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Introduction
According to the classical uncertainty principle a function f(t) 

is essentially zero outside an interval of length Δt and its Fourier 
transform ( )

∧

f w  is essentially zero outside an interval of length Δw, 
then Δt Δw ≥ 1; a function and its Fourier transform cannot both be 
highly concentrated [1,2]. The uncertainty principle is widely known 
for its”philosophical” applications: in quantum mechanics, it shows 
that a particle’s position and momentum cannot be determined 
simultaneously [3]; in signal processing, it establishes limits on the 
extent to which the “instantaneous frequency” of a signal can be 
measured [4]. However, it has also technical applications, such as in the 
theory of partial differential equations [5,6]. In this paper, we consider 

d
  with the Euclidean inner product .,.  and norm y : y, y .=  
For { }0d \ ,α ∈ let ασ  be the reflection in the hyperplane dHα ⊂ 
orthogonal to α:

2

2 , y
y : yα

α
σ α

α
= −

A finite set { }0d \ℜ⊂   is called a root system, if { }. ,α α αℜ∩ = −

and ασ ℜ =ℜ , for all α ∈ℜ . We assume that it is normalized by 2 2α = , 
for allα ∈ℜ . For a root systemℜ , the reflections ,ασ α ∈ℜ , generate a finite 
group ( )G O d⊂ , the reflection group associated withℜ . All reflections in 
G correspond to suitable pairs of roots. For a given d \ Hα αβ ∈ℜ∈  , we 
fix the positive subsystem { }0: : ,α α β+ℜ = ∈ℜ > . Then for each α ∈ℜ
either orα α+ +∈ℜ − ∈ℜ . Let k: ℜ→ C be a multiplicity function on ℜ  
(a function which is constant on the orbits under the action of G). As 
an abbreviation, we introduce the index

( )k : k
α

γ γ α
+∈ℜ

= = ∑  

Throughout this paper, we will assume that the multiplicity is nonnegative, 
that is, ( ) 0k α ≥ , for all α ∈ℜ . Moreover, let kw  denote the weight 
function

( ) ( )2k d
kw y : , y , y

α

α

α
+∈ℜ

= ∈∏ 

which is G-invariant and homogeneous of degree 2γ. Let ck be the 
Mehta-type constant given by

( )( )2 1
2

−
−= ∫



d

y /
k kc : e w y dy

We denote by kµ the measure on d


 given by ( ) ( )k k kd y : c w y dy;µ =

and by 1p
kL , p ,≤ ≤ ∞ the space of measurable functions f on d


, such 

that

( ) ( )( )
( )

1
1p d

k

k d

/ pp
kL

L
y

f : f y d y , p

f : ess sup f y

µ

∞

∈

= < ∞ ≤ < ∞

= < ∞

∫




For f ∈ 
1
kL the Dunkl transform is defined [6] by

( )( ) ( ) ( ) ( )d

d
k k kF f x : E ix, y f y d y ,x ,µ= − ∈∫





where Ek(−ix, y) denotes the Dunkl kernel. (For more details see the 
next section). Many uncertainty principles have already been proved 
for the Dunkl transform, namely by RÖsler [7] and Shimeno [8] who 
established (by two different methods) the Heisenberg-Pauli-Weyl 
inequality. Kawazoe and Mejjaoli gave some related versions of the 
uncertainty principle (Cowling-Price’s theorem, Miyachi’s theorem, 
Beurling’s theorem and Donoho-Stark’s theorem). Recently, the author 
[9,10] proved a general forms of the Heisenberg-Pauli-Weyl inequality 
and he also established a logarithmic uncertainty principle [11].

Let T and W be a measurable subsets of d


. We say that a function 
f ∈ p

kL ,1 ≤ p ≤ 2, is ε -concentrated to T in p
kL , is concentrated to T 

in
p
kL -norm, if there is a measurable function g(t) vanishing outside 

T such that p p
k kL L

f g fε− ≤ . Similarly, we say that Fk(f) isε
-concentrated to W in p

kL -norm, q = p/(p−1), if there is a function h(w) 

vanishing outside W with ( ) ( )q
qk
k

k L
L

F f h F fε− ≤ . 

