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Maxwell’s Equations are Expressed
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Abstract
This paper refutes the theory of relativity. Previous attempts by others were based on pointing at contradictions 

between corollaries of the theory of relativity and reality, often called paradoxes. The main point of this article is to 
indicate and correct the error that led scientists at the turn of the twentieth century to formulate the faulty theory of 
relativity. In one of his lectures the late Professor Itzhak Bar Itzhak Z”L (Technion, Israel Institute of Technology, Haifa 
Israel) compared physicists and engineers by means of an equation.

Engineer=Physicist + common sense

Wherefrom it follows that:

 Physicist=Engineer - common sense

As we shall demonstrate below, the theory of special relativity was born out of an error and some lack of common 
sense.

Many attempts have been made to refute the theory of relativity. I assume that all of them have dealt with 
contradictions between corollaries of the theory of relativity and reality, often called “paradoxes”. The wrong rejection 
of two of these paradoxes, the twin paradox and the apparent instability of planetary trajectories due to gravitational 
acceleration delay (also termed “retardation”), based on pseudo-scientific arguments led me to realize that the only 
practical way to refute the theory of relativity is by displaying the error on which it is based. This error is associated 
with Maxwell’s equations.

Maxwell’s equations are a brilliant formulation of the laws of electromagnetism. However, they were derived for 
static systems, i.e.; where there was no motion relative to the relevant coordinate system (RCS). At the turn of the 
twentieth century some scientists assumed that these equations pertain also to dynamic systems, wherefrom it follows 
that the speed of light is constant in all inertial coordinate systems. This in turn led to the Lorentz transformation and 
to Einstein’s theory of relativity.

This article shows that Maxwell’s equations do not apply to dynamic systems where there is motion relative to 
the RCS. As a consequence of the correction of these equations it is proven below that the Galilean transformation 
and Newtonian laws of mechanics are universally valid, not just as low speed approximations.

The theory of relativity was born out of the attempt to force an incorrect form of Maxwell’s equations on all 
electromagnetic phenomena. The formulation of the corrected Maxwell equations finally refutes the theory of relativity.

Back to Galilean Transformation and Newtonian Physics Refuting the 
Theory of Relativity
Eisenman MN*
Independent Researcher, Israel
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The complete set of the EM (corrected Maxwell) equations is 
presented in chapter 1. It is shown that the notion of the speed 
of light being constant in all inertial coordinate systems stems 
from the wrong application of Maxwell's equations to dynamic 
systems. It is also pointed out that due to terms restored to the 
corrected Maxwell equations they do not equate under the 
Lorentz transformation rendering it, along with the theory of 
relativity which is based on this transformation, invalid.

3.	 A solution to the corrected Maxwell equations indicates that 
these equations are invariant under the Galilean transformation. 
Consequently the time-rate, space and mass are invariant and 
that velocity vectors are additive, which means that the speed of 
light can be exceeded.

We are thus faced with two possibilities: Either Ampere, Faraday, and 
Gauss's laws are valid or they are not. According to the first possibility 
all the corollaries of the theory of relativity are wrong. However, if some 
corollaries of this theory can be verified by valid experiments – then, 
according to the second possibility, the above mentioned laws are 
invalid and must be corrected. In any case, the theory of relativity is 
refuted.

It can be demonstrated that the “magnet and coil” problem is easily 
resolved by the application of the corrected Maxwell equations, as is 
done for the “Faraday paradox” in section A.8.

Maxwell Equations, Common and Corrected Represen-
tations

How can a theory be refuted? One obvious way of refuting a theory 
which predicts physical phenomena is by displaying contradictions 
between the theory’s predictions and reality. In the case of the theory 
of relativity there are many discrepancies between corollaries of the 
theory and reality. These are referred to as paradoxes. The problem is 
that these paradoxes have been wrongly dismissed by indoctrinated 
physicists on the basis of pseudo-scientific arguments. Furthermore, 
many and sometimes very expensive experiments have been performed 
to “prove” the validity of this theory, something we do not see for any 
other law of physics. The results of the experiments are often irrelevant 
because there is a logical problem with any outcome. Consequently, it 
seems that the only practical way to refute the theory of relativity is to 
point at the error on which it is based. This error is deeply rooted in the 
common representation of Maxwell’s equations.

Before discussing the electromagnetic (EM) differential equations it 
is necessary to define the notions of static and dynamic systems.

In the process of formulating the EM equations reference is made 
to one or several coordinate systems, which are not necessarily inertial. 
Out of all those coordinate systems there is one with respect to which 
the EM equations are expressed. This coordinate system is referred to as 
the “relevant coordinate system” (RCS).

A static system, or a system at rest, is defined as a setup where there 
is no motion relative to the RCS. In other words, any surface or volume 
selected in the RCS and inspected at different times remains stationary, 
i.e.: it does not have any translational motion, it does not rotate and 
does not deform with respect to the RCS.

A dynamic system, or a system that is not at rest, is defined as an 
arrangement where at least one point can be found which moves with 
respect to the RCS. Since, as it turns out, the vector velocity field V  in 
the EM equations is at least once space-wise differentiable [see equations 
(1.1), (1.2) and (1.5)], it must be space-wise continuous. Consequently, 

ρ : Charge Density

ε : Dielectric Constant

φ : Magnetic Flux

µ : Magnetic Permeability

Introduction
As an engineer I have always had a strange feeling about the theory 

of special relativity. It sounds very mysterious and sophisticated, but 
somehow it has never sounded right. During the summer of 2011, 
being unemployed and approaching retirement, I started researching 
those issues.

While searching for the incentives that led to the theory of special 
relativity, i.e.: shortcomings of the classical theories of physics, I 
encountered the “magnet and coil” problem. Although the measured 
effect of a magnet on a coil depends only on the relative velocity between 
them - according to Maxwell’s equations the effect depends also on the 
state of an observer, e.g.: an observer stationary with respect to the 
magnet sees a different effect than that viewed by an observer stationary 
relative to the coil. The “magnet and coil” problem is presented at the 
following link.

As soon as I saw it I had the feeling that there must be a problem 
with Maxwell’s equations concerning some coordinate system 
transformation. And indeed, Maxwell’s equations were derived for static 
systems where there was no motion relative to the RCS. Consequently 
these equations are incomplete, namely: some of their terms are 
missing. Their application to dynamic systems, where there is motion 
relative to the RCS, leads to the erroneous theory of special relativity. 
The assumption of the universal validity of these equations, i.e.: their 
applicability to dynamic systems, is false and it is very surprising that 
such an error has gone unnoticed for over a century.

Many people whom I ask to review the article refer me to articles 
which present test results that supposedly “validate” the theory of 
relativity. It is important to note that a validity of a theory cannot be 
established solely by its predictions. Even if all the predictions of a 
theory conform to valid test results (in the case of the theory of relativity 
I would certainly not bet my head on it) it may still be invalid if there 
is an error in the process of its derivation. Unlike Newton’s second law 
of mechanics, which is expressed as a differential equation, Maxwell’s 
equations are derived from more basic laws. As has been indicated 
in the previous paragraph – these derivations are faulty, yielding the 
theory of relativity invalid.

The theory of relativity is refuted by each of the following steps:

1.	 Two quotes from the literature are presented in chapter 1. 
The first quote states that Maxwell's equations are limited to 
static systems (systems at rest), i.e.: where there is no motion 
relative to the RCS. The second quote states that Maxwell's 
equations are universally valid, namely: that they pertain also 
to dynamic systems where there is motion relative to the RCS. 
The discrepancy between these two quotes is the basis for the 
faulty theory of relativity.

2.	 The electromagnetic (EM) differential equations corresponding 
to Ampere, Faraday and charge conservation laws are derived 
in appendix A where it is demonstrated that Maxwell's 
equations are limited to static systems and that Ampere, 
Faraday and Gauss's laws require that the speed of propagation 
of electric and magnetic fields must be infinite (section A.5). 
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a region can be found around the moving point that moves with respect 
to the RCS. This means that a surface A and a closed volume Vol can 
be found which move relative to the RCS. The surface and volume may 
have translational motion and they may be rotating and deforming 
relative to the RCS.

When dealing with physical phenomena in vacuum, translation 
and rotation do have physical meaning. For example: Given a 
coordinate system that moves and rotates relative to the RCS, a 
surface and a volume which are stationary with respect to the moving 
coordinate system move and rotate relative to the RCS. Although a 
velocity vector field can be defined so that a surface and a volume will 
also deform – in vacuum the deformation does not have any physical 
meaning. Deformation has a meaning in relation to moving particles 
where the particles on a surface or inside a volume are monitored at 
different times. If the velocity vector field is defined as the velocity of 
the particles – the surface or volume which contains the particles may 
have translational motion, may be rotating and deforming. Examples of 
the most general dynamic systems are magneto-fluid dynamic systems 
such as the plasma flow in the fusion chamber of the Tokamak. Other 
examples are the astrophysical phenomena of supernovae, solar storms, 
etc. In these examples there exist surfaces and volumes which move, 
rotate and deform relative to a selected RCS.

