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Abstract

We study partially and totally associative ternary algebras of first and second kind.
Assuming the vector space underlying a ternary algebra to be a topological space and a triple
product to be continuous mapping, we consider the trivial vector bundle over a ternary
algebra and show that a triple product induces a structure of binary algebra in each fiber of
this vector bundle. We find the sufficient and necessary condition for a ternary multiplication
to induce a structure of associative binary algebra in each fiber of this vector bundle. Given
two modules over the algebras with involutions, we construct a ternary algebra which is used
as a building block for a Lie algebra. We construct ternary algebras of cubic matrices and
find four different totally associative ternary multiplications of second kind of cubic matrices.
It is proved that these are the only totally associative ternary multiplications of second kind
in the case of cubic matrices. We describe a ternary analog of Lie algebra of cubic matrices of
second order which is based on a notion of j-commutator and find all commutation relations
of generators of this algebra.

2000 MSC: 17A40, 20N10.

1 Introduction

A ternary algebra or triple system is a vector space 2 endowed with a ternary law of composition
7:AXAX A — A which is a linear mapping with respect to each of its arguments, and we
will call this mapping a ternary multiplication or triple product of a ternary algebra 2. Hence
a ternary algebra is an algebra which closes under a suitable triple product. Obviously any
binary algebra which closes under double product can be considered as a ternary algebra if one
defines the ternary multiplication as twice successively applied binary one, and in this case the
ternary multiplication is generated by a binary one. However there are ternary multiplications
which cannot be obtained as twice successively applied binary multiplications. For instance,
pure imaginary numbers or elements of grade one of a superalgebra close under triple product.
A well-known example of a ternary matrix algebra is the vector space Mat,, ,, of m x n matrices
endowed with the ternary multiplication 7(4,B,C) = A - BT . C, where A, B,C € Maty,
and BT is transpose of the matrix B. Since Lie algebras play a fundamental role in physics,
particular attention was given to ternary algebras when they were shown to be building blocks
of ordinary Lie algebras. Given ternary algebra, one can construct a Lie algebra by using the
method proposed by Kantor in [10]. This method was extended to super Lie algebras in [7] and
later was applied by the same authors in [8] to construct a gauge field theory by introducing
fundamental fields associated with the elements of a ternary algebra.
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A skew-symmetric bilinear form is an important component in the large class of algebraic
structures such as Lie algebras, Grassmann algebras, and Clifford algebras. For example, the
Lie brackets [, ] : £ x £ — £ of a Lie algebra £ is the skew-symmetric bilinear form, and
the multiplication (a,b) € & x & — a-b € & of a Grassmann algebra & restricted to the
subspace of odd elements is the skew-symmetric bilinear form. A skew-symmetry of a bilinear
form can be interpreted by means of the faithful representation of the symmetric group So =
{e,p} — {1,—1}, where e is the identity permutation, as follows: a bilinear form p is skew-
symmetric if p1(z,(1), Tp2)) = (—1) (1, 72). Making use of this interpretation, we can construct
a ternary analog of a skew-symmetric bilinear form replacing Sy by Z3 C Ss with its faithful
representation by cubic roots of unity j = e?™/3 ie. Zs = {e,p1, p2} — {1,752}, where e is
the identity permutation and pi, po are the cyclic permutations, as follows: a trilinear form 7
is called j-skew-symmetric if for any elements a, b, ¢ of a vector space 2l it satisfies

r(a,b,¢) = j 7(b,c,a) = 5% 7(c,a,b)

The notion of a j-skew-symmetric form can be assumed as a basis for a ternary analog of
Grassmann, Clifford, and Lie algebras. These ternary structures were developed in [1, 2, 13, 15]
and applied to construct a ternary analog of supersymmetry algebra in [3, 11, 12, 14].

In this paper, we study algebras with ternary law of composition. In Section 2, we con-
sider partially and totally associative ternary algebras of first and second kind. We show that
a triple product of a ternary algebra induces three binary multiplications and find the sufficient
and necessary condition a triple product of a ternary algebra must satisfy in order to induce
the associative binary algebra. Assuming the vector space underlying a ternary algebra to be
a topological space and a triple product to be continuous mapping, we consider the trivial vec-
tor bundle over a ternary algebra and show that a triple product induces a structure of binary
algebra in each fiber of this vector bundle. The sufficient and necessary condition a ternary
multiplication must satisfy in order to induce a structure of associative binary algebra in each
fiber is given in terms of the vector bundle over a ternary algebra. The relations for different
kinds of partial and total associativity of a ternary algebra and binary algebras induced by it
are found in terms of the structure constants of a ternary algebra. It should be pointed out that
the cohomologies of a ternary algebra of associative type are studied in [5].

In Section 3, we consider an algebraic structure consisting of two bimodules over unital
associative algebras with involution and construct a ternary algebra by means of this alge-
braic structure. Choosing different modules, unital associative algebras and homomorphisms, we
show that this structure allows to construct a large class of ternary algebras including a ternary
algebra of rectangular matrices and ternary algebras of sections of a vector bundle over a smooth
finite-dimensional manifold. We end Section 3 by constructing the binary Lie algebra of matri-
ces whose entries are the elements of bimodules and unital associative algebras. It should be
mentioned that there are n-ary generalizations of Lie algebra which include the concepts such as
n-ary algebra of Lie type enclosing n-ary Nambu algebra, n-ary Nambu-Lie algebra. The concept
of n-ary Hom-algebra structure generalizing previously mentioned n-ary generalizations of Lie
algebra is introduced and studied in [6]. A good and detailed survey on the theory of ternary
algebras can be found in [4].

It is well known that a large class of associative algebras can be constructed by means of
square matrices and their multiplication. Though the rectangular matrices can be successfully
used to construct a ternary algebra, we think that probably more appropriate objects to con-
struct ternary algebras are the cubic matrices. Our aim in Section 4 is to construct ternary
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algebras of cubic matrices and to study their structures. We find four different totally asso-
ciative ternary multiplications of second kind of cubic matrices and prove that these are the
only totally associative ternary multiplications of second kind in the case of cubic matrices. It
is worth mentioning that our search for associative ternary multiplications of cubic matrices
has shown that there is no totally associative ternary multiplication of first kind in the case of
cubic matrices. In Section 5, we describe the ternary analog of Lie algebra of cubic matrices of
second order by finding all commutation relations of generators of this algebra with respect to
j-commutator.

