
j. differential geometry

58 (2001) 421-455

AUTOMORPHISMS AND EMBEDDINGS OF
SURFACES AND QUADRUPLE POINTS OF

REGULAR HOMOTOPIES

TAHL NOWIK

Abstract
Let F be a closed surface. If i, i′ : F → R

3 are two regularly homotopic
generic immersions, then it has been shown in [5] that all generic regular
homotopies between i and i′ have the same number mod 2 of quadruple
points. We denote this number by Q(i, i′) ∈ Z/2. For F orientable we
show that for any generic immersion i : F → R

3 and any diffeomorphism
h : F → F such that i and i ◦ h are regularly homotopic,

Q(i, i ◦ h) =

(
rank(h∗ − Id) + (n + 1)ε(h)

)
mod 2,

where h∗ is the map induced by h on H1(F, Z/2), n is the genus of F and
ε(h) is 0 or 1 according to whether h is orientation preserving or reversing,
respectively.

We then give an explicit formula for Q(e, e′) for any two regularly ho-
motopic embeddings e, e′ : F → R

3. The formula is in terms of homological
data extracted from the two embeddings.

1. Introduction

For F a closed surface and i, i′ : F → R
3 two regularly homotopic

generic immersions, we are interested in the number mod 2 of quadruple
points occurring in generic regular homotopies between i and i′. It has
been shown in [5] that this number is the same for all such regular homo-
topies, and so it is a function of i and i′ which we denote Q(i, i′) ∈ Z/2.
There then arises the problem of finding explicit formulae for Q(i, i′).
(Generic immersions and generic regular homotopies are defined in a
natural way. For a brief discussion see [4].)
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Assuming F is orientable, we give an explicit formula for Q(i, i ◦ h),
where i : F → R

3 is any generic immersion and h : F → F is any diffeo-
morphism such that i and i ◦ h are regularly homotopic (Theorem 5.6:
Also fully stated in Abstract above).

Using the formula for Q(i, i ◦ h) we then give an explicit formula
for Q(e, e′) for any two regularly homotopic embeddings e, e′ : F →
R

3 (Theorem 7.3). This formula depends on the following data: If
e : F → R

3 is an embedding then e(F ) splits R
3 into two pieces, one

compact and one noncompact, which will be denoted M0(e) and M1(e)
respectively. By restriction of range e induces maps ek : F → Mk(e)
(k = 0, 1) and let Ak(e) ⊆ H1(F,Z/2) be the kernel of the map induced
by ek on H1(·,Z/2). Let o(e) be the orientation on F which is induced
from M0(e) to ∂M0(e) = e(F ) and then via e to F . Our formula
for Q(e, e′) will be in terms of the two triplets A0(e), A1(e), o(e) and
A0(e′), A1(e′), o(e′). We will also extend our formula to finite unions of
closed orientable surfaces.

For two special cases a formula for Q(e, e′), for e, e′ embeddings, has
already been known: The case where F is a sphere has appeared in [4]
and [5], and the case where F is a torus has appeared in [5].

Based on the Smale-Hirsch Theorem ([2]) Pinkall in [6] gave a useful
tool for determining when two immersions i, i′ : F → R

3 are regularly
homotopic, namely, any immersion i : F → R

3 induces a quadratic form
gi : H1(F,Z/2) → Z/2, and two immersions i, i′ : F → R

3 are regularly
homotopic iff gi = gi′ . Let M̂ denote the group of all diffeomorphisms
h : F → F up to isotopy. Given i : F → R

3 we will be interested in the
group of all h ∈ M̂ such that Q(i, i ◦ h) is defined, that is the group of
all h ∈ M̂ such that i and i ◦h are regularly homotopic. It follows from
the above criterion that this is precisely the group M̂gi of all h ∈ M̂
which preserve the quadratic form gi on H1(F,Z/2). We are thus led
to study the groups M̂g, starting with their index 2 subgroup Mg of
orientation preserving maps.

The plan of the paper is as follows: In Section 2 we present the
known results on quadratic forms which we will need. In Section 3 we
show that the expression rank(T − Id) mod 2 appearing in our proposed
formula for Q(i, i◦h) defines a homomorphism on appropriate subgroups
of GL(H1(F,Z/2)) (Theorem 3.3). In Section 4 we show that (except
for one special case) the group Mg is generated by a certain family of
Dehn twists and squares of Dehn twists (Theorem 4.9). The formula
for Q(i, i ◦ h) is then proved in Section 5. In Section 6 we study further
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properties of quadratic forms. In Section 7 we give the precise statement
of our formula for Q(e, e′) for e, e′ embeddings, which is then proved in
Section 8.

2. Quadratic Forms over Z/2

In this section we summarize the definitions and known properties
of quadratic forms over Z/2 which will be needed in our work. Proofs
to all facts stated in this section may be found in [1], except for those
relating to the Arf invariant, which may be found in [3].

Let V be a finite dimensional vector space over Z/2. A function
g : V → Z/2 is called a quadratic form if g satisfies: g(x+ y) = g(x) +
g(y) + B(x, y) for all x, y ∈ V , where B(x, y) is a bilinear form. The
following properties follow:

(a) g(0) = 0.
(b) B(x, x) = 0 for all x ∈ V .
(c) B(x, y) = B(y, x) for all x, y ∈ V .
g is called nondegenerate if B is nondegenerate, i.e., for any 0 �= x ∈

V there is y ∈ V with B(x, y) �= 0.

Proposition 2.1. If g is nondegenerate then V is necessarily of
even dimension and there exists a basis a1, . . . , an, b1, . . . , bn for V such
that B(ai, aj) = B(bi, bj) = 0 and B(ai, bj) = δij for all 1 ≤ i, j ≤ n
and such that one of the following two possibilities holds:

(1) g(ai) = g(bi) = 0 for i = 1, . . . , n.

(2) g(a1) = g(b1) = 1 and g(ai) = g(bi) = 0 for i = 2, . . . , n.

g is completely determined by the values g(vi) and B(vi, vj) on a ba-
sis v1, . . . , v2n and so for given dimension 2n there are two isomorphism
classes of nondegenerate quadratic forms, and they are in fact distinct.
The invariant Arf(g) ∈ Z/2 is then defined to be 0 or 1 according to
whether (1) or (2) of Proposition 2.1 holds respectively. (In the more
general setting of [1], this is equivalent to g having index n or n − 1
respectively.) The Arf invariant is additive in the following sense:

Proposition 2.2. If gi : Vi → Z/2, i = 1, 2, are nondegenerate
quadratic forms, then g1⊕g2 : V1⊕V2 → Z/2 defined by (g1⊕g2)(x1, x2)
= g1(x1)+g2(x2) is a nondegenerate quadratic form with Arf(g1⊕g2) =
Arf(g1) + Arf(g2).
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From now on we will always assume that our quadratic form g is
nondegenerate.

Proposition 2.3. If a1, . . . , ak ∈ V are independent and B(ai, aj)
= 0 for all 1 ≤ i, j ≤ k then there are b1, . . . , bk ∈ V with B(bi, bj) = 0
and B(ai, bj) = δij for all 1 ≤ i, j ≤ k (a1, . . . , ak, b1, . . . , bk are then
necessarily independent).

A linear map T : V → V is called orthogonal with respect to g if
g(T (x)) = g(x) for all x ∈ V . It then follows that B(T (x), T (y)) =
B(x, y) for all x, y ∈ V and that T is invertible. The group of all
orthogonal maps of V with respect to g will be denoted O(V, g).

Definition 2.4. Given a ∈ V , define Ta : V → V by Ta(x) =
x+B(x, a)a.

Proposition 2.5. Ta ∈ O(V, g) iff g(a) = 1 or a = 0.

Theorem 2.6 (Cartan, Dieudonne). Except for the case when
dimV = 4 and Arf(g) = 0, O(V, g) is generated by the elements Ta

with g(a) = 1.

Theorem 2.6 will also follow from Theorem 4.9 below. See Re-
mark 4.10.

IfW ⊆ V is a subspace, then the conjugate spaceW⊥ ofW is defined
by W⊥ = {x ∈ V : B(x, y) = 0 for all y ∈ W}. If a ∈ V we similarly
define a⊥ = {x ∈ V : B(x, a) = 0}. Let Id denote the identity map on
V , let Im(T ) denote the image of T and let F(T ) = {x ∈ V : T (x) = x}.

Proposition 2.7. If T ∈ O(V, g) then Im(T − Id) = (F(T ))⊥.

3. A Homomorphism from O(V, g) to Z/2.

Let a ∈ V , then F(Ta) = a⊥ and so if a �= 0 dimF(Ta) = 2n − 1,
where 2n = dimV .

Lemma 3.1. Let T ∈ O(V, g) and a ∈ V with g(a) = 1.

(1) If F(T ) ⊆ F(Ta) then dimF(T ◦ Ta) = dimF(T ) + 1.

(2) If F(T ) �⊆ F(Ta) then dimF(T ◦ Ta) = dimF(T ) − 1.

Proof. We first note:

(a) If x �∈ a⊥ then B(x, a) = 1 so Ta(x) = x + a and so T ◦ Ta(x) =
T (x+ a).
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(b) For any x ∈ V , if T (x + a) = x then g(x) = g(T (x + a)) =
g(x+ a) = g(x) + g(a) + B(x, a) and so B(x, a) = g(a) = 1, that
is x �∈ a⊥.

We get that F(T ◦ Ta) �⊆ a⊥ iff ∃x �∈ a⊥ with T (x + a) = x iff
∃x ∈ V with T (x + a) = x iff ∃x ∈ V with (T − Id)(x + a) = a
iff a ∈ Im(T − Id) = F(T )⊥ (Proposition 2.7) iff F(T ) ⊆ a⊥. Since
a⊥ = F(Ta) we conclude that F(T ◦ Ta) �⊆ F(Ta) iff F(T ) ⊆ F(Ta).

