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THE WILLMORE FLOW WITH SMALL INITIAL
ENERGY

ERNST KUWERT & REINER SCHATZLE

Abstract

We consider the L2 gradient flow for the Willmore functional. In [5] it
was proved that the curvature concentrates if a singularity develops. Here
we show that a suitable blowup converges to a nonumbilic (compact or
noncompact) Willmore surface. Furthermore, an L™ estimate is derived
for the tracefree part of the curvature of a Willmore surface, assuming that
its L? norm (the Willmore energy) is locally small. One consequence is
that a properly immersed Willmore surface with restricted growth of the
curvature at infinity and small total energy must be a plane or a sphere.
Combining the results we obtain long time existence and convergence to a
round sphere if the total energy is initially small.

1. Introduction

For a closed, immersed surface f : ¥ — R” the Willmore functional
(as introduced initially by Thomsen [11]) is

1) W(f) = /2 A% d,

where A° = A — %g ® H denotes the tracefree part of the second fun-
damental form A = D?f1 and p is the induced area measure. The
associated Euler-Lagrange operator is

(2) W(f) = AH + Q(A°)H.

Here H is the mean curvature vector and Q(A°) acts linearly on normal
vectors along f by the formula (using summation with respect to a
g-orthonormal basis {e1,es})

(3) Q(A%)p = A°(es,e5)(A°(eire5), B).
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410 E. KUWERT & R. SCHATZLE

In (2) the Laplace operator A¢ = —V*V ¢ is understood with respect to
the connection Vy¢ = (Dx¢)" on normal vector fields along f, where
V* denotes the formal adjoint of V.

In this paper we continue our study from [5] of the L? gradient
flow for (1), briefly called the Willmore flow, which is the fourth order,
quasilinear geometric evolution equation

(4) Ohf =—-W(f).

As a main result we have shown in [5] that the existence time is bounded
from below in terms of the concentration of the measure fu(u|A[?) in
R™ at time t = 0. Here we study the operator (2) and the flow (4)
under the assumption that W(f) is — either locally or globally — small.
This condition is natural from the variational point of view and may be
interpreted geometrically by saying that the deviation of f from being
round is small in an averaged sense. One of our results is:

Theorem 5.1. There exists eg(n) > 0 such that if at time t = 0 we
have W(fo) < €9, then the Willmore flow exists smoothly for all times
and converges to a round sphere.

The smallness assumption implies, if ¢ is not too big, that X is
topologically a sphere and that f is an embedding (see [13] for the case
n = 3). Moreover, any sequence fi with W(f) — 0 subconverges, after
appropriate translation and rescaling, to some round sphere in the sense
of both Hausdorff distance and measure [8]. However the fi need not
be graphs over the limit sphere, as can be seen by modifying Example 1
in [12]. At present we do not know an example ruling out the possibility
of dropping the smallness condition in Theorem 5.1 entirely; in any case
it is desirable to replace the number £y by a more explicit constant.!

The statement of the theorem was recently proved in [9] under the
stronger assumption that fy is close to a round sphere in the C?%°-
topology, using a center manifold analysis which gives related stability
results for a couple of other flows; see [2] for an overview. Our method,
which is (and has to be) entirely different, involves deriving a priori
estimates from the equation satisfied by the curvature, somewhat anal-
ogous to the work of Huisken [3, 4]. However, in our problem the crucial
estimates are of integral type and the smallness condition is essential in

! Note added in proof: a numerical example of a singularity was recently con-
tributed by U. Mayer & G. Simonett: http://www.math.utah.edu/~mayer/math
/numerics.html.
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ruling out possible concentrations related to the scale invariance of the
functional.

2. Estimates for surfaces with locally small Willmore energy

Here we derive some bounds for immersed surfaces f : ¥ — R"
depending on the L? norms of their curvature A and of their Willmore
gradient W(f) = AH + Q(A°)H, under the assumption that the L?
norm of A°, the tracefree part of the curvature, is locally small.

Recall the equations of Mainardi-Codazzi, Gaufl and Ricci:

(5) (VxA)(Y,Z) = (VyA)(X,Z); VH=-V'A=-2V"A°
(© K = JIHP ~ 1A%,
(1)  RYX,Y)p = A%(es, X)(A°(e;,Y), ) — A%(es, Y)(A%(ei, X), &)

Note (R+(X,Y)¢$,¢) = 0 and in particular R+ = 0 for n = 3, i.e.,
codimension one. The Codazzi equations imply that VA and V2A can
be expressed by VA° and V2A°, respectively. In particular one has
inequalities

(8) IVA| < c|VA°|, |V2A| < c|V2A°|.
Lemma 2.1. For any p-linear form ¢ along f we have

9)  (VV*=V*V)¢)(Xy,...,Xp)

p
= K¢(X1,....Xp) + K Y ¢(Xp, Xa,.. ., X1,.., X))
k=2
p

— K g(X1, Xp) dlei, Xa, . reiy .y Xp)
k=2

+RY (e, X1) dleiy Xo, .., Xp) — (VT (X1, - .., Xp).
Here the tensor T is given by
T(Xo, X1, Xp) = (Vxo®)(X1, X2, Xp)—(Vx, &) (X0, Xz, .. X,).
Proof. From the proof of Lemma 2.1 in [5] we have

(VV* = V*'V)9)(X1,..., Xp)
= (RP(ei, X1) ¢) (€3, X2, ..., Xp) — (V'T)(X1,..., Xp).
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Now the curvature operator RP is given by

(RP(ei, X1)9) (€i, Xa, - .-, Xp)
= R*(es, X1) p(ei, Xa, ..., Xp)
— ¢(R(e;, X1) e, Xo, ..., Xp)

P
- Z d(ei, Xo, ..., R(es, X1) X, ..., Xp)
k=2

= RL(ei,Xl)(;S(ei,Xg,...,Xp)
— K ¢(9(X1,e)ei, Xa, ..., Xp) + K ¢(g(ei, e) X1, Xo, ..., Xp)

p
— K> b(ei Xa, . g(X1, Xpes, ., Xp)
k=2

p
+ KZ ¢(g(€i,Xk)€i,X2, ey X1,y .,Xp).
k=2

Inserting yields the desired formula. q.e.d.

