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Spectral asymptotics of Laplacians related to
one-dimensional graph-directed self-similar

measures with overlaps

Sze-Man Ngai and Yuanyuan Xie

Abstract. For the class of graph-directed self-similar measures on R, which could have
overlaps but are essentially of finite type, we set up a framework for deriving a closed formula
for the spectral dimension of the Laplacians defined by these measures. For the class of finitely
ramified graph-directed self-similar sets, the spectral dimension of the associated Laplace operators
has been obtained by Hambly and Nyberg [6]. The main novelty of our results is that the graph-
directed self-similar measures we consider do not need to satisfy the graph open set condition.

1. Introduction

Let U⊆Rd be a bounded domain with smooth boundary, Δ be the Dirichlet
Laplacian on U , {λn} be the eigenvalues of −Δ, and N(λ,−Δ) be the number of
eigenvalues that do not exceed λ. Weyl [24] proved the following asymptotic formula
for the Dirichlet Laplacian:

(1.1) N(λ,−Δ)= Bd

(2π)d |U |λd/2+o(λd/2)= 1
(4π)d/2Γ(d/2+1)

|U |λd/2+o(λd/2),
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where |U | denotes the d-dimensional volume of U and Bd is the volume of the unit
ball in Rd. We point out that in our paper [19, Equation (1.1)], the factor (2π)d is
incorrectly typed as (4π)d/2.

In this paper, we show that either the limit limλ→∞
N(λ,−Δν)

(lnλ)mλds/2 equals a non-
negative constant or N(λ,−Δν)

(lnλ)mλds/2 is asymptotically a nonzero periodic function of
lnλ, depending on ν, where m≥0, −Δν is a Dirichlet Laplacian on a domain (see
definition below), and ds is the spectral dimension. There has been considerable in-
terest in studying the spectral dimension on various fractals or domains supporting
a measure. McKean and Ray [15] computed the spectral dimension of the Laplacian
defined by the Cantor measure. Fujita [4], Naimark and Solomyak [16] studied the
spectral dimension of the Laplace operators defined by self-similar measures sat-
isfying the open set condition (OSC) (see [8]). Kigami and Lapidus [11] obtained
the spectral dimension of Laplacians on post-critically finite (p.c.f.) self-similar sets
with a harmonic structure. Croydon and Hambly [2] and [5] studied the spectral
dimension on the continuum random tree and random recursive affine nested frac-
tals. For finitely ramified graph-directed self-similar sets, Hambly and Nyberg [6]
studied the spectral dimension of the associated Laplace operators. Freiberg [3]
investigated spectral asymptotics of generalized measure geometric Laplacians on
Cantor like sets. Kajino [9] and [10] studied asymptotics of the partition functions
associated with self-similar sets. Alonso-Ruiz and Freiberg [1] obtained the spectral
dimension of Laplacians on Hanoi attractors.

We also study the relationship between ds and df , where df is the Hausdorff
dimension of the support of ν with respect to the Euclidean metric. For d=1,
Solomyak and Verbitsky [21] proved that

(1.2) ds ≤ 2df/(1+df ),

and moreover, equality holds if and only if pi=ρ
df

i , where pi and ρi are the prob-
ability weights and the contraction ratios of the iterated function system (IFS),
respectively.

We say that an IFS or a graph-directed iterated function system (GIFS), as
well as any associated self-similar measure or graph-directed self-similar measure,
has overlaps, if (OSC) or the graph open set condition (GOSC) (see Section 2.1)
fails. In this case, it is much harder to compute the spectral dimension. For a
class of IFSs on R with overlaps and satisfying second-order identities (see [22]),
the first author [17] computed the spectral dimension of the Laplacians defined
by the corresponding measures. Tang and the authors [19] defined measures that
are essentially of finite type (EFT), a property describing the finiteness of basic
measure types, and computed the spectral dimension of the Laplacian defined by
a self-similar measure satisfying (EFT). The first author and Tang [18] computed
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the spectral dimension of the Laplacians defined by a special class of graph-directed
self-similar measures with overlaps. This paper studies the eigenvalue asymptotics
of the Dirichlet Laplacians defined by graph-directed self-similar measures with
overlaps in much greater generality.

Let Ω⊆Rd be a bounded open set, and μ be a positive finite Borel measure
on Rd with supp(μ)⊆Ω and μ(Ω)>0. We assume that the Poincaré inequality (PI)
for μ holds: There exists a constant C>0 such that

(1.3)
∫

Ω
|u|2 dμ≤C

∫
Ω
|∇u|2 dx, for all u∈C∞

c (Ω)

(see, e.g., [7], [14] and [16]). (PI) implies that each equivalence class u∈H1
0 (Ω)

contains a unique (in the L2(Ω, μ) sense) member u that belongs to L2(Ω, μ) and
satisfies both conditions below:

(1) there exists a sequence {un} in C∞
c (Ω) such that un→u in H1

0 (Ω) and
un→u in L2(Ω, μ);

(2) u satisfies (1.3).
We call u the L2(Ω, μ)-representative of u. Define a mapping ι:H1

0 (Ω)→
L2(Ω, μ) by ι(u)=u. It is easy to see that ι is a bounded linear operator, but
not necessarily injective. Consider the subspace N of H1

0 (Ω) defined as

N :=
{
u∈H1

0 (Ω) : ‖ι(u)‖L2(Ω,μ) =0
}
.

It follows from the continuity of ι that N is a closed subspace of H1
0 (Ω). Let N⊥

be the orthogonal complement of N in H1
0 (Ω). Then ι:N⊥→L2(Ω, μ) is injective.

With a slight abuse of notation, we will denote u by u.
Consider a non-negative bilinear form E(·, ·) in L2(Ω, μ) given by

(1.4) E(u, v) :=
∫

Ω
∇u·∇v dx

with domain dom E=N⊥. (PI) implies that (E ,dom E) is a closed quadratic form
on L2(Ω, μ). Hence these exists a non-negative self-adjoint operator on L2(Ω, μ),
which we denote by −Δμ and call the (Dirichlet) Laplacian with respect to μ,
such that dom E=dom(−Δμ)1/2 and E(u, v)=〈(−Δμ)1/2u, (−Δμ)1/2v〉L2(Ω,μ) for all
u, v∈dom E . Let u∈dom E . Then u∈domΔμ holds if and only if there exists f∈
L2(Ω, μ) such that E(u, v)=〈f, v〉L2(Ω,μ) for all v∈dom E , where −Δμu=f . We
remark that if d=1, then (PI) holds for any such μ, and thus −Δμ is well defined.

We assume that L2(Ω, μ) is infinite dimensional. It is known (see, e.g., [7])
that there exists an orthonormal basis {ϕn}∞n=1 of L2(Ω, μ) consisting of the
eigenfunctions of −Δμ. The eigenvalues λn=λn(−Δμ) satisfy 0<λ1≤λ2≤... and
limn→∞ λn=∞.
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Let N(λ,−Δμ) be the number of eigenvalues of −Δμ (counting multiplicity)
which do not exceed λ, i.e.,

(1.5) N(λ,−Δμ) :=#{n :λn ≤λ},

where #A denotes the cardinality of a set A. Define the lower and upper spectral
dimensions of −Δμ, respectively, as

ds(−Δμ) := lim
λ→∞

2 lnN(λ,−Δμ)
lnλ

and ds(−Δμ) := lim
λ→∞

2 lnN(λ,−Δμ)
lnλ

.

If ds(−Δμ)=ds(−Δμ), the common value, denoted ds(−Δμ) (or simply ds if no
confusion is possible), is called the spectral dimension of −Δμ; it measures the
asymptotic growth rate of the eigenvalue counting function as well as the magnitude
of the n-th eigenvalue.

(EFT) is introduced in [19]. Let μ=
∑q

i=1 μi be the graph-directed self-similar
measure defined by a GIFS G=(V,E) on Rd, where V ={1, ..., q} is the set of
vertices and E is the set of directed edges with each edge beginning and ending at
a vertex. We say that μ satisfies (EFT) (see Definition 2.1) if there exist a family
of bounded open subsets {Ωi}qi=1 with Ωi⊆Rd, supp(μi)⊆Ωi, and μ(Ωi)>0, and
a finite family B:={B1,� :�∈Γ} of measure disjoint cells (i.e., subsets of

⋃q
i=1 Ωi

with positive μ-measure), B1,�⊆Ωi� for some i�∈V , such that for any �∈Γ, there
is a family of μ-partitions {Pk,�}k≥1 of B1,� satisfying the following conditions: (1)
P1,�={B1,�}, and there exists some B∈P1

2,� (see (2.6)) such that B �=B1,�, where
P1

2,� is the collection of all sets B in P2,� that are μ-equivalent to some B1,� for
�∈Γ; (2) for any k≥2, P1

k+1,� contains all cells in P1
k,� that are μ-equivalent to

some cell in B; (3) the sum of the μ-measures of those cells B∈Pk,� that are not
μ-equivalent to any cell in B tends to 0 as k→∞. In this case, we call {Ωi}qi=1 an
EFT-family, B a basic family of cells, and (B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ a basic
pair. We say that (B,P) is regular if each cell B∈

⋃
k≥1,�∈Γ Pk,� is connected, and

for any �∈Γ, there exist some similitude τ�, some Ωj� , and some constant w(�)>0
such that τ�(Ωj�)⊆B1,� and μ≥w(�)μ¨τ−1

� on τ�(Ωj�).
Let μ=

∑q
i=1 μi be the graph-directed self-similar measure defined by a GIFS

G=(V,E) on R. Assume that G has η=η(G) strongly connected components, and
μ satisfies (EFT) with {Ωi}qi=1 being an EFT-family and assume that there exists
a regular basic pair (B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ. For m=1, ..., η, let

(1.6) SCm := {i∈V : i is contained in the m-th strongly connected component},

and for i∈SCm, let

(1.7) Γi := {�∈Γ :B1,� ⊆Ωi}.
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Under these assumptions, we can derive renewal equations for the eigenvalue count-
ing functions, and express them in vector form as:

f = f ∗Mα+z,

where

(1.8)

α=(α1, ..., αη), αm ∈R for m=1, ..., η;

f = f (α)(t)= [f (αm)
� (t)]�∈Γ, t∈R;

Mα = [μ(αm)
��′ ]�,�′∈Γ is a finite matrix of Borel measures on R;

z= z(α)(t)= [z(αm)
� (t)]�∈Γ is a vector of error functions.

Let

(1.9) M(α;∞) :=
[
μ

(αm)
��′ (R)

]
�,�′∈Γ

.

For each �∈Γi and αm≥0, define

(1.10) F�(αm) :=
∑
�′∈Γ

μ
(αm)
��′ (R), D� := {αm ≥ 0 :F�(αm)<∞}, α̃� := inf D�.

If the error functions decay exponentially to 0 as t→∞, then ds(−Δμ) is given by
the maximum of the unique set of non-negative real numbers α1, ..., αη such that
spectral radii of M(α;∞) and all of the classes (see definition below) are equal to
1, where α=(α1, ..., αη).

We denote the convolution of a function a with a measure b by

b∗a(x)= a∗b(x)=
∫ t

0
a(x−s)b(ds);

if both a and b are measures, we convolve the distribution function of a with the
measure b. For two matrices A,B of measures, we write the ij-th element of C(x)=
A∗B(x) as cij(x)=

∑
k aik∗bkj(x).

We call γ=(�1, ..., �n), where n≥2 and �j∈Γ for j=1, ..., n, a path (or γ-path)
from �1 to �n. Such a γ is called a cycle if �1=�n, and a simple cycle if it is a cycle
and all �1, ..., �n−1 are distinct. For any path γ=(�1, ..., �n), let �j∈Γi and i∈SCmj

for i∈V, j=1, ..., n, and mj∈{1, ..., η}. Define

μγ =μ
(αm1 )
�1�2

∗μ(αm2 )
�2�3

∗...∗μ(αmn−1 )
�n−1�n

.

For �, �′∈Γ, let Mα
��′ be the submatrix of Mα obtained by deleting the �-th row

and �′-th column of Mα, μ(α)
�̂�′

be the �′-th column of the matrix Mα with the �-th
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element removed, and μ
(α)
�̂�′

for the �-th row of Mα with the �′-th element removed.
Let

(1.11) ν� =μ
(α)
�� +μ

(α)
��̂

∗
∞∑

n=0
(Mα

��)∗n∗μ
(α)
�̂�

for �∈Γ.

It is known that if M(α;∞) has maximal eigenvalue 1 and is irreducible, then ν� is
a probability measure with support given by ∪{supp(μγ):γ is a simple cycle in G}
(see [12, Lemma 2.3.]). If supp(ν�) is contained in a discrete subgroup of R, we call
ν� lattice; otherwise we call it non-lattice. By the irreducibility, we see that if ν1 is
non-lattice, then ν� is non-lattice for all �.

For �, �′∈Γ, we say that � has access to �′ (or �′ has access from �) if there is
a path from � to �′. � and �′ are said to communicate if they have access to each
other. Using the communication relation, we can partition all �∈Γ into equivalence
classes. The spectral radius of a class is the spectral radius of the matrix obtained
by restricting M(α;∞) to that class. A class is called basic if its spectral radius
is the same as that of M(α;∞). If a class is not basic, then it is called non-basic.
A class J is final if J does not have access to other classes. A chain of classes
is a collection of classes such that each class has access to or from another in the
collection. The length of a chain is the number of basic classes that it contains.
The height of a basic class C is the length of the longest chain of classes which have
access to C. Let Sm denote the union of basic classes of height m+1 for m≥0.

