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Laplacian simplices associated to digraphs

Gabriele Balletti, Takayuki Hibi, Marie Meyer and Akiyoshi Tsuchiya

Abstract. We associate to a finite digraph D a lattice polytope PD whose vertices are the
rows of the Laplacian matrix of D. This generalizes a construction introduced by Braun and the
third author. As a consequence of the Matrix-Tree Theorem, we show that the normalized volume
of PD equals the complexity of D, and PD contains the origin in its relative interior if and only if D
is strongly connected. Interesting connections with other families of simplices are established and
then used to describe reflexivity, the h∗-polynomial, and the integer decomposition property of
PD in these cases. We extend Braun and Meyer’s study of cycles by considering cycle digraphs. In
this setting, we characterize reflexivity and show there are only four non-trivial reflexive Laplacian
simplices having the integer decomposition property.

1. Introduction

The use of linear algebra to study properties of graphs is an established tech-
nique in combinatorics and consequently has led to the development of what has
come to be known as spectral graph theory. There is an extensive literature on al-
gebraic aspects of spectral graph theory and on how combinatorial properties are
encoded in characteristic polynomials, eigenvalues and eigenvectors of adjacency or
Laplacian matrices of graphs (see [6] for a survey). It is tempting to take a step
forward and associate a polytope PG to any graph G by interpreting the rows of
a matrix encoding the data of G as the vertices of PG. This is the case of the
edge polytope [14], [19], the convex hull of the columns of the unsigned vertex-edge
incidence matrix of a graph, whose geometric and combinatorial properties have
been extensively studied in the last two decades (see e.g. [12], [18]) and used to
build counterexamples [13]. Recently, the third author and Braun [5] took a similar
direction by associating to any graph G the simplex TG (called the Laplacian sim-
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plex) whose vertices are the rows of the Laplacian matrix of G. They established
basic properties of TG and study reflexivity, the integer decomposition property,
and unimodality of the Ehrhart h∗-vectors of TG for some special classes of graph.

Our contribution is to provide a more general setting for the investigation of
Laplacian simplices. We do this by allowing G to be a directed multigraph. In
this way the objects studied in [5] can be seen as a special case of our setting (see
Remark 2). We have reasons to believe this generalization is the correct direction to
take. Indeed, in the undirected and simple case, the origin of a Laplacian simplex
coincides with the barycenter of its vertices, which is an uncommon property for
a lattice simplex. In our setting, it is clarified (Proposition 5 and Corollary 6)
this happens only for special digraphs, i.e. they need to be strongly connected
and have the same number of spanning trees converging to each vertex. As the
intuition suggests, a spanning tree converging to a vertex is a spanning tree such
that, starting from any other vertex and moving along the directions of the edges,
one always ends on a unique final vertex. Moreover, in the original setting the
volume of a Laplacian simplex associated to a graph with n vertices equals n times
the number of spanning trees of the graph G. Extending to digraphs, it turns out
(Proposition 7) the factor n appears because in the undirected case each vertex has
the same number of spanning trees converging to it.

Main results and organization of the paper

In Section 2 we set notation, basic definitions and prove the first important
properties of Laplacian simplices in this new setting. In particular, we prove that
the Laplacian simplex PD associated to a digraph D with n vertices satisfies the
following properties.

(1) PD is a (n−1)-simplex if and only if D has positive complexity, i.e. if D
has at least a spanning converging tree (Proposition 4).
Now assume that D has positive complexity.

(2) The numbers of spanning trees converging to each of the vertices of D

encode the barycentric coordinates of the origin with respect to the vertices of PD

(Proposition 5).
(3) PD contains the origin, which is in the strict relative interior of PD if and

only if D is strongly connected (Corollary 6).
(4) The normalized volume of PD equals the total complexity of D, i.e. the

total number of spanning converging trees (Proposition 7).
Moreover, in Section 3, we prove that under some assumptions on D, PD is

unimodularly equivalent to the simplex associated to a weighted projective space
(Proposition 8). Under even more restrictive assumptions, PD is equivalent to one
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of the Δ(1,q) simplices described in [4]. In such cases, we use this equivalence to
characterize reflexivity (Corollary 10) and describe the Ehrhart h∗-polynomial as
well as the integer decomposition property of PD in terms of the number of spanning
converging trees of D.

In Section 4, we use these descriptions to extend the study of cycle graphs of
Braun–Meyer [5] to cycle digraphs, i.e. strongly connected simple digraphs whose
underlying graph is a cycle (see Definition 16). We prove the following results.

(1) In Proposition 14, we prove that a Laplacian simplex associated to a simple
digraph has at most one interior lattice point.

(2) In Theorem 17, we prove that a Laplacian simplex associated to a cycle
digraph is terminal Fano, i.e. it contains no lattice points other than the origin and
its vertices, unless D is one of the following six digraphs.
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(3) In Theorem 18, we characterize the reflexivity of PD in terms of combina-
torial properties of the cycle digraph D.

