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Spectral asymptotics of Laplacians related to
one-dimensional graph-directed self-similar
measures with overlaps

Sze-Man Ngai and Yuanyuan Xie

Abstract. For the class of graph-directed self-similar measures on R, which could have
overlaps but are essentially of finite type, we set up a framework for deriving a closed formula
for the spectral dimension of the Laplacians defined by these measures. For the class of finitely
ramified graph-directed self-similar sets, the spectral dimension of the associated Laplace operators
has been obtained by Hambly and Nyberg [6]. The main novelty of our results is that the graph-
directed self-similar measures we consider do not need to satisfy the graph open set condition.

1. Introduction

Let UCR® be a bounded domain with smooth boundary, A be the Dirichlet
Laplacian on U, {\,} be the eigenvalues of —A, and N(\, —A) be the number of
eigenvalues that do not exceed A\. Weyl [24] proved the following asymptotic formula
for the Dirichlet Laplacian:

1
/2 /2y _ /2 /2
[UIAY2 4 o(AY/?) AT [UA240(XY2),

Ba
(2m)d

(1.1) N\, —A)=

The authors are supported in part by the National Natural Science Foundation of China,
grant 11771136, and Construct Program of the Key Discipline in Hunan Province. The first author
is also supported in part by the Hunan Province Hundred Talents Program and a Faculty Research
Scholarly Pursuit Funding from Georgia Southern University.

Yuanyuan Xie is corresponding author.

Key words and phrases: fractal, spectral dimension, graph-directed self-similar measure, es-
sentially of finite type.
2010 Mathematics Subject Classification: primary 28 A80, 35P20; secondary 35J05.



394 Sze-Man Ngai and Yuanyuan Xie

where |U| denotes the d-dimensional volume of U and By is the volume of the unit
ball in R%. We point out that in our paper [19, Equation (1.1)], the factor (2m)¢ is
incorrectly typed as (4m)%/2.

In this paper, we show that either the limit limy_, oo (1]:()3,77@”32
negative constant or (IIZE\’;T&% is asymptotically a nonzero periodic function of

In A\, depending on v, where m>0, —A,, is a Dirichlet Laplacian on a domain (see

equals a non-

definition below), and d is the spectral dimension. There has been considerable in-
terest in studying the spectral dimension on various fractals or domains supporting
a measure. McKean and Ray [15] computed the spectral dimension of the Laplacian
defined by the Cantor measure. Fujita [4], Naimark and Solomyak [16] studied the
spectral dimension of the Laplace operators defined by self-similar measures sat-
isfying the open set condition (OSC) (see [8]). Kigami and Lapidus [11] obtained
the spectral dimension of Laplacians on post-critically finite (p.c.f.) self-similar sets
with a harmonic structure. Croydon and Hambly [2] and [5] studied the spectral
dimension on the continuum random tree and random recursive affine nested frac-
tals. For finitely ramified graph-directed self-similar sets, Hambly and Nyberg [6]
studied the spectral dimension of the associated Laplace operators. Freiberg [3]
investigated spectral asymptotics of generalized measure geometric Laplacians on
Cantor like sets. Kajino [9] and [10] studied asymptotics of the partition functions
associated with self-similar sets. Alonso-Ruiz and Freiberg [1] obtained the spectral
dimension of Laplacians on Hanoi attractors.

We also study the relationship between dy and dy, where dy is the Hausdorff
dimension of the support of v with respect to the Euclidean metric. For d=1,
Solomyak and Verbitsky [21] proved that

(1.2) ds <2dy/(1+dy),

and moreover, equality holds if and only if p;= pff , where p; and p; are the prob-
ability weights and the contraction ratios of the iterated function system (IFS),
respectively.

We say that an IFS or a graph-directed iterated function system (GIFS), as
well as any associated self-similar measure or graph-directed self-similar measure,
has overlaps, if (OSC) or the graph open set condition (GOSC) (see Section 2.1)
fails. In this case, it is much harder to compute the spectral dimension. For a
class of IFSs on R with overlaps and satisfying second-order identities (see [22]),
the first author [17] computed the spectral dimension of the Laplacians defined
by the corresponding measures. Tang and the authors [19] defined measures that
are essentially of finite type (EFT), a property describing the finiteness of basic
measure types, and computed the spectral dimension of the Laplacian defined by
a self-similar measure satisfying (EFT). The first author and Tang [18] computed
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the spectral dimension of the Laplacians defined by a special class of graph-directed
self-similar measures with overlaps. This paper studies the eigenvalue asymptotics
of the Dirichlet Laplacians defined by graph-directed self-similar measures with
overlaps in much greater generality.

Let QCR? be a bounded open set, and u be a positive finite Borel measure
on R? with supp(u) € and p(2)>0. We assume that the Poincaré inequality (PI)
for p holds: There exists a constant C'>0 such that

(1.3) /\u|2dp§C’/|Vu|2dx, for all ue C°(0)
Q Q

(see, e.g., [7], [14] and [16]). (PI) implies that each equivalence class ue H}(Q)
contains a unique (in the L?(2, ) sense) member u that belongs to L?(€, 1) and
satisfies both conditions below:

(1) there exists a sequence {u,} in C°(Q) such that u,—u in H}(Q) and
Up—u in L2(, p);

(2) @ satisfies (1.3).

We call w the L2(,u)-representative of u. Define a mapping ¢:H}(Q)—
L?(Q,u) by «(u)=u. It is easy to see that ¢ is a bounded linear operator, but
not necessarily injective. Consider the subspace N of H}(Q) defined as

Ni= {u € HY(Q) : [[e(u) | L2 :0}.

It follows from the continuity of ¢ that N is a closed subspace of H}(£2). Let Nt
be the orthogonal complement of A" in HE (). Then t:N+— L2(Q, i) is injective.
With a slight abuse of notation, we will denote @ by wu.

Consider a non-negative bilinear form £(-,-) in L?(Q, i) given by

(1.4) E(u,v) ::/QVu-Vvdm

with domain dom E=AN*. (PI) implies that (£,dom &) is a closed quadratic form
on L?(, ). Hence these exists a non-negative self-adjoint operator on L?(Q, p),
which we denote by —A, and call the (Dirichlet) Laplacian with respect to pu,
such that dom E=dom(—A,)'/2 and & (u, v)=((—A,)Y?u, (—A,)Y?v) 2(q, ) for all
u,ve€domé. Let ucdomé&. Then ucdomA, holds if and only if there exists fe
L%(, p) such that &(u,v)=(f,v)2(q,) for all vEdom&, where —A u=f. We
remark that if d=1, then (PI) holds for any such x, and thus —A,, is well defined.

We assume that L2(Q, u) is infinite dimensional. It is known (see, e.g., [7])
that there exists an orthonormal basis {®,}5°; of L?(Q,u) consisting of the
eigenfunctions of —A,,. The eigenvalues A\, =X, (—A,) satisfy 0<A; <A2<... and
lim,, 00 Ay =00.
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Let N(X,—A,) be the number of eigenvalues of —A,, (counting multiplicity)
which do not exceed A, i.e.,

(1.5) N, —=Ay) =#{n:\, <A},

where #A denotes the cardinality of a set A. Define the lower and upper spectral
dimensions of —A,,, respectively, as

d,(—A) ::Ah—%lo %&A#) and ds(—A,) :Alggo %&A”)
If d,(—A,)=ds(—A,), the common value, denoted ds(—A,) (or simply ds if no
confusion is possible), is called the spectral dimension of —A,; it measures the
asymptotic growth rate of the eigenvalue counting function as well as the magnitude
of the n-th eigenvalue.

(EFT) is introduced in [19]. Let p=>"7_, u; be the graph-directed self-similar
measure defined by a GIFS G=(V,E) on RY, where V={1,...,q} is the set of
vertices and E is the set of directed edges with each edge beginning and ending at
a vertex. We say that u satisfies (EFT) (see Definition 2.1) if there exist a family
of bounded open subsets {Q;}{_, with Q;CRY, supp(u;)CQ;, and pu(Q;)>0, and
a finite family B:={B; ;:(€T} of measure disjoint cells (i.e., subsets of |JI_; Q;
with positive p-measure), By C€;, for some iy€V, such that for any (€T, there
is a family of p-partitions {Py ¢}r>1 of Bi ¢ satisfying the following conditions: (1)
Py ={B1}, and there exists some BEP} , (see (2.6)) such that B#Bj 4, where
P%l is the collection of all sets B in Py, that are u-equivalent to some B; , for
(el (2) for any k>2, Pllc+1,€ contains all cells in P,lM that are p-equivalent to
some cell in B; (3) the sum of the p-measures of those cells BEPy, , that are not
p-equivalent to any cell in B tends to 0 as k—oo. In this case, we call {Q;}!_; an
EFT-family, B a basic family of cells, and (B,P):=({B1¢}, {Pke}r>1)cer a basic
pair. We say that (B, P) is regular if each cell BEUk>1,eer Py ¢ is connected, and
for any ¢€T, there exist some similitude 74, some €2;,, and some constant w(¢)>0
such that 7,(2,) C By and p>w(f)per, ' on 74(Q;,).

Let p=Y_7_, p; be the graph-directed self-similar measure defined by a GIFS
G=(V,E) on R. Assume that G has n=n(G) strongly connected components, and
p satisfies (EFT) with {Q;}!_; being an EFT-family and assume that there exists
a regular basic pair (B, P):=({B1¢},{Pk.e}r>1)eer. For m=1,...,n, let

(1.6) SC,,:={i€V:iis contained in the m-th strongly connected component},
and for 1€SC,,, let

(17) ;.= {EEF:BngQi}.
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Under these assumptions, we can derive renewal equations for the eigenvalue count-
ing functions, and express them in vector form as:

f=fxMg+z,
where
a=(a,..,ay), anp€Rform=1,..,n;
ng OO @her R
Mg, = [u&,m)}/ rer 18 a finite matrix of Borel measures on R;
z=2(t)=]z (O””)(t)]gep is a vector of error functions.
Let
(1.9) M(a:o0) = [y (R)], -

For each ¢€T’; and «,, >0, define

(1.10)  Fy(am):= ZMEZ’”) Dy:={am>0: Fylamy) <o}, dag:=inf Dy.
0 er

If the error functions decay exponentially to 0 as t—o0, then ds(—A,) is given by
the maximum of the unique set of non-negative real numbers a, ..., a;, such that
spectral radii of M(a; 00) and all of the classes (see definition below) are equal to
1, where a=(a1, ..., o).

We denote the convolution of a function a with a measure b by

b*a(x)za*b(m):/o a(x—s)b(ds);

if both a and b are measures, we convolve the distribution function of a with the
measure b. For two matrices A, B of measures, we write the ij-th element of C(x)=
AxB(x) as cij(x) =) air*br;(z).

We call y=({1,...,¢,), where n>2 and ¢; €T for j=1,...,n, a path (or vy-path)
from ¢; to £,. Such a ~y is called a cycle if /1=/,,, and a simple cycle if it is a cycle
and all /1, ..., 0,1 are distinct. For any path y=({1,...,£,), let £;€I'; and i€SC,y,,
for ieV, j=1,...,n, and m,;€{1,...,n}. Define

(O‘m ) (Ocm, ) (Oém"7 )
Hy Ml1521 'u’42432 *.“*M’Zn—lenl
For £,¢'el’, let M), be the submatrix of M, obtained by deleting the ¢-th row

and ¢’-th column of M, ,ug‘/) be the £’-th column of the matrix M, with the ¢-th
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element removed, and ,u(oi/) for the ¢-th row of M with the ¢'-th element removed.

