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VOLUMES OF TUBES IN HYPERBOLIC
3-MANIFOLDS

DAVID GABAI, G. ROBERT MEYERHOFF & PETER MILLEY

Abstract
We give the first explicit lower bound for the length of a geodesic in a
closed orientable hyperbolic 3-manifold M of lowest volume. We also give
an upper bound for the tube radius of any shortest geodesic in M . We ex-
plain how these results might be the first steps towards a rigorous computer
assisted effort to determine the least volume closed orientable hyperbolic
3-manifold(s).

1. Introduction

In this paper we prove the following Theorem1 .

Theorem 1.1. If W is a maximal tube of radius r about a geodesic γ
in the complete orientable hyperbolic 3-manifold M and either length(γ)
≤ 0.069 or r ≥ 1.483, then volume(W ) ≥ 0.95.

The fact that the volume of the “Weeks” manifold—the hyperbolic
3-manifold obtained by performing (5, 1), (5, 2) Dehn surgery on the two
components of the Whitehead Link—is less than 0.943 provides us with
the following Corollary.
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partially supported by NSF grants DMS-9505253 and DMS-0071852, the second au-
thor by NSF grant DMS-9801736, and the third author by NSF grants DMS-9505253
and DMS-0071852.

1Using the ideas introduced in the present paper, the bounds of this theorem
and/or its corollary have been improved in [13], [9], and [2]. For Corollary 1.2, the
current best announced bound for length is 0.1036, and for radius is 1.032; see [2].
We note that our proof of Theorem 1.1 obtains slightly stronger numbers than those
in the statement of the Theorem. We decided to use the weaker numbers (from an
earlier version of our paper) in the statement of the Theorem because of the numerous
references to them in the literature.
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Corollary 1.2. A shortest geodesic in a lowest volume closed ori-
entable hyperbolic 3-manifold has length greater than 0.069 and tube
radius less than 1.483.

This theorem and corollary constitute the vital first step of a project
whose goal is to determine the lowest volume closed hyperbolic 3-mani-
fold(s). Specifically, our plan is to extend the computer-aided parameter
space analysis of [8] from solid tubes of radius less than log(3)/2 to
solid tubes of sufficiently large radius to enable us to answer the low-
volume question. The first step in our plan is to show that the relevant
parameter space for this question is a compact set which is feasible to
study.

The natural parameters which classify solid tubes around shortest
geodesics in hyperbolic 3-manifolds are the complex length of the short-
est geodesic, the “complex radius” of the solid tube, and the complex
length of the “following transformation” (see [8] or Chapter 6; these are,
respectively, L, D, and R). Reasonable bounds are straightforward to
determine for all but the real length of the shortest geodesic.

The above theorem provides what we hope is a usable lower bound
on the real length of the shortest geodesic. In §6, we discuss our evidence
for believing that this lower bound enables us to determine a parameter
space that will be reasonable to analyze.

Before focusing on the proof of Theorem 1.1, we will spend a few
paragraphs discussing low-volume hyperbolic 3-manifolds. By Mostow
Rigidity, the volume of a complete finite-volume hyperbolic 3-manifold
is a topological invariant. Thurston [14], building on work of Gromov
and Jørgensen, showed that the order type of the set of volumes of
complete finite volume hyperbolic 3-manifolds is ωω and that at most
finitely many manifolds can have the same volume. In particular, there
is a closed hyperbolic 3-manifold realizing the minimum volume v1.

The Weeks manifold (see above) has volume 0.9427 . . . and is the
lowest volume closed manifold yet discovered. This manifold provides
an upper bound of v1 ≤ 0.9427 . . . .

For several years, the best lower bound for v1 was about 0.001 (see
[11], [10], [6]). But recently, research on solid tubes around short-
est geodesics in hyperbolic 3-manifolds by Gabai, Meyerhoff, and N.
Thurston (see [8]), using the work of Gehring and Martin (see [7]), im-
proved this lower bound to 0.16668 . . . . Przeworski (see [12]) sharpened
the Gehring-Martin approach and produced a lower bound of 0.276.
This bound is actually a lower bound on the volume of a solid tube in
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the hyperbolic 3-manifold as is the 0.166 . . . bound.
A complete proof of Theorem 1.1 which relies on results from §2–§5

will be given at the end of this Introduction. The proof focuses on a
solid tube of radius r in a closed hyperbolic 3-manifold. In particular,
we study lifts of the tube to H

3 and study how close these lifts are to
each other. As such, before describing our proof, we will develop some
definitions and facts related to tubes and the placement of lifts of tubes.

1.1 Orthoclasses and spectra

Let γ be a simple closed geodesic in the complete orientable hyperbolic
3-manifold M = H

3/G where G is identified with π1(M). Let γi denote
the lifts of γ to the universal covering H

3 with γ0 denoting a fixed
lift. We say that two lifts γi, γj are conjugate if there exists a w ∈
π1(M) such that w(γi) = γ0 and w(γ0) = γj . Let H ⊂ π1(M) be the
subgroup generated by γ. We can assume that it is the subgroup of
π1(M) which stabilizes γ0. Partition {γi} − γ0 into equivalence classes
called orthoclasses by saying that γi is equivalent to γj if either γi is
conjugate to γj or γi = h(γj) where h ∈ H.

Lemma 1.3. Each orthoclass contains exactly two H-orbits.

Proof. Because H is the stabilizer of γ0, an orthoclass contains at
most two H-orbits. Conversely if γi and γj are conjugate via w, then
γi and γj lie in distinct H-orbits (a fact first proven for horoballs by
Adams [1]). To see this let α denote the oriented geodesic arc from γi to
γ0. Then w(α) is the oriented geodesic arc from γ0 to γj . If γj = h(γi)
for h ∈ H, then w−1h(α) = −α, where −α denotes α with the opposite
orientation. Thus w−1h is a nontrivial covering transformation that has
a fixed point, which is a contradiction. q.e.d.