(4) In Theorem 19, we prove that a reflexive Laplacian simplex PD has the
integer decomposition property if and only if D is the oriented cycle 1→2→...→
n−1→n→1 for any n, or one of the following four exceptional digraphs.
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(5) In Theorem 20, we construct a family of reflexive Laplacian simplices with
symmetric but non-unimodal h∗-vector (1, ..., 1, 2, ..., 2, 1, ..., 1, 2, ..., 2, 1, ..., 1, 2, ..., 2,
1, ..., 1).

In the final section, we try to understand how the structure of the underlying
simple and undirected graph of a digraph affects the reflexivity of its Laplacian
simplex. In particular, we show there is a graph which is not the underlying graph
of any simple directed graph whose Laplacian simplex is reflexive. More general
versions of this problem (Questions A–C) remain open.
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2. The Laplacian polytope construction and properties of Laplacian
simplices

2.1. The Laplacian of a digraph

Let D be a finite directed graph (digraph) on the vertex set V (D)=[n], where
[n]:={1, ..., n}. Let E(D) be the set of the directed edges of D. A directed edge
e=(i, j)∈E(D) points from a vertex i (called the tail of e) to another vertex j

(called the head of e). Multiple directed edges between vertices are allowed, and we
denote by ai,j the number of directed edges having tail on the vertex i and head on
the vertex j of D, with i, j∈[n] and i �=j. Since loops will not affect the Laplacian
matrix, we assume D to be without loops, and thus ai,i=0 for all i∈[n]. The number
of edges with vertex i as a tail is called the outdegree of i and is denoted by outdeg(i),
while the number of edges with vertex i as a head is called the indegree of i and
is denoted by indeg(i). We call D strongly connected if it contains a directed path
from i to j for every pair of distinct vertices i, j∈[n] and weakly connected if there
exists a path (not necessarily directed) between i and j for every pair of distinct
vertices i, j∈[n]. In this paper, we assume D has no isolated vertices, i.e. vertices
with indegree and outdegree equal to zero. A converging tree is a weakly connected
digraph having one vertex with outdegree zero, called the root of the tree, while all
other vertices have outdegree one. We say that a subgraph D′ of D is spanning if
the vertex set of D′ is [n].

All the data of D can be encoded in the adjacency matrix of D, that is, the n×n

matrix A(D):=(ai,j)1≤i,j≤n. We define the outdegree matrix of D to be O(D):=
(di,j)1≤i,j≤n, the n×n matrix with di,j=outdeg(i), if i=j, and di,j=0 otherwise.
We define the Laplacian matrix of D to be the matrix L(D):=O(D)−A(D).

Observe the sum of the entries in each row of L(D) is zero. Thus the rank of
the Laplacian matrix is never maximal, i.e.

(1) rk(L(D))≤n−1.

A combinatorial interpretation for having equality in (1) is given by the Matrix-
Tree Theorem, which is presented here in its generalized version for digraphs. The
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interpretation is given in terms of spanning converging trees of D. For any i∈[n], we
denote by ci the number of spanning trees which converge to i, i.e. the converging
trees of D with n vertices having i as the root. We denote by c(D) the total number
of spanning converging trees of D, i.e. c(D):=

∑n
i=1 ci. The number c(D) is usually

referred to as the complexity of the digraph D.

Theorem 1. (Matrix-Tree Theorem [17, Theorem 5.6.4]) Let D be a digraph

without loops on the vertex set [n]. Let i, j∈[n], and L(D)i,j the matrix obtained

from L(D) by removing its i-th row and j-th column. Then the determinant of

L(D)i,j equals, up to a change of sign, the number of spanning trees of D converging

to i, i.e.

(−1)i+j detL(D)i,j =detL(D)i,i = ci.

In particular, the complexity of D is

c(D)=
n∑

i=1
detL(D)i,i.

2.2. The Laplacian polytope associated to a digraph

Let D be a digraph on the vertex set [n]. To D we associate a convex polytope
in Rn having vertices in the integer lattice Zn. We call the Laplacian polytope
associated to D the polytope PD :=conv({v1, ...,vn})⊆Rn, where vi is the i-th row
of the Laplacian matrix of D. The polytope PD is not full-dimensional; since the sum
of the entries in each row of L(D) vanishes, PD is contained in the hyperplane H :=
{x=(x1, ..., xn)|

∑n
i=1 xi=0} of Rn. In particular, the dimension of the Laplacian

polytope, dim(PD), equals the rank of the Laplacian matrix L(D). When the rank of
L(D) is equal to n−1, then PD is a simplex, called the Laplacian simplex associated
to D.

Remark 2. The Laplacian simplex in this context is a generalization of the
Laplacian simplex introduced by Braun-Meyer in [5]. For a connected simple
graph G, they define the simplex TG as the convex hull of the rows of the graph
Laplacian matrix of G. The Laplacian L(G) of G can be interpreted as the Laplacian
of a digraph DG, and thus the resulting simplices are equal, that is, TG=PDG

.