J24
Let
(1.11) ve =) + {33 (M) el for LT
n=0

It is known that if M(a; c0) has maximal eigenvalue 1 and is irreducible, then vy is
a probability measure with support given by U{supp(u):v is a simple cycle in G}
(see [12, Lemma 2.3.]). If supp(ry) is contained in a discrete subgroup of R, we call
vy lattice; otherwise we call it non-lattice. By the irreducibility, we see that if v is
non-lattice, then v, is non-lattice for all £.

For ¢,0'€T’, we say that ¢ has access to £’ (or ¢’ has access from £) if there is
a path from £ to ¢/. ¢ and ¢ are said to communicate if they have access to each
other. Using the communication relation, we can partition all /€T" into equivalence
classes. The spectral radius of a class is the spectral radius of the matrix obtained
by restricting M(a; 00) to that class. A class is called basic if its spectral radius
is the same as that of M(a;o00). If a class is not basic, then it is called non-basic.
A class J is final if J does not have access to other classes. A chain of classes
is a collection of classes such that each class has access to or from another in the
collection. The length of a chain is the number of basic classes that it contains.
The height of a basic class C' is the length of the longest chain of classes which have
access to C. Let S, denote the union of basic classes of height m+1 for m>0.

Theorem 1.1. Let p=37_, w; be a graph-directed self-similar measure defined
by a strongly connected GIFS G=(V, E) on R. Assume that u satisfies (EFT) with
{Q}L | being an EFT-family and assume that there exists a reqular basic pair. Let
Q=U7_, , A, be the Dirichlet Laplacian defined by p, and let M(cx; 00), Fo(cum,),
Gy and vy be defined as in (1.9), (1.10) and (1.11). Assume that for n=1, i€SC,
and L€T;, we have limy 00 Fo(a)=0 and limOH&j Fi(a)>1.

(a) There exists a unique a>0 such that the spectral radius of M(a; 00) equals
1, where a::= () consists of only one component.

(b) If we assume, in addition, that for the unique « in (a), there exists o>0
such that for all ﬂef,z(ga)(t)zo(e*”t) as t—00, then ds=2a.

(c) Let i€V and LeT; (see (4.1)). If vy is non-lattice, then there exists a non-
negative constant ¢y such that

: —at t .
tli)noloe N(e', =D, ) =cu;

if v1 is lattice, then there exists a periodic function q; such that

lim (e N(e', Ay, ,) —e(t) =0.

t—o0
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0 Q 1 0 Q2 1

Sel (Ql)

Sey (€22) Ses (1) Ses (1) Seq(922)

Figure 1. The first iteration of the GIFS defined in (1.12), where Q; =Q2=(0,1). The figure is
drawn with p=1/3 and r=2/7.

In Section 5, we illustrate Theorem 1.1 by the following example.

Ezample 1.2. Let G=(V,E) be a strongly connected GIFS with V={1,2}
and E={e;:1<i<5}, where e1,e3€ EV! ea€ EV2 es€ E?2 e5€ E*1. The five simil-
itudes are defined by

iy Sal@=em Sep(2) =ra4p(1=1),  Sey(@) =ra+(1—7),
. S€4(z) :T‘T+(17T)a Ses(x):px,

where

(1.13) p+2r—pr<1,

ie., Se,(1)<S.,(0) (see Figure 1).

Corollary 1.3. Let p=p1+us be a graph-directed self-similar measure defined
by a GIFS G=(V, E) in Example 1.2 together with a probability matriz (pe)ecr. If
(Peyes ereges)pgslr<1, then there exists a unique a>0 satisfying

(1.14)
[1_(pe4r>a] {(1—(])@1[))@)(1—(27%7“)&)_ ((pe1es +p6265)p7“)a} = (peze4e5p7“2)a-

Moreover, ds=2a. If vy is non-lattice, then there exists a non-negative constant cy
such that
lim e “*N (e, —AMBM) =cy, forlel;,/=1,3,4,andi=1,2;

t—o0

if v1 is lattice, then there exists a periodic function q; such that

tl;r& (e*"‘tN(et, —AMBM)—qg(t)) =0, forlel;,£=1,3,4,andi=1,2.

Remark 1.4. Let G=(V, E) be defined as in Example 1.2, and let p=1/3, r=
2/7, pe,=1/4, and p.;=1/2 for i=1,2 and j=3,4,5. The following hold:

(a) numerical approximations yield d;=0.818596...;

(b) the Hausdorff dimension of the associated graph self-similar set is d;=
0.710396..., and moreover, d;<2d¢/(1+dy);
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(c) there exists a non-negative constant ¢, such that

lim e”“* N (e, *AmlBu) =¢y, for £€l;,0=1,3,4,and i=1,2.

t—o0

Remark 1.5. We remark that in Theorem 1.1, it is necessary to assume that
lim,,,, 00 Fr(aum)=0 for each £€T". In fact, if we let (pe, e, erez,es)pgslr>1 in Corol-
lary 1.3, then lim,,, oo Fo(am)=00 for some me{l,...,n} and some ¢€';, where
1€8C,,. Hence Theorem 1.1(a) does not hold.

Theorem 1.6. Let p=> 7, p; be a graph-directed self-similar measure on R
defined by a GIFS G=(V, E) that is not strongly connected. Assume that G has n
strongly connected components. For m=1,....n, let 2a,,, be the spectral dimension of
the graph-directed self-similar measure corresponding to the m-th strongly connected
component. Assume that pu satisfies (EFT) with {Q;}L_, being an EFT-family and
assume that a regular basic pair exists. Let Q=|J]_, Q; and A, be the Dirichlet
Laplacian defined by p. Let M(a;00), Fo(au,) and &g be defined as in (1.9) and
(1.10). Assume that form=1,...,n,1€SC,,, and L€T;, we have lim,, , oo Fo(am)=0
and lim,, 5+ Folam)>1.

(a) There exists a unique set of real numbers o, ..., o, such that the spectral
radii of M(ox;00) and all the other classes equal 1, where oc:=(av, ..., o).

(b) If we assume, in addition, that for the unique set {a1, ..., oy} in (a), there
exists 0>0 such that for all éef,zea) (t)=o0(e™) as t—o0, then we have ds=2c,
where a:=max{az, ..., ay, }.

(c) Let i€V and L€T;.

(1) If £€ Sy, then
lim (eiO‘tN(et7 _A“”Bl,z ) —qg(t)) =0,

t—o0
where qg s either periodic or non-negative constant depending on whether vy
1s lattice or not.
(2) If m>0 and L€S,,, then there exists a constant cp>0 such that

: —m —at t _
tll)rgot e N(e,—AMBM)—Cg.

(3) If t¢S=U,,>0 Sm and there is no path from S to £, then
lim e ** N (e, —Apiis,,)=0.

t—o0

(4) If £¢S and there is a path from Sy to £, but no path to £ from Sy for any
k>0, then

lim (e_atN(et7 _A[Li|517[)_qe(t)) = O’

t—o0

for some Gp which is either non-negative constant or periodic.
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(5) If £¢S and there is a path from Sy, to £, but no path from Sy, for any
k>m>0, then there is a constant ¢;>0 such that

. —m _—at t _~
}Eglot e"“N(e ’_A/L”Bl,z)_cz'

In Subsections 6.1-6.2, we illustrate Theorem 1.6 by the following example.

Ezample 1.7. Let G=(V, E) be a GIFS that is not strongly connected with
V={1,2} and E={e;:1<i<5}, where e1,eq,e3€ EV! es€ E*? es€ E*!. The five
similitudes are defined by

Sel(:r,):pm, 562(£E):7’£L'+p(1—7“), 563(33):7”96—1—(1—7“),

(1.15) Se, (@) =rz+(1-r), Ses (x) = p,

where p+2r—pr<1, i.e., Se,(1)<S¢,(0) (see Figure 5). For a probability matrix
(Pe)ecE, we define

k
(1.16) w(k):=pe, Y _pL,pk 7, k>0
=0

Corollary 1.8. Let p=p1+pe be a graph-directed self-similar measure defined
by the GIFS G=(V, E) in Example 1.7 together with a probability matrix (pe)ecE,
and let w(k) be defined as in (1.16). Then there exists a unique set of non-negative
real numbers aq, as such that both factors in the following equation are zero:

(1.17) [1_(pe47~)°‘2] {1—23:(10517“)0‘1—(13[ (1—(peir)al)) ~§:(w(k‘)[’rk)al} =0.

=2 =2 k=0

Moreover, ds=2«, where a:=max{ay, as}.
If (=1,2,
tlirgy (e*‘ltN(et7 _A“1|B1,l)_q[(t)) = O’
where qp is either periodic or non-negative constant depending on whether vy is
lattice or not.
If (=3 or 4, then
lim e"**N(e, —A
t—o0
Remark 1.9. Let G=(V, E) be defined as in Example 1.7. Let p.,=p=1/3 for
i=1,2,3,4, p.,=2/3, and r=2/7. The following hold.
(a) Numerical approximations by taking k& up to 1000 yield a;=0.439314...,
az=0, and hence d,=0.878628....

)=0.

I’Llel‘I{
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(b) The Hausdorff dimension of the associated graph self-similar set is dy=
0.797012..., and moreover, ds<2dy/(1+dy).
(c) If £=1, then there exists a constant g; >0 such that

lim e~ **N (e, —AM|BM )=q1;

t—o0

if /=2, then there exists a periodic function gz such that

lim (67atN(€t7 _AH1|BLZ ) _Q2(t)) =0.

t—o0
In Subsection 6.3, we illustrate Theorem 1.6 by the following example.
Ezample 1.10. Let G=(V, E) be a GIFS that is not strongly connected with
V={1,..,6} and E={e;:1<i<17}, where e1,ea,e3€ B, e5,e6€ E?2, eye E*1,
67768769€E3’37 610€E4737 61176126E4747 613€E5737 6147615€E5757 elGEEG’la and
e17€E5%%, The 17 similitudes are defined by
Se,(x)=px, fori=1,4,7,10,13,16,
(1.18) Se;(x) =rz+p(l—r), forj=2,58 11,14,
Se, () =raz+(1—r), for £k=3,6,9,12,15,17,

where p+2r—pr<1, ie., for j=2,5,8,11,14, S, (1)<S,
probability matrix (pe)ecr and k>0, we define

(0) (see Figure 9). For a

€j+1
k k
wi(k):=pe, Y_pL,pE7, walk)i=pe, Y_plpk,
=0 =0
k k
(1.19) wa(k) :=pe; »_phpk, 7, walk)i=pe,y ¥ 1l 057,
=0 =0

k
ws (k) :=Pe,y Y Pl 0k 7.
3=0

Corollary 1.11. Let ,u:Z?:l w; be the graph-directed self-similar measure
defined by the GIFS G=(V, E) in Ezxample 1.10 together with a probability matriz
(Pe)ecr. Then there exists a unique set of non-negative real numbers a1, ..., ag such
that each factor in the following equation equals 0.

[1—23:@6;)“ ~( I (1= r)™)) -3 wr(Bprt) ] [1—§Sj<p3ir>a2}
=2 =2 k=0 =5

(1.20) - [1—293<pem>a3 —(f[ (1 (ur)™)) -3 (wak)ortye] [1- 5 (perr)™]
1=8 =8 k=0 =11
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(=3 o] [1= ] =o.

i=14
Moreover, ds=2«, where a:=max{a;:i=1,...,6}. If {=1,2, there are constants

c¢>0 such that

lim t~le N (ef, —A

t—o0

;41\3114) =Cy.

If £=5,6, there are constants cg>0 such that

: —2 _—at t _
tl;r(r)lot e *N(e ,—AMB‘BM) =cy.