2 Algebras with ternary law of composition

In this section, we recall a notion of a ternary algebra and its partial or total associativity of
first or second kind. Holding fixed one argument of a ternary multiplication, we get the binary
multiplications and study the relation between the associativity of a ternary multiplication and
the associativity of induced binary multiplication. We propose to use a vector bundle approach
to describe the family of binary algebras induced by a ternary algebra.

Let A, B be complex vector spaces, and 7 : A X A x A — B a B-valued trilinear form. We
will call 7 a ternary law of composition or ternary multiplication on 2l if 7 is a 2-valued trilinear
form. The pair (2(,7) is said to be a ternary algebra or triple system if 2 is a complex vector
space, and 7 : A x A x A — A is a ternary law of composition on 2. It is obvious that relation
analogous to binary associativity in the case of ternary law of composition should contain at
least five elements of 2. There are three different ways to apply twice a ternary multiplication
T to ordered sequence of five elements a,b,c,d, f € 2 which lead us to the following relations
defining a notion of partial associativity for ternary multiplication:

7(1(a,b,¢),d, f) = 1(a,b,7(c,d, f)) (2.1)
7(1(a,b,¢),d, f) = 1(a,7(b,c,d), f)
T(a,7(b,c,d), f) =1(a,b,7(c,d, f))

Hence we have three different kinds of partially associative ternary algebra (2(, 7) which will
be called 1r-partially associative ternary algebra (2.1), lc-partially associative ternary algebra of
first kind (2.2), and cr-partially associative ternary algebra of first kind (2.3). A ternary algebra
(A, 7) is said to be totally associative ternary algebra of first kind if its ternary multiplication 7
satisfies any two of the relations (2.1)—(2.3). It is obvious that in the case of totally associative
ternary algebra of first kind a ternary multiplication 7 satisfies the relations

7(7(a,b,¢),d, f) = 7(a,7(b,c,d), f) = 7(a,b,7(c,d, f)) (2.4)

where a, b, c,d, f € 2. The notion of totally associative ternary algebra of first kind can be viewed
as a direct ternary generalization of classical associativity p(u(x,y),z) = wu(z, u(y, z)), where
x,y, z are the elements of an algebra (A, 1) with a binary law of composition p: A x A — A,
when one applies twice algebra multiplication (binary or ternary) to ordered sequence of elements
of algebra successively shifting the first (interior) multiplication from left to right and setting
equal obtained products. In this sense, the notion of 1r-partial associativity can be considered as
most similar to classical associativity whereas the notion of 1c-partial or cr-partial associativity
can be defined for the first time only in the case of ternary multiplication because in the case
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of binary multiplication there is no central group of two elements in the middle of a sequence
x,y,z € A.

Since the notion of 1c-partial or cr-partial associativity appears for the first time in the case
of ternary multiplication, there is no reason to keep the requirement of fixed order of a sequence
a,b,c,d, f € 2 looking for a possible analog of associativity in the case of ternary algebras.
It turns out that we get a useful notion of ternary associativity giving up the requirement of
fixed order of elements in a sequence a, b, ¢, d, f € 2. This means that unlike the case of ternary
associativity of first kind we not only successively shift the first (interior) multiplication inside
a sequence of elements a,b,c,d, f € A from left to right but at the same time permute the
elements b, ¢,d in the middle of sequence. Obviously we should use noncyclic permutation in
order to get the initial order of a sequence a, b, c,d, f on the second step. This reasoning leads
us to the following relations:

7(r(a,b,c),d, f) = 1(a,7(d, c,b), f) (2.5)
7(a,7(d, c,b), f) = 7(a,b,7(c,d, f)) (2.6)

A ternary algebra (2, 7) is said to be lec-partially associative ternary algebra of second kind
if ternary multiplication 7 satisfies (2.5) and cr-partially associative ternary algebra of second
kind if 7 satisfies (2.6). A ternary algebra (2, 7) is said to be totally associative ternary algebra
of second kind if it is 1r-partially associative and either lc-partially associative of second kind
or cr-partially associative of second kind. Hence in the case of totally associative ternary algebra
of second kind we have

7(r(a,b,¢),d, f) = 7(a,7(d,c,b), f) = 7(a,b,7(c,d, f)) (2.7)

A ternary multiplication 7 of ternary algebra (2(,7) has three arguments 7(a,b,c), where
a,b,c € A, and if we fix one of them, then 7 induces the binary multiplication on 2. It is obvious
that this allows us to split the ternary multiplication 7 into three binary ones. We can study the
structure of ternary multiplication 7 from this point of view by making use of known concepts
and methods of the theory of binary algebras. Given an element a € 2 a ternary multiplication

7 induces three binary multiplications 7., 72,73 on 2 defined as follows:
7H(b,¢) = 1(a,b,¢), T2(b,¢) =7(b,a,c), T(b,c)=r7(b,c,a) (2.8)
where b, ¢ € 2. The binary multiplications 7., TbQ, 73 are not independent because of the relations

(b, ¢) = 2 (a, ¢) = 73(a, b) (2.9)

A vector space 2 equipped with the binary multiplication 7¢,i = 1,2,3 becomes the binary
algebra which will be denoted by (2, 7!). Considering an element a in (2, 7!) as a parameter
ranging within a vector space 2, we have three families of binary algebras (A, 7.), (A, 72), (2, 73)
induced by a ternary multiplication 7. The family of binary algebras (A, 7%) is said to be an
associative family of binary algebras induced by a ternary algebra (2, 7) if for any a, b, c,d, f € A
it holds that

7a(73(c,d), ) = (¢, 7a(d, f)) (2.10)

Taking a = b in the previous relation, we see that each associative family of binary algebras
(2, 7%) is the family of associative binary algebras.
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It is useful to describe the above-mentioned families of binary algebras in terms of vector
bundle. For this purpose, we will assume that 2 is a topological vector space, and a ternary
multiplication 7 : A x A x A — A is a continuous mapping. Let us consider the direct product
€ = 2A x 2 as the trivial vector bundle over the base space 2 with the fiber 2 and the projection
7 : € — 2 defined as usual 7(p) = a, where p = (a,b) € €. Any fiber 7~ !(a) of € is isomorphic
to %A, and we will denote this isomorphism at a point a of the base space 2 by ¢q, i.e. ¢, :
7 1(a) — A and ¢, (p) = b, where p = (a,b) € 7 1(a). Let a,b € 2 be two points of the base
space of a vector bundle €. Then

Py =¢; 0 :m H(a) — 7 D) (2.11)

is the isomorphism between two fibers.

