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Abstract We give a new solution to a well-known problem, that of computing perturbed eigenvalues for quantum
oscillators. This article is nearly self contained and begins with all the necessary algebraic tools to make the
subsequent calculations. We define a new family of Lie algebras relevant to making computations for perturbed
(anharmonic) oscillators, and show that the only two formally closed solutions are indeed harmonic oscillators
themselves. Through elementary combinatorics and noncanonical forms of well-known Lie algebras, we are able to
obtain a fully closed form solution for perturbed eigenvalues to first order.
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1 Introduction

The goal of the present paper is primarily to exhibit the effectiveness of using Lie algebras to compute exact
perturbation eigenvalues for quantum anharmonic oscillators in one dimension. There are, however, several goals
secondary in stature, but which merit discussion. The first of these is to enable the reader to work with Weyl algebras
in the abstract. Two presentations of it arise readily in quantum physics. In particular, the first is the algebra of
position and momentum operators in nonrelativistic mechanics wherein [x, p] = i�. The second is the algebra of
ladder operators [a, a†] = 1. It is the second presentation with which we will be primarily concerned in this paper.
Of course, the first presentation may be made to look like the second by considering not p, but instead the simple
derivative d

dx whereby one has [ d
dx , x] = 1.

The main result is for a Hamiltonian of the form

H2k =
1

2

(
x2 − d2

dx2

)
+ λx2k.

We have computed the first-order perturbation of its eigenvalues as

En = n +
1

2
+

λ

2k

⎛
⎝ k∑

j=0

j!

{
2k

k

}
k−j

(
n

j

)⎞⎠ ,

where En is the nth energy level and
{

�
m

}
k

is a Weyl binomial coefficient.
In Section 2, we give a brief outline of the algebraic and combinatorial techniques necessary to make all

relevant computations obtained in this article. This includes normal ordering or Weyl variables, polynomials of
Weyl variables, Baker-Campbell-Hausdorff formula and Hadamard lemma, as well as basic combinatorial structures
in Weyl variables. Section 3 gives a concise description of the method of Jafarpour and Ashfar. The original paper is
brief and focuses more on numerical computations and advantages to this method. Here, we define our Lie algebras
up to any finite order. In section 4 the focus shifts directly to Lie algebras of order one in λ and computes their
dimensions. It should be noted that all of these Lie algebras have a central element. Section 5 gets to the heart of the
matter, giving a closed form solution to perturbed quantum oscillators in one dimension. While it has been known
for several decades that the first-order perturbation of an odd potential is zero, no closed form solution for even
potentials has been given. Using our Lie algebras up to order one in λ, we are finally able to give such a solution up
to order one. Furthermore, the perturbed ground state is given exactly for any potential given by an analytic function.
Section 6 extends the range of this method. With substantially more time, we may compute closed form solutions up
to order n in λ. Furthermore, this method may be used to obtain exact solutions for harmonic oscillators in higher
dimensions, including magnetic fields, or with dynamic coupling.
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2 Algebraic preliminaries

2.1 Normal ordering and Weyl binomial coefficients

For any abstract Weyl algebra determined by two elements A and B obeying [A, B] = 1, an ordering of a polynomial
in A and B will be said to be normally ordered if all powers of B appear to the left of powers of A. For example
A3B2 is not normally ordered, but B2A3 is. In our case a† will always be placed to the left of a. As it is well
known in elementary quantum mechanics, one may move back and forth between presentations of problems in
position-momentum coordinates and annihilator-creator coordinates with the following equivalences:

x =
a + a†√

2
, p =

a − a†

i
√

2
. (2.1)

Since this paper is concerned with anharmonic oscillators, we will be concerned with xn in the potential. Thus, we
need an efficient way of normally ordering (a + a†)n.

Lemma 1. Let A and B determine a Weyl algebra so that [A, B] = 1. The normal ordering of (A + B)n is given by

(A + B)n =
n∑

m=0

min{m,n−m}∑
k=0

{
n

m

}
k

Bm−kAn−m−k, (2.2)

where {
n

m

}
k

=
n!

2kk!(m − k)!(n − m − k)!
(2.3)

is the Weyl binomial coefficient.

The proof of this lemma involves nothing more than counting commutations. A more combinatorial approach is
undertaken in [3].

