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On the Hardy number of a domain in terms of
harmonic measure and hyperbolic distance

Christina Karafyllia

Abstract. Let 9 be a conformal map on D with ¢ (0)=0 and let Fo={z€D:|¢ (z)|=a}
for a>0. Denote by HP (D) the classical Hardy space with exponent p>0 and by h () the Hardy
number of . Consider the limits

L:= lim (long(O,Fa)fl/loga), u::agr_&o(dﬂ)(O,Fa)/loga),

a—+o0

where wp (0, F) denotes the harmonic measure at 0 of F, and dp(0, F) denotes the hyperbolic
distance between 0 and F, in D. We study a problem posed by P. Poggi-Corradini. What
is the relation between L, p and h(y)? Motivated by the result of Kim and Sugawa that
h (¢)=liminfq 4o (log wp (0, Fa)_l/log a), we show that h (¢)=liminf, 4 (dp (0, Fa)/log ).
We also provide conditions for the existence of L and p and for the equalities L=p=h (v). Poggi-
Corradini proved that ¢ H* (D) for a wide class of conformal maps 1. We present an example
of 9 such that ¢ H*(D).

1. Introduction

We study the Hardy number of a domain in terms of harmonic measure and
hyperbolic distance. For a domain D, a point z€ D and a Borel subset E of D, let
wp (2, E) denote the harmonic measure at z of E with respect to the component of
D\E containing z. The function wp (-, E) is exactly the solution of the generalized
Dirichlet problem with boundary data ¢=1g (see [1, Chapter 3], [9, Chapter 1]
and [22, Chapter 4]). The hyperbolic distance between two points z,w in the unit
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disk D (see [1, Chapter 1] and [4, p. 11-28]) is defined by

]'+ 12_—21%
dp (z,w) =log .
1- lz:zww ‘

The hyperbolic distance can be defined on any simply connected domain D#C
as follows: If f is a Riemann map of D onto D and z,we€D, then dp (z,w)=
dp (f7(2), f~*(w)). Also, for a set ECD, we define dp (z, E):=inf{dp (z,w):
weE}.

The Hardy space with exponent p, p>0, and norm ||||p (see [6, p. 1-2] and ]9,
p. 435-441]) is defined to be

2m
HP(]D):{feH(]D)):Hﬂz: sup / ’f(rew)‘pd9<+oo},
o<r<1Jo
where H (D) denotes the family of all holomorphic functions on D). The fact that
a function f belongs to H? (D) imposes a restriction on the growth of f and this
restriction is stronger as p increases. If ¢ is a conformal map on D, then ¢y H? (D)
for all p<1/2 ([6, p. 50]).
Hereinafter, 1 is a conformal map on D with ) (0)=0 and F,={z€D:|¢ (z)|=a}
for >0 (see Figure 1). The number h (1)) €[1/2, +o00] which is given by

h (1) =sup{p>0:1 € H” (D)},

is called the Hardy number of ¢ and was first introduced by Hansen in [10]. Note
that if D is a simply connected domain, we say D€ H? (D) if there is a Riemann
map ¢ of D onto D such that € H? (D). Any other Riemann map onto D is also in
HP (D), and hence the Hardy number of D is well-defined by setting h (D)=h (¢).
A classical problem in geometric function theory is to find the Hardy number of a
domain by looking at its geometric properties (see e.g. [3] and [18]). Hansen studied

Y(Fa)

Figure 1. The conformal map 1 on D and the sets Fq, 9 (Fo).
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the number by using Ahlfors’ distortion theorem and he described it in terms of
geometric quantities for starlike and spiral-like domains [11]. In [7] Essén gave a
description of h (¢) in terms of harmonic measures and obtained almost necessary
and sufficient conditions for h () in terms of capacity. Poggi-Corradini [20] studied
the range domains D of univalent Keenigs functions (see also [21]) and found that
the number h (D) can be described in terms of the essential norm of the associated
composition operators. Finally, based on Essén’ s main lemma [7], Kim and Sugawa
[15] proved that

-1

L 0,9 (Fa 1 £t
L1 n()—limne EL@ O E)) G logwn(0Fa)
a—+00 log o a—+o00 log a

In Section 4 we express h (¢) in terms of hyperbolic distance by proving the following
theorem.