In order to apply the constructed vector bundle € to describe the families of binary algebras
induced by a ternary algebra (2, 7) within the framework of a single structure, we assume that
the base space 2 of this bundle is equipped with a ternary multiplication 7. For any point
a € A of the base space, a fiber 771(a) C € at this point is endowed with one of the binary

multiplications 7}, 72, 73 which we carry over from the family of binary algebras to fibers of &
by requiring ¢, to be an isomorphism of algebras, i.e.
Pa(7a(p,q)) = T4(da(p), $a(4)) (2.12)

where p,q € 77 1(a). If each fiber of € is endowed with a binary multiplication 7%, then in order
to emphasize this algebraic structure of fibers we will denote the corresponding vector bundle
by ;. Thus &; = (2, 7) x (A, 7), where the base space (the first factor in the direct product) is
a ternary algebra (21, 7), and a fiber 7~!(a) is the binary algebra (2, 7i). We will call ¢;, where
i = 1,2, 3, the vector bundle of binary algebras over a ternary algebra (2, 7). A section £ of the
vector bundle €; is a continuous mapping & : A — &; satisfying 7o & = idg, and the vector space
of continuous sections will be denoted by I'(&;). Evidently this vector space equipped with the
binary multiplication

(&) (a) = 75 (&(a), n(a)) (2.13)

where £,1 € T'(€;), is the binary algebra.

The notion of an associative family of binary algebras defined by (2.10) can be described in
the terms of vector bundle &;. Let p,q € €&; be two points of a vector bundle &; and a € 2.
A vector bundle of binary algebras &; is said to be an associative vector bundle of binary algebras
over a ternary algebra (2, 7) if for any p,q € €; and a € it holds that

Br(a) © Tr(a) (‘ﬁ% (o) (22 D7) (a))),q) = bn(p) © Ta(p) (Pv ¢ZE% (Tr(0) (D (@), ‘D)) (2.14)

Particularly (2.14) implies the associativity of a fiber 771 (a) for any a € 2 if we take 7(p) = 7(q)
in (2.14), i.e. any associative vector bundle of binary algebras €; is a vector bundle of associative
binary algebras whereas the converse is generally not true. Now it is natural to pose a question
concerning the associativity of induced binary algebras (2, 7¢) provided a ternary algebra (2, 7)
is partially or totally associative of first or second kind.

Proposition 2.1. A ternary algebra (A, 7) is lr-partially associative ternary algebra if and
only if €9 is the associative vector bundle of binary algebras over a ternary algebra (2, ).
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Particularly if a base space (U, 7) is lr-partially associative ternary algebra, then each fiber of
the vector bundle €5 is an associative binary algebra and the binary algebra of sections of this
bundle T'(&3) is associative algebra.

Indeed the left-hand side of (2.14) can be transformed as follows:

Pr(q) © TT%(q) <¢:EZ§ (Tz(p) (p, <Z57_r(1p) (a))), Q>
= Pr(0) © Ta(q) (T 20 (@210 © Sx() (1), D7y (@) Q)
= 720 (72 (81 (9). @) 62 (@)
= 7(7 (620 (1), 7(0), @), 7(0): 620)(0))

Analogously for the right-hand side of (2.14) we have

i 7(q)
Pr(p) © Tr(p) ( iy

) (T:‘r(q) (?b;(lq) (a)a Q))> =T (qbw(p) (p)v 7T(p), T(aa 77(‘])3 ¢7r(q) (q)))

and this proves the lr-partial associativity of a ternary algebra (2, 7).

It is well known that any associative binary algebra is the Lie algebra with respect to the
commutator defined with the help of a binary multiplication of this algebra, and the associa-
tivity of a binary multiplication implies the Jacobi identity for the commutator. It follows from
Proposition 2.1 that if a ternary algebra (2, 7) is 1r-partially associative ternary algebra, then
each fiber 7=!(a), where a € 2, of the vector bundle &, is the Lie algebra with respect to the
commutator [, ], defined by

[P dla = 72(p,q) — T2(q,p) (2.15)

where p,q € 77 !(a). Clearly the associative binary algebra of sections I'(&5) is the Lie algebra
under the commutator

(€, nl(a) = [¢(a),n(a)],,,  where £,n € T'(&y) (2.16)

A ternary algebra (2, 7) is said to be a ternary algebra of Lie type of first kind (of second
kind) if for any aj,ag,as € 2 it holds that

> 7(ap01), ap(2) s ap(3) =0 ( > 7(ap0), 4p2), ap(3) = 0) (2.17)

pESs3 pEL3

where S3 is the symmetry group of third order and Zs is its cyclic subgroup. Clearly any ternary
algebra of Lie type of second kind is a ternary algebra of Lie type of first kind whereas the
converse is generally not true. From (2.17) it follows that any element a of a ternary algebra of
Lie type (of first or second order) satisfies a® = 7(a, a, a) = 0. It is pointed out in the Introduction
that we can construct a ternary analog of the notion of skew-symmetry by means of a faithful
representation of Zs by cubic roots of unity. Let j = e € C be the primitive cubic root of
unity. A ternary multiplication 7 of a ternary algebra (2, 7) is said to be j-skew-symmetric if

7(a,b,¢) = j 7(b,¢,a) = j* 7(c, a,b) (2.18)
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where a,b,c € 2. If a ternary multiplication 7 of (2, 7) is j-skew-symmetric, then (2, 7) is
a ternary algebra of Lie type of second order. Indeed in this case we have

7(a,b,c) + 7(b, c,a) + 7(c,a,b) = 7(a,b,c) + j*> 1(a,b,c) + j7(a,b,c) =0 (2.19)

