing to
prove. Let κ > 1 be fixed. If, for some integer s > 1, (M,p) and (M ′, p′)
are not s-equivalent, then we can take k = s to satisfy the conclusion of
Theorem 1.1.

Assume for the rest of the proof that (M,p) and (M ′, p′) are k-
equivalent for all k > 1. Without loss of generality we may assume
p = p′ = 0. We shall make use of Proposition 4.1. Since M is CR, of
minimum degeneracy, and of minimum orbit codimension at 0,M ′ is also
CR, of minimum degeneracy, and of minimum orbit codimension at 0.
Furthermore, in the notation of Proposition 4.1, we have rj(0) = r′j(0),
j = 1, 2, 3. Hence we may apply Proposition 3.1 to both (M, 0) and
(M ′, 0) with the same integers N1, N2, N3 to obtain the decompositions

M = M1 × C
N2 × {0}, M ′ = M ′

1 × C
N2 × {0},(5.9)

where both decompositions are understood in the sense of germs at 0
in C

N . Since M ′
1 is finitely nondegenerate at 0, there exists an integer

l ≥ 0 such that M ′
1 is l-nondegenerate at 0.

Assume first that M and M ′ are generic at 0, i.e., N3 = 0. Then, for
every k > l + 1, the conclusions of Lemma 5.3 hold. By conclusion (ii)
of that lemma, for every k-equivalence H = (H1, H2) between (M, 0)
and (M ′, 0), the map

h : Z1 �→ H1(Z1, 0)(5.10)

is a k-equivalence between (M1, 0) and (M ′
1, 0). Furthermore, (M1, 0)

and (M ′
1, 0) satisfy the assumptions of Theorem 5.1.

By Theorem 5.1, there exists a biholomorphic equivalence ĥ between
(M1, 0) and (M ′

1, 0) with ĥ(Z1) = h(Z1) + O(|Z1|κ). As we mentioned
in the beginning of §4, without loss of generality, we can assume that
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H is convergent. Then we may define the germ Ĥ : (CN , 0) → (CN , 0)
of a biholomorphism at the origin as follows:

Ĥ1(Z1, Z2) := ĥ(Z1)(5.11)

Ĥ2(Z) := H2(Z)(5.12)

It is then a consequence of Lemma 5.3 that Ĥ satisfies the conclusion
of Theorem 1.1 if k > κ+ l + 1.

We now return to the general case in which M and M ′ are not
necessarily generic, and let H = (H1, H2, H3) be a k-equivalence corre-
sponding to the decomposition given by (5.9) with k > κ + l + 1. By
Lemma 4.4 the mapping (Z1, Z2) �→

(
H1(Z1, Z2, 0), H2(Z1, Z2, 0)

)
is

a k-equivalence between the generic submanifolds (M1 × C
N2 , 0) and

(M ′
1 × C

N2 , 0) and H3(Z1, Z2, 0) = O(|Z1, Z2|k). It follows from the
generic case, treated above, that there exists a biholomorphic equiv-
alence ĥ(Z1, Z2) between (M1 × C

N2 , 0) and (M ′
1 × C

N2 , 0) such that
ĥ(Z1, Z2) =

(
H1(Z1, Z2, 0), H2(Z1, Z2, 0)

)
+ O(|Z1, Z2|κ). We write

ĥ = (ĥ1, ĥ2) corresponding to the product C
N1 × C

N2 . We may now
define Ĥ(Z1, Z2, Z3) by

Ĥ1(Z1, Z2, Z3) := ĥ1(Z1, Z2) +H1(Z) −H1(Z1, Z2, 0)(5.13)

Ĥ2(Z) := H2(Z)(5.14)

Ĥ3(Z) := H3(Z) −H3(Z1, Z2, 0)(5.15)

and conclude that Ĥ satisfies the desired conclusion of the theorem.
This completes the proof of Theorem 1.1 (assuming Theorem 5.1). q.e.d.

6. Rings R(V, V0) of germs of holomorphic functions

An important idea of the proof of Theorem 5.1 is to parametrize all
k-equivalences between (M, 0) and (M ′, 0) by their jets in an expression
of the form (10.2) below. For this we shall introduce some notation for
certain rings of germs of holomorphic functions. If V is a finite dimen-
sional complex vector space and V0 ⊂ V is a vector subspace, we define
R(V, V0) to be the ring of all germs of holomorphic functions f at V0 in V
such that the restrictions ∂αf |V0 of all partial derivatives are polynomial
functions on V0. Here ∂α denotes the partial derivative with respect to
the multiindex α ∈ Z

dim V
+ and some linear coordinates x ∈ V . Recall

that, if f and g are two functions holomorphic in some neighborhoods
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of V0 in V , then f and g define the same germ of a holomorphic function
at V0 in V if they coincide in some (possibly smaller) neighborhood of
V0 in V . We shall identify such a germ with any representative of it.
It is easy to see that the ring R(V, V0) does not depend on the choice
of linear coordinates in V and is invariant under partial differentiation
with respect to these coordinates. In the following we fix a complement
V1 of V0 in V so that we have the identification V ∼= V0 × V1 and fix
linear coordinates x = (x0, x1) ∈ V0 × V1. In terms of these coordinates
we may write an element f ∈ R(V, V0) in the form

f(x0, x1) =
∑

β

pβ(x0)x
β
1 , β ∈ Z

dim V1
+ ,(6.1)

where the pβ(x0) are polynomials in V0 satisfying the estimates

|pβ(x0)| ≤ C(x0)|β|+1 for all β,(6.2)

where C(x0) is a positive locally bounded function on V0. Conversely,
every power series of the form (6.1) satisfying (6.2) defines a unique
element of R(V, V0).

In the following we shall consider germs of holomorphic maps whose
components are in R(V, V0). If W is another finite dimensional complex
vector space and W0 ⊂ W is a subspace, we shall write φ : (V, V0) →
(W,W0) to mean a germ at V0 of a holomorphic map from V to W
such that φ(V0) ⊂ W0. It can be shown using the chain rule that a
composition f ◦ φ with φ as above with components in R(V, V0) and
f ∈ R(W,W0) always belongs to R(V, V0). We shall prove the analogue
of this property for more general expressions which we shall need in the
proof of Theorem 9.1 below.

Lemma 6.1. Let V0, V1, Ṽ0, Ṽ1 be finite dimensional complex vec-
tor spaces with fixed bases and x0, x1, x̃0, x̃1 be the linear coordinates
with respect to these bases. Let q ∈ C[x0] and q̃ ∈ C[x̃0] be nontrivial
polynomial functions on V0 and Ṽ0 respectively, and let

φ = (φ0, φ1) :
(
C × V0 × V1,C × V0

)
→
(
Ṽ0 × Ṽ1, Ṽ0

)
be a germ of a holomorphic map with components in the ring R

(
C ×

V0 × V1,C × V0

)
and satisfying

q̃

(
φ0

(
1

q(x0)
, x0, 0

))
�≡ 0.(6.3)
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Then there exists a ring homomorphism

R
(
C × Ṽ0 × Ṽ1,C × Ṽ0

)
� f̃ �→ f ∈ R

(
C × V0 × V1,C × V0

)
(6.4)

such that

f̃

(
1

q̃
(
φ0( 1

q(x0) , x0, x1)
) , φ( 1

q(x0)
, x0, x1

))
≡ f

(
1

p(x0)
, x0, x1

)
,(6.5)

with p(x0) := q(x0)d0+1q̃
(
φ0( 1

q(x0) , x0, 0)
)
, where d0 is the degree of the

polynomial (θ, x0) �→ q̃
(
φ0(θ, x0, 0)

)
with respect to θ. Furthermore, f

vanishes on C × V0 if f̃ vanishes on C × Ṽ0.

