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1 Introduction

In [1,3], we found the quantizations of the monoidal categories of modules graded by finite abelian groups. Quan-
tizations are natural isomorphisms of the tensor bifunctor Q : ⊗ → ⊗ that satisfy the coherence condition. By
this condition, the quantizations are 2-cocycles, and under action by isomorphisms of the identity functor they are
representatives of the second cohomology of the group.

With these explicit descriptions of quantizations, we showed that classical non-commutative algebras like the
quaternions and the octonions are obtained by quantizing a required number of copies of R. Moreover, we obtained
new classes of non-commutative algebras. The resulting non-commutativity is governed by a braiding which is the
quantization of the twist.

In this paper, we will investigate the situation for quantizations of modules with action of finite groups that are
not necessarily abelian. Further the definition of quantizations is widened as they may be natural transformations,
not only natural isomorphisms.

Quantizations Q of the monoidal category of modules over finite groups G are realized by elements qQ in the
group algebra C[G×G] called quantizers. These satisfy a form of the coherence condition, normalization, and
invariance with respect to G-action.

Let Ĝ be the dual of G. We use the Fourier transform to reconsider these quantizers as sequences of operators
q̂α,β in End(Eα ⊗Eβ), where Eα,Eβ are irreducible representations corresponding to α,β ∈ Ĝ. The coherence
condition for the operators q̂α,β gives a system of quadratic matrix equations.

There is an equivalence relation on these quantizers by the action by natural isomorphisms of the identity functor.
Taking the orbits of this action, we arrive at the final expressions of the quantizers.

We apply the inverse of the Fourier transform to move back to the group algebra where we now have the
quantizers qQ in C[G×G] realizing the non-trivial quantizations in the category.

To sum up, the procedure is as follows:

Quantizations Q

��
Quantizers qQ ∈ C[G×G]

Fourier �� q̂Q ∈ ⊕α,β∈Ĝ End
(
Eα⊗Eβ

)

Calculations
��

Explicit sequences
{
q̂α,β ∈ End

(
Eα⊗Eβ

)}
α,β∈Ĝ

Fourier−1
������������������������

We illustrate this method for abelian groups (see, e.g., [2]) and the permutation groups S3 and A4. For S3 there is
a 1-parameter family of quantizations. For A4 we have a larger selection with 2 parameters producing quantizations.
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2 Quantizations in braided monoidal categories

A braided monoidal category C is a category equipped with a tensor product ⊗ and two natural isomorphisms: an
associativity constraint assocC : X ⊗ (Y ⊗Z) → (X ⊗Y )⊗Z and a braiding σC : X ⊗Y → Y ⊗X , for objects
X,Y,Z in C, that both satisfy MacLane coherence conditions; see [5].

Let C,D be braided monoidal categories and Φ : C →D a functor. A quantization Q of the functor Φ is a natural
transformation of the tensor bifunctor

Q : ⊗D ◦ (Φ×Φ)−→ Φ◦⊗C ,

Q=QX,Y : Φ(X)⊗D Φ(Y )−→ Φ(X⊗C Y )

that satisfies the following coherence condition:

Φ(X)⊗ (
Φ(Y )⊗Φ(Z)

) 1⊗Q ��

assocD
��

Φ(X)⊗Φ(Y ⊗Z)
Q �� Φ

(
X⊗ (Y ⊗Z)

)

Φ(assocC )

��(
Φ(X)⊗Φ(Y )

)⊗Φ(Z)
Q⊗1 �� Φ(X⊗Y )⊗Φ(Z)

Q �� Φ
(
(X⊗Y )⊗Z

)

(2.1)

for X,Y ∈ Obj(C) (see [4] for details).
Note that we do not require the quantizations to be natural isomorphisms, only natural transformations (cf. [4]).
We denote the set of quantizations of Φ by q(Φ).
Let λ : Φ→ Φ be a unit preserving natural isomorphism of the functor Φ. Then, we define an action of λ : Q �→

λ(Q) on the quantizations by requiring that the diagram

Φ(X)⊗Φ(Y )
QX,Y ��

λX⊗λY

��

Φ(X⊗Y )

λX⊗Y
��

Φ(X)⊗Φ(Y )
λ(QX,Y )

�� Φ(X⊗Y )

(2.2)

commutes.
The orbits of the above action we denote by Q(Φ).
If a quantization is a natural isomorphism, we will call it a regular quantization and use the notations q◦(Φ) and

Q◦(Φ).
If the functor Φ is the identity IdC : C → C, we call Q a quantization of the category C and use the notations

q(C) = q(IdC) and Q(C) =Q(IdC).
For the following result, see also [4].
Let Φ :B→C,Ψ :C →D be functors between the monoidal categories B,C,D and let QΦ,QΨ be quantizations

of Φ and Ψ. The following formula defines the quantization

QΦ◦Ψ =Ψ
(
QΦ

X,Y

)◦QΨ
Φ(X),Φ(Y ) (2.3)

of the composition Ψ◦Φ.
We call QΦ◦Ψ composition of quantizations. Then the composition defines an associative multiplication

q(Φ)×q(Ψ)−→ q(Ψ◦Φ)

on the sets of quantizations.
In particular, the composition (2.3), where Φ=Ψ= IdC , defines a multiplication

q(C)×q(C)−→ q(C)

and gives a monoid structure on the set of quantizations.
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Moreover, the regular quantizations form a group in this monoid.
The monoid q(C) acts on a variety of objects (see, e.g., [4]). We list some examples here.

Braidings. Let σ be a braiding in the category C. If Q ∈ q◦(C), then we define an action of Q on braidings by
requiring that the following diagram

X⊗Y
QX,Y ��

σQ

��

X⊗Y

σ

��
Y ⊗X

QY,X �� Y ⊗X

commutes, where

Q : σ �−→ σQ =Q−1
Y,X ◦σ ◦QX,Y .

Then σQ is a braiding too.

