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On the Hardy number of a domain in terms of
harmonic measure and hyperbolic distance

Christina Karafyllia

Abstract. Let ψ be a conformal map on D with ψ (0)=0 and let Fα={z∈D:|ψ (z)|=α}
for α>0. Denote by Hp (D) the classical Hardy space with exponent p>0 and by h (ψ) the Hardy
number of ψ. Consider the limits

L := lim
α→+∞

(
logωD(0, Fα)−1

/
logα

)
, μ := lim

α→+∞
(dD (0, Fα)/logα) ,

where ωD (0, Fα) denotes the harmonic measure at 0 of Fα and dD(0, Fα) denotes the hyperbolic
distance between 0 and Fα in D. We study a problem posed by P. Poggi-Corradini. What
is the relation between L, μ and h (ψ)? Motivated by the result of Kim and Sugawa that
h (ψ)=lim infα→+∞(logωD(0, Fα)−1/

logα), we show that h (ψ)=lim infα→+∞ (dD (0, Fα)/logα).
We also provide conditions for the existence of L and μ and for the equalities L=μ=h (ψ). Poggi-
Corradini proved that ψ /∈Hμ (D) for a wide class of conformal maps ψ. We present an example
of ψ such that ψ∈Hμ(D).

1. Introduction

We study the Hardy number of a domain in terms of harmonic measure and
hyperbolic distance. For a domain D, a point z∈D and a Borel subset E of D, let
ωD (z, E) denote the harmonic measure at z of E with respect to the component of
D\E containing z. The function ωD (·, E) is exactly the solution of the generalized
Dirichlet problem with boundary data ϕ=1E (see [1, Chapter 3], [9, Chapter 1]
and [22, Chapter 4]). The hyperbolic distance between two points z, w in the unit
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disk D (see [1, Chapter 1] and [4, p. 11–28]) is defined by

dD (z, w)= log
1+

∣∣∣ z−w
1−zẇ

∣∣∣
1−

∣∣∣ z−w
1−zẇ

∣∣∣ .
The hyperbolic distance can be defined on any simply connected domain D �=C

as follows: If f is a Riemann map of D onto D and z, w∈D, then dD (z, w)=
dD

(
f−1 (z) , f−1 (w)

)
. Also, for a set E⊂D, we define dD (z, E):=inf{dD (z, w):

w∈E}.
The Hardy space with exponent p, p>0, and norm ‖·‖p (see [6, p. 1–2] and [9,

p. 435–441]) is defined to be

Hp (D)=
{
f ∈H (D) : ‖f‖pp = sup

0<r<1

∫ 2π

0

∣∣f (
reiθ

)∣∣p dθ <+∞
}
,

where H (D) denotes the family of all holomorphic functions on D. The fact that
a function f belongs to Hp (D) imposes a restriction on the growth of f and this
restriction is stronger as p increases. If ψ is a conformal map on D, then ψ∈Hp (D)
for all p<1/2 ([6, p. 50]).

Hereinafter, ψ is a conformal map on D with ψ (0)=0 and Fα={z∈D:|ψ (z)|=α}
for α>0 (see Figure 1). The number h (ψ)∈[1/2,+∞] which is given by

h (ψ)= sup {p> 0 :ψ ∈Hp (D)} ,

is called the Hardy number of ψ and was first introduced by Hansen in [10]. Note
that if D is a simply connected domain, we say D∈Hp (D) if there is a Riemann
map ψ of D onto D such that ψ∈Hp (D). Any other Riemann map onto D is also in
Hp (D), and hence the Hardy number of D is well-defined by setting h (D)=h (ψ).
A classical problem in geometric function theory is to find the Hardy number of a
domain by looking at its geometric properties (see e.g. [3] and [18]). Hansen studied

Figure 1. The conformal map ψ on D and the sets Fα, ψ (Fα).
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the number by using Ahlfors’ distortion theorem and he described it in terms of
geometric quantities for starlike and spiral-like domains [11]. In [7] Essén gave a
description of h (ψ) in terms of harmonic measures and obtained almost necessary
and sufficient conditions for h (ψ) in terms of capacity. Poggi-Corradini [20] studied
the range domains D of univalent Kœnigs functions (see also [21]) and found that
the number h (D) can be described in terms of the essential norm of the associated
composition operators. Finally, based on Essén’ s main lemma [7], Kim and Sugawa
[15] proved that

(1.1) h (ψ)= lim inf
α→+∞

logωψ(D)(0, ψ (Fα))−1

logα = lim inf
α→+∞

logωD(0, Fα)−1

logα .

In Section 4 we express h (ψ) in terms of hyperbolic distance by proving the following
theorem.

Theorem 1.1. Let ψ be a conformal map on D with ψ (0)=0 and let Fα=
{z∈D:|ψ (z)|=α} for α>0. If h (ψ) denotes the Hardy number of ψ, then

h (ψ)= lim inf
α→+∞

dD (0, Fα)
logα .