Associated to an orthoclass is a positive real number which is the
real distance from any element in that class to γ0. Let O(1),O(2), . . .
denote the orthoclasses ordered so that if O(i) denotes the corresponding
real distance, then O(1) ≤ O(2) ≤ · · · . The solid tube V0 of radius
r = O(1)/2 projects to a tube W in M with the property that the
interior of W is embedded and W is only immersed. Thus W is called
a maximal tube and r = O(1)/2 is called the tuberadius of γ.

For each i, let Vi denote the tube of radius O(1)/2 about γi. The
orthoclass equivalence relation of {γi} − γ0 induces an equivalence re-
lation on {Vi} − V0. Call such an equivalence class an orthotube class
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and let OT (k) denote the class corresponding to O(k). Define OT (k) =
O(k)−O(1) which equals the distance from V0 to any element in OT (k).
The reason for studying the orthotube spectrum (which is the sequence
OT (1), OT (2), . . . ), rather than the ortholength spectrum is that the
concept of orthotube spectrum generalizes in the obvious way to the
notion of orthohoroball spectrum for noncompact complete hyperbolic
3-manifolds. We note that it is useful to think of manifolds with very
thick tubes as being geometrically close to cusped manifolds, and hence
to treat them somewhat like cusped manifolds.

The first two of the following useful formulas are well known and
probably go back to Lobachevsky, see [5]. The third formula is due to
Gehring-Martin [7] and is a consequence of the first two formulae.

Lemma 1.4. Let W be a tube of radius r about a closed geodesic of
length l. Then

• area(∂W ) = 2πl sinh(r) cosh(r)

• volume(W ) = πl sinh2(r)

• volume(W ) = 1
2 tanh(r)area(∂W )

We call the orthogonal projection of Vi to ∂V0 the shadow of Vi, and
denote it S(Vi) (see [7] and [12]).

We are now in a position to describe the key ideas of this paper.
Our method is similar in spirit to that of Gehring and Martin (see

[7] and [12]). They analyze the shadow of V1 and use it (twice, via a
variant of Lemma 1.3) to get a lower bound on the area of the boundary
of the maximal tube W in terms of the radius of W. This, of course,
produces a lower bound on the volume of the tube and hence on the
volume of the associated manifold. Their work only uses OT (1). Our
main contribution is to use OT (2) to obtain a greater lower bound on
tube volume.

A technical difference from [7] is that we work on the cylinder of ra-
dius 2r centered about γ0 while Gehring and Martin work (via shadows)
on the cylinder of radius r. For example, when studying the placement
of centers of tubes in OT (1) we work on the cylinder of radius 2r, which
is where these centers live. Note that the center of a tube is the point
on the tube’s core geodesic which lies nearest to γ0.

Now, we return to our main innovation. We analyze the additional
contribution to area (hence volume) coming from the next closest tubes.
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That is, we analyze OT (2). The general theme here is to split into two
cases: first, if the OT (2) tubes are substantially farther from V0 than
the OT (1) tubes, then this implies that the centers of the OT (1) tubes
are even farther apart than we had thought. This gives us more area,
thereby enhancing our volume bound.

Second, if the OT (2) tubes are not much farther from V0 than the
OT (1) tubes, then this tells us that the OT (2) tubes contribute signifi-
cant area (either on the cylinder of radius r or on the cylinder of radius
2r), hence enhancing our volume bound.

We found the optimal trade-off between “not much farther” and
“substantially farther” to occur at 0.298. In particular, we prove that if
OT (2) ≥ 0.298 and length(γ) ≤ 0.0717 or tuberadius(γ) ≥ 1.464, then
volume(M) ≥ 0.943, and if OT (2) ≤ 0.298, and length(γ) ≤ .0717 or
tuberadius(γ) ≥ 1.464, then volume(M) ≥ 0.943.

The details are carried out in §4 and §5. In §2 certain geometric
lemmas which are used in the rest of the paper are proved. In §3 an
upper bound on the length of γ is given in terms of the tuberadius of γ,
and this is shown to be equivalent to a lower bound on the tuberadius
in terms of the length in certain cases. This leads to a preliminary lower
bound on the volume of the tubular neighbourhood in terms of either
the length or the tuberadius. The needed lower bounds are obtained in
§4 and §5.

Proof of Theorem 1.1. First assume OT (2) ≥ 0.298. If r ≥ 1.464,
then Proposition 4.1 applies, and hence πl sinh(r)2 ≥ 0.943. On the
other hand if l ≤ 0.0717, then by Proposition 3.1, r is (considerably)
larger than 0.149. Therefore Proposition 4.1 applies and πl sinh(r)2 ≥
0.943.

Now, assume OT (2) ≤ 0.298. If r ≥ 1.464, Proposition 5.1 applies
and hence πl sinh(r)2 ≥ 0.943. On the other hand if l ≤ 0.0717, then, as
in the previous paragraph, we use Proposition 3.1 to obtain the needed
control over r (specifically, r > 0.2014 is needed). Hence Proposition 5.1
applies and πl sinh(r)2 ≥ 0.943.

In either case, if l ≤ 0.0717 or r ≥ 1.464 then the volume of M is at
least 0.943, proving the theorem. q.e.d.

2. Geometric lemmas

The remainder of this paper makes heavy use of certain facts regard-
ing skew quadrilaterals in H

3, as well as facts about the intersection of a
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hyperbolic sphere with a hyperbolic cylinder. The proofs of these facts
in turn make use of the Klein hyperboloid model of hyperbolic space,
which is not as commonly used as the upper half-space model and hence
may not be as familiar to all readers. Hence this chapter will present
a brief review of the Klein hyperboloid model as well as the lemmas
which depend on it; for more details about the hyperboloid model, see
for example Thurston’s book [15].

