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On Laplace–Carleson embeddings, and
Lp-mapping properties of the Fourier transform

Eskil Rydhe

Abstract. We investigate so-called Laplace–Carleson embeddings for large exponents. In
particular, we extend some results by Jacob, Partington, and Pott. We also discuss some related
results for Sobolev- and Besov spaces, and mapping properties of the Fourier transform. These
variants of the Hausdorff–Young theorem appear difficult to find in the literature. We conclude
the paper with an example related to an open problem.

1. Introduction

Throughout this note we let 1≤p, q≤∞, and p′= p
p−1 , so that 1

p + 1
p′ =1. By

R+ and C+ we respectively denote the set of positive real numbers (0,∞) and the
complex upper half plane {z∈C|Im z>0}. We let μ be a positive Borel measure on
C+. Preliminaries and notation not covered in this section is deferred to Section 2.
In particular, we postpone the definitions of the following standard function spaces.

Hp(C+) – Hardy space of analytic functions on C+;
Ap

α(C+) – Standard weighted Bergman space;
W p

s – Sobolev space of tempered distributions on Rd;
F p,q
s – Triebel–Lizorkin space on Rd;

Bp,q
s – Besov space on Rd;

Ẋ – Homogeneous counterpart of X∈{W p
s , F

p,q
s , Bp,q

s }.

This work was supported by the Knut and Alice Wallenberg foundation, scholarship KAW
2016.0442, and produced while the author was a postdoc at University of Leeds, UK.
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The notion of Laplace–Carleson embeddings was coined in [13], and refers to
maps of the type

L : Lp(R+)−→Lq(C+, dμ), f �−→Lf :=
∫ ∞

0
f(t)e2πit· dt.

A priori, the above map is strictly formal. However, if LLp(R+) is indeed contained
in Lq(C+, dμ), then the inclusion is continuous by the closed graph theorem.

One may of course also consider more general spaces in place of Lp(R+), for
example weighted Sobolev spaces. In this direction, we will only summarily consider
spaces of order 0 and with simple weights.

We now recall some basic problems and results from [13]: Given an interval
I⊂R, with length |I|, we define the so-called Carleson box

QI := {x+iy |x∈ I, 0<y≤ |I|}⊂C+.

If 1≤p, q<∞, and L : Lp(R+)→Lq(C+, dμ) is bounded, then the measure μ neces-
sarily satisfies

μ(QI)� |I|q/p′
for all intervals I ⊂R.(1)

The motivation for this paper arose from the question of to which extent the nec-
essary condition (1) is also sufficient for L : Lp(R+)→Lq(C+, dμ) to be bounded.
The following results can be found in [13, Section 3].

(I) If 1≤p≤2 and p′≤q<∞, then (1) is also sufficient for L : Lp(R+)→Lq(C+,

dμ) to be bounded.
(II) If μ is sectorial, i.e. there exists a c>0 such that μ has support in the

sector {z∈C+ |Im z≥c|Re z|}, and 2<p≤q<∞, then (1) is sufficient.
(III) If μ is sectorial, 1<p≤2, and p≤q<∞, then (1) is sufficient.
(IV) If 1≤q<p<∞, then (1) is not sufficient, even under the assumption that

μ has support on the imaginary axis.

It may be useful for orientation to consult the (1/p, 1/q)-diagram in Figure 1. Our
primary contribution to this body of knowledge is that the hypothesis of sectoriality
may be removed in case (II).

Theorem 1.1. If 2<p≤q<∞, and (1) holds, then L : Lp(R+)→Lq(C+, dμ)
is bounded.

Consider the case (I), i.e. 1≤p≤2, p′≤q<∞. The proof that (1) is sufficient in
this case consists of two main steps: The Hausdorff–Young theorem readily implies
that L is a bounded map from Lp(R+) to Hp′(C+), the standard Hardy space of the
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Figure 1. It is previously known that for (p, q) corresponding to the region labelled (I), condition
(1) is necessary and sufficient for the Laplace–Carleson embedding L : Lp(R+)→Lq(C+, dμ) to
be bounded. In the regions (II) and (III), (1) is necessary and sufficient under the additional
hypothesis that μ is sectorial. In (IV), (1) is not sufficient, even for sectorial measures. Theorem 1.1
states that in (II), (1) is necessary and sufficient without any particular conditions on the measure.

upper half plane. The Carleson–Duren embedding theorem (Theorem 2.1 below)
then states that Hp′(C+)↪→Lq(C+, dμ) if and only if μ satisfies (1). The proof of
Theorem 1.1 has the same structure:

We let Ap
α(C+) denote the standard weighted Bergman space of analytic func-

tions on C+. For p>2, we have the following substitute for the Hausdorff–Young
theorem:

Theorem 1.2. If 2<p≤q<∞, then L : Lp(R+)→Aq
q/p′−2(C+) is bounded.

Remark 1.3. By case (I), Theorem 1.2 remains valid for p=2, provided that
q>2.

Theorem 1.1 is immediate from Theorem 1.2, and a Carleson embedding type
theorem for Bergman spaces, stated below as Theorem 2.2.

For readers with a particular interest in Bergman spaces, we also derive an ana-
logue for analytic functions on the open unit disk D. We let dA signify integration
with respect to area measure on C.
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Theorem 1.4. If 2<p≤q<∞, then there exists C=Cp,q>0 such that(∫
D

∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
q

(1−|w|2)q/p′−2 dA(w)
)1/q

≤C

( ∞∑
k=0

|ak|p
)1/p

for any sequence (ak)∞k=0.

We also obtain some results for the power weighted spaces Lp(R+, x
α dx). The

next result is a simultaneous analogue of Theorem 1.2 and [5, Theorem 1].

Theorem 1.5. If 2<p≤q<∞, and α<p/q′−1, then

L : Lp(R+, x
α dx)−→Aq

q/p′−2−αq/p(C+)

is bounded.