We will need three different choices for ¢ in (9). Taking first ¢ = A
yields T'= 0 and V*¢ = —VH by (5), and we get Simons’ identity ([10])

AA=V2H +2KA° + R (e;, - ) Ales, - ).

To bring this in a more useful form, let us denote by S°(B) the sym-
metric, tracefree part of any bilinear form with normal values along f.
In particular, we have

1 1
S°(V2H):VQH—Eg(-,-)AH—gRL(~,-)H.

Now A(39(,-)H) = 3g(,-)AH and R*(e;, X)ig(e;,Y)H =
—sRY(X,Y) H, which implies, using (6) and (7),

1
(10) AA° = SO(V2H)—|—§|H\2A°+A°*A°*A°.
Here and in the following we denote by A % B any universal, linear
combination of tensors obtained by tensor product and contraction from

A and B. Our second choice in (9) is ¢ = VH, where now

T(X,Y)=V%yH—-Vi{xH=R"(X,Y)H.
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Using again (5), (6) and (7), we infer

1
(11)  V*(V2H)=V(V*VH) - Z\HPVH + Ax A°x VA°.
Finally taking ¢ = VA® in (9) yields

T(X,Y,Z,V) = (R¥(X,Y)A°)(Z,V)=(AxAxA)(X,Y,Z,V),
VT = AxAxVA°.

Thus we obtain from (9) and (6), (7)
(12) V*(V2A°) = V(V*VA°) 4+ Ax Ax VA°,
We now convert (10), (11) and (12) into integral estimates.

Lemma 2.2. If f: ¥ — R"” is an immersion with W(f) =W and
v € CH(X) satisfies |Vy| < A, then

(13)
/ VAP A < / W2 dp+ ¢ / |A%492 dp + cA? / AP du.

[v>0]

Proof.  Multiply (10) by +2A° and integrate by parts to obtain,
after applying (5),
/IVA°!272dM+;/|H|2|A°!2'v2du
< ;/]VH]272du+c/]A°\472du+/’nyy*AO « VA° dp.
Using the equation AH + Q(A°)H = W we have

1 1
Q/IVHInyQdN:—2/(H,AHdequ/ny*A*VA"du

=5 [ wrt s 5 [0 ) 4

+ /’yV'y*A*VAOd,u

C
< [ WP dusenr [Py
[v>0]

1
+2/(H,Q(AO)H>72d/L+/7V7*A*VA°d,u.
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It is easy to see the inequality
(14) 0 <(Q(A°)H, H) < |A°|?|H[*,
Furthermore we have

1
/7V7*A*VA°d,u§ 2/|VA°|272d,u—|—cA2 / |A|% dp.
[v>0]

Inserting these inequalities, absorbing and recalling (8) proves the claim.
q.e.d.

Lemma 2.3. Under the assumptions of Lemma 2.2 we have for
4
n=-

19 [19*HPy+ [ APV AP+ [ 1474 g
<e / WP ndp+ e / (14°2 |V AP + | 4°%)n du

+cA4/ A2 dp.

[v>0]

Proof. We start multiplying (11) by n VH and integrating by parts.
This yields

[ IV HEnd g [ 1P 9EE
§/|AH!277d,u+/A>kAO*VAO*VAondu
+/73V7*VH*V2Hdu
<c [1WPndurc [ 147 1 d
b [P VA Pydu o) [ 107 (74P dy
+;/!V2Hl2ndu+cA2/|VHl272du-
Now by (13) we can estimate

c c o
/!VHIQ’VZdMSAQ/\lendquAQ/\A Sy + ¢ A2 / AP du.
[v>0]
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Using the inequality ¢ |A°|* |H|? < e |H|*|A°|?>+c(¢) |A°|® and rearrang-
ing, we arrive at
16 [ [HPyda [ |HEVEE

Sc/!WPndu+cA4/ [A]” du
[v>0]

T ele) / A2 [V AP s + () / A% ndu

v [1H[ APy dns = [ 1HP VAP ydp
Next we use (10) to compute

[ 1P A

= _/|H|2<A°,AA°>17du+/H*VH*AO*VAondu
+/\H2A°*VA°*V77du

_ _/|H|2<A°,V2H+;\H2A°+A°*A°*A°)ndu
+/H*VH*A°*VAondp+/|H|2A°*VA°*Vndu

< ;/\H\Q\VHPnd,qu/H*VH*AO*VAOndu
+/\H2A°*VA°*73V7du
~ 5 [ nda e [P A d

< (; +6) [PV HPydn o) [ 1477 (94 g
40 [IHP VAP nd+ e(6) A? [ |HP 14

1 [¢] [e]
5 [ e [ 1P A
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From the inequalities

¢ / HI A% < § / I A% dp + e(6) / 1A% dg,

(5) A / HP A2 dp < 6 / I AP dpa + c(5) A / A2 dp,
[v>0]

we see that
(o] 1 (0]
(1) (1=0) [IHPIVAP o+ (2 —26) [ 1A d
1
< (3+9) [P AR gan

+e0) | [V Prducs [14°Pndus At [ 1P dy
[y>0]

Adding the inequalities (16) and (17) yields
1
[tk (5-5) [1pwEa
1
F(1—d—e) /\H!Q IV A° Py dp + (2 95— g> /|H|4 4% 2 dps

< (5,2 /\Aoyz]VA°|2ndu+/]A°|6ndu+A4/ Al dy

[v>0]

+ c/ W %0 dp.