Two lattice polytopes P⊆Rn and P ′⊆Rn′ are said to be unimodularly equiva-
lent if there exists an affine map from the affine span aff(P ) of P to the affine span
aff(P ′) of P ′ that maps Zn∩aff(P ) bijectively onto Zn′∩aff(P ′) and maps P to P ′.
Sometimes it is convenient to work with full-dimensional lattice polytopes, i.e. lat-
tice polytopes embedded in a space of their same dimension. Given a Laplacian
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Figure 1. Three unimodularly equivalent full-dimensional copies of PD obtained by deleting the
first, second, and third columns of L(D), respectively.

simplex PD, one can easily get a full-dimensional unimodularly equivalent copy of
PD by considering the lattice polytope defined as the convex hull of the rows of
L(D) with one column deleted. An example of this can be observed in Example 3.

Example 3. Let D be the following digraph with its Laplacian matrix L(D).

1

2

3 L(D)=

⎛
⎝ 1 −1 0

0 1 −1
−1 −1 2

⎞
⎠

Note that L(D) has rank two, which means PD is a two dimensional simplex in
R3. Full-dimensional unimodularly equivalent copies of PD can be obtained by
deleting any of the columns of L(D) and considering the convex hull of the rows as
in Figure 1.

2.3. Properties of Laplacian simplices

From the Matrix-Tree Theorem (Theorem 1) the following characterization can
be immediately obtained.

Proposition 4. Let D be a digraph on n vertices. The following are equivalent:

1. D has positive complexity c(D);
2. rk(L(D))=n−1;
3. PD is an (n−1)-simplex.

Following the work of Braun-Meyer [5], we focus our attention to the case in
which a digraph D on n vertices defines an (n−1)-simplex. Proposition 4 asserts we
will always assume the digraph D has positive complexity. As another consequence
of Theorem 1, we deduce that numbers of spanning converging trees encode the
barycentric coordinates of 0, where 0 is the origin of the lattice.
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Proposition 5. Let D be a digraph with positive complexity. Then the numbers

of spanning converging trees c1, ..., cn of D encode the unique linear dependence

among the vertices v1, ...,vn of PD, i.e.

n∑
i=1

civi =0.

Proof. Since the determinant of L(D) is zero, the Laplace expansion along the
j-th column of L(D) yields

∑n
i=1(−1)i+j detL(D)i,jvi,j=0, where L(D)i,j is the

matrix of L(D) obtained by removing the i-th row and j-th column of L(D), and
vi,j is the j-th entry of vi. By Theorem 1, detL(D)i,i=ci. �

Corollary 6. Let D be a digraph on n vertices having positive complexity.

Then 0∈PD. Moreover, 0 is an interior point of PD if and only if D is strongly

connected.

Proof. The first statement is a direct consequence of Proposition 5. For the
second, it is enough to note that D is strongly connected if and only if each vertex
has at least one spanning converging tree. �

In this setting, we prove a formula for the normalized volume of PD. If a
polytope P is n-dimensional, its normalized volume Vol(P ) is defined to be n! times
the relative Euclidean volume of P .

Proposition 7. Let D be a digraph with positive complexity. Then its nor-

malized volume equals the complexity of D, i.e.

Vol(PD)= c(D).

Proof. In this case, PD is a (n−1)-simplex by Proposition 4. For i=1, ..., n,
we denote by Fi the facet of PD not containing the vertex i. Let Si :=conv({0}∪
Fi) and I :={i∈[n]|0 /∈Fi}. By Proposition 5, 0∈PD, so the set {Si |i∈I} forms a
triangulation of PD. In particular

Vol(PD)=
∑
i∈I

Vol(Si).

Let S′
i be the unimodularly equivalent copy of Si obtained as the convex hull of the

rows of L(D)i,i together with the origin, where L(D)i,i is the matrix obtained from
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L(D) by removing the i-th row and i-th column. Then

Vol(PD)=
∑
i∈I

Vol(Si)=
∑
i∈I

Vol(S′
i)=

∑
i∈I

detL(D)i,i =
∑
i∈I

ci =
n∑

i=1
ci,

where the fourth equality follows from Theorem 1. �

3. Connections with other families of simplices

Laplacian simplices associated to strongly connected digraphs have interesting
intersections with the study of weighted projective space arising from algebraic
geometry as well as the study of other families of simplices. We use these connections
to describe properties of Laplacian simplices with particular attention to reflexivity,
the integer decomposition property, and h∗-vectors of lattice polytopes. For the
convenience of the reader, the next two subsections are a quick introduction to
these topics.

3.1. Weighted projective spaces

Given positive integers λ1, ..., λn which are coprime, i.e. such that gcd{λ1, ...,

λn}=1, we define the polynomial algebra S(λ1, ..., λn):=C[x1, ..., xn] graded by
deg xi :=λi. A weighted projective space with weights λ1, ..., λn is the projective
variety P(λ1, ..., λn):=Proj(S(λ1, ..., λn)). Since P(λ1, ..., λn) is a toric variety, it
corresponds to a fan Δ which can be characterized as follows. Let v1, ...,vn be
primitive lattice points which generate the lattice and satisfy

∑n
i=1 λivi=0, where

gcd{λ1, ..., λn}=1. Then, up to isomorphism, the fan Δ is the fan whose rays
are generated by the vi. Note the fan Δ identifies uniquely the simplex SΔ :=
conv({v1, ...,vn}). With an abuse of terminology, we say a simplex is the weighted
projective space P(λ1, ..., λn) if it is unimodularly equivalent to the simplex SΔ. For
details we refer the reader to [8], [10].