Proof. For f̃ as above and θ′, θ′′ ∈ C, define a germ g at C×C× V0

of a holomorphic function on C × C × V0 × V1 by

(6.6) g(θ′, θ′′, x0, x1) :=

f̃

(
θ′

1 + θ′[q̃
(
φ0(θ′′, x0, x1)

)
− q̃(φ0(θ′′, x0, 0))]

, φ(θ′′, x0, x1)

)
.

We use the consequence of the chain rule that any partial derivative of
a composition of two holomorphic maps can be written as a polynomial
expression in the partial derivatives of the components. Then it follows
from the assumptions of the lemma that g is in the ring R

(
C×C×V0×

V1,C × C × V0

)
. It is straightforward to see that, if f is given by

f(θ, x0, x1) := g

(
θq(x0)d0+1, θq(x0)d0 q̃

(
φ0

(
1

q(x0)
, x0, 0

))
, x0, x1

)
,

then (6.5) holds and the map f̃ �→ f satisfies the conclusion of the
lemma. q.e.d.

7. Jet spaces of mappings

For integers r,m, l ≥ 0, we denote by Jr
m,l the space of all jets at 0 of

order r of holomorphic maps from C
m to C

l. This is a complex vector
space that can be identified with the space of C

l-valued polynomials
on C

m of degree at most r. We write such a polynomial in the form∑
0≤|α|≤r(λα/α!)Zα, λα ∈ C

l, and call (λα)0≤|α|≤r the standard linear
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coordinates in Jr
m,l. For fixed integers n, d ≥ 0 and N := n + d, we

introduce the complex vector spaces

Er := Jr
N,N × Jr

n,d × C
n, Er

0 := Jr
N,N × {(0, 0)},(7.1)

Er
1 := {0} × Jr

n,d × C
n

with Er
0 , E

r
1 ⊂ Er. We use the identification Er ∼= Er

0 × Er
1 .

Let M and M ′ satisfy the assumptions of Theorem 5.1. According
to Proposition 3.4 we write M near 0 in the form

M =
{
(z, w, u) ∈ C

n × C
d1 × R

d2 : w = Q(z, z, w, u)
}
,(7.2)

where Q is a germ at 0 in C
2n+d of a holomorphic C

d1-valued function
satisfying conditions (3.2). We also choose normal coordinates for M ′

so that
M ′ =

{
(z′, w′) ∈ C

n × C
d : w′ = Q′(z′, z′, w′)

}
,

where Q′ is a germ at 0 in C
2n+d of a holomorphic C

d-valued function
satisfying

Q′(z′, 0, τ ′) ≡ Q′(0, χ′, τ ′) ≡ τ ′.(7.3)

In these coordinates (which will be fixed for the remainder of the
paper), for every invertible germ of a holomorphic map H : (CN , 0) →
(CN , 0) we write H(Z) = (F (Z), G(Z)) with z′ = F (Z), w′ = G(Z) and
Z = (z, w, u). For Z ∈ C

N near the origin, we define

J rH(Z) :=
((

∂|α|H
∂Zα

(Z)
)

0≤|α|≤r

,

(
∂|ν|G
∂zν

(Z)
)

0≤|ν|≤r

, F (Z)
)
.(7.4)

We think of J rH as a germ at 0 of a holomorphic map from C
N into

the vector space Er defined by (7.1).
Now let H = (F,G) be a k-equivalence between (M, 0) and (M ′, 0)

with k > 1. By a standard complexification argument, H is a k-
equivalence means that the identity

G(z,Q(z, χ, τ, u), u) ≡ Q′ (F (z,Q(z, χ, τ, u), u), H(χ, τ, u)
)

(7.5)
+R(z, χ, τ, u)

holds for all (z, χ, τ, u) ∈ C
2n+d near the origin, where R(z, χ, τ, u) =

O(k). In particular, for (χ, τ, u) = 0 we obtain from (7.5) and (7.3) the
identity

G(z, 0) = O(k)(7.6)
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and hence for r < k, we have J rH(0) ∈ Er
0 , where Er

0 is defined by
(7.1).

8. The basic identity

We assume that the assumptions of Theorem 5.1 hold and that
ρ(Z,Z) is a defining function for M at 0. We begin by establishing
a relation, called the basic identity, between two jets of a k-equivalence
H at points Z and ζ in C

N satisfying (Z, ζ) ∈ M, i.e., ρ(Z, ζ) = 0.
We shall make use of the notation introduced in §6-7. In particular,
we have normal coordinates (z, w, u) ∈ C

n × C
d1 × C

d2 for M and
(z′, w′) ∈ C

n × C
d for M ′ and write Z = (z, w, u), ζ = (χ, τ, u). Fur-

thermore we use matrix notation and regard Fz(Z) as an n× n matrix,
Fw(Z) as an n× d1 matrix, Gz(Z) as a d× n matrix and Gw(Z) as a
d× d1 matrix. Similarly Qz(z, χ, τ, u) is regarded as a d1 × n matrix.

To shorten the notation it will be convenient to write for r,m non-
negative integers

Rr
m := R

(
C × Er × C

m,C × Er
0 × {0}

)
,(8.1)

where the rings R(V, V0) are defined as in §6 and the vector spaces
Er and Er

0 are defined in (7.1). We can now state precisely the basic
identity.

Theorem 8.1 (Basic Identity). Let (M, 0) and (M ′, 0) be two germs
of generic real-analytic submanifolds of C

N satisfying the assumptions
of Theorem 5.1. Assume that M ′ is l-nondegenerate at 0 (with l ≥ 0)
and that normal coordinates for M and M ′ are chosen as above. Then
for every integer r > 0, there exists a germ of a holomorphic map

Ψr :
(
C × Er+l × C

2N ,C × Er+l
0 × {0}

)
→ (Er, Er

0)(8.2)

and for r = 0, a germ Ψ0 :
(
C × El × C

2N ,C × El
0 × {0}

)
→ (E0, 0),

such that the components of Ψr, r ≥ 0, are in the ring Rr+l
2N and the

following holds. For every k-equivalence H = (F,G) between (M, 0) and
(M ′, 0) with k > r + l, one has for (Z, ζ) near the origin in C

2N ,

J rH(Z) = Ψr

(
1

det(Fχ(ζ))
,J r+lH(ζ), ζ, Z

)
+Rr

H(Z, ζ),(8.3)

where Rr
H(Z, ζ) is a germ at 0 of a holomorphic map from C

2N into Er

whose restriction to M vanishes of order k − r − l at 0.
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Proof. For convenience we use the notation

ω := (z, ζ) = (z, χ, τ, u) ∈ C
n × C

n × C
d1 × C

d2 ,

Z(ω) := (z,Q(ω), u) ∈ C
n × C

d1 × C
d2 ,

so that the equation of M ⊂ C
2N near 0 is given by w = Q(ω), or

equivalently, by Z = Z(ω). We first differentiate the identity (7.5) in
z ∈ C

n. Using the chain rule we obtain the identity in matrix notation

Gz(Z(ω)) +Gw(Z(ω))Qz(ω)(8.4)

≡ Q′
z′
(
F (Z(ω)), H(ζ)

) (
Fz(Z(ω)) + Fw(Z(ω))Qz(ω)

)
+Rz(ω),

where Rz(ω) = O(|ω|k−1). (Observe that Rz in (8.4) depends on the
map H.) The invertibility of H implies the invertibility of Fz(0) and
hence of Fz(Z(ω))+Fw(Z(ω))Qz(ω) for ω near the origin (since Qz(0) =
0 by (3.2)). Hence we conclude for ω sufficiently small,

Q′
z′
(
F (Z(ω)), H(ζ)

)
=(8.5) (

Gz(Z(ω)) +Gw(Z(ω))Qz(ω)
)(
Fz(Z(ω)) + Fw(Z(ω))Qz(ω)

)−1

+O(|ω|k−1).