The claim of the Lemma follows by choosing ¢ = 6 = %. q.e.d.

Proposition 2.4. If f : ¥ — R" is an immersion with W(f) =W
and n = ~*, where v € CL(X) satisfies |V~y| < A, then

/ V2 AP dy+ / AP (VAP dye+ / AL A% du

<e / WP dp + e A* / AP du+ ¢ / (|42 [V A2 + | A° ) d.

[v>0]
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Proof. Multiply (12) by n VA°, integrate by parts and apply (10)
to get

[IvaPdn < [1aaPydn-sc [147 VAP d

—i—/’ygV’y %« VA° « V2A° du

IN

0/ IV2H|*ndu
ve [1API9AP du+ e [ 141|147 Py dy

1
+2/]V2A°]2ndu+cA2/\VAO]272du.

The claim now follows from Lemma 2.2 and Lemma 2.3, recalling (8).
q.e.d.

We next need a multiplicative Sobolev inequality.

Lemma 2.5. Under the assumptions of Proposition 2.4 we have

(18) / (|4°2 |V AP 4 | 4°[5) dp

<e / A% dye / (VAP + AP [VAP + |A]* |A°2)n du
[v>0]
2

+ cA* / |A°|? dp
v>0]

Proof. Recall the Michael-Simon Sobolev inequality ([7])

1
2
(19) /quu <e /|Vu| du+/|H| uldp | |
> >

%
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with ¢ = ¢(n). Letting u = |A°| [V A°|v? we obtain

/ A% [V A° 2 dg

2 2
SC(/|A°||V2A°|72du) +c (/IVA°I272du>
2 2
e (/1A| !A°||VA°’V2du) e </|A°!|VA°|7|VVdH>

<e / A% ds / (IV2A°[2 4 | A2 [V A° )1 dy
[v>0]
2 2
+CA4</|A°\2d,u> +c </\VA°|2’V2d,u> .
[v>0]

In the last term, we integrate by parts to get

20 [1VAP P dn < [ 14920 du v e [ 14°] VA% d

1 1
gc( / \A°I2du)2 - (/|V2A°|277du>2
[v>0]

+;/|VA°\272du+cA2/|A°|2d,u.
[v>0]

Absorbing and inserting proves the claimed inequality for the first term
in (18). For the other term, choose u = |A°|3~? in (19) and compute

J1ana

2
<o [urpiwai?ans [1a1aP 2 dusen (100 yan)

2
Sc(/wmwdﬂ) vo [1aPan - [1APIAL
[v>0]
2
+CA4< / |A°\2d,u>.

[v>0]

Combining with (20) proves the estimate for the second term on the left
of (18). q.e.d.
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Proposition 2.6. Let f : ¥ — R" be an immersed surface, and
let A = ||Vv|| o, where v has compact support on ¥. There exists a
constant g9 = £9(n) > 0 such that if

|A°? dp < e,
[v>0]

then we have for a constant ¢ = ¢(n) < oo
JUT2AP & AP [9AP + 141 |4°) "

<o [ WP duct et [ AP dg
[v>0]
This is an immediate consequence of Proposition 2.4 and Lemma 2.5.

As a first application we deduce the following result.

Theorem 2.7 (Gap Lemma). Let f : ¥ — R™ be a properly im-
mersed (compact or noncompact) Willmore surface, and let 3,(0) =

FH(Bo(0)). If
1
ligninf4/|A|2du = 0, and
— 00 Q

%(0)

/|A°|2d,u < e = eo(n),
b

then f is an embedded plane or sphere.

Proof.  We take ~v(p) = gp(% |f(p)]), where ¢ € C'(R) satisfies

¢(s) = 1for s < 3, p(s) = 0 for s > 1 and ¢ > 0. Then we have
A = ¢/p in Proposition 2.6. Since W(f) = 0 by assumption, we can
let ¢ — oo and conclude A° = 0. This implies, by a standard result of
differential geometry [13], that f maps into a fixed, round 2-sphere or
plane S C R"™. As f is complete, it follows that f : (3, g) — S is a
global isometry. q.e.d.

We shall now derive an L*° bound for A° from Proposition 2.6.

Lemma 2.8. For~y € C}(X) with |Vv| < A and any normal p-form
¢ along f we have the inequality

4 2
W2 lle < cln? 8% / (V2602 + | H|* |62) v* dyu + A* / 161 du
[v>0]
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Proof.  This is Lemma 4.3 in [5], except that there a bound on
the second derivatives of v was assumed. Letting 1 = v2¢ we apply
Theorem 5.6 in [5] to obtain

(21)
1690 < cllvllze (IVN 70 + [1H )74)
< el </78|V¢|4du+/\4/74l¢|4du+ /|H|4 |w|4du> .

The three integrals on the right are estimated as follows (starting with
the third):

(22) / HP [l dn < )2 / HIM 6% du,
(23) A / olde < )2 A® / 6P d.
[v>0]

By partial integration, we infer

/rwW dn < c/ 161 V26172 dpu + eA /\¢| V6] v du

c 1
<55 [19%00 vt duov e? [l au+ 5 [1997 dge
[v>0]

Using again integration by parts and Cauchy-Schwarz

/ V|t dpu < c(/ 11|V V26| 7 dpu + A/ 61|V du)

< ¢l ( JCE dﬂ>2 ( [192o dﬂ>2
N (/V¢I4vsdﬂ>2 </|V¢\272du>2.