If (=3,4,7,8,9,10,11, 12, then

lim e “* N (e, _Amlsu) =0 forlel;.

t—o0

Remark 1.12. Let G=(V, E) be defined as in Example 1.10. Let r=2/7 and

Pe; =1/4, pe,=1/2, pe,,=p=1/3, p.,=1/6,

for i=1,2,7,8, j=3,9,10,14, 16,17, m=4,5,6, 11,15, and n=12,13. The following
hold.

(a) Numerical approximations by taking k up to 1000 yield a;3=0.435715...,
0 =0.294784..., a3=0.435715..., a4=0.258401..., a5=0.323599..., os=0. Hence a=
0.435715..., and ds=0.871430....

(b) The Hausdorff dimension of the associated graph self-similar set is dy=
0.797012..., and moreover, ds<2dy/(1+d;y).

The rest of this paper is organized as follows. In Section 2, we give a modified
version of the definition of (EFT). In Section 3, we introduce some properties of the
eigenvalue counting function. In Section 4, we derive renewal equations and prove
Theorems 1.1 and 1.6. Section 5 illustrates Theorem 1.1 by the strongly connected
GIFS defined in Example 1.2; we also prove Corollary 1.3. In Section 6, we study
GIFSs in Examples 1.7 and 1.10, which are not strongly connected. We also prove
Corollaries 1.8 and 1.11.

2. Graph-directed iterated function systems and measures essentially of
finite type

2.1. Graph-directed iterated function systems

A graph-directed iterated function system (GIFS) of contractive similitudes is
an ordered pair G=(V, E) described as follows (see [13]). V is a set of wvertices
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labeled by {1,...,q}. E is a set of directed edges, each beginning and ending at a
vertex. It is possible for an edge to begin and end at the same vertex and we allow
more than one edge between two vertices. To each edge e€ F, there corresponds a
contractive similitude S, (x):R?—R? defined as

Se (.13) = peRex+bey

where p.€(0,1) is the contraction ratio, R, is an orthogonal transformation, and
b.€R?. Let E% denote the set of all edges that begin at vertex i and end at vertex
j. We call e=e;j...e, a path (or an e-path) with length k, if the terminal vertex of
each edge e; (1<i<k—1) equals the initial vertex of the edge e;11. It is well known
that there exists a unique family of nonempty compact sets K, ..., K, satisfying

(2.1) Ki=J U Se(K;), i=1,..q

j=lecEiJ

Define
(2.2) K:=J K.

We call K the graph self-similar set associated with G=(V, E). Assume that for
each edge ec E, there corresponds a transition probability p.>0, and the weights
of all edges leaving a given vertex ¢ sum to 1, namely,

(2.3) S pe=1.
JEV ecEtd

Then for each i€V, there exists a unique Borel probability measures p; such that

q
(2.4) pi=Y D pepjoSc .

j=1 e Biv

We note that supp(u;)=K; for all i€V. Finally, let p:=) ¢  p; and call it a
graph-directed self-similar measure. We say that G=(V, E) satisfies the graph open
set condition (GOSC) (see [23]) if there exists a family {O;}7_; CR? of nonempty
bounded open sets such that for all 4, 5,5 €V,

U S.(0;) CO; and S.(0;)NSe (0j:) =@ for all distinct e € E*/ and €' € EW
ec R

It is obvious that K;CO;, i.e., supp(u;)CO;. A GIFS, as well as any associated
graph-directed self-similar measure, are said to have overlaps if (GOSC) fails. Let
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{€,;}%_, be a family of nonempty bounded open subsets of R%. We say that {Q;}{_,
is invariant under the GIFS G=(V, E) if J,cg:; Se(25) S for i=1,...,q. We say
G is connected if for each pair of vertices i,j€V, there is a (non-directed) path
between them. G is said to be strongly connected if for each pair of vertices ¢, j€V/,
there is a directed path from 7 to j. A strongly connected component of G is a
maximal subgraph H of G such that H is strongly connected. Strongly connected
components are pairwise disjoint and do not necessarily cover G. A single vertex
may be a strongly connected component if it loops to itself. In this paper, we
assume that each graph has at least one strongly connected component.

2.2. The essentially finite type condition for graph-directed self-similar
measures

Let QCR? be a bounded open subset and p be a positive finite Borel measure
with supp(u)CQ and 1(92)>0. We call a y-measurable subset U of Q is a cell (in
Q) if u(U)>0. Clearly, € itself is a cell.

We say that two cells U and U’ are p-equivalent, denoted by U=, ; ., U’ (or
simply U=, U’), if there exist some similitude 7:U—U" and some constant w>0
such that 7(U)=U" and

(2.5) plor =wply o7
It is easy to check that ~~, is an equivalence relation.

Two cells U, U’ in Q are measure disjoint with respect to p if w(UNU')=0. We
call a finite family P of measure disjoint cells a u-partition of Q if UCQ for all
UeP, and pu(Q)=> ycp #(U). A sequence of p-partitions {Py }x>1 is refining if for
any U'e€Py, and any U €Py 1, either UCU’ or they are measure disjoint, i.e., each
member of Py is a subset of some member of Py.

Let B:={Bj ¢}ser be a finite family of measure disjoint cells in 2, and for each
LeT, let {Py¢}i>1 be a family of refining p-partitions of By, with Py ;:={B1 ¢},
where I is a finite index set. We divide each Py ¢, k>2, into two (possibly empty)
subcollections, P}C, , and P%l’ with respect to B, defined as follows:

P, :={B€Py : B, By, for some i€},

(2.6)
Pi,é = ij\P]lv’e = {B S Pk7g :B ¢ Pllc,é}'

Definition 2.1. We say that a graph-directed self-similar measure ,u:Zf:l i
on R? is essentially of finite type (EFT) if there exist a family of bounded open
subsets {Q;}7_, with Q; CR?, supp () CQ; and () >0, and a finite family B:=
{B1,¢}eer of measure disjoint cells, By ,C€;, for some i;=1, ..., ¢, such that for any
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LeT, there is a family of p-partitions {Py¢}r>1 of Bi, satisfying the following
conditions:

(1) Py ¢={Bi}, and there exists some BEP} , such that B# B y;

(2) if for some k>2, there exists some BEP}M, then BEPllc—s-l,é and hence
BeP] , for all m>k;

(3) limp—oo ZBEP%Z u(B)=0.
Here Py , and P} , (k>2) are defined as in (2.6). In this case, we call {Q;}{_, an
EFT-family, B a basic family of cells, and (B,P):=({B1¢}, {Pre}r>1)eer a basic
pPair.

For k>2 and (€T, let Py o={Bys;:,i=1,2,...}. For By, the subscript i
denotes the i-th measure disjoint cell of the p-partition Py 4.

Definition 2.2. Assume that a graph-directed self-similar measure p=
Sod_ u; satisfies (EFT) with {Q;}!, being an EFT-family and (B,P):=
({B1,e};{Pk,e}k>1)eer being a basic pair. We say that (B,P) is regular if each
cell BEUk>1,Z€F Py ¢ is connected, and for any /€T, there exist some similitude 7,
some €2, and some constant w(¢) >0 such that 74(Q;,)C By ¢ and p>w(¢)per, ' on
7¢(€25,). In this case, we call B a regular basic family of cells.

3. Eigenvalue counting function

3.1. Eigenvalue counting function on R ([19, Section 4.1])

In this subsection, we only consider one-dimensional Laplacians. Let (£, dom &)
be defined as in (1.4) with Q=(a,b) and let —A,, be the associated Dirichlet Lapla-
cian on L2((a,b), ). Let P={a;}!%) be a partition of [a, b] satisfying

ap:=a<a; <..<Gpt1=:b.

Define F:=F(P)={ucdom E:u(a;)=0 for all i=0,...,n+1}. Then F is a closed
subspace of dom €. Define a relation ~¢ on dom &, induced by F, by u~gwv if and
only if u—veF. Then ~¢ is an equivalence relation on dom £. Define the quotient
space

dom &/ F :={Ju]s :u€dom &},

where [u]g is the equivalence class of u. Define addition and scalar multiplication
on dom £/F as usual. For each i=1,...,n, let f; be a function in dom £ that satisfies

filaj)=0di;, 4,j=1,...,n,
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where d;; is the Kronecker delta. Such an f; clearly exists. It is easy to prove that
dom&/F = span {[file:i=1,....,n} and dim(dom&/F)=n.

Let fAfl( ” be the Laplacian defined by the Dirichlet form (1.4) with
dom&=F, and let N(A\,—A%  )i=#{n:\, (A7, )<A} be the associated

Bl (a,b) Bl(a,b)
eigenvalue counting function. If F=N"*, where N is defined as in Section 1, then
N(\, —Ail( ,,) reduces to N(X, —A
that '

plan )+ 1t follows from the variational formula

(3.1) N\, —A% )< N\, —A

f
. <N -AL )+ #P-2.

Ml(a,b)) Bl a,b)

If supp(u)=|a, b], then N (A, _Afjl(a,b))zz?:() N, _A#|<a1:=a1:+1>)' Next, we state a

similar formula. A proof can be found in [19, Proposition 4.1].

Proposition 3.1. Let p be a continuous positive finite Borel measure on [a, b]
with supp(p)Cla,b]. Suppose there exists a nonempty subset AC{0,1,...,n} such
that p(a;, a;i11)>0 for any i€ A and p(aj, a;41)=0 for any j¢A. Then

F —
N =T V=S N =B )-
€A

3.2. Unitarily equivalent operators

In this subsection, we state a slightly modified version of [17, Propositions 2.2
and 2.3] below.

Proposition 3.2. ([17, Proposition 2.2]) Let S:R—R be a similitude, with
Lipschitz constant r, such that S(a,b)=(c,d). Let p be a continuous positive finite
Borel measure on [a,b] with supp(u)Cla,b]. Then

(a) —As-1),., and ril-(—Am(a’b)) are unitarily equivalent.

(b) If, in addition, ,u|(c’d):wu05_1 on (¢,d) for some constant w>0, then

—A and (rw)*l-(—Am(a’b)) are unitarily equivalent.

V|(u,d)
Note that unitarily equivalent operators have the same set of eigenvalues.
Proposition 3.3. ([17, Proposition 2.3]) Let u, v be continuous positive finite

Borel measures on [a,b] and assume that there exists some constant w>0 such that
p<wv on [a,b]. Then for any n>1, A\,(=A,)>w N, (=A)).

The following result follows by combining Propositions 3.2 and 3.3. The proof
can be found in [19].
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Proposition 3.4. Let u be a continuous positive finite Borel measure on R
and assume that there exist a similitude S with Lipschitz constant r, and a constant
w>0 such that S([a,b])=[c,d] and p>wp-S~t on [¢,d]. Then N(wr), —A )<

Bl(a,py /) =
N, _Aul(c,d) ).

4. Renewal equation and proofs of Theorems 1.1 and 1.6

4.1. Renewal equation

Let u=Y"7_, p; be a graph-directed self-similar measure defined by G=(V, E)
on R. In the rest of this section, we assume that p satisfies (EFT) with {€Q;}7
being an EFT-family, with (B,P):=({B1 ¢}, {Pk¢}r>1)eer being a regular basic
pair. The regularity of (B, P) implies that each cell BEUk>1,£eI‘ P ¢ is an interval.
This allows us to apply Propositions 3.1-3.4. For i€V, let T'; be defined as in (1.7)
and

(41) Bz: {BLIEEFl}

Then I'={J{_, T; and B=J_, B;. Note that I'; and B; maybe empty. The follow-
ing Proposition has been modified from [19, Proposition 4.5] to suit our purpose.
The proof is similar.