Clearly F(T ) ∩ F(Ta) = F(T ◦ Ta) ∩ F(Ta) and let k denote the
dimension of this subspace. F(Ta) is of codimension 1 in V and so it
follows:

(1) If F(T ) ⊆ F(Ta) then dimF(T ) = k and F(T ◦ Ta) �⊆ F(Ta) and
so dimF(T ◦ Ta) = k + 1.

(2) If F(T ) �⊆ F(Ta) then dimF(T ) = k + 1 and F(T ◦ Ta) ⊆ F(Ta)
and so dimF(T ◦ Ta) = k.

q.e.d.

We now define ψ : O(V, g) → Z/2 by:

ψ(T ) = rank(T − Id) mod 2.

Remark 3.2. Since F(T ) = ker(T − Id) (or by Proposition 2.7)
we may also write: ψ(T ) = codimF(T ) mod 2, and since V is of even
dimension we also have: ψ(T ) = dimF(T ) mod 2.

Theorem 3.3. ψ : O(V, g) → Z/2 is a (nontrivial) homomorphism.

Proof. We will be using the equivalent definition

ψ(T ) = dimF(T ) mod 2

of Remark 3.2. Assume first that (V, g) is not of the special case excluded
from Theorem 2.6, and so O(V, g) is generated by the elements Ta with
g(a) = 1. If T = Ta1 ◦· · ·◦Tak

(g(ai) = 1) then since ψ(Id) = dimV mod
2 = 0, induction on Lemma 3.1 implies ψ(T ) = k mod 2 which clearly
implies that ψ is a homomorphism.

We are left with the case dimV = 4,Arf(g) = 0. By Proposition 2.2,
(V, g) ∼= (V ′ ⊕ V ′, g′ ⊕ g′) where dimV ′ = 2,Arf(g′) = 1. We identify
V with V ′ ⊕ V ′ via such an isomorphism. The set of all elements in V
with g = 1 is V1∪V2 where V1 = {(x, 0) : 0 �= x ∈ V ′} and V2 = {(0, x) :
0 �= x ∈ V ′}. If a ∈ V1 and b ∈ V2 then B(a, b) = 0, whereas if a �= b



426 tahl nowik

are in the same Vk then B(a, b) = 1. It follows that any T ∈ O(V, g)
must either map each Vk into itself or map V1 into V2 and V2 into V1.
So T is of the form (x, y) �→ (T1(x), T2(y)) or (x, y) �→ (T1(y), T2(x))
where T1, T2 ∈ O(V ′, g′) (= GL(V ′)). Such a map will be denoted by
(T1, T2)0 or (T1, T2)1 respectively. If T = (T1, T2)0 then T (x, y) = (x, y)
iff T1(x) = x and T2(y) = y and so F(T ) = F(T1)⊕F(T2) so dimF(T ) =
dimF(T1) + dimF(T2) so ψ(T ) = ψ(T1) + ψ(T2). (The ψ on the left
is the function on O(V, g) and the ψ on the right is the function on
O(V ′, g′).) If T = (T1, T2)1 then T (x, y) = (x, y) iff T1(y) = x and
T2(x) = y that is (x, y) is of the form (x, T2(x)) with T1 ◦ T2(x) = x.
And so dimF(T ) = dimF(T1 ◦ T2) so ψ(T ) = ψ(T1 ◦ T2). Now, since
dimV ′ = 2, V ′ belongs to the general case, and so we already know
ψ(T1 ◦ T2) = ψ(T1) + ψ(T2). So we have shown for both u = 0 and
u = 1 that ψ((T1, T2)u) = ψ(T1)+ψ(T2) . Now if T = (T1, T2)u and S =
(S1, S2)u′ then T ◦S is of the form (T1◦S1, T2◦S2)u′′ or (T1◦S2, T2◦S1)u′′ .
In any case (again using the fact that ψ on V ′ is a homomorphism) we
get that ψ(T ◦ S) = ψ(T1) + ψ(T2) + ψ(S1) + ψ(S2) = ψ(T ) + ψ(S).

Finally, ψ : O(V, g) → Z/2 is not trivial since ψ(Ta) = 1 for any
a ∈ V with g(a) = 1. q.e.d.

Remark 3.4. 1. For A ∈ Ok(R) (the group of k × k orthogonal
matrices over R) codimF(A) = 0 mod 2 iff detA = 1. And so by Re-
mark 3.2, ψ : O(V, g) → Z/2 may be thought of as an analogue of
the homomorphism det : Ok(R) → {1,−1} (det on O(V, g) is of course
trivial).

2. Our expression for ψ is meaningful on the whole of GL(V ), how-
ever ψ is in general not a homomorphism on GL(V ) or even on its
subgroup Sp(V ) ⊇ O(V, g) of maps preserving B(x, y).

For dimV = 4,Arf(g) = 0, we note that though the identification
of V with V ′ ⊕ V ′ in the proof of Theorem 3.3 is not unique, the (un-
ordered) pair of sets V1, V2 is uniquely defined by its mentioned proper-
ties, namely, V1∪V2 = {v ∈ V : g(v) = 1}, B(a, b) = 0 for a ∈ V1, b ∈ V2,
and B(a, b) = 1 for a �= b ∈ Vk, k = 1, 2. It follows, as we have noticed,
that any T ∈ O(V, g) either preserves each Vk (then T = (T1, T2)0), or
interchanges the Vks (then T = (T1, T2)1).

Definition 3.5. Let dimV = 4,Arf(g) = 0. T ∈ O(V, g) will be
called a U -map if T interchanges V1 and V2.

Lemma 3.6. Let dimV = 4,Arf(g) = 0. If T is a U -map such that
T 2 = Id then ψ(T ) = 0.
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Proof. T = (T1, T1
−1)1 and so by the proof of Theorem 3.3, ψ(T ) =

ψ(T1) + ψ(T1
−1) = 0. q.e.d.

4. Generators for the Orthogonal Mapping Class Group

Let F be a closed orientable surface. H1 from now on will al-
ways denote H1(F,Z/2) (considered as a vector space over Z/2). Let
g : H1 → Z/2 be a quadratic form whose associated bilinear formB(x, y)
is the algebraic intersection form x · y of H1. (In particular, g is nonde-
generate.) Let M denote the mapping class group of F i.e., the group
of all orientation preserving diffeomorphisms h : F → F up to isotopy.
For h : F → F , let h∗ denote the map it induces on H1. The orthogonal
mapping class group of F with respect to g will be the subgroup Mg of
M defined by Mg = {h ∈ M : h∗ ∈ O(H1, g)}.

A simple closed curve will be called a circle. If c is a circle in F ,
the homology class of c in H1 will be denoted by [c]. Given a circle in
F , a Dehn twist along c will be denoted Tc. (We will not establish a
convention as to which of the two possible Dehn twists is Tc and which
is Tc

−1, rather, it will be clear in each case which of the two should
be used.) The map induced on H1 by Tc is T[c] of Definition 2.4. And
so by Proposition 2.5, Tc ∈ Mg iff g([c]) = 1 or [c] = 0. Also, since
(T[c])2 = Id, (Tc)2 ∈ Mg for any circle c. In view of this we make the
following definition:

Definition 4.1. A map h : F → F will be called good if it is of one
of the following forms:

(1) h = (Tc)2 for some circle c.

(2) h = Tc for a circle c with g([c]) = 1.

(3) h = Tc for a circle c with [c] = 0.

A good map will be called of Type 1, 2 or 3 accordingly.

The purpose of this section is to show that except for the special case
when genus(F ) = 2 and Arf(g) = 0, Mg is generated by the good maps.
For the mentioned special case, we will show that one more generator
is required.

Whenever we consider two circles in F , we will assume that they
intersect transversally. |c1 ∩ c2| will then denote the number of intersec-
tion points between circles c1 and c2. (And so the algebraic intersection
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[c1] · [c2] in H1 is the reduction mod 2 of |c1 ∩ c2|.) Given two circles a, b
in F with |a∩b| = 1, there are two ways for joining them into one circle c
via surgery at their intersection point. c will be called a merge of a and
b. If a and b are oriented, then c will be called the positive or negative
merge of a and b, according to whether the surgery is performed so that
the orientations of a and b match or do not match, respectively.

Lemma 4.2. Let a, b be two oriented circles in F with |a ∩ b| = 1,
let P be their intersection point and let c be their negative merge.

(1) Tc followed by an isotopy performed in a thin neighborhood of a∪b,
maps a orientation preservingly onto b.

(2) If d is another circle passing P , and otherwise disjoint form a and
b, and if a and b cross d at P in the same direction (as in Fig-
ure 1a), then the above Dehn twist and isotopy may be performed
while fixing d.

Proof. See Figure 1. q.e.d.

Lemma 4.3. Let a be a circle in F and b an arc connecting two
points of a, and whose interior is disjoint from a. Assume that at the
two endpoints of b, a passes b in the same direction (as in Figure 2a).
Let a′, a′′ be the two parts of a into which it is separated by ∂b and
let c = b ∪ a′. Then (Tc)2 followed by an isotopy performed in a thin
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neighborhood of c, maps a onto the circle obtained by surgering a along
the arc b as in Figure 2d.

Proof. See Figure 2. q.e.d.

The setting for the following lemma is that of Sections 2 and 3:

Lemma 4.4. Assume (V, g) is not of the two special cases dimV =
2, Arf(g) = 0 and dimV = 4, Arf(g) = 0. Let w1, . . . , wk ∈ V , k ≥ 0,
be independent vectors with g(wi) = 1 and B(wi, wj) = 0 for all 1 ≤
i, j ≤ k. Let W = 〈w1, . . . , wk〉 (the subspace spanned by w1, . . . , wk)
and let a1, a2 ∈ W⊥ −W be two vectors with g(a1) = g(a2) = 1 and
B(a1, a2) = 0. Then there exists c ∈ W⊥ with g(c) = 1 and B(a1, c) =
B(a2, c) = 1.