The EM equations should be derived for the most general case of 
dynamic systems.

The common representation of Maxwell’s equations is valid only for 
static systems. This is obvious from the derivation of these equations in 
appendix A. However, in order to emphasize this fact here is a quote of 
the third paragraph of chapter 4 (page 18) in [1]:

“We must form the time derivative of the first Eq. (1). We will here 
imagine the surface ∆σ to remain fixed, which obviously applies to 
media at rest, to which we shall confine ourselves initially.”

This restriction, or initial confinement, to media at rest greatly 
facilitates the derivation of Maxwell’s equations in reference 1, because 
it enables the replacement of the total time derivatives in Faraday’s, 
Ampere’s and charge conservation laws [equations (A.1.1), (A.2.1) 
and (A.3.1)] with partial time derivatives and freely interchange the 
order of integration and differentiation. However, this restriction limits 
Maxwell’s equations to static systems only. The physicists at the turn of 
the twentieth century were unaware of this limitation. They assumed 
that Maxwell’s equations were universally valid (i.e.: applicable to any 
inertial coordinate system) and tried to apply them to dynamic systems 
which led to inconsistencies. But instead of realizing and correcting the 
error (by modifying Maxwell’s equations) they introduced the Lorentz 
transformation which was the foundation of the flawed theory of 
relativity. The quote of the [1] confirms the above statements:

“The path taken by Einstein in 1905 in the discovery of the special 
theory of relativity was steep and difficult. It led through the analysis 
of the concepts of time and space and some ingenious imaginary 
experiments. The path that we shall take is wide and effortless. It 
proceeds from the universal validity of the Maxwell equations and the 
tremendous accumulation of experimental material on which they are 
based. It ends almost inadvertently at the Lorentz transformation and all 
its relativistic consequences.” [Remark: the different font in the above 
two quotes appears in the original text of reference [1].

The basis for the erroneous theory of relativity is the discrepancy 
between the two above mentioned quotes: The first quote states that 
Maxwell’s equations are limited to static systems, while the second 

quote assumes that these equations are universally valid, i.e.: they apply 
also to dynamic systems.

In this chapter the electromagnetic laws are presented as a set 
of eight partial differential equations. Only three of those equations, 
corresponding to Faraday’s, Ampere’s and charge conservation laws, 
contain time derivatives. We proceed with the derivation of the 
differential equations corresponding to these three laws in appendix 
A and the presentation of the complete set of differential equations 
governing electromagnetic phenomena. Maxwell’s equations are 
a reduced form of the general EM equations when the velocity 
vector 0=V  everywhere, thus apply to static systems only. It is then 
demonstrated that the assumption of their universal validity (i.e.: their 
wrong application to dynamic systems) leads to the notion of the speed 
of propagation of electromagnetic waves being constant in all inertial 
coordinate systems, hence to the Lorentz transformation and Einstein’s 
erroneous theory of relativity.

The complete set of the corrected electromagnetic differential 
equations is presented in equations (1.1) to (1.8). The equations 
corresponding to Ampere’s, Faraday’s and charge conservation laws, 
in their most general form (i.e.: applicable to dynamic systems), are 
derived in appendix A. Equations (A.1.11), (A.2.7) and (A.3.8) are 
rewritten as equations (1.1), (1.2) and (1.5), respectively.

( ) ( ) [( ) ( ) ]B V B E B V V B
t

∂
+ ⋅∇ = − ∇× + ⋅∇ − ∇ ⋅

∂
 Faraday’s law          (1.1)

( ) ( ) [( ) ( ) ]D V D J H D V V D
t

∂
+ ⋅∇ + = ∇× + ⋅∇ − ∇ ⋅

∂
 Ampere’s law   (1.2)

0B∇ ⋅ =  Gauss’s magnetic flux law 			             (1.3)

D ρ∇ ⋅ =  Gauss’s electric flux law 			                (1.4)

( ) ( ) 0V V J
t
ρ ρ ρ∂
+ ⋅∇ + ∇ ⋅ + ∇ ⋅ =

∂
 Charge conservation law  (1.5)

J Eσ=  					                  (1.6)

D Eε=  					                 (1.7)

B Hµ=  					                  (1.8)

The common formulation of Maxwell’s equations is valid only for 
a stationary case, i.e.: where there is no motion relative to the RCS, 
namely:

0V =  					                      (1.9)

Equations (1.1), (1.2) and (1.5) along with (1.9) yield the common 
Maxwell’s equations corresponding to Faraday’s, Ampere’s and charge 
conservation laws:

B E
t

∂
= −∇×

∂
 Faraday’s law 			               (1.10)

D J H
t

∂
+ = ∇×

∂
 Ampere’s law 			             (1.11)

0J
t
ρ∂
+∇ ⋅ =

∂
 Charge conservation law 		             (1.12)

We proceed to solve the common Maxwell’s equations (1.10) to 
(1.12). Limiting ourselves to an isotropic and non-conducting medium 
(such as outer space or vacuum) we have:

0; 0; 0Jρ σ= = =  			                                (1.13)

0 00; 0; ; ;E H ε ε µ µ∇ ⋅ = ∇ ⋅ = = =  		             (1.14)
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So in this case (vacuum), substituting equations (1.8) and (1.7) into 
equations (1.10) and (1.11), respectively, Maxwell’s equations attain the 
following form:

H E
t

µ ∂
= −∇×

∂
 				                 (1.15)

E H
t

ε ∂ = ∇×
∂

 					                  (1.16)

Equations (1.15) and (1.16) are Maxwell’s equations for outer space 
(vacuum).

From equation (1.15) and (1.16) we obtain:
2

2

1 ;H E HE
t t t

ε
µ

∂ ∂ ∂
= − ∇× = ∇×

∂ ∂ ∂
 		               (1.17)

It follows from equation (1.17):
2

2

1 ( )E E
t

ε
µ

∂
= − ∇× ∇×

∂
 			               (1.18)

However:
2( ) ( )E E E∇× ∇× = ∇ ∇ ⋅ −∇  			              (1.19)

It follows from equations (1.18), (1.19) and (1.14):
2

2 2 2
2

1E E c E
t εµ

∂
= ∇ = ⋅∇

∂
 			               (1.20)

Where C is the speed of light.

For simplicity let’s assume that the electromagnetic wave is planar 
and moves in the x direction. Since the partial derivatives with respect 
to y and z vanish we have:

2 2
2

2 2

E Ec
t x

∂ ∂
= ⋅

∂ ∂
 				              (1.21)

Equation (1.21) is the classical wave equation. The general solution 
to this equation is the following:

1 21 2
( , ) [ ( )] [ ( )]E x t a f k x ct a f k x ct= ⋅ − + ⋅ + 	           (1.22)

where 1
f  and 2

f  are any twice differentiable vector functions 
and a1 and a2 are two constant numbers. Since we are dealing with 
propagating waves 1

f  and 2
f  should be complex exponential vector 

functions. Therefore:

[ ( )] [ ( )]
1 2( , ) j k x ct j k x ctE x t v e v e− += ⋅ + ⋅  		            (1.23)

The solution (1.23) to equation (1.21) consists of an electromagnetic 
wave propagating in the positive direction of the x axis along with 
another wave in the opposite direction, both propagating at the 
nominal speed of light c. 1k

λ
= , where λ is the wavelength, and kc=ω 

is the frequency of the electromagnetic waves. 1v  and 2v  are constant 
complex vectors [2].

This is the classic solution of Maxwell’s equation for a planar 
electromagnetic wave. As expected, the speed of propagation of the 
electromagnetic waves is the nominal speed of light c since there is no 
motion relative to the RCS (due to the restriction in the derivation of 
the common form of Maxwell’s equations).

What happens when a radiation source moves with respect to 
the RCS? It follows from the assumption of the universal validity of 
Maxwell’s equations (1.20) and (1.21) (namely: that they are valid in 
any inertial coordinate system) that the speed of propagation of any 
electromagnetic wave in all inertial coordinate systems is constant 

and equals to the nominal speed of light c [solution (1.23) to equation 
(1.21)]. Thus, the speed of propagation of electromagnetic waves being 
constant in all inertial coordinate systems is not necessarily a measured 
observation. It is an assumption, a consequence of the assumed 
universal validity of the common Maxwell’s equations even for dynamic 
systems.