Proposition 4.1. Let p=>Y"7_, u; be a graph-directed self-similar measure de-
fined by a GIFS G=(V, E) on R. Assume that u satisfies (EFT) with {Q;}1_, being
an EFT-family and with B:={By ¢:L€T'} being a regular basic family of cells. Let
Q=UL,Q;, and T';, B; defined as in (4.1). Then for i€V and any (€T, there
exists some constant ¢;>0 such that
(4.2) N =D, ) SN —Ay,) <N (@, —Awsu)-

Proposition 4.1 implies that the asymptotic behavior of N(A, —A,,) is controlled
by that of N(A, —A ) for i€V and ¢€T;.

wilBy 4

Step 1. Derivation of functional equations. For (€T; and k>2, let P}, and
Pi) , be defined as in (2.6) with respect to B, where i€ V. Without loss of genefality,
we may assume that I'; can be partitioned into two (possibly empty) sub-collections,
I, and T'f, defined as follows. An index (€I'; belongs to I'; if there exists some
integer k satisfying P% ,=@. Let 5¢,>2 (depending on £) denote the smallest of such
k. Define T7:=T;\I"} and let s¢:=oc for £€T%. Let I"=J?_, T, and [*={J¢_, T}
Then I'=T"UI*.
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For i€V, fix any £€T;. The definition of (EFT) implies that for any 2<k<s¢,
there exist two finite disjoint G}, ,, G} ;€N such that

k
Pio=J {Bmip:peG,} and P}, ={Br.p:peGi,}.

m=2

Condition (1) of (EFT) implies that G2 2079 If LeT™, condition (3) of (EFT)
implies that limg Zpeci , 1(Bi.e,p)=0.

Proposition 4.2. Assume that p satisfies (EFT). Let £€T;, and
(43) JZ:: {jEVSE(Q])gBLZ fOT@GEi’j}’

where i€V. Let 2<k<sg. If G,1€7€7é®, then for each pGG}CW there exist some
E(k, £,p)>0 and c(k,l,p)el’;, j€Jg, such that

(4.4) N\ —A N(&(k, L,p)A, —A

“"|Bk,z,p) o 13 1By s e, )-

Proof. For any pGG}M, by the definition of P,lw,, there exist some similitude
Se(k,e,py With Lipschitz constant 7 ,), as well as constants w(k,£,p)>0 and
c(k, ¢, p)€L’; such that ;| p, , , =w(k, €, p)1;|B, e ° Se( .py» Where jeJ;. Com-

k¢
bining this with Proposition 3.2(b), we get (4.4) with £(k, £, p):=w(k, £, p)Te(k0,p)-
This completes the proof. O

For all i€V, each £€l';, and 1<n<3, we define a partition P, , of B;, as
follows:

Pre = {x :x is an end-point of some interval in ng},

and let F, ¢:=F(Pne). Note that for any i€V, any £€l';, and 2<n<3¢, we have
#Pp 0 <2#P, . It follows from Proposition 3.1 that for i€V, £€I';, and 2<n <,

N\, — u:l\;” Z > N ~Bpits,,,) + > N =D, , )

k= 2p€G s pEGnZ

Combining this with (3.1) and Proposition 4.2, for any ¢€T",

(4.5) N =D, ) Z > Nk Lp)A, “Biigln, ) TG0,

k=2peG; ,
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where 0<e (s, £) <2#P,, y—2. Similarly, for /€' and n>2, we have

N()\ “1|B1e Z Z k fp/\ A'ulel,c(k,é‘p))
(4.6) F2peChe
+ Z N()\,—AM‘BWYLP)‘FE(TL,E%
PEG] ,

where 0<e(n, £) <2#P,, ,—2.
Step 2. Derivation of the vector-valued equation.

Case 1. (G is strongly connected) In this case, n=1. For each i€V, each ¢€T;,
and a>0, define

(4.7) folt)= {7 (8) = e ™ N(e, = A, ), tER.

Let A=e’. Then e”*'N(BX, —A,, |, ,)=Bfe(t+In B) for any 5>0. Now, multiply
both sides of (4.5) and (4.6) by e~**. Then for /€T, we have

(4.8) Z Z E(k, €, D) fo(rep) (tHINE(K, L p))—i—z(a)( t),

k= 2peG ke

where zéa)(t)::e_ats(%g,ﬁ). For €T and n>2, we obtain

D=3"N" €k £,p) furp (t+IE(R, €,p)) +2{7 (1)

k=2 peG}
(4.9) T
- Z Z §(k7£ap)afc(k,€,p)(t+1n§(k7£ap))v
k=n+1peG] ,
where
(4.10) zéa)(t)::e_o‘t< Z N()‘v_A#i|Bn‘e,p)+E(n’£))'

pEG? ,

Since Al(*Aui\Bl 2)>O for any ¢€V and any ¢€I’;, there exists to€R such that

fe(t)=0 for any t<ty and any £€T;. For teR, i€V and £€T'}, let n;:=n(¢) be the
positive integer such that

(4.11) t-+max {In&(k,¢,p):pe G,lw} <ty forall k>n,.
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Let n=n; in (4.9). Then

(4.12)  fo) =3 S €kl p)® fue (tHIE(R, £,p)) 42 (1) for L€TT],

k=2 peGi’l

where zéa)(t) is obtained from that in (4.10) by replacing n with n;. For i€V, (€T,

let ,ué?,) be the discrete measure such that for 2<k<se, pEG}M, U'=c(k,l,p)el;

and jeJy,

(4.13) 1) (~InE(k, £, p)) =€ (k, £, p)°.
Then (see (1.10))

(1) pPR=Y Y hip)® and Fe)=3 3 3 &kt

k=2pea, , el k=2peGy, ,

Case 2. (G is not strongly connected) If G=(V, E) is not strongly connected,
then there exists some 7, j€V satisfying E*/=@. That is, e, Je=2. Assume
that G has n strongly connected components. For m=1,...,n, let SC,,, be defined
as in (1.6).

For m=1,...,n, each i€SC,, and each ¢€T';, define

(4.15) Folt) = £ () = e N (e, =Dy, )r - 0m >0, tER.

Let A=e’. Then e™*"*N(BX, A, |, )= fe(t+InB) for any 5>0. Now,
multiply both sides of (4.5) by e~*m*. Then for /€I";, we have

@16) S =" 3" (kD)™ fequp (tHIMEC, £,p)) +2477) (1),

k=2peGy ,

where zéa’")(t)::e*a""ta(%g,f). Similarly, for £€I'; and n>2, we obtain

F®) =3 3 &k lp)™ fuiho) (I E (R, £,0)) 2, (1)

k=2peG;
(4.17) ke
= > Dk lp)* fetrgy (I E(R, £, p)),
k=n+1peGy ,
where
(4.18) Zéam)(t) ::eo‘mt( Z N, _ANiBn,z,p)+5(n’€))'

2
pGGnyé
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Since A1 (=45, ,)>0for all i€V and all (€T, there exists to ER such that f,(t)=
0 for any t<to and any £€T';. For teR, i€V and (€T}, let n,:=n.(¢) be the positive
integer such that

(4.19) t+max {In&(k,¢,p):pe Gll@,ﬁ} <ty for all k>n;.

Let n=n; in (4.17). Then for m=1,...,n, 1€SC,, and L€}, we have

(4200 fe) =D 3 €k Op) " foimeg) (I E(R, £,p)) 2 (1),

k=2 peGllc,E

where zéar”)( t) is obtained from that in (4.18) by replacing n with n;. Form=1,...,n,

1€SChy, LTy, let u@am) be the discrete measure such that for 2<k<s¢, pEG}M,
VU'=c(k,l,p)el’; and j€Jy,

(4.21) phem) (—Iné(k, €, p)) == £(k, £, p)*.
Then (see (1.10))

(4.22) plom (R Zwap“mandme ZZZgMpam

k=2 peGl V€T k=2peGl ,
We summarize the above derivations in the following theorem.

Theorem 4.3. Let p=Y ]_, p; be a graph-directed self-similar measure on R.
Assume that p satisfies (EFT) with {Q;}_, being an EFT-family and assume that
there exists a regular basic pair. Let Q=|J{_, Q; and A,, be defined on ). Let £, Mg,
and z be defined as in (1.8). Then f satisfies the vector-valued renewal equation
f=f+xM,+z.

4.2. Proofs of Theorems 1.1 and 1.6

We first prove a result relating strong connectedness of a graph and irreducibil-
ity of the corresponding matrix.

Proposition 4.4. Let u:Z?zl w; be a graph-self-similar measure defined by
a GIFS G=(V,E) on R. Assume that u satisfies (EFT) with {Q;}!_, being an
EFT-family and assume that there exists a regular basic pair (B,P):=({B1g,
{Pre}r>1})eer. Let Q=L Q;, A, be the Dirichlet Laplacian defined by p, and
let M(a;00) be defined as in (1.9). Then M(a;00) is irreducible if and only if G
18 strongly connected.
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Proof. Assume that G has n strongly connected components, and M(a; 00) is
irreducible. Then for any ¢, ¢' €T, there exists a path y=(¢1,...,£,) from ¢; to £,
satisfying 1=/ and ¢,,=/' such that

(otmy) (am, )
‘Um/:/,[/é?ezl *'"*Menflenl #0’

where £;€T;;, i;€SCp,; and m;e{1,...,n} for j=1,...,n. It means that

(a'm ;

ugjgjﬁ #0 forj=1,...,n—1.

Thus there exists at least one B; EP}C’@],7 k>2, such that Bj is u-equivalent to By ;.
By the definition of u-equivalence, we see that there exists e; € E%t+1 such that
Se,(Bi,,,,)=Bj, where By, C€Q; , and B;CQ; . Hence e=ej...en_1€E™ ™,
i.e., there exists a directed e-path from i; to i,, where £€T;, and ¢'€T; . Hence,
for any ~-path, there exists a corresponding directed e-path.

Let i,5€V.

(1) If I';#@ and I';#@, then for any ¢€I'; and any ¢ €I';, there exists a cor-
responding directed e-path from 7 to j. Hence G is strongly connected.

(2) T;=2 and I'; #9, then there exists some ¢, €I such that By 4, is p-equiva-
lent to ;. Assume that ¢;€I’;, for ¢;€V. Then we have By, C;,. By the
definition of p-equivalence, there exists some e; € B such that Se, (;)=DBi 4.
Since I';, #@ and I'; #0, there exists a corresponding directed e-path from ¢; to j.
Thus there exists a e-path from ¢ to j, and hence G is strongly connected.

(3) If I'y=@ and I';=0, then Q; and Q; are p-equivalent, and so there exists
a directed e-path from ¢ to j. Hence G is strongly connected.

Conversely, assume that G is strongly connected. Let £€T'; and ¢/ €T;.

(1) If there exists some ec B satisfying S () CB1,,C€Q;, then by the def-
inition of (EFT), there exists some B EP}C’@, k>2, such that By#B; . It follows
from (2.6) that Bj is p-equivalent to some Bj g for £'€l';. Hence, there exists a
path vy=(¢, ') satisfying ¢€T'; and ¢'€T;.