3.2. Ehrhart theory, reflexivity and integer decomposition properties of
lattice polytopes

For a proper introduction to Ehrhart theory and related topics, we refer to the
textbook [2]. A classical result by Ehrhart states that the number of lattice points in
integer dilations of an n-dimensional lattice polytope P⊆Rn behaves polynomially.
In terms of generating series, this translates into the equality

1+
∑
k≥1

|kP∩Zn|zk = h∗
nz

n+...+h∗
1z+h∗

0
(1−z)n+1 ,
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where h∗(z):=h∗
nz

n+...+h∗
1z+h∗

0 is a polynomial of degree at most n with non-
negative integer coefficients and h∗

0=1. We call this polynomial the h∗-polynomial
of P . This is an important invariant as it preserves much information about P . For
example, the following relations are well known:

h∗
1 = |P∩Zn|−n−1, h∗

n = |P ¨∩Zn|, 1+
n∑

i=1
h∗
i =Vol(P ),

where P ¨ denotes the relative interior of P . The h∗-polynomial of P is often iden-
tified with the vector of its coefficient (h∗

0, h
∗
1, ..., h

∗
n), called the h∗-vector of P . We

call a vector (x0, x1, ..., xn) unimodal if there exists a 1≤j≤n such that xi≤xi+1 for
all 0≤i<j and xk≥xk+1 for all j≤k<n. An important open problem in Ehrhart
theory is to understand under which conditions h∗-vectors are unimodal (see [3] for
a survey).

The (polar) dual polytope P ∗ of a full-dimensional lattice polytope P which con-
tains the origin in its interior is the rational polytope P ∗ :={x∈Rn |x·y≤1 for all y∈
P}. If P is a lattice polytope, we call it reflexive if its dual P ∗ is again a lattice
polytope. We extend the definition of reflexive to all the lattice polytopes which
are unimodularly equivalent to P . Reflexive polytopes were first introduced in [1].
A well-known result of the second author [9] characterizes reflexive polytopes as
lattice polytopes with one interior lattice point which have a symmetric h∗-vector,
i.e. such that h∗

i =h∗
n−i for 0≤i≤	n

2 
.
We say that a lattice polytope P has the integer decomposition property, if,

for every positive integer k and for all x∈kP∩Zn there exist x1, ...,xk∈P∩Zn such
that x=x1+...+xk. A polytope having the integer decomposition property is often
called IDP.

Many efforts have been made to find sufficient conditions for unimodality. It has
been conjectured by Stanley [16] that a standard graded Cohen-Macaulay integral
domain has a unimodal h-vector. In the context of lattice polytopes, this can be
translated in the following question: does an IDP polytope always have a unimodal
h∗-vector? A weaker statement of this question has also been suggested by Ohsugi
and the second author [15], who conjectured that being reflexive and IDP is a
sufficient condition for a lattice polytope to have a unimodal h∗-vector.

3.3. Connections with weighted projective spaces and Δ(1,q)-simplices

We now relate Laplacian simplices to weighted projective spaces. Given (x1, ...,

xn)∈Zn
>0, we say that the sequence x1, ..., xn is well-formed if, for any i∈[n],

gcd{x1, ..., xi−1, xi+1, ..., xn}=1.
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Proposition 8. Let D be a strongly connected digraph such that the sequence

c1, ..., cn is well-formed. Then PD is equivalent to the weighted projective space

P(c1, ..., cn).

Proof. Let M :=Zn∩aff(PD) be the ambient lattice of PD. We first prove that
all the vertices of PD are primitive in M . Suppose that there exists j∈[n] such that
vj can be written as ku with u∈M primitive and k∈Z>0. Then k|det(Li,i)=ci for
any i∈[n], i �=j. Since c1, ..., cn is a well-formed sequence, we get k=1.

Now we prove that the vertices of PD span the lattice. Let L be the lattice
spanned by all the vertices, and Li the lattice spanned by all the vertices vj such
that j �=i. Then we have the following inclusions of subgroups of M : Li⊆L⊆
Zn. In particular for all i, |M :L||L:Li|=|M :Li|=det(Li,i)=ci, which implies that
L=M . �

In [7], [11] characterizations for properties of weighted projective spaces are
given in terms of their weights and are used to perform classifications. We use these
results to translate properties of D to properties of PD. Motivated by the open
questions mentioned in the previous subsection, we focus on reflexivity, the integer
decomposition property, and a description of the h∗-polynomial.

We use the following result of Conrads, presented below in a slightly weaker
form.

Proposition 9. ([7, Proposition 5.1]) Let S=conv(v1, ...,vn) be an

(n−1)-simplex such that
∑n

i=1 qivi=0 for some positive integers q1, ..., qn satisfying

gcd{q1, ..., qn}=1. Then S is reflexive if and only if

(2) qi divides the total weight

n∑
j=1

qj for i=1, ..., n.

From this, we can derive the following corollary.