Theorem 1.1. Let μ=
∑q

i=1 μi be a graph-directed self-similar measure defined

by a strongly connected GIFS G=(V,E) on R. Assume that μ satisfies (EFT) with

{Ωi}qi=1 being an EFT-family and assume that there exists a regular basic pair. Let

Ω=
⋃q

i=1 Ωi, Δμ be the Dirichlet Laplacian defined by μ, and let M(α;∞), F�(αm),
α̃� and ν� be defined as in (1.9), (1.10) and (1.11). Assume that for η=1, i∈SC,
and �∈Γi, we have limα→∞ F�(α)=0 and limα→α̃+

�
F�(α)>1.

(a) There exists a unique α>0 such that the spectral radius of M(α;∞) equals

1, where α:=(α) consists of only one component.

(b) If we assume, in addition, that for the unique α in (a), there exists σ>0
such that for all �∈Γ, z(α)

� (t)=o(e−σt) as t→∞, then ds=2α.
(c) Let i∈V and �∈Γi (see (4.1)). If ν1 is non-lattice, then there exists a non-

negative constant c� such that

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= c�;

if ν1 is lattice, then there exists a periodic function q� such that

lim
t→∞

(
e−αtN(et,−Δμi|B1,�

)−q�(t)
)
=0.
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0 1Ω1

Se1(Ω1)
Se2(Ω2) Se3(Ω1)

0 1Ω2

Se5(Ω1) Se4(Ω2)

Figure 1. The first iteration of the GIFS defined in (1.12), where Ω1=Ω2=(0, 1). The figure is
drawn with ρ=1/3 and r=2/7.

In Section 5, we illustrate Theorem 1.1 by the following example.

Example 1.2. Let G=(V,E) be a strongly connected GIFS with V ={1, 2}
and E={ei :1≤i≤5}, where e1, e3∈E1,1, e2∈E1,2, e4∈E2,2, e5∈E2,1. The five simil-
itudes are defined by

(1.12)
Se1(x)= ρx, Se2(x)= rx+ρ(1−r), Se3(x)= rx+(1−r),
Se4(x)= rx+(1−r), Se5(x)= ρx,

where

(1.13) ρ+2r−ρr≤ 1,

i.e., Se2(1)≤Se3(0) (see Figure 1).

Corollary 1.3. Let μ=μ1+μ2 be a graph-directed self-similar measure defined

by a GIFS G=(V,E) in Example 1.2 together with a probability matrix (pe)e∈E . If

(pe1e3 +pe2e5)p−1
e5 r<1, then there exists a unique α>0 satisfying

[
1−(pe4r)α

][
(1−(pe1ρ)α)(1−(pe3r)α)−

(
(pe1e3 +pe2e5)ρr

)α]=
(
pe2e4e5ρr

2)α.
(1.14)

Moreover, ds=2α. If ν1 is non-lattice, then there exists a non-negative constant c�
such that

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= c�, for �∈Γi, �=1, 3, 4, and i=1, 2;

if ν1 is lattice, then there exists a periodic function q� such that

lim
t→∞

(
e−αtN(et,−Δμi|B1,�

)−q�(t)
)
=0, for �∈Γi, �=1, 3, 4, and i=1, 2.

Remark 1.4. Let G=(V,E) be defined as in Example 1.2, and let ρ=1/3, r=
2/7, pei =1/4, and pej =1/2 for i=1, 2 and j=3, 4, 5. The following hold:

(a) numerical approximations yield ds=0.818596...;
(b) the Hausdorff dimension of the associated graph self-similar set is df =

0.710396..., and moreover, ds<2df/(1+df );
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(c) there exists a non-negative constant c� such that

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= c�, for �∈Γi, �=1, 3, 4, and i=1, 2.

Remark 1.5. We remark that in Theorem 1.1, it is necessary to assume that
limαm→∞ F�(αm)=0 for each �∈Γ. In fact, if we let (pe1e3 +pe2e5)p−1

e5 r>1 in Corol-
lary 1.3, then limαm→∞ F�(αm)=∞ for some m∈{1, ..., η} and some �∈Γi, where
i∈SCm. Hence Theorem 1.1(a) does not hold.

Theorem 1.6. Let μ=
∑q

i=1 μi be a graph-directed self-similar measure on R
defined by a GIFS G=(V,E) that is not strongly connected. Assume that G has η

strongly connected components. For m=1, ..., η, let 2αm be the spectral dimension of

the graph-directed self-similar measure corresponding to the m-th strongly connected

component. Assume that μ satisfies (EFT) with {Ωi}qi=1 being an EFT-family and

assume that a regular basic pair exists. Let Ω=
⋃q

i=1 Ωi and Δμ be the Dirichlet

Laplacian defined by μ. Let M(α;∞), F�(αm) and α̃� be defined as in (1.9) and

(1.10). Assume that for m=1, ..., η, i∈SCm, and �∈Γi, we have limαm→∞ F�(αm)=0
and limαm→α̃+

�
F�(αm)>1.

(a) There exists a unique set of real numbers α1, ..., αη such that the spectral

radii of M(α;∞) and all the other classes equal 1, where α:=(α1, ..., αη).
(b) If we assume, in addition, that for the unique set {α1, ..., αη} in (a), there

exists σ>0 such that for all �∈Γ, z(α)
� (t)=o(e−σt) as t→∞, then we have ds=2α,

where α:=max{α1, ..., αη}.
(c) Let i∈V and �∈Γi.

(1) If �∈S0, then

lim
t→∞

(
e−αtN(et,−Δμi|B1,�

)−q�(t)
)
=0,

where q� is either periodic or non-negative constant depending on whether ν�
is lattice or not.

(2) If m>0 and �∈Sm, then there exists a constant c�≥0 such that

lim
t→∞

t−me−αtN(et,−Δμi|B1,�
)= c�.

(3) If � /∈S=
⋃

m≥0 Sm and there is no path from S to �, then

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= 0.

(4) If � /∈S and there is a path from S0 to �, but no path to � from Sk for any

k>0, then

lim
t→∞

(
e−αtN(et,−Δμi|B1,�

)−q̃�(t)
)
=0,

for some q̃� which is either non-negative constant or periodic.
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(5) If � /∈S and there is a path from Sm to �, but no path from Sk, for any

k>m>0, then there is a constant c̃�≥0 such that

lim
t→∞

t−me−αtN(et,−Δμi|B1,�
)= c̃�.

In Subsections 6.1–6.2, we illustrate Theorem 1.6 by the following example.

Example 1.7. Let G=(V,E) be a GIFS that is not strongly connected with
V ={1, 2} and E={ei :1≤i≤5}, where e1, e2, e3∈E1,1, e4∈E2,2, e5∈E2,1. The five
similitudes are defined by

(1.15)
Se1(x)= ρx, Se2(x)= rx+ρ(1−r), Se3(x)= rx+(1−r),
Se4(x)= rx+(1−r), Se5(x)= ρx,

where ρ+2r−ρr≤1, i.e., Se2(1)≤Se3(0) (see Figure 5). For a probability matrix
(pe)e∈E , we define

(1.16) w(k) := pe1

k∑
j=0

pje2p
k−j
e3 , k≥ 0.

Corollary 1.8. Let μ=μ1+μ2 be a graph-directed self-similar measure defined

by the GIFS G=(V,E) in Example 1.7 together with a probability matrix (pe)e∈E ,

and let w(k) be defined as in (1.16). Then there exists a unique set of non-negative

real numbers α1, α2 such that both factors in the following equation are zero:

[
1−(pe4r)α2

][
1−

3∑
i=2

(peir)α1−
( 3∏

i=2

(
1−(peir)α1

))
·
∞∑
k=0

(w(k)ρrk)α1

]
=0.(1.17)

Moreover, ds=2α, where α:=max{α1, α2}.
If �=1, 2,

lim
t→∞

(
e−αtN(et,−Δμ1|B1,�

)−q�(t)
)
=0,

where q� is either periodic or non-negative constant depending on whether ν� is

lattice or not.

If �=3 or 4, then

lim
t→∞

e−αtN(et,−Δμ2|B1,�
)= 0.

Remark 1.9. Let G=(V,E) be defined as in Example 1.7. Let pei =ρ=1/3 for
i=1, 2, 3, 4, pe5 =2/3, and r=2/7. The following hold.

(a) Numerical approximations by taking k up to 1000 yield α1=0.439314...,
α2=0, and hence ds=0.878628....
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(b) The Hausdorff dimension of the associated graph self-similar set is df =
0.797012..., and moreover, ds<2df/(1+df ).

(c) If �=1, then there exists a constant q1≥0 such that

lim
t→∞

e−αtN(et,−Δμ1|B1,1
)= q1;

if �=2, then there exists a periodic function q2 such that

lim
t→∞

(
e−αtN(et,−Δμ1|B1,2

)−q2(t)
)
=0.

In Subsection 6.3, we illustrate Theorem 1.6 by the following example.

Example 1.10. Let G=(V,E) be a GIFS that is not strongly connected with
V ={1, ..., 6} and E={ei :1≤i≤17}, where e1, e2, e3∈E1,1, e5, e6∈E2,2, e4∈E2,1,
e7, e8, e9∈E3,3, e10∈E4,3, e11, e12∈E4,4, e13∈E5,3, e14, e15∈E5,5, e16∈E6,1, and
e17∈E6,6. The 17 similitudes are defined by

(1.18)
Sei(x)= ρx, for i=1, 4, 7, 10, 13, 16,
Sej (x)= rx+ρ(1−r), for j =2, 5, 8, 11, 14,
Sek(x)= rx+(1−r), for k=3, 6, 9, 12, 15, 17,

where ρ+2r−ρr≤1, i.e., for j=2, 5, 8, 11, 14, Sej (1)≤Sej+1(0) (see Figure 9). For a
probability matrix (pe)e∈E and k≥0, we define

(1.19)

w1(k) := pe1

k∑
j=0

pje2p
k−j
e3 , w2(k) := pe4

k∑
j=0

pje5p
k−j
e3 ,

w3(k) := pe7

k∑
j=0

pje8p
k−j
e9 , w4(k) := pe10

k∑
j=0

pje11p
k−j
e9 ,

w5(k) := pe13

k∑
j=0

pje14p
k−j
e9 .

Corollary 1.11. Let μ=
∑6

i=1 μi be the graph-directed self-similar measure

defined by the GIFS G=(V,E) in Example 1.10 together with a probability matrix

(pe)e∈E . Then there exists a unique set of non-negative real numbers α1, ..., α6 such

that each factor in the following equation equals 0.
[
1−

3∑
i=2

(peir)α1−
( 3∏

i=2

(
1−(peir)α1

))
·
∞∑
k=0

(w1(k)ρrk)α1
]
·
[
1−

6∑
i=5

(peir)α2
]

·
[
1−

9∑
i=8

(peir)α3−
( 9∏

i=8

(
1−(peir)α3

))
·
∞∑
k=0

(w3(k)ρrk)α3
]
·
[
1−

12∑
i=11

(peir)α4
]

(1.20)
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·
[
1−

15∑
i=14

(peir)α5
]
·
[
1−(pe17r)α6

]
=0.

Moreover, ds=2α, where α:=max{αi :i=1, ..., 6}. If �=1, 2, there are constants

c�>0 such that

lim
t→∞

t−1e−αtN(et,−Δμ1|B1,�
)= c�.

If �=5, 6, there are constants c�>0 such that

lim
t→∞

t−2e−αtN(et,−Δμ3|B1,�
)= c�.

If �=3, 4, 7, 8, 9, 10, 11, 12, then

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= 0 for �∈Γi.

Remark 1.12. Let G=(V,E) be defined as in Example 1.10. Let r=2/7 and

pei =1/4, pej =1/2, pem = ρ=1/3, pen =1/6,

for i=1, 2, 7, 8, j=3, 9, 10, 14, 16, 17, m=4, 5, 6, 11, 15, and n=12, 13. The following
hold.

(a) Numerical approximations by taking k up to 1000 yield α1=0.435715...,
α2=0.294784..., α3=0.435715..., α4=0.258401..., α5=0.323599..., α6=0. Hence α=
0.435715..., and ds=0.871430....

(b) The Hausdorff dimension of the associated graph self-similar set is df =
0.797012..., and moreover, ds<2df/(1+df ).

The rest of this paper is organized as follows. In Section 2, we give a modified
version of the definition of (EFT). In Section 3, we introduce some properties of the
eigenvalue counting function. In Section 4, we derive renewal equations and prove
Theorems 1.1 and 1.6. Section 5 illustrates Theorem 1.1 by the strongly connected
GIFS defined in Example 1.2; we also prove Corollary 1.3. In Section 6, we study
GIFSs in Examples 1.7 and 1.10, which are not strongly connected. We also prove
Corollaries 1.8 and 1.11.

2. Graph-directed iterated function systems and measures essentially of
finite type

2.1. Graph-directed iterated function systems

A graph-directed iterated function system (GIFS) of contractive similitudes is
an ordered pair G=(V,E) described as follows (see [13]). V is a set of vertices
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labeled by {1, ..., q}. E is a set of directed edges, each beginning and ending at a
vertex. It is possible for an edge to begin and end at the same vertex and we allow
more than one edge between two vertices. To each edge e∈E, there corresponds a
contractive similitude Se(x):Rd→Rd defined as

Se(x)= ρeRex+be,

where ρe∈(0, 1) is the contraction ratio, Re is an orthogonal transformation, and
be∈Rd. Let Ei,j denote the set of all edges that begin at vertex i and end at vertex
j. We call e=e1...ek a path (or an e-path) with length k, if the terminal vertex of
each edge ei (1≤i≤k−1) equals the initial vertex of the edge ei+1. It is well known
that there exists a unique family of nonempty compact sets K1, ...,Kq satisfying

(2.1) Ki =
q⋃

j=1

⋃
e∈Ei,j

Se(Kj), i=1, ..., q.