(2) If there exists some ec B satisfying S.(Q:)C€;, but Sc(;)NB1 =2,
then the strong connectedness of G implies that there exists some e; € E»* such
that Se, (€24,)CB1,¢CQ;. By the definition of (EFT), there exists some B GP}M,
k>2, such that B1#Bj . Using (2.6), we see that By is u-equivalent to some B 4,
for ¢1€T';,. Hence there exists a path y=(¢,¢;) from ¢ to ¢;. If there exists some
e2€E™J such that S, (€Q;)C By, C€;,, then there exists a path y=(¢1,¢). This
is similar to (1). Hence there exists a path y=(¢, ¢1,¢') from ¢ to ¢'. If there exists
some ey € B0 satisfying Se, (Qi) S, , but Se,(Q;)NB1 ¢, =2, then we continue.
Since G is strongly connected, we can obtain some e; € E%~1% satisfying Se; (Q4;)C
Biy, ,CQ such that B;#Bi,,_,. The

S Hence there exists some B;€Py ¢

j—1
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definition of (EFT) implies that there exists some B; that is p-equivalent to some
By, for £;€l';;. Hence there exists a path ~ from ¢ to ¢, 0

Proof of Theorem 1.1. (a) It follows from (4.14) and Proposition 4.2 that Fy(«)
is a positive continuous function of « for each /€I'. Combining this with the facts
that lim,—,o Fr(a)=0 and limoﬁa+ Fy(a)>1, we obtain a unique « such that the
spectral radius of M(a; ) is 1, where ar= () consists of only one component.

(b) Let a be the unique number in part (a). Let m [mu, = tdu;‘)] be
the moment matrix. Following the proof of [17, Theorem 1.1(b)], we need to show
that some moment condition holds, and it suffices to show that 0<}, - m%) <oo.

It is easy to check that for £€I', D, mé?,) takes the following values:

DY D &k lp) | (k. Lp))].

UET k=2 pedl,

It follows from lim, 5+ Fy(a)>1 that there exists €>0 such that 0<Fy(a—¢)<oo
Thus

0<35" S €tk t,p)° ek, )|

€T k=2 peal ,

=SS0 S €l £ p) 0, ) | (€, £,p)] < o0

€T k=2 peal ,

The last inequality follows from the fact lim; .+ ¢ In¢=0. By (4.13), we have

Z NEZ) =0< Z Mw

el el

i.e., each column of M is nondegenerate at 0. From Theorem 4.3, f=f*xM_ +z,
where, by assumption, z is directly Riemann integrable on R.

Proposition 4.4 and the fact that G is strongly connected imply that M(a; 00) is
irreducible. Tt follows from the above observations and [17, Theorem 4.1] that there
exist positive constants C; and Cy such that 0<C; <lim, , Fe()<limy_oo fo(t)<
Cy< oo for all /€. The definition in (4.7) implies that C; <AT*N(A, —AH”BM)S
Cs, which, together with (4.2), yields C1A* <N (A, —A,,) <C2A*. Combining this,
part (a), and the definition of ds, we get ds=2a.

(¢) The assertion follows from Corollary A.2 and Theorem A.1 in the Appendix.
This completes the proof. [
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Proof of Theorem 1.6. (a) Proposition 4.2 and (4.22) imply that for m=1, ..., 7,
i1€SC,, and LeT;, Fy(a,,) is a positive continuous function of a,,. Combining
this with the assumptions that lim,, o Fr(au,)=0 and hmamaaj Filam)>1, we
obtain a unique nonnegative vector a=(a1, ..., ;) such that the spectral radii of
M(a; 00) and all the other classes are equal to 1.

(b) The proof is similar to that of Theorem 1.1(b). Since G is not strongly
connected, it follows from Proposition 4.4 that M(a;o00) is reducible. Let a:=
max{c;:i=1,...,n}. As in the proof of [17, Theorem 1.1(b), Case 2], we have

lim Pt =0 forall£eT;, ie{l,..,q} and all B <.
Moreover, there exists some {o€l’; such that lim, , fZ:)(t)>0. The definition of
fe(t) implies that N (A, —AMBM):O()\B) for £€T; and f<c and lim, ,  A"*N(A,
_A“i‘51,20)>0' Thus N(A\,—A,)=0(\%) for any B<a and lim, , . A"“N(A,
—A,)>0. Hence ds(—A,)<2a and d,(—A,)>2a, which completes the proof.
(¢) The proof is similar to that of Theorem 1.1(c). O

5. Strongly connected GIFSs on R

In this section, we compute the spectral dimension of some graph-directed self-
similar measures defined by a strongly connected GIFS G=(V, E) that has overlaps.

5.1. A strongly connected GIFS

We first show that the graph-directed self-similar measures defined by the
strongly connected GIFS in Example 1.2 satisfy (EFT).

Proposition 5.1. Let p=pui+ps be a graph-directed self-similar measure de-
fined by a GIFS G=(V, E) in Example 1.2 together with a probability matriz (pe)eck-
Then p satisfies (EFT) with {Qq,Q2}={(0,1),(0,1)} being an EFT-family and there
exists a reqular basic pair.

To prove Proposition 5.1, we first summarize some elementary properties.
Throughout this subsection, we let Q1 =05:=(0,1) and {;:=1—7r. Define

Bl’l = Sel (Ql)Usez (92) = (0, 7"+,0C1), Bl,2 = 563 (Ql> = (Ch 1)7
B1,3:=8¢,(21)=(0,p), Bi4:=85¢,(Q2) = (¢1,1).
Using (2.3) and (2.4), we see that

(5.1)

(52) pel +p€2 +p€3 = 17 p€4 +p65 = 1
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and

(5.3) 11 =De, 155, +Pest2 © Sz, +Deyitr 0S5, Ha =Pespz © S, +Pesa 0 Sz
Moreover p=g1+pio.

Lemma 5.2. Let {S,,}>_; be as in (1.12). Then Se,c;=Se,e;-

Lemma 5.3. Assume the hypotheses of Proposition 5.1. Let By ¢, £=1,2,3,4,
be defined as in (5.1). Then

( ) Ml‘SeI(Bl 1) p51M1|Bl,1OSe_11;

b) /L"1|Se1 (B1,2) = (peleg +pe265)p;51'/~L2|B1,3O(Se163‘se751)71;

(
(c) p Se,(B1,4) =Pes 2| By 4 ° 55_217

(d) f0M 1,2, puls,, (Br.) =Pest|By 0 Se, s
(

(

e) fOTE 3, 4 H2|s, Sey (Bi,e) p64/-}'2|B1£ 5641;
f) for £=1,2 and k>0, pa|s_ s (BL) =Peyek H1]By . © 0§71,

€5€3

Proof. (a) It follows from (1.12) and (5.1) that Se, (Q21)=(0, p), Se, (Q2)=(p(1,
r+p¢1) and Se, (B11)=(0, pr+p?¢1). Since p+2r—pr<1, we have pr+p?¢1<p(1,
and hence Se, (B1,1)CSe, (21)\Se, (22). So for any ACS., (By1), i.e., S;'(A)C
Bi1, we get 1 (A)=pe, 1B, °5c, (A).

(b) By Lemma 5.2 we have Se, ¢, (21)=Se,e;(21). Then for any ACS,, (Bi,2),
S:1 (A)=S.1 (A)CQy, and hence

€l1€3 €2€5

(54) Nl(A) = (pelez +p6265)ﬂl|91 ° Se_lig (A)
For any BC By 3, S;.'(B) Sy, 50 piz(B)=pe, 1o, °S;.' (B), and hence

(55) p“1|Q1 :p;,liu2|31‘3oses'
Combining this with (5.4), we have /1/1‘5'61(31,2):(]7@1@3 +p6265)p€_51,u2|31 50851

(c) Using (1.12) and (5.1), we get Se,(B1,4)=((p+7)C1,7+p(1). Since p<(p+
)¢ty Sey(B1,4) S Se, (22)\Se, (1), and hence p|(A)=pe, pi2|p, , 5z, (A) for any
ACS,, (B 4).

(d) and (e) follow from (5.3) and the facts Se,(B1,) CSe,(21), Se,(B1,e)C
Se,(Q2) for £=1,2 and ¢'=3,4.

(f) First, we show that for k>1 and ¢=1, 2,

(5.6) pls By =Pestin| By, oS
63 3

It follows from (d) that (5.6) holds for k=1. Assume that (5.6) holds for k=m, i.e.,
,ul|S€§n,(BLg):pegiﬂl‘BLgOSe_g"lﬂ For k=m+1, note that Seén(BLg)gBLQ for m>1.
Combining this with (d), we have

— _ —1__ -1
M1 |Segn+1 (Bl,g) =M1 |Se3 (Se:’,’n(Bl,Z)) _p€3:u’1 ‘Seén (Bl’g)) oSe3 _peg'L+1/ll‘1 |Bl,g oSegnJrl .
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0 1 0 1
P11=B11 Bi 2 Pi13=B13 Pi4=Bia
T el ] e
Poa P23 P34
e N
e Y ===~ sz

Figure 2. p-partitions Py, 4 of By 4 for the GIFS defined in (1.12). The figure is drawn with p=1/3
and r=2/7.

Figure 3. p-partitions Po 1.

It is obvious that Se, (B1,¢)CSe, (1) for £=1,2. Hence

(5.7) M2‘565(B1,e) :pe5M1|Bl,z 056_51 for £=1,2.

Thus (f) holds for k=0. Note that Sem(By¢)C B2 for m>1. Applying (5.7) fol-
lowed by (5.6), we have for k>1,

— _ -1 _ —1
Hals, i (Bre) = Hals., (st (B0) = Pestials y (Bre) © Se; = Peseta|Bae © S, oy

This completes the proof. O

Proof of Proposition 5.1. Note that {Q,{s} is invariant under G=(V, E). It
is obvious that any two elements of {Bj 1, B3, B14} are measure disjoint. Let
I':={1,3,4} and B:={B; ¢:{€I'}. Define Py :={B;,} for €. If for some k>2
and ¢€T', Py, (see Figure 2) is a well-defined p-partition of By g, then we let P11c,z
and P%e be defined as in (2.6) with respect to B.

For =1, define Py 1:={Se¢, (B1,1), Se, (B1,2), Se,(B1,4)} (see Figure 3). Note
that any two elements of Py ; are measure disjoint. Thus P5 ; is a refining p-parti-
tion of By 1. It follows from Lemma 5.3(a,b,c) that

P}, ={S, (B11),Sc,(B1,2),5,(B14)} and P3, =2.

Hence condition (1) of Definition 2.1 holds for ¢{=1. For k>3, define Py 1=Ps .
Then conditions (2) and (3) of Definition 2.1 hold for ¢=1.

For ¢=3, define Py 3={Sc,(B1,1),Se;(B1,2)} (see Figure 4). It is easy to see
that Se, (B1,1), Se; (B1,2) are measure disjoint, and S, (B1,;)C By 3 for i=1,2. Thus
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P13 P14
- e
Ses5(B1,1)  Ses(B1,2) Sey(B1,3)  Ses(B1,a)
— " o e
1 Ic} S-S T~~~ - -

Figure 4. p-partitions P2 3 and P2 4.

0 951 1 0 Qo 1

Sel (Ql)

S(iz (Ql) SES (Ql) Ses (Ql)

564 (92)

Figure 5. First iteration of the GIFS defined in (1.15), where Q1 =Q2=(0,1). The figure is drawn
with p=1/3 and r=2/7.

Py 3 is a refining p-partition of By 3. By Lemma 5.3(f), we have P} 3={S., (B1,1)}
and P3 3={S.,(Bi,2)}. Hence condition (1) of Definition 2.1 holds for £=3. For k>
3, define Pk’3:P11s—1,3U{Sese’§*2(Blvl)vSese;f*? (Bi12)}, Lemma 5.3(f) implies that
P/i,3:Pi:71,3U{Se5e§72 (B11)} and Pi,?»:{s%e’;” (Bi,2)}. Consequently, condition
(2) of Definition 2.1 holds for /=3. Since the closure of 5’656;;72(31)2) converges to
a point as k—o00, we get limy o0 p1(S, (B12))=0. We conclude that condition
(3) of Definition 2.1 holds.