Based on the ideas of Donoho and Stark , we show a continuous-
time uncertainty principle of concentration type for the p

kL theory: 
If f is εT -concentrated to T in p

kL norm, 1 < p ≤ 2, and Fk (f) is εW-

concentrated to W in q
kL norm, q = p/(p−1), then

( ) ( )( ) ( )( )1 1

1
pq
kk

/ q / q
k k T

k LL
w

T W
F f f

µ µ ε
ε

+
≤

−
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In the Dunkl setting, we establish three continuous uncertainty principles of concentration type, where the sets of concentration 

are not intervals. The first and the second uncertainty principles are Lp versions and depend on the sets of concentration T and W, 
and on the time function f. The time-limiting operators and the Dunkl integral operators play an important role to prove the main results 
presented in this paper. However, the third uncertainty principle is also Lp version depends on the sets of concentration and he is 
independent on the band limited function f. These uncertainty principles generalize the results obtained for the Fourier transform and 
the Dunkl transform in the case p=2.
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Next, we prove another version of continuous-time 
uncertainty principle of concentration type for the 1 p

k kL L∩ theory: If 
1 1 2p
k kf L L , p ,∈ ∩ < ≤ is Tε -concentrated to T in 1

kL -norm and ( )kF f  is 
Wε -concentrated to W in q

kL -norm, q=p/(p-1), then

( ) ( )( ) ( )( )
( )( )

1 1

1 1
pq
kk

/ p / q
k k

k LL
T w

T W
F f f

µ µ
ε ε

≤
− −

Let ( )p
kB W , 1 ≤ p ≤ 2, be the set of functions ∈ p

kg L  that are 
bandlimited to W (i.e. ( )p

kg B W∈ implies SWg=g). Here SW is the Dunkl 
integral operator given by 

( ) ( )1k W k WF S f F f=

where 1W is the indicator function of the set W. We say that f is 
ε-bandlimited to W in p

kL norm if there is a ( )p
kg B W∈ with 

p p
k kL L

f g fε− ≤

The space ( )p
kB W  leads to establish the following version of 

continuous-bandlimited uncertainty principle for p
kL theory: If f is εT 

-concentrated to T and εW -bandlimited to W in p
kL norm, 1 ≤ p ≤ 2, 

then

( )( ) ( )( )1 11
1

/ p / pT W
k k

W

T Wε ε µ µ
ε

− −
≤

+
This paper is organized as follows. The Section 2 is devoted to 

recalling some basic properties of the Dunkl transform Fk : Plancherel 
theorem, inversion formula and Hausdorff-Young inequality, which 
are tools to prove the main results presented in this paper. In Section 
3, we introduce some properties of the time-limiting operators and 
the Dunkl integral operators. These operators play an important 
role to establish the concentration uncertainty principles in the next 
sections. In Section 4, we present two continuous-time uncertainty 
principles of concentration type. These principles depend on the sets 
of concentration T and W, and on the time function f. In the last 
section, we establish continuous-bandlimited uncertainty principle of 
concentration. This principle depends also on the sets of concentration 
T and W, but he is independent on the bandlimited function f.

The Dunkl transform on d


The Dunkl operators Dj ; j=1,…, d, on d


 associated with the finite 
reflection group G and multiplicity function k are given, for a function 
f of class C1 on d



, by

( ) ( ) ( ) ( ) ( )
j j

j

f y f y
D f y : f y k

y , y
α

α

σ
α α

α
+∈ℜ

−∂
= +
∂ ∑

For y ∈ d


, the initial problem ( )( ) ( ) 1j jD u ., y x y u x, y , j ,...,d ,= =  
with µ(0, y) = 1 admits a unique analytic solution on d


, which will be 

denoted by Eh(x, y) and called Dunkl kernel [12,13]. This kernel has a 
unique analytic extension to d d× 

.

The Dunkl kernel has the Laplace-type representation [14]

( ) ( ),, , ,
d

y z d d
k xE x y e d z x y= Γ ∈ ∈∫



 

where 
1=

= Γ∑d
i i xi

y,z : y z and  is a probability measure on d


 such 
that

( ) { }d
xsupp z : z xΓ ⊂ ∈ ≤ .

In our case,

( ) 1 d
kE ix, y , x, y≤ ∈ . 				                 (2.1)

The Dunkl kernel gives rise to an integral transform, which is called 

Dunkl transform on d


, and was introduced by Dunkl in, where 
already many basic properties are established. Dunkl’s results have 
been completed and extended later by De Jeu. The Dunkl transform of 
a function f in 1

kL , is defined by

( )( ) ( ) ( ) ( )dk k kF f x : E ix, y f y d yµ= −∫


We notice that F0 agrees with the Fourier transform F, that is given by

( )( ) ( ) ( )22
d

d / i x ,y d
kF f x : e f y dy,xπ − −= ∈∫





Some of the properties of Dunkl transform Fk are collected bellow. 