Proof. Assume first k > 0. We first find b ∈ W⊥ such that
B(a1, b) = B(a2, b) = 1. Since a1, a2 �∈ W = (W⊥)⊥ there are b1, b2 ∈
W⊥ with B(a1, b1) = B(a2, b2) = 1. If also B(a1, b2) = 1 or B(a2, b1) =
1 then we have a b. Otherwise b1 + b2 is our b. If g(b) = 1 we are done
with c = b, otherwise take c = b+ w1.

Now assume k = 0, so W = {0} and W⊥ = V . If a1 = a2 = a, take
b ∈ V with B(a, b) = 1. If g(b) = 1 we are done with c = b, otherwise
define U = 〈a, b〉. If a1 �= a2, take b1, b2 ∈ V with B(b1, b2) = 0
and B(ai, bj) = δij (Proposition 2.3). If g(b1 + b2) = 1 we are done
with c = b1 + b2, otherwise define U = 〈a1, a2, b1, b2〉. In either case
B(x, y) is nondegenerate on U , and so it is nondegenerate on U⊥. If
dimV > dimU it follows that g cannot be identically 0 on U⊥. Take
any element d ∈ U⊥ with g(d) = 1 then we are done with c = b + d or
c = b1 +b2 +d respectively. So we are left with the case dimV = dimU .
If dimV = 2 then we have assumed Arf(g) = 1 and so we must have
had g(b) = 1. If dimV = 4 then again we have assumed Arf(g) = 1 and
so g(b1) �= g(b2) (since g(a1) = g(a2) = 1) so again we must have had
g(b1 + b2) = 1. q.e.d.

Remark 4.5. When dimV = 4 then in the proof of Lemma 4.4
above, we haven’t used the additional assumption that Arf(g) = 1 in
the following two cases:

(1) When k > 0.
(2) When k = 0 and a1 = a2 (since then dimV > dimU).

Lemma 4.6. Assume F, g are not of the two special cases genus(F )
= 1, Arf(g) = 0 and genus(F ) = 2, Arf(g) = 0. Let w1, . . . , wk be
disjoint circles in F with g([wi]) = 1 and such that [w1], . . . , [wk] are
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independent in H1 (which is equivalent to
⋃

iwi not separating F ). Let
a1, a2 be oriented circles in F with g([a1]) = g([a2]) = 1 and such that
a1, a2 are each disjoint from

⋃
iwi and [a1], [a2] �∈ 〈[w1], . . . , [wk]〉. Then

there is a sequence h1, . . . , hm of good maps of Type 1 and 2 which all
fix

⋃
iwi and such that h1 ◦ · · · ◦hm (followed by an isotopy fixing

⋃
iwi)

maps a1 orientation preservingly onto a2.

Proof. Assume first that [a1] · [a2] = 1. If actually |a1 ∩ a2| = 1
then we are done by Lemma 4.2 since the merge c of a1 and a2 satisfies
g([c]) = g([a1]) + g([a2]) + [a1] · [a2] = 1 and so Tc is a good map of
Type 2. So assume |a1 ∩ a2| is some odd number > 1. Then necessarily
there exist two consecutive crossings along a2, at which a1 crosses a2 in
the same direction. Applying the map (Tc)2 of Lemma 4.3 (a is here a1

and b is a portion of a2) reduces |a1 ∩ a2| by precisely 2, and so again
[a1] · [a2] = 1 and so we may continue by induction.

Assume now [a1] · [a2] = 0. By Lemma 4.4 there is x ∈ H1 with
g(x) = 1, x·[a1] = x·[a2] = 1 and x·[wi] = 0 for all i. (x �∈ 〈[w1], . . . , [wk]〉
follows.) There exists a circle c in F with [c] = x and such that c is
disjoint from each wi. (Start with any embedded representative and
surger it along the wis until it is disjoint from all of them. This is
possible since the number of intersection points with each wi is even.
Then connect the various components to each other by surgery. This is
possible since F −

⋃
iwi is connected and since there are no orientations

to consider.) By the previous case we may now map a1 onto c, and from
there, orientation preservingly onto a2. q.e.d.

Remark 4.7. If F, g are of the special case genus(F ) = 2,Arf(g) =
0 then if in Lemma 4.6 we further assume either that [a1] · [a2] = 1 or
that [a1] = [a2] or that k > 0 then it follows from the proof of Lemma 4.6
and from Remark 4.5, that the conclusion of Lemma 4.6 still holds.

Definition 4.8. Let genus(F ) = 2,Arf(g) = 0. A map U ∈ Mg

such that U∗ is a U -map on H1 (Definition 3.5) will again be called a
U -map. (Such maps clearly exist.)

Theorem 4.9. If F, g are not of the special case genus(F ) = 2,
Arf(g) = 0 then Mg is generated by the good maps. In the mentioned
special case, Mg is generated by the good maps and any one U -map.

Proof. We first assume we are not in the two special cases appear-
ing in Lemma 4.6, in particular, we are not in the special case of this
theorem. Let n = genus(F ) and let a1, . . . , an, b1, . . . , bn be circles such
that |ai ∩ aj | = |bi ∩ bj | = 0 (i �= j), |ai ∩ bj | = δij and g([ai]) = 1.
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(Start with such circles without the assumption on g. Then if for some
i both circles have g = 0, replace one of them with their merge. Then
exchange ai with bi if necessary.)

Now let h ∈ Mg. We will compose h with good maps until (after
isotopy) we arrive at the identity. We may first use Lemma 4.6 to
bring the ais one by one back to place. Indeed, after a1, . . . , ak are
in place, consider a1, . . . , ak, h(ak+1), ak+1, as the w1, . . . , wk, a1, a2

of Lemma 4.6, respectively, assigning orientations to ak+1 and h(ak+1)
which correspond via h.

So assuming h fixes all ais, we bring each bi back to place, and
assume we have already done this for all i < j. Denote a = aj , b = bj
and let P be the intersection point of a and b. Since a is fixed by
h, h(b) must also pass P , and since h is orientation preserving, b and
h(b) must cross a at P in the same direction (where orientations on
b and h(b) correspond via h). Our permanent assumption that any
circles we consider intersect transversally, may still be maintained for
the intersection of b and h(b) at P . Assume first that P is the only
intersection point between b and h(b). Let c be the negative merge
of b and h(b). g([h(b)]) = g([b]) (since h preserves g) and so g([c]) =
g([b])+g([h(b)])+[b] · [h(b)] = 1. By Lemma 4.2, Tc and an isotopy bring
h(b) orientation preservingly onto b, and the Dehn twist and isotopy may
be performed while fixing a and while fixing all other ais and all bis with
i < j. (Our h(b), b, c and a, correspond to a, b, c and d of Lemma 4.2
respectively.)

So assume now that there are additional intersection points between
h(b) and b besides P . Choose a side of a in F . Let X be the first
additional intersection point, when moving from P along b into the
chosen side. Let a′ be a circle parallel and close to a on the chosen side.
g([a′]) = 1. If a′ is close enough to a, then a′ intersects both b and h(b)
each at a single point, and so |Ta′ ◦ h(b)∩ b| = |h(b)∩ b|+ 1. We denote
this new intersection point by P ′. If we choose the orientation of the
Dehn twist Ta′ correctly, then Ta′ ◦ h(b) will cross b at P ′ in the same
direction that it crosses b at X. Let c be the circle which is the union
of the subarcs of b and Ta′ ◦ h(b) which are defined by P ′ and X, and
which do not contain P , and so c is disjoint from a. By Lemma 4.3,
|(Tc)2 ◦Ta′ ◦h(b)∩ b| = |Ta′ ◦h(b)∩ b|−2. And so we have first increased
the intersection by 1 and then decreased it by 2, and so we may continue
by induction.

We are now in the situation that all ais and bis are fixed, so we are
left with performing a map fixing all ais and bis, which is equivalent to
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performing a boundary fixing map on a sphere with n holes. The group
of all such maps is known to be generated by Dehn twists. Now, any
circle in the complement of the ais and bis is bounding in F , and so
these Dehn twists are good maps of Type 3. This completes the proof
for the general case.

The case genus(F ) = 1,Arf(g) = 0 does not rely on the above, and
will not be used in the sequel. We defer it to the end of Section 5.1.

We are left with the case genus(F ) = 2,Arf(g) = 0. We will show
that by adding any U -map U , the above proof can be made to work. By
Remark 4.7, the only problem we have is when moving the first circle
a1. Let V1, V2 be the pair of subsets of H1 from the definition of U -map,
and say [a1] ∈ V1. If [h(a1)] ∈ V2 then [U ◦ h(a1)] ∈ V1, and so we may
assume [a1] and [h(a1)] are both in V1. But then either [a1] = [h(a1)]
or [a1] · [h(a1)] = 1. By Remark 4.7 again, Lemma 4.6 applies, and so
the above process works. q.e.d.

Remark 4.10. If p : M → GL(H1) denotes the map h �→ h∗
then it is known that p(M) = Sp(H1), the group of maps preserving
the intersection form on H1. It follows that p(Mg) = O(H1, g) (since
O(H1, g) ⊆ Sp(H1) and Mg = p−1(O(H1, g)).) Since good maps of
Type 1 and 3 induce the identity on H1 and since any V with non-
degenerate quadratic form is isomorphic to (H1, g) for appropriate F
and g, we see that our Theorem 4.9 implies Theorem 2.6 (the Cartan-
Dieudonne Theorem for the field Z/2).