For (=4, define Py 4:={Se,(Bi13),Sc,(B1.4)} (see Figure 4). Note that
Se,(B1,3), Se,(B1,4) are measure disjoint, and Se,(Bi,;)CB14 for i=3,4. Thus
Py 4 is a refining p-partition of By 4. Lemma 5.3(e) implies that P%,4:P274 and
P3 ,=@. Hence condition (1) of Definition 2.1 holds for ¢=4. For k>2, define
Py 4:=Ps 4. It follows that conditions (2) and (3) of Definition 2.1 hold for {=4.
Hence the first assertion follows. Finally, the regularity of ({B1 ¢}, {Pk¢}x>1)cer is

k—2
5€3

obvious. O

5.2. Spectral dimension of p in Proposition 5.1

In this subsection, we derive the vector-valued renewal equations and compute
the spectral dimension of u defined by the strongly connected GIFS in Proposi-
tion 5.1.

Let {S.,}?_; be a GIFS in (1.12), (p.)eer be a probability matrix, and p be
the associated graph-directed self-similar measure. For £€I':={1,3,4} and k>1,
let By, be defined as in (5.1), and Pg, be as in the proof of Proposition 5.1.
Then p satisfies (EFT) with {Qy,Q2}={(0,1),(0,1)} being an EFT-family, and
(B,P):=({B1,¢},{Pke}k>1)eer being a regular basic pair.
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In the rest of this subsection, we use the notation defined in Section 4.1. For
Lel’, i=1,2 and k>2, let P}'M be defined as in (2.6). For i=1,2, let I'; and B;
be defined as in (4.1). Since By,1C8; and By ¢CQy for £=3,4, we have I'1={1},
F2:{3,4}, Blz{Bl,l} and BQZ{BLg,BlA}. Let

By1,1=25¢,(B11), B2i12=25c(B12), DBa2i3=>5c,(B14),
B3 1=2Se(B11), Baso=0Se(B12), Boa1=3Sc,(B13), Boaz==5ec,(B14).

Then
P%12{32,1,1,32,1,2,32,1,3}7 P§,32{32,3,1}, 24—{3241,3242}
P2 1= P%,:s = {B2,3,2}» P2,4 =

Define Bk7371:{Se5e§_2(B1’1)}’ Bk,3,2={Se5e§—2(Bl,2)}~ Then Pllc,sz{Bk,S,l} and
P} 3={Bk32}. Hence T={1}, Ti=0, T,={4}, T5={3}, s =50=2, s3=00, and

G%,1:{17273}7 G21—®
Grs=1{1}, Grs={2}, for k>2,
G%A:{LQL G24*

For (€T, let Jy be defined as in (4.3). Then J1={1,2}, J3={1}, Ju,={2}.

Lemma 5.4. Let £(-,-,-) and c(+,-,-) be defined as in Proposition 4.2. Then
( ) (2’171):p€1p7 0(2’171):1§

(b) (2 1 2)7(p61€3+p€2€5)pg51'7‘7 6(27172):&

(c) £(2,1,3)=pe,T, c(2,1,3)=4;

(d) for k>2, &(k,3,1)=p Pegeh- 2pr 2 c(k,3,1)=

(e) (241) =Pe,T, ¢(2,4, )

()

Proof. (a)—(f) Lemma 5.3 implies that

§
£(2,4,2)=pe,r, ¢(2,4,2)=

~ ~ _
Bl’l _M7S€17Pel B271’17 Bl’3 _/"159163036517(p6163+1>e,255 )/pes B2’1727
By a~ys., pe, B2,1,3s Bii™us wap w_s B3, for k>2,
egek=2Pey K
Bis~us., pe, B2aay,  Bra=~us., p., B2z

The results follow. O



420 Sze-Man Ngai and Yuanyuan Xie

Using Lemma 5.4 and the discussions preceding it, we can express the vector-
valued renewal equations (4.8) and (4.12) precisely as

fl (t) = (pelp)afl (t+1n(p€1p))+ ((pele3 +p€2€5) ) f3 (t-i—hl ((p€1€3 +Deses )pe_;?‘))
+(Pesr)” falt+In(pe,r)) +217) (1),

F3(0) =" Doy o) fr(t41(pe i pr)) 4257 (1),
kzo

Jalt) =3 (pesr)® folt-+1n(pe, ) +247 (1),
=3

where

A1) i=eme(2,1), AV () i=ee(2,4),
Zéa)(t) —e fat(N()\ AM2|B,,L 32)+5(nt,3)).
For ¢,0' €T, let :“Ee/) be the discrete measure defined as in (4.13). Then

(@)

p11 (= In(pe, p)) = (pe, p)°,
B33 (= 10((Pe, ey +Peaes P2, 1)) = ((Deres +Peses )2 7)
(5.8) 187 (= 1n(pe,7)) = (pesr),
153 (= (P o 1)) = (Do o) for k=0,1, ...
15 (= n(pe, ) = sy (— In(pe, 7)) = (pe, ).
Also,
(pe, p)™ ((Peres +Peses )P )™ (Pest)®
M(ct;00) = | ((Pesp)®)/ (1= (peyr)*) 0 0
0 (pe,7)° (pe,7)°

Proposition 5.5. For {=1,3,4, let Fy(«) and &; be defined as in (1.10). If
(Peves TPeses )Pay T <1, then limg oo Fy(a)=0, and dy=0 for {=1,3,4. Moreover,
Fy(0)>1 for £=1,4, and lim,_,o+ F3(a)=0c.

Proof. By the definition of Fy(«), we see that

Fi(a) = (De, p)* 4+ ((Deres +Peses )P, 7) "+ (Pey ),
Fs(a) = ((Pes p)*) /(1= (Pesm)®)  Fala) =2(pe, )™

The assertions follow immediately, with F;(0)=3 and F4(0)=2. O
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It follows from the Proposition 5.5 that there exists a unique a>0 such that
the spectral radius of M(a;00) is 1, where ae=(a) consists only one component.
That is, « is the unique number satisfying (1.14).

Finally, we show that there exists some o>0 such that Z;) (t)=o0(e7) as
t—oo for £=1,3,4. We will first show that N(\, —A 2) is bounded.

h2lBy, 3,

Proposition 5.6. There exists a constant C>0 such that

N\, —A y<c.

h2lBy,, 52/ =

PTOOf. Let Aanhg’Q:SeE)ent—z(B]_’Q):S
3

Hence

(). Then S:int,l(A)gQL

-1
esegt

(5.9) p(A)=p, -1 pale, OS;i;t—l-

Note that 5555;516;”,1 (A)C By 3 and for any BC By 3, we have 56—51 (B)CO, u2(B)=
Pestit], © S, and hence p1|q, =p;.t pia|B, 5 °Se;. Combining this with (5.9), we get

H1 (A) :pese;‘t’lpe_;MQ‘Bl,a © Ses ° S;)tgrtfl :pegt’lu2|31,3 ° (5656217156—51)—1.
So

Nl‘SCSCg,t—2(Bl,2) :pegt’ltu‘2|31,3 ° (Sesggtflseisl)il on Sesegt72 (BLQ)'

It follows that

N(elt —A ):N el —A “1y_1
’ Mllse5€§t72(31’2) ’ pegt71ﬂlel’so(Sesegt71Ses )

= N((pe3r)"’_let, —-A

;U'2‘Bl,3)'

(4.11) implies that (pe,r)™ te! <(pe,p) teto. Hence

t —1t —
N<e ’_A,UqlS nt2(31.2)) SN((pesp) € Ov_A'quBl‘S) _C
E5€3
This completes the proof. [

Proposition 5.7. Let o be defined as in (1.14). Then there exists some o>0
such that zéa)(t)zo(e*”t) as t—oo for £=1,3,4.

Proof. 1t follows from Proposition 5.6 that there exists some constant C'>0
such that zéa)(t)§(0+4nt—4)e_‘”. Moreover, since zlga)(t)SZe_at for £=1,4,
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it suffices to show that for any 0<o<a, nie”*=o0(e™7") as t—oo. It follows

from (4.11) that t4In (p,_ —1pr™ ') <to, and hence n; <1+4(In(p,r)) " (to—t—
5€3
In(pe,p)). Thus for any 0<o<a,

e Je 7t < (1+(ln(p637°))_1(to—t—ln(p%p)))/e(“_”)t —0 ast—>o0.
This completes the proof. O
Proof of Corollary 1.3. Apply Propositions 5.5 and 5.7, and Theorem 1.1. O

Proof of Remark 1.4. (a) follows by a direct calculation.

(b) It is easy to see that G=(V, E) defined as in (1.12) satisfies the generalized
finite type condition (see [20, Definition 2.1]) with {1, Q2}={(0,1), (0,1)} being
a generalized finite type condition family for G. Moreover, the weighted incidence
matrix is

Let zy be the unique real number such that the spectral radius of A,, is equal to
1. It follows from [20, Theorem 1.1] that the Hausdorfl dimension of the associated
graph self-similar set is dy=x0=0.710396.... Hence 2d;/(14+ds)=0.830680..., and
50 ds<2dy/(1+dy).

(c) It follows from [12, Lemma 2.3] that (supp(v1)) equals the closed subgroup

generated by supp(,ug(f)), the closure of supp(ugg))—{—supp(ugf)), and the closure of

supp(,ug?f))—&—supp(uig))—i—supp(ug?)). By (5.8), we have
supp(i5)) = {~ I(pe, )}, supp(1f)) = {— In(p., 1 pr*) - k > 0},
supp(uf5) = (= 1((Pes ey +pese, )i, 1)} supp (i) = {=n(pe,r)).

supp(psy)) = supp(1$y)) = {In(pe, )}

More precisely,

supp(uis)) = {~ In(pe, )} = {In(12)},
supp(53) +supp(18;)) = {— 10((Pe, ey +Peas Jpes 1) 1 k> 0}
={In(6x7"1): k >0},

)+supp(§3)) +supp(i8s)) = {In(Peyete, ey ™) 1k > 0}

={ln(12x7*?): k> 0}.

supp(u}7’
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Choose

(@)

a:=1In(6x7) € supp(p1s (a)),

) +supp (3
(@) o)

bi=In(12x7%) € supp(u3)) +supp(usy)) +supp(us
Since a/b¢Q, we have (supp(v1))=R and hence v is non-lattice. Combining this
with Theorem 1.1(c), we see that there exists a non-negative constant ¢, such that

lim e~ ** N (e, —AMBM) =c¢y, fortel;,/=1,3,4,and i=1,2,

t—o0

which completes the proof. [

6. GIFSs that are not strongly connected

In this section, we compute the spectral dimension of some graph-directed self-
similar measures defined by the GIFSs G=(V, E) which have overlaps and are not
strongly connected.

6.1. A GIFS that is not strongly connected and has a unique basic class

It is easy to check that the GIFS in Example 1.7 is not strongly connected
and has overlaps. In this subsection, we show that the associated measures satisfy
(EFT). In Subsection 6.2 we show that this GIFS has a unique basic class, and
compute the spectral dimension of the corresponding measures.

Proposition 6.1. Let u=pui+us be a graph-directed self-similar measure de-
fined by a GIFS G=(V, E) in Example 1.7 together with a probability matriz (pe)eck-
Then v satisfies (EFT) with Q={Q1,22}={(0,1),(0,1)} being an EFT-family,
moreover, there erists a reqular basic pair.

To prove Proposition 6.1, we first summarize some elementary properties.
Throughout this subsection, we let Q7 =5:=(0,1). To simplify notation we
let

(6.1) Goi=1—rF k>0.