(a) L L∞ -boundedness: For all ( )1
k k kf L ,F f L∞∈ ∈ and

( ) 1
kk

k LL
F f f∞ ≤ 				                 (2.2)

(b) Inversion theorem: Let f ∈ 1
kL , such that Fk(f) ∈ 1

kL . Then

( ) ( )( )( ) d
k kf x F F f x ,a.e.x= − ∈ 		                (2.3)

(c) Plancherel theorem: The Dunkl transform Fk extends uniquely 
to an isometric isomorphism of 2

kL  onto itself. In particular,

( )2 2
k k

kL L
f F f= 				                  (2.4)

(d) Hausdorff-Young inequality: Using relations (2.2) and (2.4) 
with Marcinkiewicz’s interpolation theorem [15,16], we deduce that 
for every 1 ≤ p ≤ 2, and for every p

kf L∈  the function Fk(f) belongs to 

the space q
kL ,q=p/(p-1), and ( ) pq

kk
k LL

F f f≤ 		              (2.5)

The Dunkl integral operators

Let T and W be a measurable subsets of 


. We introduce the time-
limiting operator PT [1] by

1t TP f : f= 					                 (3.1)

And, we introduce the Dunkl integral operator SW by

( ) ( )1k W k WF S f F f= 				                 (3.2)

In the case k=0, the operator SW is the frequency-limiting operator 
given in [1].

Theorem 3.1: If ( ) 1 2p
k kW and f L , p ,µ < ∞ ∈ ≤ ≤

( ) ( ) ( )( ) ( )W k k kW
S f x E ix, y F f y d yµ= ∫
Proof. Let f ∈ p

kL , 1 ≤ p ≤ 2 and let q=p/(p−1). Then by (2.1), 
H¨older’s inequality and (2.5),

( ) ( )( ) ( )11
k

k W k kL W
F f F f w d wµ= ∫

 ( )( ) ( )1
q
k

/ p
k k L

W F fµ≤

 
( )( )1 q

k

/ p
k L

W fµ≤

And

( ) ( )( ) ( )( )2

1 22
1

k

/

k W k kL W
F f F f w d wµ= ∫

 ( )( ) ( )
2

2
q
k

q
q

k k L
W F fµ

−

≤ ( )( )
2

2µ
−

≤ p
k

q
q

k L
W f

Thus ( ) 1 21k W k kF f L L∈ ∩  and by (3.2)

( )( )1 1W k k WS f F F f−=

This combined with (2.3) gives the result. 

Lemma 3.2: If 1 ≤ p ≤ 2, q=p/(p−1) and f ∈ p
kL , then
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( ) pq
kk

k W LL
F S f f≤

Proof: Let f ∈ p
kL , 1 ≤ p ≤ 2 and let q=p/(p−1). From (2.5) and (3.2),

( ) ( )( ) ( )( ) ( )
1

pq q
kk k

/ qq
k W k k k LL LW

F S f F f w d w F f fµ= ≤ ≤∫
This yields the desired result. 

Lemma 3.3: Let T and W be measurable subsets of d


. If 1 < p ≤ 2, 
q = p/(p−1) and f ∈ p

kL , then

( ) ( )( ) ( )( )1 1/ q / q
k W T k kF S P f T W fµ µ≤ .

Proof: Assume that µk(T) < ∞ and µk(W) < ∞.

Let f ∈ p
kL , 1 < p ≤ 2 and let q=p/(p−1). From (3.2),

( ) ( )1k W T W k TF S P f F P f=

Thus

( ) ( )( ) ( )( )1q
k

/ qq
k W T k T kL W

F S P f F P f w d wµ= ∫ 		                (3.3)

So

( )( ) ( ) ( ) ( )µ= −∫k T k kT
F P f w E iw,t f t d t

and by Holder’s inequality and (2.1),

( )( ) ( ) ( )( ) ( ) ( )( )1 1µ µ≤ −∫ ∫
/ q Pq / p

k T k k kT T
F P f w E iw,t d t f t d t

 ( )( )1 p
k

/ q
k L

T fµ≤

Then by (3.3),

( ) ( )( ) ( )( )1 1
pq
kk

/ q / q
k W T k k LL

F S P f T W fµ µ≤

Thus, the proof is complete. 