We also obtain:

Theorem 1.6. If 2<p<∞, then

L : Lp(R+, x
p−2 dx)−→Hp(C+)

is bounded.

A weighted analogue of Theorem 1.1 becomes:

Theorem 1.7. Let 2<p≤q<∞, and α≤p/q′−1. Then

L : Lp(R+, x
α dx)−→Lq(C+, dμ)

is bounded if and only if μ satisfies

μ(QI)� |I|q/p′−αq/p for all intervals I ⊂R.

We now transition into a discussion about the Fourier transform F , and the
Hausdorff–Young theorem. In what follows, the underlying domain of any space of
distributions is Rd, unless we indicate otherwise. For example, Lp denotes Lp(Rd).
We let |x| denote the Euclidean norm of x=(x1, ..., xd)∈Rd.

The Hausdorff–Young theorem states that if 1≤p≤2, then F : Lp→Lp′ , or
equivalently F−1 : Lp→Lp′ . The original version of this result was an analogous
statement about periodic functions, see [10] and [21], whereas the essence of the
present statement is found in [17]. For a more careful historical account, we refer
to the survey [3].

If p>2 and f∈Lp, then f̌ :=F−1f in general needs to be interpreted as a
tempered distribution. As an indication of this, we mention a theorem by Hardy
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and Littlewood [8, p. 237], stating that the formal series
∑∞

k=1
1

k1/2 cos(k2πx) is not
the Fourier series of any function.

Interpreting f̌ as the distributional boundary values of Lf , Theorem 1.2 gives
us a quantitative estimate on the regularity of f̌ . The proof of Theorem 1.2 is based
on the relation between L and F−1, iterated use of the Plancherel theorem, and
complex interpolation. By a similar (in fact simpler) argument we obtain a stronger
result:

Theorem 1.8. Let p≥2. If f∈L1, then∫
Rd

|f̂(ξ)|p dξ �
∫
Rd

|f(x)|p
(

d∏
k=1

|xk|
)p−2

dx.

While Theorem 1.2, and the proof leading up to Theorem 1.8, was discovered
independently, the corresponding theorem for periodic functions of one variable
dates back to Hardy and Littlewood [9, Theorem 3]. By the inequality of geometric
and arithmetic means, and the equivalence of norms on Rd, Theorem 1.8 implies
the following result, which appears to be a folklore generalization of the theorem
by Hardy and Littlewood.

Theorem 1.9. Let p≥2. If f∈L1, then∫
Rd

|f̂(ξ)|p dξ �
∫
Rd

|f(x)|p|x|(p−2)d dx.

Even though Theorem 1.2 will eventually be derived from Theorem 1.9, The-
orem 1.8 seems interesting in its own right, as an example of a weighted inequality
for the Fourier transform, where the weight is non-radial.

Let W p
s denote the standard Sobolev space of fractional order s, and Ẇ p

s its ho-
mogeneous counterpart. Although Theorem 1.9 is part of the folklore, the following
(nearly immediate) consequence appears to be absent in the literature.

Theorem 1.10. If p≥2, then F : Lp→Ẇ p
d(2/p−1) is bounded.

A technical remark may be in order. Take p>2, and s=d(2/p−1). In partic-
ular, s<0. Moreover, let f∈Lp. If in addition, |f |p|·|(p−2)d is integrable, then
the Riesz potential fractional order antiderivative İsf̂ is well-defined as a tem-
pered distribution, and İsf̂∈Lp. For general f∈Lp, this understanding of İsf̂ is
to naive. Instead, one needs to identify f̂∈S ′ with the equivalence class [f̂ ]∈S ′/P,
where P denotes the space of polynomials. Then İs[f̂ ]∈S ′/P is well defined. The
Littlewood–Paley theorem offers a canonical way to identify İs[f̂ ] with an element
of Lp. By said identification, Ẇ p

s becomes a proper subspace of W p
s (recall that

s<0). We therefore obtain a variation of the above result:



442 Eskil Rydhe

Theorem 1.11. If p≥2, then F : Lp→W p
d(2/p−1) is bounded.

This result is less subtle: If f∈Lp, then the Bessel potential fractional an-
tiderivative Isf̂ is a tempered distribution, and an element of Lp.

By the duality
(
Ẇ p

s

)′=Ẇ p′

−s we obtain:

Theorem 1.12. If p∈(1, 2), then F : Ẇ p
d(2/p−1)→Lp is bounded.

A related observation is that Theorem 1.10 does not extend to p<2. In-
deed, if F : Lp→Ẇ p

d(2/p−1) was bounded for some p∈(1, 2), then F : Ẇ p′

d(2/p′−1)→
Lp′ would also be bounded, again by duality. Since all the function spaces in
question are invariant under the reflection operator R=F2, we would have that
F−1=F3 : Ẇ p′

d(2/p′−1)→Lp′ . By Theorem 1.10, this map would be invertible, and
F : Lp′→Ẇ p′

d(2/p′−1) would be bounded below. But this is not true. Consider for
example the (essentially) Lp′-normalized indicator function R(d−1)/p′

1AR
of the

annulus AR=
{
x∈Rd;R<|x|<R+1

}
. It is easy to show that ‖1AR

‖Lp′ ≈1, while
‖1̂AR

‖
Ẇp′

d(2/p′−1)
→0 as R→∞.