Theorem 1.1. Let ¢ be a conformal map on D with ¥ (0)=0 and let F,=

{zeD: |y (z)|=a} for a>0. Ifh(v)) denotes the Hardy number of v, then
h (¢) =lim inf M.
a—+00 log e

Harmonic measure and hyperbolic distance are both conformally invariant
and several Euclidean estimates are known about them. Thus, expressing the
HP? (D)-norms of a conformal map ¢ on D in terms of harmonic measure and hyper-
bolic distance, we are able to obtain information about the growth of the function
by looking at the geometry of its image region ¢ (D). In [19, p. 10] Poggi-Corradini
proved that the Beurling-Nevanlinna projection theorem [1, p. 43-44] implies that
for every a>0,

wp (0, Fyp) > ge_d”(o’F”)
7r

and he stated the question [19, p. 36] whether the opposite inequality is also true
for some positive constant. In [13] we proved that the answer is negative and only
under additional assumptions involving the geometry of the domain ¢ (D) it can be
positive. However, the situation changes when we study integrals of the quantities
stated above. In [19, p. 33] and [21, p. 502-503] Poggi-Corradini proved that

+oo
(1.2) YeHP (D) — / a?"twp (0, F,) da < +o0.
0
Answering a question he stated in [19, p. 36], we proved in [14] that

“+o0
(1.3) YpeH? (D) +—— / aP~tem@(0Fa) do < 400
0
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Figure 2.

If we rewrite the integrands of conditions (1.2) and (1.3), we take respectively,
Oépilu.]][)) (07 Fa) — apflflong(O,Fa)fl/loga

and
aP~Lle=d(0,Fa) _ p—1-ds(0,Fa)/log o

Poggi-Corradini noticed that if the limit L:=lim,, o (log wp (0, Fa)_l/log o) exists
then the ratio log wp (0, Fa)_l/loga determines the Hardy number of . In fact, by
(1.2) we deduce that if p< L then € H? (D) and if p> L, ¢ HP (D). Similarly, if the
limit p:=limgy 400 (dp (0, Fy)/log @) exists then by (1.3) we infer that if p<y then
e HP (D) and if p>pu then ¢ HP (D). So, the ratio dp (0, Fy)/log o determines
the Hardy number of ¢). However, it is not clear whether ¢y€ H? (D) when p (or
L) is finite and p=p (or p=L). Poggi-Corradini proved (see [19, p. 37-38] and
[21, p. 503-504]) that ¢ ¢ H* (D) for a wide class of conformal maps ) which he
calls “sector-like”. But, could this result be generalized for every simply connected
domain? In Section 5, we answer this question by constructing the simply connected
domain of Figure 2 so that, if ¢ is the corresponding Riemann map, then ¢ € H*(D).
The reasons, which led us to construct this particular domain, are stated at the
beginning of Section 5.

Ezample 1.2. There exists a conformal map v on D such that p exists and
e H*(D).

Therefore, when p (or L) is finite, the case p=p (or p=L) depends on the way
the ratio approaches the limit u (or L). Finally, to complete the study of these
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limits, it is reasonable to examine the connection between p and L. So, in Section
4, we prove the following results.

Theorem 1.3. Suppose that u exists. Then L exists and L=.
Corollary 1.4. u=-+o0 if and only if L=+0o0.

Let N (a)eNU{+o0} denote the number of components of F,, for a>0 and F?
denote each of these components for i=1,2, ..., N (a). Since max{wp (0, F}):i€{1,
2,..N (a)}} exists, as we prove in Section 3, we denote by F* a component of F,
such that

wp (0, F%) =max {wp (0, F.) :i€{1,2,...,N (a)}}.

Theorem 1.5. Suppose that L exists. Then u ezists if and only if

1 )t
(1.4) Jim sup 28«00 F) © _
a—+o00 1Og04

In case p exists then p=1L.

log N ()
log

Corollary 1.6. If L exists and limq_, 40 =0 then p exists and p=1L.

Note that the condition of the corollary above is more geometric and easy to
check but it is not clear if it is necessary and sufficient. On the other hand, the
condition (1.4) of Theorem 1.5 is necessary and sufficient but not so easy to handle.
So, we state the following question.

Question 1.7. Can we replace the condition (1.4) by a more geometric condition
or, maybe, is the condition (1.4) true for every simply connected domain?

In Section 2 we introduce some preliminary results and notions such as the
domain decomposition method studied by N. Papamichael and N. S. Stylianopoulos
[17], the extremal length and its connection with the harmonic measure. In Section
3 we present some lemmas required for the proofs of Section 4. In Section 4 we
prove Theorems 1.1, 1.3 and 1.5 and Corollaries 1.4 and 1.6. Finally, in Section 5
we present the conformal map of the Example 1.2.

Acknowledgments. 1 thank Professor D. Betsakos, my thesis advisor, for his
advice during the preparation of this work, and the Onassis Foundation for the
scholarship I received during my Ph.D. studies.

2. Preliminaries

We first state a theorem proved by Poggi-Corradini in [19, p. 37] and [20,
p. 134].
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Theorem 2.1. Let ¢ be a conformal map on D and, for a>0, let F,={z€D:
[ (2)|=a}.
(i) If S=limsup, , o %<+oo, then:
(a) S<p<+oco=1y¢HP (D)
(b) a5~ 1=d O Fa)/loga ot integrable at infinity =1 ¢ HS (D).
(ii) If I=liminf, 4o o O-Fo) then, I>1/2 and

log

O<p<I=1cHP (D).