Our next goal will be to express the right-hand side of (8.5) and then its
derivatives in terms of functions in Rr

2n+d that vanish on certain vector
subspaces. For this we introduce the notation

Ar := C × (Jr
N,N × {0} × C

n) × (Cn × {0}) ⊂(8.6)

C × (Jr
N,N × Jr

n,d × C
n) × (Cn × C

n+d)

= C × Er × C
2n+d.

We have the following lemma.

Lemma 8.2. With the notation above there exists a d × n matrix
P , independent of H, with entries in R1

2n+d such that, for ω in a neigh-
borhood of 0 in C

2n+d,

(8.7)
(
Gz(Z(ω)) +Gw(Z(ω))Qz(ω)

)(
Fz(Z(ω)) + Fw(Z(ω))Qz(ω)

)−1

≡ P
( 1

detFz(Z(ω))
,J 1H(Z(ω)), ω

)
and P vanishes on the subspace A1 ⊂ C ×E1 × C

2n+d defined by (8.6).
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Proof. For simplicity we drop the argument Z(ω) in Gz, Gw, Fz, Fw

and J 1H. We have

(8.8)
(
Gz +GwQz(ω)

)(
Fz + FwQz(ω)

)−1

≡
(
Gz +GwQz(ω)

)(
I + F−1

z FwQz(ω)
)−1

F−1
z .

The first factor in the right-hand side of (8.8) can be expressed as a
matrix valued polynomial in the entries of Gz and Gw with holomorphic
coefficients in ω. We now think of the entries of Gz as variables in J1

n,d

and those of Gw as part of the variables in J1
N,N and write

(
Gz +GwQz(ω)

)
≡ P1

(
1

detFz
,J 1H,ω

)
with P1 independent of the variable in the first factor C and having
entries in R1

2n+d. Since Qz(z, 0, 0, 0) ≡ 0, P1 vanishes on the subspace
A1 ⊂ C × E1 × C

2n+d defined by (8.6) with r = 1. By the standard
formula for the inverse of a matrix, the third factor in the right-hand
side of (8.8) can be also written in the form P3

(
1

detFz
,J 1H,ω

)
, where P3

is a matrix valued polynomial (with entries in R1
2n+d) depending only

on part of the variables in C×J1
N,N and independent of the variables in

J1
n,d × C

n and ω. The second factor in the right-hand side of (8.8) can
also be written in the form P2

(
1

detFz
,J 1H,ω

)
with the entries of P2 in

R1
2n+d. This can be shown by using the chain rule in addition to the

arguments used for the first and third factors. The proof of the lemma
is completed by taking P := P1P2P3 and using the fact that R1

2n+d is a
ring. q.e.d.

For the sequel we shall need the following lemma, which is proved
by repeated use of the chain rule, making use of the identities (7.6),
Q(z, 0, 0, 0) ≡ 0, and induction on |α|. The details are left to the reader.

Lemma 8.3. Let M and M ′ be as in Theorem 8.1. Then for every
f ∈ Rr

2n+d with r ≥ 1 and every α ∈ Z
2n+d
+ , there exists fα ∈ Rr+|α|

2n+d

such that the following holds. For any k-equivalence H = (F,G) between
(M, 0) and (M ′, 0) with k > r + |α|,

(8.9)
(
∂|α|/∂ωα

)
f

(
1

detFz(Z(ω))
,J rH(Z(ω)), ω

)
≡ fα

(
1

detFz(Z(ω))
,J r+|α|H(Z(ω)), ω

)
.
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If in addition α ∈ Z
n
+×{0} (i.e., the differentiation in (8.9) is taken with

respect to z only) and if f vanishes on the subspace Ar ⊂ C×Er×C
2n+d

defined by (8.6), then fα vanishes on the subspace Ar+|α| ⊂ C×Er+|α|×
C

2n+d.

We now return to the proof of Theorem 8.1. By making use of (8.5)
and (8.7) we obtain the identity

(8.10) Q′
z′
(
F (Z(ω)), H(ζ)

)
= P

( 1
detFz(Z(ω))

,J 1H(Z(ω)), ω
)

+O(|ω|k−1),

where ζ = (χ, τ, u) as before and P is given by Lemma 8.2.
We claim that for every β ∈ Z

n
+ with 0 ≤ |β| ≤ l, there exists

P β ∈ (R|β|
2n+d)

d, independent of H, vanishing on the subspace A|β| ⊂
C × E|β| × C

2n+d, and such that the following identity holds for ω in a
neighborhood of 0 in C

2n+d:

(8.11) Q′
z′β
(
F (Z(ω)), H(ζ)

)
= P β

( 1
detFz(Z(ω))

,J |β|H(Z(ω)), ω
)

+O(|ω|k−|β|).

Indeed, for β = 0, (8.11) follows directly from (7.5) and for |β| = 1,
(8.11) is a reformulation of (8.10). For |β| > 1 we prove the claim by in-
duction on |β|. Assume that (8.11) holds for some β. By differentiating
(8.11) with respect to z we obtain in matrix notation the identity(

Q′
z′β
)
z′
(
F (Z(ω)), H(ζ)

) (
Fz(Z(ω)) + Fw(Z(ω))Qz(ω)

)
(8.12)

= (∂/∂z)P β
( 1

detFz(Z(ω))
,J |β|H(Z(ω)), ω

)
+O(|ω|k−|β|−1).

By Lemma 8.3 we have

(8.13) (∂/∂z)P β
( 1

detFz(Z(ω))
,J |β|H(Z(ω)), ω

)
≡ S

( 1
detFz(Z(ω))

,J |β|+1H(Z(ω)), ω
)
,

where S is a d× n matrix with entries in R|β|+1
2n+d, vanishing on the sub-

space A|β|+1 ⊂ C×E|β|+1×C
2n+d. Since, as in the proof of Lemma 8.2,

each entry of the matrix
(
Fz(Z(ω))+Fw(Z(ω))Qz(ω)

)−1 can be written
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in the form f
(

1
detFz(Z(ω)) ,J

1H(Z(ω)), ω
)

with f in the ring R1
2n+d, the

identity (8.11) for β replaced by any multiindex β′ with |β′| = |β| + 1
follows from (8.12) and (8.13) by observing that the ring R1

2n+d has a

natural embedding into R|β|+1
2n+d. This completes the proof of the claim.

We now use the condition that M ′ is l-nondegenerate which is equiv-
alent to

spanC

{
Q′j

z′βχ′(0, 0, 0) : 1 ≤ j ≤ d, 1 ≤ |β| ≤ l
}

= C
n

(see, e.g., [4], 11.2.14). From this, together with (7.3), we conclude
that we can select a subsystem of N scalar identities from (8.11) from
which H(ζ) can be solved uniquely by the implicit function theorem.
We obtain

H(ζ) =(8.14)

T

(
F (Z(ω)), P β

( 1
detFz(Z(ω))

,J |β|H(Z(ω)), ω
)

0≤|β|≤l

)
+O(|ω|k−l),

where T is a germ of a holomorphic map T : (Cn × C
m, 0) → (CN , 0),

with

m := d× #{β ∈ Z
n
+ : 0 ≤ |β| ≤ l}.(8.15)

Observe that the germ T depends only on Q′ but not on H.
We claim that there exists Φ ∈ (Rl

2n+d)
N , independent of H, such

that

H(ζ) = Φ
( 1

detFz(Z(ω))
,J lH(Z(ω)), ω

)
+O(|ω|k−l).(8.16)

In order to prove the claim we use the notation x0 := (θ,Λ) ∈
C × J l

N,N and x1 := (Λ′, z′, ω) ∈ J l
n,d × C

n × C
2n+d, and for l ≥ r, we

denote by πl
r : El → Er the natural projection from El onto Er. We

define Φ by

Φ(θ,Λ,Λ′, z′, ω) := T

(
z′, P β

(
θ, πl

|β|(Λ,Λ
′, z′), ω

)
0≤|β|≤l

)
.(8.17)

To show that Φ is in (Rl
2n+d)

N , we must differentiate the right hand
side of (8.17) with respect to x1 = (Λ′, z′, ω) and evaluate at x1 = 0.
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By using the chain rule and the fact that each P β is in (R|β|
2n+d)

d and
vanishes when x1 = 0, it is easy to check that for any multiindex α,

∂α

∂xα
1

T

(
z′, P β

(
θ, πl

|β|(Λ,Λ
′, z′), ω

)
0≤|β|≤l

)∣∣∣∣
x1=0

is a polynomial in x0. This proves the claim (8.16).
We now differentiate the identity (8.16) with respect to ζ = (χ, τ, u).