Concentration uncertainty principle
Let T and W be a measurable subsets of d



. We say that a 
function f ∈ p

kL , 1 ≤ p ≤ 2, is ɛ -concentrated to T in p
kL -norm, if 

there is a measurable function g(t) vanishing outside T such that

p p
k kL L

f g fε− ≤ . Similarly, we say that Fk(f) is ɛ-concentrated to W 

in q
kL -norm, q=p/(p−1), if there is a function h(w) vanishing outside W 

with ( ) ( )q q
k k

k kL L
F f h F fε− ≤ .

If f is ɛT -concentrated to T in p
kL -norm (g being the vanishing 

function) then by (3.1),

( ) ( )( )1p p pd
k k k

/ pp
T k TL L L\T

f P f f t d t f g fµ ε− = ≤ − ≤∫


              (4.1)

and therefore f is ɛT -concentrated to T in p
kL -norm if and only if 

p p
k k

T TL L
f P f fε− ≤ .

From (3.2) it follows as for PT that Fk(f) is ɛW-concentrated to W in 
q
kL -norm, q=p/(p − 1), if and only if 

( ) ( ) ( )q q
k k

k k W W kL L
F f F S f F fε− ≤ 			                 (4.2)

The following theorem, states the first continuous-time uncertainty 
principle of concentration type for the  theory.

Theorem 4.1: Let T and W be a measurable subsets of d


 and f ∈ 
p
kL , 1 < p ≤ 2. If f is ɛT -concentrated to T in p

kL -norm and Fk(f) is ɛW-

concentrated to W in q
kL -norm, q=p/(p−1), then

( ) ( )( ) ( )( )1 1

1
pq
kk

/ q / q
k k T

k LL
W

T W
F f f

µ µ ε
ε

+
≤

−
.

Proof: Let f ∈ p
kL , 1 < p ≤ 2 and let q=p/(p−1). From (4.1), (4.2) and 

Lemma 3.2 it follows that

( ) ( ) ( ) ( )q q
k k

k k W T k k WL L
F f F S P f F f F S f− ≤ −

( ) ( )

( )

( )

q
k

pq
kk

pq
kk

k W k W T L

W k T LL

W k T LL

F S f F S P f

F f f P f

F f f

ε

ε ε

+ −

≤ + −

≤ +

The triangle inequality and the Lemma 3.3 show that

( ) ( ) ( ) ( )q q q
k k k

k k W T k k W TL L L
F f F S P f F f F S P f≤ + −

( )( ) ( )( ) ( )1 1
p

qk
k

/ q / q
k k T W kL

L
T W f F fµ µ ε ε ≤ + +

 

which gives the desired result. 

Next, the second continuous-time uncertainty principle of 
concentration type for the 1

kL ∩ p
kL  theory is given by the following 

theorem.

Theorem 4.2: Let T and W be a measurable subsets of d


 and 
1 1 2p
k kf L L , p .∈ ∩ < ≤ . If f is ɛT -concentrated to T in 1

kL -norm and 
Fk(f) is ɛW-concentrated to W in q

kL -norm, q=p/(p−1), then

( ) ( )( ) ( )( )
( )( )

1 1

1 1
pq
kk

/ p / q
k k

k LL
T W

T W
F f f

µ µ
ε ε

≤
− −

Proof: Assume that µk(T) < ∞ and µk(W) < ∞.

Let 1 1 2p
k kf L L , p .∈ ∩ < ≤  Since Fk(f) is ɛW -concentrated to W in 

q
kL -norm, q=p/(p−1), then

( ) ( ) ( )( ) ( )( )1q q
k k

/ qq
k W k k kL L W

F f F f F f w d wε µ≤ + ∫
 ( ) ( )( ) ( )1

q
kk

/ q
W k k kL L

F f W F fε µ ∞≤ +

Thus by (2.2),

( ) ( )( )
1

1

1
µ

ε
≤

−q
kk

/ q
k

k LL
W

W
F f f 			                   (4.3)