In particular, if S=I=p then p=h (V).

2.1. Extremal length

Another conformally invariant quantity, which is related to the harmonic mea-
sure, is the extremal length. We present the definition and the properties we need
as they are stated in [1, Chapter 4], [5, p. 361-385], [8, Chapter 7], [9, Chapter 4]
and [16, Chapter 2].

Definition 2.2. Let {C} be a family of curves and p(z)>0 be a measurable
function defined in C. We say p (z) is admissible for {C'} and denote by peadm {C},
if for every rectifiable C'c {C'}, the integral [ p(z)|dz| exists and 1< [, p(2)]dz|<
+00. The extremal length of {C}, A{C1}, is defined by

1
= inf 2 .
AMC} peagrln{c}//ﬂ (=) do dy

Note that if all curves of {C} lie in a domain D, we may take p (z)=0 outside
D. The conformal invariance is an immediate consequence of the definition (see [8,
p. 90]). As a typical example (see [5, p. 366] and [9, p. 131]), we mention the
case in which R is a rectangle with sides of length a and b and {C} is the family
of curves in R joining the opposite sides of length a. Then )\{C}:g. Next we
state two basic properties of extremal length that we will need (see [1, p. 54-55],
[5, p. 363], [8, p. 91], [9, p. 134-135] and [16, p. 79]).

Theorem 2.3. If {C'}C{C} or every C'€{C’'} contains a Ce{C}, then
MO {C'}.

Theorem 2.4. (The serial rule) Let {B,} be mutually disjoint Borel sets and
each C, €{Cy} be in By,. If {C} is a family of curves such that each C contains at
least one C,, for every n, then

MCE=) A}
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Sometimes it is more convenient to use the more special notion of extremal
distance. Let D be a plane domain and E7, F5 be two disjoint closed sets on 9D. If
{C} is the family of curves in D joining E; to Fs, then the extremal length Ap {C'}
is called the extremal distance between F; and Fy with respect to D and is denoted
by )\D (El, EQ)

2.2. Domain decomposition method

In case of quadrilaterals, the opposite inequality in the serial rule has been
studied by Papamichael and Stylianopoulos by means of a domain decomposition
method for approximating the conformal modules of long quadrilaterals (see [17]).
Before stating the theorems we need, we present the required notation.

Let © be a Jordan domain in C and consinder a system consisting of 2 and
four distinct points z1, 22, 23, 24 in counterclockwise order on its boundary 0€2. Such
a system is said to be a quadrilateral @ and is denoted by

Q:={Q; 21,22,23,24} .

The conformal module m (Q) of @ is the unique number for which @ is conformally
equivalent to the rectangular quadrilateral

Q"= {Run):0,1,14+m (Q)i,m (Q) i} ,

where R,,g)={z+yi:0<x<1,0<y<m(Q)} (see Figure 3). Note that m (Q) is
conformally invariant and it is equal to the extremal distance between the bound-
ary arcs (z1,22) and (z3,24) of Q. So, Q and Q:={Q; 21, 22, 23, 24} will denote
respectively the original domain and the corresponding quadrilateral. Moreover,
01,9, ..., and Q1,Q2, ..., will denote the principle subdomains and corresponding
component quadrilaterals of the decomposition under consideration. Now consider
the situation of Figure 3, where the decomposition of Q:={€; z1, 22, 23, 24} is de-
fined by two non-intersecting arcs 71,72 that join respectively two distinct points
a and b on the boundary arc (22, 23) to two points d and ¢ on the boundary arc
(z4,21). These two arcs subdivide € into three non-intersecting subdomains de-
noted by €4, Qs and 3. In addition, the arc v; subdivides €2 into €1 and another
subdomain denoted by €25 3, i.e. we take

5273 = ﬁg Uﬁg.
Similarly, we say that v, subdivides 2 into €2; 5 and 23, i.e. we take

5172 :ﬁl Uﬁg.
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im(Q) 1+im(Q)
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24
zZ1 /\ ,7/2
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Figure 3. The subdivision of  into Q1,2, Q3 and the conformal map F:Q—Q’.

Finally, we use the notations @1, Q2,Q3, Q1,2 and Q23 to denote, respectively, the
quadrilaterals corresponding to the subdomains €y, {22, Q3,2 o and €2 3, i.e.

Ql ::{Ql;zlaz%aad}v QQZZ{QQ;daaﬂbac}a Q3:: {Qg;c,b,23,24}

and
Qu2:={Q12;21,22,b,¢c}, Q23:={Q23;d,a,z23,24}.