Suppose that a radiation source moves at a speed u in the positive 
direction of the x axis of the RCS. As engineers (hopefully with some 
common sense), and in agreement with the Galilean transformation 
where velocity vectors are additive, we would expect the electric field 
vector, of the propagating planar electromagnetic wave parallel to the x 
axis, to have the following form with respect to the RCS:

{ [ ( ) ]} { [ ( ) ]}
1 2( , ) j k x c u t j k x c u tE x t v e v e− + + −= ⋅ + ⋅  		              (1.24)

Namely, we should have a wave propagating at a speed of (c+u) 
in the direction of the positive x axis and another wave propagating 
at a speed of (c-u)in the direction of the negative x axis. The electric 
field in equation (1.24) obviously does not comply with Maxwell’s 
equation (1.21).

There are only three possibilities: Either equation (1.24) is wrong, 
or Maxwell’s equation (1.21) is wrong, or both equations are wrong.

Lorentz assumed that equation (1.24) was wrong, which is 
equivalent to the assumption that the Galilean transformation does not 
apply, and went on to formulate his famous alternative transformation.

We will show that Maxwell’s equation (1.21) is wrong since it 
is inadequate for dynamic systems. When the proper form of the 
Maxwell equations is applied – equation (1.24) is the right solution. 
This means that the Galilean transformation is valid (i.e.: the corrected 
Maxwell equations are invariant under the Galilean transformation). 
In addition, due to terms restored to the corrected Maxwell equations 
- they do not equate under the Lorentz transformation rendering this 
transformation, along with the theory of relativity which is based on it, 
invalid.

It is proven in the next chapter that when the corrected set of Maxwell 
equations is applied - the Galilean transformation is universally valid 
wherefrom it follows that Newton’s laws of mechanics are universally 
valid and not just low speed approximations.

Solution of the Corrected Maxwell Equations
As noted in the previous chapter Maxwell’s equations (1.10) to 

(1.12), along with their derivatives (1.20) and (1.21), were formulated 
for static systems, namely: no motion relative to the RCS. Their wrong 
application to dynamic systems led to the Lorentz transformation and 
Einstein’s theory of relativity.

In this chapter a solution to the complete and corrected set 
of Maxwell equations [(1.1) to (1.8)] is presented. This solution 
demonstrates that the Galilean transformation and Newtonian physics 
are universally valid.

We proceed with the application of the corrected Maxwell equations 
to a planar wave in vacuum where all coordinate systems are inertial. It 
follows from the assumption that all coordinate systems, including the 
RCS, are inertial that the velocity vector V  in equations (1.1) and (1.2) 
is constant. Equations (1.1) and (1.2) become:

( ) ( )B V B E
t

∂
+ ⋅∇ = − ∇×

∂
 Faraday’s law 		               (2.1)

( )D V D H
t

∂
+ ⋅∇ = ∇×

∂
 Ampere’s law 		             (2.2)
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It follows from equations (1.7) and (1.8):

( )( )H EV H
t µ

∂ − ∇×
+ ⋅∇ =

∂
 Faraday’s law 		            (2.3)

( )E HV E
t ε

∂ ∇×
+ ⋅∇ =

∂
 Ampere’s law 		            (2.4)

It should be emphasized that there is a very big difference between 
the restoration of the missing terms to the corrected Maxwell equations 
[middle terms in equations [(2.1) to (2.4)] and the introduction of the 
Lorentz transformation. The Lorentz transformation was introduced to 
achieve a certain goal: avoiding inconsistencies which result from the 
wrong assumption that Maxwell's equations are universally valid. In 
contrast, the restoration of the missing terms to the corrected Maxwell 
equations is not done as a step in creating a new theory. It is a necessary 
step that follows from the correct derivation in appendix A of the 
differential equations corresponding to Faraday’s and Ampere’s laws. 
The omission of these terms has been a serious mistake.

Equations (2.3) and (2.4) can be rewritten as follows:

( )DH E
Dt µ

− ∇×
=  Faraday’s law 			               (2.5)

DE H
Dt ε

∇×
=  Ampere’s law 			                 (2.6)

Where

( )D d V
Dt dt t

∂
= = + ⋅∇

∂
 				                  (2.7)

is the total derivative, sometimes termed the convective derivative. 
As engineering students we often encountered the notion of the total 
derivative, especially in fluid dynamics. We were fortunate to have 
Professor David Pnueli Z”L as our instructor, an excellent teacher and a 
bright light in the darkness of the last two years in college.

Differentiating equation (2.6) with respect to time (note that V  is 
constant!):

2

2

( )D H DH
D E Dt Dt
Dt ε ε

∇×
∇×

= =  			               (2.8)

Substituting equation (2.5) into (2.8):
2

2
2

( ) ( )D E E c E
Dt εµ

∇× ∇×
= − = − ⋅∇× ∇×  		                (2.9)

From equation (2.7):

2
2

2 [ ( )]D E V E
Dt t

∂
= + ⋅∇

∂
                         		               (2.10)

Using equation (1.14) [ ( ) 0E∇ ⋅ = ]
2 2( ) ( )E E E E∇× ∇× = ∇ ∇ ⋅ −∇ =−∇  		              (2.11)

Substituting equations (2.10) and (2.11) into (2.9):
2 2 2[ ( )]V E c E

t
∂
+ ⋅∇ = ⋅∇

∂
 			                (2.12)

We assume again that the electromagnetic wave is planar and 
propagating along the x axis, in which case the derivatives with respect 
to y and z vanish:

0 ; ( )
0

u
EV V E u
x

 
∂ = ⋅∇ =  ∂  

 			             (2.13)

2 2 2
2 2

2 2[ ( )] 2E E EV E u u
t t x t x
∂ ∂ ∂ ∂
+ ⋅∇ = + +

∂ ∂ ∂ ∂ ∂
		               (2.14)

2
2 2 2

2

Ec E c
x

∂
⋅∇ =

∂
 			                             (2.15)

Substituting equations (2.14) and (2.15) into equation (2.12) we 
obtain:

2 2 2 2
2 2

2 2 22E E E Eu u c
t x t x x

∂ ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂ ∂
 			              (2.16)

Rearranging equation (2.16) yields:
2 2 2

2 2
2 22 ( )E E Eu c u

t x t x
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

 			             (2.17)

The factor 
2

2 2 2 2 2( ) [1 ] (1 )uc u c c
c

β − = − = − 
 

 at the right hand side 
of equation (2.17) is reminiscent of the factor involved in time, length 
and mass changes in the theory of special relativity. However, the theory 
of special relativity is faulty due to wrongly concluding that time-rate 
is contracted by the factor 21 β− , in addition to the omission of the 
middle term in equation (2.17).

We proceed to solve equation (2.17) by adding the term 
2 Ec
x t

ξ ∂
∂ ∂

 to 
both sides of the equation:

2 2

[ (2 ) ] [ ]E E E c u Eu c c
t t x x t c x

ξ ξ
ξ

∂ ∂ ∂ ∂ ∂ − ∂
+ + = +

∂ ∂ ∂ ∂ ∂ ∂
 	              (2.18)

In order to create a common factor on both sides of equation (2.18) 
we require that:

2 2

2 c uu c
c

ξ
ξ
−

+ =  				              (2.19)

The solution of equation (2.19) for ξ leads to the following quadratic 
equation:

2
2 2 [1 ] 0u u

c c
ξ ξ  + − − = 

 
 			            (2.20)

The solution of equation (2.20) is:
2 2

1,2 1 1u u u u
c c c c

ξ    = − ± + − = − ±   
   

 		           (2.21)

Substituting either one of the values ξ 1,2 into equation (2.18) yields 
the same result:

[ ( ) ][ ( ) ] 0c u c u E
t x t x
∂ ∂ ∂ ∂
− − + + =

∂ ∂ ∂ ∂
 		            (2.22)

The general solution to the partial differential equation (2.22) is the 
following:

1 21 2
( , ) { [ ( ) ]} { [ ( ) ]}E x t a f k x c u t a f k x c u t= ⋅ − + + ⋅ + −           (2.23)

where 1
f  and 2

f  are any twice differentiable vector functions 
while a1 and a2 are two constant numbers. Since we are dealing with 
propagating wavesL 1

f  and 2
f  should be complex exponential vector 

functions. Therefore:
{ [ ( ) ]} { [ ( ) ]}

1 2( , ) j k x c u t j k x c u tE x t v e v e− + + −= ⋅ + ⋅  		            (2.24)
1k
λ

= , where λ is the wavelength, k(c+u)=ωf is the frequency 
of the forward propagating electromagnetic wave and k(c-u)=ωb is 
the frequency of the backward propagating electromagnetic wave, as 
viewed by a stationary observer with respect to the RCS. 1v  and 2v  
are constant complex vectors. The above mentioned variation of the 
electromagnetic wave frequency is the manifestation of the Doppler 
Effect.
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Equation (2.24) represents two waves: one wave propagating 
forward at a speed of (c+u) in the direction of the positive x axis and 
another wave propagating backward at a speed of (c-u) in the direction 
of the negative x axis, both with respect to the RCS. Equation (2.24) is 
identical to equation (1.24), the solution which we should have arrived 
at by common sense.