Harmonic measure and hyperbolic distance are both conformally invariant
and several Euclidean estimates are known about them. Thus, expressing the
Hp (D)-norms of a conformal map ψ on D in terms of harmonic measure and hyper-
bolic distance, we are able to obtain information about the growth of the function
by looking at the geometry of its image region ψ (D). In [19, p. 10] Poggi-Corradini
proved that the Beurling-Nevanlinna projection theorem [1, p. 43–44] implies that
for every α>0,

ωD (0, Fα)≥ 2
π
e−dD(0,Fα)

and he stated the question [19, p. 36] whether the opposite inequality is also true
for some positive constant. In [13] we proved that the answer is negative and only
under additional assumptions involving the geometry of the domain ψ (D) it can be
positive. However, the situation changes when we study integrals of the quantities
stated above. In [19, p. 33] and [21, p. 502–503] Poggi-Corradini proved that

(1.2) ψ ∈Hp (D) ⇐==⇒
∫ +∞

0
αp−1ωD(0, Fα) dα<+∞.

Answering a question he stated in [19, p. 36], we proved in [14] that

(1.3) ψ ∈Hp (D) ⇐==⇒
∫ +∞

0
αp−1e−dD(0,Fα) dα<+∞.
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Figure 2.

If we rewrite the integrands of conditions (1.2) and (1.3), we take respectively,

αp−1ωD (0, Fα)=αp−1−logωD(0,Fα)−1/
logα

and
αp−1e−dD(0,Fα) =αp−1−dD(0,Fα)/logα.

Poggi-Corradini noticed that if the limit L:=limα→+∞(logωD(0, Fα)−1/logα) exists
then the ratio logωD(0, Fα)−1/logα determines the Hardy number of ψ. In fact, by
(1.2) we deduce that if p<L then ψ∈Hp (D) and if p>L, ψ /∈Hp (D). Similarly, if the
limit μ:=limα→+∞ (dD (0, Fα)/logα) exists then by (1.3) we infer that if p<μ then
ψ∈Hp (D) and if p>μ then ψ /∈Hp (D). So, the ratio dD (0, Fα)/logα determines
the Hardy number of ψ. However, it is not clear whether ψ∈Hp (D) when μ (or
L) is finite and p=μ (or p=L). Poggi-Corradini proved (see [19, p. 37–38] and
[21, p. 503–504]) that ψ /∈Hμ (D) for a wide class of conformal maps ψ which he
calls “sector-like”. But, could this result be generalized for every simply connected
domain? In Section 5, we answer this question by constructing the simply connected
domain of Figure 2 so that, if ψ is the corresponding Riemann map, then ψ∈Hμ(D).
The reasons, which led us to construct this particular domain, are stated at the
beginning of Section 5.

Example 1.2. There exists a conformal map ψ on D such that μ exists and
ψ∈Hμ(D).

Therefore, when μ (or L) is finite, the case p=μ (or p=L) depends on the way
the ratio approaches the limit μ (or L). Finally, to complete the study of these
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limits, it is reasonable to examine the connection between μ and L. So, in Section
4, we prove the following results.

Theorem 1.3. Suppose that μ exists. Then L exists and L=μ.

Corollary 1.4. μ=+∞ if and only if L=+∞.

Let N (α)∈N∪{+∞} denote the number of components of Fα for α>0 and F i
α

denote each of these components for i=1, 2, ..., N (α). Since max{ωD

(
0, F i

α

)
:i∈{1,

2, ...N (α)}} exists, as we prove in Section 3, we denote by F ∗
α a component of Fα

such that
ωD (0, F ∗

α) = max
{
ωD

(
0, F i

α

)
: i∈{1, 2, ..., N (α)}

}
.

Theorem 1.5. Suppose that L exists. Then μ exists if and only if

(1.4) lim sup
α→+∞

logωD(0, F ∗
α)−1

logα =L.

In case μ exists then μ=L.

Corollary 1.6. If L exists and limα→+∞
logN(α)

logα =0 then μ exists and μ=L.

Note that the condition of the corollary above is more geometric and easy to
check but it is not clear if it is necessary and sufficient. On the other hand, the
condition (1.4) of Theorem 1.5 is necessary and sufficient but not so easy to handle.
So, we state the following question.

Question 1.7. Can we replace the condition (1.4) by a more geometric condition
or, maybe, is the condition (1.4) true for every simply connected domain?

In Section 2 we introduce some preliminary results and notions such as the
domain decomposition method studied by N. Papamichael and N. S. Stylianopoulos
[17], the extremal length and its connection with the harmonic measure. In Section
3 we present some lemmas required for the proofs of Section 4. In Section 4 we
prove Theorems 1.1, 1.3 and 1.5 and Corollaries 1.4 and 1.6. Finally, in Section 5
we present the conformal map of the Example 1.2.

Acknowledgments. I thank Professor D. Betsakos, my thesis advisor, for his
advice during the preparation of this work, and the Onassis Foundation for the
scholarship I received during my Ph.D. studies.

2. Preliminaries

We first state a theorem proved by Poggi-Corradini in [19, p. 37] and [20,
p. 134].
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Theorem 2.1. Let ψ be a conformal map on D and, for α>0, let Fα={z∈D:
|ψ (z)|=α}.

(i) If S=lim supα→+∞
dD(0,Fα)

logα <+∞, then:

(a) S<p<+∞⇒ψ /∈Hp (D)
(b) αS−1−dD(0,Fα)/logα not integrable at infinity ⇒ψ /∈HS (D).

(ii) If I=lim infα→+∞
dD(0,Fα)

logα , then I≥1/2 and

0<p<I =⇒ψ ∈Hp (D) .

In particular, if S=I=μ then μ=h (ψ).