Define

(2.2) K :=
q⋃

i=1
Ki.

We call K the graph self-similar set associated with G=(V,E). Assume that for
each edge e∈E, there corresponds a transition probability pe>0, and the weights
of all edges leaving a given vertex i sum to 1, namely,

(2.3)
∑
j∈V

∑
e∈Ei,j

pe =1.

Then for each i∈V , there exists a unique Borel probability measures μi such that

(2.4) μi =
q∑

j=1

∑
e∈Ei,j

peμj ¨S
−1
e .

We note that supp(μi)=Ki for all i∈V . Finally, let μ:=
∑q

i=1 μi and call it a
graph-directed self-similar measure. We say that G=(V,E) satisfies the graph open
set condition (GOSC) (see [23]) if there exists a family {Oi}qi=1⊆Rd of nonempty
bounded open sets such that for all i, j, j′∈V ,⋃
e∈Ei,j

Se(Oj)⊆Oi and Se(Oj)∩Se′(Oj′)=∅ for all distinct e∈Ei,j and e′ ∈Ei,j′ .

It is obvious that Ki⊆Oi, i.e., supp(μi)⊆Oi. A GIFS, as well as any associated
graph-directed self-similar measure, are said to have overlaps if (GOSC) fails. Let
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{Ωi}qi=1 be a family of nonempty bounded open subsets of Rd. We say that {Ωi}qi=1
is invariant under the GIFS G=(V,E) if

⋃
e∈Ei,j Se(Ωj)⊆Ωi for i=1, ..., q. We say

G is connected if for each pair of vertices i, j∈V , there is a (non-directed) path
between them. G is said to be strongly connected if for each pair of vertices i, j∈V ,
there is a directed path from i to j. A strongly connected component of G is a
maximal subgraph H of G such that H is strongly connected. Strongly connected
components are pairwise disjoint and do not necessarily cover G. A single vertex
may be a strongly connected component if it loops to itself. In this paper, we
assume that each graph has at least one strongly connected component.

2.2. The essentially finite type condition for graph-directed self-similar
measures

Let Ω⊆Rd be a bounded open subset and μ be a positive finite Borel measure
with supp(μ)⊆Ω and μ(Ω)>0. We call a μ-measurable subset U of Ω is a cell (in
Ω) if μ(U)>0. Clearly, Ω itself is a cell.

We say that two cells U and U ′ are μ-equivalent, denoted by U�μ,τ,wU
′ (or

simply U�μU
′), if there exist some similitude τ :U→U ′ and some constant w>0

such that τ(U)=U ′ and

(2.5) μ|U ′ =wμ|U ¨ τ−1.

It is easy to check that �μ is an equivalence relation.
Two cells U,U ′ in Ω are measure disjoint with respect to μ if μ(U∩U ′)=0. We

call a finite family P of measure disjoint cells a μ-partition of Ω if U⊆Ω for all
U∈P, and μ(Ω)=

∑
U∈P μ(U). A sequence of μ-partitions {Pk}k≥1 is refining if for

any U ′∈Pk and any U∈Pk+1, either U⊆U ′ or they are measure disjoint, i.e., each
member of Pk+1 is a subset of some member of Pk.

Let B:={B1,�}�∈Γ be a finite family of measure disjoint cells in Ω, and for each
�∈Γ, let {Pk,�}k≥1 be a family of refining μ-partitions of B1,� with P1,� :={B1,�},
where Γ is a finite index set. We divide each Pk,�, k≥2, into two (possibly empty)
subcollections, P1

k,� and P2
k,�, with respect to B, defined as follows:

(2.6)
P1

k,� :=
{
B ∈Pk,� :B�μ B1,i for some i∈Γ

}
,

P2
k,� :=Pk,�\P1

k,� =
{
B ∈Pk,� :B /∈P1

k,�

}
.

Definition 2.1. We say that a graph-directed self-similar measure μ=
∑q

i=1 μi

on Rd is essentially of finite type (EFT) if there exist a family of bounded open
subsets {Ωi}qi=1 with Ωi⊆Rd, supp(μi)⊆Ωi and μ(Ωi)>0, and a finite family B:=
{B1,�}�∈Γ of measure disjoint cells, B1,�⊆Ωi� for some i�=1, ..., q, such that for any
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�∈Γ, there is a family of μ-partitions {Pk,�}k≥1 of B1,� satisfying the following
conditions:

(1) P1,�={B1,�}, and there exists some B∈P1
2,� such that B �=B1,�;

(2) if for some k≥2, there exists some B∈P1
k,�, then B∈P1

k+1,� and hence
B∈P1

m,� for all m≥k;
(3) limk→∞

∑
B∈P2

k,�
μ(B)=0.

Here P1
k,� and P2

k,� (k≥2) are defined as in (2.6). In this case, we call {Ωi}qi=1 an
EFT-family, B a basic family of cells, and (B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ a basic
pair.

For k≥2 and �∈Γ, let Pk,�={Bk,�,i, i=1, 2, ...}. For Bk,�,i, the subscript i

denotes the i-th measure disjoint cell of the μ-partition Pk.�.

Definition 2.2. Assume that a graph-directed self-similar measure μ=∑q
i=1 μi satisfies (EFT) with {Ωi}qi=1 being an EFT-family and (B,P):=

({B1,�}, {Pk,�}k≥1)�∈Γ being a basic pair. We say that (B,P) is regular if each
cell B∈

⋃
k≥1,�∈Γ Pk,� is connected, and for any �∈Γ, there exist some similitude τ�,

some Ωj� and some constant w(�)>0 such that τ�(Ωj�)⊆B1,� and μ≥w(�)μ¨τ−1
� on

τ�(Ωj�). In this case, we call B a regular basic family of cells.

3. Eigenvalue counting function

3.1. Eigenvalue counting function on R ([19, Section 4.1])

In this subsection, we only consider one-dimensional Laplacians. Let (E ,dom E)
be defined as in (1.4) with Ω=(a, b) and let −Δμ be the associated Dirichlet Lapla-
cian on L2((a, b), μ). Let P={ai}n+1

i=0 be a partition of [a, b] satisfying

a0 := a<a1 < ...< an+1 =: b.

Define F :=F(P)={u∈dom E :u(ai)=0 for all i=0, ..., n+1}. Then F is a closed
subspace of dom E . Define a relation ∼E on dom E , induced by F , by u∼E v if and
only if u−v∈F . Then ∼E is an equivalence relation on dom E . Define the quotient
space

dom E/F := {[u]E :u∈dom E},

where [u]E is the equivalence class of u. Define addition and scalar multiplication
on dom E/F as usual. For each i=1, ..., n, let fi be a function in dom E that satisfies

fi(aj)= δij , i, j =1, ..., n,
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where δij is the Kronecker delta. Such an fi clearly exists. It is easy to prove that

dom E/F = span {[fi]E : i=1, ..., n} and dim(dom E/F)=n.

Let −ΔF
μ|(a,b)

be the Laplacian defined by the Dirichlet form (1.4) with
dom E=F , and let N(λ,−ΔF

μ|(a,b)
):=#{n:λn(−ΔF

μ|(a,b)
)≤λ} be the associated

eigenvalue counting function. If F=N⊥, where N is defined as in Section 1, then
N(λ,−ΔF

μ|(a,b)
) reduces to N(λ,−Δμ|(a,b)). It follows from the variational formula

that

(3.1) N(λ,−ΔF
μ|(a,b)

)≤N(λ,−Δμ|(a,b))≤N(λ,−ΔF
μ|(a,b)

)+#P−2.

If supp(μ)=[a, b], then N(λ,−ΔF
μ|(a,b)

)=
∑n

i=0 N(λ,−Δμ|(ai,ai+1)). Next, we state a
similar formula. A proof can be found in [19, Proposition 4.1].

Proposition 3.1. Let μ be a continuous positive finite Borel measure on [a, b]
with supp(μ)⊆[a, b]. Suppose there exists a nonempty subset Λ⊆{0, 1, ..., n} such

that μ(ai, ai+1)>0 for any i∈Λ and μ(aj , aj+1)=0 for any j /∈Λ. Then

N(λ,−ΔF
μ|(a,b)

)=
∑
i∈Λ

N(λ,−Δμ|(ai,ai+1)).

3.2. Unitarily equivalent operators

In this subsection, we state a slightly modified version of [17, Propositions 2.2
and 2.3] below.

Proposition 3.2. ([17, Proposition 2.2]) Let S :R→R be a similitude, with

Lipschitz constant r, such that S(a, b)=(c, d). Let μ be a continuous positive finite

Borel measure on [a, b] with supp(μ)⊆[a, b]. Then
(a) −Δμ¨S−1|(c,d) and r−1 ·

(
−Δμ|(a,b)

)
are unitarily equivalent.

(b) If, in addition, μ|(c,d)=wμ¨S−1 on (c, d) for some constant w>0, then

−Δν|(c,d) and (rw)−1 ·
(
−Δμ|(a,b)

)
are unitarily equivalent.

Note that unitarily equivalent operators have the same set of eigenvalues.

Proposition 3.3. ([17, Proposition 2.3]) Let μ, ν be continuous positive finite

Borel measures on [a, b] and assume that there exists some constant w>0 such that

μ≤wν on [a, b]. Then for any n≥1, λn(−Δμ)≥w−1 ·λn(−Δν).

The following result follows by combining Propositions 3.2 and 3.3. The proof
can be found in [19].
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Proposition 3.4. Let μ be a continuous positive finite Borel measure on R
and assume that there exist a similitude S with Lipschitz constant r, and a constant

w>0 such that S([a, b])=[c, d] and μ≥wμ¨S−1 on [c, d]. Then N(wrλ,−Δμ|(a,b))≤
N(λ,−Δμ|(c,d)).

4. Renewal equation and proofs of Theorems 1.1 and 1.6

4.1. Renewal equation

Let μ=
∑q

i=1 μi be a graph-directed self-similar measure defined by G=(V,E)
on R. In the rest of this section, we assume that μ satisfies (EFT) with {Ωi}qi=1
being an EFT-family, with (B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ being a regular basic
pair. The regularity of (B,P) implies that each cell B∈

⋃
k≥1,�∈Γ Pk,� is an interval.

This allows us to apply Propositions 3.1–3.4. For i∈V , let Γi be defined as in (1.7)
and

(4.1) Bi := {B1,� : �∈Γi}.

Then Γ=
⋃q

i=1 Γi and B=
⋃q

i=1 Bi. Note that Γi and Bi maybe empty. The follow-
ing Proposition has been modified from [19, Proposition 4.5] to suit our purpose.
The proof is similar.

Proposition 4.1. Let μ=
∑q

i=1 μi be a graph-directed self-similar measure de-

fined by a GIFS G=(V,E) on R. Assume that μ satisfies (EFT) with {Ωi}qi=1 being

an EFT-family and with B:={B1,� :�∈Γ} being a regular basic family of cells. Let

Ω=
⋃q

i=1 Ωi, and Γi, Bi defined as in (4.1). Then for i∈V and any �∈Γi, there

exists some constant c̄�>0 such that

(4.2) N(λ,−Δμi|B1,�
)≤N(λ,−Δμ|Ω)≤N

(
c̄�λ,−Δμi|B1,�

)
.

Proposition 4.1 implies that the asymptotic behavior of N(λ,−Δμ) is controlled
by that of N(λ,−Δμi|B1,�

) for i∈V and �∈Γi.

Step 1. Derivation of functional equations. For �∈Γi and k≥2, let P1
k,� and

P2
k,� be defined as in (2.6) with respect to B, where i∈V . Without loss of generality,

we may assume that Γi can be partitioned into two (possibly empty) sub-collections,
Γ′
i and Γ∗

i , defined as follows. An index �∈Γi belongs to Γ′
i if there exists some

integer k satisfying P2
k,�=∅. Let ˇ�≥2 (depending on �) denote the smallest of such

k. Define Γ∗
i :=Γi\Γ′

i and let ˇ� :=∞ for �∈Γ∗
i . Let Γ′=

⋃q
i=1 Γ′

i and Γ∗=
⋃q

i=1 Γ∗
i .

Then Γ=Γ′∪Γ∗.
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For i∈V , fix any �∈Γi. The definition of (EFT) implies that for any 2≤k≤ˇ�,
there exist two finite disjoint G1

k,�, G
2
k,�⊆N such that

P1
k,� =

k⋃
m=2

{
Bm,�,p : p∈G1

m,�

}
and P2

k,� =
{
Bk,�,p : p∈G2

k,�

}
.

Condition (1) of (EFT) implies that G1
2,� �=∅. If �∈Γ∗, condition (3) of (EFT)

implies that limk→∞
∑

p∈G2
k,�

μ(Bk,�,p)=0.