Example 2. We will use the fourth-order relation explicitly later, so here is an example of how the Weyl coefficients
factor in:

(a + a†)4 = a†4 + 4a†3a + 6a†2a2 + 4a†a3 + a4 + 6a†2 + 12a†a + 6a2 + 3.

Remark 3. Notice that {
n

m

}
k

=

{
n

n − m

}
k

.

If one wishes to attempt calculations within a Weyl algebra, it may be useful to compute with abstract elements
A, B first and then plug into a specific situation one has in mind. One other useful tip is that if one has Weyl variables
A, B, then it can be convenient to consider representing the algebra as d

dB , B or A,− d
dA . This becomes consistent

with the first presentation considered. For example, one peculiar formula which is arguably easier to compute with
abstract Weyl variables is

μx∂xf(x) = f(μx). (2.4)

2.2 Baker-Campbell-Hausdorff and the Hadamard lemma

We will be concerned throughout much of this paper with exponentiating noncommuting variables. We run into a
stopping block in trying to compute the exponentials explicitly. The main issue is that for noncommuting variables
X, Y we see

eY eX �= eY +X = eX+Y �= eXeY .

The Baker-Campbell-Hausdorff formula is the solution to Z = log(eXeY ). The explicit solution is formally given
as symmetric sums and differences of nested commutators in X and Y . One may find this expression in nearly any
textbook on advanced quantum mechanics. We will not be concerned, however, with isolated exponentials, but rather
expressions of the form

eXY e−X .

Using elementary combinatorics and the Baker-Campbell-Hausdorff formula, one can arrive at the Hadamard
lemma.
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Lemma 4. Let X, Y be noncommuting variables, then one has

eXY e−X = Y + [X, Y ] +
1

2!

[
X, [X, Y ]

]
+

1

3!

[
X,
[
X, [X, Y ]

]]
+ · · · . (2.5)

If one allows the notation [X(n), Y ] = [X, [. . . , [X, Y ]]], then one may write more succinctly

eXY e−X =

∞∑
k=0

1

k!

[
X(k), Y

]
. (2.6)

2.3 The formula often desired and rarely known

One final assertion about Weyl variables in the algebraic preliminaries must be the formula

[
An, Bm] =

min{n,m}∑
k=1

k!

(
m

k

)(
n

k

)
Bm−kAn−k. (2.7)

This formula is often left as an exercise in quantum mechanics texts and sometimes in homological algebra, but
rarely is it completed. One might jokingly say it is similar to the snake lemma in that no one knows if it’s really true
since the only persons who have ever proven it are graduate students. All kidding aside, this is indeed the correct
formula for normally ordering variables obeying the Weyl relation.

3 Using Lie algebras to determine perturbed eigenvalues

The main impetus for this research comes from the paper [2]. The goal of this section is to explicate in a reasonably
clear manner the content of that paper.

The premise upon which [2] begins is the idea that we can create a new Lie algebra from simply taking commu-
tators of the unperturbed Hamiltonian H0 and the new anharmonic Hamiltonian Hn. For the sake of mathematical
simplicity, the Hamiltonians in question are given as essentially unitless operators:

H0 =
1

2
(p2 + x2) = a†a +

1

2
, Hn = H0 + λxn = a†a +

1

2
+

λ√
2
n (a + a†)n. (3.1)

As one may infer, we have made the following assumptions and simplifications:

1. � = ω = m = 1,

2. a = x+ip√
2

, a† = x−ip√
2

,

3. x = a+a†√
2

, p = a†−a
i
√

2
.

Let us now give the formulation of the Lie algebras.

Definition 5. The Lie algebra A(k)
n = {Lm}m∈I is generated by the elements

L1 = H0, L2 = Hn

and other Lm satisfying

[
Li, Lj

]
=
∑

cijmLm, (3.2)

for some structure constants cijm ∈ C. Furthermore, this Lie algebra should be closed under commutators up to
order λk. In other words, no Lm should be of the form λk+1(a†tas − a†sat) for any s, t. That is, formally we
require λk+1 = 0 within the Lie algebra.