Corollary 10. Let D be a strongly connected digraph such that gcd{c1, ...,
cn}=1. Then PD is reflexive if and only if ci divides c(D) for all i.

Proposition 9 is also used by Braun–Davis–Solus [4] to define an interesting
class of reflexive simplices. In particular, they are interested in studying the in-
teger decomposition property and unimodality of the h∗-vectors of such simplices
constructed the following way. Let q=(q1, ..., qn) be a nondecreasing sequence of
positive integers satisfying the condition qj |(1+

∑
i �=j qi) for all j∈[n]. For such a

vector q, the simplex Δ(1,q) is defined as

Δ(1,q) := conv
{

e1, e2, ..., en,−
n∑

i=1
qiei

}
,
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1

2

3

...

n

n+1
q1

q2

...
qn−1

qn

Figure 2. The star shaped digraph D such that PD=P(1, q1, ..., qn). The label on an edge from i
to j represents the total number of edges from i to j.

where ei∈Rn is the i-th standard basis vector. By Proposition 9, Δ(1,q) is a reflexive
simplex. Note that the condition qj |(1+

∑
i �=j qi) for all j∈[n] implies that the

sequence 1, q1, ..., qn is well-formed, so Δ(1,q) is equivalent to the weighted projective
space with weights (1, q1, ..., qn).

The next proposition shows the simplices Δ(1,q) are a subfamily of Laplacian
simplices arising from special star-shaped, strongly connected digraphs.

Proposition 11. Let q=(q1, ..., qn) be any nondecreasing sequence of positive

integers such that gcd{q1, ..., qn}=1. Then there is a strongly connected digraph

D such that PD is unimodularly equivalent to P(1, q1, ..., qn). In particular, if q
satisfies the condition qj |(1+

∑
i �=j qi) for all j=1, ..., n, then PD is unimodularly

equivalent to Δ(1,q).

Proof. As in Figure 2, we define D as the star-shaped digraph on the vertices
1, ..., n+1 such that

(1) for i=1, ..., n there are qi many edges directed from 1 to i+1;
(2) for i=1, ..., n there is one edge directed from i+1 to 1.

It is easy to verify that c1=1 and, for i≥2, ci=qi−1. Proposition 8 concludes the
proof. �

In [4], an explicit formula for the h∗-polynomial of the simplices Δ(1,q) is given.
We remark such formula can be also extracted from [11], where it is proved in the
more general setting of weighted projective spaces; however, the formulation given
in [4] perfectly fits our needs.

Theorem 12. ([4, Theorem 2.5]) The h∗-polynomial of Δ(1,q) is

h∗(z)=
q1+...+qn∑

b=0
zw(b)
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where

w(b) := b−
n∑

i=1

⌊
qib

1+q1+...+qn

⌋
.

Finally, in [4], necessary conditions for a Δ(1,q) simplex to be IDP are given.

Lemma 13. ([4, Corollary 2.7]) If Δ(1,q) is IDP, then for all j=1, 2, ..., n

1
qj

+
∑
i �=j

{
qi
qj

}
=1,

where
{

qi
qj

}
denotes the fractional part of qi

qj
.

4. Laplacian simplices associated to cycle digraphs

We now want to extend the study of Braun–Meyer on simplices associated
to cycle graphs. They show that the Laplacian simplex associated to a cycle is
reflexive if and only if the cycle has odd length n; in that case, it has a unimodal
h∗-vector and fails to be IDP for n≥5 [5, Section 5]. We generalize their study by
extending the notion of cycle graphs to cycle digraphs. A natural way to extend
is to consider digraphs whose underlying simple graphs are cycle graphs. Here, by
underlying simple graph GD of a digraph D, we mean the simple undirected graph
on the vertex set V (GD):=V (D) such that the edge {i, j} is in E(GD) if and only
if there is at least one directed edge between i and j in D (in either of the two
directions). Since we are interested in reflexivity, we know by Corollary 6 that D

has to be strongly connected; therefore, D needs to contain a cycle entirely oriented
in one of the two possible directions. This generalization of cycle graphs will be
made clear later (Definition 16). Moreover, in order to ensure the presence of no
more than one interior point, we will assume for each couple of vertices i, j of D,
there is at most one oriented edge from i to j.

4.1. Laplacian simplices associated to simple digraphs

In this section, we focus on simple digraphs, where by simple we mean there is
at most one directed edge from i to j, for any pair of vertices i, j∈[n], i �=j. Note
the presence of both a directed edge from i to j and one from j to i is allowed. As
in the previous section, we restrict our attention to those digraphs having positive
complexity. This case still generalizes the work of Braun–Meyer [5] (see Remark 2)
and defines polytopes with at most one interior point. Indeed, we prove that all
the Laplacian simplices of a simple digraph on n vertices are subpolytopes of PKn ,
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the Laplacian simplex associated to the complete simple digraph. Observe PKn is
equivalent to the n-th dilation of an (n−1)-dimensional unimodular simplex, and
therefore it has exactly one interior lattice point.

Proposition 14. Let D be a simple digraph on n vertices. Then PD is a

subpolytope of PKn . In particular, if D is strongly connected, then PD has exactly

one interior lattice point.