The significance of equation (2.24) is that the Galilean 
transformation is valid. The Lorentz transformation and Einstein’s 
theory of special relativity are faulty and we may safely and comfortably 
return to the Galilean transformation and Newtonian mechanics.

The “magnet and coil” problem is obviously resolved by the 
application of the corrected Maxwell equations, as well as the “Faraday 
paradox” in section A.8.

Definitions

Current laws: The current version of the Faraday, Ampere and 
Gauss electric and magnetic laws.

Current equations: The EM (Maxwell’s) equations based on 
the Current Laws and the Lorentz transformation (i.e.: the current 
relativistic EM equations).

Corrected laws: A corrected version of the Current Laws so that 
the speed of propagation of electric

 and magnetic fields does not exceed the speed of light (if they are 
ever formulated).

Corrected equations: The EM equations based on the Corrected 
Laws (and, possibly, on the Lorentz Transformation which are 
illustrated in Figure 1.

Derivation of the Electromagnetic Equations Corre-
sponding to Faraday’s, Ampere’s and Charge Conserva-
tion Laws

This appendix presents, among other things, the derivation 
of the complete (corrected) Maxwell equations which contain 
time derivatives, namely: Faraday's, Ampere's and the charge 
conservation laws. These derivations are based on chapters 3 and 
4 of reference 1 which present Maxwell’s equations in integral form 
and differential form, respectively.

Where: D Eε=  and H Bµ= .

The following definition is needed for the subsequent derivations:

 

 

 

YES 

NO 

NO 

NO YES 

Are Maxwell’s 
equations incomplete? 

Start 

YES 

Are the Current 
Laws valid? 

All the conclusions of the theory of 
relativity are false: 

-The speed of light can be exceeded  
-The time rate is a universal constant  
-The propagation speed of electric and 
   magnetic fields is infinite  

The Current Laws must be corrected 
to a new set of Corrected Laws 

Are the predictions of the 
Corrected Equations 

identical to those of the 
Current Equations? 

The Corrected Equations are consistent while the Current Equations are 
inconsistent, since:  

a. They are based on the Current Laws which are invalid. 
b. They are incomplete due to a faulty derivation. 
c. They predict that the speed of light cannot be exceeded (due to 

the application of Lorentz transformation) based on the invalid 
Current Laws which require that the speed of propagation of 
electric and magnetic fields be infinite.  

 

Theory of relativity 
refuted 

The article is pointless 

Figure 1: Illustration and comparison of standard laws.



Citation: Eisenman MN (2016) Back to Galilean Transformation and Newtonian Physics Refuting the Theory of Relativity. J Phys Math 7: 198. doi: 
10.4172/2090-0902.1000198

Page 7 of 13

Volume 7 • Issue 3 • 1000198J Phys Math, an open access journal
ISSN: 2090-0902

An arbitrary surface A with a closed boundary S is selected. A 
pointer on S indicating a sense of travel is provided, and the direction 
of the normal to the surface A (the direction of an elemental area vector 
dA ) is defined as positive which forms a right handed screw with the 
S pointer.

A detailed explanation of the following terms: the velocity vector 
field V , the surface A and the closed volume vol, is presented in the 
fifth paragraph of chapter 1 while discussing the notions of static and 
dynamic systems.

Faraday's law

Faraday's law in integral form is given in equation (A.1.1).

A s

d B dA E ds
dt

⋅ = − ⋅∫ ∫             (A.1.1)

It follows from Stokes’ theorem:

( )
A A

d B dA E dA
dt

⋅ = − ∇× ⋅∫ ∫             (A.1.2)

We proceed to evaluate the term 
A

d B dA
dt

⋅∫  in equation (A.1.2). 

A derivation of this expression is presented in reference 2, volume 2 
page 346.

( ) ( )

0

( ) ( )
lim A t t A t

t
A

B t t dA B t dA
d B dA
dt t

+∆

∆ →

+ ∆ ⋅ − ⋅

⋅ =
∆

∫ ∫
∫

The above equation can be rewritten as follows:

( ) ( ) ( ) ( )

0

( ) ( ) ( ) ( )
lim A t t A t t A t t A t

t
A

B t t dA B t dA B t dA B t dA
d B dA
dt t

+∆ +∆ +∆

∆ →

+ ∆ ⋅ − ⋅ + ⋅ − ⋅

⋅ =
∆

∫ ∫ ∫ ∫
∫

Hence:

( ) ( )

0 0

( ) ( )
[ ( ) ( )]lim lim A t t A t

t t
A A

B t dA B t dA
d B t t B tB dA dA
dt t t

+∆

∆ → ∆ →

⋅ − ⋅
+ ∆ −

⋅ = ⋅ +
∆ ∆

∫ ∫
∫ ∫

Therefore:

( ) ( )

0

( ) ( )
lim A t t A t

t
A A

B t dA B t dA
d BB dA dA
dt t t

+∆

∆ →

⋅ − ⋅
∂

⋅ = ⋅ +
∂ ∆

∫ ∫
∫ ∫           (A.1.3)

To evaluate the last term in equation (A.1.3) we need some 
visualization, see Figure 2. Imagine the surface A(t) as the bottom of 
a box and A(t+t) as the top surface of that box. Each point on A(t) 
is connected to a corresponding point on ( )A t t+ ∆  by a vector V t∆
. The velocity vector V  may vary space-wise (in addition to time-
wise variation) so that the top surface ( )A t t+ ∆  is in general rotated 
and deformed relative to ( )A t . In Figure 2 some of the vectors V t∆  
connecting the circumference of A(t) to that of A(t+t) are drawn, 

thus constructing the side envelope of the above mentioned “box”. 
We now perform the following integral over the entire outer surface 
of the box.

( ) ( )

( ) ( ) ( ) ( ) ( )
Box A t t A t s

B t dA B t dA B t dA B t ds V t
+∆

⋅ = ⋅ − ⋅ + ⋅ × ∆∫ ∫ ∫ ∫   (A.1.

   The three terms at the right hand side of equation (A.1.4) 
correspond to the integrals over the top of the box, the bottom of the 
box and the side envelope, respectively. Note that the term ds V t× ∆  [in 
the line integral of equation (A.1.4)] is an elemental area vector dA  of 
the side envelope of the box. According to Gauss’s theorem:

( )

( ) ( ) ( ) ( )
Box Vol A t

B t dA B d Vol B tV dA⋅ = ∇ ⋅ = ∇ ⋅ ∆ ⋅∫ ∫ ∫            (A.1.5)

Vol is the volume of the box and ( )d Vol tV dA= ∆ ⋅  is an elemental 
volume of that “box”. It follows from equations (A.1.4) and (A.1.5):

( ) ( ) ( )

( ) ( ) [ ( )] ( ) ( )
A t t A t A t s

B t dA B t dA B t tV dA B t ds V t
+∆

⋅ − ⋅ = ∇ ⋅ ∆ ⋅ − ⋅ × ∆∫ ∫ ∫ ∫  (A.1.6)

Substitution of equation (A.1.6) into (A.1.3) and realizing that 
( ) ( )B ds V V B ds⋅ × = × ⋅ , yields:

( ) ( )
A A A s

d BB dA dA B V dA V B ds
dt t

∂
⋅ = ⋅ + ∇ ⋅ ⋅ − × ⋅

∂∫ ∫ ∫ ∫                (A.1.7)

From equations (A.1.7) and (A.1.2) we obtain:

( ) ( ) ( )
A A s A

B dA B V dA V B ds E dA
t

∂
⋅ + ∇ ⋅ ⋅ − × ⋅ = − ∇× ⋅

∂∫ ∫ ∫ ∫

      (A.1.8)

But according to Stoke’s theorem:

( ) [ ( )]
s A

V B ds V B dA× ⋅ = ∇× × ⋅∫ ∫

Substitution of the previous equation into equation (A.1.8) yields:

[ ( ) ( ) ( )] 0
A

B B V V B E dA
t

∂
+ ∇ ⋅ −∇× × + ∇× ⋅ =

∂∫                     (A.1.9)

Since equation (A.1.9) is valid for any elemental area A:

( ) ( ) ( )B B V V B E
t

∂
+ ∇ ⋅ −∇× × = − ∇×

∂
                         (A.1.10)  

identity

( ) ( ) ( )V B B B V V V B∇× × ≡ ∇ ⋅ + ⋅∇ − ∇ ⋅ + ⋅∇

equation (A.1.10) may be rewritten as follows:

( ) ( ) [( ) ( ) ]B V B E B V V B
t

∂
+ ⋅∇ = − ∇× + ⋅∇ − ∇ ⋅

∂
        (A.1.11)

Since 0B∇ ⋅ = , according to Gauss’s magnetic flux law [equation 
(1.3)], an alternative form of the differential equation corresponding to 
Faraday’s law is obtained from equation (A.1.10).