We see that the notion of j-skew-symmetric ternary multiplication is based on the faithful
representation of the cyclic group Zs by cubic roots of unity. Given a ternary algebra (2, 7),
we can make it the ternary algebra of Lie type of second order by endowing it with the ternary
j-brackets or the ternary j-commutator which is defined by

[a,b,c] = 7(a,b,c) + j(b,c,a) + j* 7(c,a,b) (2.20)

If 2 has an involution * : 2 — 2 then 7 will be called Hermitian if it satisfies 7(a,b,c) =
7*(¢,b,a). Hence a Hermitian j-skew-symmetric ternary multiplication 7 satisfies (2.18) and

7(a,b,c) = 7(c,b,a) = j 7*(b,a,c) = j 7*(a, ¢, b) (2.21)

Let us suppose that (2, 0) is lr-partially nonassociative ternary algebra, i.e. in general we
have o(o(a,b,c),d, f) # o(a,b,0(c,d, f)), where a,b,c,d, f € A. A ternary algebra (A, o) is
said to be a ternary algebra of Jordan type if its ternary multiplication o satisfies the following
identities:

o(a,b,c) =0o(c,b,a) (2.22)
o(o(a,b,c),b,o(a,b,a)) =o(a,b,o(c,b,0(a,b,a))) (2.23)

where a,b,c € 2. It is easy to see that if (2, o) is a ternary algebra of Jordan type, then for
any a € 2 the binary algebra (2, 02) is the Jordan algebra. Indeed in this case the identities
(2.22,2.23) take on the form

Ug(bv C) = UZ(C, b), Ug(ag(bv C)v Uczz(b’ b)) = Ug<b7 03(07 Ug(bv b))) (2'24)

Proposition 2.2. If (A, 1) is 1r-partially associative ternary algebra, then the ternary algebra
(A, 0), where o(a,b,c) = 7(a,b,c) + 7(c,b,a), is the ternary algebra of Jordan type.

We see that having fixed one variable in a triple product 7(a, b, ¢) of a ternary algebra (2, 7)
we can study the structure of a ternary multiplication 7 by splitting it into three binary ones.
What kind of structures induces a ternary multiplication of (2, 7) if one fixes two variables in
7(a, b, ¢)? Obviously fixing two variables we get the linear operator acting on 2, and this is the
second way for studying the structure of a ternary multiplication. Let Lin(2() be the algebra of
linear operators of the vector space 2. Given a pair (a,b) € A x 2, we define the linear operators
Li(a,b) : A — 2A, where i = 1,2, 3, as follows:

LY(a,b) - c = 7(c,a,b), L*(a,b)-c=r1(a,c,b), L*(a,b)-c=r7(a,b,c) (2.25)
Actually these operators are not independent because for any a, b, c € 2 we have the relations
L'(¢c,b) -a = L*(a,b) - ¢ = L*(a,c) - b (2.26)

It is easy to see that for every i the linear operator L'(a,b) is bilinear with respect to its
variables a,b, and therefore the family of linear operators {L’(a,b)}( peaxa determines the
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bilinear mapping L’ : 2 x 2 — Lin(2). On the other hand, if there is a vector space 2 equipped
with a bilinear mapping L : 20 X 2 — Lin(2(), then one can construct the ternary algebra (2, 7)
by letting 7(a,b,c) = L(a,b) - ¢

Now we can introduce an analog of identity element for a ternary algebra (2(,7) by means
of the bilinear mappings L : A x A — A, i = 1,2,3. Indeed given an element a € A we define
39 9 x A by

I9 = {(e,8) € Ax A: LU (e, &) = idy(} (2.27)

where idg € Lin(2l) is the identity operator. A pair (e, €) € 2 x 2 is said to be an identity i-pair
for an element a if (e, é) € 39 Let 30) = Nacat 3 and 3 = ﬂ?ﬁ 30, 1 30 #£ (), then we will
call an element (e, €) € 3@ an identity i-pair, and similarly if J # (), then we will call an element
(e,€) € J an identity pair of a ternary algebra (A, 7).

Let us now assume that the vector space 2 of a ternary algebra (2, 7) is a finite-dimensional
vector space, i.e. 2 is an r-dimensional vector space and ¢ = {ej,ea,...,e,} is a basis for 2.
Then for any element a € 2 we have a = a“eq, and the triple product of elements a,b,c € A
can be expressed as follows:

7(a,b,c) = T(a%eq, beg, Ve,) = C'gmaabﬁcve(g
where C? a3 are the structure constants of a ternary algebra (A, 7) defined by

T(ea, €8, €y) = Caﬂ’y€5 (2.28)

If ¢/ = {e),¢),...e.} is another basis for a vector space 2 and e, = Ageg, where A = (Ag) is
the transition matrix, then

~6 q A
Oy, = A5 ASATALC,

where C° By re the structure constants of a ternary algebra (21, 7) with respect to a basis ¢/, i.e
T(€n, €5, €) = C‘Smeé CaﬂwAcge)\, and A1 = (A9) is the inverse matrix of A.

If we require a ternary algebra (2(,7) to be a partially or totally associative ternary algebra
either of first or second kind, then this requirement leads to the relations the structure constants
of (A, 7) have to satisfy. These relations for different kinds of associativity of first kind have the
following form:

C’ang/\M = C’O@SC (1r-partial associativity of first kind)
(o 0 Corny = CMMCMA (Lc-partial associativity of first kind)
Ca(SHC)\’YB = C’aﬁ(;C (cr-partial associativity of first kind)

It follows from the above relations that if (2, 7) is a totally associative ternary algebra of first
kind, then the structure constants satisfy

Caﬂ'ycg)\,u Caé,ucﬁy)\ - Caﬁéc

In the case of ternary associativity of second kind, we have the following relations:
C’aﬁng)\u = C&/MC?\%@ (Lc-partial associativity of second kind)

a5uC/\'yﬁ C;B(SC%” (cr-partial associativity of second kind)



Algebras with ternary law of composition and their realization by cubic matrices 85

The structure constants of a totally associative ternary algebra of second kind satisfy
C(S oY, = (¥ CJ — v C(S
afy~ oA adp ™~ yB afBd~ v

For any a € 2, a ternary algebra (2, 7) induces three binary algebras (A, 7%), i =1,2,3, with
the binary multiplications defined by relations (2.8). The structure constants K;g (a) of binary
algebra (2,72) defined by 7i(eq,es) = Kfl’g(a)e«Y can be expressed in terms of the structure
constants of a ternary algebra (2, 7) as follows:

1,0 2,6 3,6
Ky5(a) =Clpa’, Ko5(a)=Copa’, Kog(a)=Clg,d (2.29)

where a = a7 e,.