Define

6.2) Bi1:= 86, ()USe, (1) =(0,74+pC1),  Bi2:=5¢(h)=(¢1,1),
By 3:=8¢,(1) = (0,p), Bia:=8¢,(22) = (G, 1)

We denote

(6.3) W(k)={eleres7:j=0,1,...k}, k>0.
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We remark that for £>0,
(6.4) Per Pl Hpew(k) =w(k+1) and  w(k+1) <w(k)<pe,,

where w(k) is defined as in (1.16). For any k>0, w(k) denotes the sum of probability
weights of all multi-indices in W (k). Using (2.3) and (2.4), we see that
(6.5) Dey +tDey tPes =1,  Dey+Pes =1,

and

(6.6) p1=pe 10 Se1 +p32u10562 —Ht?eg,uloS63 s M2 = Pey 2 © S;41+pe5ﬂ1oSe—51.

Moreover, p=1+ fta.
Lemma 6.2(a) below implies that all multi-indices in W (k) correspond to the
same vertex.

Lemma 6.2. Let {S.,}?_; be as in (1.15). Then
(a) Seyes (21)=S5e,e, (Q1). Moreover, for any e, e’ €W (k), Se=Se/;
(b) for k>1,
Se’gel( ):(kaap)a Se’g(Ql):(pgk’Tk+ka)
Sek63( ) (Tk{l +p<k7rk+pck)v Sel (Ql)mSe’g( ) Sek€1( )

Proof. (a) can be proved by a direct calculation and (b) can be proved by
induction; we omit the details. [J

Part (d) of the following lemma explains the meaning of the factor w(k).

Lemma 6.3. Assume the hypotheses of Proposition 6.1. Let w(k) be defined
as in (1.16). Then
a) for (=1,2, 11y

( Seg(Bl,e):p63N1|B1,eOse_sl;
(b) for £=3,4, ,LL2|584(BM):pe4ﬂ2‘B1,z°Sezl;
(C) fO’f' €:1727 M2 SES(Bl~Z):pe5N1|B1,e 8_51’
(d) for k20, puls,, (5y=wk)mlp, oS5,
(

(

e) fork>1 MI‘S k(Bl 1) (k 1>M1|Bl QOSls 1 +p52M1‘B11 kl;
f) for k>1, M1|Se§ (B12)= pez,u1|Bl,2 6_21

Proof. (a)—(c) follow from (6.6) along with the facts that S, (B1,¢)CSe, (1)
and Se, (By,¢)CSe, (£22), for i=3,5, £=1,2 and ¢'=3,4.

(d)—(f) can be proved directly by induction, we only prove (d) as an ex-
ample. It follows from (1.15) and (6.2) that Se, (21)=(0,p), Se,(Q2)=(pC1,7+
pC1), and S, (B1,1)=(0, pr+p>C1). Since p+2r—pr<1, we have pr+p*¢;<p(,
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----------------------------------------------------

____________________________________________________

----------------------------------------------------
________________

Figure 6. p-partitions Py ¢ of By o for the GIFS in (1.15). The figure is drawn with p=1/3 and
r=2/17.

e

By, we get ,ul(A):pelul\BmoSe_ll(A). Assume that the stated equality holds
for k=m, i.e., ,u1|sm (B11): w(m )H1|Bl,1ose_£el- For k=m+1, by Lemma 6.2,
we have S mi1, (B, 1) +1(B1,1). Then S;I(A)QSG?H(BM) and S;,'(A)C
Sere, (B1,1) for any ACS m+1€1( 1,1). It follows that pa(SoHA) =p |, 0
Se_gm(S;l(A)) and 1 (S, (A))=w(m) s, , °Sep., (S;,' (A)). Thus,

62 61

and hence S, (B1,1)CSe, (21)\Se, (Q22). So for any ACS., (By,1), i.e., S;'(A)C

fi1(A) = pe, i 05;1( )+ Pes 1 © S, (A)
:p61p53 N1|311°Sm+1(5 (A))+p€2 ( )/‘L1|Bll Seé"el(se;(A))

= (pelpeg FPe, W ( ))lullBl,l OSe;r}Jrlel (A)
= w(m+1)ﬂ1|31,1 OSE_;?}Jrlel (A)

The last equality follows from (6.4). This proves part (d). O

Proof of Proposition 6.1. Note that {Q1,{s} is invariant under G=(V, E). It
is obvious that the elements of {B;;}}_; are measure disjoint. Let I':={1,2,3,4}
and B:={B ¢:¢€T'}. Define Py p:={By ¢} for £€T. If for some k>2 and /€T, Py,
(see Figure 6) is a well-defined p-partition of By g, then we let P}M and P%,e be
defined as in (2.6) with respect to B.

For ¢=1, define Py 1:={S¢, (B1,1), S¢,(B1,1),S¢,(B1,2)} (see Figure 7). By
Lemma 6.3(d,e,f), we have Py, ={Sc, (B1,1),Se,(B1,2)} and P3,={Sc,(B11)}.
Hence condition (1) of (EFT) holds for £=1. For k>3, define

Pk}l = Pk*LlU{Se’;*%l (Bl,l), 5612@71 (31,1)7 561571 (Bl,g)}.

By Lemma 6.3(d,e,f), we get P11€,1:P]1€71,1U{Se§7261 (B11), S-1(B12)} and P} =
{S_s-1(B1,1)}. Hence condition (2) of (EFT) holds for /=1. Since the closure of
Sex(Bi,1) converges to a point as k—o0, we have limy_,oo p(Sex (B1,1))=0. Thus
condition (3) of (EFT) holds.
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Se; (B1,1)  Ses(Bi1,1) Sez(B1,1) Ses(B1,2)
M et Sey (Blp)  pimteeoth R
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e —— e ————
Ses(B1,1) Ses(B1,2) Seq(B1,3) Ses(B1,a)
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1 s ¢ S TSTcT T EEE T -t -

Figure 8. p-partitions P2 3 and P2 4.

For (=2, define PQ,Q::{SQ3 (31,1),553(31,2)} (see Figure 7). Note that
Sey(B1,1), Ses(Bi1,2) are measure disjoint, and S, (By,;)C By for i=1,2. Hence
P 5 is a refining p-partition of By 2. It follows from Lemma 6.3(a) that P%,2:P272
and P3 ,=@. Thus condition (1) of (EFT) holds for {=2. For k>2, define Py 5:=
P; . It follows that conditions (2) and (3) of (EFT) hold for ¢/=2.

For /=3, define P2,3::{Se5 (31’1)7565(3172)} (see Figure 8). Note that
Ses (B1,1), Ses(B1,2) are measure disjoint, and S, (B1,;)C B3 for i=1,2. Hence
P, 3 is a refining p-partition of By 3. It follows from Lemma 6.3(c) that Pj ;=Py 3
and P3 ;=@. Thus condition (1) of (EFT) holds for £=3. For k>2, define Py 3:=
P, 3. It follows that conditions (2) and (3) of (EFT) hold for £=3.

For (=4, define P2,4::{Se4 (3173),564(3174)} (see Figure 8). Note that
Se,(B1,3), Se,(B1,4) are measure disjoint, and Se,(By,;)C By 4 for i=3,4. Hence
P 4 is a refining p-partition of By 4. It follows from Lemma 6.3(b) that P%)4:P274
and P3 ,=@. Thus condition (1) of (EFT) holds for {=4. For k>2, define Py 4:=
P, 4. It follows that conditions (2) and (3) of (EFT) hold for {=4. O

6.2. Spectral dimension of p in Proposition 6.1

In this subsection, we derive vector-valued renewal equations and compute the
spectral dimension of the measure p defined by the GIFS in Proposition 6.1. We
also show that the GIFS has a unique basic class.

Let {S.,}?_; be a GIFS in (1.15), (pe)ecr be a probability matrix, and p be
the associated graph-directed self-similar measure. For £€T:={1,2,3,4} and k>1,
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let By, be defined as in (6.2), and Py, be as in the proof of Proposition 6.1.
Then p satisfies (EFT) with {,Q2}={(0,1),(0,1)} being an EFT-family, and
(B,P):=({B1,¢},{Pk.e}k>1)eer being a regular basic pair.

In the rest of this subsection, we use the notation in Section 4.1. For /€T,
i=1,2 and k>2, let P} , be defined as in (2.6). For i=1,2, let T; and B, be
defined as in (4.1). Since By,CQy and By CQy for £=1,2, '=3,4, we have
Flz{l, 2}, F2={3,4}, Blz{Bl,la BLQ} and BQZ{B173,B1,4}. For ]{i22, let Bk71,1:
5657261 (Bl,l)a Bk,Lg:Sega(BLl), Bk’lygzsegfl(BLg), and let

BQ,Z,p2563(Bl p)7 BQ,S,p:SE5(Bl,p)7 forp:1727

s

Boy1=8c,(B13), Bsao=_S5c,(Bi14).

Then
leﬁ,1:{Bk,1,1,Bk,1,3}, Pi71:{Bk71,2}, for k>2
P%,ZZ{BZ,Z,MBZEQ}, P;g:®, for £=2,3,4.
Hence Ty ={2}, [t ={1}, [,={3,4}, T3=0, sp=s3=3,=2, 3 =00, and
Gllc,lz{lag}a Gi,1:{2}7 for k227
Gé,e:{lﬂ}, Gg,g:@ for £=2,3,4.
For ¢€T, let J; be defined as in (4.3). Then J;=Jo=J3={1} and J,={2}.

Proposition 6.4. Let &(-,-,-) and c(-,-,-) be defined as in Proposition 4.2.
Then

(a) for k>2, &(k,1,1)=w(k—2)pr*=2, c(k,1,1)=1, &(k,1,3)=(pe,r)*" 1, and
c(k,1,3)=2;

(b) for p=1,2,
£(2,2,p) =pe,m, E(2,3,0)=pesp,  £(2,4,D) =pe,,
c(2,2,p) =p, c(2,3,p)=p, c(2,4,p) =p+2.

Proof. Using Lemma 6.3(a)—(f), we have for k>2,
B ~ _a B B >~ -1 B
LUFS e, (k=2 PRIl D125, phit Bh1s)
and for p=1, 2,
Bip~uSeypey B22ps Bip ~uSe, pe; B23ps  Brp+2™us., pe, B2ap-

The results follow. O
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It is obvious that G has two strongly connected components, i.e., n=2. For
m=1,2, let SC,,, be defined as in (1.6). Then SC;={1} and SC,={2}.

Using Proposition 6.4 and the discussions preceding it, we can express the
vector-valued renewal equations (4.16) and (4.20) precisely as

)= (w(k)pr™)* fu(t+In(w(k)or*)) + 3 (pe,r) ™ fa(t+In(pe,r)) 421" (1),
k=0 k=1
Fat) = (peyr) Zfe t+In(pe,r)) +2570 (1),
=1

F3(8) = (pey ) Zfetﬂnp% P))+2572 (1),

Fa(t) = (pe,r) Zfe tHIn(pe,r)) +20° (¢),

=3

where
z;al)(t)ze_altN()\, _Al—l1|B 12 >+6 ot (nt51>7
A 2, ) =2 l) or 1=3,4

For ¢/, £l and m=1, 2, let u&,’“ be the discrete measure defined as in (4.21),
and a=(aq,az). Then

Hiq ( ln(w(k)pr )) ( (k)prk)ulﬂ fOl"k‘ZO,
5D (= I(peyr)*) = (peyr)*™1,  for k>1,
(6.7) 53 (= In(pey ) = sy (— In(pey ) = (Peg ™)
5 (—1(pey ) = 13 (— W(Pes ) = (Pes )
1552 (— In(pe,r)) = i3> (— In(pe,r)) = <84r>a2.
Also,
S o (w(k)pr*) ™ (peyr)™ (1= (peyr)™) 0 0
- 00) = ( es T ) ! (Peg,?")al 0 0
M(a’ )_ (peo )a2 (pesp)a2 0 0
0 0 (Pey)? (pe,r)™

Remark 6.5. The GIFS in Proposition 6.1 has a unique basic class, namely,
{1,2}, which thus has height 1 by definition. Moreover, {1,2}=38y, where we recall
that Sy is the union of basic classes of height 1.
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Proposition 6.6. For (=1,2,3,4 and m=1,2, let Fy(a,,) and &, be defined
as in (1.10). Then lim,, oo Fr(am)=0 and &,=0 for £=1,2,3,4 and m=1,2.
Moreover, limg, o+ F1(a1)=00, and F;(0)>1 for {=2,3,4.