Using the formalism of homogeneous Triebel–Lizorkin-spaces, we note that
Ẇ p

s =Ḟ p,2
s ⊂Ḟ p,p

s for p>2, since the spaces Ḟ p,q
s increase with q. A more general

statement is that Ẇ p
s ⊂Ḟ q,q

sq , provided that q≥p>2, and s−d/p=sq−d/q. This fol-
lows from a standard embedding result, stated below as Theorem 2.3. Theorem 1.10
implies that F−1=F3 : Lp→Ḟ q,q

d(1/q−1/p′). Theorem 1.2 is now a consequence of the
relation between F−1 and L, and the fact that the analytic part of Ḟ q,q

s (R) is
contained in Aq

−sq−1(C+) when s<0.
We briefly compare Theorem 1.11 with a result by Hörmander [12, Theo-

rem 7.9.3]: If p>2 and s<d(1/p−1/2), then F : Lp→W 2
s . By Theorem 2.3, this

implies that F : Lp→W p
s whenever s<d(2/p−1). In relation to this, we point out

that the target space in Theorem 1.10 is optimal within the scale of homogeneous
Sobolev spaces, and at least close to optimal in terms of Triebel–Lizorkin spaces.
The next result is a precise formulation of this statement.

Theorem 1.13. Let 2<p<∞, 1<r, q<∞, and s∈R. If F : Lp→Ḟ r,q
s is bound-

ed, then s=d(1/p−1/r′). Moreover, it holds that r≥p, and if r>p, then Ẇ p
d(2/p−1)�

Ḟ r,q
s . In particular, if F : Lp→Ẇ r

s is bounded, then Ẇ p
d(2/p−1)⊆Ẇ r

s , with equality

if and only if r=p and s=d(2/p−1).

Having discussed FLp for p>2, it seems natural to add an observation about
p<2: The typical proof of the Hausdorff–Young inequality uses complex (Riesz–
Thorin) interpolation between F : L2→L2 and F : L1→L∞. This argument com-
pletely disregards the fact that if f∈L1, then f̂ is not only bounded but also contin-
uous. However, it seems reasonable to expect that if f∈Lp, 1<p<2, then f̂ should
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be more regular than an arbitrary Lp′-function. A striking manifestation of this is
a result by Tomas [18], stating that for any fixed p with 1≤p<2(d+1)/(d+3),(∫

|ξ|=1
|f̂(ξ)|2 dσ(ξ)

)1/2

�
(∫

Rd

|f(x)|p dx
)1/p

, f ∈Lp.

Here dσ signifies integration with respect to (d−1)-dimensional surface measure.
We refer to [16] for a background on Fourier restriction theorems, and to [2] for a
more recent development.

The proof of Tomas’ result is based on a dyadic decomposition of frequen-
cies, and averaging the Hausdorff–Young inequality over different frequency scales.
Similar arguments appear also in Hörmander’s treatment of the (closely related)
Bochner–Riesz problem [11]. However, the following result does not appear to be
recorded.

Theorem 1.14. If 1≤p≤2, then F : Lp→Ḃp′,p
0 ∩Bp′,p

0 is bounded.

In the above theorem, Ḃp′,p
0 and Bp′,p

0 respectively denote homogeneous and
non-homogeneous Besov-spaces. Theorem 1.14 is significantly stronger than the
Hausdorff–Young theorem. Consider for example the embeddings

Bp′,p
0 �F p′,p

0 �F p′,2
0 =Lp′

,

valid for 1<p<2, e.g. [19, Proposition 2.3.2.2]. The inclusions are strict by [19,
Theorem 2.3.9].

A way to think about Theorem 1.14 is as follows: It is known that if M(R+)
denotes the space of finite complex measures on R+, then LM(R+)⊂B∞,1

0 (R), e.g.
[20, p. 257]. The case p=1 of Theorem 1.14 is but a simple variation of this result,
while the case p=2 is the Plancherel theorem. Once again, the intermediate cases
can be obtained by complex interpolation, e.g. [1, Theorem 6.4.5]. Since B∞,1

0 is a
space of continuous functions, the interpolation argument now reflects the fact that
FL1 consists of continuous functions. This may explain why arguments similar to
the proof of Theorem 1.14 also appear in the literature on restriction theorems.

A key tool for us is the method of complex interpolation. The basic idea is that
if T : Lp0 +Lp1→Lq0 +Lq1 is a linear map, and T : Lpj→Lqj is bounded for j∈{0, 1},
then T : Lp→Lq is bounded whenever (1/p, 1/q) belongs to the straight line segment
connecting the points (1/p0, 1/q0) and (1/p1, 1/q1) in R2. Now note that if p=q=1,
then (1) just means that μ is a finite measure, while for any f∈L1(R+), Lf is a
bounded function on C+. Hence, (1) implies that L : L1(R+)→L1(C+, dμ). Based
on Figure 1, it seems difficult not to imagine the existence of an interpolation result
which allows for the hypothesis of sectoriality to be relaxed also in case (III). We do
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not resolve this problem, but we do note by means of an example that Stein–Weiss
interpolation, in the sense of Theorem 2.4 below, applied in a simple but quite
general way, is not sufficient for this purpose.

The remainder of this paper is organized as follows: In Section 2, we recall
some basic results and standard notation. We prove the Theorems 1.8 through
1.14 in Section 3, and apply these to the Laplace transform, in order to prove the
Theorems 1.1 through 1.7, in Section 4. In Section 5, we give an example related
to the above case (III) for non-sectorial measures.

2. Preliminaries and notation

Given two parametrized sets of non-negative numbers {Ai}i∈I and {Bi}i∈I ,
we write Ai�Bi, i∈I, to indicate the existence of a constant C>0 such that i∈
I=⇒Ai≤CBi. The index set I is often implicit from context, in which case we
allow ourselves to suppress it in our notation. If Ai�Bi and Bi�Ai, then we write
Ai≈Bi.

Given an analytic function F : C+→C, and y>0, define Fy : R→C by Fy(x)=
F (x+iy). The Hardy space Hp(C+) is the space of analytic function F : C+→C

such that

‖F‖Hp(C+) := sup
y>0

‖Fy‖Lp(R) <∞.