3 Lie algebras from ternary algebra

In this section, we propose few different methods for constructing ternary algebras and apply
these methods to construct a ternary algebra of vector fields on a smooth finite-dimensional
manifold and a ternary algebra of rectangular matrices. Particularly the curvature of an affine
connection determines the structure of a ternary algebra on the module of vector fields on
a smooth manifold. Given two modules over the algebras with involutions, we construct a ternary
algebra which is used to construct a Lie algebra. Our approach generalizes the approach proposed
in [7, 8], where the authors use the rectangular complex matrices.

Let A be a vector space over the complex numbers C and let A* be the dual space. Given
a C-multilinear mapping 7" : 2 x 2 x A x A* — C, we construct the ternary algebra (2, ) by
defining the ternary multiplication 7 as follows:

O(1(a,b,c)) =T(a,b,c,0) (3.1)

where a,b,c € A, 6 € A*. Particularly given a C-bilinear mapping L : 2 x 2 — Lin(2(), where
Lin(2) is the algebra of linear operators of a vector space 2, we define

T(a,b,c,0) =6(L(a,b)-c) (3.2)

and applying (3.1) we get the ternary algebra (2, 7) whose ternary multiplication 7 can be
described implicitly by the formula

7(a,b,c) = L(a,b) - ¢, a,b,ceA (3.3)

Applying this construction to a module over an associative unital algebra, we can construct
a ternary algebra by means of (3.1) or (3.3). Indeed if 2 is a left A-module, where A is a binary
unital associative complex algebra, 2A* is the dual module and T : A x A x A x A* — A is
an A-multilinear mapping, then (2, 7) is the ternary algebra with the ternary multiplication
defined by (3.1). Similarly given an .4-module 2 and a A-bilinear mapping L : 2 x A — Lin(2l),
where Lin(2() is the algebra of A-linear operators of a module 2, then 2 is the ternary algebra
(A, 7) with the ternary multiplication 7 defined by (3.3).

We can use (3.1) and (3.3) to construct the ternary algebras by means of well-known structures
of differential geometry on a smooth manifold. Let 7w : £ — M be a vector bundle over a smooth
finite-dimensional manifold M, let C°°(M) be the algebra of smooth functions on a smooth
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manifold M, and let I'(E) be the module of smooth sections of E. Given a C°°(M )-multilinear
mapping T : I'(E) x'(E) xI'(E) xI'(E*) — C*°(M), where E* is the dual bundle, we obtain the
ternary algebra (I'(E'), 7) of smooth sections of a vector bundle E with the ternary multiplication
0(t(&,m,x) = T(,n,x,0), where &, n, x are sections of E, and 0§ € T'(E*). Particularly if M
is a smooth manifold, ¥ = TM is the tangent bundle, £* = T*M is the cotangent bundle,
['(E) = ®(M) is the module of vector fields, I'(E*) = Q(M) is the module of 1-forms, V is an
affine connection on M, and

R(X,)Y)=VxVy -VyVy -Vixy, X,Ye€DM) (3.4)
is the curvature of V, then we have the C°°(M )-multilinear mapping

T:D(M) xD(M) x D(M) x Q' (M) — C>®(M) (3.5)
induced by the curvature

T(X,)Y,Z,w)=w(R(X,Y)-Z) (3.6)

and this mapping induces the structure of the ternary algebra (D (M), 7) on the module of vector
fields with the ternary multiplication

7(X,Y,Z)=R(X,Y) - Z (3.7)

Let A, B be (binary) unital associative algebras over C with involutions, respectively, a — a*
and b — b*, where a € A, b € B. Let M be a A — B-bimodule. We suppose that M is an Abelian
group which is isomorphic to the Abelian group M, where ¢ : m € M — g(m) = m € M is the
corresponding isomorphism. Then M can be endowed with the structure of B — A-bimodule if
we define the right and left multiplications by elements of algebras A, B as follows:

*

efm)-a=¢e(a*-m), b-e(m)=¢ec(m-b*), VmeM,ac A beB (3.8)

Let M ®5 M, M ® 4 M be the tensor products of modules where the first tensor product has
the structure of A-bimodule, and the second has the structure of B-bimodule. It is clear that the
algebras A, B can be viewed, respectively, as A-bimodule and B-bimodule. We also assume that
there are two homomorphisms p: M@ M — A, 1: M@ 4 M — B, respectively, of A-bimodules
and B-bimodules which satisfy

(p(m©n))* =p(n@m), (p(men) =dmem), pmen)-p=m-PpHep) (3.9)

where m, n,p € M. Evidently M has the structure of vector space over C. We define the ternary
law of composition 7 on M by the formula

T(m,n,p) =p(m®@n)-p, m,n,peM (3.10)
Proposition 3.1. (M, 1) is lr-partially associative ternary algebra.

Indeed for any quintuple of elements m, n, p, q,r of M we have

T(T(m, n,p),q - r) = T((p(m ® ﬁ) P, q,r)

=o((p(m@n)-p)@q) r=(p(me@n)p(peq) r (3.11)
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On the other hand,

T(m,n,7(p,q,7)) = (p(m @ R)p(p © 7)) - 7 (3.12)

and this ends the proof.

From this proposition and Proposition 2.1, it follows that for any n € M the binary algebra
(M, 7,,2), where 7, 2(m,p) = p(m ® 7) - p, is an associative algebra.

Let us define the ternary multiplication o on M by o(m,n,p) = p(m®n)-p+p-p(n@m),
where m,n,p € M.