Algebras. Let A be an associative algebra in the category C with multiplication μ : A⊗A → A. Let Q ∈ q(C).
Then we define a new multiplication μQ on A by requiring that the following diagram

A⊗A
QA,A ��

μQ

������������� A⊗A

μ

��
A

commutes.
Then (A,μQ) is an algebra in the category C too. We call it the quantized algebra.

Modules. Let E be a left module over the algebra A in the category C with multiplication ν : A⊗E → E. Let
Q ∈ q(C). We define a quantized multiplication νQ on E by requiring that the following diagram

A⊗E
QA,E ��

νQ

������������� A⊗E

ν

��
E

commutes.
Then (E,νQ) is a module over the quantized algebra (A,μQ). We call it the quantized module.
Right modules are quantized in a similar way.

Coalgebras. Let A∗ be a coalgebra in the category C with comultiplication μ∗ : A∗ → A∗ ⊗A∗. Let Q ∈ q◦(C).
We define a new comultiplication (μ∗)Q on A∗ by requiring that the following diagram

A∗ ⊗A∗ QA∗,A∗
�� A∗ ⊗A∗

A∗
(μ∗)Q

��������������
μ∗

��

commutes.
Then (A∗,(μ∗)Q) is a coalgebra in the category C too. We call it the quantized coalgebra.

Bialgebras. Let B be a bialgebra in the category C with multiplication μB : B⊗B → B and comultiplication
μ∗
B : B →B⊗B. Let Q ∈ q◦(C). The quantized bialgebra is the same object BQ =B equipped with the quantized

multiplication μ
Q
B and quantized comultiplication (μ∗

B)Q, quantized as above. This is also a bialgebra in the category.
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3 Quantizations of G-modules

Let R be a commutative ring with unit and let G be a finite group. Denote by ModR(G) the monoidal category of
finitely generated G-modules over R and let q(G) and Q(G) be the sets of quantizations and orbits of this category.

Let X and Y be G-modules. Recall that the tensor product X⊗Y over R is a G-module with action

g(x⊗y) = g(x)⊗ g(y)

for g ∈G,x ∈X,y ∈ Y .
Let R[G] be the group algebra of G over R.
There is an isomorphism between the categories of G-modules and R[G]-modules, ModR(G) = ModR(R[G])

(see, e.g., [2]).
Hence,

q(G) = q(ModR(R[G])), Q(G) =Q(ModR(R[G])).

Theorem 1. Any quantization Q ∈ q(G) of the category of G-modules has the form

QX,Y : x⊗y �→ qQ · (x⊗y) =
∑

g,h∈G
qg,hgx⊗hy,

where

qQ =
∑

g,h∈G
qg,h(g,h)

are elements of the group algebra R[G×G], for x ∈X , y ∈ Y , and X,Y ∈ Obj(ModR(G)).

Proof. We identify elements x ∈X for X ∈ Obj(ModR(G)) with morphisms

φx : R[G]−→X, h �−→ h ·x.

Then, for any elements x ∈X,y ∈ Y , X,Y ∈ Obj(ModR(G)) and a quantization Q ∈ q(G), the following diagram

X⊗Y
QX,Y �� X⊗Y

R[G]⊗R[G]

φx⊗φy

��

QR[G],R[G] �� R[G]⊗R[G]

φx⊗y

��

commutes. Therefore,

x⊗y
QX,Y �� QX,Y (x⊗y) = qQ · (x⊗y)

1⊗1

φx⊗φy

��

QR[G],R[G] �� qQ

φx⊗y

��

where qQ =QR[G],R[G](1⊗1) ∈ R[G×G], and

QX,Y (x⊗y) = qQ · (x⊗y).

We call the elements qQ quantizers and identify q(G) with the set {qQ ∈ R[G×G]}.

Theorem 2. An element q ∈R[G×G] defines a quantization on the category of G-modules if and only if it satisfies
the following conditions:

(i) the coherence condition

(1⊗Δ)(q) · (1⊗ q) = (Δ⊗1)(q) · (q⊗1), (3.1)

where Δ is the diagonal in R[G]×R[G];
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(ii) the normalization condition

q · (x⊗1) = q · (1⊗x) = 1; (3.2)

(iii) the naturality condition

q ·Δ(g) =Δ(g) · q, (3.3)

for g ∈G.

Proof. The coherence condition follows from (2.1) where

QXY,Z : (X⊗Y )⊗Z −→ (X⊗Y )⊗Z

is represented as follows:

(x⊗y)⊗ z −→ (Δ⊗1)(q)
(
(x⊗y)⊗ z

)
=

∑

g,h∈G
qg,h(gx⊗ gy)⊗hz,

and similarly for QX,Y Z .
The two other conditions follow straightforwardly from the normalization and naturality conditions on the

quantizations.

See also [4] for similar settings.
We will from now on use the notion quantizer instead of quantization.
Remark that the conditions (3.1), (3.2), and (3.3) are some kind of 2-cyclic condition on q(G) (see, e.g., Section 6

on finite abelian groups).
Let U(G) be the set of units of R[G].

Theorem 3. The set of quantizers of G-modules Q(G) is the orbit space of the following U(G)-action on q(G):

l(q)
def
= Δ(l) · q · l−⊗2, (3.4)

where l ∈ U(G).

Proof. Representing as above elements x ∈ X by morphisms φx : R[G] → X , we get the following commutative
diagram with λX : X →X:

X
λX �� X

R[G]

φx

��

λR[G] �� R[G]

φx

��

for any unit preserving natural isomorphism of the identity functor, λ : IdModR(R[G]) → IdModR(R[G]).
Therefore, λ is uniquely defined by elements l ∈ λR[G](1), and

λX(x) = λX
(
φx(1)

)
= φx

(
λR[G](1)

)
= φx(l) = l ·x.

Let q ∈ q(G). Then the action (2.2) gives

λ(q) =Δ(l) · q · (l−1 ⊗ l−1)

with l ∈ U(G).