5. Quadruple Points of Regular Homotopies

Any immersion i : F → R
3 induces a quadratic form gi : H1(F,Z/2)

→ Z/2 whose associated bilinear form B(x, y) is the algebraic intersec-
tion form x · y of H1(F,Z/2), as follows: For x ∈ H1(F,Z/2) let A ⊆ F
be an annulus bounded by circles c, c′ with [c] = x, let j : A → R

3 be
an embedding which is regularly homotopic to i|A and define gi(x) to
be the Z/2 linking number between j(c) and j(c′) in R

3. One needs
to verify that gi(x) is independent of the choices being made and that
gi(x+y) = gi(x)+gi(y)+x·y. This has been done in [6] in the more gen-
eral setting of surfaces which are not necessarily orientable. (It is then
necessary for the quadratic form to attain values in (1

2Z)/2 = Z/4 rather
than Z/2, to accommodate for the half twists of Mobious bands, and
the Arf invariant attains values in Z/8.) For immersions i, i′ : F → R

3,
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i ∼ i′ will denote that i and i′ are regularly homotopic in R
3. The

following has been shown in [6]:

Theorem 5.1. Let i, i′ : F → R
3 be two immersions.

(1) gi = gi′ iff i ∼ i′.

(2) Arf(gi) = Arf(gi′) iff there exists a diffeomorphism h : F → F
such that i ∼ i′ ◦ h.

(3) Arf(ge) = 0 for any embedding e : F → R
3.

Let M̂ be the group of all diffeomorphisms of F (not necessarily
orientation preserving) up to isotopy. Given a quadratic form g on H1

(whose associated bilinear form is the intersection form) let M̂g be the
subgroup of M̂ defined by M̂g = {h ∈ M̂ : h∗ ∈ O(H1, g)}. (Mg is then
a subgroup of index 2 in M̂g.) Now let i : F → R

3 be an immersion and
h : F → F a diffeomorphism. By Theorem 5.1(1), i ∼ i ◦ h iff gi = gi◦h.
It is easy to see that gi◦h = gi ◦ h∗ and so we get:

Proposition 5.2. i ∼ i ◦ h iff h ∈ M̂gi.

Let Ht : F → R
3 be a generic regular homotopy. We denote by

q(Ht) ∈ Z/2 the number mod 2 of quadruple points occurring in Ht.
The following has been shown in [5]:

Theorem 5.3. Let F be any closed surface (not necessarily ori-
entable or connected). If Ht, Gt : F → R

3 are two generic regular ho-
motopies between the same two generic immersions, then q(Ht) = q(Gt).

Definition 5.4. Let i, i′ : F → R
3 be two regularly homotopic

generic immersions. We define Q(i, i′) ∈ Z/2 by Q(i, i′) = q(Ht), where
Ht is any generic regular homotopy between i and i′. This is well defined
by Theorem 5.3.

If Ht, Gt : F → R
3 are two regular homotopies such that the final

immersion of Ht is the initial immersion of Gt, then Ht ∗Gt will denote
the regular homotopy that performs Ht and then Gt.

Lemma 5.5. Let i : F → R
3 be a generic immersion. The map

M̂gi → Z/2 given by h �→ Q(i, i ◦ h) is a homomorphism.

Proof. Let h1, h2 ∈ M̂gi and let Hk
t be a generic regular homotopy

from i to i ◦ hk, k = 1, 2. Then H1
t ∗ (H2

t ◦ h1) is a regular homotopy
from i to i ◦ h2 ◦ h1 and q(H1

t ∗ (H2
t ◦ h1)) = q(H1

t ) + q(H2
t ). q.e.d.
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Recall that for T ∈ O(V, g) we have defined

ψ(T ) = rank(T − Id) mod 2,

and have shown that ψ : O(V, g) → Z/2 is a homomorphism (Theo-
rem 3.3). For h ∈ M̂g let ε(h) ∈ Z/2 be 0 or 1 according to whether h is
orientation preserving or reversing, respectively, and let n = genus(F ).
Since ε : M̂g → Z/2 and h �→ h∗ are also homomorphisms, the following
Ψ : M̂g → Z/2 is a homomorphism:

Ψ(h) = ψ(h∗) + (n+ 1)ε(h)
=

(
rank(h∗ − Id) + (n+ 1)ε(h)

)
mod 2.

Our purpose is to show:

Theorem 5.6. Let i : F → R
3 be a generic immersion. Then for

any h ∈ M̂gi:
Q(i, i ◦ h) = Ψ(h).

Let i : F → R
3 be an immersion and let c be a circle in F such that

c is disjoint from the multiplicity set of i. Adding a ring to i along c
will mean to change i into a new immersion i′ in the following way: If
X ⊆ Y then N(X,Y ) will denote a regular neighborhood of X in Y .
Let U = N(i(c),R3), thin enough so that A = i−1(U) is an annulus
which is still disjoint from the multiplicity set. Let D and a be a disc
and an arc. Let f1 : a → D be a proper embedding and let f2 : a → D
be a proper immersion with one transverse intersection and such that
f1|N(∂a,a) = f2|N(∂a,a). Parametrize U and A as D × S1 and a × S1 so
that i|A : A→ U will be given by f1 × Id : a× S1 → D × S1. Now, the
new immersion i′ will be given by f2 × Id on A, and will be the same as
i outside A. There are basically two ways for adding a ring to i along
c, depending on what side of A in R

3 the ring will be facing (which in
turn depends on our choice of f2 : a → D). If i is an embedding, then
i(F ) separates R

3 into two pieces, one compact and one noncompact.
They will be denoted M0(i) and M1(i) respectively. And so if i is
an embedding then we have a natural way for distinguishing the two
possibilities for adding a ring along a given circle c, namely, the ring is
facing either M0(i) or M1(i).

Note that f1 × Id, f2 × Id : A → U are homotopic relative ∂A (but
not regularly homotopic). And so if N = N(i(F ),R3) with N ⊇ U , then
i and i′ are homotopic in N (but in general not regularly homotopic).
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A

Figure 3: Move A

We now present two moves on immersions, that have been intro-
duced in [5]. Let S0 be an annulus and S1 be a disc. Move A (resp. B)
is a regular homotopy which is applied to a proper immersion of S0

(resp. S1) into a ball E and which fixes N(∂Sk, Sk), k = 0, 1. Move A
begins with the standard embedding of S0 in E, and adds a ring and
a Dehn twist along parallel essential circles in S0. The ring may face
either side of S0 in E and the Dehn twist may have either orientation.
Figure 3 shows one of the possibilities. The reverse move, going from
right to left in Figure 3, will be called an A−1 move. Move B is described
in Figure 4. It begins with a specific immersion of S1, with two arcs
of intersection, and replaces them with two other arcs of intersection.
It is easy to see (and has been shown in [5]) that the initial and final
immersions that we have presented for the A and B moves, are indeed
regularly homotopic in E (while keeping N(∂Sk, Sk) fixed). Move A
(resp. B) will be applied to an immersion i : F → R

3 inside a ball E in
R

3 for which i−1(E) is an annulus (resp. disc) and i|i−1(E) : i−1(E) → E
is as above. (The rest of F will be kept fixed.) In particular, an A move
may be applied to a neighborhood of a circle c in F iff c is disjoint from
the multiplicity set of i and there is an embedded disc D in R

3 such that
D ∩ i(F ) = i(c). The move will then be performed in a thin N(D,R3).
If the circle along which we perform an A move happens to bound a
disc in F , then the Dehn twist that is produced is trivial, and may be
cancelled by rotating this disc. The following has been shown in [5]:

Proposition 5.7. Let S0, S1, E denote an annulus, disc and ball
respectively.

(1) For any generic regular homotopy At : S0 → E that realizes an A
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B

Figure 4: Move B

move, q(At) = 1.

(2) For any generic regular homotopy Bt : S1 → E that realizes the B
move, q(Bt) = 1.

If Ht : F → R
3 is given by H : F × [0, 1] → R

3 then we denote by
H−t the regular homotopy given by (x, t) �→ H(x, 1− t). Clearly H−t is
generic iff Ht is generic, and q(Ht) = q(H−t).

Lemma 5.8. If i ∼ i′ then Q(i, i ◦ h) = Q(i′, i′ ◦ h) for any h ∈
M̂gi = M̂gi′ .

Proof. Let Jt be a regular homotopy from i to i′ and Ht a regular
homotopy from i to i ◦h. Then J−t ∗Ht ∗ (Jt ◦h) is a regular homotopy
from i′ to i′ ◦ h and q(J−t ∗Ht ∗ (Jt ◦ h)) = q(Ht). q.e.d.

Remark 5.9. After we prove Theorem 5.6, we will know that the
assumption i ∼ i′ in Lemma 5.8 is actually unnecessary, as long as
h ∈ M̂gi ∩ M̂gi′ . This is so since Ψ(h) does not depend on i. (It is a
function of h only.)

We begin the proof of Theorem 5.6. First let genus(F ) = 0. By
Lemma 5.8 (and since all immersions of S2 in R

3 are regularly homo-
topic) we may assume i is an embedding onto the unit sphere. Let
r : R

3 → R
3 be the reflection with respect to the xy-plane, and h ∈ M̂

be such that i ◦ h = r ◦ i, then h is the unique nontrivial element of
M̂ = M̂gi and Ψ(h) = ε(h) = 1. The following is a regular homotopy
from i to i ◦ h: Perform an A move on the equator of the sphere, such
that the ring formed will be facing M1(i). Then exchange the northern
and southern hemispheres, arriving at i ◦ h. By Proposition 5.7 the
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A move contributed 1 mod 2 quadruple points, then exchanging the
hemispheres involved only double curves, and so Q(i, i ◦ h) = 1. We
proceed by induction on genus(F ) beginning with genus(F ) = 1. For
the induction step we will use the generators of Mg introduced in The-
orem 4.9, but for the starting point genus(F ) = 1 we will introduce a
different set of generators which will be more suitable. Furthermore,
for genus(F ) = 1 we will need to separate the cases Arf(gi) = 0 and
Arf(gi) = 1.

5.1 The case genus (F ) = 1, Arf (gi) = 0

This has basically been done in [5]. We present it here with slight
variation. Let T denote the torus. We will say an embedding e : T → R

3

is standard if its image is the torus T̃ ⊆ R
3 obtained by rotating the

circle {y = 0, (x−2)2+z2 = 1} around the z-axis. Let m̃, l̃ be the circles
in T̃ given by m̃ = {y = 0, (x−2)2+z2 = 1} and l̃ = {z = 0, x2+y2 = 1}
and choose some orientations for m̃ and l̃. For a standard embedding
e : T → R

3, let me and le denote the oriented circles in T such that
e(me) = m̃ and e(le) = l̃ (respecting orientations.)