In the case of this paper, we will consider A(1)
n unless otherwise explicitly stated. In fact, [2] only considers Lie

algebras up to order one in λ with the exceptions of n = 1 and n = 2 because these determine harmonic oscillators
and their solutions are already known. We deal with the special technique for solving harmonic oscillators in the
appendix.
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Once the algebra A(1)
n is determined, we proceed in the following way. Suppose

[
L1, L2

]
=

j∑
k=3

c12kLk (3.3)

where each Lk is of the form

λ
(
a†ma� − a†�am). (3.4)

The symmetry of these Lk is important and comes back in an important way due to the normal ordering
procedures we have adopted. We will see this explicitly in the computations.

We then construct a unitary element of the associated Lie group by

U = exp

(
j∑

k=3

αkLk

)
. (3.5)

This says that the only Lk allowed in our unitary are those arising directly from the commutator [L1, L2]. The
αk are real constants which we will tune as necessary.

Once we produce such a unitary, we make a transformation from H0 to Hn by

U†H0U = Hn − Λn. (3.6)

In each case, Λn is an operator which simply controls the perturbations of eigenvalues. Furthermore, by the
clever choice of U we will have [U, Λn] = 0+O(λ2). Due to the Hadamard lemma we can produce Λn by computing
simple commutators.

At this stage one may write the new eigenvectors as U†|j〉, where |j〉 are the eigenvectors for the harmonic
Hamiltonian with eigenvalues j + 1

2 . Therefore, up to order λ2 our equation now reads

HnU†|j〉 =
(
U†H0U + Λn

)
U†|j〉 = U†H0|j〉 + ΛnU†|j〉

= U†
(

j +
1

2

)
|j〉 + U†Λn|j〉 =

(
j +

1

2
+ λn

)
U†|j〉.

(3.7)

In essense, depending on the form of Λn, we will be able to read off the first-order perturbation eigenvalues (λn)
of Hn with relative ease.

A natural question arises as to when we can solve this system explicitly. The work in [2] makes a passing
statement which we will now state as a formal theorem.

Theorem 6. If the Lie Algebra An is closed (in all orders of λ), then one can solve the nth order anharmonic
oscillator in closed form.

Proof. Let An = {Lk}N
k=1 be a closed Lie algebra corresponding to the Hamiltonian Hn. Then, consider the general

Lie group element given by

U = exp

(
N∑

k=1

αkLk

)
=: exp(L).

From the Hadamard lemma, we obtain

U†H0U =
∞∑

k=1

1

k!

[
L(k), H0

]
. (3.8)

Since An is closed, the commutators [L(k), H0] either vanish or give Lie algebra elements with some periodicity.
In this way, we can formally sum them in a power series. Setting our parameters to appropriate values, we obtain

U†H0U = Hn + perturbations.

Remark 7. It should be noted, however, that whenever n > 2, An is known to be infinite dimensional. Therefore,
the only truly closed Lie algebras are A1 and A2. The solutions to the corresponding Hamiltonians are known
exactly, as these are shifted harmonic oscillators.

It is also of some considerable interest to note that both A1 and A2 are four-dimensional closed Lie algebras
with center. Therefore, they are each isomorphic to gl2 albeit noncanonically.
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4 Lie algebras up to order one in λ

We begin the computation of the Lie algebras by giving an important commutator relation:

[
a†a, a†ka� ± a†�ak] = (k − �)

(
a†ka� ∓ a†�ak). (4.1)

This equation paired with the symmetry of Weyl binomial coefficients points us to assigning a†nam − a†man

as our Lie algebra elements. Let us begin by computing [H0, Hn]:

[
H0, Hn

]
=

[
H0, H0 +

λ√
2
n

(
a† + a

)n]
=

[
H0,

λ√
2
n

(
a† + a

)n]
=

λ√
2
n

[
a†a,

(
a† + a

)n]

=
λ√
2
n

[
a†a,

∑
k,m

{
n

m

}
k

(
a†m−kan−m−k + a†n−m−kam−k)]

=
λ√
2
n

∑
k,m

{
n

m

}
k

(2m − n)
(
a†m−kan−m−k − a†n−m−kam−k).

(4.2)

We will throw away the multiplicative constants in favor of rescaling them by αk in our general Lie group
element. Therefore, the first batch of elements revealed to us are those of the form λ(a†�am − a†ma�). Once we
realize these, we begin commuting again with H0 to find more elements of the form λ(a†�am + a†ma�). In order

to close A(1)
n we also need to add a central element I to our Lie algebra. All other commutators will involve terms

with λ2 and therefore we disregard them in A(1)
n .