If F∈Hp(C+), then the limit bF (x)=limy→0+ Fy(x) exists for Lebesgue a.e. x∈
R. Moreover, Fy→bF in Lp(R), and we may recover F from bF via the Poisson
extension operator;

F (x+iy)= (Py∗bF ) (x) := 1
π

∫
t∈R

y

(x−t)2+y2 bF (t) dt.

The correspondence between F and bF characterizes Hp(C+) as the subspace of
Lp(R) consisting of functions whose Poisson extensions to C+ are analytic. We refer
to [7, Chapter II, Section 3].

In the introduction, we needed the following result on Hardy spaces:

Theorem 2.1. Let 1<p≤q<∞, and μ be a positive Borel measure on C+.

Then Hp(C+)⊂Lq(C+, dμ) in the sense of a continuous embedding if and only if

μ(QI)� |I|q/p for all intervals I ⊂R.

In the case p=q, this is the celebrated Carleson embedding theorem [4], while
the general case is due to Duren [6].
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Given α>−1, the standard weighted Bergman space Ap
α(C+) is the space of

analytic function F : C+→C such that

‖F‖p
Ap

α(C+) :=
∫ ∞

y=0

∫
x∈R

|F (x+iy)|pyα dx dy <∞.

A Bergman space analogue of Theorem 2.1 is easily derived from [13, Theorem 2.1],
or by the method outlined in [15]:

Theorem 2.2. Let 1<p<∞, α>−1, and μ be a positive Borel measure on

C+. Then Ap
α(C+)⊂Lp(C+, dμ) in the sense of a continuous embedding if and only

if

μ(QI)� |I|2+α for all intervals I ⊂R.

We let S denote the Schwartz class of functions on Rd, and S ′ its topological
dual. The Fourier transform F : f �→f̂ , f∈S, is defined according to the convention

f̂(ξ)=
∫
Rd

f(x)e−2πix·ξ dx, ξ ∈Rd,

and extended to S ′ by the relation 〈f̂ , g〉=〈f, ĝ〉.
We note that Lf(x+iy)=F−1(e−2πy·f)(x). In particular, if Φ∈S(R) satisfies

Φ̂(ξ)=e−2πξ for ξ≥0, and Φy denotes the L1(R)-normalized dilation x �→ 1
yΦ(xy ),

then Lf(x+iy)=
(
Φy∗f̌

)
(x), where f̌=F−1f . If f∈Lp(R+), 1≤p≤2, so that f̌∈

Lp′(R), then we may replace Φ with the Poisson kernel P : x �→ 1
π

1
1+x2 , since P∈

L1(R) and P̂ (ξ)=e−2π|ξ|. Consequently, L : Lp(R+)→Hp′(C+) is bounded by the
Hausdorff–Young theorem.

The subspace S0⊂S is defined by the condition that
∫
f(x)xα dx=0 for all

multi-indices α, or equivalently that any derivative of f̂ vanishes at the origin.
Its dual coincides with S ′/P, where P denotes the space of polynomials. For a
discussion on S0 and its dual, we refer to [19, Chapter 5]. Said monograph is also a
standard reference for the following material on Besov- and Triebel–Lizorkin-spaces.

The Bessel potential Iα : f �→F−1
((

1+|·|2
)α/2

f̂
)

is a homeomorphism on S ′,

whenever α∈R. Similarly, the Riesz potential İα : f �→F−1
(
|·|αf̂

)
is a homeomor-

phism on S ′/P.
Let ϕ∈S. Assume that ϕ̂ is radially decreasing, ϕ̂(ξ)=1 for |ξ|≤1, and ϕ̂(ξ)=0

for |ξ|≥2. Define a sequence (ϕk)k∈Z, by ϕ̂0(ξ)=ϕ̂(ξ/2)−ϕ̂(ξ), and ϕ̂k(ξ)=ϕ̂0(2−kξ)
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for k �=0. It then holds that ϕ̂+
∑∞

k=0 ϕ̂k≡1 on Rd, and
∑∞

k=−∞ ϕ̂k≡1 on Rd\{0}.
For 1<p, q<∞, s∈R, and f∈S ′, let

‖f‖Fp,q
s

=

∥∥∥∥∥∥
(
|ϕ∗f |q+

∞∑
k=0

∣∣2ks(ϕk∗f)
∣∣q)1/q

∥∥∥∥∥∥
Lp

.

It can be shown that ‖f‖Fp,q
s

is independent of the choice of ϕ, in the sense of
equivalent norms. Hence, we may define the non-homogeneous Triebel–Lizorkin
space F p,q

s as
F p,q
s :=

{
f ∈S ′ | ‖f‖Fp,q

s
<∞

}
.

This is a Banach space, and the Bessel potential acts as a shift operator on the
smoothness index s: If s, α∈R, then Iα : F p,q

s →F p,q
s−α is a bounded isomorphism of

Banach spaces. In particular, ‖Iαf‖Fp,q
s−α

≈‖f‖Fp,q
s

.
Similarly, let

‖f‖Ḟp,q
s

=

∥∥∥∥∥∥
( ∞∑

k=−∞

∣∣2ks(ϕk∗f)
∣∣q)1/q

∥∥∥∥∥∥
Lp

.

Note that ‖f‖Ḟp,q
s

=0 if and only if suppf̂⊆{0}, i.e. if and only if f∈P. The
homogeneous Triebel–Lizorkin space Ḟ p,q

s is defined as

Ḟ p,q
s :=

{
[f ]∈S ′/P | ‖f‖Ḟp,q

s
<∞

}
.

This is also a Banach space, with the Riesz potential acting as a shift of smoothness:
If s, α∈R, then İα : Ḟ p,q

s →Ḟ p,q
s−α is a bounded isomorphism of Banach spaces. In

particular, ‖İαf‖Ḟp,q
s−α

≈‖f‖Ḟp,q
s

.
Let ψk=ϕk−1+ϕk+ϕk+1. Then ψ̂k≡1 on the support of ϕ̂k. For f∈S ′, we

consider the formal series

f0 =
∞∑

k=−∞
ϕk∗f =

∞∑
k=−∞

ψk∗ϕk∗f.