In the Klein hyperboloid model, H
3 is the hypersurface

{(x, y, z, t) ∈ R
4| − x2 − y2 − z2 + t2 = 1, t > 0}

and geodesics are just the intersection of H
3 with planes through the

origin in R
4. The orientation-preserving isometries of this model are

given by the connected component of the identity in the Lie group

O(3, 1) = {A ∈ GL(4, R)|AtQA = Q}

where Q is the diagonal matrix with diagonal entries (1, 1, 1,−1). Ele-
ments of this group act on points in H

3 ⊂ R
4 by matrix multiplication

on the left (view points as column vectors). The metric dH is given by
the formula

cosh−1(−x1x2 − y1y2 − z1z2 + t1t2).(2.1)

Using this model, without loss of generality assume that γ0 is the
intersection of H

3 with the plane {x = y = 0}, and that γ0 is oriented in
the positive z-direction. Let λ be the geodesic which is the intersection
of H

3 with the plane {y = z = 0}, oriented in the positive x-direction.
Then γ0 and λ intersect at right angles. Define a set of cylindrical
coordinates for H

3 − γ0 as follows: a point p ∈ H
3 − γ0 has cylindrical

coordinates (d, φ, τ), with τ > 0, if and only if p is the image of a point
q ∈ λ under a loxodromic motion along γ0 with complex length d + iφ
where q lies at a distance of τ from γ0 in the direction of λ. Then the
cylidrical coordinates of any point in H

3−γ0 are defined uniquely except
for φ, which is defined uniquely modulo 2π. This coordinate system can
clearly be extended to all of H

3 by letting τ = 0, although φ is no longer
well-defined when τ = 0.

Given the preceding set-up, the following lemma is quite easy to
prove in the Klein model:

Lemma 2.1. The hyperbolic distance between two points p0, p1 ∈
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H
3 is given by the formula

cosh(dH(p0, p1)) = cosh(d1 − d0) cosh(τ0) cosh(τ1)(2.2)
− cos(φ1 − φ0) sinh(τ0) sinh(τ1)

where (d0, φ0, τ0) and (d1, φ1, τ1) are the cylindrical coordinates of p0

and p1 respectively.

Proof. Assume that d0 = φ0 = 0; the proof in the general case is
similar. Then p0 is the point (sinh(τ0), 0, 0, cosh(τ0)). Furthermore the
loxodromic motion along γ0 with complex length d1 + iφ1 is given by
the matrix 



cos(φ1) − sin(φ1) 0 0

sin(φ1) cos(φ1) 0 0

0 0 cosh(d1) sinh(d1)

0 0 sinh(d1) cosh(d1)


 .

Thus p1 must be the point

(cos(φ1) sinh(τ1), sin(φ1) sinh(τ1), sinh(d1) cosh(τ1), cosh(d1) cosh(τ1)).

Hence by the distance formula for the hyperboloid model,

cosh(dH(p0, p1)) = cosh(d1) cosh(τ0) cosh(τ1) − cos(φ1) sinh(τ0) sinh(τ1)

as desired. q.e.d.

Lemma 2.1 (which can be thought of as a law of cosines for skew
quadrilaterals in H

3) can also be proved using more traditional hyper-
bolic trigonometry, but the above proof has a more direct feel to it.

The following submanifold of H
3 will also be useful. Let C ⊂ H

3 be
the boundary of the cylinder of radius 2r about γ0. Note that C is a
Euclidean surface, isometric to the boundary of a right circular cylinder
in E

3 of radius sinh(2r), and every geodesic in O(1) is tangent to C.
Denote the induced Euclidean metric on C by dE(p, q), to distinguish
it from the hyperbolic metric dH(p, q), and let u ∈ C be the point with
cylindrical coordinates (0, 0, 2r).

Lemma 2.2. If p ∈ C has cylindrical coordinates (d, φ, 2r) with
−π < φ ≤ π, then

dE(p, u)2 = (d cosh(2r))2 + (φ sinh(2r))2.



30 d. gabai, g. r. meyerhoff & p. milley

Proof. Suppose first that d = 0. Then the shortest path in C from u to
p is a circular arc with radius 2r and angle |φ|. By elementary hyperbolic
geometry (see for example [5]) such a curve has length |φ| sinh(2r). On
the other hand, if φ = 0 then the shortest path in C from u to p is a curve
lying in a plane containing γ0, at a constant distance of 2r from γ0; the
length of such a curve is again a known result and equals |d| cosh(2r).
Since C is a Euclidean manifold and the curves {d = 0, τ = 2r} and
{φ = 0, τ = 2r} intersect at right angles at u, the result follows from
the Pythagorean theorem. q.e.d.

A consequence of the above lemma is that x = d cosh(2r) and y =
φ sinh(2r) are natural Euclidean coordinates for C.

Now for any t > 0 and ρ ≥ 0, let B(t, ρ) be the region consisting of
all points c ∈ C such that dH(c, q) ≤ t, where q is the unique point in
H

3 with cylindrical coordinates (0, 0, 2r + ρ). The boundary of B(t, ρ)
is the intersection of C with a sphere of radius t centered at q; it is
easy to see that for ρ < t < 4r + ρ, the boundary of B(t, ρ) will be a
single non-empty closed curve. The following lemma describes the size
of B(t, ρ) as a subset of the Euclidean manifold C:

Lemma 2.3. If 0 ≤ ρ < t < 4r + ρ, then the region B(t, ρ) ⊂ C
contains a disk centered at u with radius

Rt,ρ =
√

sinh(2r) cosh(2r) coth(2r + ρ)(2.3)

× cosh−1

(
sinh(2r) sinh(2r + ρ) + cosh(t)

cosh(2r) cosh(2r + ρ)

)
.

Proof. By Lemma 2.1, the boundary of B(t, ρ) can be described by
the equation

cosh(d) cosh(2r) cosh(2r + ρ) − cos(φ) sinh(2r) sinh(2r + ρ) = cosh(t)

where d, φ, and τ = 2r are cylindrical coordinates on H
3. Since

| cos(φ)| ≤ 1,

|d| ≤ cosh−1

(
sinh(2r) sinh(2r + ρ) + cosh(t)

cosh(2r) cosh(2r + ρ)

)
.(2.4)

Let a be the quantity on the right-hand side of Equation (2.4).
The next step is to find a lower bound on φ in terms of d. The fol-

lowing derivation is based on a similar derivation in [7]. By elementary
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calculus, for all |d| ≤ a

cosh(a) − cosh(d) ≥ a2 − d2

2

⇒ sinh(2r) sinh(2r + ρ) + cosh(t)
cosh(2r) cosh(2r + ρ)

− cosh(d) ≥ a2 − d2

2
.