2.1. Extremal length

Another conformally invariant quantity, which is related to the harmonic mea-
sure, is the extremal length. We present the definition and the properties we need
as they are stated in [1, Chapter 4], [5, p. 361–385], [8, Chapter 7], [9, Chapter 4]
and [16, Chapter 2].

Definition 2.2. Let {C} be a family of curves and ρ (z)≥0 be a measurable
function defined in C. We say ρ (z) is admissible for {C} and denote by ρ∈adm {C},
if for every rectifiable C∈{C}, the integral

∫
C
ρ (z) | dz| exists and 1≤

∫
C
ρ (z) | dz|≤

+∞. The extremal length of {C}, λ {C}, is defined by

1
λ {C} = inf

ρ∈adm{C}

∫∫
ρ2(z) dx dy.

Note that if all curves of {C} lie in a domain D, we may take ρ (z)=0 outside
D. The conformal invariance is an immediate consequence of the definition (see [8,
p. 90]). As a typical example (see [5, p. 366] and [9, p. 131]), we mention the
case in which R is a rectangle with sides of length a and b and {C} is the family
of curves in R joining the opposite sides of length a. Then λ {C}= b

a . Next we
state two basic properties of extremal length that we will need (see [1, p. 54–55],
[5, p. 363], [8, p. 91], [9, p. 134–135] and [16, p. 79]).

Theorem 2.3. If {C ′}⊂{C} or every C ′∈{C ′} contains a C∈{C}, then

λ {C}≤λ {C ′}.

Theorem 2.4. (The serial rule) Let {Bn} be mutually disjoint Borel sets and

each Cn∈{Cn} be in Bn. If {C} is a family of curves such that each C contains at

least one Cn for every n, then

λ {C}≥
∑
n

λ {Cn}.
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Sometimes it is more convenient to use the more special notion of extremal
distance. Let D be a plane domain and E1, E2 be two disjoint closed sets on ∂D. If
{C} is the family of curves in D joining E1 to E2, then the extremal length λD {C}
is called the extremal distance between E1 and E2 with respect to D and is denoted
by λD (E1, E2).

2.2. Domain decomposition method

In case of quadrilaterals, the opposite inequality in the serial rule has been
studied by Papamichael and Stylianopoulos by means of a domain decomposition
method for approximating the conformal modules of long quadrilaterals (see [17]).
Before stating the theorems we need, we present the required notation.

Let Ω be a Jordan domain in C and consinder a system consisting of Ω and
four distinct points z1, z2, z3, z4 in counterclockwise order on its boundary ∂Ω. Such
a system is said to be a quadrilateral Q and is denoted by

Q := {Ω; z1, z2, z3, z4} .

The conformal module m (Q) of Q is the unique number for which Q is conformally
equivalent to the rectangular quadrilateral

Q′ :=
{
Rm(Q); 0, 1, 1+m (Q) i,m (Q) i

}
,

where Rm(Q)={x+yi:0<x<1, 0<y<m (Q)} (see Figure 3). Note that m (Q) is
conformally invariant and it is equal to the extremal distance between the bound-
ary arcs (z1, z2) and (z3, z4) of Ω. So, Ω and Q:={Ω; z1, z2, z3, z4} will denote
respectively the original domain and the corresponding quadrilateral. Moreover,
Ω1,Ω2, ..., and Q1, Q2, ..., will denote the principle subdomains and corresponding
component quadrilaterals of the decomposition under consideration. Now consider
the situation of Figure 3, where the decomposition of Q:={Ω; z1, z2, z3, z4} is de-
fined by two non-intersecting arcs γ1, γ2 that join respectively two distinct points
a and b on the boundary arc (z2, z3) to two points d and c on the boundary arc
(z4, z1). These two arcs subdivide Ω into three non-intersecting subdomains de-
noted by Ω1,Ω2 and Ω3. In addition, the arc γ1 subdivides Ω into Ω1 and another
subdomain denoted by Ω2,3, i.e. we take

Ω2,3 =Ω2∪Ω3.

Similarly, we say that γ2 subdivides Ω into Ω1,2 and Ω3, i.e. we take

Ω1,2 =Ω1∪Ω2.
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Figure 3. The subdivision of Ω into Ω1,Ω2,Ω3 and the conformal map F :Q→Q′.

Finally, we use the notations Q1, Q2, Q3, Q1,2 and Q2,3 to denote, respectively, the
quadrilaterals corresponding to the subdomains Ω1,Ω2,Ω3,Ω1,2 and Ω2,3, i.e.

Q1 := {Ω1; z1, z2, a, d} , Q2 := {Ω2; d, a, b, c} , Q3 := {Ω3; c, b, z3, z4}

and
Q1,2 := {Ω1,2; z1, z2, b, c} , Q2,3 := {Ω2,3; d, a, z3, z4} .

The following theorems were proved by Papamichael and Stylianopoulos in [17,
p. 142–145].

Theorem 2.5. Consider the decomposition and the notations illustrated in

Figure 3. With the terminology defined above, we have

|m (Q)−(m (Q1,2)+m (Q2,3)−m (Q2))| ≤ 2.71e−πm(Q2),

provided that m (Q2)≥3.