The following theorems were proved by Papamichael and Stylianopoulos in [17,
p. 142-145].

Theorem 2.5. Consider the decomposition and the notations illustrated in
Figure 3. With the terminology defined above, we have

m (Q)—(m (Q1,2)+m (Qa,3)—m (Q2))| < 2.71e~ (@),
provided that m (Q2)>3.

Theorem 2.6. Consider a quadrilateral Q:={; 21, 29, 23, 24} of the form il-
lustrated in Figure 4 and assume that the defining domain Q can be decomposed
by means of a straight line crosscut | and two other crosscuts l; and ly into four
subdomains Qq, Qao, Q3 and Q4, so that Q3 is the reflection in | of Qy. Then, for
the decomposition of Q defined by I,

0<m(Q)—(m(Q12)+m (Qs.4)) <5.26e~2™m(Q2)

provided that m (Q2)>1.5.
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zZ1 24

z
2 23

Figure 4. The decomposition of Theorem 2.6.

Remark 2.7. Papamichael and Stylianopoulos proved Theorems 2.5 and 2.6 in
case {2 is a Jordan domain. However, it follows from the proof that they are still
valid if 2 is a simply connected domain and its boundary sets (z1, 22) and (z3, 24)
are arcs of prime ends.

2.3. Harmonic measure

Next we state a version of the Beurling-Nevanlinna projection theorem (see [1,
p. 43-44], [5, p. 43], [9, p. 105] and [22, p. 120]) which gives us a relation between
the harmonic measure of a closed and connected set in D and the harmonic measure
of its circular projection on the negative radius.

Theorem 2.8. (Beurling-Nevanlinna projection theorem) Let ECD\ {0} be a
closed connected set intersecting the unit circle. Let E*={—|z|:z€ E}=(—1, —r¢],
where ro=min {|z|:z€E}. Then, for 0<z<1,

(1—79) (1—2)

2 .
wp (2, B) >wp (z, E*) = — arcsin (570 (142)

Harmonic measure increases as the domain, in which it is defined, extends (see
[22, p. 102]).

Theorem 2.9. Let D1, Dy be simply connected domains such that D1 C Do
and B be a Borel subset of 0D1N0Ds. Then, for z€ D,

WpD, (ZﬂB) <wp, (ZaB) :

Let D be a bounded simply connected domain, F be an arc on 0D and zg€D.
Consider all Jordan arcs ¢ C D that join zp to 9D\ E and define

AD (ZOa E) =sup )\D\O' (07 E) )
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where the supremum is taken over all such Jordan arcs. Then the following theorem
gives a relation between wp (29, E) and Ap (20, E) (see [5, p. 368-371] and 9,
p. 144-146]).

Theorem 2.10. Let D be a bounded simply connected domain, E be an arc
on 0D and zo€D. Then

e~ TAD(20,E) < wp (20, E) < 2o~ mn(20,E)

3 o0

3. Auxilary lemmas

Lemma 3.1. Let I' be the hyperbolic geodesic joining two points z1, zo €0D in
D. Then
e~ PO < (0,IN < ée*d”(o’r).
T
0 s

, za=e~" for some H¢€ (O, —) and

Proof. Without loss of generality, let z;=e 5

r€(0,1) be the point of I lying on the real axis (see Figure 5).
Then the circle, C, passing through the points 21, zo, r is given by

1—7? r(rcosf—1)

r—cosf r—cosf

4y’ + =0

and has centre K= (ﬁ, O), as illustrated in Figure 5. Since the line passing

through K and z; is vertical to the tangent, 1, of the circle C' at z;, we infer that

27 cos §—2cos20 +1—1?
—2(r—cosf)sing ’

Aey =

Figure 5.
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where \¢, denotes the slope of ¢;. In addition, ¢; is vertical to the tangent, s, of
0D at z; and thus

cos® 2rcosf—2cos?0+1—r2 B

sinf 2 (r—cosf)sinf -1
or
_1—sin®
cosd
Therefore,
(3.1) e—dvor) _ 177 cosf+sinf—1

14+r cosf—sinf+1"

Since the function
20 cosf@—sinf+1
f0)=—

7 cos f-+sinf—1

is decreasing on (O, %) and

lm f(O)==,  lm fO)=1,

0—0+

we deduce that 1< f (6)
the fact that wp (0,T")=

<2 for every #€(0,%). This in conjunction with (3.1) and
20 (see [5, p. 370]) gives the desired result. O

By the conformal invariance of harmonic measure, we can easily make the
following computation.