Combining the last two inequalities, we get

@) [ 196 < elipl ( [i9%or s ent [ |¢I2du>-
[v>0]

Inserting (22)—(24) into (21) proves the claim. q.e.d.

Combining Proposition 2.6 and Lemma 2.8, where ¢ = A° and ~ is
a cutoff function depending on extrinsic distance as in Theorem 2.7, we
obtain the following “partial” curvature estimate.
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Theorem 2.9 (Tracefree Curvature Estimate). Let f : ¥ — R™ be
an immersed surface with ¥, = f‘l(Bg(xO)) CC X, and suppose that

/\A°|2du < eo,
ZQ

where g = go(n) > 0 is a fived constant. Then

(o) 1 (o)
(25) (A3, ) < € <||w<f>||L2(zg) + Q2|AHL2@9)) 14°0 2 .

Assuming smallness of the full second fundamental form A, one eas-
ily adapts the arguments above to also prove the following;:

Theorem 2.10 (Curvature Estimate). Let f : ¥ — R" be an
immersed surface, ¥, = f~1(B,(x0)) CC ¥ and suppose

JE R
ZQ

where g9 = go(n) is a fized constant. Then
1
) Al e, < (IWDlizoy + 21403y ) 141z,

Remark 2.11. The statements of the Theorems 2.7, 2.9 and 2.10
clearly also hold with the extrinsic distance sets ¥,(x¢) replaced by
distance sets with respect to the intrinsic distance function, since only
a bound on the first derivatives of the cutoff function was needed.

3. Local estimates for the flow

We now consider solutions f : ¥ x [0,7) — R" to the gradient flow
for the Willmore integral,

of =—W(f).

We abbreviate W(f) =: W in the following and compute first a precise
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formula for the evolution of the energy density. Recall from [5]:

(27) Oy(dp) = (H, W) dp,

(28) OLH = — (AW + QAW + %H(H, W>) ,

(29) OFA(X)Y)=—-ViyW + %g(X, Y) [Q(AO)W + %H(H, W>]

—_

Y SH(AY(X,Y), W) + %A%X,Y)(H, W)

\)

1
+ 5RL(X, Y)W.

Here we used (2.18), (2.6) and (2.3) from [5]. Furthermore, using (2.15)
in [5] we infer

o (; g(X,Y) H) = —% g(X,Y) (AW + QAW + %H(H, W))

£ (A(X,Y), W)H + L g(X,Y)H {H, W),
and subtracting this from (29) yields
(30)  OFA°(X,Y) = —S°(VEW) +g(X,Y)Q(A)W

b5 AN Y )(H, W) — 5 HUAS(X,Y), W),

Recall that S°(...) denotes the symmetric, tracefree component. We
compute separately for H and A°. By (27) and (28)

1
& <2 \HIQdM>

1 1
= <AW + QAW + S H{H, W), H> dyu+ 5| HI (H, W) dy

= —(AH + Q(A°) H,W)du+ ((AH, W) — (H,AW)) du
= *|W|2 dﬁ‘ + Vei ((vei H’ W> - <H7 Vei W>) d#a

whence
1
(31) ) (2 HP du) WP d = (V) dp,

where « is the 1-form given by

(32) a(X) = Vx (H, W) — 2(Vx H, W).
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In order to compute for A°, we first have (using again (2.15) in [5]) for
a g-orthonormal basis

9(Osei, €j) + g(ei, Ore;) = Or(g(ei,e5)) — (8eg)(ei, €;)
—2(A(ei, e5), W)
= —2(A%(es,e5), W) — 65(H, W).

This implies further
(A°(Oress er), A°(ei, ex))
= g(atei76j)<Ao(ej76k)v Ao(eiaek»
o 1 [} o
= (e W)+ 3 W) ) (0. 4% )
1
= —(A%(ei, ex)(A%(eire5), W), A%(ej, ex)) — B |A°[*(H, W)
1 o [0 1 [}
= (G 9(er QU (e cx) ) 5 A7, W)
Lo
= _5"4 |2<H7 W))
where we used (2.5) from [5]. We use this and (30) to compute
O (JA°|* du)
= 2((0: A°) (€3, ex), A°(ei, ex))dp
+ 2(A°(heq, e) + A°(es, Drer), A°(ess ex)) dp + | A°)? (H, W )dp
= —2(V2W, A°)dp + |A°)* (H, W)dp
— (A°(es,ex), W) (A% (e, ex), H)dp
—2|A°P(H, W)dp +|A°[* (H, W)dp
= —2(V*W, A%)du — (Q(A°)H, W)dp
= (= 2%, (Ve W, A%(eure)) + (Ve W, Ve, H)
—(Q(A”)H, W)dp
= ( - 2v€z‘<v€jVV7 Ao(eia ej)> + v5i<VV7 veiH>)dH
— (W, AH)dp — (Q(A°)H, W)dy.
Thus we have shown
(33) O(|A° [ dp) + W ? dpu = (V*B) dp,
where 3 is the 1-form defined by
(34) B(X) = 2(Ve, W, A°(X, e;)) — (Vx H, W).
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Lemma 3.1. If f is a Willmore flow, then for any function n and
W = W(f) we have:

1
) o [ SlHPydn [ W Pndn

1
= / <2|H|28t77 - <H> W>A77 - 2<Vgradr]H> W>> d,u7

(36) 8t/|A°|2ndu+/\W\2ndu
_ / (1452 0 — 2(A°(es, €5), WIVE, o0 — 2(Vygaan H, W) d.