Proposition 3.2. The ternary algebra (M, o) is the ternary algebra of Jordan type, and the
ternary multiplication o of this algebra satisfies the identity

o(m,n,o(p,q,7r)) —o(p,q,0(m,n,r)) +o(c(p,q,m),n,r) —o(m,o(q,p,n),r) =0 (3.13)
where m,n,p,q,r € M.

We use the ternary algebra (M, o) to construct a Lie algebra which will be constructed by
means of defining commutation relations. We denote the set of generators of this Lie algebra
by Uz, Spq> Um, where m,n,p,q € M, i.e. we assign to each element m € M the generator U,,,
to each element 7 € M the generator Uy, and to each pair (p,q) € M x M the generator
Spq- Let {Un}, {Un}, {Spq} be the linear spans induced by the corresponding generators and
L={Un} @ {Un} @ {Spq}. We define

(U, Uz = Spn, [Spa> Um| = Us(p.qm) (3.14)
[Spa: Un] = ~Usiamy [Smns Spa] = Sotmnip)a = Spomma (3.15)

Proposition 3.3. The vector space L endowed with the brackets defined by (3.14), (3.15) is the
Lie algebra, and the identity (3.13) leads to the Jacobi identity for the brackets (3.14), (3.15).

We can construct a matrix representation for the Lie algebra L if we consider the set

Matz (A, B, M) of all 2 x 2 square matrices of the type

A:(?L Tg) ac A, beB, meM, neM (3.16)

Given two such matrices

a m a m
) () .

we define their product as follows:

_fad +emen) a-m'+m-V
AB_( n-a+b-n bV +Y(nem) (3.18)

Proposition 3.4. The vector space of matrices Mata(A, B, M) endowed with the multiplication
(3.18) is a unital associative (binary) algebra with the unity element

E— (g 3) (3.19)

where e is the unity element of A and €' is the unity element of B.
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Now we construct the matrix representation for the Lie algebra £ as follows:

Uy = <8 6”) U= <2 8) (3.20)

and the matrix representation of Sp, can be found by explicit calculation.

Having constructed the Lie algebra £ and its matrix representation, we can go further and
construct a gauge field theory based on ternary algebra (M, o). For this purpose, we take a vector
bundle E over a smooth finite-dimensional manifold M with the fiber (M, ). A section of this
bundle is a gauge field of our theory which may be called ternon. Now in each fiber we construct
the Lie algebra £ and this leads us to the vector bundle of Lie algebras. Next we construct the
Lie group corresponding to £ by means of exponential mapping and Campbell-Hausdorf series.
We get the principal fiber bundle and then we proceed in constructing the gauge field theory as
usual.

4 Associative multiplications of cubic matrices

In this section, we consider a vector space of cubic matrices, where by cubic matrix we mean a
quantity A = (A;j;) with three subscripts ¢, j, k each running some set of integers. We use this
vector space to construct a ternary algebra by means of triple product of cubic matrices. A triple
product or ternary multiplication of cubic matrices is constructed in analogy with the classical
product of two rectangular matrices by means of summation which is taken over certain system of
subscripts of three cubic matrices. Our aim in this section is to find all totally associative ternary
multiplications of first or second kind, and we prove that there are four ternary multiplications
of cubic matrices each yielding the associative ternary algebra of second kind.

Let A = (Agmn), where Agppn € C and k, m, i are integers satisfying 1 < k < K, 1 <m < M,
1 <n < N. We will call A a complex KM N-space matrix provided that its entries Ay are
arranged in the vertices of a 3-dimensional lattice and this structure is shown in particular case
of a cubic matrix on the figure below. Let us denote the set of all such matrices by SMat g/ n(C),
ie.

SMatKMN(C):{A:(Akmﬁ):Akmﬁec,k: 1,2,.... K,m=12,..., M;n = 1,2,...,N}

The set of KM N-space matrices is the vector space if we define the addition of space matrices
and multiplication by complex numbers as usual

A+ B = (Agma + Bemn), A =(AAkma), A€C (4.1)

Our main concern in this paper is a special case of space matrices when K = M = N. In this
case, we will call A = (A;;), where 4,5,k = 1,2,..., N, a complex N-cubic matrix and denote
the vector space of such matrices by CMaty (C). Particularly, if A = (A;;,) € CMat3(C) is a
cubic matrix of third order, then we will place its entries into the vertices of 3-dimensional lattice
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as follows:

a211 — a1 — @231

— (332

/ / /

a311 @321 a331

The above 3-dimensional lattice clearly shows that if one fixes a value of subscript k in A;jp
with 4, j ranging from 1 to 3, then the corresponding entries of cubic matrix A form the square
matrix of order 3. Hence we get three square matrices of order 3 which all together give us
a cubic matrix of third order A. Therefore any cubic matrix A of third order can be represented
as the set of square matrices of order 3 as follows:

ailr 121 ai131 a2 aiz2 Ai32 @113 Q123 G133
A= (Aij) = a11 @221 A231 212 222 G232 G213 @223 @233
J
aszil as321 4331/ ._; \@312 @322 4332/ ,_, \A313 @323 333/ ;_4

Now our aim is to construct a multiplication of space matrices. We will do this for cubic
matrices of order N because constructed multiplication can be extended to a vector space of
K M N-space matrices in an obvious way. If A = (A4;,) € CMaty(C) is a cubic matrix of order
N, then it induces two mappings as follows:

(i) Avec—op : & = (zx) € CV — L = (L) = (3, Aiji o) € Lin(CV)
(ii) Aop—>V€C L= (ij) € Lin((CN) — T = (-Tz) = (Zj,k Aijlc ij) S (CN

where Lin(C") is the vector space of linear operators acting on CV. These mappings deter-
mined by a cubic matrix of order N show that if we wish to construct a multiplication of cubic
matrices of order N which is based on composition of linear mappings as in the calculus of
rectangular matrices, then we should take three cubic matrices in order to close a corresponding
multiplication in the sense that the product of three cubic matrices of order N will be the cubic
matrix of order N. Given two cubic matrices A, B € CMaty(C), we can form two products of
corresponding mappings (Avec—op) © (Bop—vec) and (Aop—vec) © (Bvec—op) which are not
close with respect to composition because the first product is the linear mapping CV¥ — C¥,
and the second is the linear mapping Lin(CY) — Lin(C"). It is obvious than we can close a
procedure of taking compositions of this sort of mappings by adding one more cubic matrix
C = (Cyjx) € CMaty(C). In this case, the triple product (Avec—op) © (Bop—vec) © (Cvec—op)
closes the operation of taking compositions giving the mapping C — Lin(C"). This kind of
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reasoning suggests a possible way of constructing the cubic matrix of order N from three given
ones by means of summation which is taken over the certain pair of subscripts.