Theorem 2.6. Consider a quadrilateral Q:={Ω; z1, z2, z3, z4} of the form il-

lustrated in Figure 4 and assume that the defining domain Ω can be decomposed

by means of a straight line crosscut l and two other crosscuts l1 and l2 into four

subdomains Ω1, Ω2, Ω3 and Ω4, so that Ω3 is the reflection in l of Ω2. Then, for

the decomposition of Q defined by l,

0≤m (Q)−(m (Q1,2)+m (Q3,4))≤ 5.26e−2πm(Q2),

provided that m (Q2)≥1.5.
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Figure 4. The decomposition of Theorem 2.6.

Remark 2.7. Papamichael and Stylianopoulos proved Theorems 2.5 and 2.6 in
case Ω is a Jordan domain. However, it follows from the proof that they are still
valid if Ω is a simply connected domain and its boundary sets (z1, z2) and (z3, z4)
are arcs of prime ends.

2.3. Harmonic measure

Next we state a version of the Beurling-Nevanlinna projection theorem (see [1,
p. 43–44], [5, p. 43], [9, p. 105] and [22, p. 120]) which gives us a relation between
the harmonic measure of a closed and connected set in D and the harmonic measure
of its circular projection on the negative radius.

Theorem 2.8. (Beurling-Nevanlinna projection theorem) Let E⊂D\ {0} be a

closed connected set intersecting the unit circle. Let E∗={− |z|:z∈E}=(−1, −r0],
where r0=min {|z|:z∈E}. Then, for 0≤x<1,

ωD (x,E)≥ωD (x,E∗) = 2
π

arcsin (1−r0) (1−x)
(1+r0) (1+x) .

Harmonic measure increases as the domain, in which it is defined, extends (see
[22, p. 102]).

Theorem 2.9. Let D1, D2 be simply connected domains such that D1⊂D2
and B be a Borel subset of ∂D1∩∂D2. Then, for z∈D1,

ωD1 (z,B)≤ωD2 (z,B) .

Let D be a bounded simply connected domain, E be an arc on ∂D and z0∈D.
Consider all Jordan arcs σ⊂D that join z0 to ∂D\E and define

λD (z0, E) = sup
σ

λD\σ (σ,E) ,
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where the supremum is taken over all such Jordan arcs. Then the following theorem
gives a relation between ωD (z0, E) and λD (z0, E) (see [5, p. 368–371] and [9,
p. 144–146]).

Theorem 2.10. Let D be a bounded simply connected domain, E be an arc

on ∂D and z0∈D. Then

e−πλD(z0,E) ≤ωD (z0, E)≤ 8
π
e−πλD(z0,E).

3. Auxilary lemmas

Lemma 3.1. Let Γ be the hyperbolic geodesic joining two points z1, z2∈∂D in

D. Then

e−dD(0,Γ) ≤ωD (0,Γ)≤ 4
π
e−dD(0,Γ).

Proof. Without loss of generality, let z1=eiθ, z2=e−iθ for some θ∈
(
0, π

2
)

and
r∈(0, 1) be the point of Γ lying on the real axis (see Figure 5).

Then the circle, C, passing through the points z1, z2, r is given by

x2+y2+ 1−r2

r−cos θx+ r (r cos θ−1)
r−cos θ =0

and has centre K=
(

r2−1
2(r−cos θ) , 0

)
, as illustrated in Figure 5. Since the line passing

through K and z1 is vertical to the tangent, ε1, of the circle C at z1, we infer that

λε1 = 2r cos θ−2cos2θ+1−r2

−2 (r−cos θ) sin θ
,

Figure 5.
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where λε1 denotes the slope of ε1. In addition, ε1 is vertical to the tangent, ε2, of
∂D at z1 and thus

cos θ
sin θ

· 2r cos θ−2cos2θ+1−r2

2 (r−cos θ) sin θ
=−1

or

r= 1−sin θ

cos θ .

Therefore,

(3.1) e−dD(0,Γ) = 1−r

1+r
= cos θ+sin θ−1

cos θ−sin θ+1 .

Since the function

f (θ) = 2θ
π
· cos θ−sin θ+1
cos θ+sin θ−1

is decreasing on
(
0, π

2
)

and

lim
θ→0+

f (θ) = 4
π
, lim

θ→π
2

−
f (θ) = 1,

we deduce that 1≤f (θ)≤ 4
π for every θ∈

(
0, π

2
)
. This in conjunction with (3.1) and

the fact that ωD (0,Γ)= 2θ
π (see [5, p. 370]) gives the desired result. �

By the conformal invariance of harmonic measure, we can easily make the
following computation.

Lemma 3.2. Let a∈(0, 1) and b∈[0, 1). Then

ωD\[a,1) (−b, ∂D) = 1− 2
π

arctan 1√(
(1+a)(1+b)
(1−a)(1−b)

)2
−1

.

Hereinafter, let ψ be a conformal map on D with ψ (0)=0 and let Fα={z∈D:
|ψ (z)|=α} and Eα=

{
eiθ :

∣∣ψ (
eiθ

)∣∣>α
}

for α>0. Moreover, set d=dist (0, ∂ψ (D))
and let N (α)∈N∪{+∞} denote the number of components of Fα for α>0.

Lemma 3.3. Let F i
α denote the components of Fα, i=1, 2, ..., N (α). Then,

for every α>0, there exists a component F ∗
α such that

ωD (0, F ∗
α) = max

{
ωD

(
0, F i

α

)
: i∈{1, 2, ...N (α)}

}
.
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Proof. Fix an α>0. Since the case N (α)<+∞ is trivial, suppose N (α)=+∞.
Then the series

+∞∑
i=1

ωD

(
0, F i

α

)
=ωD (0, Fα)≤ 1

converges and hence
lim

i→+∞
ωD

(
0, F i

α

)
=0.