Proposition 4.2. Assume that μ satisfies (EFT). Let �∈Γi, and

(4.3) J� :=
{
j ∈V :Se(Ωj)⊆B1,� for e∈Ei,j

}
,

where i∈V . Let 2≤k≤ˇ�. If G1
k,� �=∅, then for each p∈G1

k,�, there exist some

ξ(k, �, p)>0 and c(k, �, p)∈Γj , j∈J�, such that

(4.4) N(λ,−Δμi|Bk,�,p
)=N(ξ(k, �, p)λ,−Δμj |B1,c(k,�,p)

).

Proof. For any p∈G1
k,�, by the definition of P1

k,�, there exist some similitude
Se(k,�,p) with Lipschitz constant re(k,�,p), as well as constants w(k, �, p)>0 and
c(k, �, p)∈Γj such that μi|Bk,�,p

=w(k, �, p)μj |B1,c(k,�,p) ¨S
−1
e(k,�,p), where j∈J�. Com-

bining this with Proposition 3.2(b), we get (4.4) with ξ(k, �, p):=w(k, �, p)re(k,�,p).
This completes the proof. �

For all i∈V , each �∈Γi, and 1≤n≤ˇ�, we define a partition Pn,� of B1,� as
follows:

Pn,� :=
{
x :x is an end-point of some interval in Pn,�

}
,

and let Fn,� :=F(Pn,�). Note that for any i∈V , any �∈Γi, and 2≤n≤ˇ�, we have
#Pn,�≤2#Pn,�. It follows from Proposition 3.1 that for i∈V , �∈Γi, and 2≤n≤ˇ�,

N(λ,−ΔFn,�

μi|B1,�
)=

n∑
k=2

∑
p∈G1

k,�

N(λ,−Δμi|Bk,�,p
)+

∑
p∈G2

n,�

N(λ,−Δμi|Bn,�,p
).

Combining this with (3.1) and Proposition 4.2, for any �∈Γ′
i,

N(λ,−Δμi|B1,�
)=

ˇ�∑
k=2

∑
p∈G1

k,�

N(ξ(k, �, p)λ,−Δμj |B1,c(k,�,p)
)+ε(ˇ�, �),(4.5)
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where 0≤ε(ˇ�, �)≤2#Pˇ�,�−2. Similarly, for �∈Γ∗
i and n≥2, we have

N(λ,−Δμi|B1,�
) =

n∑
k=2

∑
p∈G1

k,�

N(ξ(k, �, p)λ,−Δμj |B1,c(k,�,p)
)

+
∑

p∈G2
n,�

N(λ,−Δμi|Bn,�,p
)+ε(n, �),

(4.6)

where 0≤ε(n, �)≤2#Pn,�−2.

Step 2. Derivation of the vector-valued equation.

Case 1. (G is strongly connected) In this case, η=1. For each i∈V , each �∈Γi,
and α>0, define

(4.7) f�(t)= f
(α)
� (t) := e−αtN(et,−Δμi|B1,�

), t∈R.

Let λ=et. Then e−αtN(βλ,−Δμi|B1,�
)=βαf�(t+ln β) for any β>0. Now, multiply

both sides of (4.5) and (4.6) by e−αt. Then for �∈Γ′
i, we have

f�(t)=
ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(α)
� (t),(4.8)

where z
(α)
� (t):=e−αtε(ˇ�, �). For �∈Γ∗

i and n≥2, we obtain

f�(t)=
∞∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(α)
� (t)

−
∞∑

k=n+1

∑
p∈G1

k,�

ξ(k, �, p)αfc(k,�,p)
(
t+ln ξ(k, �, p)

)
,

(4.9)

where

(4.10) z
(α)
� (t) := e−αt

( ∑
p∈G2

n,�

N(λ,−Δμi|Bn,�,p
)+ε(n, �)

)
.

Since λ1(−Δμi|B1,�
)>0 for any i∈V and any �∈Γi, there exists t0∈R such that

f�(t)=0 for any t<t0 and any �∈Γi. For t∈R, i∈V and �∈Γ∗
i , let nt :=nt(�) be the

positive integer such that

(4.11) t+max
{
ln ξ(k, �, p) : p∈G1

k,�

}
<t0 for all k >nt.
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Let n=nt in (4.9). Then

f�(t)=
∞∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(α)
� (t) for �∈Γ∗

i ,(4.12)

where z
(α)
� (t) is obtained from that in (4.10) by replacing n with nt. For i∈V , �∈Γi,

let μ
(α)
��′ be the discrete measure such that for 2≤k≤ˇ�, p∈G1

k,�, �′=c(k, �, p)∈Γj

and j∈J�,

(4.13) μ
(α)
��′
(
−ln ξ(k, �, p)

)
:= ξ(k, �, p)α.

Then (see (1.10))

(4.14) μ
(α)
��′ (R)=

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)α and F�(α)=
∑
�′∈Γ

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)α.

Case 2. (G is not strongly connected) If G=(V,E) is not strongly connected,
then there exists some i, j∈V satisfying Ei,j=∅. That is,

⋃
�∈Γi

J�=∅. Assume
that G has η strongly connected components. For m=1, ..., η, let SCm be defined
as in (1.6).

For m=1, ..., η, each i∈SCm and each �∈Γi, define

(4.15) f�(t)= f
(αm)
� (t) := e−αmtN(et,−Δμi|B1,�

), αm > 0, t∈R.

Let λ=et. Then e−αmtN(βλ,−Δμi|B1,�
)=βαmf�(t+ln β) for any β>0. Now,

multiply both sides of (4.5) by e−αmt. Then for �∈Γ′
i, we have

f�(t)=
ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αmfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(αm)
� (t),(4.16)

where z
(αm)
� (t):=e−αmtε(ˇ�, �). Similarly, for �∈Γ∗

i and n≥2, we obtain

f�(t)=
∞∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αmfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(αm)
� (t)

−
∞∑

k=n+1

∑
p∈G1

k,�

ξ(k, �, p)αmfc(k,�,p)
(
t+ln ξ(k, �, p)

)
,

(4.17)

where

(4.18) z
(αm)
� (t) := e−αmt

( ∑
p∈G2

n,�

N(λ,−Δμi|Bn,�,p
)+ε(n, �)

)
.
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Since λ1(−Δμi|B1,�
)>0 for all i∈V and all �∈Γi, there exists t0∈R such that f�(t)=

0 for any t<t0 and any �∈Γi. For t∈R, i∈V and �∈Γ∗
i , let nt :=nt(�) be the positive

integer such that

(4.19) t+max
{
ln ξ(k, �, p) : p∈G1

k,�

}
<t0 for all k >nt.

Let n=nt in (4.17). Then for m=1, ..., η, i∈SCm and �∈Γ∗
i , we have

f�(t)=
∞∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αmfc(k,�,p)
(
t+ln ξ(k, �, p)

)
+z

(αm)
� (t),(4.20)

where z(αm)
� (t) is obtained from that in (4.18) by replacing n with nt. For m=1, ..., η,

i∈SCm, �∈Γi, let μ
(αm)
�′� be the discrete measure such that for 2≤k≤ˇ�, p∈G1

k,�,
�′=c(k, �, p)∈Γj and j∈J�,

(4.21) μ
(αm)
��′

(
−ln ξ(k, �, p)

)
:= ξ(k, �, p)αm .

Then (see (1.10))

(4.22) μ
(αm)
��′ (R)=

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αm and F�(αm)=
∑
�′∈Γ

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)αm .

We summarize the above derivations in the following theorem.

Theorem 4.3. Let μ=
∑q

i=1 μi be a graph-directed self-similar measure on R.

Assume that μ satisfies (EFT) with {Ωi}qi=1 being an EFT-family and assume that

there exists a regular basic pair. Let Ω=
⋃q

i=1 Ωi and Δμ be defined on Ω. Let f ,Mα

and z be defined as in (1.8). Then f satisfies the vector-valued renewal equation

f=f ∗Mα+z.

4.2. Proofs of Theorems 1.1 and 1.6

We first prove a result relating strong connectedness of a graph and irreducibil-
ity of the corresponding matrix.

Proposition 4.4. Let μ=
∑q

i=1 μi be a graph-self-similar measure defined by

a GIFS G=(V,E) on R. Assume that μ satisfies (EFT) with {Ωi}qi=1 being an

EFT-family and assume that there exists a regular basic pair (B,P):=({B1,�,

{Pk,�}k≥1})�∈Γ. Let Ω=
⋃q

i=1 Ωi, Δμ be the Dirichlet Laplacian defined by μ, and

let M(α;∞) be defined as in (1.9). Then M(α;∞) is irreducible if and only if G

is strongly connected.
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Proof. Assume that G has η strongly connected components, and M(α;∞) is
irreducible. Then for any �, �′∈Γ, there exists a path γ=(�1, ..., �n) from �1 to �n
satisfying �1=� and �n=�′ such that

μγ =μ
(αm1 )
�1�2

∗...∗μ(αmn−1 )
�n−1�n

�=0,

where �j∈Γij , ij∈SCmj and mj∈{1, ..., η} for j=1, ..., n. It means that

μ
(αmj

)
�j�j+1

�=0 for j =1, ..., n−1.

Thus there exists at least one Bj∈P1
k,�j

, k≥2, such that Bj is μ-equivalent to B1,�j .
By the definition of μ-equivalence, we see that there exists ej∈Eij ,ij+1 such that
Sej (B1,�j+1)=Bj , where B1,�j+1⊆Ωij+1 and Bj⊆Ωij . Hence e=e1...en−1∈Ei1,in ,
i.e., there exists a directed e-path from i1 to in, where �∈Γi1 and �′∈Γin . Hence,
for any γ-path, there exists a corresponding directed e-path.

Let i, j∈V .
(1) If Γi �=∅ and Γj �=∅, then for any �∈Γi and any �′∈Γj , there exists a cor-

responding directed e-path from i to j. Hence G is strongly connected.
(2) If Γi=∅ and Γj �=∅, then there exists some �1∈Γ such that B1,�1 is μ-equiva-

lent to Ωi. Assume that �1∈Γi1 for i1∈V . Then we have B1,�1⊆Ωi1 . By the
definition of μ-equivalence, there exists some e1∈Ei1,i such that Se1(Ωi)=B1,�.
Since Γi1 �=∅ and Γj �=∅, there exists a corresponding directed e-path from i1 to j.
Thus there exists a e-path from i to j, and hence G is strongly connected.

(3) If Γi=∅ and Γj=∅, then Ωi and Ωj are μ-equivalent, and so there exists
a directed e-path from i to j. Hence G is strongly connected.

Conversely, assume that G is strongly connected. Let �∈Γi and �′∈Γi′ .
(1) If there exists some e∈Ei,i′ satisfying Se(Ωi′)⊆B1,�⊆Ωi, then by the def-

inition of (EFT), there exists some B1∈P1
k,�, k≥2, such that B1 �=B1,�. It follows

from (2.6) that B1 is μ-equivalent to some B1,�′ for �′∈Γi′ . Hence, there exists a
path γ=(�, �′) satisfying �∈Γi and �′∈Γi′ .

(2) If there exists some e∈Ei,i′ satisfying Se(Ωi′)⊆Ωi, but Se(Ωj)∩B1,�=∅,
then the strong connectedness of G implies that there exists some e1∈Ei,i1 such
that Se1(Ωi1)⊆B1,�⊆Ωi. By the definition of (EFT), there exists some B1∈P1

k,�,
k≥2, such that B1 �=B1,�. Using (2.6), we see that B1 is μ-equivalent to some B1,�1
for �1∈Γi1 . Hence there exists a path γ=(�, �1) from � to �1. If there exists some
e2∈Ei1,j such that Se2(Ωj)⊆B1,�1⊆Ωi1 , then there exists a path γ=(�1, �′). This
is similar to (1). Hence there exists a path γ=(�, �1, �′) from � to �′. If there exists
some e2∈Ei1,i

′ satisfying Se2(Ωi′)⊆Ωi1 , but Se2(Ωj)∩B1,�1 =∅, then we continue.
Since G is strongly connected, we can obtain some ej∈Eij−1,ij satisfying Sej (Ωij )⊆
B1,�j−1⊆Ωij−1 . Hence there exists some Bj∈Pk,�j−1 such that Bj �=B1,�j−1 . The
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definition of (EFT) implies that there exists some Bj that is μ-equivalent to some
B1,�j for �j∈Γij . Hence there exists a path γ from � to �′. �

Proof of Theorem 1.1. (a) It follows from (4.14) and Proposition 4.2 that F�(α)
is a positive continuous function of α for each �∈Γ. Combining this with the facts
that limα→∞ F�(α)=0 and limα→α̃+

�
F�(α)>1, we obtain a unique α such that the

spectral radius of M(α;∞) is 1, where α=(α) consists of only one component.
(b) Let α be the unique number in part (a). Let m:=[m(α)

��′ ]=[
∫∞
0 t dμ

(α)
��′ ] be

the moment matrix. Following the proof of [17, Theorem 1.1(b)], we need to show
that some moment condition holds, and it suffices to show that 0<

∑
�′∈Γ m

(α)
��′ <∞.

It is easy to check that for �∈Γ,
∑

�′∈Γ m
(α)
��′ takes the following values:

∑
�′∈Γ

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)α
∣∣ ln(ξ(k, �, p))

∣∣.
It follows from limα→α̃+

�
F�(α)>1 that there exists ε>0 such that 0<F�(α−ε)<∞.

Thus

0<
∑
�′∈Γ

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)α
∣∣ ln(ξ(k, �, p))

∣∣

=
∑
�′∈Γ

ˇ�∑
k=2

∑
p∈G1

k,�

ξ(k, �, p)α−εξ(k, �, p)ε
∣∣ ln(ξ(k, �, p))

∣∣<∞.