Proof. Formula (35) is immediate from (31) and (32). For (36) we
compute for § as in (34):

/HV*BdM = / (2<VejI/V,A°(grad77,ej)> - <Vgrad77H7 W>)d:u
= _/2<(vej AO) (6j7gradn)a W>d:u’
~ [ 2V, grad ), Wydu— [ (Vosaa B W)

— —/QVi’eJ_n(Ao(ei,ej),WM,u—/2<VgradnH, Wdp,

which, together with (33), proves (36). q.e.d.

In controlling the energy density in time, difficulties arise because of
the dependence of 9;n and V27 on f, and since W(f) differs from AH
by the term Q(A°)H. For a ball B, = By(zg) C R" and f: ¥ — R" we

adopt as in Section 2 the notation

So(w0) = £~ (Bo(20))
and consider a cutoff function ¥ € C1(B,), ¥ > 0, such that
c c
37 DA <=, |D*73| < —.
(37) DA < . D77 2

We put v =74 o f and observe

(38) Vy=(Dyof) Df
Vi =(D*Fo [)(Df,Df) + (Do f)-A(,-).
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Lemma 3.2. If f : ¥ x [0,T) — R" is a Willmore flow and n = ~*

forv=75o f with ¥ as in (37), then we have for W = W(f)
1
(39) o [ 14°Pndu-+ 5 [ Wind

c o c
< [ AP AP Y du+— [ |AP dp
0 0
[v>0]

(40) o / APy + / W du

C C
<& 1At 5 [ 1aPdn
0 0
[y>0]

Proof. We estimate the terms in (36) and (35). We have
c
[AvEPde =~ [P A [V

< —/VQ(H,W>du+C/72\A°!2!H!2du

1 c
+2/72\VH\2du+Q2 /|H2du.

[v>0]

/\WHVHHW\duﬁa/\W\QndﬂJrC?/vQIVHIQdM,

we obtain by combining

ce o
~ [ 2antt Wt < e [WPdn S [ 200

Cc\E
+A(f4) /]H|2dp,.

[v>0]

Next using (38)
o 2 o 1 2 1 3| g0
= | 2w eg), W)Ve e ndp < e [ AW 597+ 97147 ) dp

c(e o
§5/|W|2ndu+£2)/|A [492 dp
c(e o
+é4)/]A ? dp.

[v>0]

425
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Finally
/!A°|23tndu < C/\AOPWWW
Y

c(e o
6/|W|2’V4du+ég)/\fl "y dp.

IN

Combining the three estimates and absorbing for € > 0 small, we obtain
(39). The estimate (40) follows analogously from (35). q.e.d.

Lemma 3.3. Let f: 3 x [0,T) — R"™ be a Willmore flow. If
(41) / |A°>dp < g0 at some time t € [0,T),
E9(130)
then for a constant cg > 0 we have at time t
42) 0 [ APy d o [(V2AP + AP VAP + A1 1A° )y dy
c
<5 [ 1k,
o (o)
and
43) 00 [ 1Py ductco [(T2AP + AR VAP A1 |A° )y d
c
<5 [ 1P
o (o)

Proof.  (42) follows by combining (39) with Proposition 2.6, after
estimating

C ° ° C\E °
& [1apiacpan <e [l apytans S [ et
[v>0]

For the other bound we must go back to (35), estimating the three terms
on the right hand side. We have

1 1 N ]
[ iR amdu =~ [ JIHE DT £ (AH + QUA%) H) i
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By Young’s inequality with 4 and 4/3, we have

@)+ [1OP 1P <o [ 172 AP e O [ AP dg
[v>0]

Using integration by parts, we infer

/H*H(Dﬁof,AH)d,u
C C
<< / H|[VHE A i+ / HP? |V H| dp

<< [1mpwapyta 4 [vnp2a,
+£)4)/\H2dﬂ.

[v>0]

In the proof of Lemma 3.2, we have already shown by partial integration
that

/ CIVHRdp < 8¢ / WP+ SO / AP du

[7>0]
40 [ 1AP 4% 5 dp,

so that by combining we obtain
(45) /H « H(D7o f, AH) dy

= WP+ AP [9AP + AR 4% 1

c(e
= [ lapan
[v>0]

Thus (44) and (45) estimate the first of the three terms on the right
hand side of (35). For the second we use

—/(H, W) Andp
- [t amy Do £ M-+ 5 [ 1HIAHI d

C (e} C [e]
+2 / A AP i+ 5 / A% | APy dp.
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The first integral is estimated by (45), the third integral by (44). Fur-
thermore

C
< [inaman < < [1v2apstans <0 [ japa,
[7>0]
c o o
& friapran < e [latapytan+ 42 [lapa,
[v>0]

The third integral on the right of (35) satisfies

/'V’” WH”W'dNéff/!W\Qv le—/!VH]nyQdu

and the right hand side is already estimated. Thus putting things to-
gether we have shown

1 3
O </2|H|277dﬂ> +4/|W|27ldﬁb

R c(e
< [(v2aP + AP VAP + A 4Py au+ [ 142,

[v>0]

Now (43) follows from Proposition 2.6. q.e.d.

Proposition 3.4. Let f : ¥ x [0,T) — R™ be a Willmore flow
with [ |Al*dp < 5. There exist constants e1 = £1(n) > 0 and ¢ =
c(n)/» >0, such that if o > 0 is chosen with

(46) /\A°|2du <e<e attimet=0 forall¥,=%,(x9) CR",
Zg

then for any time 0 < t < t; = min{c; o*, T} we have
¢
@ [1aPdus [ [(T2AP + AP VAP + A1 J4°P)dy dr

PR 03,
< cle+ 20 "t),

t
(48) /0 1A% e < el + 32074,
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Moreover, for 0 < 0 < o and 7 < min{c; o*, T} we then also have
(49) / ]A\Qd,u‘ < / |A|2du‘ 0+C%0'74T Vr € R™.
t=1 t=
Lo /2(x) o (x)

Proof. Let N = N(n) be the number of balls B,/ C R" needed to
cover B, C R"™ and choose g1 < f—&, where €9 > 0 is as in Lemma 3.3.
Assume (41) is satisfied on [0,¢] for all B, C R™ , and integrate (42) to
obtain using (46)

t
/ |A°\2d,u+c()/ /(|V2A\2+\A|2|VA\2+\A|4|A°\2)duds
Eg/2 OEQ/Q

<e+ C%Q’4t.