( ) ( )B V B E
t

∂
−∇× × = − ∇×

∂
          (A.1.12)

Equations (A.1.11) and (A.1.12) are two equivalent most general 
forms of the corrected Maxwell equation corresponding to Faraday’s 
law. If the velocity vector V  does not vary space-wise, in particular 
when V  is constant, the last two terms in equation (A.1.11) vanish 
and the corrected Maxwell equation corresponding to Faraday’s law 
assumes the following form:

( ) ( )B V B E
t

∂
+ ⋅∇ = − ∇×

∂
          (A.1.13)Figure 2: Visualization of the surface.

4)

Using the vector 
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Ampere's law

Ampere's law in integral form is presented in equation (A.2.1).

A A s

d D dA J dA H ds
dt

⋅ + ⋅ = ⋅∫ ∫ ∫  			           (A.2.1)

It follows from Stokes’ theorem:

( )
A A A

d D dA J dA H dA
dt

⋅ + ⋅ = ∇× ⋅∫ ∫ ∫  		           (A.2.2)

From equation (A.1.7) we obtain, by replacing B by D :

( ) ( )
A A A s

d DD dA dA D V dA V D ds
dt t

∂
⋅ = ⋅ + ∇ ⋅ ⋅ − × ⋅

∂∫ ∫ ∫ ∫               (A.2.3)

From equations (A.2.2) and (A.2.3) it follows:

( ) ( ) ( )
A A s A A

D dA D V dA V D ds J dA H dA
t

∂
⋅ + ∇ ⋅ ⋅ − × ⋅ + ⋅ = ∇× ⋅

∂∫ ∫ ∫ ∫ ∫

    (A.2.4)

But according to Stoke’s theorem:

( ) [ ( )]
s A

V D ds V D dA× ⋅ = ∇× × ⋅∫ ∫

Substitution of the previous equation into equation (A.2.4) yields:

[ ( ) ( ) ( )] 0
A

D D V V D J H dA
t

∂
+ ∇ ⋅ −∇× × + − ∇× ⋅ =

∂∫             (A.2.5)

Since equation (A.2.5) is valid for any elemental area A:

( ) ( ) ( )D D V V D J H
t

∂
+ ∇ ⋅ −∇× × + = ∇×

∂
                                (A.2.6)

Using the vector identity

( ) ( ) ( )V D D D V V V D∇× × ≡ ∇ ⋅ + ⋅∇ − ∇ ⋅ + ⋅∇

equation (A.2.6) may be rewritten as follows:

( ) ( ) [( ) ( ) ]D V D J H D V V D
t

∂
+ ⋅∇ + = ∇× + ⋅∇ − ∇ ⋅

∂
              (A.2.7)

Since D ρ∇ ⋅ = , according to Gauss’s electric flux law [equation 
(1.4)], an alternative form of the differential equation corresponding to 
Faraday’s law is obtained from equation (A.2.6).

 ( ) ( )D V D V J H
t

ρ∂
−∇× × + + = ∇×

∂
                                         (A.2.8)

Equation (A.2.7) and (A.2.8) are two equivalent most general forms 
of the corrected Maxwell equation corresponding to Ampere’s law. If 
the velocity vector V  does not vary space-wise, in particular when 
V  is constant, the last two terms in equation (A.2.7) vanish and the 
corrected Maxwell equation corresponding to Ampere’s law assumes 
the following form:

( ) ( )D V D J H
t

∂
+ ⋅∇ + = ∇×

∂
              		           (A.2.9)

Charge Conservation Law

The charge conservation law states that for any control volume, 
whether stationary or moving, the rate of change of total charge plus the 
charge leaving by conduction currents (through the surface enclosing 
the control volume) equals zero. It is assumed that no charge is created, 
i.e.: no nuclear reactions.

An arbitrary volume vol is selected which is enclosed in a surface A.

( ) 0
Vol A

d d Vol J dA
dt

ρ + ⋅ =∫ ∫  		                              (A.3.1)

We first compute the left term in equation (A.3.1) applying a method 
similar to the one employed in section A.1 dealing with Faraday's law.

0
( ) ( )

0
( ) ( )

( ) ( )

1( ) lim [ ( ) ( ) ( ) ( )]

1lim [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ]

t
Vol Vol t t Vol t

t
Vol t t Vol t t

Vol t t Vol t

d d Vol t t d Vol t d Vol
dt t

t t d Vol t d Vol
t

t d Vol t d Vol

ρ ρ ρ

ρ ρ

ρ ρ

∆ →
+∆

∆ →
+∆ +∆

+∆

= +∆ − =
∆

+∆ − +
∆

−

∫ ∫ ∫

∫ ∫

∫ ∫

 (A.3.2)

It follows from equation (A.3.2):

0
( ) ( )

1( ) lim [ ( ) ( ) ( ) ( ) ]

( )

t
Vol Vol t t Vol t

Vol

d d Vol t d Vol t d Vol
dt t

d Vol
t

ρ ρ ρ

ρ

∆ →
+∆

= − +
∆

∂
∂

∫ ∫ ∫

∫
 (A.3.3)

The limit at the right hand side of equation (A.3.3) is the rate of 
charge flowing out of the control volume through the surface A. Note 
that it is not a conduction current, but rather a “convection” current.

( ) ( )
Vol A Vol

d d Vol V dA d Vol
dt t

ρρ ρ ∂
= ⋅ +

∂∫ ∫ ∫

 		           (A.3.4)

Substitution of equation (A.3.4) into equation (A.3.1) yield:

( ) 0
Vol A A

d Vol V dA J dA
t
ρ ρ∂

+ ⋅ + ⋅ =
∂∫ ∫ ∫ 

 		            (A.3.5)

Applying Gauss's theorem to equation (A.3.5) we obtain:

[ ( ) ] ( ) 0
Vol

V J d Vol
t
ρ ρ∂
+∇ ⋅ + ∇ ⋅ =

∂∫  		            (A.3.6)

Since equation (A.3.6) is valid for any volume vol - the integrand 
must vanish. Therefore:

( ) 0V J
t
ρ ρ∂
+∇ ⋅ + ∇ ⋅ =

∂
 			             (A.3.7)

Equation (A.3.7) is the corrected Maxwell equation corresponding 
to the charge conservation law.

Using the identity ( ) ( ) ( )V V Vρ ρ ρ∇ ⋅ ≡ ⋅∇ + ∇ ⋅  equation (A.3.7) 
may be rewritten as follows:

( ) ( ) 0V V J
t
ρ ρ ρ∂
+ ⋅∇ + ∇ ⋅ + ∇ ⋅ =

∂
 		           (A.3.8)

Summary. The Lorentz Field and a Similar Magnetic Field

To summarize, we write down again the corrected Maxwell’s 
equations corresponding to Faraday’s, Ampere’s and charge conservation 
laws.

From equations (A.1.11), (A.1.12), (A.2.7) and (A.3.8):

( ) ( ) [( ) ( ) ]B V B E B V V B
t

∂
+ ⋅∇ = − ∇× + ⋅∇ − ∇ ⋅

∂
 Faraday’s law   (A.4.1)

( ) ( )B V B E
t

∂
−∇× × = − ∇×

∂
 Equivalent Faraday’s law           (A.4.2)

( ) ( ) [( ) ( ) ]D V D J H D V V D
t

∂
+ ⋅∇ + = ∇× + ⋅∇ − ∇ ⋅

∂
 Ampere's law  (A.4.3)

( ) ( )D V D V J H
t

ρ∂
−∇× × + + = ∇×

∂
 Equivalent Ampere’s law     (A.4.4)

( ) ( ) 0V V J
t
ρ ρ ρ∂
+ ⋅∇ + ∇ ⋅ + ∇ ⋅ =

∂
 Charge conservation law     (A.4.5)

The total time derivative of any vector field W  may be expanded as 
follows:
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[ , ( )] ( )dW t r t W W d r W W WV V W
dt t r dt t r t

∂ ∂ ∂ ∂ ∂
= + ⋅ = + ⋅ = + ⋅∇

∂ ∂ ∂ ∂ ∂
   (A.4.6)

Equation (A.4.6) is valid for scalar fields as well.