Lemma 3.2. Let a€(0,1) and b€[0,1). Then

2 1
Wp\[a,1) (—b,0D) =1~ — arctan —.
8 (ETE
(I—a)(1-b)

Hereinafter, let ¢ be a conformal map on D with ¢ (0)=0 and let F,,={z€D:
[ (2)|=a} and E,={e":|¢ (¢")|>a} for a>0. Moreover, set d=dist (0, 9% (D))
and let N (o)eNU{+oc0} denote the number of components of F, for a>0.

Lemma 3.3. Let F! denote the components of F,, i=1,2,...,N (a). Then,
for every a>0, there exists a component F} such that

wp (0, F%) =max {wp (0, F.) i €{1,2,..N (a)}}.
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Proof. Fix an a>0. Since the case N (o) <+o0 is trivial, suppose N (a)=+00.
Then the series

+oo
> wp (0,F)) =wp (0, Fy) <1
i=1

converges and hence

lim wp (0,F.)=0.

1—+00
This implies that JigeN such that wp (O,Fg;) <wp (O7 Folt) for every i>ig. So, set-
ting w*=max {wp (0, F}) ,wp (0,F2),...,wp (0, Fo~1) }, we infer that there exists
a component, F¥, of F, such that
wp (0, FY) =w* =max {wp (0, F}):i€{1,2,..N (a)}}. O

Lemma 3.4. With the notation above, it is true that

, VzeF,, Ya>33d.

N =

wp (2, Fea) <

Proof. Set ¢ (D)=D. If zeF,, (see Figure 6), then by Baernstein’ s circular
symmetrization (see [2, Theorem 7] and [12, p. 665-669]), Theorem 2.9 and the
conformal invariance of harmonic measure, we infer that for every a>33d,

wp (2, Bsa) <wp (2, Foa) =wp (¥ (2) , ¥ (Fa)) <wp- (a, 0D*N60ID) ,

where D* is the simply connected domain obtained by the circular symmetrization
of DN6aD (see Figure 7). Applying Theorem 2.9, the conformal invariance of
harmonic measure and Lemma 3.2, we have that for every a>33d,

1
wp (2, Boa) < wp+(a, 0D*N6aID) < weap\ (=6a,—a) (@, 6dD) =wp\[ 2 1) (—6, 8[@)

2 1
=1l——arctan ————<
T

a 2
(Ftoac) —1

)

| =

[SUEN]
—~

T45V2 g Gq

where the last inequality comes from the fact that o> 30Vo-13

wp (2, Eea) <=, Vz€F,, Va>33d. O

N =
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\\‘l, ) ( F(i(l)
\\

—6a ! —d 6

Figure 7.

Lemma 3.5. Let c= gfg and a>d. Suppose that F}, is a component of F,
such that
wp (0, F,) =max {wp (0, F,) :i€{1,2,..N (a)}}
and F! is the component of F, such that FZ, lies in the component of D\F! not
containing the origin. If T, is the hyperbolic geodesic joining the endpoints of F,
i D, then
wp (0, F:a) S [0%)))) (0, ]._‘gé) .

Proof. Lemma 3.3 implies that a maximal component F, exists. Let z€F},
and ¢ (D)=D. Let T/, be the arc of D joining the endpoints of I, such that the
interior of I}, UT?, does not contain the origin (see Figure 8). If Dy is the component

of D\t (F!) containing v (z), then
wp (2, T5) =wp (¥ (2) ¥ (T4)) 2 wpy\o5 (¥ (2) % (T2)\aD) .

Apply the conformal map f (z)= % which sends Do\ aD onto an open set W CD,
the set (C\(Do\aD)) \ (aD) into a set A connecting 0 to D and f (¥ (z))zﬁe
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*
Fca

T,

Figure 8.

(%G]D). Then, by the Beurling-Nevanlinna projection theorem,

s (02 S(IND) = (50, 4) 2 (1, (1,01} = 2 avesin 1

Therefore,

wp (2, TH)> =, VzeFZ,

BN | =

which implies that F, lies in the component of D\I'/, not containing the origin and

hence
wp (07 F:a) SW]D) (071—‘;) . |:|

4. Proofs

Proof of Theorem 1.1. The Beurling-Nevanlinna projection theorem implies
that for every a>d,

wp (0, Fy) > e~ (0. Fx)

2

or equivalently
log wp (0, F,) Llog(m/2)  d (0, Fa)
log o ~ loga loga
(see [19, p. 10]). By this and (1.1), we infer that

1 F,)7! dp (0, F,
h () = lim inf logwp (0, Fa) <liminf M.
a—+00 log o a—r+o0 log a
This in conjunction with the fact that
dp (0, F,,
lim inf & (0, Fa) <h(v),

a—+00 log (e
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which comes from Theorem 2.1, gives the desired result

dp (0, F,
h (1) = lim inf b (0.Fa)
a—+oo  loga
When the limits limg— 400 % and limg 4 o0 dulgog’i‘l) exist, we denote

them by L and p respectively.