Remark 8. Notice that no elements of the form a†nan appear anywhere. This is because they can be written in
terms of the number operator N = a†a which commutes with H0.

Given a general Hamiltonian Hn, with special exceptions, by simple combinatorial formulae one infers the
number of generators for A(1)

n by

∣∣A(1)
2k

∣∣ = (k + 1)k + 3,
∣∣A(1)

2k+1

∣∣ = (k + 1)k + 3. (4.3)

Example 9. Let us take a quick look at A(1)
6 . Of course, we let L1 = H0 and L2 = H6. By our computation, we

know the generators arising from [L1, L2] are as follows:

λ
(
a†6 − a6), λ

(
a†5a − a†a5), λ

(
a†4a2 − a†2a4), λ

(
a†4 − a4), λ

(
a†3a − a†a3), λ

(
a†2 − a2).

Furthermore, commuting these with L1 we obtain similarly symmetric elements with plus signs. Finally, we add
in I to account for commuting elements. Notice that if we commute any other elements, we obtain an element in
A(2)

6 which we have formally disallowed for now. Therefore, |A(1)
6 | = 15 = (3 + 1)3 + 3 as previously stated.

5 Explicit computations

In this section, we will derive the first-order perturbation for all anharmonic oscillators with Hamiltonians of the
form

Hn =
1

2

(
p2 + x2) + λxn.

There are two distinct cases for computing first-order perturbations; odd and even. We will treat the odd case first.
For the sake of uniformity in our calculations, we will consider Hamiltonians of the form H2k−1 and H2k.
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5.1 Odd powered potentials

From our earlier computations of [H0, H2k−1] and our prescribed form of U , we have

U = exp

(
λ

m−1∑
�=0

k∑
m=1

αm,�a
†2m−1−�a� − a†�a2m−1−�

)
. (5.1)

By requiring αm,� ∈ R, we obtain U† = U−1 and we may now apply the Hadamard lemma. Letting

X := λ

m−1∑
�=0

k∑
m=1

αm,�

(
a†2m−1−�a� − a†�a2m−1−�)

we have

U†H0U = H0 +
[− X, H0

]
+

1

2!

[− X,
[− X, H0

]]
+ · · · . (5.2)

We notice immediately that X contains a multiplicative factor of λ and since we have λ2 = 0 we may ignore all
terms past [−X, H0].

Using previous computations and elementary properties of derivations we have

[
H0, X

]
= λ

m−1∑
�=0

k∑
m=1

αm,�(2m − 1 − 2�)
(
a†2m−1−�a� + a†�a2m−1−�). (5.3)

If we recognize that

x2k−1 =
(a + a†)2k−1

√
2
2k−1

=
1

√
2
2k−1

2k−1∑
m=0

min{m,2k−1−m}∑
j=0

{
2k − 1

m

}
j

a†m−ja2k−1−m−j , (5.4)

we see that in order to produce H2k−1 = H0 + λx2k−1 we need to set

αm,�(2m − 2� − 1) =
1

√
2
2k−1

{
2k − 1

k − m + �

}
k−m

. (5.5)

Notice what we have done. We have transformed H0 into H2k−1 + O(λ2). Hence, there is no perturbation term
up to first order.

Example 10. Let us compute the example of H1 = H0 + λx explicitly. We already know that this is a shifted
harmonic oscillator, where a simple change of variables reveals that the energy eigenvalues are n + 1

2 − λ2

2 .
In our case the Lie algebra simplifies slightly and is fully closed as

H0, H1, λ(a† − a), I.

Our appropriate unitary transformation U is therefore given as

U = exp
(
αλ(a† − a)

)
.

We can compute this even more explicitly than before given that [a† − a, a†] = [a† − a, a] = −1. In this case,
we know

[A, B] = β ∈ C =⇒ [
A, eB] = βeB (5.6)

for any abstract operators A, B.
Therefore [a, U ] = αλU and [a†, U ] = αλU ,

U†H0U = U†a†aU +
1

2
= U†a†U(αλ + a) +

1

2
= U†U(a† + αλ)(a + αλ) +

1

2

= a†a +
1

2
+ αλ(a† + a) + α2λ2.