We say that two quantizers p,q ∈ q(G) are equivalent if p= l(q) for some l ∈ U(G).
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4 The Fourier transform

In this section, we will use the Fourier transform to find the quantizers, under the assumption that R= C.
Below we list necessary formulae from representation theory of groups (see, e.g., [6]).
Denote by Ĝ the dual of G. For each α ∈ Ĝ we pick the corresponding irreducible representation on Eα,

dimEα = dα, and an explicit realization of this representation by a dα×dα-matrix Dα(g) = |Dα
ij(g)| : Eα → Eα,

for each g ∈G.
The elements Dα

ij(g) · g ∈ C[G] span the group algebra C[G], and C[G] is isomorphic as an algebra to a direct
sum of matrix algebras by the Fourier transform

F : C[G]−→⊕α∈ĜEnd(Eα),

f̃ =
∑

g∈G
f(g) · g �−→ f̂ = {f̂α}α∈Ĝ.

We will consider f̂ as a “function” on the dual group which at each point α ∈ Ĝ takes values in End(Eα):

f̂α = f̂(α) ∈ End
(
Eα

)

and

F (f̃)(α) = f̂α =
∑

g∈G
Dα(g)f(g).

The inverse of the Fourier transform has the following form:

F−1(f̂) =
1
|G|

∑

g∈G

∑

α∈Ĝ
dα Tr

(
Dα(g)∗f̂α

) · g,

where the ∗ denotes the adjoint.
As we have seen the quantizers are elements of C[G×G].

The dual of G×G is Ĝ×G= Ĝ× Ĝ, and

Eαβ = Eα⊗Eβ

for (α,β) ∈ Ĝ× Ĝ with the action

Dα,β(g,h) =Dα(g)⊗Dβ(h).

In this case, the Fourier transform

F : C[G]⊗C[G] = C[G×G]−→⊕α,β∈Ĝ End(Eα⊗Eβ)

and its inverse have the following forms:

F (f̃)(α,β) = f̂α,β =
∑

g,h∈G
f(g,h)Dα,β(g,h), (4.1)

F−1(f̂) =
1

|G|2
∑

g,h∈G

∑

α,β∈Ĝ
dα,β Tr

(
Dα,β(g,h)∗f̂α,β

) · (g,h), (4.2)

where

f =
∑

g,h∈G
f(g,h)(g,h)
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and

{
f̂α,β ∈ End

(
Eα⊗Eβ

)}
α,β∈Ĝ.

Let χα(g) = Tr(Dα(g)) be the character of the irreducible representation Eα,α ∈ Ĝ.
Splitting of the tensor product of Eα⊗Eβ into a sum of irreducible representations, we get isomorphisms

να,β : Eα⊗Eβ −→⊕γ∈Ĝc
γ
αβEγ , (4.3)

where c
γ
αβ ∈ N are the Clebsch-Gordan integers.

These integers can be computed as follows:

χα ·χβ =
∑

γ

c
γ
αβχγ .

Projections pα of G-modules E =
∑

α∈Ĝ cαEα onto its irreducible components cαEα =E(α) are the following:

pα =
dα

|G|
∑

g∈G
χα(g)D

α
(
g−1),

where E(α) 	 C
cα ⊗Eα. They satisfy orthogonality conditions

∑

α∈Ĝ
pα = 1, p2

α = pα, pαpβ = 0.

For the tensor products (4.3), the projectors take the form

pγ =
∑

g∈G
χγ(g)D

α
(
g−1)⊗Dβ

(
g−1).

The matrix representation is Dα(g)⊗Dβ(h) = |Dαβ
γ (g,h)|, g,h ∈G, where

C
c
γ
αβ ⊗Eγ

D
αβ
γ (g,h)−−−−−−−→ C

c
γ
αβ ⊗Eγ .

5 The Fourier transform on quantizers

We now rewrite the coherence condition (2.1) for quantizers in terms of their Fourier transforms.
Let q =

∑
g,h∈G qg,h(g,h) be a quantizer and F (q) = q̂ =

∑
α,β∈Ĝ q̂α,β , where q̂α,β ∈ End(Eα⊗Eβ). Then

q̂(α,β) = q̂α,β =
∑

g,h∈G
q(g,h)Dα,β(g,h).

The operators q̂α,β : Eα⊗Eβ → Eα⊗Eβ are G-morphisms.
Therefore, due to isomorphisms να,β , each q̂α,β is a direct sum

q̂α,β =⊕γ∈Ĝq̂
γ
α,β (5.1)

of operators q̂γα,β : cγαβEγ → c
γ
αβEγ .

Note that the operators q̂γα,β are given by c
γ
αβ × c

γ
αβ-matrices.

Rewriting the coherence condition in terms of these operators, we get the following result.
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Theorem 4. Let q be a quantizer on the monoidal category ModC(G). Then the coherence condition diagram (2.1)
under the Fourier transform takes the following form:

∑
η,ζ c

ζ
αηc

η
βγEζ

�� ∑
η,ζ c

ζ
αηc

η
βγEζ

∑
ζ,η q̂

ζ
α,η�� ∑

η,ζ c
ζ
αηc

η
βγEζ

Eα⊗ (
∑

η c
η
βγEη)

ναη

��

1⊗∑
η q̂

η
β,γ�� Eα⊗ (

∑
η c

η
βγEη)

ναη

��

∑
η q̂α,η�� Eα⊗ (

∑
η c

η
βγEη)

ναη

��

Eα⊗ (Eβ ⊗Eγ)

νβγ

��

assoc

��

1⊗q̂β,γ �� Eα⊗ (Eβ ⊗Eγ)

νβγ

��

q̂α,βγ �� Eα⊗ (Eβ ⊗Eγ)

assoc

��

νβγ

��

(Eα⊗Eβ)⊗Eγ

ναβ

��

q̂α,β⊗1
�� (Eα⊗Eβ)⊗Eγ

ναβ

��

q̂αβ,γ �� (Eα⊗Eβ)⊗Eγ

ναβ

��
(
∑

ξ c
ξ
αβEξ)⊗Eγ

νξγ

��

∑
ξ q̂

ξ
α,β

⊗1
�� (
∑

ξ c
ξ
αβEξ)⊗Eγ

νξγ

��

∑
ξ q̂ξ,γ�� (

∑
ξ c

ξ
αβEξ)⊗Eγ

νξγ

��∑
ξ,ζ c

ζ
ξγc

ξ
αβEζ

�� ∑
ξ,ζ c

ζ
ξγc

ξ
αβEζ

∑
ζ,ξ q̂

ζ
ξ,γ �� ∑

ξ,ζ c
ζ
ξγc

ξ
αβEζ

where q̂α,βγ ∈ End(Eα⊗ (Eβ ⊗Eγ)) and q̂αβ,γ ∈ End((Eα⊗Eβ)⊗Eγ).