If this series converges in S ′, then we call f0 the canonical representative of [f ]∈
S ′/P. It is an exercise to show that

∑∞
k=0 ϕk∗f always converges in S ′. As for the

other half of the series, it is trivial that

‖ϕk∗f‖Lp ≤ 2−sk‖f‖Ḟp,q
s

, f ∈S ′.
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Hence, if s<0, and f∈Ḟ p,q
s , then the series

∑−1
k=−∞ ϕk∗f converges in Lp. For

s=0, we first use Young’s inequality to obtain that

‖ψk∗ϕk∗f‖Lr ≤‖ψk‖Lq‖ϕk∗f‖Lp =2kd/q
′‖ψ0‖Lq‖ϕk∗f‖Lp ,

whenever 1
p + 1

q =1+ 1
r . In particular,

∑−1
k=−∞ ϕk∗f converges in Lr for any r>p.

We conclude that if s≤0, then any f∈Ḟ p,q
s has a canonical representative f0. If s<0,

then it is easy to see that ϕ∗f0∈Lp, and that f0∈F p,q
s . A somewhat deeper fact is

the Littlewood–Paley theorem: With the above identification, Lp=Ḟ p,2
0 =F p,2

0 .
We define W p

s , 1<p<∞, as the space of f∈S ′, such that Isf∈Lp, i.e. W p
s =

F p,2
s . Similarly, Ẇ p

s =Ḟ p,2
s .

The definition of the Besov spaces Bp,q
s and Ḃp,q

s is similar to that of F p,q
s and

Ḟ p,q
s ; we only interchange the Lp- and 	q-norms. In other words, the norms are

given by

‖f‖Bp,q
s

=
(
‖ϕ∗f‖qLp +

∞∑
k=0

2ksq‖ϕk∗f‖qLp

)1/q

,

and

‖f‖Ḃp,q
s

=
( ∞∑

k=−∞
2ksq‖ϕk∗f‖qLp

)1/q

,

and the spaces Bp,q
s ⊂S′ and Ḃp,q

s ⊂S ′/P are defined by imposing finiteness of the
respective norm. Here we also allow for the endpoints p, q∈{1,∞}. If 1<p<∞,
then F p,p

s =Bp,p
s , and Ḟ p,p

s =Ḃp,p
s .

Since the spaces 	q(Z) increase with q, the same is true for the spaces F p,q
s ,

Ḟ p,q
s , Bp,q

s , and Ḃp,q
s . A more sophisticated embedding result is given by [19, The-

orem 2.7.1]:

Theorem 2.3. If 1<p0, q0, p1, q1<∞, s1<s0, and s0− d
p0

=s1− d
p1
, then

F p0,q0
s0 ⊂F p1,q1

s1 and Ḟ p0,q0
s0 ⊂ Ḟ p1,q1

s1 .

We will frequently exploit that if s0− d
p0

=s1− d
p1

, then s1<s0 if and only if
p0<p1.

We need the following instance of the so-called Stein–Weiss interpolation the-
orem, e.g. [1, Corollary 5.5.4].
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Theorem 2.4. Consider two measure spaces (X,μ) and (Y, ν). For j∈{0, 1},
let vj : X→[0,∞] and wj : Y →[0,∞] be measurable functions, and 1≤pj , qj<∞.

Assume further that

T : Lp0(X, v0 dμ)+Lp1(X, v1 dμ)−→Lq0(Y,w0 dν)+Lq1(Y,w1 dν)

is a linear map, and that

T : Lpj (X, vj dμ)−→Lqj (Y,wj dν)

is bounded for j∈{0, 1}. If

1
p

= 1−θ

p0
+ θ

p1
,

1
q

= 1−θ

q0
+ θ

q1
,

and

v= v
(1−θ) p

p0
0 v

θ p
p1

1 , w=w
(1−θ) q

q0
0 w

θ q
q1

1 ,

for some θ∈(0, 1), then

T : Lp(X, v dμ)−→Lq(Y,w dν)

is bounded.

3. Proofs of Theorems 1.8 through 1.14

Given x=(x1, ..., xd)∈Rd, we write Πx=
∏d

k=1 |xk|.

Lemma 3.1. Let p>1. If f∈L1, then∫
Rd

|(f ∗f)(x)|pΠx
p−2 dx�

∫
Rd

|f(x)|2pΠx
2p−2 dx.

Proof. For a choice of α∈R, it holds that

p−1
2p <

2p−2
2p+1 <α<

p−1
p

< 1.(2)

Multiplying the corresponding integrand by 1=Πx−y
αΠy

αΠx−y
−αΠy

−α, the con-
volution

(f ∗f)(x) =
∫
y∈Rd

f(x−y)Πx−y
αf(y)Πy

αΠx−y
−αΠy

−α dy.



On Laplace–Carleson embeddings, and Lp-mapping properties of the Fourier transform 449

By Hölder’s inequality,

|(f ∗f)(x)|p ≤
∫
y∈Rd

|f(x−y)|pΠx−y
αp|f(y)|pΠy

αp dy

×
(∫

y∈Rd

Πx−y
−αp′

Πy
−αp′

dy

)p−1

.

By (2), 1
2<αp′<1, and a change of variables yields∫
yk∈R

1
|xk−yk|αp′ |yk|αp′ dyk = 1

|xk|αp′

∫
yk∈R

1
|1− yk

xk
|αp′ |yk|αp′ dyk

= |xk|1−2αp′
∫
yk∈R

1
|1−yk|αp′ |yk|αp′ dyk.