On the other hand, since f is ɛT -concentrated to T in 1
kL -norm,

( ) ( )1 1
k k

T kL L T
f f f t d tε µ≤ + ∫

( )( )1

1
p

k k

/ p
T kL L

f T fε µ≤ +

Thus

( )( )
1

1

1
p

k k

/ p
k

L L
T

T
f f

µ
ε

≤
−

				               (4.4)

Combining (4.3) and (4.4) we obtain the result of this theorem. 
Conclusion 4.3: The first uncertainty principle (Theorem 4.1) 

depends on the time function f. However, for p=q=2, we obtain 
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1-ɛT-ɛW ≤ (µk(T))1/2(µk(W)) 1/2 and the inequality is independent on 
the time function f. Also, the second uncertainty principle (Theorem 
4.2) depends on the time function f. In a particular case when p=q=2, 
we obtain (1-ɛT)(1-ɛW)≤ (µk(T))1/2(µk(W)) 1/2 and the inequality is 
independent on the time function f.

These uncertainty principles generalize the results obtained for the 
Fourier transform and the Dunkl transform in the case p=q=2.

Another uncertainty principle

Let ( ) 1 2p
kB W , p≤ ≤ , be the set of functions p

kg L∈  that are 
bandlimited to W (i.e. ( )p

kg B W∈ implies WS g g= ).

We say that f is ɛ-bandlimited to W in p
kL -norm if there is a 

( )p
kg B W∈ with p p

k kL L
f g fε− ≤

Then, the space ( )p
kB W satisfies the following property.

Lemma 5.1. Let T and W be a measurable subsets of 


d . For 
( )p

kg B W∈ , 1 ≤ p ≤ 2,

( )( ) ( )( )1 1
µ µ≤p p

k k

/ p / p
T k kL L

P g T E g

Proof. If µk(T)=∞ or µk(W) = ∞, the inequality is clear.

Assume that µk(T) < ∞ and µk(W) < ∞.

For ( )p
kg B W∈ ,1 ≤ p ≤ 2, from Theorem 3.1,

( ) ( ) ( )( ) ( )k k kW
g t E iw,t F g w d wµ= ∫

and by (2.1) and H¨older’s inequality,

( ) ( )( ) ( ) ( )( ) ( )1 1
1µ µ≤ ≤ = −pq

kk

/ p / p
k k k LL

g t W F g w g ,q p / p

Hence,

( ) ( )( ) ( )( ) ( )( )
1 1 1

p p
k k

/ pp / p / p
T k k kL LT

P g g t d t T W gµ µ µ= ≤∫
which yields the result.

Theorem 5.2: Let T and W be a measurable subsets of d


 and f ∈ 
p
kL , 1 ≤ p ≤ 2. If f is ɛW-bandlimited to W in p

kL -norm, then

( ) ( )( ) ( )( )1 1
1p p

k k

/ p / p
T W k k WL L

P g T W fε µ µ ε ≤ + +
 

Proof: Let f ∈ p
kL , 1 ≤ p ≤ 2. Since f is ɛW -bandlimited in p

kL -norm, 
by definition there is a g in ( )p

kB W with p p
k k

WL L
f g fε− ≤ . For this g, 

we have

( ) ε≤ + − ≤ +p p p pp
k k k kk

T T T T WL L L LL
P f P g P f g P g f .

Then by Lemma 5.1 and the fact that ( )1p p
k k

WL L
g fε≤ + we get the 

result. 

Next, the third continuous bandlimited uncertainty principle of 
concentration type for the p

kL -norm is given by the following.

Corollary 5.3: Let T and W be measurable subsets of d
  and f ∈ 

p
kL , 1 ≤ p ≤ 2. If f is ɛT-concentrated to T and ɛW-bandlimited to W in p

kL
-norm, then

( )( ) ( )( )1 11
1

/ p / pT W
k k

W

T Wε ε µ µ
ε

− −
≤

+

Proof: Let f ∈ p
kL , 1 ≤ p ≤ 2. Since f is ɛT -concentrated to T in p

kL
-norm then by (4.1),

ε≤ +p p p
k k k

T TL L L
f f P f

Thus,

1
1

p p
k k

TL L
T

f P f
ε

≤
−

By (5.1) and Theorem 5.2 we deduce the desired inequality of 
Corollary 5.3.

Conclusion 5.4: The third uncertainty principle (Corollary 5.3) is 
independent on the bandlimited function f for every 1 ≤ p ≤ 2. This 
uncertainty principle generalizes the result obtained in when p=q=2.
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