This implies that ∃i0∈N such that ωD

(
0, F i

α

)
≤ωD

(
0, F 1

α

)
for every i≥i0. So, set-

ting ω∗=max
{
ωD

(
0, F 1

α

)
, ωD

(
0, F 2

α

)
, ..., ωD

(
0, F i0−1

α

)}
, we infer that there exists

a component, F ∗
α, of Fα such that

ωD (0, F ∗
α)=ω∗ =max

{
ωD

(
0, F i

α

)
: i∈{1, 2, ...N (α)}

}
. �

Lemma 3.4. With the notation above, it is true that

ωD (z, E6α)≤ 1
2 , ∀z ∈Fα, ∀α≥ 33d.

Proof. Set ψ (D)=D. If z∈Fα (see Figure 6), then by Baernstein’ s circular
symmetrization (see [2, Theorem 7] and [12, p. 665–669]), Theorem 2.9 and the
conformal invariance of harmonic measure, we infer that for every α≥33d,

ωD (z, E6α)≤ωD (z, F6α) =ωD (ψ (z) , ψ (F6α))≤ωD∗ (α, ∂D∗∩6α∂D) ,

where D∗ is the simply connected domain obtained by the circular symmetrization
of D∩6αD (see Figure 7). Applying Theorem 2.9, the conformal invariance of
harmonic measure and Lemma 3.2, we have that for every α≥33d,

ωD(z, E6α) ≤ ωD∗(α, ∂D∗∩6α∂D)≤ω6αD\(−6α,−d](α, 6α∂D)=ω
D\[ d

6α ,1)

(
−1

6 , ∂D
)

= 1− 2
π

arctan 1√( 7
5

(6a+d)
(6a−d)

)2
−1

≤ 1
2 ,

where the last inequality comes from the fact that α≥ 7+5
√

2
30

√
2−42d. So,

ωD (z, E6α)≤ 1
2 , ∀z ∈Fα, ∀α≥ 33d. �
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Figure 6.

Figure 7.

Lemma 3.5. Let c= 2+
√

2
2−

√
2 and α>d. Suppose that F ∗

cα is a component of Fcα

such that

ωD (0, F ∗
cα)=max

{
ωD

(
0, F i

cα

)
: i∈{1, 2, ...N (α)}

}
and F ′

α is the component of Fα such that F ∗
cα lies in the component of D\F ′

α not

containing the origin. If Γ′
α is the hyperbolic geodesic joining the endpoints of F ′

α

in D, then

ωD (0, F ∗
cα)≤ωD (0,Γ′

α) .

Proof. Lemma 3.3 implies that a maximal component F ∗
cα exists. Let z∈F ∗

cα

and ψ (D)=D. Let T ′
α be the arc of ∂D joining the endpoints of Γ′

α such that the
interior of Γ′

α∪T ′
α does not contain the origin (see Figure 8). If D0 is the component

of D\ψ (F ′
α) containing ψ (z), then

ωD (z, T ′
α) =ωD (ψ (z) , ψ (T ′

α))≥ωD0\αD
(
ψ (z) , ψ (T ′

α)\αD
)
.

Apply the conformal map f (z)= α
z which sends D0\αD onto an open set W⊂D,

the set
(
C\

(
D0\αD

))
\

(
αD

)
into a set A connecting 0 to ∂D and f (ψ (z))= α

ψ(z)∈
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Figure 8.

( 1
c∂D

)
. Then, by the Beurling-Nevanlinna projection theorem,

ωD0\αD
(
ψ(z), ψ(T ′

α)\αD
)
=ωW

(
α

ψ(z) , A
)
≥ωD

(
1
c
, (−1, 0]

)
= 2

π
arcsin c−1

c+1 = 1
2 .

Therefore,
ωD (z, T ′

α)≥ 1
2 , ∀z ∈F ∗

cα

which implies that F ∗
cα lies in the component of D\Γ′

α not containing the origin and
hence

ωD (0, F ∗
cα)≤ωD (0,Γ′

α) . �

4. Proofs

Proof of Theorem 1.1. The Beurling-Nevanlinna projection theorem implies
that for every α>d,

ωD (0, Fα)≥ 2
π
e−dD(0,Fα)

or equivalently
logωD(0, Fα)−1

logα ≤ log (π/2)
logα + dD (0, Fα)

logα .

(see [19, p. 10]). By this and (1.1), we infer that

h (ψ)= lim inf
α→+∞

logωD(0, Fα)−1

logα ≤ lim inf
α→+∞

dD (0, Fα)
logα .

This in conjunction with the fact that

lim inf
α→+∞

dD (0, Fα)
logα ≤ h (ψ) ,
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which comes from Theorem 2.1, gives the desired result

h (ψ)= lim inf
α→+∞

dD (0, Fα)
logα . �

When the limits limα→+∞
logωD(0,Fα)−1

logα and limα→+∞
dD(0,Fα)

logα exist, we denote
them by L and μ respectively.