The last inequality follows from the fact limt→0+ tε ln t=0. By (4.13), we have
∑
�′∈Γ

μ
(α)
��′ (0)= 0<

∑
�′∈Γ

μ
(α)
��′ (∞),

i.e., each column of Mα is nondegenerate at 0. From Theorem 4.3, f=f ∗Mα+z,
where, by assumption, z is directly Riemann integrable on R.

Proposition 4.4 and the fact that G is strongly connected imply that M(α;∞) is
irreducible. It follows from the above observations and [17, Theorem 4.1] that there
exist positive constants C1 and C2 such that 0<C1≤limt→∞ f�(t)≤limt→∞ f�(t)≤
C2<∞ for all �∈Γ. The definition in (4.7) implies that C1≤λ−αN(λ,−Δμi|B1,�

)≤
C2, which, together with (4.2), yields C1λ

α≤N(λ,−Δμ|Ω)≤C2λ
α. Combining this,

part (a), and the definition of ds, we get ds=2α.
(c) The assertion follows from Corollary A.2 and Theorem A.1 in the Appendix.

This completes the proof. �
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Proof of Theorem 1.6. (a) Proposition 4.2 and (4.22) imply that for m=1, ..., η,
i∈SCm and �∈Γi, F�(αm) is a positive continuous function of αm. Combining
this with the assumptions that limαm→∞ F�(αm)=0 and limαm→α̃+

�
F�(αm)>1, we

obtain a unique nonnegative vector α=(α1, ..., αη) such that the spectral radii of
M(α;∞) and all the other classes are equal to 1.

(b) The proof is similar to that of Theorem 1.1(b). Since G is not strongly
connected, it follows from Proposition 4.4 that M(α;∞) is reducible. Let α:=
max{αi :i=1, ..., η}. As in the proof of [17, Theorem 1.1(b), Case 2], we have

lim
t→∞

f
(β)
� (t)= 0 for all �∈Γi, i∈{1, ..., q} and all β <α.

Moreover, there exists some �0∈Γi such that limt→∞ f
(α)
�0

(t)>0. The definition of
f�(t) implies that N(λ,−Δμi|B1,�

)=o(λβ) for �∈Γi and β<α and limλ→∞ λ−αN(λ,
−Δμi|B1,�0

)>0. Thus N(λ,−Δμ)=o(λβ) for any β<α and limλ→∞ λ−αN(λ,
−Δμ)>0. Hence ds(−Δμ)≤2α and ds(−Δμ)≥2α, which completes the proof.

(c) The proof is similar to that of Theorem 1.1(c). �

5. Strongly connected GIFSs on R

In this section, we compute the spectral dimension of some graph-directed self-
similar measures defined by a strongly connected GIFS G=(V,E) that has overlaps.

5.1. A strongly connected GIFS

We first show that the graph-directed self-similar measures defined by the
strongly connected GIFS in Example 1.2 satisfy (EFT).

Proposition 5.1. Let μ=μ1+μ2 be a graph-directed self-similar measure de-

fined by a GIFS G=(V,E) in Example 1.2 together with a probability matrix (pe)e∈E .

Then μ satisfies (EFT) with {Ω1,Ω2}={(0, 1), (0, 1)} being an EFT-family and there

exists a regular basic pair.

To prove Proposition 5.1, we first summarize some elementary properties.
Throughout this subsection, we let Ω1=Ω2 :=(0, 1) and ζ1 :=1−r. Define

(5.1)
B1,1 :=Se1(Ω1)∪Se2(Ω2)= (0, r+ρζ1), B1,2 :=Se3(Ω1)= (ζ1, 1),
B1,3 :=Se5(Ω1)= (0, ρ), B1,4 :=Se4(Ω2)= (ζ1, 1).

Using (2.3) and (2.4), we see that

(5.2) pe1 +pe2 +pe3 =1, pe4 +pe5 =1.
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and

(5.3) μ1 = pe1μ1 ¨S
−1
e1 +pe2μ2 ¨S

−1
e2 +pe3μ1 ¨S

−1
e3 , μ2 = pe4μ2 ¨S

−1
e4 +pe5μ1 ¨S

−1
e5 .

Moreover μ=μ1+μ2.

Lemma 5.2. Let {Sei}5
i=1 be as in (1.12). Then Se1e3 =Se2e5 .

Lemma 5.3. Assume the hypotheses of Proposition 5.1. Let B1,�, �=1, 2, 3, 4,
be defined as in (5.1). Then

(a) μ1|Se1 (B1,1)=pe1μ1|B1,1 ¨S
−1
e1 ;

(b) μ1|Se1 (B1,2)=(pe1e3 +pe2e5)p−1
e5 ·μ2|B1,3 ¨(Se1e3S

−1
e5 )−1;

(c) μ1|Se2 (B1,4)=pe2μ2|B1,4 ¨S
−1
e2 ;

(d) for �=1, 2, μ1|Se3 (B1,�)=pe3μ1|B1,� ¨S
−1
e3 ;

(e) for �=3, 4, μ2|Se4 (B1,�)=pe4μ2|B1,� ¨S
−1
e4 ;

(f) for �=1, 2 and k≥0, μ2|S
e5ek3

(B1,�)=pe5ek3μ1|B1,� ¨S
−1
e5ek3

.

Proof. (a) It follows from (1.12) and (5.1) that Se1(Ω1)=(0, ρ), Se2(Ω2)=(ρζ1,
r+ρζ1) and Se1(B1,1)=(0, ρr+ρ2ζ1). Since ρ+2r−ρr≤1, we have ρr+ρ2ζ1≤ρζ1,
and hence Se1(B1,1)⊆Se1(Ω1)\Se2(Ω2). So for any A⊆Se1(B1,1), i.e., S−1

e1 (A)⊆
B1,1, we get μ1(A)=pe1μ1|B1,1 ¨S

−1
e1 (A).

(b) By Lemma 5.2 we have Se1e3(Ω1)=Se2e5(Ω1). Then for any A⊆Se1(B1,2),
S−1
e1e3(A)=S−1

e2e5(A)⊆Ω1, and hence

(5.4) μ1(A)= (pe1e3 +pe2e5)μ1|Ω1 ¨S
−1
e1e3(A).

For any B⊆B1,3, S−1
e5 (B)⊆Ω1, so μ2(B)=pe5μ1|Ω1 ¨S

−1
e5 (B), and hence

(5.5) μ1|Ω1 = p−1
e5 μ2|B1,3 ¨Se5 .

Combining this with (5.4), we have μ1|Se1 (B1,2)=(pe1e3 +pe2e5)p−1
e5 μ2|B1,3 ¨Se5S

−1
e1e3 .

(c) Using (1.12) and (5.1), we get Se2(B1,4)=((ρ+r)ζ1, r+ρζ1). Since ρ<(ρ+
r)ζ1, Se2(B1,4)⊆Se2(Ω2)\Se1(Ω1), and hence μ1|(A)=pe2μ2|B1,4 ¨S

−1
e2 (A) for any

A⊆Se2(B1,4).
(d) and (e) follow from (5.3) and the facts Se3(B1,�)⊆Se3(Ω1), Se4(B1,�′)⊆

Se4(Ω2) for �=1, 2 and �′=3, 4.
(f) First, we show that for k≥1 and �=1, 2,

(5.6) μ1|S
ek3

(B1,�) = pek3μ1|B1,� ¨S
−1
ek3

.

It follows from (d) that (5.6) holds for k=1. Assume that (5.6) holds for k=m, i.e.,
μ1|Sem3

(B1,�)=pem3 μ1|B1,� ¨S
−1
em3

. For k=m+1, note that Sem3
(B1,�)⊆B1,2 for m≥1.

Combining this with (d), we have

μ1|S
e
m+1
3

(B1,�) =μ1|Se3 (Sem3
(B1,�))=pe3μ1|Sem3

(B1,�))¨S
−1
e3 =pem+1

3
μ1|B1,� ¨S

−1
em+1
3

.
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0 1
�

�

�

P1,1=B1,1
�

B1,2

�

�

�

� �

P2,1
�
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0 1
�

�

P1,3=B1,3
�

P1,4=B1,4

�

�

�

P2,3
� �

P2,4

Figure 2. μ-partitions Pk,� of B1,� for the GIFS defined in (1.12). The figure is drawn with ρ=1/3
and r=2/7.

�

�

P1,1

�

�

Se1(B1,1)
�

�

Se1(B1,2)

�

Se2 (B1,4)

Figure 3. μ-partitions P2,1.

It is obvious that Se5(B1,�)⊆Se5(Ω1) for �=1, 2. Hence

(5.7) μ2|Se5 (B1,�) = pe5μ1|B1,� ¨S
−1
e5 for �=1, 2.

Thus (f) holds for k=0. Note that Sem3
(B1,�)⊆B1,2 for m≥1. Applying (5.7) fol-

lowed by (5.6), we have for k≥1,

μ2|S
e5ek3

(B1,�) =μ2|Se5 (Sk
e3 (B1,�)) = pe5μ1|S

ek3
(B1,�) ¨S

−1
e5 = pe5ek3μ1|B1,� ¨S

−1
e5ek3

.

This completes the proof. �

Proof of Proposition 5.1. Note that {Ω1,Ω2} is invariant under G=(V,E). It
is obvious that any two elements of {B1,1, B1,3, B1,4} are measure disjoint. Let
Γ:={1, 3, 4} and B:={B1,� :�∈Γ}. Define P1,� :={B1,�} for �∈Γ. If for some k≥2
and �∈Γ, Pk,� (see Figure 2) is a well-defined μ-partition of B1,�, then we let P1

k,�

and P2
k,� be defined as in (2.6) with respect to B.

For �=1, define P2,1 :={Se1(B1,1), Se1(B1,2), Se2(B1,4)} (see Figure 3). Note
that any two elements of P2,1 are measure disjoint. Thus P2,1 is a refining μ-parti-
tion of B1,1. It follows from Lemma 5.3(a,b,c) that

P1
2,1 = {Se1(B1,1), Se1(B1,2), Se2(B1,4)} and P2

2,1 =∅.

Hence condition (1) of Definition 2.1 holds for �=1. For k≥3, define Pk,1=P2,1.
Then conditions (2) and (3) of Definition 2.1 hold for �=1.

For �=3, define P2,3={Se5(B1,1), Se5(B1,2)} (see Figure 4). It is easy to see
that Se5(B1,1), Se5(B1,2) are measure disjoint, and Se5(B1,i)⊆B1,3 for i=1, 2. Thus
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�

P1,3
�

P1,4

�

�

Se5(B1,1)
�

Se5(B1,2)
�

Se4(B1,3)
�

Se4(B1,4)

Figure 4. μ-partitions P2,3 and P2,4.

0 1Ω1

Se1(Ω1)
Se2(Ω1)

Se3(Ω1)

0 1Ω2

Se5 (Ω1)
Se4 (Ω2)

Figure 5. First iteration of the GIFS defined in (1.15), where Ω1=Ω2=(0, 1). The figure is drawn
with ρ=1/3 and r=2/7.

P2,3 is a refining μ-partition of B1,3. By Lemma 5.3(f), we have P1
2,3={Se5(B1,1)}

and P2
2,3={Se5(B1,2)}. Hence condition (1) of Definition 2.1 holds for �=3. For k≥

3, define Pk,3=P1
k−1,3∪{Se5e

k−2
3

(B1,1), Se5e
k−2
3

(B1,2)}, Lemma 5.3(f) implies that
P1

k,3=P1
k−1,3∪{Se5e

k−2
3

(B1,1)} and P2
k,3={Se5e

k−2
3

(B1,2)}. Consequently, condition
(2) of Definition 2.1 holds for �=3. Since the closure of Se5e

k−2
3

(B1,2) converges to
a point as k→∞, we get limk→∞ μ(Se5e

k−2
3

(B1,2))=0. We conclude that condition
(3) of Definition 2.1 holds.

For �=4, define P2,4 :=
{
Se4(B1,3), Se4(B1,4)

}
(see Figure 4). Note that

Se4(B1,3), Se4(B1,4) are measure disjoint, and Se4(B1,i)⊆B1,4 for i=3, 4. Thus
P2,4 is a refining μ-partition of B1,4. Lemma 5.3(e) implies that P1

2,4=P2,4 and
P2

2,4=∅. Hence condition (1) of Definition 2.1 holds for �=4. For k>2, define
Pk,4 :=P2,4. It follows that conditions (2) and (3) of Definition 2.1 hold for �=4.
Hence the first assertion follows. Finally, the regularity of ({B1,�}, {Pk,�}k≥1)�∈Γ is
obvious. �

5.2. Spectral dimension of μ in Proposition 5.1

In this subsection, we derive the vector-valued renewal equations and compute
the spectral dimension of μ defined by the strongly connected GIFS in Proposi-
tion 5.1.

Let {Sei}5
i=1 be a GIFS in (1.12), (pe)e∈E be a probability matrix, and μ be

the associated graph-directed self-similar measure. For �∈Γ:={1, 3, 4} and k≥1,
let B1,� be defined as in (5.1), and Pk,� be as in the proof of Proposition 5.1.
Then μ satisfies (EFT) with {Ω1,Ω2}={(0, 1), (0, 1)} being an EFT-family, and
(B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ being a regular basic pair.
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In the rest of this subsection, we use the notation defined in Section 4.1. For
�∈Γ, i=1, 2 and k≥2, let Pi

k,� be defined as in (2.6). For i=1, 2, let Γi and Bi

be defined as in (4.1). Since B1,1⊆Ω1 and B1,�⊆Ω2 for �=3, 4, we have Γ1={1},
Γ2={3, 4}, B1={B1,1} and B2={B1,3, B1,4}. Let

B2,1,1 =Se1(B1,1), B2,1,2 =Se1(B1,2), B2,1,3 =Se2(B1,4),
B2,3,1 =Se5(B1,1), B2,3,2 =Se5(B1,2), B2,4,1 =Se4(B1,3), B2,4,2 =Se4(B1,4).