Assuming t < ¢10* where ¢; is chosen with 0 < ¢; < NS, We conclude

t
Jiaan v [ [(VAR + AP VAR + |4 |4°P) duds
PP OZQ

< N(€+C%Q_4t)

< N(ey+cxc)
€0

< —.

- 2

It follows that (41) holds up to time ¢t = t; for all xg € R™, and (47)
follows. In particular fzg |A°|2du < c(e1 + sc1), whence a covering
argument with possibly smaller €1, ¢; implies the smallness hypothesis
in Theorem 2.9 for any ball By, C R™ and any ¢ € [0,¢;]. Inequality
(48) now follows from combining (25) with (47), again using a covering.
Finally (49) is obtained by integrating (43) and (42) on [0,t].  q.e.d.

We next state a version of the higher order estimates obtained in [5]
which is localized in time.

Theorem 3.5 (Interior Estimates). Let f : ¥ x (0,7] — R™ be a
Willmore flow satisfying the condition

(50) sup / |A|? dp < e < go(n),
0<t<T
2(0)

429
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where T < ¢(n) ¢*. Then for any k € Ny we have at time t € (0,T)] the
estimates

(51) IvEAl

k+1

< clk)et 1
c(k)\@ff

Lee (29/2(0))

k
(52) Hv AHLQ (29/2(0))

Proof. By scaling f,(p,t) = éf(p, o*t) we may assume ¢ = 1. Using
(4.13) and (4.9) from [5], see also Proposition 4.6 in [5], we obtain on
B = B3;,(0) the inequalities

T
(53) // (IV2A]? + |A|%) dudt
0 23/4

IN

ce,

T
4
(54) /0 HAHLOO(E3/4) dt S CeE.

Fix a cutoff function ¥ € C°(R") with xp,,, <7 < xp and D7« +
|D?7| ;% < c. Also define cutoff functions in time by

fort<(j—1)%L
(t—(G-1) %) in between
fort >j L,

x;(t) =

HQB [a)

where 0 < j <m and m € Ny. Note xyo =1 on [0,T], x;m(T) =1 and
. m
(55) 0<x; < ?Xj—l-

Introducing the notation a(t)= HAH[}J“’(EsM)’ E;(t) = [|[V¥AP A4y

(where v =75 o f), we have by (4.14) in [5]

%Ej(t) + %Eﬁl(t) <ca(t)Ej(t) +c(1+at))e.
Letting ;(t) = x; () E;(t) this implies, using also (55),
(66)  Seilt) < colei(t) ~ Hx;0) Epn(®)
e (L+alt) e + 2 xgoa(f) By (t).

We now prove by induction for 0 < j < m and all ¢ € (0,7] the
inequality

IN

%w+§Axﬂ@@H@mS
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For j = 0 this follows from assumption (50) and estimate (53). Inte-
grating (56) on [0, T] yields, for j > 1,

50+ [ ) B (s

<c /Otoz(s) ej(s)ds+ce /Ot (1+ afs))ds

¢
m
+ T Xj-1(8) Ej(s) ds.
0

Now since fOT a(t)dt < ce by (54), we may apply Gronwall’s inequality
to get

1/t cm c(m)e
G0 +3 [ G B < es+ T
- c(m)e

as T < ¢(n) by assumption. Thus we have at time t =T

c(m)e
™ °

/VZmA|2’)/4m+4 dH S

The estimate for V21 A follows by interpolation as in Lemma 5.1 of [5],
takingr=1,p=¢=2a=1,3=0,s=4m+6and t =1 € [-1 1]
there and using again T' < ¢(n). Renaming 7T into ¢, the L2-estimate
(52) is proved. Using (4.9) and (4.7) in [5], the L>-estimate (51) follows.

q.e.d.

4. Construction of the blowup

In this section we rescale the Willmore flow at an assumed singularity
at finite or infinite time, thereby constructing a static Willmore surface
as a limit. We shall need the following local area bound due to L. Simon
[8].

Lemma 4.1. Let f: X — R"™ be a properly immersed surface. Then
for0 <o < p<ooandX, =3%,(xg) one has

(o) SC(MQEQQ) o [ dﬂ>.

g
4
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In particular if ¥ is compact without boundary

“(5;”) < c(W(f) +47x(D)).

The following compactness theorem, whose proof is omitted, is a
localized version of the result of J. Langer [6].

Theorem 4.2. Let f; : ¥; — R"™ be a sequence of proper im-
mersions, where ¥; is a two-dimensional manifold without boundary.
Let

Yj(R) ={peX;:[fi(p)l < R}
and assume the bounds
1 (Z;(R)) < ¢(R) for any R >0,
IVEA ||, < c(k) for any k € No.
Then there exists a proper immersion f ) S R"™, where 3 is again a

two-manifold without boundary, such that after passing to a subsequence
we have a representation

~

(57) fiowi=f+u; onZ(j)={peX:|f(p)| <j}
with the following properties:
©;j: ﬁ](]) — U; CX; s diffeomorphic,
S(R)C U if 2 () A
uj € C°(X(4),R") is normal along f,
H@kuj”Loo(i(j)) —0 asj— oo, for any k € No.