(In the sense of extended real numbers, the above equalities are valid even for
xk=0.) Therefore,(∫

y∈Rd

Πx−y
−αp′

Πy
−αp′

dy

)p−1
= cΠx

p−1−2αp,(3)

for some finite c>0, and

|(f ∗f)(x)|pΠx
p−2 �Πx

2p−3−2αp
∫
y∈Rd

|f(x−y)|pΠx−y
αp|f(y)|pΠy

αp dy.

Integration with respect to x∈Rd, and another change of variables, yields∫
x∈Rd

|(f ∗f)(x)|pΠx
p−2 dx

�
∫∫

x,y∈Rd

|f(x)|pΠx
αp|f(y)|pΠy

αpΠx+y
2p−3−2αp dy dx.

Multiplying this integrand by 1=Πx
αΠy

αΠx
−αΠy

−α,∫∫
x,y∈Rd

|f(x)|pΠx
αp|f(y)|pΠy

αpΠx+y
2p−3−2αp dy dx

=
∫∫

x,y∈Rd

|f(x)|pΠx
αp+α|f(y)|pΠy

αp+αΠx+y
2p−3−2αpΠx

−αΠy
−α dy dx.

To the above right-hand side, apply the elementary inequality ab≤ a2+b2

2 , with

a= |f(x)|pΠx
αp+α, and b= |f(y)|pΠy

αp+α,
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and use that the two resulting integrals are equal, to obtain that∫∫
x,y∈Rd

|f(x)|pΠx
αp|f(y)|pΠy

αpΠx+y
2p−3−2αp dy dx

≤
∫∫

x,y∈Rd

|f(x)|2pΠx
2αp+αΠx+y

2p−3−2αpΠy
−α dy dx.

By (2), α<1, 2αp+3−2p<1, and α+2αp+3−2p>1. By an argument similar to
the one leading up to (3),∫

y∈Rd

Πx+y
2p−3−2αpΠy

−α dy= cΠx
2p−2−2αp−α,

for some c∈R. This completes the proof. �

Proof of Theorem 1.8. The statement is that if p≥2, and f∈L1, then∫
Rd

|f̂(ξ)|p dξ �
∫
Rd

|f(x)|pΠx
p−2 dx.

We will prove the statement for p=2N , N∈Z≥1. The general result follows by
Stein–Weiss interpolation, Theorem 2.4.

Let f0=f , and fN =fN−1∗fN−1, N∈Z≥1, so that f̂N =f̂2N . By the Plancherel
theorem, ∫

Rd

|f̂(ξ)|2N

dξ =
∫
Rd

|f̂N−1(ξ)|2 dξ =
∫
Rd

|fN−1(x)|2 dx.

Combining Lemma 3.1 with an induction argument,∫
Rd

|f̂(ξ)|2N

dξ �
∫
Rd

|fN−k(x)|2k

Πx
2k−2 dx,

for k=1, ..., N . In particular, the desired inequality holds for p=2N . �

Proof of Theorem 1.10. With (ϕk)k∈Z as in the definition of Ḟ p,q
s , and f∈Lp,

let fN =
∑N

k=−N ϕ̂kf , and gN (x)=|x|sfN (x), where s=d
(

2
p−1

)
. Since gN∈L1,

Theorem 1.9 implies that∫
Rd

|ĝN (ξ)|p dξ �
∫
Rd

|fN (x)|p dx.

But ĝN =İsf̂N , so we may use the Littlewood–Paley theorem, and the lifting prop-
erty of İs, to obtain that

‖f̂N‖Ḟp,2
s

=

∥∥∥∥∥∥
( ∞∑

k=−∞

∣∣∣2ks(ϕk∗f̂N )
∣∣∣q)1/q

∥∥∥∥∥∥
Lp

� ‖fN‖Lp ≤‖f‖Lp .
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Since fN→f in Lp, f̂N→f̂ in S ′. Moreover, limN→∞(ϕk∗f̂N )(x)=(ϕk∗f̂)(x) for
every k and x. A standard application of Fatou’s lemma implies that f̂∈Ẇ p

s . �

Proof of Theorem 1.13. First, note that F : Lp→Ḟ r,q
s is bounded if and only if

F−1 : Lp→Ḟ r,q
s is bounded.

With (ϕk)k∈Z as in the definition of Ḟ p,q
s ,

‖ϕn‖Ḟ r,q
s

=

∥∥∥∥∥∥
( ∞∑

k=−∞

∣∣2ks(ϕk∗ϕn)
∣∣q)1/q

∥∥∥∥∥∥
Lr

≥‖2ns(ϕn∗ϕn)‖Lr .

By some simple changes of variables, (ϕn∗ϕn) (x)=2nd (ϕ0∗ϕ0) (2nx), and

‖(ϕn∗ϕn)‖Lr =2nd/r
′ ‖(ϕ0∗ϕ0)‖Lr .

If F−1 : Lp→Ḟ r,q
s is bounded, then

2n(s+d/r′) � ‖ϕn‖Ḟ r,q
s

� ‖ϕ̂n‖Lp =2nd/p‖ϕ̂0‖Lp .

Such an inequality is only possible if s=d/p−d/r′.
In order to obtain a contradiction, assume now that F−1 : Lp→Ḟ r,q

d/p−d/r′ is
bounded, and that r<p. By Theorem 2.3, Ḟ r,q

d/p−d/r′⊂Ḟ r̃,r̃
d/p−d/r̃′ whenever r<r̃.