Proof. Corollary 6 implies PD has at least one interior lattice point, so the
second statement follows directly from the first one. In order to prove the first part,
we show that any vertex u of PD is in PKn . Up to a relabeling of the vertices, we
can assume that u=(a,−1, ...,−1, 0, ..., 0), where a equals the number entries of u
which are equal to −1. We know that the Laplacian L(Kn) is

L(Kn)=

⎡
⎢⎢⎢⎢⎣
n−1 −1 ... −1
−1 n−1 ... −1
... ... ... ...

−1 −1 ... n−1

⎤
⎥⎥⎥⎥⎦ .

We denote by vi the i-th row of L(Kn), as well as the corresponding vertex of PKn .
It is then enough to prove that u can be written as a convex combination of the
vertices of Kn, i.e. that u=

∑n
i=0 λivi, with 0≤λi≤1 and

∑n
i=0 λi=1. This can be

done with the following choice of barycentric coordinates:

λi =

⎧⎪⎨
⎪⎩

a+1
n , if i=1

0, if 2≤i≤a+1
1
n , if a+2≤i≤n

.

This proves PD is a subpolytope of PKn . �

4.2. Lattice simplices associated to generalized cycles

In [5], the authors study the Laplacian simplex associated to the undirected
cycle graph Cn, proving the following result.

Theorem 15. ([5, Theorem 5.1]) For n≥3, the simplex TCn is reflexive if and

only if n is odd.

The rest of this section is aimed to generalize their result to the case of directed
cycles. Note that in order to have reflexivity (or, in particular, to have one interior
lattice point) we need the digraph to be strongly connected (Corollary 6). There-
fore, all cycles we consider will always contain a cycle entirely oriented in one of the
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1

2

3
4

5

Figure 3. The cycle digraph C
{1,3}
5 .

two possible directions and some additional edges directed in the opposite direc-
tion. Informally speaking, we define a cycle digraph to have all the edges pointing
clockwise and some edges pointing counterclockwise.

Definition 16. Let n≥3. We say that a digraph D on the vertex set [n] is a
cycle digraph if, up to a relabeling of the vertices, E(D)=−→

E (D)∪←−E (D), where

−→
E (D) = {(1, 2), (2, 3), ..., (n−1, n), (n, 1)},
←−
E (D)⊆{(n, n−1), (n−1, n−2), ..., (2, 1), (1, n)}.

If such a relabeling exists, D is completely determined by ←−
E (D), and we denote it

by D=CS
n , where S⊆[n] is the set of the tails of the directed edges in ←−

E (D). As
an example, see Figure 3.

We first prove for most of the directed cycles, the associated Laplacian simplex
has no lattice points other than its vertices and the origin. Borrowing some termi-
nology from the algebraic geometers, we call a simplex with this property terminal
Fano.

Theorem 17. Let D be any cycle digraph. PD is terminal Fano if and only

if D is not, up to a relabeling of the vertices, one of the following six exceptional

directed cycles.

1

2

3

1

2

3

1

2

3

1

2
3

4
1

2
3

4
1

2
3

4

Proof. We prove that, for n≥5, PCS
n

is terminal Fano for all S⊆[n]. The
lower dimensional cases are checked individually, leading to the six exceptional
cases above. For each i∈[n], we have vi=ai−1ei−1+biei−ei+1 where for each
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j∈[n] aj∈{−1, 0} and bj=1−aj∈{1, 2}, and a0=an, e0=en and en+1=e1. As-
sume that PCS

n
is not terminal Fano. Let x=(x1, ..., xn) be a lattice point in

PCS
n
\{v1, ...,vn,0} and set x=

∑n
i=1 λivi with 0≤λ1, ..., λn<1 and λ1+...+λn=1.

Then one has xi=−λi−1+biλi+aiλi+1∈{−1, 0, 1} for each i, where λ0=λn and
λn+1=λ1. Suppose that there exists i∈[n] such that xi=−1. We can assume
without loss of generality that x2=−1. Then we obtain a2=−1, 0<λ1, λ3<1 and
λj=0 for any j �=1, 3. This implies that x4=−λ3+b4λ4+a4λ5=−λ3 /∈Z, a contra-
diction. Hence we have xi∈{0, 1} for each i. Since x �=0, we can assume with-
out loss of generality that x2=1. Then one has b2=2 and λ2≥1/2. If b3=1,
it follows that x3=0, λ2=λ3=1/2 and λj=0 for any j �=2, 3. This implies that
x4=−λ3+b4λ4+a4λ5=−λ3 /∈Z, a contradiction. Hence one has b3=2. If x3=1,
then λ3≥1/2, hence one has λ2=λ3=1/2 and λj=0 for any j �=2, 3. However,
we obtain x4=−λ3+b4λ4+a4λ5=−λ3 /∈Z, a contradiction. Hence x3=0. If b1=1,
then one has λ0=λ1=0. Since 2λ2−λ3=1 and −λ2+2λ3−λ4=0, it follows that
3λ2=λ4+2≥2. Hence one has λ2=2/3, λ3=1/3 and λj=0 for any j �=2, 3. How-
ever, we obtain x4=−λ3+b4λ4+a4λ5=−λ3 /∈Z, a contradiction. Thus, b1=2. Then
it follows from λ2≥1/2 that λ2=1/2, λ1=λ3=1/4 and λj=0 for j∈[n]\{1, 2, 3}.
This implies that x4=−λ3+b4λ4+a4λ5=−λ3 /∈Z, a contradiction. Therefore, PCS

n

is terminal Fano. �

Now we characterize reflexivity for Laplacian simplices PCS
n
, extending Theo-

rem 15 by Braun–Meyer.