Setting α = 1√
2

we derive

U†H0U = H1 +
λ2

2
. (5.7)

This is exactly the result we previously knew. Notice, however, that there is no λ term. The first perturbation term is
order λ2.
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Example 11. To better see the odd powered result more explicitly, let us compute the result for H5. Our Lie algebra
up to order one is given by

λ
(
a†5 − a5), λ

(
a†4a − a†a4), λ

(
a†3a2 − a†2a3), λ

(
a†3 − a3), λ

(
a†2a − a†a2), λ

(
a† − a

)
,

λ
(
a†5 + a5), λ

(
a†4a + a†a4), λ

(
a†3a2 + a†2a3), λ

(
a†3 + a3), λ

(
a†2a + a†a2), λ

(
a† + a

)
,

H0, H5, I.

Therefore U is

U = exp
(
λ
(
α3,0

(
a†5 − a5) + α3,1

(
a†4a − a†a4) + · · · + α1,0

(
a† − a

)))
.

Our Hamiltonian transforms as

U†H0U = H0 + λ
[
H0, α3,0

(
a†5 − a5) + α3,1

(
a†4a − a†a4) + · · · + α1,0

(
a† − a

)]
+ O

(
λ2)

= H0 + λ
(
5α3,0

(
a†5 + a5) + 3α3,1

(
a†4a + a†a4) + · · · + α1,0

(
a† + a

))
.

Setting

α3,0 = 2−5/2/5, α3,1 = 2−5/25/3, α3,2 = 2−5/210,

α2,0 = 2−5/210/3, α2,1 = 2−5/230, α1,0 = 2−5/215,

we obtain

U†H0U = H0 + λx5 + O
(
λ2) = H5 + O

(
λ2). (5.8)

5.2 Even powered potentials

It is the goal of this section to show that the first-order perturbation energies for oscillators corresponding to H2k

are

n +
1

2
+

λ

2k

(
k∑

j=0

j!

{
2k

k

}
k−j

(
n

j

))
. (5.9)

This result is obtained rather easily utilizing the technology we have developed for odd powered potentials. We
only need to realize that the operators which are not Lie algebra elements are of the form a†nan. This comes from
the required symmetry of our generators. Hence our unitary U will appear exactly as in the odd powered case and
the Hadamard lemma yields

U†H0U = H0 + λx2k − λ

2k

k∑
j=0

{
2k

k

}
k−j

a†jaj + O
(
λ2). (5.10)

The only thing left to pretty up our example is changing a†kak into an expression of number operators.
Recall that N = a†a has nonnegative integer eigenvalues given by N |n〉 = n|n〉. In this way, any expression

f(N) in our perturbation expansion will give eigenvalues f(n) by the functional calculus.

Proposition 12.

a†kak = k!

(
N

k

)
. (5.11)

Proof. We refer back to our commutation relation [An, Bm] from Section 2.3. Thus we have

a†kak = a†(a†k−1a)ak−1 = a†(aa†k−1 − (k − 1)a†k−2)ak−1

= (a†a)a†k−1ak−1 − (k − 1)a†k−1ak−1

= (N − (k − 1))a†k−1ak−1.

Repeating this we see that

a†kak = N(N − 1) · · · (N − (k − 1)
)

= k!

(
N

k

)
. (5.12)
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It is merely a matter of rearranging terms to see that

U†H0U = H2k − λ

2k

k∑
j=0

j!

{
2k

k

}
k−j

(
N

j

)
+ O

(
λ2). (5.13)

Example 13. Let us look briefly at the Hamiltonian

H4 = a†a +
1

2
+

λ

4

(
a† + a

)4
.

This is the famous quartic which has received much attention in texts and papers. We can check our results against
those of standard perturbation theory.

Our Lie algebra A(1)
4 is given by

λ
(
a†4 − a4), λ

(
a†3a − a†a3), λ

(
a†2 − a2), λ

(
a†4 + a4), λ

(
a†3a + a†a3), λ

(
a†2 + a2), H0, H4, I.

Our unitary is given by

U = exp
(
λ
(
α2,0

(
a†4 − a4) + α2,1

(
a†3a − a†a3) + α1,0

(
a†2 − a2))).