Rearranging the last inequality, for any point with cylindrical coordi-
nates (d, φ, 2r) on the boundary of B(t, ρ) we get

1 − cosh(2r) cosh(2r + ρ)
sinh(2r) sinh(2r + ρ)

(
a2 − d2

2

)

≥ cosh(d) cosh(2r) cosh(2r + ρ) − cosh(t)
sinh(2r) sinh(2r + ρ)

= cos(φ).

By another application of elementary calculus, the left-hand side of the
above inequality is less than

cos
(√

coth(2r) coth(2r + ρ)(a2 − d2)
)

.

Hence

cos
(√

coth(2r) coth(2r + ρ)(a2 − d2)
)
≥ cos(φ).

Assume that −π < φ ≤ π. Since φ = 0 when |d| = a, and since the
boundary of B(t, ρ) is a single continuous curve, for all points (d, φ, 2r)
on the boundary of B(t, ρ)

|φ| ≥
√

coth(2r) coth(2r + ρ)(a2 − d2).

Converting into Euclidean coordinates, |x| ≤ a cosh(2r) and

|y| = |φ sinh(2r)| ≥
√

tanh(2r) coth(2r + ρ)
√

(a cosh(2r))2 − x2

for any point on the boundary of B(t, ρ) with Euclidean coordinates
(x, y). Thus the region B(t, ρ) contains an ellipse with axes parallel to
the {x, y}-coordinate axes. Since tanh is an increasing function,

tanh(2r) coth(2r + ρ) ≤ 1.

Hence the minor axis of this ellipse is in the y-direction. Thus the region
B(t, ρ) ⊂ C contains a circle centred at u with radius

a
√

sinh(2r) cosh(2r) coth(2r + ρ).

This proves the lemma. q.e.d.
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3. The first order tuberadius formula

In this section, we use the technology developed in §1 and §2 to show
how the radius of a maximal tube and the length of its core (closed)
geodesic control each other. This is the content of Proposition 3.1.

The tube-volume estimates that follow from Proposition 3.1 are not
strong enough to prove Theorem 1.1. In fact, the analysis in the present
section is to some extent a warm-up for the more intricate analyses of
§4 and §5. We also note that the first part of Proposition 3.1 was origi-
nally proved by Gehring and Martin in [7], although this only becomes
apparent after some trigonometric manipulation.

Proposition 3.1. If γ is a geodesic of length l and tuberadius r in
a complete orientable hyperbolic 3-manifold, then

l ≥
√

3 cosh(2r)
2π sinh(2r)

(
cosh−1

(
sinh2(2r) + cosh(2r)

cosh2(2r)

))2

.(3.1)

Furthermore if l ≤ 0.110629, then the right side of (3.1) is invertible
and we obtain an implicit lower bound on r as a function of l.

Proof. Recall that for any tube Vj �= V0, the center vj of Vj is the
point on γj which is closest to γ0. Thus the center of a tube in OT (n)
must lie at a distance of O(n) from γ0. Let C and u be defined as in
the previous chapter; in particular, C is a tube in H

3 of radius 2r (not
radius r). Without loss of generality there exists a tube U ∈ OT (1)
such that u is the center of U .

The images of u under H (the stabilizer of γ0; see §1) are the vertices
of a tiling of C by quadrilaterals. The area A of a fundamental region for
the action of H on C is the area of one of these quadrilaterals. However,
A is also the area of the boundary of the manifold C/H, where C is the
solid cylinder bounded by C. Hence by Lemma 1.4,

A = 2πl cosh(2r) sinh(2r).

If we can produce a lower bound for A in terms of r alone then we
can exploit it and the above area formula to get a lower bound for l in
terms of r. We do this in the next three paragraphs.

According to Lemma 2.3, the distance dE(p, q) between the centers
of any two tubes in OT (1) is bounded below by R2r,0. Then each such
center is contained in a circle of radius R2r,0/2 (in C) containing no
other such centers, and any two such circles have disjoint interiors. Note
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however that any fundamental region for the action of H contains the
centers of at least two tubes in OT (1), one from each H-orbit. Thus,

A ≥ 2π

(
R2r,0

2

)2

.

As in [1] and [10], improve the above estimate by a constant factor as
follows: a packing of C by circles of radius R2r,0/2 lifts to a circle packing
of the Euclidean plane, which can be no denser than the hexagonal
packing. The hexagonal packing of the plane has density π/(2

√
3),

hence

A ≥ πR2r,0
2

2
2
√

3
π

= R2r,0
2
√

3.

Comparing this area formula and the above area formula (involving
l and r), we see that

l ≥ R2r,0
2
√

3
2π cosh(2r) sinh(2r)

.(3.2)

Substituting the value of R2r,0 from Equation (2.3) into Equation (3.2)
above proves the first part of Proposition 3.1.

We now prove the second part of Proposition 3.1. That is, we show
how to bound r in terms of l. A computer examination of the function on
the right-hand side of Equation (3.1) shows that it has the asymptotic
properties one would expect. Namely, as r goes to infinity the lower
bound on l goes to 0 and the corresponding lower bound on the volume of
W (which is just πl sinh2(r) by Lemma 1.4) approaches

√
3/2. However

the behavior of the function near 0 is problematic: the function goes to
0 as r → 0+ and seems to have a local maximum near r = 0.5. Thus,
Equation (3.1) alone does not give a lower bound for r in terms of l.

To get around this problem, we use an earlier theorem by Meyerhoff
and Zagier [11] as sharpened by Cao-Gehring-Martin [3].

Theorem 3.2 (Meyerhoff-Zagier; Cao-Gehring-Martin). Let γ be
a geodesic in a complete orientable hyperbolic 3-manifold. If the real
length l of γ is less than

√
3

2π
(
√

2 − 1) ≈ 0.11418
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then there exists an embedded solid tube around γ whose radius r satisfies

sinh2(r) =

√
1 − (4πl/

√
3)

(4πl/
√

3)
− 1

2
.