Proof of Corollary 1.4. By Theorem 1.1 we obtain

μ=+∞ ⇐==⇒ lim inf
α→+∞

dD (0, Fα)
logα =+∞

⇐==⇒ lim inf
α→+∞

logωD(0, Fα)−1

logα =+∞

⇐==⇒ lim
α→+∞

logωD(0, Fα)−1

logα =+∞ ⇐==⇒ L=+∞. �

Proof of Theorem 1.3. If μ exists then Theorem 1.1 gives

lim inf
α→+∞

logωD(0, Fα)−1

logα = h (ψ)= lim inf
α→+∞

dD (0, Fα)
logα =μ.

By the Beurling-Nevanlinna projection theorem, for every α>d,

logωD(0, Fα)−1

logα ≤ log (π/2)
logα + dD (0, Fα)

logα

and thus

lim sup
α→+∞

logωD(0, Fα)−1

logα ≤ lim sup
α→+∞

dD (0, Fα)
logα =μ= lim inf

α→+∞
logωD(0, Fα)−1

logα

which implies that

lim sup
α→+∞

logωD(0, Fα)−1

logα = lim inf
α→+∞

logωD(0, Fα)−1

logα =μ.

So, L exists and L=μ. �

Proof of Theorem 1.5. If L exists then Theorem 1.1 implies that

(4.1) lim inf
α→+∞

dD (0, Fα)
logα = lim inf

α→+∞
logωD(0, Fα)−1

logα =L.

If Fm
α denotes a component of Fα such that

dD (0, Fm
α )= dD (0, Fα) ,
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Figure 9.

then by the Beurling-Nevanlinna projection theorem, we get that for every α>d,

e−dD(0,Fα) = e−dD(0,Fm
α ) ≤ π

2ωD (0, Fm
α )≤ π

2ωD (0, F ∗
α)

or
dD (0, Fα)

logα ≥ log (2/π)
logα + logωD(0, F ∗

α)−1

logα .

Thus

(4.2) lim sup
α→+∞

dD (0, Fα)
logα ≥ lim sup

α→+∞

logωD(0, F ∗
α)−1

logα .

If c= 2+
√

2
2−

√
2 , let F ′

α be the component of Fα such that F ∗
6cα lies in the component

of D\F ′
α not containing the origin (see Figure 9). Also, let E′

6α be the arc of E6α
such that E′

6α∩F
∗
6cα �=∅ and Γ′

6α be the hyperbolic geodesic joining the endpoints
of E′

6α. By Lemma 3.4 we have that

ωD (z, E′
6α)≤ 1

2 , ∀z ∈F ′
α, ∀α≥ 33d.

This implies that F ′
α lies in the component of D\Γ′

6α containing the origin and
hence

dD (0, F ′
α)≤ dD (0,Γ′

6α) .

This and Lemma 3.1 give that for every α≥33d,

(4.3) e−dD(0,Fα) ≥ e−dD

(
0,F ′

α

)
≥ e−dD

(
0,Γ′

6α
)
≥ π

4ωD (0,Γ′
6α) .
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By Lemma 3.5, we get

(4.4) ωD (0,Γ′
6α)≥ωD (0, F ∗

6cα) .

Combining the relations (4.3) and (4.4), we infer that for every α≥33d,

e−dD(0,Fα) ≥ π

4ωD (0, F ∗
6cα) ,

or equivalently
dD (0, Fα)

logα ≤ log (4/π)
logα + logωD(0, F ∗

6cα)−1

logα .

Therefore,

lim sup
α→+∞

dD (0, Fα)
logα ≤ lim sup

α→+∞

logωD(0, F ∗
6cα)−1

logα

= lim sup
α→+∞

(
logωD(0, F ∗

6cα)−1

log (6cα)
log (6cα)

logα

)

= lim sup
α→+∞

logωD(0, F ∗
6cα)−1

log (6cα) = lim sup
α→+∞

logωD(0, F ∗
α)−1

logα .

This in conjunction with (4.2) gives

(4.5) lim sup
α→+∞

dD (0, Fα)
logα = lim sup

α→+∞

logωD(0, F ∗
α)−1

logα .

By relations (4.1) and (4.5), we conclude that μ exists if and only if

lim sup
α→+∞

dD (0, Fα)
logα =L ⇐==⇒ lim sup

α→+∞

logωD(0, F ∗
α)−1

logα =L

and if μ exists then μ=L. �
Proof of Corollary 1.6. Obviously, for every α>0,

1
N (α)ωD (0, Fα)≤ωD (0, F ∗

α)≤ωD (0, Fα)

or
ωD(0, Fα)−1 ≤ωD(0, F ∗

α)−1 ≤N (α)ωD(0, Fα)−1

or
logωD(0, Fα)−1

logα ≤ logωD(0, F ∗
α)−1

logα ≤ logN (α)
logα + logωD(0, Fα)−1

logα .

Since L exists and limα→+∞
logN(α)

logα =0, the above inequalities give that

lim
α→+∞

logωD(0, F ∗
α)−1

logα =L

and thus Theorem 1.5 implies that μ exists and μ=L. �
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5. Example

Trying to find a conformal map ψ on D such that ψ (0)=0, h (ψ)=μ=L<+∞
and ψ∈Hμ (D), we had to deal with the following issues:

(1) limα→+∞
logN(α)

logα =0 so as to ensure the existence of both μ and L (see
Theorem 1.3 and Corollary 1.6),

(2) Find exactly the number h (ψ),
(3)

∫ +∞
0 αμ−1ωD(0, Fα) dα<+∞ so that ψ∈Hμ (D) (see the relation (1.2)).