Given three cubic matrices of order N we have nine subscripts, and because the number of
possible combinations of subscripts is finite we can use the methods of computer algebra to find
all associative ternary multiplications either of first or second kind. Our analysis shows that
there is no total associative ternary multiplication of first kind, and all total associative ternary
multiplications of second kind are described by the following theorem.

Theorem 4.1. There are only four different triple products of complex cubic matrices of order
N which obey the total ternary associativity of second kind. These are

(3) (AOB®C)yp =21 mn Aijt BrmiCrnk, A©OBOC — A, B, C

(2) (A ©B® C)l]k = Z[Wmn AilmBnmlanka AOGBoC —

(4) (A©BOC)ip = > mn Aijt BrntCrnk, A©BOC — A, B, C

5 Ternary analog of Lie algebra

Now our aim is to construct a ternary analog of Lie algebra with the help of ternary multiplication
of cubic matrices and ternary analog of Lie bracket. A notion of ternary analog of Lie bracket
is based on a faithful representation of cyclic group Zs by cubic roots of unity. We construct
a ternary analog of Lie algebra which may be considered as an analog of the Lie algebra generated
by Pauli matrices. In our construction, we use the cubic matrices of second order with certain
symmetries with respect to the subscripts as generators of our algebra and find all commutation
relations. In this section, we use the ternary multiplication of cubic matrices which has the
property that any cyclic permutation of the matrices in the product is equivalent to the same
permutation on the subscripts and this multiplication is studied in [3, 11, 12, 13, 15].

Let A, B, C be cubic matrices of order N. We define the triple product A ® B ® C by the
following formula:

(A®@B®C)yy =Y ApigByrCrip, A®B@C — A

B C
D,q,T ({O\.‘}.&&)

(5.1)

It is easy to see that any cyclic permutation of the matrices in the product is equivalent to the
same permutation on the subscripts, i.e. (A@ B@C),; = (B@CoA),,, = (C® A B),.
It should be mentioned that the ternary multiplication (5.1) is neither partially nor totally
associative.

The ternary algebra of cubic matrices of order N with respect to the multiplication (5.1)
can be decomposed into direct sum of subspaces of cubic matrices with certain symmetries
according to the irreducible representation of the symmetry group S3. It should be mentioned
that we have the similar decomposition in the case of square matrices of order N, where the
algebra of square matrices can be decomposed into the direct sum of subspaces of symmetric
and skew-symmetric matrices according to representation of the permutation group Ss. The
symmetry group S3 possesses a full and faithful representation on the complex plane, which can
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be generated by two elements representing a cyclic and an odd permutation. This representation

271
can be constructed by assigning the operator of multiplication by the cubic root of unity j = e™3
to the cyclic permutation (gé’ac) and by assigning the operator of complex conjugation to the odd

permutation (gfl’g) In order to construct the subspace of cubic matrices with certain symmetries,
we use the cyclic part of this representation where the cyclic group Zs is represented by cubic
roots of unity.

A cubic matrix p = (p;r;) of order N is said to be a j-skew-symmetric if it satisfies
pikt = Jpkii = J° Puik
Similarly a cubic matrix p = (p;;;) of order N is said to be a j2-skew-symmetric if it satisfies
Pikt = JPii = " Puan

It can be shown that the space of cubic matrices of order IV can be decomposed into the direct
sum of the subspace of j-skew-symmetric matrices, the subspace of j2-skew-symmetric matrices,
and the subspace of symmetric matrices, where under symmetric matrix we mean a cubic matrix
w = (wjg) of order N which satisfies wijr, = wjri = wiji-

Each of subspaces of j-skew-symmetric matrices and of j2-skew-symmetric matrices has the
dimension (N3 — N)/3. The subspace of symmetric matrices can be decomposed into the direct
sum of the subspace of diagonal cubic matrices (all entries excepting diagonal ones are equal to
zero) and the subspace of symmetric matrices with zeros on diagonal. Obviously the dimension
of the subspace of diagonal cubic matrices is equal to N and the subspace of symmetric ma-
trices with zeros on diagonal is equal to (N3 — N)/3. Let {p®} be a basis for the subspace of
j-skew-symmetric matrices, let {p®} be a basis for the subspace of j2-skew-symmetric matrices,
and let {w®} be a basis for the subspace of symmetric matrices with zeros on diagonal, where
a=1,2,...,(N3— N)/3. A basis for the subspace of diagonal cubic matrices will be denoted
by {n®}, where « =1,2,..., N. Thus we have

. i N3_N

P = 0ok =36l a=1.2. ——o—

_ 9 ., N3 - N

Dikl :]zpﬁi = JPur = 1,2,...7T
N3 - N

w%k:w?ki:w?ji, wi; =0, a=1,2,..., 3
Now our aim is to construct a ternary analog of Lie algebra by means of the ternary
j-commutator which we define as follows:

[A,B,C]=A®Bo®C+jBe@Co®A+;2CoA®B, A B,CcCMaty(C) (5.2)

where the ternary multiplication A® B ® C' is defined by (5.1). It is easy to see that the ternary
j-commutator (5.2) may be viewed as an analog of the binary Lie commutator [X,Y] = XY —
Y X, where X, Y are the elements of an associative binary algebra, because we replace the
symmetric group Zo and its representation {1, —1}, respectively, by the cyclic group Zs and its
representation {1, 7,72}. Indeed in the case of the binary Lie commutator we have the property
[X,Y] = —[Y, X]. For the ternary j-commutator, we have the similar property [A4, B,C]| =
jlB,C, Al = j?[C, A, B]. In analogy with the binary Lie commutator for any A € CMaty(C),
we have [A, A, A] = 0.