Proof of Corollary 1.4. By Theorem 1.1 we obtain

dp (0, Fy,
=400 +— liminfM
a—+00 loga

1 F)
s fiming og@n(OFe)
a—+oo log o
-1
a=y+oo log v

:+oo

=400 <+—— L=+4oc0. O

Proof of Theorem 1.3. If p exists then Theorem 1.1 gives

1 F,)™* d F,
lim inf M =h () =liminf M =u
a—4oo log o ast+oo loga

By the Beurling-Nevanlinna projection theorem, for every a>d,

logwn(0, Fo) ™" _ log(r/2)  dp (0, Fa)

log o - loga log &
and thus
1 Fa -t d, Fa 1 Fa -1
lim sup M <lim sup M == lim inf M
a—+00 log « a—+00 log (07 a—+00 log o

which implies that

1 0,F,) " 1 0,F,)" "
lim sup 8D Ta) W]If< . Fa) =lim inf 08WDAT To) wn )
a——+oo og a—+o0 log v

So, L exists and L=p. O

Proof of Theorem 1.5. If L exists then Theorem 1.1 implies that

d F, 1 F)7!
(4.1) lim inf 4 (0, Fa) =lim inf logwp(0, Fo)

=L.
a=+oo  loga a—+o0 log

If F" denotes a component of F,, such that

dp (0, F)")=dp (0, Fy,)
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*
6ca

4
6 l{‘,/

“6a

Figure 9.

then by the Beurling-Nevanlinna projection theorem, we get that for every a>d,

e ?(O0Fa) — g (0F) < gwm (0, F") < gWD (0, Fy)

or
dp (0. F,) _ log(2/)  loguwn(0, F) ™"
logae — loga log o '
Thus
F, 1 Foyt
(4.2) lim sup M > lim sup M_
a—stoo  loga 00 log a

If c= gf\‘g, let F! be the component of F,, such that Fg., lies in the component
of D\F/, not containing the origin (see Figure 9). Also, let Ef, be the arc of Eg,
such that Eéaﬂfgmyéﬁ and I'y,, be the hyperbolic geodesic joining the endpoints
of E§,. By Lemma 3.4 we have that

. Vz€F!, Va>33d.

N | =

wp (Za Eéa) <

This implies that F), lies in the component of D\I'},, containing the origin and
hence

dp (0, F,) <dp (0,T,) -

This and Lemma 3.1 give that for every a>33d,

(4.3) e~ ®OFa) > o=d (0.F7) > =2 (0T5a) > %wD (0,T%,) -
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By Lemma 3.5, we get

(44) wn (Oa Flﬁa) 2 wn (07 Fékca) .

Combining the relations (4.3) and (4.4), we infer that for every a>33d,
e—do(0.Fs) > %wm (0,FL.)

or equivalently
do (0, Fa) _log(4/m)  logwn(0, Feea) ™"

logae — loga log
Therefore,
dp (0 Fa 1 07F* —1
lim sup ]17’(4’) < limsup ogwn(0, Fi.,)
astoo  loga st on log
1 F* -1 1
= limsup ogwn (0, Fg,,)  log (6ca)
-+ log (6¢av) log o
1 0, Fg, -t 1 0. F* -1
= limsup 08wn(0, Feo) lim sup M.
a—+oo log (6ccv) o log

This in conjunction with (4.2) gives
dp (0, F, 1 0,F5) "
(4.5) lim sup dp (0, Fa) _ lim sup M.
a—too  loga a—rto0 log o

By relations (4.1) and (4.5), we conclude that p exists if and only if

dp (0, F, 1 Mool
fimsup 20 ) _p g g0 Fe)
astoo  loga a—+o0 log a

and if p exists then p=L. O
Proof of Corollary 1.6. Obviously, for every a>0,

ﬁwﬂ) (0, F) <wn (0, %) < wp (0, Fi)
or
wp(0, F) " <wp(0, F) ™ < N (@) wp (0, Fy) ™"
or
log wp(0, Fy) ™ < log wp (0, F) < log N (a) logwp (0, Fy) ™"
log a - log a ~ loga log o '
Since L exists and limg o0 lolgolgvia) =0, the above inequalities give that

oy —1
lim log wp (0, FX)

=L
a—+oo log

and thus Theorem 1.5 implies that p exists and u=L. O
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5. Example

Trying to find a conformal map ¢ on D such that ¢ (0)=0, h (¢Y)=p=L<+00
and € H* (D), we had to deal with the following issues:

(1) limg 400 10%01;27) =0 so as to ensure the existence of both y and L (see
Theorem 1.3 and Corollary 1.6),

(2) Find exactly the number h (1)),

(3) O+O° a*twp(0, F,) da<+oo so that € H* (D) (see the relation (1.2)).
So, considering the simply connected domain D of Figure 10 and the corresponding
Riemann map v from D onto D with ¢ (0)=0, we obtain:

(i) N (a)=1 for every a>0; so (1) is Satlsﬁed.