By using Lemma 8.3 again, we find Φβ ∈ (Rl+|β|
2n+d)

N , independent of H,
such that

∂βH(ζ) = Φβ
( 1

detFz(Z(ω))
,J l+|β|H(Z(ω)), ω

)
+O(|ω|k−l−|β|).(8.18)

For any β ∈ Z
N
+ we decompose Φβ = (Φβ

1 ,Φ
β
2 ) ∈ C

n × C
d and set for

θ,Λ,Λ′, z′, ω as above and Z = (z, w, v) ∈ C
n × C

d1 × C
d2 ,

(8.19) Φ̃β(θ,Λ,Λ′, z′, Z, ζ) :=
Φ0(θ,Λ,Λ′, z′, ω) − Φ0(θ,Λ, 0, 0, 0) for β = 0,(
Φβ

1 (θ,Λ,Λ′, z′, ω),
Φβ

2 (θ,Λ,Λ′, z′, ω) − Φβ
2 (θ,Λ, 0, 0, 0)

)
for β ∈ Z

n
+ × {0}, β �= 0

Φβ(θ,Λ,Λ′, z′, ω) otherwise .

Clearly Φ̃β is in (Rl+|β|
2N )N and is independent of w and v. Since for any

k-equivalence H = (F,G) we have ∂βG(0) = 0 for β ∈ Z
n
+ × {0} with

|β| < k by (7.6), it follows from (8.18) that Φ̃β
2

(
1

detFz(0) ,J
l+|β|H(0), 0

)
=

0. Hence (8.18) implies

∂βH(ζ) = Φ̃β

(
1

detFz(Z)
,J l+|β|H(Z), Z, ζ

)
+ R̃β

H(Z, ζ),(8.20)

where Rβ
H is a germ at 0 of a holomorphic map from C

2N to C
N depend-

ing on H and whose restriction to M vanishes at 0 of order k− l− |β|.
By taking complex conjugates of (8.20) for 0 ≤ |β| ≤ r, and using the
fact that (Z, ζ) ∈ M is equivalent to (ζ, Z) ∈ M, we obtain (8.3) with
Ψr satisfying the conclusion of Theorem 8.1. q.e.d.

9. The iterated basic identity

In this section we apply the relation given by Theorem 8.1 to dif-
ferent points and iterate them, i.e., substitute one into the next and so
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on. Let (M, 0) and (M ′, 0) satisfy the assumptions of Theorem 8.1. If
ρ(Z,Z) is a defining function of M near 0 and s ≥ 1 is an integer, we
define a germ M2s at 0 of a complex manifold of C

(2s+1)N by

(9.1) M2s :=
{
(Z, ζ1, Z1, . . . , ζs, Zs) ∈ C

(2s+1)N :

ρ(Z, ζ1) = · · · = ρ(Zs−1, ζs) = ρ(Z1, ζ1) = · · · = ρ(Zs, ζs) = 0
}
.

Hence M2s has codimension 2sd in C
(2s+1)N , where d is the codimension

of M in C
N . (The iterated complexification M2s was introduced by the

third author in [25]. For Zs fixed in (9.1), this corresponds to the Segre
manifold of order 2s of M at Zs in the terminology of [4].) For a k-
equivalence H between (M, 0) and (M ′, 0), we use the notation J rH(Z)
introduced in (7.4). It will be also convenient to write

jrH(Z) :=
(
∂|α|H
∂Zα

(Z)
)

0≤|α|≤r

,

which is the first Jr
N,N -valued component of J rH(Z). The main result

of this section is the following:

Theorem 9.1. Under the assumptions of Theorem 8.1, for all in-
tegers r ≥ 0 and s ≥ 1, there exists a polynomial qr

s on Jr+2sl
N,N and, for

r > 0, a germ

Ψr,s :
(
C × Er+2sl × C

(2s+1)N ,C × Er+2sl
0 × {0}

)
�→ (Er, Er

0)(9.2)

and for r = 0, a germ Ψ0,s :
(
C × E2sl × C

(2s+1)N ,C × E2sl
0 × {0}

)
�→

(E0, 0), whose components are in the ring Rr+2sl
(2s+1)N such that, if H =

(F,G) is a k-equivalence between (M, 0) and (M ′, 0) with k > 2sl + r,
the following holds:

qr
s(j

r+2slH(0)) =
(
detFz(0)

)ar
s
(
detFz(0)

)br
s(9.3)

for some ar
s, b

r
s ∈ Z+,

J rH(Z)(9.4)

= Ψr,s

(
1

qr
s(jr+2slH(Zs))

,J r+2slH(Zs), Z, ζ1, Z1, . . . , ζs, Zs

)
+Rr,s

H (Z, ζ1, Z1, . . . , ζs, Zs),

where Rr,s
H is a germ at 0 of a holomorphic map from C

(2s+1)N to Er,
depending on H, whose restriction to M2s vanishes of order k− r− 2sl
at 0.
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Note that since H is a k-equivalence, it follows that detFz(0) �= 0,
and hence the right hand side of (9.3) is necessarily nonvanishing.

Proof. We prove the theorem by induction on s ≥ 1. We start first
with the case s = 1 and assume that H = (F,G) is a k-equivalence
between (M, 0) and (M ′, 0) with k > r + 2l. By conjugating (8.3) with
r replaced by r + l we obtain

(9.5) J r+lH(ζ)

≡ Ψr+l

(
1

det(Fz(Z1))
,J r+2lH(Z1), Z1, ζ

)
+Rr+l

H (ζ, Z1)

with Ψr+l and Rr+l
H as in Theorem 8.1. If we observe that (Z, ζ) ∈

M ⇐⇒ (ζ, Z) ∈ M, we conclude that the second term on the right
hand side of (9.5) vanishes at 0 of order k − r − 2l when (Z1, ζ) ∈
M. Our next goal will be to substitute (9.5) into (8.3) and to apply
Lemma 6.1. For this, we define polynomials q ∈ C[Λ] and q̃ ∈ C[Λ̃], for
Λ = x0 ∈ V0 := Er+2l

0
∼= Jr+2l

N,N and Λ̃ = x̃0 ∈ Ṽ0 := Er+l
0

∼= Jr+l
N,N , to be

the determinants of the parts of the jets Λ and Λ̃ obtained from the first
n rows and first n columns of the linear terms of Λ and Λ̃ respectively
(i.e., corresponding to detFz(Z) and to detFχ(ζ) for Λ = jr+2lH(Z)
and Λ̃ = jr+lH(ζ) respectively). We also set x1 = (Λ′, z′, Z, ζ, Z1) ∈
V1 := Jr+2l

n,d × C
n × C

N × C
N × C

N ∼= Er+2l
1 × C

3N , Ṽ1 := Er+l
1 × C

2N

and for θ ∈ C,

φ(θ,Λ,Λ′, z′, Z, ζ, Z1)

:=
(
Ψr+l(θ,Λ,Λ′, z′, Z1, ζ), ζ, Z

)
∈ Er+l × C

N × C
N .