This theorem gives a lower bound for r in terms of l, namely

r ≥ sinh−1



√√√√√1 − (4πl/

√
3)

(4πl/
√

3)
− 1

2




and given that l > 0, the above expression can be written as

l ≥
√

3
2π


−1 +

√
2 + 4 sinh2(r) + 4 sinh4(r)(

1 + 2 sinh2(r)
)2


 .(3.3)

Comparing the expression on the right hand side of (3.3) with that
on the right hand side of (3.1), one sees that the (3.3) estimate of l
is greater than the one from (3.1) when r < 0.22926, at which point
both estimates say that l ≥ 0.110629. Furthermore, an examination
of Equation (3.1) by computer indicates that the function on the right
hand side of (3.1) is increasing for r less than 0.52396, and decreasing
for r greater than 0.52397, and the function equals 0.110629 when r
equals 0.22926 . . . or 0.98296 . . . .

Hence for r > 0.98296 and l < 0.110629 the function on the right
hand side of (3.1) is invertible. Hence Equation (3.1) can be expressed
as a lower bound on r in terms of l which is valid when l ≤ 0.110629.
This completes the proof of Proposition 3.1. q.e.d.

The asymptotic value of πl sinh2(r) for the volume of the maximal
tube W given by this estimate when l → 0+ (or equivalently when
r → ∞) is

√
3/2. Note that the corresponding asymptotic value ob-

tained from the Meyerhoff-Zagier estimate alone is
√

3/4, so the com-
bined result is an improvement by a factor of two. Unfortunately,

√
3/2

is approximately 0.866 while the volume of the Weeks manifolds is ap-
proximately 0.943. So it is necessary to find ways to improve the result
of Proposition 3.1 in particular cases.

For example, if OT (2) = 0 then Lemma 1.3 together with the proof
of Proposition 3.1 yield
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Proposition 3.3. If γ is a geodesic of length l and tuberadius r in
a complete orientable hyperbolic 3-manifold, and if OT (2) = 0, then

l ≥
√

3 cosh(2r)
π sinh(2r)

(
cosh−1

(
sinh2(2r) + cosh(2r)

cosh2(2r)

))2

.(3.4)

Furthermore if l ≤ 0.1134, then the right side of formula (3.4) is in-
vertible and provides an implicit lower bound on r as a function of l.

Note that the asymptotic volume of W obtained from Proposi-
tion 3.3 when l → 0+ is

√
3. (Proposition 3.3 is not used in the rest of

this paper; instead, Proposition 5.1 is used.)

4. The second order tuberadius formula

In this section the result of Proposition 3.1 is improved when OT (2)
is sufficiently large. That is, we now take into account information
from the next closest orthoclass of solid tubes. Specifically, we find that
the fact that the next nearest orthoclass (to V0) is relatively far away
means that the members of the OT (1) orthoclass are farther apart than
we accounted for in Proposition 3.1. This produces a better area bound
on C (the cylinder of radius 2r) and hence better length-radius control
and volume bounds. In §5 we deal with the case where the next nearest
orthoclass OT (2) is relatively close to V0.

Proposition 4.1. If γ is a geodesic of length l and tuberadius r in
a complete orientable hyperbolic 3-manifold and if OT (2) ≥ ρ, where
0 < ρ < 2r, then

l ≥
√

3 cosh(2r)
2π sinh(2r)

(
cosh−1

(
sinh2(2r) + cosh(2r + ρ)

cosh2(2r)

))2

.(4.1)

Furthermore if ρ = 0.298 then the right-hand side of formula (4.1) is
strictly decreasing in r and hence invertible, and provides an implicit
lower bound on r as a function of l; these bounds imply that if either
r ≥ 1.464, or l ≤ 0.0717 and r > 0.149, then πl sinh(r)2 ≥ 0.943
(provided that OT (2) ≥ ρ = 0.298).

Proof. Let A and B be distinct tubes in OT (1). Since OT (2) ≥
ρ > 0, by Lemma 4.2 at the end of this section d(A, B) ≥ ρ.

Hence the center of each tube in OT (1) is contained in an open ball
of hyperbolic radius 2r + ρ which contains the center of no other tube
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in OT (1). By Lemma 2.3, the intersection of this ball with the cylinder
C contains a disk of radius R2r+ρ,0. Replacing R2r,0 with R2r+ρ,0 in
formula (3.2) proves the first part of Proposition 4.1. The proof that
the right hand side of (4.1) is decreasing when ρ = 0.298 is a matter of
computer analysis.

In particular, the estimate of Proposition 4.1 when ρ = 0.298 says
πl sinh2(r) ≥ 0.943 when r ≥ 1.464, and that r ≥ 1.464 when l ≤ 0.0717
(assuming r > 0.149).

It remains to prove the following:

Lemma 4.2. Suppose A, B ∈ OT (1), A �= B, and OT (2) > 0.
Then d(A, B) ≥ OT (2).

Proof. Suppose instead that d(A, B) < OT (2). Let j ∈ π1(M) be
such that j(A) = V0. Then d(V0, j(B)) < OT (2), which implies j(B) ∈
OT (1). In other words j(B) and V0 are tangent and consequently B and
j−1(V0) = A are tangent. We now show that this implies the existence
of an elliptic element of order 3 in π1(M), a contradiction.

There are two cases to consider. Either A and B lie in the same
H-orbit, or they lie in conjugate H-orbits. These cases will be handled
in turn in the next two subsections, which will complete the proof.

4.1 A and B lie in the same H-orbit

Suppose that A and B lie in the same H-orbit, that is B = σ(A) where
σ ∈ H. Since j(B) ∈ OT (1), j(B) is a translate of either A or j(V0)
under H by Lemma 1.3.

Suppose that j(B) = α(A), α ∈ H. Then jσj−1(V0) = αj−1(V0),
and hence jσj−1 = αj−1β for some β ∈ H. Let f = j−1α, g = σ, and
h = α−1β−1α. Then g, h ∈ H, f �∈ H, and gfh = f2. At this point,
resort to direct computation in the upper half-space model of hyperbolic
three-space. Then g, h, and f are all elements of PSL(2, C). In addition
we assume without loss of generality that the line γ0 is the line from 0 to
∞, and hence all elements of H have this line as their axis. Furthermore
by multiplying h by −I if necessary assume that gfh = f2 as matrices
in SL(2, C).