Applying equation (A.4.6) allows rewriting equations (A.4.1), 
(A.4.3) and (A.4.4):

( ) [( ) ( ) ]d B E B V V B
dt

= − ∇× + ⋅∇ − ∇ ⋅  Faraday’s law                   (A.4.7)

( ) [( ) ( ) ]d D J H D V V D
dt

+ = ∇× + ⋅∇ − ∇ ⋅  Ampere's law            (A.4.8)

( ) 0d V J
dt
ρ ρ+ ∇ ⋅ + ∇ ⋅ =  Charge conservation law                 (A.4.9)

When the velocity vector V  does not vary space-wise, in particular 
when V  is constant, equations (A.4.7) to (A.4.9) become:

( ) ( )d B B V B E
dt t

∂
= + ⋅∇ = − ∇×
∂

 Faraday’s law                          (A.4.10)

( ) ( )d D DJ V D J H
dt t

∂
+ = + ⋅∇ + = ∇×

∂
 Ampere's law             (A.4.11)

( ) 0d J V J
dt t
ρ ρ ρ∂
+∇ ⋅ = + ⋅∇ +∇ ⋅ =

∂
 Charge conservation law (A.4.12)

In the very special case where 0V = , which means that there is 
no motion relative to the RCS (in other words, the system is static and 
the volume vol and surface A are at rest), equations (A.4.10) to (A.4.12) 
become:

( )B E
t

∂
= − ∇×

∂
 Faraday’s law                                                       (A.4.13)

( )D J H
t

∂
+ = ∇×

∂
 Ampere's law 		                         (A.4.14)

0J
t
ρ∂
+∇ ⋅ =

∂
 Charge conservation law 		        (A.4.15)

The last three equations are the common formulations of Ampere’s, 
Faraday’s and charge conservation laws in Maxwell’s equations. This 
is a very important point that should be emphasized: The common 
Maxwell’s equations are valid only for systems at rest (i.e.: static systems, 

0V = ). The application of these equations to dynamic systems, where
0V ≠ , (often termed “the universal validity of Maxwell’s equations”) is 

the basis for the erroneous theory of relativity.

From the equivalent Faraday’s law, equation (A.4.2), in steady-state 
conditions (where the partial time derivatives vanish) we obtain:

( )V B E∇× × = ∇×  			                         (A.4.16)

Since ( ) 0ϕ∇× ∇ =  for any scalar field φ, we have from equation 
(A.4.16):

E V B ϕ= × −∇  				        (A.4.17)

The term V B×  in equation (A.4.17) is the “Lorentz field”, which 
yields the Lorentz force when multiplied by an electric charge. This 
field is relevant to many electromagnetic problems, one of which 
being the motion of charged particles in magnetic fields. The separate 
introduction of this field was necessary due to the fact that some 
electromagnetic phenomena could not be explained based solely 
on Maxwell’s equations. It follows from equation (A.4.17) that the 
Lorentz field LE V B= ×  is an immediate consequence of the corrected 

Maxwell equations, as a result of restoring the terms that are missing in 
the common representation of Maxwell’s equations.

Similarly, when applying the equivalent Ampere’s law, equation 
(A.4.4), in vacuum (ρ=0 and 0J = ) we obtain in steady-state 
conditions:

( )H V D ϕ= − × −∇  			                           (A.4.18)

Where φ is again any scalar field. The contribution of the term 
( )V D− ×  to the magnetic excitation vector H  in equation (A.4.18) 

is similar to the contribution of the Lorentz field LE V B= ×  to the 
electric field E  in equation (A.4.17).

Speed of Propagation of Electric and Magnetic Fields

In this section we will prove that the physical laws on which 
Maxwell's equations are based imply that electric and magnetic 
fields propagate at an infinite speed. In other words, if the speed of 
propagation of electric and magnetic fields is finite – the following laws 
are inconsistent, i.e., they are self-contradictory.

The following four equations are Ampere’s law, Faraday’s law, 
Gauss’s electricity flux law and Gauss’s magnetic flux law, respectively, 
in integral form.

A A s

d D dA J dA H ds
dt

⋅ + ⋅ = ⋅∫ ∫ ∫  Ampere’s law 		          (A.5.1)

A s

d B dA E ds
dt

⋅ = − ⋅∫ ∫  Faraday’s law 		           (A.5.2)

4
A

D dA Qπ⋅ =∫  Gauss’s electricity flux law                              (A.5.3)

0
A

B dA⋅ =∫  Gauss’s magnetic flux law (A.5.4) Equations (A.5.1) 

and (A.5.2) are identical to equations (A.2.1) and (A.1.1), respectively. 
The definitions of the surface A and the closed boundary S are presented 
in the two paragraphs preceding equation (A.1.1). Q is the total electric 
charge within the closed surface A in equation (A.5.3).

The laws in equations (A.5.1) to (A.5.4) are universal and valid at 
all times, not just at steady state conditions. In the following paragraphs 
it is shown that these laws clearly imply an infinite propagation speed 
of electric and magnetic fields, contrary to a corollary of the theory of 
relativity that nothing can propagate at a speed greater than the speed 
of light.

Ampere's law in equation (A.5.1) states that if a current i starts 
flowing in a straight wire perpendicular to a plane – a magnetic 
excitation vector H  instantaneously appears on any circle located axi-
symmetrically around the wire. This vector is tangent to the circle and 
its magnitude is / (2 )H i rπ= , r being the radius of the circle. As this 
is true for any finite radius r, the speed of propagation of the magnetic 
excitation vector H  must be infinite. Since the magnetic induction 
field vector B Hµ=  - its speed of propagation is infinite as well.

A similar argument can be used for Faraday's law in equation 

(A.5.2). If a magnetic flux 
A

B dAϕ = ⋅∫  is time varying in a coil – an 

electric field vector E  appears instantaneously on any circle located 
axi-symmetrically around the coil. This vector is tangent to the circle 
and its magnitude is ( / ) / (2 )E d dt rϕ π= , where r is the radius of the 
circle. As this is true for any finite radius r - the speed of propagation 
of the electric field vector E  must be infinite. Likewise for the electric 
excitation vector D Eε= .
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The following paragraphs expand on the proofs presented in the 
former two paragraphs.

Ampere's law is presented in equation (A.5.1). Figure 3 consists 
of two concentric circles connected by two adjacent lines. A long 
straight conductor is located at the center of the two circles and is 
perpendicular to the page. At t=0 (t stands for time) a current i starts 
flowing in the wire at which time the integral on the left hand side of 
equation (A.5.1) changes from 0 to i. If the speed of propagation of the 
magnetic excitation vector H  is finite – the line integral on the right 
side of equation (A.5.1) will change from 0 to i at t=t 1on the inner circle 
and at t=t2 on the outer circle, where t2> t1. At any time t1 < t < t2 the 

line integral 
s

H ds⋅∫  over the two circles, including the two adjacent 

straight lines, will equal i while the total current flowing through the 
area between the two circles is 0. This is a clear violation of Ampere's 
law. The above mentioned violation is a corollary of the assumption 
that the speed of propagation is finite. Consequently, this assumption is 
proven wrong and the speed of propagation of the Magnetic excitation 
vector H  must be infinite.

Faraday's law states that the integrals on both sides of equation 
(A.5.2) are equal for all surfaces A with a common boundary S. Figure 4 
is a cross section of a spherical surface and a circular plane (represented 
in the figure by the vertical line DU). The center of the spherical surface 
is o. The intersection between the spherical surface and the circular 
plane is a circle. This circle is the common boundary of the spherical 
surface and the circular plane. The horizontal line represents a coil that 

touches the circular plane at its center P. At t=0 a DC voltage is applied 
to the coil which causes the left hand side of equation (A.5.2) for the 
circular plane to change immediately from 0 to some nonzero value 
(since the coil touches the circular plane).

If the speed of propagation of the magnetic induction field vector 
B  is finite – it will take a time span t3>0 for all the lines of the vector 

field B  to cross the spherical surface. For any time 0< t < t3 the left 
hand side term of equation (A.5.2) for the spherical surface will not 
equal that of the circular surface, which means that the value of the 
line integral on the right side of that equation is not unique. This is a 
violation of Faraday's law. The above mentioned violation is a corollary 
of the assumption that the speed of propagation is finite. Consequently, 
this assumption is proven wrong and the speed of propagation of the 
magnetic induction field vector B  must be infinite.