(Observe that Er+l × C
2N = Ṽ0 × Ṽ1 by the definition of Ṽ0 and Ṽ1

above.) Then φ satisfies the assumptions of Lemma 6.1, in particular,
(6.3) holds since by (9.5) we have

q̃

(
Ψr+l

0

(
1

q(jr+2lH(0))
,J r+2lH(0), 0, 0

))
= detFχ(0),(9.6)

and the right hand side of (9.6) is nonvanishing whenever H = (F,G)
is a k-equivalence with k > 1.



equivalences of real submanifolds in complex space 337

From substituting (9.5) into (8.3) we obtain the identity

(9.7) J rH(Z) ≡ Ψr

 1

q̃
(
Ψr+l

0

(
1

q(jr+2lH(Z1))
,J r+2lH(Z1), Z1, ζ

)) ,
Ψr+l

(
1

q(jr+2lH(Z1))
,J r+2lH(Z1), Z1, ζ

)
, ζ, Z

+Rr,1
H (Z, ζ, Z1),

where the restriction of Rr,1
H to M2 ⊂ C

3N vanishes of order k − r − 2l
at the origin. Then for s = 1, (9.4) is a consequence of Lemma 6.1 with
qr
1 being the polynomial p given by the lemma. The required property

(9.3) follows from (9.6) and from the explicit formula for p in the lemma.
Now we assume that (9.3) and (9.4) hold for some fixed s ≥ 1 and

any r ≥ 0 and shall prove them for s + 1 and any r ≥ 0. We replace
the terms jr+2slH(Zs) and J r+2slH(Zs) by using (9.4) with s = 1 and
r replaced by r + 2sl. We obtain

J rH(Z)(9.8)

≡ Ψr,s

(
1

qr
s(Ψ

r+2sl,1
0 (α))

,Ψr+2sl,1(α), Z, ζ1, Z1, . . . , ζs, Zs

)
+Rr,s+1

H (Z, ζ1, Z1, . . . , ζs+1, Zs+1)

where

α =

(
1

qr+2sl
1 (jr+2l(s+1)H(Zs+1))

,J r+2l(s+1)H(Zs+1), Zs, ζs+1, Zs+1

)

with the restriction of Rr,s+1
H to M2(s+1) ⊂ C

(2(s+1)+1)N vanishing of
order k − r − 2l(s + 1). Similarly to the preceeding proof of (9.4) for
s = 1, the desired conclusion of the theorem follows by making use of
Lemma 6.1. q.e.d.

10. Reducing the number of parameters

The expression in the right-hand side of (9.4) depends on (2s+ 1)N
complex variables. Our goal in this section will be to reduce the variables
to only N variables, namely Z = (z, w, u) ∈ C

N . The main result of
this section is the following:
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Theorem 10.1. Under the assumptions of Theorem 8.1, there is
an integer s ≥ 0, a germ of a holomorphic map

Γ:
(
C × E2sl × C

N ,C × E2sl
0 × {0}

)
→ (CN , 0)(10.1)

with components in the ring R2sl
N , and an integer r ≥ 1 such that for

every k-equivalence H between (M, 0) and (M ′, 0) with k > 2sl, one has
for Z = (z, w, u) sufficiently small,

H(Z) = Γ
(

1
q(j2slH(0, 0, u))

,J 2slH(0, 0, u), Z
)

+O

(
k − 2sl
r

)
,(10.2)

where q is the polynomial q0s on J2sl
N,N given by Theorem 9.1.

Remark 10.2. The proof of Theorem 10.1 shows that the integer
s ≥ 0 in this theorem can be chosen to be the Segre number of M at 0
introduced in [4]. In particular, s = 0 if and only if M is totally real, in
which case the conclusion of Theorem 10.1 is obvious since Z = u. In
all other cases we have s ≥ 1.

Before proving Theorem 10.1, we shall state the following corollary,
which is of independent interest.

Corollary 10.3. Under the assumptions of Theorem 8.1 a formal
equivalence H between (M, 0) and (M ′, 0) is convergent if and only if
the power series j2slH(0, 0, u) is convergent in u ∈ C

d2.

Proof of Corollary 10.3. Suppose that H is a formal equivalence. If
H is convergent, it is clear that j2slH(0, 0, u) is also convergent. Con-
versely, if j2slH(0, 0, u) is convergent, then the first term on the right
hand side of (10.2) is a convergent power series in Z by composition.
Since H is a k-equivalence for every k, the remainder term is 0, and
hence H(Z) is also convergent by (10.2). q.e.d.

For the proof of Theorem 10.1, we begin by defining inductively a
sequence of germs of holomorphic maps

V κ : (Cκn × C
d2 , 0) → (CN , 0), κ = 0, 1, . . . ,

as follows. As before, we choose a holomorphic map Q from a neighbor-
hood of 0 in C

n × C
n × C

d1 × C
d2 to C

d1 satisfying (3.2) so that M is
given near 0 by (7.2). We put V 0(u) := (0, 0, u) ∈ C

n × C
d1 × C

d2 and

(10.3) V κ+1(t0, t1, . . . , tκ, u)

:=
(
t0, Q(t0, V κ(t1, . . . , tκ, u)), u

)
∈ C

n × C
d1 × C

d2
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for κ ≥ 0, t0, t1, . . . , tκ ∈ C
n and u ∈ C

d2 . It is easy to check that for
κ ≥ 0, (

V κ+1(t0, t1, . . . , tκ, u), V κ(t1, . . . , tκ, u)
)
∈ M,(10.4)

and hence also(
V κ(t1, . . . , tκ, u), V κ+1(t0, t1, . . . , tκ, u)

)
∈ M.(10.5)

It will be convenient to introduce for every s ≥ 1, the germ at 0 of a
holomorphic map

(10.6) Ξs(t0, . . . , t2s−1, u) :=(
V 2s(t0, ..., t2s−1, u), V 2s−1(t1, ..., t2s−1, u), ..., V 1(t2s−1, u), V 0(u)

)
.

Observe that the map

(10.7) C
2sn × C

d2 � (t0, . . . , t2s−1, u)

�→ Ξs(t0, . . . , t2s−1, u) ∈ M2s ⊂ C
(2s+1)N

parametrizes a germ at 0 of the submanifold of M2s given by{
(Z, ζ1, Z1, . . . , ζs, Zs) ∈ M2s : Zs = (0, 0, u)

}
.

In this notation we have the following consequence of Theorem 9.1.

Corollary 10.4. Under the assumptions of Theorem 8.1, for any
integer s ≥ 1, there exists a germ of a holomorphic map

Φs :
(
C × E2sl × C

2sn+d2 ,C × E2sl
0 × {0}

)
→ (CN , 0)(10.8)

whose components are in the ring R2sl
2sn+d2

such that, if H is a k-
equivalence between (M, 0) and (M ′, 0) with k > 2sl, then

H(V 2s(t0, . . . , t2s−1, u))(10.9)

≡ Φs
( 1
q0s(j2slH(0, 0, u))

,J 2slH(0, 0, u), t0, . . . , t2s−1, u
)

+ rs
H(t0, . . . , t2s−1, u),

where q0s is the polynomial given by Theorem 9.1 and rs
H is a germ at 0

of a holomorphic map from C
2ns+d2 to C

N that vanishes of order k−2sl
at the origin.
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Proof. We use (9.4) for r = 0 and substitute Ξs(t0, . . . , t2s−1, u) for
(Z, ζ1, Z1, . . . , ζs, Zs), where Ξs is given by (10.6). The corollary easily
follows by taking

Φs(θ,Λ,Λ′, z′, t0, . . . , t2s−1, u) := Ψ0,s
(
θ,Λ,Λ′, z′,Ξs(t0, . . . , t2s−1, u)

)
and rs

H := R0,s ◦ Ξs. q.e.d.