Then g and h will be diagonal matrices with diagonal entries (a, a−1)
and (b, b−1) respectively, while

f =

(
x y

z w

)
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for some x, y, z, w satisfying xw − yz = 1. Making the appropriate
substitutions, the matrix equation gfh = f2 becomes(

abx ab−1y

a−1bz a−1b−1w

)
=

(
x2 + yz y(x + w)

z(x + w) w2 + yz

)
.

Taking the products of the (1,2) and (2,1) entries on each side,

yz = yz(x + w)2.

Note that if z = 0 then f fixes ∞, which would imply that f ∈ H, a
contradiction. Similarly if y = 0 then f fixes 0, also a contradiction.
So yz �= 0, and hence (x + w)2 = 1. Hence f is elliptic of order 3, a
contradiction.

Now suppose instead that j(B) = αj(V0) for some α ∈ H. Then
jσj−1 = αjβ for some β ∈ H. This time let f = βj, g = βα−1β−1, and
h = σ. Then again gfh = f2, and so again f is elliptic of order 3, a
contradiction.

4.2 A and B lie in conjugate H-orbits

Suppose now that B = σj(V0) for some σ ∈ H. Then σj(A) = V0, and
σj(V0) = B. Consider (σj)−1(A). This tube is tangent to (σj)−1(B) =
V0 and hence is an element of OT (1). (Recall the assumption that
OT (2) > 0.) Hence (σj)−1(A) must be a translate of either A or j(V0)
under H. If (σj)−1(A) = α(A) for some α ∈ H, then the result of the
previous section applies since (σj)−1(A) is also tangent to (σj)−1(V0) =
A.

Suppose then that (σj)−1(A) = αj(V0) for some α ∈ H. Then
j−1σ−1j−1(V0) = αj(V0), and hence j−1σ−1j−1 = αjβ for some β ∈ H.
Let f = jσ, g = σ−1α, and h = σ−1β. Then g, h ∈ H while f �∈ H, and
gfh = f−2. Proceeding as in the previous section, lift everything to
SL(2, C) and assume that g and h are diagonal matrices with diagonal
entries (a, a−1) and (b, b−1) respectively, and that

f =

(
x y

z w

)

for some x, y, z, w satisfying xw − yz = 1. Then the matrix product
gfh = f−2 expands to(

abx ab−1y

a−1bz a−1b−1w

)
=

(
w2 + yz −y(x + w)

−z(x + w) x2 + yz

)
.
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Multiplying the (1,2) and (2,1) entries on each side,

yz = yz(x + w)2.

And as in the previous case, yz �= 0. So (x+w)2 = 1. Hence f is elliptic
of order 3, a contradiction. This completes the proof of Lemma 4.2.

q.e.d.

5. Bounding the tuberadius when OT (2) is small

In this section the result of Proposition 3.1 is improved when OT (2)
is sufficiently small. The significance of this condition is that the or-
thotube class OT (2) is relatively close to V0 and makes a significant
contribution to the area of the cylinder C.

Proposition 5.1. If γ is a geodesic of length l and tuberadius r
in a complete orientable hyperbolic 3-manifold, and if r > 0.2014 and
OT (2) = ρ ≤ 0.298, then

l ≥ 1
cosh(2r) sinh(2r)

(
R2r,0

2

4
+
(

R2r,0.298 −
R2r,0

2

)2
)

.(5.1)

Furthermore if l ≤ 0.11014 then the right-hand side of (5.1) is invertible
and provides an implicit lower bound on r as a function of l; these
bounds imply that if either r ≥ 1.464, or l ≤ 0.0717 and r > 0.2014,
then πl sinh(r)2 ≥ 0.943 (provided that OT (2) ≤ 0.298).

Proof. Choose V ∈ OT (2), let v be the center of V , and let v′

be the projection of v to the cylinder C. The interior of the hyperbolic
ball centered at v of radius 2r will not contain the center of any tube
in OT (1). Hence by Lemma 2.3 there is a disk in C centered at v′

with radius R2r,ρ whose interior does not contain the center of any tube
in OT (1). We use the following lemma to obtain a radius which is
independent of ρ:

Lemma 5.2. For fixed r and 0 < ρ < 2r, R2r,ρ is a decreasing
function of ρ.

Proof: From Equation (2.3) one can see that because coth is decreasing
for positive values and cosh−1 is increasing, it suffices to show that the
function

sinh(2r) sinh(2r + ρ) + cosh(2r)
cosh(2r) cosh(2r + ρ)
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is decreasing in ρ. But by direct calculation,

∂

∂ρ

sinh(2r) sinh(2r + ρ) + cosh(2r)
cosh(2r) cosh(2r + ρ)

=
sinh(2r) − cosh(2r) sinh(2r + ρ)

cosh(2r) cosh2(2r + ρ)
≤ 0

because cosh(2r) sinh(2r + ρ) ≥ sinh(2r). This proves the lemma.
q.e.d.

Hence the interior of the disk in C centered at v′ with radius R2r,0.298

does not contain the center of any tube in OT (1), provided that r >
0.149. (The reason why we require that r > 0.2014 and not r > 0.149
is explained in the next paragraph.)

Now pack the cylinder C with disks as follows. Around the center of
each tube in OT (1) place a disk of radius R2r,0/2. Next, place a disk of
radius R2r,0.298−R2r,0/2 around the projection to C of the center of each
tube in OT (2) (for example, one such disk is centered at v′). We claim
that none of these disks overlap (that is, their interiors are disjoint).
First, none of the primary disks (that is, those of radius R2r,0/2) overlap,
by the same argument as given in the proof of Proposition 3.1. Second,
by computer analysis, we see that R2r,0.298 > R2r,0/2 for r > 0.2014,
hence the “secondary” disks do not overlap the “primary” disks. Finally,
we use the following lemma to show that no two secondary disks overlap.