From here we must simply crank the handle for our machine and we realize that

U†H0U = H0 +
[
H0, λ

(
α2,0

(
a†4 − a4) + α2,1

(
a†3a − a†a3) + α1,0

(
a†2 − a2))]

= H0 + λ
(
4α2,0

(
a†4 + a4) + 2α2,1

(
a†3a + a†a3) + α1,0

(
a†2 + a2)). (5.14)

Setting

α2,0 = 1/16, α2,1 = 1/2, α1,0 = 3/4,

we arrive at

U†H0U = H4 − λ

4

(
6a†2a2 + 12a†a + 3

)
= H4 − 3λ

2

(
N(N + 1)

) − 3λ

4
. (5.15)

If we look to the ground state, we see that

E0 =
1

2
+

3λ

4
+ O

(
λ2)

which agrees with the standard perturbation theory.

In particular, the perturbed ground state of the anharmonic oscillator corresponding to H2k is given by

E0 =
1

2
+

λ

2k

{
2k

k

}
k

+ O
(
λ2) =

1

2
+

λ(2k)!

22kk!
+ O

(
λ2). (5.16)

6 Extending the method

The second subsidiary goal of this paper is to show several extensions to this method and invite research into even
more applications of Lie algebras into physics.



Journal of Physical Mathematics 9

6.1 Simple one-dimensional corollaries

Now that we have given explicit formulae for computing perturbation eigenvalues for potentials of the form λxn,
we can extend by linearity (up to order one) and immediately recover eigenvalues for polynomial potentials. In fact,
we can extend this further to convergent power series.

Example 14. Let us consider

H = a†a +
1

2
+ λex.

Of course this can be rewritten as

H = a†a +
1

2
+ λ

(∑
k

xk

k!

)
.

If we notice that only the even powered potentials contribute perturbations up to first order, then we will also
compute perturbations for H = H0 + λ cosh(x) as well.

Let us compute only the ground state energy. We have

E0 =
1

2
+ λ

(∑
k

(2k)!

22kk!(2k)!

)
=

1

2
+ λ

(∑
k

4−k

k!

)
=

1

2
+ λ exp(1/4).

Moreover, we can add any number of perturbation parameters and solve the system accordingly. In particular,
we can essentially read off first-order perturbations for Hamiltonians of the form

H = H0 +
n∑

j=1

λjx
kj .

6.2 Simple N -dimensional corollaries

In extending this method, it is natural to ask whether one can tackle higher dimensional systems with a similar
approach. In our case, we certainly can attack higher dimensional problems similarly, but the construction of the
Lie algebra is different. For the simple N -dimensional corollaries, we will assume that our oscillator potential is not
coupled (i.e. no terms of the form λxjyk appear). For the sake of simplicity, let us go through the construction of
the Lie algebras for a two-dimensional oscillator.

Consider

Hn,m = a†xax +
1

2
+ λ1xn + a†yay +

1

2
+ λ2ym.

We will take four elements as given in our Lie algebra:

H0,0 = a†xax +
1

2
+ a†yay +

1

2
, H0,m = H0,0 + λ2ym,

Hn,0 = H0,0 + λ1xn, Hn,m = H0,0 + λ1xn + λ2ym.

In this way, we will set up our Lie algebra as two independent oscillator Lie algebras and solve our problems
from before. Consider for example

H1,4 = H0,0 + λ1x + λ2y4.

Our Lie algebra A(1,1)
1,4 will have the following elements:

H0,0, H1,0, λ1
(
a†x − ax

)
,

H0,4, H1,4, I,

λ2
(
a†4y − a4

y

)
, λ2

(
a†3y ay − a†ya3

y

)
, λ2

(
a†2y − a2

y

)
,

λ2
(
a†4y + a4

y

)
, λ2

(
a†3y ay + a†ya3

y

)
, λ2

(
a†2y + a2

y

)
.
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Our unitary takes the form

U = exp
(
αλ1

(
a†x − ax

)
+ β1λ2

(
a†4y − a4

y

)
+ β2λ2

(
a†3y ay − a†ya3

y

)
+ β3λ2

(
a†2y − a2

y

))
.