Concerning Gauss’s electricity flux law in equation (A.5.3) - Figure 
5 presents a cross section of a sphere. This sphere is located in the upper 
atmosphere with a nitrogen atom at its center o. At t=0 a cosmic ray 
hits the nucleus of the nitrogen atom and converts one of its protons 
to a neutron thus creating a carbon-14 atom. The number of electrons 
of this atom exceeds the number of protons by one, thus creating a 
charged particle at the center of the sphere.

If the speed of propagation of the electric excitation vector D  is 
finite – the time it takes it to intersect the sphere in Figure 5 is t4>0 For 
any time 0< t < t4 the integral at the left hand side of equation (A.5.2) 
equals 0 while the right hand side value of the same equation is 4πe, 
where e is the charge of an electron. This is a clear violation of Gauss’s 
electricity flux law. The above mentioned violation is a corollary of 
the assumption that the speed of propagation is finite. Consequently, 
this assumption is proven wrong and the speed of propagation of the 
electric excitation vector D  must be infinite.

Concerning Gauss’s magnetic flux law in equation (A.5.4) - Figure 6 
presents a sphere being "illuminated" by a uniform magnetic induction 
vector field B  from right to left. The "illuminating" electromagnet is 
turned on at t=0.

If the propagation speed of the magnetic induction vector field B  is 
finite – then at a certain time t=t5 the front of this vector field will arrive 
at the center of the sphere. At that instant the integral at the left hand 
side of equation (A.5.4) will obviously not equal 0, a clear violation of 

Figure 3: Two concentric circles connected by two adjacent lines.

Figure 4: Cross section of a spherical surface and a circular plane. Figure 5: Cross section of a sphere.
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Gauss’s magnetic flux law. The above mentioned violation is a corollary 
of the assumption that the speed of propagation is finite. Consequently, 
this assumption is proven wrong and the propagation speed of the 
magnetic induction vector field B  must be infinite.

The last argument (concerning Gauss’s magnetic flux law and Figure 
6) and the second before last (Faraday's law and Figure 4) were seemingly 
disproved by professor Moshe Einat, in the name of professor Vladimir 
Bratman, both of the Ariel University, Ariel Israel. They pointed out 
that magnetic fields always consist of closed lines, and that during 
their propagation these lines inflate like a balloon. Therefore, the field 
lines never possess open ends - thus yielding the two above mentioned 
arguments invalid. However, this contention can also be rejected as 
follows: We place a round axisymmetric magnet rod in vacuum where 
there is neither conduction nor displacement currents. We then turn 
the magnet rod around its center point by 180 degrees thus swapping 
the location of its poles. The final magnetic field lines coincide with the 
initial lines while their direction is reversed. If the propagation speed of 
the magnetic field is finite – there exist three regions: The final region, 
the intermediate region (which corresponds to the time interval during 
which the magnet is rotated) and the initial region. The first two regions 
spread at the speed of light into the initial region.

We first prove that the vector E  vanishes in the intermediate 
region. The differential equation that determines the electric field in 
that region is equation (1.20), namely: 2 2 2 2/E t c E∂ ∂ = ⋅∇ . Since 
the vector E  vanishes in the initial and final regions - 0E =  is a 
solution to the above differential equation. Since the solution to the EM 
equations is unique (as is proven in section A.7) – the electric vector 
field E  vanishes in the intermediate region, along with D Eε= .

We freeze the picture of the magnetic field at a certain time and select 
a closed line consisting of four segments: Two of them are located at the 
final and initial regions along magnetic field lines and being connected 
by the other two segments which are always normal to field lines. Since 
the magnetic fields on the first two above mentioned segments point 
in opposite directions - the line integrals over them have the same sign 
and add up in absolute value. The line integrals over the other two 
segments vanish since they are orthogonal to the field lines. Therefore, 
the integral of the magnetic field along the above defined closed contour 
does not equal zero in spite the fact that 0J =  (vacuum) and 0D =  (as 
was proven in the previous paragraph), clearly violating Ampere’s law 
in equation (A.5.1). The above mentioned violation is a corollary of the 
assumption that the speed of propagation is finite. Consequently, this 
assumption is proven wrong and the propagation speed of the magnetic 
field must be infinite.

Maxwell’s equations, as well as the corrected Maxwell equations, are 
based on the integral laws in equations (A.5.1) to (A.5.4). Arriving at 
a conclusion that any speed cannot exceed the speed of light, on the 
basis of the above four integral laws which imply an infinite speed of 
propagation of electric and magnetic fields, does not make sense. If 
it is ever proven that the speed of light cannot be exceeded, then the 
above mentioned four laws will have to be modified. As a matter of fact 
– through a simple laboratory experiment it can be checked whether 
Faraday’s law in equation (A.5.2) is correct, including the aspect of the 
infinite speed of propagation. However, it should be carefully planned 
since it involves ultra-high frequency electric signals.

The Correct Version of Ampere's Law
Several forms or Ampere's law can be found in the literature. 

One of them is equation (A.5.1) which is presented here as equation 
(A.6.1).

A A s

d D dA J dA H ds
dt

⋅ + ⋅ = ⋅∫ ∫ ∫   			         (A.6.1)

Two more versions Ampere's law are the following:

( )
A s

d D J dA H ds
dt

+ ⋅ = ⋅∫ ∫  		                         (A.6.2)

( )
A s

D J dA H ds
t

∂
+ ⋅ = ⋅

∂∫ ∫  		                             (A.6.3)

The last two equations are based on the premise that d D
dt

 is the 

"displacement current" which is added to the conduction current J  to 
obtain the total current.

Ampere's law as expressed in equation (A.6.3) is obviously wrong 
since it is limited to static cases only. Therefore, we have to determine 
whether equation (A.6.1) is the correct form of Ampere's law or 
equation (A.6.2).

Figure 7 is a cross section of a spherical surface A intersected by a 
circular plane (represented in the figure by the vertical line DU). The 
center of the spherical surface is o at which point a charge Q is located. 
The intersection between the spherical surface and the circular plane is 
a circle S which is the boundary of the spherical surface A. The point P 
is the center of the circular plane.

We now move the point P away from o until the circular boundary 
S converges to a point. The integral on the right hand side of equations 
(A.6.1) to (A.6.3) converges to zero since the range of integration 
vanishes Figure 7. Thus, in this particular case equation (A.6.1) 
becomes:

0
A A

d D dA J dA
dt

⋅ + ⋅ =∫ ∫ 

 				            (A.6.4)

Similarly, equation (A.6.2) turns into:

( ) 0
A

d D J dA
dt

+ ⋅ =∫  				             (A.6.5)

We make two further assumptions. The first is that the whole setup is 
located in vacuum, where the conductivity is zero, thus the conduction 
current J  vanishes. Therefore we are left with a closed sphere and a 
charge Q>0 at its center. The second assumption is that the radius r of 
the sphere is shrinking at rate of dr v

dt
= − .

In this case Ampere's law in equation (A.6.4) should satisfy:

0
A

d D dA
dt

⋅ =∫  			                               (A.6.6)

And according equation (A.6.5) Ampere's law should be:

0
A

d D dA
dt

⋅ =∫  				                            (A.6.7)

Due to symmetry – the electric excitation vector D  is normal to 
the spherical surface at all points and its magnitude D equals:

24
QD D

rπ
= =  				    (A.6.8)

It follows from equation (A.6.8):

3 3( )( )
2 2

dD D dr Q Qvv
dt r dt r rπ π

∂
= = − − =
∂  		        (A.6.9)

We compute the integral 
A

d D dA
dt

⋅∫  in equation (A.6.7). Again, due 
to symmetry:

2 2
3

24 4 0
2A

d D dD Qv QvdA r r
dt dt r r

π π
π

⋅ = = = ≠∫  	     (A.6.10)
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Equation (A.6.10) clearly contradicts the requirement of equation 
(A.6.7), which means that equation (A.6.2) is not a correct version of 
Ampere's law.

We compute the integral 
A

d D dA
dt

⋅∫  in equation (A.6.6). In view of 

equation (A.6.8) and making use of symmetry again:

2( 4 ) ( ) 0
A

d d dD dA D r Q
dt dt dt

π⋅ = ⋅ = =∫  		      (A.6.11)

The requirement of equation (A.6.6) is fulfilled; hence equation 
(A.6.1) is the correct form of Ampere's law.