(ii) The evaluation of h (1)) by estimating wp (0, F,,) with the aid of extremal
length (see Theorem 2.10) which can be estimated in a domain of the form illustrated

in Figure 13, by applying the serial rule and the domain decomposition method; so
(2) is satisfied.

(iii fo “Lwp(0, F,,) da<+o0o because of the circular arcs of 9D and be-
cause of the choice of the sequence {e"z} (see Figure 10) which we made after some
trials; and thus (3) is satisfied.

Ezxample 5.1. There exists a conformal map 1 on D such that p exists and
e H*(D).
Proof. Step 1: Let D be the simply connected domain of Figure 10, namely

IR 1
D= ]D)U{ZG(C |Arg z| < = }\U{zee oD: 7<|Argz|< }

n=2

where h is a positive constant small enough so that if m (Q*) is the module of the
quadrilateral Q*={Q; 21, 22, 23, 24} illustrated in Figure 12, then m (Q*)>9. The
Riemann Mapping Theorem implies that there exists a conformal map v from D
onto D such that ¢ (0)=

Step 2: Fix a real number a>e3". Then there exists a fixed number n€N
such that

(5.1) e <a<e™ e—s n<\floga<n+l.

Applying Theorems 2.3 and 2.10, we have

(5.2) wp (0, Fy) =wp (0,1 (F,)) < §6*7T)\D((*1,0],¢(Fa)) < §ef7r/\oo(l’w(Fa))’
™ ™

where Dy=D\D and [=0DND (see Figure 11). Set for j=2,3,...,n+1,

o . h
v = J+zy:\y|§§ .
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Figure 10. The simply connected domain D.

Applying the conformal map g () =Log (z) on Dy and setting g (Dg)=D{ and g ()=
'={iy:|y|<%}, we get by the conformal invariance of extremal length and Theorem
2.3 that

Ap, (L4 (Fa)) = Apy (I, 9 (4 (Fa))) = Apy (I, 7m) -
This and (5.2) give

8 _ax,, (U
(5.3) wp (0, Fp) < —e g ()
T
Taking the crosscuts ¥2,7s, ..., Yn+1 of D} and setting

m(Q1) =Ap, (I';72), m(Qa2)=Ap; (v2,73) s -y M (Qn) =Apy (Yn> Ynt1)

as illustrated in Figure 13, the serial rule implies that
(54)  Apy (';70) 2m (Q1)+m (Q2) 4. 4+m (Qn-1) >m (Q2)+...+m (Qn—1) -
In every @Q;, for j=2,3,...,n, we take the crosscuts
V= {(j2+1)+iy: lyl < %} V= {(j+1)2—1+iy: lyl < %}
(see Figure 14) so that applying the serial rule,

m (Q;) =2m (Q")+Aq, (v, 7f41) =2m (Q")+3 (2j—1).
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Figure 11. The crosscuts I,lp and ¢ (Fy) in D.

z3]!

i
h: 0 11/3

: 29 E

24 i

Figure 12. The quadrilateral Q*={Q; z1, 22, 23, 24 }.

i(1/6) g(Y(Fn))
, @ Q> Qs Q4
l Y2 T3 Ya
—i(1/6)

Figure 13. The crosscuts «; and the quadrilaterals Q; in Dy).

Yj v; Vi1 Yi+1

Figure 14. The crosscuts 7},77,, in Q;.
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Adding for j=2,3,...,n—1, we get

m(Qa)+...4m (Qn-1) > 2(n—2)m (Q*)+3 (3+5+7+...(2n—3))
(5.5) = 2(”—2)m(Q*>+3n(n—22)
>2(n—2)m(Q")+3(n—2)
> 9 loga—3)m(Q*)+3(\/loga—3)2,

where the last inequality comes from (5.1). Combining the relations (5.3), (5.4) and
(5.5), we infer that

(5.6) wp (0, F,) < 6*2‘”(\/@*3)m(@*)*3”(@*3)2

3] oo

or equivalently

log wp(0, Fy) ™" _ log (7/8) N 2 (Vioga—3) m (Q*)+37r(\/loga—3)2

(5.7) log o ~ loga log
. 34 21 (m (Q*)—9) log a+log (7/8)+27m —6mm (Q*)
N log o ’

So, taking limits as a—+o0,

1 0,F,)""
(5.8) lim inf 12892(0 Fa)

> 3m.
a—+00 log (e}

Step 3: On the other hand, by Theorem 2.10, we have

(5.9) wp (0, ) =wp (0,1 (Fp)) > e~ ™0 (10 (Fa))
Take the crosscut lp=edDND (see Figure 11). Then