Lemma 5.3. If Vi, Vj ∈ OT (2) are tubes with centers vi, vj respec-
tively, and if the projections of vi and vj to C are the points vi

′ and vj
′

respectively, then

dE(vi
′, vj

′) ≥ 2R2r,0.298 − R2r,0.(5.2)

Proof. Without loss of generality, we can assume that v′i = u, or
in other words that vi has cylindrical coordinates (0, 0, 2r + ρ). Let the
cylindrical coordinates of vj be (d, φ, 2r + ρ). Because dH(vi, vj) ≥ 2r,
Lemma 2.1 says that

cosh(d) cosh2(2r + ρ) − cos(φ) sinh2(2r + ρ) ≥ cosh(2r).

Then by the same arguments as in the proof of Lemma 2.3, the distance
dE(vi

′, vj
′) along C must be at least δρ, where

δρ =
√

sinh(2r) cosh(2r) coth(2r + ρ)(5.3)

× cosh−1

(
sinh2(2r + ρ) + cosh(2r)

cosh2(2r + ρ)

)
.
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So it suffices to show that δρ ≥ 2R2r,0.298 − R2r,0. Now note that coth
is decreasing for positive values, cosh−1 is increasing, and

∂

∂ρ

sinh2(2r + ρ) + cosh(2r)
cosh2(2r + ρ)

= (cosh4(2r + ρ))−1

×
(

2 sinh(2r + ρ) cosh(2r + ρ)

− 2 cosh(2r) sinh(2r + ρ) cosh(2r + ρ)
)

≤ 0.

Hence δρ is decreasing in ρ, so it suffices to show that δ0.298 ≥ 2R2r,0.298−
R2r,0. But this inequality is a special case of the following lemma:

Lemma 5.4. If 0 < ρ < 2r, then R2r,0 − R2r,ρ ≥ R2r,ρ − δρ.

Proof. Note that if R2r,ρ − δρ < 0, then the Lemma is true since
R2r,0 − R2r,ρ ≥ 0 by Lemma 5.2. So assume that R2r,ρ − δρ ≥ 0.

Let g(r, v, w) = cosh−1
(

sinh(2r+v) sinh(2r+w)+cosh(2r)
cosh(2r+v) cosh(2r+w)

)
. Then, after

dividing through by
√

sinh(2r) cosh(2r), it must be shown that

√
coth(2r) g(r, 0, 0) −

√
coth(2r + ρ) g(r, ρ, 0)

≥
√

coth(2r + ρ) g(r, ρ, 0) −
√

coth(2r + ρ) g(r, ρ, ρ).

We show this by proving that√
coth(2r) g(r, 0, 0) −

√
coth(2r + ρ) g(r, ρ, 0)

≥
√

coth(2r + ρ/2) g(r, 0, 0) −
√

coth(2r + ρ/2) g(r, ρ, 0)

≥
√

coth(2r + ρ/2) g(r, ρ, 0) −
√

coth(2r + ρ/2) g(r, ρ, ρ)

≥
√

coth(2r + ρ) g(r, ρ, 0) −
√

coth(2r + ρ) g(r, ρ, ρ).

The first and last inequalities are simple consequences of the fact
that the coth is a decreasing function. (Note that our previous assump-
tion implies that g(r, ρ, 0) − g(r, ρ, ρ) > 0.) The middle inequality is
harder to prove. After dividing through by

√
coth(2r + ρ/2) we need

only show that g(r, 0, 0)− g(r, ρ, 0) ≥ g(r, ρ, 0)− g(r, ρ, ρ). This will fol-
low from hyperbolic trigonometry applied to certain quadrilaterals with
two adjacent right angles (these are sometimes called Saccheri quadri-
laterals). The side of such a quadrilateral ending in the two right angles
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will be called the base of the quadrilateral. For convenience, let the four
sides in clockwise order be called the west, north, east, and south sides,
where the base is the west side.

Using hyperbolic trigonometry (see [5] pg.88), we see that X =
g(r, 0, 0) is the base of the Saccheri quadrilateral with three other sides
of length 2r; Y = g(r, ρ, 0) is the base of the Saccheri quadrilateral
with three other sides of length 2r + ρ, 2r, 2r in clockwise order; and
Z = g(r, ρ, ρ) is the base of the Saccheri quadrilateral with three other
sides of length 2r + ρ, 2r, 2r + ρ in clockwise order. Note that the two
non-base vertices can be thought of as the centers of circles of radius r
in all three quadrilaterals, and that in each quadrilateral these circles
abut.

Overlap the first and third quadrilaterals in such a way that the
base of the third is a subset of the base of the first, and the mid-points
of the two bases coincide. Then, the first quadrilateral has excess base
length X−Z

2 on both ends.
Now, overlap the first and second quadrilaterals, so that the base

of the second is a subset of the base of the first, and the west-south
vertices coincide. Then, the first quadrilateral has excess base length
X−Y on the west-north end. Further, the circle associated to the north-
east vertex of the second quadrilateral must dip below the perpendicular
bisector to the base of the first quadrilateral. But the north-east-vertex
circle for the third quadrilateral does not dip below this line. Hence,
X − Y > X−Z

2 .

This shows that X − Y ≥ Y − Z, proving the lemma. q.e.d.

By the above two lemmas, C can be packed with disks of two dif-
ferent radii. Specifically, C can be packed with disks of radius R2r,0/2
around the centers of tubes in OT (1), and disks of radius R2r,0.298 −
R2r,0/2 around those points v′ which are the projections to C of centers
of tubes in OT (2). Furthermore, both OT (1) and OT (2) consist of two
H-orbits by Lemma 1.3. Hence, if A is the area of a fundamental region
on C as before, then

A ≥ 2π

(
R2r,0

2

)2

+ 2π

(
R2r,0.298 −

R2r,0

2

)2

.

And as before A = 2πl cosh(2r) sinh(2r); this and the above equation
prove the first part of Proposition 5.1.
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5.1 Bounding r in terms of l

As with Equation (3.1), the right-hand side of Equation (5.1) is not
an invertible function. However, comparing the estimate of Equation
(5.1) with that of Equation (3.3), we see that the trade-off point is
at 0.2442 . . . . At this point, both estimates give l ≥ 0.11014. The
function on the right-hand side of (5.1) has a single local maximum
at approximately r = 0.591, and it equals 0.11014 when r equals one
of 0.24419 . . . and 1.2042 . . . . Thus Equation (5.1) and Equation (3.3)
together determine a lower bound for r in terms of l when l ≤ 0.11014, or
equivalently r ≥ 1.2042. This proves the second part of Proposition 5.1.