It therefore suffices to obtain a contradiction in the case where q=r<p. Given
a sequence (αn)n∈Z∈	p(Z), define f=

∑
n∈Z

αn2−2nd/pϕ2n. Using that the func-
tions (ϕ̂2n)n∈Z

have pairwise disjoint supports, ‖f̂‖pLp =‖(ϕ̂0)‖pLp

∑
n∈Z

|αn|p, and
(ϕ2k∗f)=αk2−2kd/p (ϕ2k∗ϕ2k). Using the assumption that F−1 : Lp→Ḟ r,r

d/p−d/r′ is
bounded,( ∞∑

n=−∞
|αn|p

)1/p

�
(∫

x∈Rd

∞∑
k=−∞

∣∣∣2k(d/p−d/r′)(ϕk∗f)(x)
∣∣∣r dx

)1/r

≥
(∫

x∈Rd

∞∑
k=−∞

∣∣∣22k(d/p−d/r′)(ϕ2k∗f)(x)
∣∣∣r dx

)1/r

=
(∫

x∈Rd

∞∑
k=−∞

22kd(1−r)|αk|r |(ϕ2k∗ϕ2k)(x)|r dx

)1/r

= ‖(ϕ0∗ϕ0)‖Lr

( ∞∑
k=−∞

|αk|r
)1/r

.

Hence, we have derived that 	p⊂	r, which is obviously false for r<p. �
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Proof of Theorem 1.14. As in the proof of Theorem 1.13, it is more convenient
to show that F−1 : Lp→Ḃp′,p

0 ∩Bp′,p
0 . Since F(ϕk∗f)=ϕ̂kf̂ , the Hausdorff–Young

theorem implies that

‖f‖p
Ḃp′,p

0
=

∞∑
k=−∞

‖ϕk∗f‖pLp′ ≤
∞∑

k=−∞
‖ϕ̂kf̂‖pLp =

∫
Rd

|f̂(ξ)|p
∞∑

k=−∞
|ϕ̂k(ξ)|p dξ.

Since
∑∞

k=−∞ |ϕ̂k(ξ)|p≤1 for ξ∈Rd, ‖f‖
Ḃp′,p

0
≤‖f̂‖Lp . To obtain control of the non-

homogeneous norm as well, it is enough to note that by Young’s inequality

‖ϕ∗f‖Lp′ ≤‖ϕ‖L1‖f‖Lp′ ≤‖ϕ‖L1‖f̂‖Lp . �

4. Proof of Theorems 1.1 through 1.7

As was mentioned in Section 2, the definition of Ḟ p,q
s does not depend on the

averaging kernel ϕ. In fact, the definition of Ḟ p,q
s is much more flexible than we

indicated. An example of a general result in this direction is [14, Theorem 3.2].
The following special case will help us to relate Bergman spaces to the so-called
Sobolev–Slobodeckij spaces Ḟ p,p

s :

Theorem 4.1. Let 1<p, q<∞, s<0, Φ∈S, Φ̂(0) �=0, and Φt : x �→ 1
td

Φ
(
x
t

)
. If

f∈S ′, and ‖f‖Ḟp,q
s

<∞, then its canonical representative f0 satisfies∫
x∈Rd

[∫ ∞

t=0
|Φt∗f0(x)|qt−sq−1 dt

]p/q

dx<∞.

Conversely, if f0 satisfies the above condition, then ‖f0‖Ḟp,q
s

<∞, and f0 is the

canonical representative of [f0]∈Ḟ p,q
s . Moreover, the above expression is comparable

to ‖f0‖pḞp,q
s

.

Proof of Theorem 1.2. The statement is that L : Lp(R+)→Aq
q/p′−2(C+) is

bounded, provided that 2<p≤q<∞. Choose Φ∈S(R) such that Φ̂(t)=e−2πt for
t≥0, and let f∈Lp(R+). By Theorem 1.10 and Theorem 2.3, f̌∈Ḟ p,2

s0 ⊂Ḟ q,q
s1 , where

s0= 2
p−1 and s1= 1

q−
1
p′ . The dominated convergence theorem yields that f̌ is its

own canonical representative, so Theorem 4.1 implies that∫
x∈R

∫ ∞

y=0
|Φy∗f̌(x)|qy−s1q−1 dy dx� ‖f̌‖p

Ḟ q,q
s1

.

One easily verifies that Lf(x+iy)=Φy∗f̌(x), and since −s1q−1=q/p′−2,
‖Lf‖p

Aq

q/p′−2(C+)�‖f̌‖p
Ḟ q,q

s1
. �
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Proof of Theorem 1.4. Given 2<p≤q<∞, we will use that L : Lp(R+)→
Aq

q/p′−2(C+) to obtain the inequality

(4)
(∫

D

∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
q

(1−|w|2)q/p′−2 dA(w)
)1/q

�
( ∞∑

k=0

|ak|p
)1/p

.

We begin with a reduction to the case p=q. By Hölder’s inequality,∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣≤
( ∞∑

k=0
|ak|p

)1/p ( ∞∑
k=0

|w|kp′

)1/p′

.

Since
∞∑
k=0

|w|kp′ � 1
1−|w|2 , w∈D,

∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
q

(1−|w|2)q/p′−2 =

∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
p ∣∣∣∣∣

∞∑
k=0

akw
k

∣∣∣∣∣
q−p

(1−|w|2)q/p′−2

�
∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
p ( ∞∑

k=0

|ak|p
)q/p−1

(1−|w|2)p−3,

and (4) follows from∫
D

∣∣∣∣∣
∞∑
k=0

akw
k

∣∣∣∣∣
p

(1−|w|2)p−3 dA(w)�
∞∑
k=0

|ak|p.

To prove the above inequality, assume without loss of generality that the right-
hand side is finite. Since

∑∞
k=0 akw

k=limN→∞
∑N

k=0 akw
k for w∈D, Fatou’s lemma

allows us to only consider sequences with finitely many non-zero elements. Also, by
another application of Hölder’s inequality,∣∣∣∣∣

∞∑
k=0

akw
k

∣∣∣∣∣
p

� 1
(1−|w|2)p−1

∞∑
k=0

|ak|p.