Theorem 18. The Laplacian simplex PCS
n
associated to a cycle digraph CS

n is

reflexive if and only if one of the following conditions is satisfied:

(1) S=∅, or

(2) S=[n] and n=2, or
(3) S=[n] and n is odd, or

(4) ∅�S�[n], such that k|c(D) for each integer 1≤k≤K+1, where K is the

longest chain of consecutive edges pointing counterclockwise, i.e.

K :=max{j | {a+1, ..., a+j}⊆S, for some a∈ [n]},

where, since S�[n], we have assumed without loss of generality, that 1 /∈S.

Proof. If S satisfies (1) or (2), then thanks to Corollary 10, it trivial to check
that PCS

n
is reflexive. If S satisfies (3), then PCS

n
is reflexive by Theorem 15. Suppose

now that S satisfies (4). In particular, we have assumed that 1 /∈S. This implies
vertex n has exactly one spanning converging tree, i.e. cn=1. As usual, ci denotes
the number of spanning trees which converge to vertex i. Then gcd{c1, ..., cn}=
1, and PCS

n
is a weighted projective space by Proposition 8. For each vertex i,
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we denote by Ki the length of the longest chain of consecutive edges pointing
counterclockwise ending in i, i.e.

Ki :=max{j | {i+1, ..., i+j}⊆S}, for 1≤i≤n .

In particular, Kn=0 and K=max{Ki |i∈[n]}. Given i∈[n], note there are exactly
Ki+1 spanning trees converging to i. There are Ki having edge set

{(j, j−1), ..., (i+1, i), (j+1, j+2), ..., (n−1, n), (n, 1), ..., (i−1, i)},

for all j∈{i+1, ..., i+Ki}, plus an additional “clockwise tree” with edges

{(i+1, i+2), ..., (n−1, n), (n, 1), ..., (i−1, i)}.

By Corollary 10, PCS
n

is reflexive if and only if ci|c(D), for all i∈[n]. We conclude
by noting that if ci>1 for some i∈[n], then ci+1=ci−1, in particular {ci |i∈[n]}=
{1, ...,K+1}. �

We now have all the tools to completely characterize all reflexive IDP simplices
arising from cycle digraphs.

Theorem 19. Let CS
n be a cycle digraph on n vertices such that PCS

n
is re-

flexive. Then PCS
n

possesses the integer decomposition property if and only if D

satisfies one of the following conditions:

(1) S=∅, or

(2) D is, up to a relabeling of the vertices, one of the following directed cycles.

1

2

3

1

2

3

1

2

3

1

2
3

4

Proof. If S=∅, then CS
n is known to be a reflexive IDP simplex. If S=[n],

from Theorem 15 P
C

[n]
n

is reflexive if and only if n is odd. In this case, it is known
P
C

[n]
n

is IDP if and only if n=3 [5, Corollary 5.11]. Now, assume that ∅ �=S �=[n]
and PCS

n
is IDP. We use the same notation introduced in Theorem 18. Then we

can assume c1=1, c2=K+1, c3=K, ..., cK+1=2. Set q=(c2, ..., cn). It follows that
PCS

n
is unimodularly equivalent to Δ(1,q). By Lemma 13, we know that for each

2≤j≤n,

(3) 1
cj

+
∑
i �=j

{
ci
cj

}
=1.
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But, if K≥3, by (3) we get

1
K+1 +

n∑
i=3

{
ci

K+1

}
≥ 1

K+1 +K−1
K+1 + K

K+1 > 1,

so K∈{1, 2}. By applying (3) in these cases, one gets n≤4. We conclude by checking
all the cycle digraphs having up to four vertices. �

As an application of the tools developed in this section, we build a special family
of cycle digraphs whose Laplacian simplices are reflexive and have non unimodal
h∗-vectors.

Theorem 20. Let α, β, k∈Z>0 such that α≤β≤k−1 and α+β≤k+1. Let

D=CS
n be the cycle digraph with n:=6(k+1)−2α−β, and S :=S1∪S2∪S3 where

S1 := {1+3h | 0≤h≤α−1},

S2 := {2+3h | 0≤h≤α−1},

S3 := {3α+1+2h | 0≤h≤β−α−1}.

Then PD is a reflexive simplex of dimension 6(k+1)−2α−β−1 with symmetric and

nonunimodal h∗-vector

( 1, ..., 1︸ ︷︷ ︸
2(k+1)−α

, 2, ..., 2︸ ︷︷ ︸
α

, 1, ..., 1︸ ︷︷ ︸
(k+1)−α−β

, 2, ..., 2︸ ︷︷ ︸
β

, 1, ..., 1︸ ︷︷ ︸
(k+1)−α−β

, 2, ..., 2︸ ︷︷ ︸
α

, 1, ..., 1︸ ︷︷ ︸
2(k+1)−α

).