Roughly speaking, the theorem says that on any ball Bg(0) the
immersion f; can be written as a normal graph f 4 u; with small norm
for j large over a limit immersion f, after suitably reparametrizing with
@)

Now let f: ¥ x [0,7) — R" be a smooth Willmore flow defined on
a closed surface X, where 0 < T < co. Define

Art) = sup [ AP d
z€R™ J ¥, ()

Choose an arbitrary sequence 7; ™\, 0 and assume concentration in the
sense that for all j

(58) tj =inf{t > 0:(rj,t) > e1} < T,
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where €1 = gp/c and €, ¢ are the constants from Theorem 1.2 in [5].
Clearly

AP du, <e; for any x € R™.
|A(; Kot Y
;i (@)

On the other hand, choosing an appropriate sequence of balls at times
T, "\ tj, we find a point z; € R" satisfying

/ A dae, > 1.

1 (Br;(25))
Now we rescale by considering

fi 2 2 x =y, N(T — 1)) — R,

(59) Filp,t) = (f (o, ty + rjt) — aj).

By the above we have »;(1,t) <& for ¢ <0 and

(60) [ 0P =

f=1(B1(0))
Furthermore Theorem 1.2 of [5] yields r]74(T —tj) > ¢p and in fact
xj(1,t) <eog for 0 <t <cp.

We may now apply Theorem 3.5 on parabolic cylinders By (z) x (t—1,1]
to obtain

(61) [VEA; ()| oo < c(k)  for —7"]-_4tj +1<t<c.
Furthermore Lemma 4.1 yields

15 (H)(Xr(0))

R < c(W(fo) + 4m x(2)) < .

We apply Theorem 4.2 to the sequence f; = f;(-,0) : ¥ — R", thus
obtaining a limit immersion fy : & — R™. Let @ S(5) — U;j C ¥ be
as in (57). Then the reparametrization

(62) fi(eis ) 50) x [0,c0] — R



434 E. KUWERT & R. SCHATZLE

is a Willmore flow with initial data
(63) fi(ej. 0) = fo+u;j : 3(j) — R™

The flows (62) satisfy the curvature bounds (61) and have initial data
converging locally in C* to the immersion fo : 2 — R™. By standard
estimates for geometric evolution equations, see (4.24)—(4.28) in [5], we
deduce the locally smooth convergence

(64) fj(@ja') _’f7

where f : ¥ x [0, o] — R" is a Willmore flow with initial data fo. But
on the other hand we have

co
/ / ‘ ‘W(fj(‘»pjvt))‘2d“fj(@jw)dt
0 JE()

/ /|ij )2 dyuye
< [ 1A )P dns = [ 14,0 du

- / Aty + 7 co)? dp — / A(t)[2 dp,

which converges to zero as j — co. This implies that W (f) = 0 which
means that f(-,t) = fo is an immersed Willmore surface, which is
independent of time. Furthermore (60) implies, because of the smooth
convergence in (64),

(65) / ARdp> &1 > 0.

~1(B1(0))

Thus f is not a union of planes.

Lemma 4.3. Let f .35 — R” be the blowup constructed above.
If ¥ contains a compact component C, then in fact ¥ = C and X is
diffeomorphic to C'.

Proof. For j sufficiently large, ¢;(C) is open and closed in ¥. Hence
by connectedness of ¥ we have ¥ = ¢;(C) and thus ¥ = C. q.e.d.

Theorem 4.4 (Nontriviality of the Blowup). Let f:2 = R be
the blowup of a Willmore flow as constructed above. Then none of



THE WILLMORE FLOW 435

the components of f parametrizes a round sphere. In particular, the
blowup has a component which is a nonumbilic (compact or noncompact)
Willmore surface.

Proof. Otherwise, Lemma 4.3 implies that the blowup surface f :

~

Y. — R"™ is an embedded round sphere, i.e., has no further components.
It follows that, up to the diffeomorphism ¢; : ¥ — ¥, the map f;(-,0)
is C*-close to a round sphere and therefore

orr \|2 — o 2 RN
/E 1A°(t5) 2 dp /E 142(0) 2dp; — 0,
W(t)(E) = 2 u(0)(S) — 0.

This contradicts the lower area bound which will be proved in Theo-
rem 5.2. q.e.d.

5. Small initial energy

In this section we finally prove our main result:

Theorem 5.1 (Global Existence and Convergence for Small Initial
Energy). There exists an g9 = €o(n) > 0 such that if at time t = 0 there
holds

W(fo) = / |A°? dp < o,
>

then the Willmore flow exists smoothly for all times and converges ex-
ponentially to a round sphere as t — oo.

We split the proof into several steps. The first step was already used
in Theorem 4.4 and is of independent interest.

Theorem 5.2 (Area Estimate). Let f : ¥ x [0,T7) — R" be a
Willmore flow with W(f) = [ |A°[?dpu < e < e1, where &1 = €1(n) is
as in Proposition 3.4. Then

(66) (L—ce)po(X) <uX) < (1+ce)po(X)
(67) /0 /E(|VA|2 AR AR duds < ce ().
Proof. We have

d [e]
a )= —/E\VHVCIH/E@(A VH, H)dy.
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Multiplying Simons’ identity (10) by A° and integrating yields (cf. Lem-
ma 2.2):

(68) 2/\VA°|2du+/ H[2|A°2 dy
o )
:/\VH\Qd,u—F/AO*AO*AO*AOdu.
2 2
As (Q(A°)H, H) < |A°|?|H|? by (14), we obtain
d [¢] [¢]
dt,u(E)—i—Z/ VA 2dp < c/ |A°|* dp
) b

¢ A°| 700 1(E)-

IN

From (48) with ¢ = oo we have

t
/ 1A ds < ce,
0

and the Gronwall inequality yields
w(X) + 2/()t/2 |VA°|?dpds < (1+ ce) po(2).
On the other hand, by Michael-Simon
[IvHPdn < e ( JAGERaEZl du>2

cu(E)/Z(|V2H|2+]H|2|VH|2) dp.