Then

P1
2,1 = {B2,1,1, B2,1,2, B2,1,3}, P1

2,3 = {B2,3,1}, P1
2,4 = {B2,4,1, B2,4,2},

P2
2,1 =∅, P2

2,3 = {B2,3,2}, P2
2,4 =∅.

Define Bk,3,1={Se5e
k−2
3

(B1,1)}, Bk,3,2={Se5e
k−2
3

(B1,2)}. Then P1
k,3={Bk,3,1} and

P2
k,3={Bk,3,2}. Hence Γ′

1={1}, Γ∗
1=∅, Γ′

2={4}, Γ∗
2={3}, ˇ1=ˇ4=2, ˇ3=∞, and

G1
2,1 = {1, 2, 3}, G2

2,1 =∅,

G1
k,3 = {1}, G2

k,3 = {2}, for k≥ 2,
G1

2,4 = {1, 2}, G2
2,4 =∅.

For �∈Γ, let J� be defined as in (4.3). Then J1={1, 2}, J3={1}, J4={2}.

Lemma 5.4. Let ξ(·, ·, ·) and c(·, ·, ·) be defined as in Proposition 4.2. Then

(a) ξ(2, 1, 1)=pe1ρ, c(2, 1, 1)=1;
(b) ξ(2, 1, 2)=(pe1e3 +pe2e5)p−1

e5 ·r, c(2, 1, 2)=3;
(c) ξ(2, 1, 3)=pe4r, c(2, 1, 3)=4;
(d) for k≥2, ξ(k, 3, 1)=pe5ek−2

3
ρrk−2, c(k, 3, 1)=1;

(e) ξ(2, 4, 1)=pe4r, c(2, 4, 1)=3;
(f) ξ(2, 4, 2)=pe4r, c(2, 4, 2)=4.

Proof. (a)–(f) Lemma 5.3 implies that

B1,1 �μ,Se1,pe1
B2,1,1, B1,3 �μ,Se1e3 ¨S

−1
e5 ,(pe1e3+pe2e5 )/pe5

B2,1,2,

B1,4 �μ,Se2 ,pe2
B2,1,3, B1,1 �μ,S

e5e
k−2
3

,p
e5e

k−2
3

Bk,3,1, for k≥ 2,

B1,3 �μ,Se4 ,pe4
B2,4,1, B1,4 �μ,Se4 ,pe4

B2,4,2.

The results follow. �
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Using Lemma 5.4 and the discussions preceding it, we can express the vector-
valued renewal equations (4.8) and (4.12) precisely as

f1(t) = (pe1ρ)αf1(t+ln(pe1ρ))+
(
(pe1e3 +pe2e5)p−1

e5 r
)α
f3
(
t+ln

(
(pe1e3 +pe2e5)p−1

e5 r
))

+(pe2r)αf4(t+ln(pe2r))+z
(α)
1 (t),

f3(t) =
∞∑
k=0

(pe5ek3ρr
k)αf1(t+ln(pe5ek3ρr

k))+z
(α)
3 (t),

f4(t) =
4∑

�=3

(pe4r)αf�(t+ln(pe4r))+z
(α)
4 (t),

where
z
(α)
1 (t) := e−αtε(2, 1), z

(α)
4 (t) := e−αtε(2, 4),

z
(α)
3 (t) := e−αt

(
N(λ,−Δμ2|Bnt,3,2

)+ε(nt, 3)
)
.

For �, �′∈Γ, let μ
(α)
��′ be the discrete measure defined as in (4.13). Then

(5.8)

μ
(α)
11 (− ln(pe1ρ))= (pe1ρ)α,

μ
(α)
13 (− ln((pe1e3 +pe2e5)p−1

e5 r))= ((pe1e3 +pe2e5)p−1
e5 r)α,

μ
(α)
14 (− ln(pe2r))= (pe2r)α,

μ
(α)
31 (− ln(pe5ek3ρr

k))= (pe5ek3ρr
k)α for k=0, 1, ...,

μ
(α)
43 (− ln(pe4r))=μ

(α)
44 (− ln(pe4r))= (pe4r)α.

Also,

M(α;∞)=

⎛
⎝ (pe1ρ)α ((pe1e3 +pe2e5)p−1

e5 r)α (pe2r)α
((pe5ρ)α)/(1−(pe3r)α) 0 0

0 (pe4r)α (pe4r)α

⎞
⎠ .

Proposition 5.5. For �=1, 3, 4, let F�(α) and α̃� be defined as in (1.10). If

(pe1e3 +pe2e5)p−1
e5 r<1, then limα→∞ F�(α)=0, and α̃�=0 for �=1, 3, 4. Moreover,

F�(0)>1 for �=1, 4, and limα→0+ F3(α)=∞.

Proof. By the definition of F�(α), we see that

F1(α)= (pe1ρ)α+((pe1e3 +pe2e5)p−1
e5 r)α+(pe2r)α,

F3(α)= ((pe5ρ)α)/(1−(pe3r)α) F4(α)= 2(pe4r)α.

The assertions follow immediately, with F1(0)=3 and F4(0)=2. �
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It follows from the Proposition 5.5 that there exists a unique α>0 such that
the spectral radius of M(α;∞) is 1, where α=(α) consists only one component.
That is, α is the unique number satisfying (1.14).

Finally, we show that there exists some σ>0 such that z
(α)
� (t)=o(e−σt) as

t→∞ for �=1, 3, 4. We will first show that N(λ,−Δμ2|Bnt,3,2
) is bounded.

Proposition 5.6. There exists a constant C>0 such that

N(λ,−Δμ2|Bnt,3,2
)≤C.

Proof. Let A⊆Bnt,3,2=S
e5e

nt−2
3

(B1,2)=S
e5e

nt−1
3

(Ω1). Then S−1
e5e

nt−1
3

(A)⊆Ω1.
Hence

μ1(A)= p
e5e

nt−1
3

μ1|Ω1 ¨S
−1
e5e

nt−1
3

.(5.9)

Note that Se5S
−1
e5e

nt−1
3

(A)⊆B1,3 and for any B⊆B1,3, we have S−1
e5 (B)⊆Ω1, μ2(B)=

pe5μ1|Ω1 ¨S
−1
e5 , and hence μ1|Ω1 =p−1

e5 μ2|B1,3 ¨Se5 . Combining this with (5.9), we get

μ1(A)= p
e5e

nt−1
3

p−1
e5 μ2|B1,3 ¨Se5 ¨S

−1
e5e

nt−1
3

= p
e
nt−1
3

μ2|B1,3 ¨ (S
e5e

nt−1
3

S−1
e5 )−1.

So

μ1|S
e5e

nt−2
3

(B1,2) = p
e
nt−1
3

μ2|B1,3 ¨ (S
e5e

nt−1
3

S−1
e5 )−1 on S

e5e
nt−2
3

(B1,2).

It follows that

N
(
et,−Δμ1|S

e5e
nt−2
3

(B1,2)

)
=N

(
et,−Δp

e
nt−1
3

μ2|B1,3 ¨(Se5e
nt−1
3

S−1
e5 )−1

)
=N

(
(pe3r)nt−1et,−Δμ2|B1,3

)
.

(4.11) implies that (pe3r)nt−1et<(pe5ρ)−1et0 . Hence

N

(
et,−Δμ1|S

e5e
nt−2
3

(B1,2)

)
≤N

(
(pe5ρ)−1et0 ,−Δμ2|B1,3

)
:=C.

This completes the proof. �

Proposition 5.7. Let α be defined as in (1.14). Then there exists some σ>0
such that z

(α)
� (t)=o(e−σt) as t→∞ for �=1, 3, 4.

Proof. It follows from Proposition 5.6 that there exists some constant C>0
such that z

(α)
3 (t)≤(C+4nt−4)e−αt. Moreover, since z

(α)
� (t)≤2e−αt for �=1, 4,
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it suffices to show that for any 0<σ<α, nte
−αt=o(e−σt) as t→∞. It follows

from (4.11) that t+ln
(
p
e5e

nt−1
3

ρrnt−1)<t0, and hence nt≤1+(ln(pe3r))−1(t0−t−
ln(pe5ρ)). Thus for any 0<σ<α,

nte
−αt/e−σt ≤

(
1+(ln(pe3r))−1(t0−t−ln(pe5ρ))

)
/e(α−σ)t −→ 0 as t−→∞.

This completes the proof. �

Proof of Corollary 1.3. Apply Propositions 5.5 and 5.7, and Theorem 1.1. �

Proof of Remark 1.4. (a) follows by a direct calculation.
(b) It is easy to see that G=(V,E) defined as in (1.12) satisfies the generalized

finite type condition (see [20, Definition 2.1]) with {Ω1,Ω2}={(0, 1), (0, 1)} being
a generalized finite type condition family for G. Moreover, the weighted incidence
matrix is

Ax :=

⎛
⎜⎜⎝

rx 0 ρx rx

ρx rx 0 0
rx 0 ρx rx

0 rx 0 0

⎞
⎟⎟⎠ .

Let x0 be the unique real number such that the spectral radius of Ax0 is equal to
1. It follows from [20, Theorem 1.1] that the Hausdorff dimension of the associated
graph self-similar set is df =x0=0.710396.... Hence 2df/(1+df )=0.830680..., and
so ds<2df/(1+df ).

(c) It follows from [12, Lemma 2.3] that 〈supp(ν1)〉 equals the closed subgroup
generated by supp(μ(α)

11 ), the closure of supp(μ(α)
13 )+supp(μ(α)

31 ), and the closure of
supp(μ(α)

14 )+supp(μ(α)
43 )+supp(μ(α)

31 ). By (5.8), we have

supp(μ(α)
11 )= {− ln(pe1ρ)}, supp(μ(α)

31 )= {− ln(pe5ek3ρr
k) : k≥ 0},

supp(μ(α)
13 )= {− ln((pe1e3 +pe2e5)p−1

e5 r)}, supp(μ(α)
14 )= {− ln(pe2r)),

supp(μ(α)
43 )= supp(μ(α)

44 )= {ln(pe4r)}.

More precisely,

supp(μ(α)
11 )= {− ln(pe1ρ)}= {ln(12)},

supp(μ(α)
13 )+supp(μ(α)

31 )= {− ln((pe1e3 +pe2e5)pek3ρr
k+1) : k≥ 0}

= {ln(6×7k+1) : k≥ 0},

supp(μ(α)
14 )+supp(μ(α)

43 )+supp(μ(α)
31 )= {ln(pe2ek3e4e5ρr

k+2) : k≥ 0}
= {ln(12×7k+2) : k≥ 0}.
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Choose
a := ln(6×7)∈ supp(μ(α)

13 )+supp(μ(α)
31 ),

b := ln(12×72)∈ supp(μ(α)
14 )+supp(μ(α)

43 )+supp(μ(α)
31 ).

Since a/b /∈Q, we have 〈supp(ν1)〉=R and hence ν1 is non-lattice. Combining this
with Theorem 1.1(c), we see that there exists a non-negative constant c� such that

lim
t→∞

e−αtN(et,−Δμi|B1,�
)= c�, for �∈Γi, �=1, 3, 4, and i=1, 2,

which completes the proof. �

6. GIFSs that are not strongly connected

In this section, we compute the spectral dimension of some graph-directed self-
similar measures defined by the GIFSs G=(V,E) which have overlaps and are not
strongly connected.

6.1. A GIFS that is not strongly connected and has a unique basic class

It is easy to check that the GIFS in Example 1.7 is not strongly connected
and has overlaps. In this subsection, we show that the associated measures satisfy
(EFT). In Subsection 6.2 we show that this GIFS has a unique basic class, and
compute the spectral dimension of the corresponding measures.

Proposition 6.1. Let μ=μ1+μ2 be a graph-directed self-similar measure de-

fined by a GIFS G=(V,E) in Example 1.7 together with a probability matrix (pe)e∈E .

Then μ satisfies (EFT) with Ω={Ω1,Ω2}={(0, 1), (0, 1)} being an EFT-family;

moreover, there exists a regular basic pair.

To prove Proposition 6.1, we first summarize some elementary properties.
Throughout this subsection, we let Ω1=Ω2 :=(0, 1). To simplify notation we

let

(6.1) ζk := 1−rk, k≥ 0.

Define

(6.2)
B1,1 :=Se1(Ω1)∪Se2(Ω1)= (0, r+ρζ1), B1,2 :=Se3(Ω1)= (ζ1, 1),
B1,3 :=Se5(Ω1)= (0, ρ), B1,4 :=Se4(Ω2)= (ζ1, 1).