Since the right-hand side is dominated by
∑∞

k=0 |ak|p on any compact subset of D,
it is sufficient to prove that∫

r<|w|<1

∣∣∣∣∣
N∑

k=0
akw

k

∣∣∣∣∣
p

(1−|w|2)p−3 dA(z)≤C

N∑
k=0

|ak|p,
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for some r close to 1, and C independent of N . By the substitution w=e2πiz,
z=x+iy,

∫
r<|w|<1

∣∣∣∣∣
N∑

k=0

akw
k

∣∣∣∣∣
p

(1−|w|2)p−3 dA(w)

= 4π2
∫∫

|x|< 1
2

0<y<ε

∣∣∣∣∣
N∑

k=0

ake
2πikz

∣∣∣∣∣
p

(1−e−4πy)p−3e−4πy dx dy,

for some small ε>0. For z in the above domain of integration, 1−e−4πy≈y, and∣∣∣ e2πiz−1
2πiz

∣∣∣≈1. If we let F (z)= e2πiz−1
2πiz

∑N
k=0 ake

2πikz, then

∫
r<|w|<1

∣∣∣∣∣
N∑

k=0

akw
k

∣∣∣∣∣
p

(1−|w|2)p−3 dA(w) � ‖F‖p
Ap

p−3(C+).

But F=Lf , where f=
∑N

k=0 ak1(k,k+1). Since ‖f‖pLp(R+)=
∑N

k=0 |ak|p, the result
follows from Theorem 1.2. �

Proof of Theorem 1.5. In general, the map f �→|·|α/pf takes Lp(R+, x
α dx) iso-

metrically onto Lp(R+). Furthermore, we assume that 2<p≤q<∞, and α<p/q′−1.
By Theorem 1.10, the definition of the Riesz potential, and the lifting property,

F : Lp(R+, x
α dx)−→ İ−α/pẆ

p
2/p−1(R)= Ẇ p

s0(R),

where s0= 2+α
p −1. By Theorem 2.3, Ẇ p

s0(R)=Ḟ p,2
s0 (R)⊂Ḟ q,q

s1 (R), where s1= 1+α
p −

1
q′ . By our assumption on α, s1<0, so, as in the proof of Theorem 1.2, we are
therefore allowed to apply Theorem 4.1 to conclude that

L : Lp(R+, x
α dx)−→Aq

−s1q−1(C+)=Aq
q/p′−2−αq/p(C+). �

Proof of Theorem 1.6. Let p>2. By the argument in the previous proof,

F : Lp(R+, x
p−2 dx)−→ Ẇ p

0 (R)=Lp(R).

The statement follows from the relation between F−1 and L. �

Proof of Theorem 1.7. Let λI denote the midpoint of QI , and f(t)=e−2πiλIt,
t≥0. Then

|Lf(z)|= 1
2π

1∣∣z−λI

∣∣ � 1
|I| , z ∈QI ,
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and this bound is independent of the interval I. It follows that

μ(QI)� |I|q
∫
C+

|Lf(z)|q dμ.

Assuming that L : Lp(R+, x
α dx)→Lq(C+, dμ) is bounded, we obtain that μ(QI)�

|I|q‖f‖qLp(R+,xα dx). Computing the norm of f , it holds that

μ(QI)� |I|q/p′−αq/p.

Under the assumptions 2<p≤q<∞, and α≤p/q′−1, this necessary condition
is also sufficient for L : Lp(R+, x

α dx)→Lq(C+, dμ). For α<p/q′−1, this is implied
by Theorem 1.5 and Theorem 2.2. For α=p/q′−1, we use instead Theorem 1.6 and
Theorem 2.1. �

5. A non-result for case (III)

If L : L3/2(R+)→L3/2(C+, dμ) is bounded, then μ satisfies

μ(QI)� |I|1/2 for all intervals I ⊂R.(5)

Whether or not the converse holds is an open question, unless μ is sectorial, in
which case the answer is positive.

One might attempt to use Stein–Weiss interpolation, Theorem 2.4, to prove
that (5) implies L : L3/2(R+)→L3/2(C+, dμ) also for general measures. In order to
do so, it appears necessary to find a measure M , and two functions w0, w1 : C+→
[0,∞], according to the following three conditions:

μ(A)=
∫
A

w0w1 dM for all measurable sets A⊂C+;(6) ∫
QI

w2
0 dM � 1 for all intervals I ⊂R;(7) ∫

QI

w2
1 dM � |I| for all intervals I ⊂R.(8)

If this could be done, then L : L1(R+)→L1(C+, w
2
0 dM) and L : L2(R+)→

L2(C+, w
2
1 dM) would both be bounded, and Theorem 2.4 would imply that

L : L3/2(R+)→L3/2(C+, dμ) is also bounded.
The following example shows that the above strategy fails.
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Example 5.1. Consider a sum of unital point masses μ=
∑∞

n=1 δn2+i. Then

μ(QI)=#
{
n∈Z≥1;n2 ∈ I

}
whenever |I| ≥ 1,

and μ(QI)=0 otherwise, so clearly μ satisfies (5).
Assume now that M , w0, and w1 satisfy (6)–(8). Then μ is absolutely contin-

uous with respect to M , and it is no restriction to assume that M has the same
support as μ. Hence, we may assume that M=

∑∞
n=1 cnδn2+i for some numbers

cn>0. For notational convenience, we let wj,n=wj(n2+i).
By (6), w0,nw1,ncn=1 for every n. In particular, w2

0,ncn= 1
w2

1,ncn
. By (7),

∞∑
n=1

w2
0,ncn =

∫
C+

w2
0 dM <∞,

so limn→∞ w2
0,ncn=0, and limn→∞ w2

1,ncn=∞. But by (8),

w2
1,ncn =

∫
Q[n2,n2+1]

w2
1 dM � 1.

This contradiction shows that M , w0, and w1 cannot be chosen according to the
conditions (6)–(8).
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