Assuming that our category is strict, we get the following conditions for the quantizers.

Theorem 5. The set of operators q̂γα,β ∈ End(cγαβEγ , c
γ
αβEγ) defines a quantizer

q =
1

|G|2
∑

g,h∈G

∑

α,β∈Ĝ
dα,β ⊕γ∈Ĝ Tr(Dα,β

γ (g,h)∗q̂γα,β) · (g,h) ∈ C[G×G]

if and only if these operators are solutions of the following system of quadratic equations:

∑

η,ζ∈Ĝ
q̂ζα,η q̂

η
β,γ =

∑

ζ,ξ∈Ĝ
q̂
ζ
ξ,γ q̂

ξ
α,β , q̂αα,0 = q̂α0,α = 1

for all α,β,γ ∈ Ĝ.

Proof. The first condition follows from Theorem 4.
The second condition is the normalization condition, where q̂0,α = q̂α0,α = 1 : 1⊗Eα =Eα → 1⊗Eα =Eα and

q̂α,0 = q̂αα,0 = 1 : Eα⊗1 = Eα → Eα⊗1 = Eα

Let F (l) =
∑

α∈Ĝ l̂α be the Fourier transform of l ∈ U(G), where l̂α ∈ C
∗ due to the Shur lemma, and l0 = 1.

Then action (3.4) can be rewritten as follows:

l(q̂α,β) =⊕γ∈Ĝ l̂γ l̂
−1
α l̂−1

β q̂α,β , (5.2)

where l̂α, l̂β , l̂γ ∈ C
∗.

6 Finite abelian groups

Let G be a finite abelian group and R= C.
In [1,2], we investigated regular quantizations of modules with action and coaction by finite abelian groups. In

this section, we will revisit this case by using the Fourier transform.
By theorem 1 the quantizations of G-modules have the form x⊗ y �→ q · (x⊗ y) for elements x ∈ X,y ∈ Y in

G-modules X and Y where q =
∑

g,h∈G qg,h(g,h) ∈ C[G×G].
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Let Ĝ be the dual of G. All irreducible representations of G are 1-dimensional and identified with characters
α ∈Hom(G,C∗) = Ĝ.

The Fourier transform has the form

F (f)(α) = f̂α =
∑

g∈G
f(g)α

(
g−1)

for f =
∑

g∈G f(g)g ∈ C[G]. The inverse of this Fourier transform is

F−1(f̂α
)
=

1
|G|

∑

g∈G
f̂αα(g)g.

Then

F (q)(α,β) = q̂α,β =
∑

g,h∈G
qg,hα

(
g−1)β

(
h−1)

is the operator

q̂α,β : Eα⊗Eβ → Eα⊗Eβ ,

where α,β ∈ Ĝ.
Clearly q̂α,β ∈ C

∗.
Corresponding to Theorem 5 we thus have the following conditions on q̂α,β :

q̂α·β,γ q̂α,β = q̂α,β·γ q̂β,γ , q̂0,α = q̂α,0 = 1

for all α,β,γ ∈ Ĝ, where the first condition is given by the coherence condition and the second is the normalization
condition.

Denote by q(Ĝ) the group of all functions satisfying these conditions. We see that they are 2-cocycles.
Hence q(Ĝ) is represented by the multiplicative 2-cocycles q̂ on Ĝ with coefficients in C

∗, where

q̂(α,β) = q̂α,β .

The C
∗-action (5.2) on the operators q̂α,β has the form

l̂−1
α l̂−1

β q̂α,β l̂α·β ,

where l̂α, l̂β , l̂α·β ∈ C
∗.

Summing up, we get the following result.

Theorem 6. Let G be a finite abelian group. Then the group of regular quantizations Q◦(Ĝ) is isomorphic to the
2nd multiplicative cohomology group H2(Ĝ,C∗).

Moreover, any 2-cocycle z ∈ Z2(Ĝ,C∗) defines a quantizer qz in the following way:

qz =
1

|G|2
∑

g,h∈G

∑

α,β∈Ĝ
z(α,β)α(g)β(h) · (g,h) ∈ C[G×G].

7 Quantizations of S3-modules

We consider the symmetric group G = S3. Let the representatives of the orbits of the adjoint action be (), (1,2),
and (1,2,3) and let χ0, χ1, and χ2 be the characters of the irreducible representations corresponding to these orbits.
These irreducible representations are the trivial, sign, and standard representations on modules E0, E1, and E2 with
matrix realizations D0, D1, and D2, respectively.

Theorem 7. For S3-modules over C the set of quantizers Q(S3) consists of the following:

(i) the trivial quantizer q = 1;
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(ii) the 1-parameter family of quantizers

q(a) = 1+p
∑

g,h∈S3

Tr(D2,2
0 (g,h)∗)+Tr(D2,2

1 (g,h)∗) · (g,h),

where p ∈ C;
(iii) the discrete set of discrete quantizers

q(b) = 1+
∑

g,h∈S3

Tr
(
D

2,2
1 (g,h)∗

)
+Tr

(
D

2,2
2 (g,h)∗

) · (g,h), q(c) = 1+
∑

g,h∈S3

Tr
(
D

2,2
2 (g,h)∗

) · (g,h),

q(d) = 1+
∑

g,h∈S3

Tr
(
D

2,2
1 (g,h)∗

) · (g,h), q(e) = 1+
∑

g,h∈S3

Tr
(
D

2,2
0 (g,h)∗

)
+Tr

(
D

2,2
1 (g,h)∗

) · (g,h).