We next define a sequence of germs vκ at 0 of holomorphic maps
from C

κn to C
n+d1 , κ ≥ 0, by

V s(t0, . . . , tκ−1, u)|u=0 =
(
vκ(t0, . . . , tκ−1), 0

)
∈ C

n+d1 × C
d2 .(10.10)

Recall that the submanifold M0 ⊂ C
n+d1 defined by (3.3) is of finite

type at 0. The map vκ defined above is the κth Segre map of M0 in
the sense of [5]. Hence by [5] (Theorem 3.1.9) the generic rank of vκ

equals n + d1 for κ sufficiently large. (See also [3] for a different and
simpler proof of this result.) As in [4] we call the smallest such κ the
Segre number of M0 at 0 and denote it by s. By [5] (Lemma 4.1.3) we
have

max
(x1,... ,xs)∈O

rk
∂v2s

∂(t0, ts+1, ts+2, . . . , t2s−1)
(p̂) = n+ d1(10.11)

and

v2s(p̂) ≡ 0,(10.12)

with

p̂ := (0, x1, . . . , xs−1, xs, xs−1, . . . , x1),

where O is an arbitrary sufficiently small neighborhood of 0 in C
sn. Note

that in (10.11) we differentiate only with respect to the first vector t0

and the last s− 1 vectors ts+1, . . . , t2s−1.
For the proof of Theorem 10.1, we shall also need the following

special case of Proposition 4.1.18 in [5].

Lemma 10.5. Let

V : (Cr1 × C
r2 , 0) → (CN , 0), r2 ≥ N,

be a germ of a holomorphic map satisfying V (x, ξ)|ξ=0 ≡ 0, with (x, ξ) ∈
C

r1 × C
r2, and for any sufficiently small neighborhood O of 0 in C

r1

max
x∈O

{
rk
∂V

∂ξ
(x, 0)

}
= N.(10.13)



equivalences of real submanifolds in complex space 341

Then there exist germs of holomorphic maps

δ : (Cr1 , 0) → C, δ(x) �≡ 0, φ : (Cr1 × C
N , 0) → (Cr2 , 0)(10.14)

satisfying

V

(
x, φ

(
x,

Z

δ(x)

))
≡ Z(10.15)

for all (x, Z) ∈ C
r1 ×C

N such that δ(x) �= 0 and both x and Z/δ(x) are
sufficiently small.

Proof of Theorem 10.1. We shall take s to be the Segre number of
M0 at 0. In the notation of Lemma 10.5 we take x = (x1, . . . , xs) ∈ C

sn,
ξ = (y, u) = (y0, y1, . . . , ys−1, u) ∈ C

sn × C
d2 and set

L(x, y, u) := (y0, x1, . . . , xs, xs−1 + ys−1, . . . , x1 + y1, u),(10.16)

V (x, ξ) = V (x, y, u) := V 2s(L(x, y, u)),

where V 2s is defined by (10.3). Here r1 := sn and r2 := sn + d2.
Observe that L is a linear automorphism of C

2sn+d2 . It follows from
(10.10) and (10.12) that V (x, 0) ≡ 0. Furthermore it follows from (10.3),
(10.10) and (10.11) that condition (10.13) also holds. Hence we can
apply Lemma 10.5. Let

δ : (Csn, 0) → C, φ : (Csn+N , 0) → (Csn+d2 , 0)

be given by the lemma, so that (10.15) holds. By Corollary 10.4, we
obtain

H(Z)(10.17)

≡ Φs

(
1

q0s(j2slH(0, 0, u))
,J 2slH(0, 0, u), L

(
x, φ

(
x,

Z

δ(x)

)))
+ rs

H

(
L

(
x, φ

(
x,

Z

δ(x)

)))
,

with Z = (z, w, u). By a simple change of Φs and rs
H , we obtain from

(10.17) the equivalent identity

H(Z) = Φ̃s

(
1

q0s(j2slH(0, 0, u))
,J 2slH(0, 0, u),

Z

δ(x)
, x

)
(10.18)

+ r̃s
H

(
Z

δ(x)
, x

)
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for all (x, Z) ∈ C
ns+N such that δ(x) �= 0 and both x and Z/δ(x) are

sufficiently small. Here δ and Φ̃s are independent of H, the components
of Φ̃s are in the ring R2sl

sn+N and r̃s
H is a germ at 0 in C

sn+N , depending
on H and vanishing of order k − 2sl at 0.

Observe that the left-hand side of (10.18) is independent of the pa-
rameter x ∈ C

ns, whereas the right-hand side contains this parameter.
We choose x0 ∈ C

ns such that the function λ̃ �→ δ(λ̃x0) does not vanish
identically for λ̃ in a neighborhood of 0 in C, and put x = λ̃x0 in (10.18).
For convenience we consider a holomorphic change of variable λ = h(λ̃)
near the origin in C, where h is determined by the identity δ(λ̃x0) = λm

for an appropriate integer m ≥ 0. By a further simple change of Φ̃s and
r̃s
H , we conclude from (10.18) that the identity

H(Z) ≡ Φ̂s

(
1

q0s(j2slH(0, 0, u))
,J 2slH(0, 0, u),

Z

λm
, λ

)
(10.19)

+ r̂s
H

(
Z

λm
, λ

)
,

holds for all (λ,Z) = (λ, z, w, u) ∈ C
1+N such that λ �= 0 and both

λ and Z/λm are sufficiently small. Again Φ̂s is independent of H and
its components are in the ring R2sl

N+1 and r̂s
H is a germ at 0 in C

N+1,
depending on H and vanishing of order k − 2sl at 0.

We next expand both sides of (10.19) in Laurent series in λ and
equate the constant terms. The required properties of those terms are
established in the following lemma.

Lemma 10.6. Let V0 and V1 be finite-dimensional vector spaces
with fixed linear coordinates x0 and x1 respectively, and P (x0, x1, λ) be
in the ring R(V0 × V1 × C, V0) with P (x0, 0, 0) ≡ 0. For a fixed integer
m ≥ 0, consider the Laurent series expansion

P
(
x0,

x1

λm
, λ
)

=
∑
ν∈Z

cν(x0, x1)λν .

Then c0(x0, 0) ≡ 0 and, for every ν ∈ Z, cν is in the ring R(V0×V1, V0).
In addition, if P = O(K) for some integer K > 0, then cν = O

(
K−ν
m+1

)
for all ν ∈ Z such that ν ≤ K.

Proof. We expand P in power series of the form

P (x0, x1, λ) =
∑

Pβ,µ(x0)x
β
1λ

µ =
∑

Pα,β,µx
α
0x

β
1λ

µ,(10.20)
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with P0,0(x0) ≡ 0, where α ∈ Z
dim V0
+ , β ∈ Z

dim V1
+ , µ ∈ Z+. Then Pβ,µ

is a polynomial in x0 satisfying the estimates (6.2). Since

cν(x0, x1) =
∑
β,µ

µ−m|β|=ν

Pβ,µ(x0)x
β
1 =

∑
α,β,µ

µ−m|β|=ν

Pα,β,µx
α
0x

β
1 ,(10.21)

we conclude that c0(x0, 0) ≡ P0,0(x0) ≡ 0 and cν ∈ R(V0 × V1, V0)
for every ν ∈ Z. Now assume that P = O(K). This means that
µ + |α| + |β| ≥ K holds whenever Pα,β,µ �= 0. For fixed ν ∈ Z, this
inequality together with µ = ν + m|β| implies, in particular, that ν +
(m + 1)(|α| + |β|) ≥ K in the last sum of (10.21) or, equivalently,
|α| + |β| ≥ K−ν

m+1 in that sum. This completes the proof of the lemma.
q.e.d.

We now complete the proof of Theorem 10.1. We expand the right-
hand side of (10.19) in Laurent series in λ. Since the left-hand side is
independent of λ, we equate it to the constant term of the Laurent series.
The required conclusion of Theorem 10.1 with r := m + 1 follows by
applying Lemma 10.6 for ν = 0 to Φ̂s with V0 := C×E2sl

0 , V1 = E2sl
1 ×C

N

and to r̂s
H with V0 := 0, V1 := C

N . The proof of Theorem 10.1 is now
complete. q.e.d.