So, considering the simply connected domain D of Figure 10 and the corresponding
Riemann map ψ from D onto D with ψ (0)=0, we obtain:

(i) N (α)=1 for every α>0; so (1) is satisfied.
(ii) The evaluation of h (ψ) by estimating ωD (0, Fα) with the aid of extremal

length (see Theorem 2.10) which can be estimated in a domain of the form illustrated
in Figure 13, by applying the serial rule and the domain decomposition method; so
(2) is satisfied.

(iii)
∫ +∞
0 αμ−1ωD(0, Fα) dα<+∞ because of the circular arcs of ∂D and be-

cause of the choice of the sequence {en2} (see Figure 10) which we made after some
trials; and thus (3) is satisfied.

Example 5.1. There exists a conformal map ψ on D such that μ exists and
ψ∈Hμ(D).

Proof. Step 1: Let D be the simply connected domain of Figure 10, namely

D=D∪
{
z ∈C : |Arg z|< 1

6

}
\

+∞⋃
n=2

{
z ∈ en

2
∂D : h2 ≤ |Arg z|< 1

6

}
,

where h is a positive constant small enough so that if m (Q∗) is the module of the
quadrilateral Q∗={Ω; z1, z2, z3, z4} illustrated in Figure 12, then m (Q∗)>9. The
Riemann Mapping Theorem implies that there exists a conformal map ψ from D

onto D such that ψ (0)=0.
Step 2: Fix a real number α>e32 . Then there exists a fixed number n∈N

such that

(5.1) en
2 ≤α<e(n+1)2 ⇐==⇒ n≤

√
logα<n+1.

Applying Theorems 2.3 and 2.10, we have

(5.2) ωD (0, Fα) =ωD (0, ψ (Fα))≤ 8
π
e−πλD((−1,0],ψ(Fα)) ≤ 8

π
e−πλD0 (l,ψ(Fα)),

where D0=D\D and l=∂D∩D (see Figure 11). Set for j=2, 3, ..., n+1,

γj =
{
j2+iy : |y| ≤ h

2

}
.
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Figure 10. The simply connected domain D.

Applying the conformal map g (z)=Log (z) on D0 and setting g (D0)=D′
0 and g (l)=

l′=
{
iy :|y|≤ 1

6
}
, we get by the conformal invariance of extremal length and Theorem

2.3 that
λD0 (l, ψ (Fα)) =λD′

0
(l′, g (ψ (Fα)))≥λD′

0
(l′, γn) .

This and (5.2) give

(5.3) ωD (0, Fα)≤ 8
π
e
−πλD′

0

(
l′,γn

)
.

Taking the crosscuts γ2, γ3, ..., γn+1 of D′
0 and setting

m (Q1) =λD′
0
(l′, γ2) , m (Q2)=λD′

0
(γ2, γ3) , ..., m (Qn)=λD′

0
(γn, γn+1)

as illustrated in Figure 13, the serial rule implies that

(5.4) λD′
0
(l′, γn)≥m (Q1)+m (Q2)+...+m (Qn−1)≥m (Q2)+...+m (Qn−1) .

In every Qj , for j=2, 3, ..., n, we take the crosscuts

γ′
j =

{(
j2+1

)
+iy : |y| ≤ 1

6

}
, γ′′

j+1 =
{

(j+1)2−1+iy : |y| ≤ 1
6

}

(see Figure 14) so that applying the serial rule,

m (Qj)≥ 2m (Q∗)+λQj

(
γ′
j , γ

′′
j+1

)
=2m (Q∗)+3 (2j−1) .
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Figure 11. The crosscuts l, l0 and ψ (Fα) in D.

Figure 12. The quadrilateral Q∗={Ω; z1, z2, z3, z4}.

Figure 13. The crosscuts γj and the quadrilaterals Qj in D′
0.

Figure 14. The crosscuts γ′
j , γ

′′
j+1 in Qj .
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Adding for j=2, 3, ..., n−1, we get

m (Q2)+...+m (Qn−1) ≥ 2 (n−2)m (Q∗)+3 (3+5+7+... (2n−3))
= 2 (n−2)m (Q∗)+3n(n−2)

(5.5)
≥ 2 (n−2)m (Q∗)+3(n−2)2

≥ 2
(√

logα−3
)
m (Q∗)+3

(√
logα−3

)2
,

where the last inequality comes from (5.1). Combining the relations (5.3), (5.4) and
(5.5), we infer that

(5.6) ωD (0, Fα)≤ 8
π
e−2π

(√
logα−3

)
m(Q∗)−3π

(√
logα−3

)2

or equivalently

logωD(0, Fα)−1

logα ≥ log (π/8)
logα +

2π
(√

logα−3
)
m (Q∗)+3π

(√
logα−3

)2

logα
(5.7)

= 3π+ 2π (m (Q∗)−9)
√

logα+log (π/8)+27π−6πm (Q∗)
logα .

So, taking limits as α→+∞,

(5.8) lim inf
α→+∞

logωD(0, Fα)−1

logα ≥ 3π.

Step 3: On the other hand, by Theorem 2.10, we have

(5.9) ωD (0, Fα) =ωD (0, ψ (Fα))≥ e−πλD((−1,0],ψ(Fα)).