Now we use the Hadamard lemma again, but taking advantage of the relations

[
a†j , ak

]
= δjk (6.1)

we can completely separate x variables from y variables and our calculation plays out exactly as before.
For the Hamiltonian H1,4 our perturbed ground state is

E0 =
1

2
+ O

(
λ2

1

)
+

1

2
+

3λ2

4
+ O

(
λ2

2

)
.

Now we can use all the simple one-dimensional corollaries in turn as well.

6.3 Higher-order perturbations

Since perturbation theory is meant to compute more than first-order terms, we seek to use this Lie algebraic method
to compute higher-order terms. Certainly, one can see that using the transformations U we have set up thus far will
produce higher order terms. One can see this if we set

U = exp(λL).

Our transformation becomes

U†H0U = H0 + λ
[
H0, L

]− λ2

2

[
L,
[
H0, L

]] · · · . (6.2)

This approach, however, changes our Hamiltonian fundamentally. In fact, we end up not solving any problems,
but instead creating more. A quick trial calculation with any Hamiltonian carrying term x3 or higher will reveal that
we cannot cancel certain terms arising from [L, [L, H0]]. To remove this difficulty, we must expand our Lie algebra
to include terms carrying λk for whichever k we should choose. It is therefore convenient to write our unitary
transformation as

U = exp

(
k∑

j=1

λjL(j)

)
, (6.3)

where L(j) are Lie algebra elements arising from jth order commutators.

Example 15. Let us return briefly to the quartic oscillator and calculate its second-order perturbation. Since it is
well studied, we may verify our results easily.

Computing commutators and commutators of commutators, one will arrive at the following Lie algebra up to
order 2.

H0, H4, I,

λ
(
a†4 ± a4), λ

(
a†3a ± a†a3), λ

(
a†2 ± a2),

λ2(a†6 ± a6), λ2(a†4a2 ± a†2a4),
λ2(a†4 ± a4), λ2(a†3a ± a†a3), λ2(a†2 ± a2).

Knowing the form of our necessary first-order transformation, we add four terms to the exponential by

U = exp

(
λ

(
1

16

(
a†4 − a4) +

1

2

(
a†3a − a†a3) +

3

4

(
a†2 − a2)) + λ2β1

(
a†6 − a6)

+ λ2β2
(
a†4a2 − a†2a4) + λ2β3

(
a†3a − a†a3) + λ2β4

(
a†2 − a2)),

U = exp
(
λL(1) + λ2L(2)

)
.

(6.4)
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For simplicity, let us compute only the ground state energy given by U†H0U . We have

U†H0U = exp
( − λL(1) − λ2L(2)

)
H0 exp

(
λL(1) + λ2L(2)

)
= H0 + λ

[
H0, L(1)

]
+ λ2[H0, L(2)

] − λ2

2

[
L(1),

[
H0, L(1)

]]
+ O

(
λ3).

From here it is a matter of computing commutators and adjusting β1, β2, β3, β4 to cancel higher order terms not
given as functions of number operators.

When we compute the ground state energy, we are concerned only with constant terms. Therefore, looking to
our commutators we have the λ2 term[

1

16

(
a†4 − a4) +

1

2

(
a†3a − a†a3) +

3

4

(
a†2 − a2), 1

4

(
a†4 + a4) +

(
a†3a + a†a3) +

3

2

(
a†2 + a2)].

Expanding this we are left with two terms giving constants:

1

64

[
a†4 − a4, a†4 + a4] and

9

8

[
a†2 − a2, a†2 + a2].

Our constant terms turn out to be −2(4!)
64 and −2(2!)9

8 yielding −21
4 .

Finally, our ground state energy up to second order will be given by

(
U†H0U

)
U†|0〉 =

(
H4 − 3λ

4
− −21

4

λ2

2

)
U†|0〉, (6.5)

yielding

E0 =
1

2
+

3λ

4
− 21λ2

8
+ O

(
λ3). (6.6)

Indeed, this ground state energy agrees with the standard perturbation theory.
For the interested reader, the correct β parameter values are

β1 =
1

48
, β2 =

−9

16
, β3 =

−9

4
, β4 =

−63

32
,

and the second-order equation appears as

U†H0U = H4 − 3λ

2
N(N + 1) − 3λ

4
+ 51λ2

(
N

3

)
+

117λ2

2

(
N

2

)
+ 36λ2N +

21λ2

8
+ O

(
λ3). (6.7)