11. Equations in jet spaces

In Theorem 10.1 we showed that every k-equivalence H between
(M, 0) and (M ′, 0) for k sufficiently large satisfies the identity (10.2), i.e.,
is parametrized up to the given order by the jet j2slH(0, 0, u). However,
it will be more convenient to regard

ΘH(u) :=
(

1
q(j2slH(0, 0, u))

,J 2slH(0, 0, u)
)

as the main parameter since the parametrization then becomes polyno-
mial rather than rational. Our goal in this section is to give a set of
equations such that any germ at 0 of a real-analytic map R

d2 � u �→
Θ(u) ∈ C × E2sl satisfies these equations if and only if the mapping
C

N � (z, w, u) �→ Γ(Θ(u), z, w, u) ∈ C
N is a germ at 0 of a holomorphic

self map of C
N sending M into M ′; here Γ is the mapping given by

(10.1).
We shall need a real analogue of the ring R(V, V0) defined in §6.

Given a finite dimensional real vector spaceW and a real vector subspace
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W0 ⊂ W , define RR(W,W0) to be the ring of all germs of real valued
real-analytic functions f at W0 in W such that all partial derivatives
∂αf |W0 are real polynomial functions on W0. In the following we shall
consider the spaces C and E2sl as real vector spaces and real-analytic
functions on these spaces with respect to real and imaginary parts of
vectors in these spaces.

Theorem 11.1. Assume that the conditions of Theorem 10.1 are
satisfied, and let s, q, and Γ be given by that theorem. Then there exist
a finite collection of functions fj ∈ RR

(
C×E2sl ×R

d2 ,C×E2sl
0 ×{0}

)
,

1 ≤ j ≤ j0, and positive real numbers a and b, with b ≥ 2sla, such that
the following hold:

(i) For every k-equivalence H between (M, 0) and (M ′, 0) with k >
b/a, one has

fj

(
1

q(j2slH(0, 0, u))
,J 2slH(0, 0, u), u

)
= O(|u|ak−b), 1 ≤ j ≤ j0.

(11.1)

(ii) For every germ Θ: (Rd2 , 0) → (C×E2sl,C×E2sl
0 ) of a real-analytic

map satisfying

fj(Θ(u), u) ≡ 0, 1 ≤ j ≤ j0,(11.2)

the germ ΓΘ : (Cn × C
d1 × R

d2 , 0) → (CN , 0) of the real-analytic
map defined by

ΓΘ(z, w, u) := Γ(Θ(u), z, w, u),(11.3)

extends to a germ at 0 of a holomorphic map of C
N into itself

sending (M, 0) into (M ′, 0).

Remark 11.2. It should be mentioned that the holomorphic ex-
tension of the germ ΓΘ defined by (11.3) need not be invertible.

Before starting the proof of Theorem 11.1 we shall need a composi-
tion lemma for the rings RR(W,W0) whose complex analogue is a special
case of Lemma 6.1.

Lemma 11.3. Let W0, W1 and W̃ be finite-dimensional real vector
spaces with fixed bases. Denote by x0, x1 and x̃ the corresponding real
linear coordinates in these spaces. Let φ : (W0 ×W1,W0) → (W̃ , 0) be



equivalences of real submanifolds in complex space 345

a germ at W0 of a real-analytic map whose components are in the ring
RR(W0 × W1,W0). Then, for every germ f̃ : (W̃ , 0) → R of a real-
analytic map, there exists f ∈ RR(W0 ×W1,W0) such that f(x0, x1) =
f̃(φ(x0, x1)).

Lemma 11.3 is a straightforward consequence of the chain rule and
is left to you, gentle reader.

Proof of Theorem 11.1. We continue to work with normal coordi-
nates near the origin Z = (z, w, u) forM . We fix a local parametrization
of M at 0 of the form

R
2n+d1 × R

d2 � (t, u) �→ (z(t, u), w(t, u), u) ∈M ⊂ C
N .

Let ρ′(Z ′, Z ′) =
(
ρ1′(Z ′, Z ′), . . . , ρd′(Z ′, Z ′)

)
be a defining function for

M ′ near 0 and Γ be given by Theorem 10.1. For 1 ≤ i ≤ d, α ∈ Z
2n+d1
+

and Θ ∈ C × E2sl, we consider the functions

f i
α(Θ, u) :=

∂

∂tα
ρi′
(
Γ
(
Θ, z(t, u), w(t, u), u

)
,Γ
(
Θ, z(t, u), w(t, u), u

))∣∣∣
t=0

.

(11.4)

It follows from the properties of Γ, the chain rule and Lemma 11.3 that
the f i

α are in the ring RR

(
C × E2sl × R

d2 ,C × E2sl
0 × {0}

)
. If follows

from the definition that we can think of this ring as a subring of the
following formal power series ring with polynomial coefficients

R
[
Re θ, Im θ,Re Λ, Im Λ

][[
Re Λ′, Im Λ′,Re z′, Im z′, u

]]
,(11.5)

where (θ,Λ,Λ′, z′) are complex coordinates in

C × J2sl
N,N × J2sl

n,d × C
n = C × E2sl.

It is a standard fact from commutative algebra that any formal power
series ring with coefficients in a Noetherian ring is again Noetherian; in
particular, the ring (11.5) is Noetherian. Hence there exists an integer
m0 ≥ 0 such that the subset{

f i
α : 1 ≤ i ≤ d, |α| ≤ m0

}
(11.6)

generates the same ideal in the ring (11.5) as all the f i
α, 1 ≤ i ≤ d,

α ∈ Z
2n+d1
+ .
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By the identity (10.2) and the definition of k-equivalence we have
for 1 ≤ i ≤ d and |α| ≤ m0,

f i
α

(
1

q(j2slH(0, 0, u))
,J 2slH(0, 0, u), u

)
(11.7)

=
∂

∂tα
ρi′
(
H
(
z(t, u), w(t, u), u

)
, H
(
z(t, u), w(t, u), u

))∣∣∣
t=0

+O

(
k − 2sl
r

−m0

)
= O(k −m0) +O

(
k − 2sl
r

−m0

)
.

Hence we proved (11.1) with the collection fj , 1 ≤ j ≤ j0, being the set
of functions given by (11.6) and a := 1/r ≤ 1, b := m0 + (2sl/r). This
completes the proof of (i).

We shall now prove (ii). By the choice of the set (11.6), every germ
f i

α(Θ, u) can be written in the form

f i
α(Θ, u) ≡

j0∑
j=1

cj(Θ, u)fj(Θ, u),(11.8)

where cj(Θ, u) are in the ring given by (11.5). Since Θ(0) ∈ C × E2sl
0 ,

the germ Θ(u) can be substituted for Θ in each cj(Θ, u) to obtain a
formal power series in R[[u]]. From (11.8) and the assumption (11.2) on
Θ(u) we obtain the following identities of convergent power series in u:

f i
α

(
Θ(u), u

)
≡ 0, 1 ≤ i ≤ d, α ∈ Z

2n+d1
+ .

In view of (11.4) we conclude that ρ′(ΓΘ(z, w, u),ΓΘ(z, w, u)) = 0 for
(z, w, u) ∈M near the origin. This completes the proof of (ii) and hence
that of Theorem 11.1. q.e.d.

12. Artin and Wavrik theorems

We state two approximation results due to Artin [1] and Wavrik [24]
which will be used (in conjunction with Theorem 11.1) in the proof of
Theorem 5.1. We start by stating the result of Artin, which implies
that any formal solution of a system of real-analytic equations may be
approximated to any preassigned order by a convergent solution of that
system. We use the superscripts f , c, a to denote formal, convergent
and approximate solutions respectively.
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Theorem 12.1 ([1]). Let gj(t, u) ∈ R{t, u}, 1 ≤ j ≤ j0, be conver-
gent power series in t = (t1, . . . , tδ) and u = (u1, . . . , uγ). Then for any
integer κ ≥ 1 and any formal power series tf (u) ∈

(
R[[u]]

)δ, satisfying

tf (0) = 0, gj(tf (u), u) ≡ 0, 1 ≤ j ≤ j0,

there exists a convergent power series tc(u) ∈
(
R{u}

)δ satisfying

tc(u) = tf (u) +O(|u|κ), gj(tc(u), u) ≡ 0, 1 ≤ j ≤ j0.