The operators D
2,2
i : Ei → Ei, i = 0,1,2, are the components of D2,2 corresponding to the decomposition of the

tensor product E2 ⊗E2 = E0 ⊕E1 ⊕E2.

Proof. The multiplication table for the characters of S3 is

· χ0 χ1 χ2

χ0 χ0 χ1 χ2

χ1 χ1 χ0 χ2

χ2 χ2 χ2 χ0 +χ1 +χ2

,

and by (4.3) we get the multiplication table for irreducible representations

⊗ E0 E1 E2

E0 E0 E1 E2

E1 E1 E0 E2

E2 E2 E2 E0 ⊕E1 ⊕E2

,

where the irreducible representations E0, E1, and E2 are 1, 1, and 2 dimensional, respectively.
By (5.1) the quantizers q̂ij in End(Ei⊗Ej) are decomposed as follows:

q̂11 = q̂0
11, q̂12 = q̂2

12, q̂21 = q̂2
21, q̂22 = q̂0

22 ⊕ q̂1
22 ⊕ q̂2

22.

By normalization condition

q̂00 = q̂01 = q̂10 = q̂02 = q̂20 = 1.

Theorem 5 for triple tensor products of all combinations of E0,E1,E2 gives the following relations (see the
appendix for the details of the calculations):

q̂12 = q̂21, (7.1)

q̂11 =
(
q̂12

)2
, (7.2)

q̂0
22 = q̂12q̂

1
22. (7.3)

The action of the group U(S3) has the following form:

q̂11 −→ l̂0

(l̂1)2
· q̂11 =

1

(l̂1)2
· q̂11, q̂12 = q̂21 −→ l̂2

l̂1 l̂2
· q̂12 =

1

l̂1
· q̂12,

q̂0
22 −→

l̂0

(l̂2)2
· q̂0

22 =
1

(l̂2)2
· q̂0

22, q̂1
22 −→

l̂1

(l̂2)2
· q̂1

22, q̂2
22 −→

l̂2

(l̂2)2
· q̂2

22 =
1

l̂2
· q̂2

22,

where l̂0 = 1 and l̂1, l̂2 ∈ C
∗.

If the quantizers all are nonzero, we may choose l̂1, l̂2 such that q̂12, q̂
2
22 → 1, by (7.1), (7.2) then also q̂11, q̂21 → 1

and by (7.3) q̂0
22 = q̂1

22. We then have the following sequence of quantizers depending on one parameter λ ∈ C:

q̂11 q̂12 q̂21 q̂0
22 q̂1

22 q̂2
22

(a) 1 1 1 λ λ 1
.
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Equivalently, the representatives can be chosen as follows:

q̂11 q̂12 q̂21 q̂0
22 q̂1

22 q̂2
22

(a′) λ2 λ λ λ 1 1

(a′′) λ−2 λ−1 λ−1 1 λ 1

(a′′′) 1 1 1 1 1 λ

. (7.4)

If one or both of the quantizers q̂12, q̂
2
22 are equal to zero, then the rest will either be equal to 0 or map to 1 by

choosing l1, l2 appropriately.
By the conditions (7.1)–(7.3), the quantizers vary as follows:

q̂11 q̂12 q̂21 q̂0
22 q̂1

22 q̂2
22

(b) 0 0 0 0 1 1

(c) 0 0 0 0 0 1

(d) 0 0 0 0 1 0

(e) 1 1 1 1 1 0

(f) 0 0 0 0 0 0

(g) 1 1 1 0 0 0

.

We now apply the inverse Fourier transform (4.2) to the quantizers (a)–(g) and get the corresponding element q
in the group algebra,

q =
1

|S3|2
∑

g,h∈S3

F−1(q̂)(g,h) =
1

|S3|2
∑

g,h∈S3

∑

χi,χj∈Ŝ3

di,j Tr
(
Di,j(g,h)∗q̂ij

) · (g,h)

=
1

|S3|2
∑

g,h∈S3

(
1+ sign(h)+ sign(g)+ q̂11 sign(g)sign(h)

) · (g,h)

+
2

|S3|2
∑

g,h∈S3

(
Tr(D2(h)∗

)
+Tr

(
D2(g)∗

)) · (g,h)

+
2

|S3|2
∑

g,h∈S3

(
q̂12 sign(g)Tr

(
D2(h)∗

)
+ q̂21 Tr(D2(g)∗)sign(h)

) · (g,h)

+
4

|S3|2
∑

g,h∈S3

Tr
(
D2,2(g,h)∗q̂22

) · (g,h)

= 1+
4

|S3|2
∑

g,h∈S3

Tr
(
D

2,2
0 (g,h)∗q̂0

22

)
+Tr

(
D

2,2
1 (g,h)∗q̂1

22

)
+Tr

(
D

2,2
2 (g,h)∗q̂2

22

) · (g,h),

where Tr(Di,j(g,h)∗q̂ij) = q̂ij Tr(Di(g)∗ ⊗Dj(h)∗) = q̂ij Tr(Di(g)∗)Tr(Dj(h)∗). Since Tr(trivial(g)∗) is 1 for all
g ∈ S3; Tr(sign(g)∗) is 1 for (), (1,2,3), and (1,3,2) and −1 for (1,2), (1,3), and (2,3); and Tr(D2(g)∗) is 2 for (), −1
for (1,2,3) and (1,3,2) and 0 for (1,2), (1,3), and (2,3), most of the sum cancels out.

Then for option (a) we let λ= 1+ |S3|2
4 p for p ∈ C and get the following class of quantizers:

q(a) = 1+p
∑

g,h∈S3

Tr
(
D

2,2
0 (g,h)∗

)
+Tr

(
D

2,2
1 (g,h)∗

) · (g,h).