Ap, (I,10) =Apy (9 (1), 9 (o)) =3
and thus Theorem 2.5 implies that
(5.10) Ap ((—1,0], 9 (Fa)) < Co+Ap, (1,4 (Fa))+2.71e7°7,
where Cy:=Ap ((—1,0],1o) —3. By Theorem 2.3, we take

Ap, (14 (Fo)) =Apy (U, 9 (¥ (Fa))) < Apy (I's Ynt1)

which gives with (5.9) and (5.10) that

(5.11) wp (O,Fa) > e—Ke—ﬂ'/\Dé (l’,’YnJrl)7
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i h; i Vit

"/j ’/j/+1 3‘+1 Yi+1

Figure 15. The auxilary crosscuts hj, b’ ;.

where K:=Com+2.71e 3"r. Considering the crosscuts ¥2,73, ..., Yn+1 of D{ and
applying successively Theorem 2.6 by using every time the auxilary crosscuts ’y;»
and 77, we obtain

Apy (I 1) <m0 (Qu)+m (Q1)7)+5.26e 27"
m ((Q1)) < m (Qa)+m ((Q2)°)+5.26e~27m(Q")

m(Qn-2)°) < m(Qn_1)+m (Qn)+5.26e27™Q")

where m((Qj)C)::)\D6 (Vj+1,Yns1) for j=1,2,...,n—2. Adding the inequalities
above, we deduce that

(5.12)  Apy (U, Yn41) <m(Q1)+m (Q2) +...+m (Qn) +5.26e ™) (n—1).

Now set for j=2,3,...,n,

1 1 1 1
.2 . _ . 2 T
hj:{(] +§)+2y-|y|§6}, h§-+1—{(3+1) —§+zy.|y|§6}.

In every Q;, for j=2,3,...,n, we take the crosscut 7§ and the auxilary crosscut h;
(see Figure 15). Since Ap; (hj, fy;) :%, by applying Theorem 2.6 we take

m (Q;) <m (Q")+Apy (), 7j+1)+5.26e 7.

Then considering the crosscut 7;';; and the auxilary crosscut hj,; (see Fig-
ure 15), we have again by Theorem 2.6 that

Ay (Vi) Sm(Q*)+3 (25— 1)+5.26e 37,
where Ap; (*y;-,w;' '.1)=3(2j—1). Combining the inequalities above, we finally get

m(Q;) <2m (Q*)+10.52e 3" +3 (25 —1).
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This in conjunction with (5.12) gives
)\D{) (', nt1)

<m(Q1)+ ( (Q*)+10.52¢~37 45,26 27m(Q ) +3Z 2j—1)
j=

m(Q )+(2m (Q*)+10.52e~37 45.26¢2m(Q" )) (n—1)+3 (n—1) (n+1)

m(Q1)—3+ <2m (Q*)+10.52¢ 3™ 45.26e 2" ) (n—1)+3n?

m(Q1)—3+ <2m (Q*)+10.52¢~37 5,26 27m(Q" ) (\/loga 1)+3loga,

IA

where the last inequality comes from (5.1). This and (5.11) give

(0,F,) > ¢ Kemmm(Q)=3) ,~m(2m(@)+10.52¢7 745200~ 27(2")) (yIoga—1) ~sr log o

or

log wp (0, Foé)f1
log o
_ K'+m (2m (Q*)+10.52e 37 +5.26e~2(Q7)) (\/loga—1) +37 log

i

log v
where K":=K+7 (m (Q1)—3). Hence taking limits as a— o0,

1 F)™t
limsup—OgWD(O7 o)

< 3.
o400 log o

By this and (5.8) we take

F,) "
h($)=L= lim ‘28ep(0.Fa)

=3m.
a—+00 log e}

Since N (a)=1 for every a>0, Corollary 1.6 implies that uy=L=3x.
Step 4: Setting

Cy:=2r(m(Q")—9) >0, Cy:=log(r/8)+27mr—6mm (Q"),
by (5.7) we take that for every a>0,

log wp (0, Fp) ™" Ch Cy
— >3 .
log « = ot \/loga—i_loga
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By this and a change of variable, we deduce that

too too log wpy (0, F, -1 +oo C C
_ _1loswn(0.Fa)” " 1% C2
/ a’ le(07Fa)da=/ a1 Tog o dag/ o Vieea  Tega oy
1 1 1

So,

10.

11.

12.
13.

14.

15.

16.

too c —c
=1 2
/ 04716 Tora log aaloge /loga do
+oo
— 6702\/ a*lefCl\/logoc dOé

+oo —C
2 2
= / Cltdt: € D) <+ XO.
0 Gy

by (1.2) we infer that € H*™ (D). O
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