Since Arf(gi) = 0 then by Theorem 5.1(2,3) i is regularly homotopic
to a standard embedding. (Take an arbitrary standard embedding i′,
then i ∼ i′ ◦ h for some diffeomorphism h : T → T , but i′ ◦ h is again
a standard embedding.) So by Lemma 5.8 we may assume i itself is
a standard embedding. By viewing m = mi, l = li as the basis for
H1(T,Z) (note Z coefficients) we identify M̂ with GL2(Z). We will
think of any h ∈ M̂ both as a map from F to F and as a 2× 2 matrix.
If h ∈ M̂ then h∗ : H1 → H1 (now Z/2 coefficients) presented with
respect to the basis [m], [l] is simply the Z/2 reduction of the matrix
h. gi([m]) = gi([l]) = 0 and for v = [m] + [l], gi(v) = 1. A matrix
h ∈ GL2(Z) is in M̂gi if h∗ preserves gi. This will happen iff h∗(v) = v
and h∗({[m], [l]}) = {[m], [l]}, i.e., iff the Z/2 reduction of h is either
I = [ 1 0

0 1 ] or J = [ 0 1
1 0 ]. By means of row and column operations one can

show that this subgroup of GL2(Z) is generated by the following four
elements: A1 = ( 1 2

0 1 ), A2 = ( 1 0
2 1 ), A3 =

(−1 0
0 1

)
, A4 = ( 0 1

1 0 ).
Since the Z/2 reduction of A1, A2, A3 is I and that of A4 is J , and

since ψ(I) = 0, ψ(J) = 1 and n = 1, we have Ψ(A1) = Ψ(A2) =
Ψ(A3) = 0 and Ψ(A4) = 1. So we need to show that Q(i, i ◦Ak) = 0 for
k = 1, 2, 3 and Q(i, i ◦A4) = 1.

A1 and A2 are (Tm)2 and (Tl)2 respectively. Let D be a compressing
disc for i(m) = m̃ in R

3 and E = N(D,R3) thin enough so that i(T )∩E
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Figure 5:

is a standard annulus in E. In E we isotope i(T )∩E to be a thin tube,
we then perform the “belt trick” on this tube (Figure 5) and then isotope
i(T )∩E back to place. The effect of this regular homotopy is precisely
(Tm)2 and it involves only double curves, and so Q(i, i ◦A1) = 0. In the
same way Q(i, i ◦A2) = 0.

Up to isotopy in T , i ◦A3 = r ◦ i where r is the reflection of R
3 with

respect to the xy-plane. This may be achieved by a regular homotopy
similar to the one we have used for the case genus(F ) = 0, as follows:
Perform an A move on each of the two circles {z = 0, x2 + y2 = 1} and
{z = 0, x2 + y2 = 3}, so that the ring formed by each of them is facing
M1(i) and such that the two Dehn twists formed will have opposite
orientations and so will cancel each other. (The A moves are performed
inside thin neighborhoods of compressing discs for the two circles.) So
we remain with just the two rings. We may now exchange the upper
and lower halves of T until we arrive at i ◦ A3. The two A moves each
contributed 1 mod 2 quadruple points and the final stage involved only
double curves, and so all together Q(i, i ◦A3) = 0.

For A4, isotope T until it has the shape of a large sphere with a
tiny handle at its north pole. Now exchange the northern and southern
hemispheres. This will involve only double curves, and will result in
a sphere having a tiny handle at the south pole and a ring along the
equator. We cancel this ring with anA−1 move in a thin neighborhood of
the plane of the equator, resulting in an embedding again. We may think
ofm and l as being contained in the tiny handle, and so tiny compressing
discs for m and l may be pulled along with the regular homotopy. The
compressing disc of m now lies in M1(i), and the compressing disc of l
now lies in M0(i). It follows that the final embedding may be isotoped
to a standard embedding i.e., to a map of the form i ◦ h, and this h
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is orientation reversing and exchanges m and l. And so h must be
either ( 0 1

1 0 ) or
(

0 −1
−1 0

)
. These two maps composed with i are isotopic

in R
3 (via a half revolution about the x-axis) and so we may assume

h = ( 0 1
1 0 ) = A4. Our regular homotopy had a portion involving just

double curves, then one A−1 move, and finally some isotopy, and so
Q(i, i ◦ A4) = 1. This completes the proof that Q(i, i ◦ h) = Ψ(h) for
every h ∈ M̂gi for F a torus and Arf(gi) = 0.

We now give the promised completion of the proof of Theorem 4.9.
We need to show that Mg is generated by good maps when genus(F ) =
1,Arf(g) = 0. Choose two oriented circles a, b with g([a]) = g([b]) = 0
and |a∩ b| = 1 as a basis for H1(T,Z), thus identifying M with SL2(Z).
Again we see h ∈ SL2(Z) is in Mg iff its Z/2 reduction is either I or
J . By row and column operations, we then see that Mg is generated
by A1 = ( 1 2

0 1 ), A2 = ( 1 0
2 1 ) and A′ =

(
0 1−1 0

)
. Now A1 and A2 are (Ta)2

and (Tb)2. If c is the positive merge of a and b then g([c]) = 1 and Tc is(
0 1−1 2

)
. Since

(
0 1−1 0

)
=

(
0 1−1 2

)
( 1 2

0 1 ) we see Mg is generated by (Ta)2,
(Tb)2 and Tc.

5.2 The case genus (F ) = 1, Arf (gi) = 1

By Theorem 5.1(1), i is regularly homotopic to an immersion which is
obtained from a standard embedding e : T → R

3 by adding a ring along
the circle c which is the positive merge of me and le, and such that the
ring is facing M1(e). (One checks directly that such an immersion i′

has Arf(gi′) = 1, but then gi = gi′ since on V of dimension 2 there is
only one g with Arf(g) = 1.) By Lemma 5.8 we may assume i itself
is this new immersion (Figure 6a). Since all nonzero elements in H1

have gi = 1, it follows that O(H1, g
i) = GL(H1) and so M̂gi = M̂.

Since Z/2 is abelian, it is enough to verify Q(i, i ◦ h) = Ψ(h) only on
normal generators, and we claim that B1 =

(−1 2
0 1

)
and B2 = ( 0 1

1 0 ) are
normal generators of M̂ where the identification with GL2(Z) is via
me, le. (There are no mi, li since such are defined only for standard
embeddings.) Indeed, ( 0 1

1 0 )
(−1 2

0 1

)
=

(
0 1−1 2

)
which as we have noticed

in the end of Section 5.1, is a Dehn twist along c (the positive merge
of me and le.) Now, any Dehn twist is a normal generator of M, and
since B1, B2 are orientation reversing, they normally generate the whole
of M̂. As above, we see that Ψ(B1) = 0 and Ψ(B2) = 1, so we need to
show that Q(i, i ◦B1) = 0 and Q(i, i ◦B2) = 1.

The regular homotopy we construct for B1 is as follows: Let the ring
become thicker, and at the same time let the “body” of the torus be-
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Figure 6:

come thinner, until they are equal in width, (Figure 6a→b.) Now using
the intersection circle as an axis of rotation, we perform a half revo-
lution of the torus around it, interchanging the two equal-width rings,
(Figure 6b→c.) We then return to our original position by reversing our
first step. (Figure 6c→d.) We thus arrive at an immersion of the form
i ◦ h. The map h : T → T may best be understood by looking at the
intermediate stage of the regular homotopy, Figure 6b→c. We see here
that h maps me to −me and c to itself. i.e., the column (1, 0)t to (−1, 0)t

and (1, 1)t to itself. And so indeed h = B1. We had no quadruple points
(actually no singular occurrences at all) and so Q(i, i ◦B1) = 0.

For B2, we first imitate the regular homotopy we have had for A4 =
B2 of Section 5.1 i.e., we perform that regular homotopy on e and carry
the ring along. If before exchanging the upper and lower hemispheres we
make sure that the ring is situated at the tiny handle, then this exchange
will have at most triple points, and the ring will not interfere with the
A−1 move, and so at the end of this process we will have q = 1. The
immersion j we arrive at, is the immersion obtained by adding a ring
R to the embedding e ◦B2 along the circle e ◦B2(c) = e(c), that is the
same circle along which R was originally situated, but now R is facing
M0(e) instead of M1(e) and so j is not of the form i ◦ h. We resolve
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Figure 7:

this with a regular homotopy as follows: Perform an A move on a little
disc bounding circle in T near R, forming a ring R′ facing M1(e). See
Figure 7a. (The dotted line in Figure 7 is the intersection curve of R. R
itself is not seen since it is facingM0(e).) We then elongate R′ along side
R, until it approaches itself from all the way around. (Figure 7a→b→c.)
We then perform a B move, turning R′ into two rings which are parallel
to R, but facing M1(e). (Figure 7c→d.) It is then easy to construct an
explicit regular homotopy so that R and the new ring which is adjacent
to it, will cancel each other, and with no quadruple points at all. (The
idea is as follows: Let f : a → D be a proper immersion of an arc a
into a disc D with two loops facing opposite sides, as in the front disc
of Figure 8a. There is a regular homotopy ft : a → D fixing N(∂a, a),
from f to an embedding as in the front disc of Figure 8b. If ft is
generic then it has at most triple points. Now the regular homotopy
ft × Id : a × S1 → D × S1 is a regular homotopy which begins with a
pair of rings facing opposite sides, and cancels them. Figure 8 depicts
a portion of a × S1 in the initial and final immersions. Indeed since
ft has at most triple points, so will ft × Id, but ft × Id is not generic.
Nevertheless, any specific ft×Id may serve as a guide for constructing an
explicit generic regular homotopy with no quadruple points, and which
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a b

Figure 8:

begins and ends with the same immersions.)
Since R and one of the new rings have disappeared, we are left with

one ring facing M1(e) and situated along a circle parallel to e(c). By
pushing it precisely to e(c) we finally get an immersion of the form i◦h.
The regular homotopy which started with j and replaced the ring R
with a ring facing M1(e), took place inside some N = N(e(F ),R3), and
so the homotopy class into N is still that of e◦B2 and so (up to isotopy
in F ) the new immersion is indeed i ◦ B2. (i : F → N is a homotopy
equivalence, and so two diffeomorphisms h, h′ : F → F are isotopic in
F iff i ◦ h, i ◦ h′ : F → N are homotopic in N .) Finally, our regular
homotopy from i to j involved 1 mod 2 quadruple points, then from j
to i◦B2 we had one A move, one B move, and a regular homotopy with
no quadruple points, and so all together indeed Q(i, i ◦B2) = 1.