In addition to this case, the combinations (b)-(e) give the following quantizers:

q(b) = 1+
∑

g,h∈S3

Tr
(
D

2,2
1 (g,h)∗

)
+Tr

(
D

2,2
2 (g,h)∗

) · (g,h), q(c) = 1+
∑

g,h∈S3

Tr
(
D

2,2
2 (g,h)∗

) · (g,h),

q(d) = 1+
∑

g,h∈S3

Tr
(
D

2,2
1 (g,h)∗

) · (g,h), q(e) = 1+
∑

g,h∈S3

Tr
(
D

2,2
0 (g,h)∗

)
+Tr

(
D

2,2
1 (g,h)∗

) · (g,h).

The combinations (f) and (g) give the trivial quantizer.
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Remark that from (7.4) the quantizer q(a) has the following equivalent forms:

q(a′) = 1+p
∑

g,h∈S3

Tr
(
D

2,2
0 (g,h)∗

) · (g,h), q(a′′) = 1+p
∑

g,h∈S3

Tr
(
D

2,2
1 (g,h)∗

) · (g,h),

q(a′′′) = 1+p
∑

g,h∈S3

Tr
(
D

2,2
2 (g,h)∗

) · (g,h).

8 Quantizations of A4

Let G=A4 be the alternating group. Elements (), (12)(34), (123), (132) represent the orbits of the adjoint G-action
and we let χ0, χ1, χ2, and χ3 be the characters of the irreducible representations corresponding to these orbits.

These irreducible representations are the trivial representation, the first and second nontrivial one-dimensional
representations, and the three-dimensional irreducible representation on modules E0, E1, E2, and E3 with matrix
realizations D0, D1, D2, and D3, respectively.

Theorem 8. For A4-modules, the set of quantizers Q(A4) consists of the following:

(i) the trivial quantizer q = 1,
(ii) q(a) = 1+

∑
g,h∈A4

Tr(D3,3
3 (g,h)∗M) · (g,h),

where M =
[
λ 0
0 κ

]
,
[
λ 1
0 λ

]
, λ,κ ∈ C,

(iii) q(b) = 1+
∑

g,h∈A4
Tr(D3,3

3 (g,h)∗P ) · (g,h),
(iv) q(c) = 1+

∑
g,h∈A4

(Tr(D3,3
1 (g,h)∗)+Tr(D3,3

3 (g,h)∗P )) · (g,h),
(v) q(d) = 1+

∑
g,h∈A4

(Tr(D3,3
2 (g,h)∗)+Tr(D3,3

3 (g,h)∗P )) · (g,h),
(vi) q(e) = 1+

∑
g,h∈A4

(Tr(D3,3
1 (g,h)∗)+Tr(D3,3

2 (g,h)∗)+Tr(D3,3
3 (g,h)∗P )) · (g,h),

where P are 2×2-matrices of the form
[

0 0
0 0

]
,
[

0 1
0 0

]
,
[

1 1
0 1

]
,
[ 1 0

0 λ

]
, λ ∈ C.

The operators D3,3
i , i= 0,1,2,3, are components of D3,3 corresponding to the decomposition E3 ⊗E3 = E0 ⊕

E1 ⊕E2 ⊕2E3.

Proof. The multiplication table for the characters of A4 has the form

· χ0 χ1 χ2 χ3

χ0 χ0 χ1 χ2 χ3

χ1 χ1 χ2 χ0 χ3

χ2 χ2 χ0 χ1 χ3

χ3 χ3 χ3 χ3 χ0 +χ1 +χ2 +2χ3

and by (4.3) we get the multiplication table for irreducible representations

⊗ E0 E1 E2 E3

E0 E0 E1 E2 E3

E1 E1 E2 E0 E3

E2 E2 E0 E1 E3

E3 E3 E3 E3 E0 ⊕E1 ⊕E2 ⊕2E3

.

Recall that the irreducible representations E0, E1, E2, E3 are 1, 1, 1, and 3 dimensional, respectively.
By (5.1), the quantizers q̂ij in End(Ei⊗Ej) split as follows:

q̂11 = q̂2
11, q̂12 = q̂0

12, q̂21 = q̂0
21, q̂13 = q̂3

13, q̂31 = q̂3
31,

q̂22 = q̂1
22, q̂23 = q̂3

23, q̂32 = q̂3
23, q̂33 = q̂0

33 ⊕ q̂1
33 ⊕ q̂2

33 ⊕
[
q̂3

33

]
,

where we use the notation [q̂3
33] to keep in mind that this is a 2×2-matrix acting on 2E3.

Further, by normalization condition

q̂00 = q̂01 = q̂10 = q̂02 = q̂20 = q̂03 = q̂30 = 1.
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Theorem 5 for triple tensor products of all combinations of E0,E1,E2,E3 give the following relations (see the
appendix for details of the calculations)

q̂12 = q̂21 = q̂11q̂22, q̂13 = q̂31, q̂23 = q̂32, (q̂13)
2 = q̂11q̂23, (q̂23)

2 = q̂22q̂13,

q̂0
33 = q̂13q̂

1
33 = q̂23q̂

2
33, q̂0

33q̂23 = q̂1
33q̂12, q̂0

33q̂13 = q̂2
33q̂12, q̂1

33q̂11 = q̂2
33q̂13, q̂1

33q̂23 = q̂2
33q̂22.