IN

As (Q(A°)H, H) > 0 we obtain

d

G = (D) [ (VHP + |[HE VHP) du
¥

Using (47) with ¢ = oo implies the remaining inequality in (66). In
particular we obtain

t
/ /|VA°|2duds§ceuo<z>,
0 >

and

n t
//]A°|4duds < (1+ce)uo(2)/ |4° )| oo ds
0 Jo 0

ce po(X).

IN
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Finally from (68) and Codazzi (5)
t
/ / |H|?|A°)? dp ds
0Jx

This proves the theorem. q.e.d.

IN

c/t/(yvmm 14°[4)dpa ds
0 JX
(%)

< cepo(X).

N

Remark. The extrinsic diameter is bounded above and below by
the diameter of the initial surface, cf. [8].

Lemma 5.3. Under the assumptions of Theorem 5.1 there exists a
radius ro > 0 such that

/ |A@t)|*dp < ey for allz € R", t € [0, 00),

Zrg (z)

where €1 > 0 is as in (58).

Proof.  Otherwise, the blowup construction of Section 4 yields an
immersed Willmore surface f : ¥ — R"™ with

JRLREE
f=1(B1(0))

whereas
/ |A°12 dji < .
p)

By Theorem 2.7 the surface f must be a union of embedded planes
and round spheres, which however contradicts the nontriviality of the
blowup, Theorem 4.4. q.e.d.

Lemma 5.4. For any sequence t; — oo there exist x; € R" and
@; € Diff (X) such that, after passing to a subsequence, the immersions
f(pj,tj) — xj converge smoothly to an embedded round sphere.

Proof. Let x; = f(p,t;) where p € ¥ is arbitrary. By the previous
lemma and the interior curvature estimates from Theorem 3.5, we have
fort; > 1

(69) IVEAC ) e < ().
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Furthermore, Lemma 4.1 yields the area bound

1u(t;) (Br(z;))

2 < C(W(f(-,tj)) +47rx(2)).

Accordmg to Theorem 4.2, there exist a properly immersed surface f
> — R” and diffeomorphisms ¢; : ¥(j) — U; C %, such that (after
selection of a subsequence)

A~

f(pjsty) —zj — f
locally in C* on 3. On f]( j) we consider the Willmore flows

9i(p,t) = fpj(p), tj +1t) =z (t> —ty).

These satisfy the curvature estimates (69), and the initial data (at ¢t = 0)
converge to f. Arguing as in (64), we obtain that g; converges locally
smoothly on 3 x [0,00) to a Willmore flow g : 3 x [0, 00) — R™ with
initial data f But now

tj+1
// g]|dugdt</ /\W HPdudt —0 asj — oo.

Therefore we have W (g) = 0 which proves that f is a Willmore surface,
and Theorem 2.7 implies that f is a union of embedded planes and
round spheres. Using the upper area bound in (66) and excluding several
components as in Lemma 4.3 we conclude that f must be a round sphere,
and that the subconvergence is smooth. q.e.d.

As a consequence of the above, we obtain that

(70) W(f)—/\A°]2du—>0 as £ — 0o,

Moreover, Theorem 5.2 implies the existence of the nonzero limit
(71) w= tlim p(t)(X) € (0,00).
—00

Finally we now prove exponential decay of the curvature; from this
one obtains smooth convergence of f to a round sphere f and thus
Theorem 5.1 in a standard way.
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Lemma 5.5. Ast / oo, the following asymptotic statements hold,
where A > 0 is a constant:

(72) IVEA@) ] o
(73) 1A% pos

cpe M for k> 1,

<
S _At'

Cp €

Proof.  For w as in (71), the previous Lemma implies that the
sectional curvature and the mean curvature of f(-,t) satisfy

4
HK(-,75)—7r —0,
w [0
16
H|H|2—7T — 0 ast— oo.
w || o

In particular, we may assume after a fixed time translation that
|H|? >¢>0 forallt>0.
By Lemma 3.3, we then have for all ¢
o [ 1R+ [ (V2AR + (VAP +14)dn < 0

which implies

(74) / ]A°|2du+/ /(|V2A\2+ |VA|?)dpds < ce” N,
Y t by

for a constant A = A(n) > 0. From here we easily derive exponential
decay of all derivatives of A. Namely, letting ¢ — oo in Corollary 3.4 of
[5], we have for ¢ = V™A (m > 1)

d
G [1oan+ 5 [19%Pdu< [ (o2 + ) « odn

Using that A and all its derivatives remain bounded as t — oo, we can
estimate

IN

[ vrasodn < e [I9%Pdu+cle) [ (97 APdg,

m+1

ey [1vadp.
j=1

[ )+ P ) « g

IN
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Here PJ""2(A) denotes all terms of type Py""2(A) that do not contain
the (m + 2)-th derivative, and of course ¢ is not a universal constant
here. We obtain

d 1 m~+1 ‘
G [1oPans 5 [1v%6Pdu<c S [1viapdp
=1

and now by induction using (74)

oo
2 _
IV AL+ [T Alds < e
t

By a Sobolev inequality, e.g., the Michael-Simon inequality, we deduce

(75) 1A% e < coe™™,
(76) IVEAl e < exe™,
which ends the proof of Lemma 5.5 and of Theorem 5.1. q.e.d.
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