We denote

(6.3) W (k)= {ej2e1e
k−j
3 : j =0, 1, ..., k}, k≥ 0.
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We remark that for k≥0,

(6.4) pe1p
k+1
e3 +pe2w(k)=w(k+1) and w(k+1)≤w(k)≤ pe1 ,

where w(k) is defined as in (1.16). For any k≥0, w(k) denotes the sum of probability
weights of all multi-indices in W (k). Using (2.3) and (2.4), we see that

(6.5) pe1 +pe2 +pe3 =1, pe4 +pe5 =1,

and

μ1 = pe1μ1 ¨S
−1
e1 +pe2μ1 ¨S

−1
e2 +pe3μ1 ¨S

−1
e3 , μ2 = pe4μ2 ¨S

−1
e4 +pe5μ1 ¨S

−1
e5 .(6.6)

Moreover, μ=μ1+μ2.
Lemma 6.2(a) below implies that all multi-indices in W (k) correspond to the

same vertex.

Lemma 6.2. Let {Sei}5
i=1 be as in (1.15). Then

(a) Se1e3(Ω1)=Se2e1(Ω1). Moreover, for any e, e′∈W (k), Se=Se′ ;

(b) for k≥1,

Sek2e1
(Ω1)= (ρζk, ρ), Sek2

(Ω1)= (ρζk, rk+ρζk),

Sek2e3
(Ω1)= (rkζ1+ρζk, r

k+ρζk), Se1(Ω1)∩Sek2
(Ω1)=Sek2e1

(Ω1).

Proof. (a) can be proved by a direct calculation and (b) can be proved by
induction; we omit the details. �

Part (d) of the following lemma explains the meaning of the factor w(k).

Lemma 6.3. Assume the hypotheses of Proposition 6.1. Let w(k) be defined

as in (1.16). Then
(a) for �=1, 2, μ1|Se3 (B1,�)=pe3μ1|B1,� ¨S

−1
e3 ;

(b) for �=3, 4, μ2|Se4 (B1,�)=pe4μ2|B1,� ¨S
−1
e4 ;

(c) for �=1, 2, μ2|Se5 (B1,�)=pe5μ1|B1,� ¨S
−1
e5 ;

(d) for k≥0, μ1|S
ek2e1

(B1,1)=w(k)μ1|B1,1 ¨S
−1
ek2e1

;

(e) for k≥1, μ1|S
ek2

(B1,1)=w(k−1)μ1|B1,2 ¨S
−1
ek−1
2 e1

+pke2μ1|B1,1 ¨S
−1
ek2

;

(f) for k≥1, μ1|S
ek2

(B1,2)=pke2μ1|B1,2 ¨S
−1
ek2

.

Proof. (a)–(c) follow from (6.6) along with the facts that Sei(B1,�)⊆Sei(Ω1)
and Se4(B1,�′)⊆Se4(Ω2), for i=3, 5, �=1, 2 and �′=3, 4.

(d)–(f) can be proved directly by induction, we only prove (d) as an ex-
ample. It follows from (1.15) and (6.2) that Se1(Ω1)=(0, ρ), Se2(Ω2)=(ρζ1, r+
ρζ1), and Se1(B1,1)=(0, ρr+ρ2ζ1). Since ρ+2r−ρr≤1, we have ρr+ρ2ζ1≤ρζ1,
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Figure 6. μ-partitions Pk,� of B1,� for the GIFS in (1.15). The figure is drawn with ρ=1/3 and
r=2/7.

and hence Se1(B1,1)⊆Se1(Ω1)\Se2(Ω2). So for any A⊆Se1(B1,1), i.e., S−1
e1 (A)⊆

B1,1, we get μ1(A)=pe1μ1|B1,1 ¨S
−1
e1 (A). Assume that the stated equality holds

for k=m, i.e., μ1|Sem2 e1 (B1,1)=w(m)μ1|B1,1 ¨S
−1
em2 e1

. For k=m+1, by Lemma 6.2,
we have Sem+1

2 e1
(B1,1)=Se1e

m+1
3

(B1,1). Then S−1
e1 (A)⊆Sem+1

3
(B1,1) and S−1

e2 (A)⊆
Sem2 e1(B1,1) for any A⊆Sem+1

2 e1
(B1,1). It follows that μ1(S−1

e1 (A))=pm+1
e3 μ1|B1,1 ¨

S−1
em+1
3

(S−1
e1 (A)) and μ1(S−1

e2 (A))=w(m)μ1|B1,1 ¨S
−1
em2 e1

(S−1
e2 (A)). Thus,

μ1(A) = pe1μ1 ¨S
−1
e1 (A)+pe2μ1 ¨S

−1
e2 (A)

= pe1p
m+1
e3 μ1|B1,1 ¨S

−1
em+1
3

(S−1
e1 (A))+pe2w(m)μ1|B1,1 ¨S

−1
em2 e1

(S−1
e2 (A))

= (pe1pm+1
e3 +pe2w(m))μ1|B1,1 ¨S

−1
em+1
2 e1

(A)

= w(m+1)μ1|B1,1 ¨S
−1
em+1
2 e1

(A).

The last equality follows from (6.4). This proves part (d). �

Proof of Proposition 6.1. Note that {Ω1,Ω2} is invariant under G=(V,E). It
is obvious that the elements of {B1,i}4

i=1 are measure disjoint. Let Γ:={1, 2, 3, 4}
and B:={B1,� :�∈Γ}. Define P1,� :={B1,�} for �∈Γ. If for some k≥2 and �∈Γ, Pk,�

(see Figure 6) is a well-defined μ-partition of B1,�, then we let P1
k,� and P2

k,� be
defined as in (2.6) with respect to B.

For �=1, define P2,1 :={Se1(B1,1), Se2(B1,1), Se2(B1,2)} (see Figure 7). By
Lemma 6.3(d,e,f), we have P1

2,1={Se1(B1,1), Se2(B1,2)} and P2
2,1={Se2(B1,1)}.

Hence condition (1) of (EFT) holds for �=1. For k≥3, define

Pk,1 :=Pk−1,1∪{Sek−2
2 e1

(B1,1), Sek−1
2

(B1,1), Sek−1
2

(B1,2)}.

By Lemma 6.3(d,e,f), we get P1
k,1=P1

k−1,1∪{Sek−2
2 e1

(B1,1), Sek−1
2

(B1,2)} and P2
k,1=

{Sek−1
2

(B1,1)}. Hence condition (2) of (EFT) holds for �=1. Since the closure of
Sek2

(B1,1) converges to a point as k→∞, we have limk→∞ μ(Sek2
(B1,1))=0. Thus

condition (3) of (EFT) holds.
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Figure 7. μ-partitions P2,1 and P2,2.
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Figure 8. μ-partitions P2,3 and P2,4.

For �=2, define P2,2 :=
{
Se3(B1,1), Se3(B1,2)

}
(see Figure 7). Note that

Se3(B1,1), Se3(B1,2) are measure disjoint, and Se3(B1,i)⊆B1,2 for i=1, 2. Hence
P2,2 is a refining μ-partition of B1,2. It follows from Lemma 6.3(a) that P1

2,2=P2,2
and P2

2,2=∅. Thus condition (1) of (EFT) holds for �=2. For k>2, define Pk,2 :=
P2,2. It follows that conditions (2) and (3) of (EFT) hold for �=2.

For �=3, define P2,3 :=
{
Se5(B1,1), Se5(B1,2)

}
(see Figure 8). Note that

Se5(B1,1), Se5(B1,2) are measure disjoint, and Se5(B1,i)⊆B1,3 for i=1, 2. Hence
P2,3 is a refining μ-partition of B1,3. It follows from Lemma 6.3(c) that P1

2,3=P2,3
and P2

2,3=∅. Thus condition (1) of (EFT) holds for �=3. For k>2, define Pk,3 :=
P2,3. It follows that conditions (2) and (3) of (EFT) hold for �=3.

For �=4, define P2,4 :=
{
Se4(B1,3), Se4(B1,4)

}
(see Figure 8). Note that

Se4(B1,3), Se4(B1,4) are measure disjoint, and Se4(B1,i)⊆B1,4 for i=3, 4. Hence
P2,4 is a refining μ-partition of B1,4. It follows from Lemma 6.3(b) that P1

2,4=P2,4
and P2

2,4=∅. Thus condition (1) of (EFT) holds for �=4. For k>2, define Pk,4 :=
P2,4. It follows that conditions (2) and (3) of (EFT) hold for �=4. �

6.2. Spectral dimension of μ in Proposition 6.1

In this subsection, we derive vector-valued renewal equations and compute the
spectral dimension of the measure μ defined by the GIFS in Proposition 6.1. We
also show that the GIFS has a unique basic class.

Let {Sei}5
i=1 be a GIFS in (1.15), (pe)e∈E be a probability matrix, and μ be

the associated graph-directed self-similar measure. For �∈Γ:={1, 2, 3, 4} and k≥1,
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let B1,� be defined as in (6.2), and Pk,� be as in the proof of Proposition 6.1.
Then μ satisfies (EFT) with {Ω1,Ω2}={(0, 1), (0, 1)} being an EFT-family, and
(B,P):=({B1,�}, {Pk,�}k≥1)�∈Γ being a regular basic pair.

In the rest of this subsection, we use the notation in Section 4.1. For �∈Γ,
i=1, 2 and k≥2, let Pi

k,� be defined as in (2.6). For i=1, 2, let Γi and Bi be
defined as in (4.1). Since B1,�⊆Ω1 and B1,�′⊆Ω2 for �=1, 2, �′=3, 4, we have
Γ1={1, 2}, Γ2={3, 4}, B1={B1,1, B1,2} and B2={B1,3, B1,4}. For k≥2, let Bk,1,1=
Sek−2

2 e1
(B1,1), Bk,1,2=Sek−1

2
(B1,1), Bk,1,3=Sek−1

2
(B1,2), and let

B2,2,p =Se3(B1,p), B2,3,p =Se5(B1,p), for p=1, 2,
B2,4,1 =Se4(B1,3), B2,4,2 =Se4(B1,4).

Then

P1
k,1 = {Bk,1,1, Bk,1,3}, P2

k,1 = {Bk,1,2}, for k≥ 2
P1

2,� = {B2,�,1, B2,�,2}, P2
2,� =∅, for �=2, 3, 4.

Hence Γ′
1={2}, Γ∗

1={1}, Γ′
2={3, 4}, Γ∗

2=∅, ˇ2=ˇ3=ˇ4=2, ˇ1=∞, and

G1
k,1 = {1, 3}, G2

k,1 = {2}, for k≥ 2,
G1

2,� = {1, 2}, G2
2,� =∅ for �=2, 3, 4.

For �∈Γ, let J� be defined as in (4.3). Then J1=J2=J3={1} and J4={2}.

Proposition 6.4. Let ξ(·, ·, ·) and c(·, ·, ·) be defined as in Proposition 4.2.

Then

(a) for k≥2, ξ(k, 1, 1)=w(k−2)ρrk−2, c(k, 1, 1)=1, ξ(k, 1, 3)=(pe2r)k−1, and

c(k, 1, 3)=2;
(b) for p=1, 2,

ξ(2, 2, p)= pe3r, ξ(2, 3, p)= pe5ρ, ξ(2, 4, p)= pe4r,

c(2, 2, p)= p, c(2, 3, p)= p, c(2, 4, p)= p+2.

Proof. Using Lemma 6.3(a)–(f), we have for k≥2,

B1,1 �μ,S
e
k−2
2 e1

,w(k−2) Bk,1,1, B1,2 �μ,S
e
k−1
2

,pk−1
e2

Bk,1,3,

and for p=1, 2,

B1,p �μ,Se3 ,pe3
B2,2,p, B1,p �μ,Se5 ,pe5

B2,3,p, B1,p+2 �μ,Se4 ,pe4
B2,4,p.

The results follow. �
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It is obvious that G has two strongly connected components, i.e., η=2. For
m=1, 2, let SCm be defined as in (1.6). Then SC1={1} and SC2={2}.

Using Proposition 6.4 and the discussions preceding it, we can express the
vector-valued renewal equations (4.16) and (4.20) precisely as

f1(t) =
∞∑
k=0

(w(k)ρrk)α1f1(t+ln(w(k)ρrk))+
∞∑
k=1

(pe2r)kα1f2(t+ln(pe2r)k)+z
(α1)
1 (t),

f2(t) = (pe3r)α1

2∑
�=1

f�(t+ln(pe3r))+z
(α1)
2 (t),

f3(t) = (pe5ρ)α2

2∑
�=1

f�(t+ln(pe5ρ))+z
(α2)
3 (t),

f4(t) = (pe4r)α2

4∑
�=3

f�(t+ln(pe4r))+z
(α2)
4 (t),

where

z
(α1)
1 (t)= e−α1tN(λ,−Δμ1|Bnt,1,2

)+e−α1tε(nt, 1),

z
(α1)
2 (t)= e−α1tε(2, 2), z

(α2)
� (t)= e−α2tε(2, �) for �=3, 4.

For �′, �∈Γ and m=1, 2, let μ(αm)
��′ be the discrete measure defined as in (4.21),

and α=(α1, α2). Then

μ
(α1)
11 (− ln(w(k)ρrk))= (w(k)ρrk)α1 , for k≥ 0,

μ
(α1)
12 (− ln(pe2r)k)= (pe2r)kα1 , for k≥ 1,

μ
(α1)
21 (− ln(pe3r))=μ

(α1)
22 (− ln(pe3r))= (pe3r)α1 ,

μ
(α2)
31 (− ln(pe5ρ))=μ

(α2)
32 (− ln(pe5ρ))= (pe5ρ)α2 ,

μ
(α2)
43 (− ln(pe4r))=μ

(α2)
44 (− ln(pe4r))= (pe4r)α2 .