(8.1)

Moreover, the action of the group U(A4) has the form

q̂11 −→ l̂2
(
l̂1
)2 q̂11, q̂12 = q̂21 −→ l̂0

l̂1 l̂2
q̂21 =

1

l̂1 l̂2
q̂21, q̂22 −→ l̂1

(
l̂2
)2 q̂22,

q̂13 = q̂31 −→ l̂3

l̂1 l̂3
q̂31 =

1

l̂1
q̂31, q̂23 = q̂32 −→ l̂3

l̂3 l̂2
q̂32 =

1

l̂2
q̂32,

q̂0
33 −→

l̂0
(
l̂3
)2 q̂

0
33 =

1
(
l̂3
)2 q̂

0
33, q̂1

33 −→
l̂1

(
l̂3
)2 q̂

1
33,

q̂2
33 −→

l̂2
(
l̂3
)2 q̂

2
33,

[
q̂3

33

]−→ 1

l̂3

[
q̂3

33

]
.

where l̂0 = 1 and l̂1, l̂2, l̂3 ∈ C
∗.

Assume that the quantizers are non-zero. Then we may choose l̂1, l̂2, l̂3 in such a way that all

q̂11, q̂22, q̂12, q̂21, q̂13, q̂31, q̂23, q̂32, q̂
0
33, q̂

1
33, q̂

2
33

are equal to 1.
What remains is the 2× 2-matrix [q̂3

33] which by choosing of basis can be transformed to one of the following
forms:

[
q3

33

]
=M =

[
λ 0

0 κ

]
,

[
λ 1

0 λ

]
,

where λ,κ ∈ C.
Hence we have the sequence

q̂11 q̂22 q̂12 q̂21 q̂13 q̂31 q̂23 q̂32 q̂0
33 q̂1

33 q̂2
33 [q̂3

33]

(a) 1 1 1 1 1 1 1 1 1 1 1 M
.

Assume now one or more of the quantizers q̂11, q̂22, q̂12, q̂21, q̂13, q̂31, q̂23, q̂32, q̂0
33, q̂1

33, q̂2
33 may be equal to zero.

The rest will then map to 1 by choosing l̂1, l̂2 properly.
By choosing l̂3 we reduce the matrix M to one of the following matrices P :

[
q̂3

33

]−→ P =

[
0 0

0 0

]
,

[
0 1

0 0

]
,

[
1 1

0 1

]
,

[
1 0

0 λ

]
.

Finally by the conditions, (8.1) give the following possible sequences:

q̂11 q̂22 q̂12 q̂21 q̂13 q̂31 q̂23 q̂32 q̂0
33 q̂1

33 q̂2
33 [q̂3

33]

(b) 1 1 1 1 1 1 1 1 0 0 0 P

(c) 0 0 0 0 0 0 0 0 0 1 0 P

(d) 0 0 0 0 0 0 0 0 0 0 1 P

(e) 0 0 0 0 0 0 0 0 0 1 1 P

(f) 0 0 0 0 0 0 0 0 0 0 0 P

(g) 0 1 0 0 0 0 0 0 0 1 0 P

(h) 0 1 0 0 0 0 0 0 0 0 0 P

(i) 1 0 0 0 0 0 0 0 0 0 1 P

(j) 1 0 0 0 0 0 0 0 0 0 0 P

(k) 1 1 1 1 0 0 0 0 0 0 0 P

.
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Applying the inverse Fourier transform (4.2) to the sequences, we get the corresponding element in the group
algebra,

q =
∑

g,h∈A4

F−1(q̂)(g,h) =
∑

g,h∈A4

∑

χi,χj∈Â4

di,j Tr
(
Di,j(g,h)∗q̂ij

) · (g,h)

= 1+
9

|A4|2
∑

g,h∈A4

(
Tr

(
D

3,3
0 (g,h)∗q̂0

33

)
+Tr

(
D

3,3
1 (g,h)∗q̂1

33

)) · (g,h)

+
9

|A4|2
∑

g,h∈A4

(
Tr

(
D

3,3
2 (g,h)∗q̂2

33

)
+Tr

(
D

3,3
3 (g,h)∗

[
q̂3

33

])) · (g,h),

where, as mentioned, most of the sum cancels out.
Here D3,3

i , i= 0,1,2,3, are components of D3,3 operating on the decomposition E3⊗E3 =E0⊕E1⊕E2⊕2E3.
Writing M + I instead of M in the sequence (a) we get a shorter form for q:

q(a) = 1+
9

|A4|2
∑

g,h∈A4

Tr
(
D

3,3
3 (g,h)∗M

) · (g,h).

Further we get

q(b) = 1+
9

|A4|2
∑

g,h∈A4

Tr
(
D

3,3
3 (g,h)∗P

) · (g,h),

q(c) = 1+
9

|A4|2
∑

g,h∈A4

(
Tr(D3,3

1 (g,h)∗
)
+Tr

(
D

3,3
3 (g,h)∗P

)) · (g,h),

q(d) = 1+
9

|A4|2
∑

g,h∈A4

(
Tr(D3,3

2 (g,h)∗
)
+Tr

(
D

3,3
3 (g,h)∗P

)) · (g,h),

q(e) = 1+
9

|A4|2
∑

g,h∈A4

(
Tr(D3,3

1 (g,h)∗
)
+Tr

(
D

3,3
2 (g,h)∗

)
+Tr

(
D

3,3
3 (g,h)∗P

)) · (g,h).

The combinations (f), (h), (j), and (k) give the same quantizer as (b), the combinations (g) and (c), (i) and (d)
give the same quantizers.

We adjust the constants and have the result of the theorem.