5.3 The general case

Assume genus(F ) > 1. By Theorem 4.9 Mgi is generated by a set
of Dehn twists and squares of Dehn twists, and in the special case
genus(F ) = 2,Arf(gi) = 0 we also need a U -map. Other than the
special U -map generator, which will be dealt with last, each generator
h fixes all but a regular neighborhood of a circle a (and we may assume
a does not bound a disc in F ). If a is non-separating then there is a
circle b in F with |a ∩ b| = 1. N(a ∪ b, F ) is a punctured torus, and so
c = ∂N is a circle separating F into two subsurfaces F1, F2 of smaller
genus than F and with h(Fk) = Fk. If a is separating, then a nearby
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Figure 9:

parallel circle c will again separate F in this way. Now M̂gi needs one
additional generator. Choosing any separating circle c in F there is
clearly an orientation reversing h : F → F which preserves the two
sides of c and which induces the identity on H1 and so h ∈ M̂gi . And
so finally we have a set of generators for M̂gi , each of which (except for
the U -map) preserves such a separation of F by a circle c into F1, F2 of
smaller genus.

Let A = N(c, F ). Slightly diminishing F1, F2 to be the components
of F − intA, we may still assume h(Fk) = Fk, k = 1, 2. Since c is
separating in F , gi([c]) = 0 and so i|A is regularly homotopic to a
standard embedding of A, in the shape of a thin tube. By means of
[7] (namely the proof of Theorem 2.1) we may extend such a regular
homotopy of A to the whole of F . We now stretch this tube to be
very long, at the same time pulling F1 and F2 rigidly away from each
other until they are disjoint. See Figure 9a. By taking a smaller A if
necessary, we may assume i(A) is disjoint from i(F −A), Figure 9b. By
Lemma 5.8, we may assume that this is in fact our immersion i. Let
F1, F2 be the closed surfaces obtained by gluing a disc Dk to Fk and let
hk : Fk → Fk be an extension of h|Fk

: Fk → Fk. If the tube i(A) is
very thin, then there is also a naturally defined extension ik : Fk → R

3

of i|Fk
. We may further assume that the thin ball B in R

3 which is
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bounded by the sphere i1(D1)∪ i(A)∪ i2(D2), is disjoint from i(F −A).

Since h|Fk
preserves gi|H1(Fk,Z/2) then hk preserves gik . It follows

that there is a regular homotopy Hk
t between ik and ik ◦hk. We perform

H1
t and H2

t inside disjoint balls, and we let the thin tube A be carried
along. We can make sure that no quadruple point of Hk

t occurs in Dk

(k = 0, 1) and that the very thin tube A does not pass triple points.
The regular homotopy Ht induced on F in this way will then have the
sum of the numbers of quadruple points of H1

t and H2
t .

Now if h is orientation preserving then so are hk, in particular hk|Dk

is orientation preserving. So if we had carried the thin ball B along with
the tube A, then it would now approach the Dks from the same side it
had for i. And so we may continue the regular homotopy on the tube
A, still not passing through triple points, and cancelling all knotting
by having the thin tube pass itself, until it is back to its original place,
and this will not contribute any quadruple points. However, the new
embedding of A may differ from i ◦ h|A by some number of Dehn twists
as in Figure 9c. We may resolve this by rigidly rotating say F1 around
the axis of the tube.

If on the other hand h is orientation reversing, then after applying
H1

t and H2
t and carrying the tube along, the thin ball B will approach

both Dks from the wrong side. And so after we cancel all knotting, the
tube A will be as in Figure 9d. Figure 10 presents a regular homotopy
that resolves this, and has 1 mod 2 quadruple points. Figure 10a de-
picts the relevant part of Figure 9d, where the regular homotopy will
take place. Figure 10a→b→c is a regular homotopy with no singular
occurrences, or alternatively may be thought of as an ambient isotopy
of R

3. It shows that we may view the immersion of A as a sphere with
two rings facing outward, each of which has a tube attached to it. We
now perform a B move which joins the two rings into one ring with two
tubes attached to it, Figure 10c→d. Again by ambient isotopy, the ring
may be brought to the equator, Figure 10d→e. Finally we exchange the
northern and southern halves of the sphere, arriving at an embedding,
Figure 10e→f. This regular homotopy involved a B move and a portion
involving only double curves, and so indeed it had 1 mod 2 quadruple
points. We then continue to bring A back to place. As above, the new
embedding of A may differ from i◦h|A by some number of Dehn twists,
and those may be cancelled by rigidly rotating F1.

We have thus constructed a regular homotopy between i and i◦h such
that the number mod 2 of quadruple points, is the sum of the numbers
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a b

c d

e f

Figure 10:

occurring in the Fks in case h is orientation preserving, and the sum
plus 1, in case h is orientation reversing. In other words Q(i, i ◦ h) =
Q(i1, i1◦h1)+Q(i2, i2◦h2)+ε(h). By the induction hypothesis, Q(ik, ik◦
hk) = Ψ(hk), k = 1, 2. Let nk = genus(Fk) and notice n = n1 + n2,
ε(hk) = ε(h) and rank(h∗ − Id) = rank(h1∗ − Id) + rank(h2∗ − Id) so
ψ(h∗) = ψ(h1∗)+ψ(h2∗). So finally: Q(i, i◦h) = Ψ(h1)+Ψ(h2)+ε(h) =
ψ(h1∗) + (n1 + 1)ε(h) + ψ(h2∗) + (n2 + 1)ε(h) + ε(h) = ψ(h∗) + (n1 +
n2 + 1)ε(h) = Ψ(h).

We now deal with the special U -map generator which appears when
genus(F ) = 2,Arf(gi) = 0. Since Arf(gi) = 0, then by Theorem 5.1(2,3)
and Lemma 5.8 as before, we may assume i is an embedding whose
image is two embedded tori connected to each other with a tube, and
such that a half revolution around some line in R

3 maps i(F ) onto itself
and interchanges the two tori. Let h : F → F be the map such that
i ◦ h is the final embedding of this half revolution, then h is orientation
preserving and so h ∈ Mgi . Take a circle c in one of the tori with
gi([c]) = 1, then h(c) lies in the other torus, and so [c] �= h∗([c]) and
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[c] · h∗([c]) = 0. It follows that [c] and h∗([c]) are not in the same Vk

of the definition of U -map, so h∗ must be a U -map, and so h is indeed
a U -map on F . Since h2 = Id then by Lemma 3.6, ψ(h∗) = 0 and so
Ψ(h) = ψ(h∗) + ε(h) = 0. Since there is a rigid rotation between i and
i ◦ h, Q(i, i ◦ h) = 0. This completes the proof of Theorem 5.6.

6. Totally Singular Decompositions

Back to the setting of Sections 2 and 3, let V be a finite dimensional
vector space over Z/2 with nondegenerate quadratics form g : V → Z/2.

A subspace A ⊆ V such that g|A ≡ 0 is called a totally singular
subspace. A pair (A,B) of subspaces of V will be called a totally singular
decomposition of V (abbreviated TSD) if V = A ⊕ B and both A and
B are totally singular. It then follows that dimA = dimB. (From
Lemma 6.1 below it follows that (V, g) admits a TSD iff Arf(g) = 0.)

The proof of the following lemma appears in [1]:

Lemma 6.1. Let dimV = 2n.

(1) If A ⊆ V is a totally singular subspace of dimension n then there
exists a B ⊆ V such that (A,B) is a TSD of V .

(2) If (A,B) is a TSD of V and a1, . . . , an is a given basis for A then
there is a basis b1, . . . , bn for B such that B(ai, bj) = δij.

Definition 6.2. If (A,B) is a TSD of V then a basis a1, . . . , an, b1,
. . . , bn of V will be called (A,B)-good if ai ∈ A, bi ∈ B and B(ai, bj) =
δij .

The following two lemmas follow directly from the definition of
quadratic form:

Lemma 6.3. Let (A,B) be a TSD of V and a1, . . . , an, b1, . . . , bn an
(A,B)-good basis for V . If v =

∑
xiai+

∑
yibi and v′ =

∑
x′iai+

∑
y′ibi

then g(v) =
∑
xiyi and B(v, v′) =

∑
xiy

′
i +

∑
yix

′
i.

Lemma 6.4. Let (A,B) and (A′, B′) be two TSDs of V . Let
a1, . . . , an, b1, . . . , bn be an (A,B)-good basis for V and a′1, . . . , a′n, b′1, . . . ,
b′n an (A′, B′)-good basis for V . If T : V → V is the linear map defined
by ai �→ a′i, bi �→ b′i then T ∈ O(V, g).

We now study the relationship between TSDs and our homomor-
phism ψ : O(V, g) → Z/2.
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Lemma 6.5. If (A,B) is a TSD of V and T ∈ O(V, g) satisfies
T (A) = A and T (B) = B then ψ(T ) = 0.

Proof. By Lemma 6.1 there exists an (A,B)-good basis a1, . . . , an,
b1, . . . , bn for V . Using Lemma 6.3 it is easy to verify that the matrix

of T with respect to such a basis has the form:
(
St 0
0 S−1

)
where

S ∈ GLn(Z/2). It follows that ψ(T ) = 0. q.e.d.