92 V. Abramov, R. Kerner, O. Liivapuu, and S. Shitov

Let us consider the space of cubic matrices of order 2, i.e. each subscript runs from 1 to 2.
In this case, all subspaces mentioned above are 2-dimensional, which means that basis for each
subspace consists of two matrices, i.e. & = 1,2. We construct the basis for the subspace of
diagonal cubic matrices {n',n?} by choosing ni;; = 1, ndy = 0, %), = 0, N3y = 1. We
choose the basis for the subspace of symmetric cubic matrices with zeros on diagonal by fixing
Wly = Wiy = wigy = 1, Wiy = wl, = w3, = 1 with other entries equal to zero. We get the
basis for the subspace of j-skew-symmetric cubic matrices by taking p3,5 = jplys = j2pde; = 1,
Py = jp3y; = j2p3s = 1 with other entries equal to zero and the basis for the subspace of
j2-skew-symmetric cubic matrices if we put payy = j20iae = P99 = 1, Piag = JPa1 = J°Pie = 1
with other entries equal to zero. The space of cubic matrices of order 2 equipped with the ternary
j-commutator can be considered as a ternary analog of matrix Lie algebra and all commutation
relations of this algebra in the basis {n',n?, w!,w?, p!, p?, o', p?} are given in the following table:

o070 = =p% Pt = [t el=20% [p%plp7 =2p
[wl,wg,wl] = _ﬁ2a [w2vwlvw2] = _pl [771’7727 1] =Y, [772a7717 2] =0
ot ot el =3p", et =3p% [plp'p' =0, [p%, 0%, 9% =0
[P17ﬁ27pl] = _ﬁ27 [p27ﬁlap2] = _ﬁla [ﬁlap2aﬁl] = _72a [ﬁ27p17ﬁ2] =-—p!
et =252 phphel=2p",  [pLp'.pY=-p% [phphp'l=-p'
[plvwlvp ] =0, [wl,pl,w ] = 3ﬁ17 [p2,w2,p2] =0, [W2’p27w2] = 3p2
o' w0 =2p% WL =2p", [Pl p=2p", W't w']l=2p
[;027p awl] = _ﬁ27 [w27p27101] = _pla [wlap 7w2] = _EQa [w ,,OQ,CUQ] = _ﬁl
phwlp'l=3p", W' w'=0, p%,w?, 5% =3p%  [wp%wi=0
Pl pll==p% WL =-p %l p?=-p'  wp%w]=—p’
[ﬁlawlvpﬂ = _ﬁ27 [pl’w2aﬁ2] = _715 [ﬁ17w17w2] = 2ﬁ27 [w15w2752] = 2p1
ot o'l =7, it ptnt =0, p: 0, p?) =2, [, p%n*] =0
[Pt %, p'] =P, ', p%.n' =72, [P0t p* =7, % ptn*] =p!
[plapzvnl] = ﬁ27 [7727P17772] :ﬁlv [7717/)1, 2] = 07 [7717P27772] =0
p'.nt.p'l=p" m'.p'n'1=0, %0, 0% =p>, %, 2% n*] =0
[ﬁ1>772751] = p27 [771,?27771] :527 [527771@2] = ﬁla ["72751,772] = ﬁl
[ﬁlvnlvﬁ2] = p2’ [ﬁlan2aﬁ2] = ﬁla [Wlaﬁlﬂﬁ = O’ [7717527772] =0
' whntl =0, It w? '] =52, I whn? =51, %, w? n?] = p>
[wlanlawl] - pl’ [w177]27w1] :ﬁ27 [w2’7717w2] = ﬁlv [W2’7727w2] = ﬁz
n*,w',n?] =0, ', w?,n*] =0, ' wh w? =p2, W w]=p"
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[, Wl =0, whot s =2p%  [phpt Wi =-p% [l et = —p!
m'.p'p' 1 =n", ', 0", 0% =7 o' 0" =77 o' p% 0 =p'
[l p?)==p% PPt =-p'  [Wehpll=2p", [0 W =0
', p' 0"l =7, [0* 0" 0% =7, 0% p' 1 =7, 0%, 0% =p"
', ph W' =7, n',w?p'] =77 W', %5 =7, 5", =p'
%Wl =p%  PAahe? =0t phLOL =0l [P =57
' o' W'l =7, o' 0, W =757, W n?, 0"l =757, o' 0w’ =7
w',n', p? =%, w?,n', p*) =7, W', %, 0 =7, %, 0w’ = p°

We would like to point out that the above table of commutation relations demonstrates a peculiar
property of the algebra of cubic matrices of second order in the basis {n!, 7%, w!, w?, pt, p2, o', p*}:
the j-commutator of any three generators is proportional to one of the generators p', p%. More-
over taking j?-commutator

[A,B,C]*=A0@B®C+j?BeCe®A+jCe®©A®B, A B, CcCMaty(C) (5.3)

which can be considered as a conjugate commutator to j-commutator (5.2), we get the similar
table of commutation relations (we do not demonstrate it here in order not to overburden the
paper) which clearly shows that the j2-commutator of any three generators is proportional to
one of the generators p', p?. Finally considering a ternary analog of anticommutator defined by

{A,B,C} =A0Be®(C+Bo®C0A+C0AGB, A, B,C¢cCMaty(C) (5.4)

and applying it to the cubic matrices of second order, we obtain the table of commutation
relations for the generators n', 72, w', w2, p', p?, p*, > which can be shortly described as follows:
the ternary anticommutator of any three generators is a linear combination of the generators
1,2 1,2
77 7/’7 ?w 7w M
We conclude this section by pointing out an analogy between the generators of our ternary
algebra of cubic matrices of second order and the Pauli matrices

a-(33). - (15): mo(h8)
10 i 0 0 —1
Indeed applying the ternary j-commutator to Pauli matrices we get
lio1,iog,io1] = 2ioa, [ioa, ioy,ioe] = 2icy
In the table of commutation relations of cubic matrices of order 2, we have
[ﬁl,ﬁ2,ﬁl] — 9252, [ﬁZ,EIﬁQ] — 951
which clearly demonstrates a striking analogy between the j2-skew-symmetric generators of

ternary algebra of cubic matrices of order 2 and the skew-Hermitian matrices ioy, io9, ios,
where o1, 09, 03 are Pauli matrices.
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