Appendix

Let G= S3. By Theorem 5 the quantizers on tensor products of triples of irreducible representations satisfy

E1 ⊗E1 ⊗E2 : q̂11q̂02E2 = q̂12q̂12E2, (A.1a)

E1 ⊗E2 ⊗E1 : q̂12q̂21E2 = q̂21q̂12E2, (A.1b)

E2 ⊗E1 ⊗E1 : q̂21q̂21E2 = q̂11q̂20E2, (A.1c)

E1 ⊗E2 ⊗E2 : q̂12q̂
0
22E0 ⊕ q̂12q̂

1
22E1 ⊕ q̂12q̂

2
22E2 = q̂1

22q̂11E0 ⊕ q̂0
22q̂10E1 ⊕ q̂2

22q̂12E2, (A.1d)

E2 ⊗E1 ⊗E2 : q̂21q̂
0
22E0 ⊕ q̂21q̂

1
22E1 ⊕ q̂21q̂

2
22E2 = q̂12q̂

0
22E0 ⊕ q̂12q̂

1
22E1 ⊕ q̂12q̂

2
22E2, (A.1e)

E2 ⊗E2 ⊗E1 : q̂1
22q̂11E0 ⊕ q̂0

22q̂01E1 ⊕ q̂21q̂
2
22E2 = q̂21q̂

0
22E0 ⊕ q̂21q̂

1
22E1 ⊕ q̂21q̂

2
22E2, (A.1f)

E2 ⊗E2 ⊗E2 : q̂2
22q̂

0
22E0 ⊕ q̂2

22q̂
1
22E1 = q̂2

22q̂
0
22E0 ⊕ q̂2

22q̂
1
22E1, (A.1g)

q̂0
22q̂20E2 ⊕ q̂1

22q̂21E2 ⊕ q̂2
22q̂

2
22E2 = q̂0

22q̂02E2 ⊕ q̂1
22q̂12E2 ⊕ q̂2

22q̂
2
22E2. (A.1h)

Then by (A.1a)

q̂11 = q̂12q̂12,

by (A.1d)

q̂0
22 = q̂12q̂

1
22,

and by for example (A.1e)

q̂12 = q̂21.
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Let G=A4. By Theorem 5 the quantizers on tensor products of triples of irreducible representations satisfy

E1 ⊗E1 ⊗E1 : q̂11q̂12E0 = q̂11q̂21E0, (A.2a)

E1 ⊗E1 ⊗E2 : q̂12q̂10E1 = q̂11q̂22E1, (A.2b)

E1 ⊗E2 ⊗E1 : q̂21q̂10E1 = q̂12q̂01E1, (A.2c)

E2 ⊗E1 ⊗E1 : q̂11q̂22E1 = q̂21q̂01E1, (A.2d)

E1 ⊗E2 ⊗E2 : q̂22q̂11E2 = q̂12q̂02E2, (A.2e)

E2 ⊗E1 ⊗E2 : q̂12q̂20E2 = q̂21q̂02E2, (A.2f)

E2 ⊗E2 ⊗E1 : q̂21q̂20E2 = q̂22q̂11E2, (A.2g)

E1 ⊗E1 ⊗E3 : q̂13q̂13E3 = q̂11q̂23E3, (A.2h)

E1 ⊗E3 ⊗E1 : q̂31q̂13E3 = q̂13q̂31E3, (A.2i)

E3 ⊗E1 ⊗E1 : q̂11q̂32E3 = q̂31q̂31E3, (A.2j)

E1 ⊗E3 ⊗E3 : q̂2
33q̂12E0 ⊕ q̂0

33q̂10E1 ⊕ q̂1
33q̂11E2 ⊕ [q̂3

33]q̂132E3 = q̂13(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3), (A.2k)

E3 ⊗E1 ⊗E3 : q̂13(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3) = q̂31(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3), (A.2l)

E3 ⊗E3 ⊗E1 : q̂31(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3) = q̂2
33q̂21E0 ⊕ q̂0

33q̂01E1 ⊕ q̂1
33q̂11E2 ⊕ [q̂3

33]q̂312E3, (A.2m)

E2 ⊗E2 ⊗E2 : q̂22q̂21E0 = q̂22q̂12E0, (A.2n)

E2 ⊗E2 ⊗E3 : q̂23q̂23E3 = q̂22q̂13E3, (A.2o)

E2 ⊗E3 ⊗E2 : q̂32q̂23E3 = q̂23q̂32E3, (A.2p)

E3 ⊗E2 ⊗E2 : q̂22q̂31E3 = q̂32q̂32E3, (A.2q)

E2 ⊗E3 ⊗E3 : q̂1
33q̂21E0 ⊕ q̂2

33q̂22E1 ⊕ q̂0
33q̂20E2 ⊕ [q̂3

33]q̂232E3 = q̂23(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3), (A.2r)

E3 ⊗E2 ⊗E3 : q̂23(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3) = q̂32(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3), (A.2s)

E3 ⊗E3 ⊗E2 : q̂32(q̂
0
33E0 ⊕ q̂1

33E1 ⊕ q̂2
33E2 ⊕ [q̂3

33]2E3) = q̂1
33q̂12E0 ⊕ q̂2

33q̂22E1 ⊕ q̂0
33q̂02E2 ⊕ [q̂3

33]q̂322E3, (A.2t)

E3 ⊗E3 ⊗E3 : [q̂3
33](q̂

0
332E0 ⊕ q̂1

332E1 ⊕ q̂2
332E2) = [q̂3

33](q̂
0
332E0 ⊕ q̂1

332E1 ⊕ q̂2
332E2), (A.2u)

q̂0
33q̂30E3 ⊕ q̂1

33q̂31E3 ⊕ q̂2
33q̂32E3 ⊕ [q̂3

33]
24E3 = q̂0

33q̂03E3 ⊕ q̂1
33q̂13E3 ⊕ q̂2

33q̂23E3 ⊕ [q̂3
33]

24E3, (A.2v)

where [q̂3
33] is a 2×2-matrix on the 6-dimensional 2E3.

Then by (A.2b) and (A.2c),

q̂11q̂22 = q̂12 = q̂21,

by (A.2l)

q̂13 = q̂31,

by (A.2h)

(q̂13)
2 = q̂11q̂23,

which together with (A.2j) gives

q̂23 = q̂32,

further by (A.2o)

(q̂23)
2 = q̂22q̂13

and the last conditions are given by (A.2k) and (A.2r) as follows:

q̂0
33 = q̂13q̂

1
33 = q̂23q̂

2
33, q̂0

33q̂23 = q̂1
33q̂12, q̂0

33q̂13 = q̂2
33q̂12, q̂1

33q̂11 = q̂2
33q̂13, q̂1

33q̂23 = q̂2
33q̂22.
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