Existence and Uniqueness of Solutions to the EM Equations

A necessary condition for the corrected Maxwell equations to be 
a well-defined mathematical problem (in other words: a requirement 
that these equations have a unique solution) is the equality between 
the number of independent equations and the number of variables. If 
the number of variables exceeds the number of independent equations 
– the solution is not unique. If the number of independent equations 
exceeds the number of variables – there is no solution.

From equations (1.1) to (1.8) we can determine the number of 
variables and equations.

The variables are the following: B , D , E , H , J  and ρ. We 
have five vector variables and one scalar variable. Each vector variable 
consists of three components; therefore the total number of scalar 
variables is 16.

Equations (1.1) to (1.8) consist of five vector equations and 

three scalar equations. Each vector equation consists of three scalar 
equations; hence the total number of scalar equations is 18. Since the 
number of independent scalar equations should equal the number of 
scalar variables – two of the 18 equations should be dependent on the 
other equations.

We first prove that Gauss’s magnetic flux law [its integral form is 

equation (A.5.4), 0
A

B dA⋅ =∫ ] depends on Faraday's law [equation 

(A.1.1) 
A s

d B dA E ds
dt

⋅ = − ⋅∫ ∫ ].

We select any volume vol surrounded by a closed surface A. Since 
the surface A is closed – all of its boundaries S converge to a point 
causing the right hand side line integral in equation (A.1.1) above to 
vanish. Therefore:

0
A

d B dA
dt

⋅ =∫  				                             (A.7.1)

It follows from equation (A.7.1) that if we divide the space into 
arbitrary volumes vol with outer envelope surfaces A and these volumes 
move along according to the velocity vector field V  - the integral 

A

B dA⋅∫  over the outer envelope surfaces A of each of these volumes 
remains unchanged. Gauss’s magnetic flux law in equation (A.5.4), 

0
A

B dA⋅ =∫ , serves as an initial condition to equation (A.7.1) stating 

that the initial value of these surface integrals cannot be selected 
arbitrarily. Their initial value must be 0, and since their value remains 
unchanged they must equal 0 at all times. We thus obtain that at all 
times:

0
A

B dA⋅ =∫  					             (A.7.2)

Therefore, Gauss’s magnetic flux law in equation (A.7.2) is not an 
independent equation. It is compatible with Faraday's law for closed 
surfaces [equation (A.7.1)] and serves as an initial condition to any 

closed surface integral 
A

B dA⋅∫ . Since the time derivative of this 

integral vanishes [equation (A.7.1)] – its value equals 0 at all times. This 
dependence is valid in integral form [equation (A.5.4) on (A.1.1)] as 
well as in differential form [equation (1.3) on (1.1)]. 

We now prove that the charge conservation law in equation (1.5) is 
dependent on Ampere's law in equation (1.2) and Gauss's electricity flux 
law in equation (1.4). We do it by proving that equation (A.3.1), which is 

the integral form of the charge conservation law ( ) 0
Vol A

d d Vol J dA
dt

ρ + ⋅ =∫ ∫
, is dependent on equation (A.6.1), 

A A s

d D dA J dA H ds
dt

⋅ + ⋅ = ⋅∫ ∫ ∫  which is 

the integral form of Ampere's law, and Gauss's electricity flux law in 
differential form D ρ∇ ⋅ = , equation (1.4).

We refer again to Figure 7, in the particular case where the point 
P is far enough from the center o of the spherical surface so that the 
circular area converges to a point [see the two paragraphs preceding 
equation (A.6.4)]. In this particular case the integral form of Ampere's 
law is presented in equation (A.7.3):

0
A A

d D dA J dA
dt

⋅ + ⋅ =∫ ∫ 

 			        (A.7.3)

But according to Gauss's theorem:

( ) ( )
A Vol

D dA D d Vol⋅ = ∇ ⋅∫ ∫  			         (A.7.4)

Substituting equation (A.7.4) into equation (A.7.3):

Figure 6: Sphere being "illuminated" by a uniform magnetic induction vector 
field from right to left.

Figure 7: Cross section of a spherical surface A intersected by a circular 
plane.
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( ) ( ) 0
Vol A

d D d Vol J dA
dt

∇ ⋅ + ⋅ =∫ ∫  			          (A.7.5)

According to Gauss's electricity flux law in differential form, 
equation (1.4):

D ρ∇ ⋅ =  					             (A.7.6)

Substitution of equation (A.7.6) into equation (A.7.5) yields:

( ) 0
Vol A

d d Vol J dA
dt

ρ + ⋅ =∫ ∫  			          (A.7.7)

Equation (A.7.7) is identical to the charge conservation law in 
equation (A.3.1), and is thus dependent on Ampere's law and Gauss's 
electricity flux law. This dependence is valid in differential form as well, 
namely: equation (1.5) is dependent on Ampere's law in equation (1.2) 
and Gauss's electricity flux law in equation (1.4).

We started out with 16 scalar variables and 18 scalar equations. 
Since two scalar equations are dependent on other equations – the 
number of independent equations equals 16. Therefore, the number 
of independent equations equals the number of variables and the 
necessary condition for the corrected Maxwell equations to be a well-
defined mathematical problem is met. Consequently, for any particular 
problem a unique solution might exist which depends on the boundary 
and initial conditions.

It is important to note that had we applied equation (A.6.2) for 
Ampere's law – then, in the most general case where the velocity vector 
field varies space-wise, the charge conservation law (A.7.7) would not 
be dependent on the other equations. Consequently we would be stuck 
with 16 variables and 17 independent equations, where there would be 
no solution. This is another proof that equation (A.6.1), rather than 
equation (A.6.2), is the correct form of Ampere's law.

The Faraday paradox

The Faraday paradox is resolved by reference to the corrected 
Maxwell equations.

The significance of this section goes far beyond the resolution of 
the Faraday paradox. It is the basis for the resolution of many (most 
probably all) other paradoxes associated with Maxwell’s equations. 
These paradoxes stem from the incompleteness of the common 
Maxwell’s equations, i.e.: terms that they are missing. When the missing 
terms are restored to the corrected Maxwell equations – these paradoxes 
do not arise at the outset.

The Faraday paradox is presented at the following Internet link 
where the setup is shown in Figure 1.

Since the magnet is cylindrical, i.e.: axisymmetric, rotating the 
magnet does not change the magnetic field at any point in space, hence 
it does not have any effect on the measured voltage, which is compatible 
with the experiment results. The measured voltage can be influenced 
only by the rotation of the disc.

In the above link the Faraday paradox is resolved by applying the 
“Lorentz Force”. So why is it still called a paradox? The problem is 
that the Faraday paradox cannot be resolved based only on Maxwell’s 
equations (which should be the universal EM laws) but must rely on 
the Lorentz force which was introduced separately from Maxwell’s 
equations.

However, as is shown in section A.4, the fact that the Lorentz force 
is not predicted by Maxwell’s equations is due to the incompleteness 
of these equations. When applying the corrected Maxwell equations, 

where the missing terms are restored, the Lorentz force is a direct 
consequence of the corrected equations as shown by equation 
(A.4.17) , and the Faraday paradox does not arise to begin with.

Conclusion
The soundness of this article can be checked through the answer to 

the following question: "Are Maxwell's equations incomplete?", namely: 
are some terms missing from these equations? If the answer is "no" – 
this article is pointless. However, if the answer is "yes" – the theory of 
relativity collapses, as shown in the following logical flow-chart, since 
the article demonstrates beyond any doubt that Maxwell's equations are 
incomplete.

The theory of relativity was not readily accepted because it 
has contradicted common sense. But after more than a century of 
exposure to it the scientific community is absolutely certain about its 
unquestionable validity. However, we must go back to the good old 
Galilean transformation and Newtonian mechanics since this article 
clearly demonstrates that the theory of special relativity is based on 
incorrect notions, namely: forcing physical phenomena to comply 
with a wrong form of Maxwell’s electromagnetic differential equations. 
Formulating the corrected Maxwell equations and solving them for 
planar EM waves in vacuum confirms (assuming that the integral 
laws which are the basis for Maxwell's equations are correct) that the 
Galilean transformation and Newtonian mechanics are valid, not only 
as low speed approximations but as exact laws. The corrected Maxwell 
equations might pave the way to the formulation of the long sought 
unified theory of mechanics and electromagnetism.

The theory of relativity is inconsistent (see flow-chart) which 
has led to many paradoxes and a large number of futile and costly 
experiments to “prove” its validity. [Nobody has found it necessary to 
prove Newton’s laws or the laws of thermodynamics]. But the greatest 
damage of the theory of relativity may be related to the lack of progress 
in important engineering projects. The unavailability of commercial 
fusion energy, after many decades of intense efforts, is most probably 
due to the application of Maxwell’s equations which are an inadequate 
form of the EM laws.
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