We now turn to a result of Wavrik which states that an approximate
formal solution of a system of formal equations of a certain type may be
approximated by an exact formal solution of that system. (This result
generalizes another result of Artin [2] which deals with more special
systems of equations. See also Denef-Lipshitz [15] for related results.)

Theorem 12.2 ([24]). Let hj(x, y, u) ∈ R
[
x
][[
y, u
]]
, 1 ≤ j ≤ j0,

be formal power series in y = (y1, . . . , yβ) and u = (u1, . . . , uγ) with
coefficients which are polynomials in x = (x1, . . . , xα). Then for any
integer κ ≥ 1, there exists an integer η ≥ 1 such that, for any formal
power series xa(u) ∈

(
R[[u]]

)α, ya(u) ∈
(
R[[u]]

)β satisfying

ya(0) = 0, hj(xa(u), ya(u), u) = O(|u|η), 1 ≤ j ≤ j0,

there exist formal power series xf (u) ∈
(
R[[u]]

)α, yf (u) ∈
(
R[[u]]

)β
satisfying

xf (u) = xa(u) +O(|u|κ), yf (u) = ya(u) +O(|u|κ),

hj(xf (u), yf (u), u) ≡ 0, 1 ≤ j ≤ j0.
(12.1)

An immediate corollary of Theorems 12.1 and 12.2, which we shall
need, is the following.

Corollary 12.3. Let X, Y , U be real finite-dimensional vector
spaces with fixed linear coordinates x = (x1, . . . , xα), y = (y1, . . . , yβ),
u = (u1, . . . , uγ) respectively and let hj(x, y, u), 1 ≤ j ≤ j0, be germs of
functions in the ring RR(X × Y × U,X). Then for any integer κ ≥ 1,
there exists an integer η ≥ 1 such that, for any germs at 0 of real-analytic
maps xa : (U, 0) → X, ya : (U, 0) → Y satisfying

ya(0) = 0, hj(xa(u), ya(u), u) = O(|u|η), 1 ≤ j ≤ j0,



348 m.s. baouendi, l.p. rothschild, d. zaitsev

there exists germs at 0 of real-analytic maps xc : (U, 0) → X, yc :
(U, 0) → Y satisfying

xc(u) = xa(u) +O(|u|κ), yc(u) = ya(u) +O(|u|κ),
hj(xc(u), yc(u), u) ≡ 0, 1 ≤ j ≤ j0.

Proof. Let hj ∈ RR(X × Y × U,X), 1 ≤ j ≤ j0, be given. It
follows from the definition of the ring RR(X × Y × U,X) that hj can
be viewed as an element of R

[
x
][[
y, u
]]

. By Theorem 12.2, given κ ≥ 1,
there exists η ≥ 1 such that if xa and ya are as in the corollary, there
exist xf (u) ∈

(
R[[u]]

)α, yf (u) ∈
(
R[[u]]

)β satisfying (12.1). We may
now apply Theorem 12.1 with t = (x− xa(0), y) (and hence δ = α+ β)
to conclude that there exists tc(u) = (xc(u) − xa(0), yc(u)) with xc, yc

satisfying the conclusion of the corollary. q.e.d.

13. End of proof of Theorem 5.1

We keep the notation used in §11 and, in particular, that of The-
orem 11.1. Let s, q, and Γ be given by Theorem 10.1, and let H be
a k-equivalence between (M, 0) and (M ′, 0) with k > 2sl. Define the
germ ΘH : (Rd2 , 0) → (C × E2sl,C × E2sl

0 ) of a real-analytic map by

ΘH(u) :=
(

1
q(j2slH(0, 0, u))

,J 2slH(0, 0, u)
)
.

Recall that q(j2slH(0, 0, 0)) �= 0 by (9.3). Let fj , 1 ≤ j ≤ j0, be given by
Theorem 11.1. By part (i) of that theorem we have for k > b/a ≥ 2sl,

fj(ΘH(u), u) = O(|u|ak−b), 1 ≤ j ≤ j0.(13.1)

We shall now apply Corollary 12.3 to the system of equations fj(Θ(u), u)
= 0, 1 ≤ j ≤ j0. Indeed, if Θ: (Rd2 , 0) →

(
C×E2sl,C×E2sl

0

)
is a germ

of a real-analytic map, we may write Θ(u) = (x(u), y(u)) ∈ (C×E2sl
0 )×

E2sl
1 so that the system of equations above becomes fj(x(u), y(u), u) =

0, 1 ≤ j ≤ j0. Given κ > 1 we conclude by Corollary 12.3 that there
exists η ≥ 1 such that, if ak − b ≥ η, the identity (13.1) implies the
existence of a germ Θc : (Rd2 , 0) →

(
C×E2sl,C×E2sl

0

)
of a real-analytic

map satisfying

Θc(u) = ΘH(u) +O(|u|κ), fj(Θc(u), u) ≡ 0, 1 ≤ j ≤ j0.(13.2)
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Then, by Theorem 11.1 (ii), we conclude that ΓΘc defined by (11.3)
extends as a germ of a holomorphic map (CN , 0) → (CN , 0) sending
(M, 0) into (M ′, 0). We take Ĥ(Z) := ΓΘc(Z). The first identity in
(13.2) implies

Ĥ(Z) = ΓΘH
(Z) +O(|Z|κ).(13.3)

On the other hand, by Theorem 10.1 and, in particular, (10.2), we have
for k > 2sl

H(Z) − ΓΘH
(Z) = O

(
k − 2sl
r

)
.(13.4)

By increasing k if necessary, we can assume that (k−2sl)/r ≥ κ so that
Ĥ(Z) = H(Z)+O(|Z|κ) by (13.3) and (13.4). Since H is invertible and
κ > 1, it follows that Ĥ is also invertible. The proof of Theorem 5.1 is
now complete.

14. CR equivalences

If M and M ′ are real-analytic CR submanifolds of C
N , with p ∈M

and p′ ∈ M ′, and h : (M,p) → (M ′, p′) is a germ of a mapping of class
Ck, 1 ≤ k ≤ ∞, recall that h is a germ of a CR map of class Ck if
the differential of h sends any (0, 1) vector on M to a (0, 1) vector on
M ′. If, in addition, h is a diffeomorphism at p we shall say that h is a
CR equivalence of class Ck between (M,p) and (M ′, p′). It is standard
that the Taylor power series of any CR equivalence of class C∞ between
(M,p) and (M ′, p′) induces a formal equivalence between (M,p) and
(M ′, p′). Similarly, the kth Taylor polynomial of any CR equivalence
of class Ck induces a k-equivalence (see, e.g., [4], Proposition 1.7.14).
Hence Corollary 1.2 implies the following.

Corollary 14.1. Let M ⊂ C
N be a connected real-analytic CR

submanifold. Then there exists a closed, proper real-analytic subvari-
ety V ⊂ M such that for every p ∈ M \ V , every real-analytic CR
submanifold M ′ ⊂ C

N , and every p′ ∈M ′, the following are equivalent:

(i) (M,p) and (M ′, p′) are k-equivalent for all k > 1.

(ii) (M,p) and (M ′, p′) are CR equivalent of class Ck for all finite
k > 1.

(iii) (M,p) and (M ′, p′) are formally equivalent.
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(iv) (M,p) and (M ′, p′) are CR equivalent of class C∞.

(v) (M,p) and (M ′, p′) are biholomorphically equivalent.
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