Take the crosscut l0=e∂D∩D (see Figure 11). Then

λD0 (l, l0) =λD′
0
(g (l) , g (l0)) = 3

and thus Theorem 2.5 implies that

(5.10) λD ((−1, 0] , ψ (Fα))≤C0+λD0 (l, ψ (Fα))+2.71e−3π,

where C0 :=λD ((−1, 0] , l0)−3. By Theorem 2.3, we take

λD0 (l, ψ (Fα))=λD′
0
(l′, g (ψ (Fα)))≤λD′

0
(l′, γn+1)

which gives with (5.9) and (5.10) that

(5.11) ωD (0, Fα)≥ e−Ke
−πλD′

0

(
l′,γn+1

)
,
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Figure 15. The auxilary crosscuts hj , h
′
j+1.

where K :=C0π+2.71e−3ππ. Considering the crosscuts γ2, γ3, ..., γn+1 of D′
0 and

applying successively Theorem 2.6 by using every time the auxilary crosscuts γ′
j

and γ′′
j , we obtain

λD′
0
(l′, γn+1) ≤ m (Q1)+m ((Q1)c)+5.26e−2πm(Q∗)

m ((Q1)c) ≤ m (Q2)+m ((Q2)c)+5.26e−2πm(Q∗)

...

m ((Qn−2)c) ≤ m (Qn−1)+m (Qn)+5.26e−2πm(Q∗),

where m ((Qj)c):=λD′
0
(γj+1, γn+1) for j=1, 2, ..., n−2. Adding the inequalities

above, we deduce that

(5.12) λD′
0
(l′, γn+1)≤m (Q1)+m (Q2)+...+m (Qn)+5.26e−2πm(Q∗) (n−1) .

Now set for j=2, 3, ..., n,

hj =
{(

j2+ 1
2

)
+iy : |y| ≤ 1

6

}
, h′

j+1 =
{

(j+1)2− 1
2 +iy : |y| ≤ 1

6

}
.

In every Qj , for j=2, 3, ..., n, we take the crosscut γ′
j and the auxilary crosscut hj

(see Figure 15). Since λD′
0

(
hj , γ

′
j

)
= 3

2 , by applying Theorem 2.6 we take

m (Qj)≤m (Q∗)+λD0′
(
γ′
j , γj+1

)
+5.26e−3π.

Then considering the crosscut γ′′
j+1 and the auxilary crosscut h′

j+1 (see Fig-
ure 15), we have again by Theorem 2.6 that

λD′
0

(
γ′
j , γj+1

)
≤m (Q∗)+3 (2j−1)+5.26e−3π,

where λD′
0

(
γ′
j , γ

′′
j+1

)
=3 (2j−1). Combining the inequalities above, we finally get

m (Qj)≤ 2m (Q∗)+10.52e−3π+3 (2j−1) .
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This in conjunction with (5.12) gives

λD′
0
(l′, γn+1)

≤m (Q1)+
(
2m (Q∗)+10.52e−3π+5.26e−2πm(Q∗)

)
(n−1)+3

n∑
j=2

(2j−1)

=m (Q1)+
(
2m (Q∗)+10.52e−3π+5.26e−2πm(Q∗)

)
(n−1)+3 (n−1) (n+1)

=m (Q1)−3+
(
2m (Q∗)+10.52e−3π+5.26e−2πm(Q∗)

)
(n−1)+3n2

≤m (Q1)−3+
(
2m (Q∗)+10.52e−3π+5.26e−2πm(Q∗)

)(√
logα−1

)
+3logα,

where the last inequality comes from (5.1). This and (5.11) give

ωD (0, Fα)≥ e−Ke−π(m(Q1)−3)e
−π

(
2m(Q∗)+10.52e−3π+5.26e−2πm

(
Q∗))(√

logα−1
)
−3π logα

or

logωD(0, Fα)−1

logα

≤
K ′+π

(
2m (Q∗)+10.52e−3π+5.26e−2πm(Q∗)) (√

logα−1
)
+3π logα

logα ,

where K ′ :=K+π (m (Q1)−3). Hence taking limits as α→+∞,

lim sup
α→+∞

logωD(0, Fα)−1

logα ≤ 3π.

By this and (5.8) we take

h (ψ)=L= lim
α→+∞

logωD(0, Fα)−1

logα =3π.

Since N (α)=1 for every α>0, Corollary 1.6 implies that μ=L=3π.
Step 4: Setting

C1 := 2π (m (Q∗)−9)> 0, C2 := log (π/8)+27π−6πm (Q∗) ,

by (5.7) we take that for every α>0,

logωD(0, Fα)−1

logα ≥ 3π+ C1√
logα

+ C2

logα.
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By this and a change of variable, we deduce that∫ +∞

1
α3π−1ωD(0, Fα) dα =

∫ +∞

1
α3π−1− log ω

D
(0,Fα)−1
log α dα≤

∫ +∞

1
α
−1− C1√

log α
− C2

log α dα

=
∫ +∞

1
α−1e

− C1√
log α

logα
α

log e−C2
/

logα
dα

= e−C2

∫ +∞

1
α−1e−C1

√
logα dα

= 2e−C2

∫ +∞

0
te−C1t dt= 2e−C2

C1
2 <+∞.

So, by (1.2) we infer that ψ∈H3π (D). �
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