Equation (5.1) also implies that πl sinh2(r) ≥ 0.943 when r ≥ 1.464.
Furthermore, the implicit lower bound on r in terms of l implies that
r ≥ 1.464 when l ≤ 0.0717. This completes the proof. q.e.d.

6. Good parameter space

In this section, we will present evidence for believing that Theorem
1.1 produces a reasonable solid tube parameter space for the low-volume
question. We begin by giving a brief introduction to the solid tube
parameter space as in [8].

Associated to a solid tube around an oriented shortest closed geodesic
γ in a hyperbolic 3-manifold is a natural 2-generator (torsion-free) Kleinian
group. The first generator f is a (primitive) covering transformation
fixing a normalized lift γ0 of γ. The second generator w is a covering
transformation taking a lift γ1 (nearest to γ0) to γ0. Such 2-generator
groups can be parametrized by three complex numbers. The first pa-
rameter is the complex length of the core geodesic, and determines the
transformation f. The second and third parameters determine w. The
second parameter is the complex length of the transformation α taking
γ1 to γ0 along their unique common perpendicular. It might seem as if
α is w, but this is not (necessarily) correct, one may have to “follow” α
by a transformation β whose fixed axis is γ0. The complex length of β
is the third parameter.

[8] studies the parameter space of such (marked) 2-generator groups
and sees, in certain cases, which ones could possibly correspond to maxi-
mal solid tubes around shortest geodesics in a hyperbolic 3-manifold. [8]
focused on maximal solid tubes of radius less than log(3)/2 because this
was the relevant tuberadius for the applications therein. The parame-
ter space was reduced to a compact parameter space by exploiting the
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method of [11] to show that if the shortest geodesic has length less than
0.0978, then it has a solid tube of radius log(3)/2 (the other parameter
bounds are easier to develop).

[8] showed that, with six families of exceptions (corresponding to
six sub-boxes in the parameter space), closed hyperbolic 3-manifolds
must have maximal tubes of radius greater than log(3)/2 around their
shortest geodesic(s). A large amount of the computation time in [8] was
spent in the parameter space near the parameter points associated with
these six exceptional families. The regions in the parameter space away
from the exceptional points were relatively easy to eliminate (that is, to
show that they could not have a maximal tube of the radius in question;
maximality would not allow so small a tube).

We now make some comments about the solid tube parameter space
required for the low-volume question. We have only begun analyzing
this parameter space; as such, our comments are rather speculative,
although based on experience with the [8] parameter space, and also
based on some solid-tube analysis via a modified version of J. Weeks’s
program SnapPea (see [16]). The present paper is concerned with the
most difficult parameter bound to obtain: the real length of the shortest
geodesic. The question at hand is whether the bound of l ≥ 0.1036 (see
[2]; which improves the bounds of Theorem 1.1) is an effective bound.

Our belief is that l ≥ 0.1036 will be a reasonable bound to work
with. First, we note that in [8] a bound of l ≥ 0.0978 was success-
fully used (though we recognize that in the present computer analysis,
significantly larger tube radii will need to be analyzed). Second, we
provide some (very preliminary) experimental data. We used a modi-
fied version of J. Weeks’s program SnapPea [16] to analyze solid tubes
around shortest geodesics as follows. We considered surgeries of the form
(p, q), 0 ≤ |p|, |q| ≤ 5 on each of the cusps on the orientable manifolds in
the Hodgson-Weeks census [16] of 5-tetrahedral cusped manifolds. (In
this notation, meridian and longitude correspond to the two shortest
curves in the associated Euclidean structure.) To each surgered mani-
fold yielding a hyperbolic manifold we computed both the length and
tube volume of a shortest geodesic. This nonrigorous experimental work
has produced 12 manifolds with tube volumes < 0.943. A scatter plot
of length versus tube volume is given in Figure 1. The solid line depicts
tube volume 0.943. Despite the limited number of manifolds studied and
the fact that the census manifolds are special (relatively combinatorially
uncomplicated), it is striking that not many small volume tubes have
appeared, that the lengths of the shortest geodesics in the exceptional
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t=0.943
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Figure 1: Tube volume versus length, for the shortest geodesics in a
selection of closed manifolds.
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manifolds are greater than 0.48, and when l is short the cloud of data
points lies comfortably above the 0.943 tube volume line. Note that
the closed manifolds considered here include all of the orientable mani-
folds in the closed census [16] up to volume 2.36 and most of the census
manifolds up to volume 3.8. The exceptional manifolds are m003(2,1),
m003(-1,3), m007(3,1), m003(1,3), m010(-3,1), m009(4,1), m007(1,2),
m007(4,1), m007(3,2), m010(1,2), m006(-3,2), and m036(-3,2). Thus
far all (resp. 11, 3) of the exceptional manifolds are obtained as surg-
eries on manifolds obtained by gluing 4 (resp. 3, 2) tetrahedra or less.

We are cautiously optimistic that there will not be too many excep-
tional parameter points and manifolds with which we must ultimately
contend.

References

[1] C. Adams, The noncompact hyperbolic 3-manifold of minimum volume, Proc.
Amer. Math. Soc. 100 (1987) 601–606.

[2] I. Agol, Volume change under drilling, Preprint.

[3] C. Cao, F. W. Gehring & G. J. Martin, Lattice constants and a lemma of Zagier,
Lipa’s Legacy, Contemp. Math. 211 107–120 Amer. Math. Soc., Providence,
R.I., 1997.

[4] C. Cao & R. Meyerhoff, The orientable cusped hyperbolic 3-manifolds of minimum
volume, Invent. Math., to appear.

[5] W. Fenchel, Elementary geometry in hyperbolic space, de Gruyter Stud. in Math.
Vol. 11, 1989.

[6] F. W. Gehring & G. J. Martin, Inequalities for Möbius Transformations and Dis-
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