7 Discussion

One important problem among many arising from this paper and which we have yet neglected to mention is the
representation theory of the Lie algebras. For example, if we are dealing with the cases λx, λx2 in the one-
dimensional case or any quadratic term in higher dimensional cases, we have a closed Lie algebra. This may not be
terribly surprising as a closed Lie algebra offers an exact solution, and these particular potentials are simply shifted
or coupled harmonic oscillators. However, the Lie algebras we have constructed all contain central elements. In the
cases of A1 and A2 we have 4-dimensional closed Lie algebras with center. Representation theory tells us that these
are isomorphic to gl2. It remains to be seen exactly the relationship between these Lie algebras and the symmetries
they describe. In this paper, we have only used them to calculate perturbed energy levels. It is entirely possible that
there is a simpler approach to this problem from an entirely representation theoretic standpoint.

As it stands, we have given explicit constructions for Lie algebras up to any order and the method by which we
may construct a unitary operator to make the transformation

H0 �−→ Hn + perturbations up to O
(
λk).

By taking advantage of our symmetric construction of these Lie algebras, the Hadamard lemma, and several
formulae concerning abstract Weyl algebras, we have managed to give eigenvalues in agreement with standard
methods.

Another issue which we have neglected to resolve is how to deal with coupled oscillators in general. In the
appendix, we briefly mention the way to deal with potentials of the form λxy. The Lie algebra computations for
coupling terms of the form λxnym are more taxing and trickier. This method, however, should be able to deal with
situation, but some coordinate change may be required first.

It is the hope of the author that anharmonic oscillators are simply a useful class of examples for the propitiation
of this method. Furthermore, it is hoped that this method will help to give rise to additional representation theoretic
methods in physics.
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Appendix: dealing with harmonic oscillators

Two important cases we have not touched upon are those of actual harmonic oscillators in one and multiple
dimensions. Consider, for example, the two Hamiltonians

H2 = a†a +
1

2
+ λ

(
a† + a√

2

)2

, Hc = a†xax + a†yay + 1 +
λ

2

(
a†x + ax

)(
a†y + ay

)
. (7.1)

These correspond to the shifted frequency oscillator in one dimension with new frequency
√

1 + 2λ and a
coupled oscillator in two dimensions with quadratic coupling term. These cases have been well studied and so
we have neglected them thus far. However, the techniques to compute the perturbations are special because these
Hamiltonians along with H0 and H0,0 produce closed Lie algebras. By our theorem earlier, we know that we can
solve these exactly and not concern ourselves with kth order perturbations.

The main technique we employ is to transform our ladder operators via the so-called Bogoliubov transforms. In
one dimension, we have

b† = U†a†U = σa† + τa, b = U†aU = σa + τa†. (7.2)

In this way, we produce the new Hamiltonian

√
1 + 2λ

(
b†b +

1

2

)
= a†a +

1

2
+

λ

2

(
a† + a

)2
.

This algebra to move from σ, τ to this clean form of the new Hamiltonian is tedious to be sure. The interested reader
should confer with [2] or email the author for a small set of notes.

A similar technique can be used for the quadratic coupling, but the transformation must take into account much
more coupling. Our transformation should look something like⎛

⎜⎜⎜⎝
b†x
bx

b†y
by

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

α β γ δ

β α δ γ

σ τ μ ν

τ σ ν μ

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

a†x
ax

a†y
ay

⎞
⎟⎟⎟⎠ . (7.3)

This is simply a coordinate change which decouples the coordinate variables. The matrix, however, will take a
very special form so that [bi, b

†
j ] = δij as did the initial coordinates.

Remark 16. Notice here that we can couple our ladder operators in many more ways in agreement with [1]. For
example, we can tackle problems such as dynamic coupling

H = x2 − ∂2
x + y2 − ∂2

y + λ∂x∂y,

or oscillators in a magnetic field

H = x2 − ∂2
x + y2 − ∂2

y + λ
(
y∂x − x∂y

)
.

So long as our coupling term contains terms of order two or less in each of the ladder operators, we can tackle
these problems with a simple coordinate change.
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