(6.7)

Also,

M(α;∞)=

⎛
⎜⎜⎝
∑∞

k=0(w(k)ρrk)α1 (pe2r)α1/(1−(pe2r)α1) 0 0
(pe3r)α1 (pe3r)α1 0 0
(pe5ρ)α2 (pe5ρ)α2 0 0

0 0 (pe4r)α2 (pe4r)α2

⎞
⎟⎟⎠ .

Remark 6.5. The GIFS in Proposition 6.1 has a unique basic class, namely,
{1, 2}, which thus has height 1 by definition. Moreover, {1, 2}=S0, where we recall
that S0 is the union of basic classes of height 1.
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Proposition 6.6. For �=1, 2, 3, 4 and m=1, 2, let F�(αm) and α̃� be defined

as in (1.10). Then limαm→∞ F�(αm)=0 and α̃�=0 for �=1, 2, 3, 4 and m=1, 2.
Moreover, limα1→0+ F1(α1)=∞, and F�(0)>1 for �=2, 3, 4.

Proof. By the definition of F�(αm), we see that

F1(α1)=
∞∑
k=0

(w(k)ρrk)α1 +(pe2r)α1/(1−(pe2r)α1), F2(α1)= 2(pe3r)α1 ,

F3(α2)= 2(pe5ρ)α2 , F4(α2)= 2(pe4r)α2 .

It follows from (6.4) that F1(α1) is a strictly decreasing positive continuous function
of α1, and limα1→∞ F1(α1)=0. It is obvious that limαm→∞ F�(αm)=0 for �=2, 3, 4
and m=1, 2. For any α1>0, since

∑∞
k=0(w(k)ρrk)α1 converges, we get F1(α1)<∞.

It follows from (1.10) that α̃1=0 and limα1→0+ F1(α1)=∞. It is obvious that α̃�=0
and F�(0)=2 for �=2, 3, 4. �

Let |I4−M(α;∞)|=0, where I4 is the 4×4 identity matrix. Then

[
1−(pe4r)α2

][
1−

3∑
i=2

(peir)α1−
( 3∏

i=2

(
1−(peir)α1

)) ∞∑
k=0

(w(k)ρrk)α1
]
=0.

It follows from Proposition 6.6 that there exists a unique set of non-negative real
numbers α1, α2 such that both factors in the above equation equal zero; in particu-
lar, the spectral radius of M(α;∞) is 1, where α=(α1, α2). Note that α2=0. For
the rest of this subsection, we let α:=max{α1, α2}=α1.

Finally, we show that there exists some σ>0 such that z
(α)
� (t)=o(e−σt) as

t→∞ for �=1, 2, 3, 4. We will first show that N
(
λ,−Δμ1|Bnt,1,2

)
is bounded. The

proof is the same as that of [19, Proposition 5.3].

Proposition 6.7. There exists C>0 such that N
(
λ,−Δμ1|Bnt,1,2

)
≤C.

Proof. Let A⊆Bnt,1,2=S
e
nt−1
2

(B1,1). Then S−1
e
nt−2
2

(A)⊆Se2(B1,1)=Se2e1(Ω1)∪
Se2e2(Ω1)=Se1e3(Ω1)∪Se2e2(Ω1). Thus

μ1|S−1

e
nt−2
2

(A) = pe1μ1|B1,2 ¨S
−1
e1

(
S−1
e
nt−2
2

(A)
)
+pe2μ1|B1,1 ¨S

−1
e2

(
S−1
e
nt−2
2

(A)
)

= pe1μ1|B1,2 ¨S
−1
e
nt−2
2 e1

(A)+pe2μ1|B1,1 ¨S
−1
e
nt−1
2

(A).
(6.8)
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Multiplying both sides of (6.8) by w(nt−2)p−1
e1 , using (1.16) and Lemma 6.3(e), we

have

w(nt−2)p−1
e1 μ1(S−1

e
nt−2
2

(A))

= w(nt−2)μ1|B1,2 ¨S
−1
e
nt−2
2 e1

(A)+w(nt−2)pe2p−1
e1 μ1|B1,1 ¨S

−1
e
nt−1
2

(A)

≥ w(nt−2)μ1|B1,2 ¨S
−1
e
nt−2
2 e1

(A)+pnt−1
e2 μ1|B1,1 ¨S

−1
e
nt−1
2

(A)

= μ1(A).

Thus μ1|Snt−1
e2

(B1,1)≤w(nt−2)p−1
e1 μ1¨S

−1
e
nt−2
2

on S
e
nt−1
2

(B1,1). Combining this with
Proposition 3.4, we have

(6.9) N
(
et,−Δμ1|S

e
nt−1
2

(B1,1)

)
≤N

(
w(nt−2)p−1

e1 rnt−2et,−Δμ1|Se2 (B1,1)

)
.

It follows from (4.19) that t+ln(w(nt−1)ρrnt−1)<t0. Hence we have

w(nt−2)ρrnt−1et ≤w(nt−1)ρrnt−1et <et0 ,

and thus w(nt−2)p−1
e1 rnt−2et≤(ρrpe1)−1et0 . Combining this with (6.9), we get

N
(
et,−Δμ1|S

e
nt−1
2

(B1,1)

)
≤N

(
(ρrpe1)−1et0 ,−Δμ1|Se2 (B1,1)

)
:=C.

This completes the proof. �

Proposition 6.8. There exists some σ>0 such that z
(α)
� (t)=o(e−σt) as t→∞

for �=1, 2, 3, 4.

Proof. It follows from Proposition 6.7 that there exists some constant C>0
such that z(α)

1 (t)≤(C+4nt−4)e−αt. Moreover, since z
(α)
� (t)≤2e−αt for �=2, 3, 4, it

suffices to show that for any 0<σ<α, nte
−αt=o(e−σt) as t→∞. It follows from

(4.19) that t+ln(pe2r)nt<t0, and hence nt≤(ln(pe2r))−1(t0−t). Consequently for
any 0<σ<α,

nte
−αt/e−σt ≤

(
ln(pe2r)

)−1 ·(t0−t)/e(α−σ)t −→ 0 as t−→∞.

This completes the proof. �

Proof of Corollary 1.8. Apply Propositions 6.6 and 6.8, and Theorem 1.6. �

Proof of Remark 1.9. (a) follows by a direct calculation.
(b) It is obvious that G=(V,E) defined as in (1.15) satisfies the generalized

finite type condition with {Ω1,Ω2}={(0, 1), (0, 1)} being a generalized finite type
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condition family for G. Moreover, the weighted incidence matrix is

Ax :=

⎛
⎜⎜⎝

rx 0 ρx rx

ρx rx 0 0
0 0 ρx rx

rx 0 ρx rx

⎞
⎟⎟⎠ .

Using [20, Theorem 1.1], we get df =0.797012.... Hence 2df/(1+df )=0.887041...,
and thus ds<2df/(1+df ).

(c) It follows from [12, Lemma 2.3] that 〈supp(ν1)〉 equals the closed group
generated by supp(μ(α)

11 ) and the closure of supp(μ(α)
12 )+supp(μ(α)

21 ), while 〈supp(ν2)〉
equals the closed group generated by supp(μ(α)

22 ) and the closure of supp(μ(α)
21 )+

supp(μ(α)
12 ). Using (6.7) with α1=α, we have

supp(μ(α)
11 )= {− ln(w(k)ρrk) : k≥ 0},

supp(μ(α)
12 )= {− ln(pe2r)k : k≥ 1},

supp(μ(α)
21 )= supp(μ(α)

22 )= {− ln(pe3r)}.

Hence

supp(μ(α)
11 )= {− ln(w(k)ρrk) : k≥ 0}=

{
ln(9/(k+1)·(21/2)k) : k≥ 0

}
,

supp(μ(α)
12 )+supp(μ(α)

21 )= {− ln(pek2e3r
k+1) : k≥ 1}= {ln((21/2)k+1) : k≥ 1},

supp(μ(α)
22 )= {− ln(pe3r)}= {ln(21/2)}.

It is easy to see that 〈supp(ν2)〉 can be generated by ln(21/2), and so ν2 is
lattice. Combining this with Theorem 1.6(c), we see that there exists a periodic
function q2(t) such that

lim
t→∞

(
e−αtN(et,−Δμ1|B1,2

)−q2(t)
)
=0.

Taking a:=ln(189/2)∈supp(μ(α)
11 ) and b:=ln((212)/4)∈supp(μ(α)

12 )+supp(μ(α)
21 ),

we have a/b /∈Q. This leads to that 〈supp(ν1)〉=R, and so ν2 is non-lattice. Thus
Theorem 1.6(c) implies that there exists a non-negative constant q1 such that
limt→∞ e−αtN(et,−Δμ1|B1,1

)=q1. �

6.3. A GIFS that is not strongly connected and has basic classes of height
greater than 1

The GIFS in Example 1.10 is not strongly connected and has overlaps. It
differs from the one in Example 1.7 in that some of its basic classes have height
greater than 1.
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0 1Ω1

Se1(Ω1)
Se2(Ω1)

Se3(Ω1)

0 1Ω2

Se4 (Ω1)
Se5(Ω2) Se6 (Ω2)

0 1Ω3

Se7(Ω3)
Se8(Ω3)

Se9(Ω3)

0 1Ω4

Se10 (Ω3)
Se11 (Ω4) Se12 (Ω4)

0 1Ω5

Se13 (Ω3)
Se14(Ω5) Se15 (Ω5)

0 1Ω6

Se16 (Ω1)
Se17 (Ω6)

Figure 9. First iteration of the GIFS defined in (1.18), where Ωi=(0, 1) for i=1, ..., 6. The figure
is drawn with ρ=1/3 and r=2/7.

Proposition 6.9. Let μ=
∑6

i=1 μi be a graph-directed self-similar measure

defined by a GIFS G=(V,E) in Example 1.10 together with a probability matrix

(pe)e∈E . Then μ satisfies (EFT) with

Ω = {Ω1,Ω2,Ω3,Ω4,Ω5,Ω6}= {(0, 1), (0, 1), (0, 1), (0, 1), (0, 1), (0, 1)}
being an EFT-family and there exists a regular basic pair. Moreover, the GIFS has

one basic class of height 2, and one of height 3 (see Figure 9).

Proof. As in Proposition 6.1, all the corresponding graph-directed self-similar
measures μ satisfy (EFT); the proof is similar.

Let Γ:={1, 2, ..., 12}. There are five basic classes:

{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}.
Moreover, 1, 2∈S1, 5, 6∈S2 and 3, 4, 7, 8, 9, 10, 11, 12 /∈S, where Sm is the union of
basic classes of height m+1 for m≥0 and S=

⋃
m≥0 Sm. �

Proof of Corollary 1.11 and Remark 1.12. The computations of the spectral
dimension of μ and the Hausdorff dimension of the associated graph self-similar
set are similar to those in Proposition 6.1; we omit the details. �

A. Vector-valued renewal theorem
For convenience, we state the multidimensional renewal theorem by Hambly

and Nyberg [6], which is an extension of the results of Lau et al. [12]. This theorem
is used in the proofs of Theorems 1.1 and 1.6.
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We introduce some terminology and refer the reader to [6] for any unexplained
terms. Let M=[mij ]n×n be a matrix of Radon measures on R+. We write F
for the matrix of distribution functions of M, that is Fij(t)=

∫ t

0 mij ds and write
Fij(t, t+h]=Fij(t+h)−Fij(t). The indices of the matrix will be referred to as states.
There is a directed edge between states i and j if the measure mij is non-zero.

We follow [6] and define the measure

νi =mii+mîi∗
∞∑
k=0

(Mii)∗k∗mîi, i=1, ..., n.

Theorem A.1. (Hambly and Nyberg [6]) Assume that F(t) is a matrix of

measures in which F(∞) has maximum eigenvalue 1, with Fij(0−)=0,
∫∞
0 t dFij(t)<

∞ for all i, j and for each j there is at least one i such that Fij(0)<Fij(∞). Let z
be a vector with components that are directly Riemann integrable functions on R+
with zi �=0 for all i∈S0. If f is continuous and satisfies the renewal equation

f(t)= f ∗F(t)+z(t),

then f=z∗
∑∞

k=0 F∗k and the components fi satisfy

(1) if i∈S0, then

lim
t→∞

(
fi(t)−qi(t)

)
=0,

where qi is either periodic or constant depending on whether νi is lattice or not;

(2) if i∈Sm for m>0, then

lim
t→∞

t−mfi(t)= ci for some constant ci ≥ 0;

(3) if i /∈S=
⋃

m≥0 Sm and there is no path from S to i, then

lim
t→∞

fi(t)= 0;

(4) if i /∈S and there is a path from S0 to i, but no path from S� for any �>0,
then

lim
t→∞

(
fi(t)−q̃i(t)

)
=0;

for some q̃i which is either constant or periodic;

(5) if i /∈S and there is a path from Sm to i, but no path from S� for any

�>m>0, then

lim
t→∞

t−mfi(t)= c̃i for some constant c̃i ≥ 0.

If i∈Ck, an equivalence class in Sm, then if zj �=0 for at least one j∈Ck, we have

ci, c̃i>0.
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Corollary A.2. (Hambly and Nyberg [6])Let t∗>0, let r(t) be a vector whose

components are measurable functions on R with ri(t)=0, for all i and t<t∗, and

let z(t) be a non-negative directly Riemann integrable function with zi(t)=0, for all

i and t<t∗. Assume that r satisfies the renewal equation

r(t)= z(t)+(r∗F)(t), t∈R.

Then the conclusions of Theorem A.1 hold.
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