Given two TSDs (A,B), (A′, B′) of V then by Lemmas 6.1 and 6.4
there exists a T ∈ O(V, g) such that T (A) = A′ and T (B) = B′. It
follows from Lemma 6.5 that if T1, T2 are two such T s then ψ(T1) =
ψ(T2). And so the following is well defined:

Definition 6.6. For a pair (A,B), (A′, B′) of TSDs of V let ψ̂(A,B;
A′, B′) ∈ Z/2 be defined by ψ̂(A,B;A′, B′) = ψ(T ) for some (thus all)
T ∈ O(V, g) with T (A) = A′ and T (B) = B′.

Definition 6.7. For two TSDs (A,B), (A′, B′) of V , we will write
(A,B) ∼ (A′, B′) if ψ̂(A,B;A′, B′) = 0.

Since ψ is a homomorphism, ψ̂(A,B;A′′, B′′) = ψ̂(A,B;A′, B′) +
ψ̂(A′, B′;A′′, B′′) for any three TSDs (A,B), (A′, B′), (A′′, B′′). It fol-
lows that ∼ is an equivalence relation with precisely two equivalence
classes and that ψ̂(A,B;A′′, B′′) = ψ̂(A′, B′;A′′, B′′) whenever (A,B) ∼
(A′, B′).

Lemma 6.8. Let dimV = 2n and let A ⊆ V be a totally singular
subspace of dimension n. If T ∈ O(V, g) satisfies T (x) = x for every
x ∈ A then ψ(T ) = 0.

Proof. By Lemma 6.1 there is a B ⊆ V such that (A,B) is a
TSD of V and an (A,B)-good basis a1, . . . , an, b1, . . . , bn for V . Using
Lemma 6.3 it is easy to verify that the matrix of T with respect to such

a basis has the form:
(
I S
0 I

)
where I is the n× n identity matrix and

S ∈ Mn(Z/2) is an alternating matrix, i.e., if S = {sij} then sii = 0
and sij = sji (1 ≤ i, j ≤ n.) Since alternating matrices have even rank,
it follows that ψ(T ) = 0. q.e.d.

Corollary 6.9. Let (A,B) and (A′, B′) be two TSDs of V . If A =
A′ or B = B′ then (A,B) ∼ (A′, B′).

Proof. Say A = A′. By Lemmas 6.1 and 6.4 there exists a T ∈
O(V, g) with T (x) = x for all x ∈ A = A′ and T (B) = B′. The
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conclusion follows from Lemma 6.8. q.e.d.

Let V0, V1 ⊆ V be two subspaces of V . We will write V0⊥V1 if
B(x, y) = 0 for every x ∈ V0, y ∈ V1. The following is clear:

Lemma 6.10. Let V0, V1 ⊆ V satisfy V = V0 ⊕ V1 and V0⊥V1.

(1) If for l = 0, 1, (Al, Bl) is a TSD of Vl (with respect to g|Vl
which

is indeed nondegenerate) then (A0 +A1, B0 +B1) is a TSD of V .

(2) If (A′
l, B

′
l) is another TSD of Vl and (Al, Bl) ∼ (A′

l, B
′
l) (l = 0, 1)

then (A0 +A1, B0 +B1) ∼ (A′
0 +A′

1, B
′
0 +B′

1).

7. Statement of Result on Embeddings

If e : F → R
3 is an embedding then e(F ) splits R

3 into two pieces,
one compact and one noncompact, which we have denoted M0(e) and
M1(e) respectively. By restriction of range, e induces maps ek : F →
Mk(e), k = 0, 1. Let ek∗ : H1(F,Z/2) → H1(Mk(e),Z/2) be the map
induced by ek and finally let Ak(e) = ker ek∗, k = 0, 1.

Lemma 7.1. Let e : F → R
3 be an embedding, then (A0(e), A1(e))

is a TSD of H1(F,Z/2) with respect to the quadratic form ge.

Proof. We first show that each Ak(e) is totally singular: For
x ∈ Ak(e) let A, c, c′ be as in the definition of ge(x) and simply take
j = e|A. Since ek∗(x) = 0, e(c) bounds a properly embedded (perhaps
non-orientable) surface S in Mk(e). Since e(c′) is disjoint from S, the
Z/2 linking number between e(c) and e(c′) in R

3 is 0, and so ge(x) = 0.
Now, the fact that H1(F,Z/2) = A0(e) ⊕ A1(e) is a consequence of
the Z/2 Mayer-Vietoris sequence for R

3 = M0(e) ∪M1(e) where F is
identified with M0(e) ∩M1(e) via e. q.e.d.

If e, e′ : F → R
3 are two regularly homotopic embeddings then ge =

ge′ so (A0(e), A1(e)) and (A0(e′), A1(e′)) are TSDs of H1(F,Z/2) with
respect to the same quadratic form and so ψ̂(A0(e), A1(e);A0(e′), A1(e′))
is defined. We spell out the actual computation involved in ψ̂(A0(e),
A1(e);A0(e′), A1(e′)):

(1) Find a basis a1, . . . , an, b1, . . . , bn forH1(F,Z/2) such that e0∗(ai) =
0, e1∗(bi) = 0 and ai · bj = δij .

(2) Find a similar basis a′1, . . . , a′n, b′1, . . . , b′n using e′ in place of e.
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(3) Let m be the dimension of the subspace of H1(F,Z/2) spanned
by:

a′1 − a1 , . . . , a
′
n − an , b

′
1 − b1 , . . . , b

′
n − bn.

(4) ψ̂(A0(e), A1(e);A0(e′), A1(e′)) = m mod 2, (an element in Z/2.)

Definition 7.2. If e : F → R
3 is an embedding then we de-

fine o(e) to be the orientation on F which is induced from M0(e) to
∂M0(e) = e(F ) and then via e to F (and where the orientation on
M0(e) is the restriction of the orientation of R

3.) If e, e′ : F → R
3 are

two embeddings then we define ε̂(e, e′) ∈ Z/2 to be 0 if o(e) = o(e′) and
1 if o(e) �= o(e′).

Our purpose is to show:

Theorem 7.3. Let n be the genus of F . If e, e′ : F → R
3 are two

regularly homotopic embeddings then:

Q(e, e′) = ψ̂(A0(e), A1(e);A0(e′), A1(e′)) + (n+ 1)ε̂(e, e′).

8. Equivalent Embeddings and k-Extendible Regular
Homotopies

Let e : F → R
3 be an embedding, let P ⊆ R

3 be a plane and assume
e(F ) intersects P transversally in a unique circle. Let c = e−1(P ) then
c is a separating circle in F . Let A be a regular neighborhood of c in F
and let F0, F1 be the connected components of F − intA. (A lower index
will always be related to the splitting of R

3 via a plane, the assignment
of 0 and 1 to the two sides being arbitrary. An upper index on the other
hand is related to the splitting of R

3 via the image of a closed surface,
assigning 0 to the compact side and 1 to the noncompact side.) Let
Fl (l = 0, 1) be the closed surface obtained by gluing a disc Dl to Fl.
Let el : Fl → R

3 be the embedding such that el|Fl
= e|Fl

and el(Dl)
is parallel to P . Let iFlF : Fl → F and iFlFl

: Fl → Fl denote the
inclusion maps. The induced map iFlFl∗ : H1(Fl,Z/2) → H1(Fl,Z/2)
is an isomorphism and let sl : H1(Fl,Z/2) → H1(F,Z/2) be the map
sl = iFlF ∗ ◦ (iFlFl∗)

−1.

Lemma 8.1. Under the above assumptions and definitions: Ak(e)=
s0(Ak(e0)) + s1(Ak(e1)), k = 0, 1.
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Proof. This follows from the fact that the inclusions F0 ∪ F1 →
F0 ∪ F1, F0 ∪ F1 → F , M0(e0) ∪ M0(e1) → M0(e) and M1(e) →
R

3 − (M0(e0)∪M0(e1)) all induce isomorphisms on H1(·,Z/2) and the
splitting of each of the above spaces via P induces a direct sum de-
composition of H1(·,Z/2). We only check that the inclusion M1(e) →
R

3 − (M0(e0) ∪ M0(e1)) induces isomorphism on H1(·,Z/2). Indeed
R

3 − (M0(e0) ∪M0(e1)) is obtained from M1(e) by gluing a 2-handle
along e(A), and the inclusion of e(A) in M1(e) is null-homotopic. q.e.d.

Definition 8.2. Two embeddings e, f : F → R
3 will be called

equivalent if:

(1) There is a regular homotopy between e and f with no quadruple
points.

(2) (A0(e), A1(e)) ∼ (A0(f), A1(f)).

(3) o(e) = o(f).

Definition 8.3. An embedding e : F → R
3 will be called standard

if its image e(F ) is a surface in R
3 as in Figure 11.

Figure 11: Image of a standard embedding.

In Proposition 8.8 below we will show that any embedding e : F →
R

3 is equivalent to a standard embedding. The proof will be by induc-
tion on genus(F ) and the following lemma will be used in the induction
step:

Lemma 8.4. Let e : F → R
3 be an embedding. Assume e(F ) inter-

sects a plane P ⊆ R
3 transversally in one circle and let c, A, Fl, Fl, Dl, el

be as above. If el : Fl → R
3 (l = 0, 1) are both equivalent to standard

embeddings, then e is equivalent to a standard embedding.