Proof. An example of the digraph in the statement is represented in Figure 4.
The digraph has no more than two consecutive vertices with outdegree two, so the
number of spanning trees converging to each of the vertices of D is at most three.
Specifically,

ci−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3, if i∈S1,

2, if i∈S2∪S3,

1, if i∈[n]\S.

Above, we set c0 to be cn. Since each ci divides c(D)=
∑n

i=1 ci=6(k+1), then PD

is reflexive by Theorem 18. Now we use Theorem 12 to describe its h∗-polynomial.
In particular,

h∗(z)=
c(D)−1∑
b=0

zw(b), withw(b)= b−
n∑

i=1

⌊
cib

6(k+1)

⌋
.
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1 2
3

4

5

6

7
89

10

11

12

13

14

15

Figure 4. An example of the construction of Theorem 20. In this case α=β=1 and k=2. The
Laplacian simplex associated to this digraph has h∗-vector (1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1).

In our case, this becomes

w(b)= b−α

⌊
b

2(k+1)

⌋
−β

⌊
b

3(k+1)

⌋
,

which yields

w(b)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b, if 0≤ b≤ 2(k+1)−1,
b−α, if 2(k+1)≤ b≤ 3(k+1)−1,
b−α−β, if 3(k+1)≤ b≤ 4(k+1)−1,
b−2α−β, if 4(k+1)≤ b≤ 6(k+1)−1.

From this, using the condition α+β≤k+1, we deduce the i-th coefficient of the
h∗-polynomial:

h∗
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2, if

⎧⎪⎨
⎪⎩

2(k+1)−α≤i≤2(k+1)−1, or
3(k+1)−α−β≤i≤3(k+1)−α−1, or
4(k+1)−2α−β≤i≤4(k+1)−α−β−1;

1, otherwise. �

5. Further questions

Note that in the case of undirected cycles studied by Braun-Meyer [5], the
reflexivity is influenced by the number of vertices of the graph (Theorem 15). On
the other hand, when passing to the directed case we discussed in Section 4, it is
clear (from Theorem 18) that one can build reflexive Laplacian simplices starting
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from cycles of any length. This can be done by orienting a cycle in one of the two
directions.

It is natural to wonder how the structure of the underlying simple graph GD of
a digraph D plays a role in determining the reflexivity of PD. We define an oriented
graph to be a simple digraph D such that if there is an edge pointing from i to j,
then there is no edge pointing from j to i.

The following examples show that obtaining reflexive Laplacian simplices from
digraphs with a fixed underlying simple graph is not an easy task. Example 21
shows there is a simple graph G1 such that any of its orientations is a digraph
whose Laplacian simplex is not a full-dimensional reflexive simplex. However, if we
do not require the digraph to be an oriented graph, there is a simple digraph D1
(Example 22) having G1 as its underlying graph such that PD1 is a full-dimensional
reflexive simplex. On the other hand, in Example 23 we show there is a graph G2
which is not the underlying graph of any simple digraph whose Laplacian simplex
is reflexive. However, if we do not require the digraph to be simple, then there is
a digraph D2 (Example 24) having G2 as its underlying graph such that PD2 is
reflexive.

Example 21. Let G be the following graph.

1

2

5

43G1=

Assume D is an orientation of G1 such that PD is a reflexive 4-simplex. Since
D must be strongly connected, we may assume, without loss of generality, that
(5, 3), (3, 1), (1, 2), (2, 5) are edges of D. It follows that either (1, 4), (4, 5) or (5, 4),
(4, 1) are in E(D1). In both cases, PD is not reflexive. So none of the orientations
of G1 lead to a reflexive simplex.

Example 22. Let D1 be the following simple digraph.

1

2

5

43D1=

Note that its underlying simple graph is still G1 of Example 21, but PD1 is reflexive.
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Example 23. Let G2 be the following graph.

1 2

3 4

5 6

G2=

Note that there are finitely many possible directed simple graphs having G2 as
an underlying graph. A computer-assisted check shows none of them produces a
reflexive Laplacian simplex.

Example 24. Let D2 be the following digraph (the label on an edge from i

to j, if present, represents the total number of edges from i to j).

1 2

3 4

5 6

D2=

3

3

3

3

3 33 3

3

3 3

3

Then PD2 is a reflexive simplex.
In general, it is still unclear how the underlying graph affects the reflexivity

of the Laplacian simplex of a digraph. Examples 21 and 23 show that this is a
nontrivial question. We conclude with the following three open questions.

Question A. For which simple graphs G on [n], does there exist an oriented
graph D on [n] such that GD=G and PD is a reflexive (n−1)-simplex?

Question B. For which simple graphs G on [n], does there exist a simple
digraph D on [n] such that GD=G and PD is a reflexive (n−1)-simplex?

Question C. For any simple graph G on [n], does there exist a digraph D on
[n] such that GD=G and PD is a reflexive (n−1)-simplex?
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