Proof. By the definition of Fy(a.,), we see that

Fi(an) =Y (w(k)pr*)™ +(pe,7)* /(1= (pe,r)™),  Fa(on) =2(pe,)*"
k=0
Fs(ag) =2(pe; p)*, Fy(az) =2(pe, ).

It follows from (6.4) that F () is a strictly decreasing positive continuous function
of a1, and limy, 00 F1(1)=0. It is obvious that lim,, 0o Fe(cuy,)=0 for (=2,3,4
and m=1,2. For any oy >0, since Yo, (w(k)pr®)® converges, we get F(a)<oo.
It follows from (1.10) that &; =0 and lim,, o+ F1(a1)=00. It is obvious that a,=0
and Fy(0)=2 for ¢=2,3,4. O

Let |I4—M(a; 00)|=0, where I is the 4 x4 identity matrix. Then

3 3

(1= (pe,)*?] [I—Z(peir)al —(H (1—(peir)a1)> i(w(k)prk)al] _o.

i=2 =2 k=0

It follows from Proposition 6.6 that there exists a unique set of non-negative real
numbers a1, as such that both factors in the above equation equal zero; in particu-
lar, the spectral radius of M(a; 00) is 1, where a@=(cv1, ap). Note that ay=0. For
the rest of this subsection, we let a:=max{a, as}=a;.

Finally, we show that there exists some o>0 such that zéa) (t)=o0(e™") as
t—oo for £=1,2,3,4. We will first show that N()\, —A is bounded. The

proof is the same as that of [19, Proposition 5.3].

“1|Bm,1,2)

<C.

Mlant,l,z)—

Proposition 6.7. There exists C >0 such that N(/\, —-A

PT‘OOf. Let Aanhl,QZSe;Lt—l(BLl). Then Se_nlt,Q (A)gSe2 (Bl,l):SEQE] (Ql)U
Sezez(Ql):Seleg(Ql)US6262(Ql)~ Thus

I’L1|Sf"1t72(A) :pelul‘Bl,Z OSe_ll (Se_;l];*2 (A))+p€2M1|Bl,1 O‘Se_zl (Se_;zltfi’ (A))
€2

(6.8) 1
(A) +p€2:u1 |Bl,1 °© S;;Ltfl (A)-

:pelﬂl‘BLz OS?’

ng—2
62 €1
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Multiplying both sides of (6.8) by w(n;—2)p. !, using (1.16) and Lemma 6.3(e), we
have

w(nt—Q)p;lMl(Se_ng(A))
= w(ng=2)plp, , °Se_glt—zel(A)+w(nt*2)Pe2P§11N1\Bl,1 OSe_glt—l(A)
> w(ng—2)pls, ., oS@Z}ﬁzel(A)+PZ§_1M1\51,1 05;;1,,71(14)
= p1(A).

Thus H1|532t*1(Bl,l)Sw(nt—Q)p;IMOSe_;t_g on Segt—l(BLl). Combining this with

Proposition 3.4, we have

(6.9) N(e'-A ) <N (w(ne—2)p;'r™ 2, —A

“1|Spn,t71(31,1) /Ll‘Sez(BLl))'
2

It follows from (4.19) that ¢t+In(w(n,—1)pr™~1)<ty. Hence we have
w(ng—2)pr™ el <w(n,—1)pr™ et <e'o,
and thus w(n; —2)p, 'r™~2e' <(prpe,)~'e*o. Combining this with (6.9), we get

t —1_t P
N(e 77AM1\S nf*l(Bl,l)) < N((prpel) e, 7A“1|SC2(BL1)) =0
521

This completes the proof. [

Proposition 6.8. There exists some 0>0 such that zéa)(t)zo(e*"t) as t—00

for £=1,2 3, 4.

Proof. 1t follows from Proposition 6.7 that there exists some constant C'>0
such that zga)(t)§(0+4nt—4)e_°‘t. Moreover, since zlﬁ‘*) (t)<2e™t for £=2,3,4, it
suffices to show that for any 0<o<a, nie **=o0(e"7") as t—o0. It follows from
(4.19) that t+In(pe,r)™ <to, and hence n;<(In(pe,r))~*(to—t). Consequently for
any 0<o<a,

ne”* /et < (ln(pe27‘))71-(tg—t)/e(afa)t —0 ast—o0.
This completes the proof. [J
Proof of Corollary 1.8. Apply Propositions 6.6 and 6.8, and Theorem 1.6. O

Proof of Remark 1.9. (a) follows by a direct calculation.
(b) It is obvious that G=(V, E) defined as in (1.15) satisfies the generalized
finite type condition with {Q1,Q2}={(0,1),(0,1)} being a generalized finite type
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condition family for G. Moreover, the weighted incidence matrix is

r® 0 p¥ r?
prrt 00
0 0 p*r®

Ay =
r

Using [20, Theorem 1.1], we get d;=0.797012.... Hence 2d;/(14+d;)=0.887041...,
and thus ds<2dy/(14+dy).

(c) Tt follows from [12, Lemma 2.3] that (supp(v1)) equals the closed group

generated by supp(z\?) and the closure of supp({%)) +supp(1s2)), while (supp(v2))

equals the closed group generated by supp(ug;)) and the closure of Supp(,ué?))—i-

supp(,ug‘;)). Using (6.7) with a3 =, we have

supp(1$$)) = {~ Wn(w(k)pr*) : k >0},
supp(uiy)) = {— In(pe,r)* : k> 1},

supp(usy)) =supp(usy)) = {— In(pe,7)}-

Hence
supp(p) = {— n(w(k)pr®) : k > 0} = {In(9/(k+1)-(21/2)) : k > 0} ,
supp(p3)) +supp(is;)) = {— n(pes, ™) 1k > 1} = {In((21/2)"1) : k> 13,
(

supp(pg3)) = {~ In(pe,r)} = {In(21/2)}.

It is easy to see that (supp(va)) can be generated by In(21/2), and so vy is
lattice. Combining this with Theorem 1.6(c), we see that there exists a periodic
function go(t) such that

tlg{r)lo (e_o‘tN(et, —AH1|BL2)—q2(t)) =0.
; — (@) — 2 (@) (@)

Taking a:=In(189/2) esupp(p;;’) and b:=In((21%)/4) €supp (5’ ) +supp(ps; ),
we have a/b¢ Q. This leads to that (supp(v1))=R, and so v» is non-lattice. Thus
Theorem 1.6(c) implies that there exists a non-negative constant ¢; such that
limy o0 e_atN(et’ _AllllBl,l ):ql' 0

6.3. A GIFS that is not strongly connected and has basic classes of height
greater than 1

The GIFS in Example 1.10 is not strongly connected and has overlaps. It
differs from the one in Example 1.7 in that some of its basic classes have height
greater than 1.
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951 Qo 1
MSEQ (Ql) 563 (Ql) 564 (Ql) Se5 (Qz) Seﬁ (92)
Q3 Q4 1
MSES (QB) 559 (QS) Selo (93) 5611(94) S€12 (94)
Qs Qe 1
5513 (93) 5614 (95) 5515 (QE) Sew (Ql) Se17(QG)

Figure 9. First iteration of the GIFS defined in (1.18), where Q;=(0,1) for i=1,...,6. The figure
is drawn with p=1/3 and r=2/7.

Proposition 6.9. Let ,u:Z?:l ;i be a graph-directed self-similar measure
defined by a GIFS G=(V,E) in Ezample 1.10 together with a probability matriz
(pe)ecr- Then p satisfies (EFT) with

Q= {Qla 0,03, 04, Qs, QG} = {(07 1)v (07 1)7 (0’ 1)) (07 1)7 (O’ 1)7 (07 1)}

being an EFT-family and there exists a regular basic pair. Moreover, the GIFS has
one basic class of height 2, and one of height 3 (see Figure 9).

Proof. As in Proposition 6.1, all the corresponding graph-directed self-similar
measures p satisfy (EFT); the proof is similar.
Let I':={1,2,...,12}. There are five basic classes:

{1.2}, {3,4}, {56}, {78}, {9,10}.

Moreover, 1,2€87, 5,668, and 3,4,7,8,9,10,11,12¢S, where S,, is the union of
basic classes of height m+1 for m>0 and S=UJ,,5¢Sm- U

Proof of Corollary 1.11 and Remark 1.12. The computations of the spectral
dimension of y and the Hausdorff dimension of the associated graph self-similar
set are similar to those in Proposition 6.1; we omit the details. O

A. Vector-valued renewal theorem
For convenience, we state the multidimensional renewal theorem by Hambly
and Nyberg [6], which is an extension of the results of Lau et al. [12]. This theorem
is used in the proofs of Theorems 1.1 and 1.6.
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We introduce some terminology and refer the reader to [6] for any unexplained
terms. Let M=[m;;],xn be a matrix of Radon measures on Ri. We write F
for the matrix of distribution functions of M, that is Fj; (t):fg m;j ds and write
F;;(t,t+h]=F;;(t+h)—F;;(t). The indices of the matrix will be referred to as states.
There is a directed edge between states ¢ and j if the measure m;; is non-zero.

We follow [6] and define the measure

o0
v = mii—i—mﬁ*Z(Mii)*k*mﬁ, i=1,...,n.
k=0

Theorem A.1. (Hambly and Nyberg [6]) Assume that F(t) is a matriz of
measures in which F(co) has mazimum eigenvalue 1, with Fy;(0-)=0, [~ tdF;(t)<
oo for alli,j and for each j there is at least one i such that F;;(0)<Fj;(c0). Let z
be a vector with components that are directly Riemann integrable functions on R
with z;7#0 for all i€Sy. If £ is continuous and satisfies the renewal equation

f(t)=f«F(t)+2(t),
then f:z*zgozo F** and the components f; satisfy
(1) if i€So, then
Jim (fi(t)—ai(t)) =0,
where q; is either periodic or constant depending on whether v; is lattice or not;
(2) if i€Sy for m>0, then
tlim t™"fi(t)=c;  for some constant ¢; > 0;
—00
(3) if i¢S=U,,50 Sm and there is no path from S to i, then
Jim fi(t) =0;
(4) if i¢ .S and there is a path from Sy to i, but no path from Sy for any £>0,
then
lim (fi(t)—4,(t)) =0;

t—o0
for some §; which is either constant or periodic;
(5) if i¢S and there is a path from S, to i, but no path from S; for any
{>m>0, then

lim ¢t~ f;(t)=¢;  for some constant ¢; > 0.
t—o0

If i€ Cy, an equivalence class in Sy, then if z;7#0 for at least one j€Cy, we have
ci, ¢;>0.
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Corollary A.2. (Hambly and Nyberg [6])Let t*>0, let r(t) be a vector whose
components are measurable functions on R with r;(t)=0, for all i and t<t*, and
let z(t) be a non-negative directly Riemann integrable function with z;(t)=0, for all
i and t<t*. Assume that r satisfies the renewal equation

r(t) =z(t)+ (r+F)(t), teR.

Then the conclusions of Theorem A.1 hold.

Acknowledgements. The authors are very grateful to the anonymous referee
for some valuable comments and suggestions.
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