Proof. Changing e by isotopy, we may assume e(A) is a very thin
tube. el : Fl → R

3 is equivalent to a standard embedding fl via a
regular homotopy (Hl)t : Fl → R

3 having no quadruple points. We may
further assume that each (Hl)t moves Fl only within the corresponding
half-space defined by P , that each fl(Dl) is situated at the point of
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fl(Fl) which is closest to P and that these two points are opposite each
other with respect to P . We now perform both (Hl)t, letting the thin
tube A be carried along. If we make sure the thin tube A does not
pass triple points occurring in F1 and F2 then the regular homotopy
Ht induced on F in this way will also have no quadruple points. Since
e(A) has approached el(Fl) from M1(el) and since oel

= ofl
, we also

have at the end of Ht that A approaches fl(Fl) from M1(fl). And
so we may continue moving the tube A until it is all situated in the
region between f0(F0) and f1(F1), then canceling all knotting by having
the thin tube pass itself (this involves only double lines) until A is
embedded as a straight tube connecting f0(F0) to f1(F1) and so the
final map f : F → R

3 thus obtained is indeed a standard embedding.
By assumption (A0(el), A1(el)) ∼ (A0(fl), A1(fl)), l = 0, 1 which implies
that (sl(A0(el)), sl(A1(el))) ∼ (sl(A0(fl)), sl(A1(fl))), l = 0, 1 as TSDs
of Vl = sl(H1(Fl,Z/2)) ⊆ H1(F,Z/2). (Note that sl preserves the
corresponding quadratic forms.) But H1(F,Z/2) = V0 ⊕ V1 and V0⊥V1

and so by Lemma 6.10 and Lemma 8.1 (A0(e), A1(e)) ∼ (A0(f), A1(f)).
Finally, from oel

= ofl
it follows that o(e) = o(f). q.e.d.

Definition 8.5. Let e, f : F → R
3 be two embeddings. A regular

homotopy Ht : F → R
3 (a ≤ t ≤ b) with Ha = e, Hb = f will be called

k-extendible (where k is either 0 or 1) if there exists a regular homotopy
Gt : Mk(e) → R

3 (a ≤ t ≤ b) satisfying:

(1) Ga is the inclusion map of Mk(e) in R
3.

(2) Ht = Gt ◦ ek. (Recall that ek : F →Mk(e) is simply e with range
restricted to Mk(e).)

(3) Gb is an embedding with Gb(Mk(e)) = Mk(f).

Lemma 8.6. If for a given k there is a k-extendible regular homo-
topy between the embeddings e and f then Ak(e) = Ak(f).

Proof. f = Hb = Gb ◦ ek and so fk = Gk
b ◦ ek where Gk

b : Mk(e) →
Mk(f) is the map Gb with range restricted to Mk(f). Since Gk

b is a
diffeomorphism it follows that ker fk∗ = ker ek∗. q.e.d.

Corollary 8.7. If there is a k-extendible regular homotopy between
the embeddings e and f for either k = 0 or k = 1 then:

(1) (A0(e), A1(e)) ∼ (A0(f), A1(f)).

(2) o(e) = o(f).
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Proof. (1) follows from Lemma 8.6 and Corollary 6.9. Since Ga is
the inclusion and Gt is a regular homotopy it follows that Gb is orien-
tation preserving. This implies (2). q.e.d.

Proposition 8.8. Every embedding e : F → R
3 is equivalent to a

standard embedding.

Proof. The proof is by induction on the genus of F . If F = S2

then any e is isotopic to a standard embedding and isotopic embeddings
are equivalent. So assume F is of positive genus and so there is a
compressing disc D for e(F ) in R

3 (i.e., D ∩ e(F ) = ∂D and ∂D does
not bound a disc in e(F )). Let c = e−1(∂D) ⊆ F and let A be a regular
neighborhood of c in F . Isotoping A along D as before we may assume
A is embedded as a thin tube. There are four cases to be considered
according to whether D is contained in M0(e) or M1(e) and whether
∂D separates or does not separate e(F ).

Case 1. D ⊆ M0(e) and ∂D separates e(F ). It then follows that
D separates M0(e). If F0, F1 denote the two components of F − intA
and el : Fl → R

3 are defined as before then it follows from the as-
sumptions of this case that M0(e0) and M0(e1) are disjoint and the
tube e(A) approaches each el(Fl) from its noncompact side, i.e., from
M1(el). Move each foot of the tube e(A) (see Figure 12) along the cor-
responding surface el(Fl) until they are each situated at the point pl of
el(Fl) having maximal z-coordinate. In particular it follows that now
e(A) approaches each el(Fl) from above. We now uniformly shrink each
e(Fl) towards the point pl until it is contained in a tiny ball Bl attached
from below to the corresponding foot of e(A), arriving at a new embed-
ding e′ : F → R

3. This regular homotopy is clearly 0-extendible, and
since no self intersection may occur within each of F0, F1 and A, this
regular homotopy has no quadruple points. And so by Corollary 8.7
e′ is equivalent to e. We now continue by isotopy, deforming the thin
tube e′(A) until it is a straight tube, and rigidly carrying B0 and B1

along. We finally arrive at an embedding e′′ for which there is a plane
P intersecting e′′(F ) as in Lemma 8.4 with our F0 and F1 on the two
sides of P . Since the genus of both F0 and F1 is smaller than that of F
then by our induction hypothesis and Lemma 8.4, e′′ is equivalent to a
standard embedding.

Case 2. D ⊆M1(e) and ∂D separates e(F ). Let Fl, Fl, el (l = 0, 1)
be as above. This time either M0(e0) ⊆ M0(e1) or M0(e1) ⊆ M0(e0)
and assume the former holds. In this case e(A) approaches only e0(F0)
from its noncompact side and so we push the tube and perform the



automorphisms and embeddings of surfaces 453

Figure 12: Moving the foot of a tube.

uniform shrinking as above only with F0. This is a 1-extendible regular
homotopy since we are shrinking M0(e0) which is part of M1(e). Now,
if B is the tiny ball into which we have shrunken e(F0) then ∂B supplies
separating compressing discs on both sides of e(F ) and so we are done
by Case 1.

Case 3. D ⊆ M0(e) and ∂D does not separate e(F ). If F ′ =
F − intA and e′ : F ′ → R

3 is induced as above (where F ′ is the surface
obtained from F ′ by gluing two discs to it) then both feet of the tube
e(A) approach e′(F ′) from its noncompact side. Push the feet of e(A)
until they are both situated near the same point p in e′(F ′) having
maximal z coordinate. As before, this implies that the two feet are
approaching p from above. Let P be a horizontal plane passing slightly
below p (so that in a neighborhood of p it intersects F in only one
circle). We may pull the tube e(A) until it is all above P . We then
let it pass through itself until it is unknotted. This is a 0-extendible
regular homotopy with no quadruple points, at the end of which we
have an embedding intersecting P as in Lemma 8.4 with an embedding
of a torus above the plane P , this embedding being already standard
and an embedding of a subsurface F ′′ of F below the plane P , F ′′ being
of smaller genus than that of F . Again we are done by induction and
Lemma 8.4.

Case 4. D ⊆ M1(e) and ∂D does not separate e(F ). We may
proceed as in Case 3 (this time via a 1-extendible regular homotopy) to
obtain a standard embedding of a torus connected with a tube to e′(F ′)
but this time the torus is contained in M0(e′) and the tube connects to
e′(F ′) from its compact side. But once we have such an embedding then
the little standardly embedded torus has non-separating compressing
discs on both sides and so we are done by Case 3. q.e.d.

Lemma 8.9. If e : F → R
3 is an embedding and h : F → F is

a diffeomorphism such that e and e ◦ h are regularly homotopic, then
ψ̂(A0(e), A1(e);A0(e ◦ h), A1(e ◦ h)) = ψ(h∗) and ε̂(e, e ◦ h) = ε(h).
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(Recall that h∗ is the map induced by h on H1(F,Z/2) and ε(h) ∈ Z/2
is 0 or 1 according to whether h is orientation preserving or reversing,
respectively.)

Proof. x ∈ ker(e ◦ h)k∗ iff h∗(x) ∈ ker ek∗ and so Ak(e ◦ h) =
h−1∗ (Ak(e)), k = 0, 1. By definition then ψ̂(A0(e), A1(e);A0(e◦h), A1(e◦
h)) = ψ(h−1∗ ) = ψ(h∗). (Recall that if e and e◦h are regularly homotopic
then indeed h−1∗ ∈ O(H1(F,Z/2), ge).) ε̂(e, e ◦ h) = ε(h) is clear. q.e.d.

We are now ready to prove Theorem 7.3. For two regularly homo-
topic embeddings e, e′ : F → R

3 let Ψ̂(e, e′) = ψ̂(A0(e), A1(e);A0(e′),
A1(e′)) + (n + 1)ε̂(e, e′). We need to show Q(e, e′) = Ψ̂(e, e′). If f :
F → R

3 is another embedding in the same regular homotopy class then
Q(e, e′) = Q(e, f) +Q(f, e′) and Ψ̂(e, e′) = Ψ̂(e, f) + Ψ̂(f, e′). And so if
e is equivalent to f and Q(f, e′) = Ψ̂(f, e′) then also Q(e, e′) = Ψ̂(e, e′).
And so we may replace e with an equivalent standard embedding f
(Proposition 8.8) and similarly replace e′ with an equivalent standard
embedding f ′. Now f and f ′ have isotopic images and so after isotopy
we may assume f(F ) = f ′(F ) and so f ′ = f ◦h for some diffeomorphism
h : F → F . By Lemma 8.9 and Theorem 5.6 the proof of Theorem 7.3
is complete.

We conclude with a remark on systems of surfaces. If S = F1 ∪
· · · ∪ Fr is a system of closed orientable surfaces, and e : S → R

3 is
an embedding, then we can rigidly move e(Fi) one by one, until they
are all contained in large disjoint balls. When it is the turn of Fi to be
rigidly moved, then the union of all other components is embedded and
so only double lines occur. If e′ : S → R

3 is another embedding then we
can similarly move e′(Fi) into the corresponding balls. It follows that
Q(e, e′) =

∑r
i=1Q(e|Fi , e

′|Fi) and so we obtain a formula for systems of
surfaces, namely: Q(e, e′) =

∑r
i=1 Ψ̂(e|Fi , e

′|Fi).
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