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Abstract

Chaotic linear dynamics deals primarily with various topological ergodic properties of semigroups of continuous
linear operators acting on a topological vector space. In this survey paper, we treat questions of characterizing which
of the spaces from a given class support a semigroup of prescribed shape satisfying a given topological ergodic
property.

In particular, we characterize countable inductive limits of separable Banach spaces that admit a hypercyclic
operator, show that there is a non-mixing hypercyclic operator on a separable infinite dimensional complex Fréchet
space X if and only if X is non-isomorphic to the space w of all sequences with coordinatewise convergence topology.
Itis also shown for any k € N, any separable infinite dimensional Fréchet space X non-isomorphic to w admits a mixing
uniformly continuous group {T,}tecn of continuous linear operators and that there is no supercyclic strongly continuous
operator semigroup {T},, on w. We specify a wide class of Fréchet spaces X, including all infinite dimensional Banach
spaces with separable dual, such that there is a hypercyclic operator T on X for which the dual operator T'is also
hypercyclic. An extension of the Salas theorem on hypercyclicity of a perturbation of the identity by adding a backward

weighted shift is presented and its various applications are outlined.

Keywords: Hypercyclic operators; Mixing semigroups; Backward
weighted shifts; Bilateral weighted shifts

Introduction

Unless stated otherwise, all vector spaces in this article are over the
field K, being either the field C of complex numbers or the field R of
real numbers, all topological spaces are assumed to be Hausdorffand all
vector spaces are assumed to be non-trivial. As usual, T={z € C: |z|=1},
Z is the set of integers, Z_is the set of non-negative integers, N is the
set of positive integers and R is the set of non-negative real numbers.
Symbol L(X, Y) stands for the space of continuous linear operators
from a topological vector space X to a topological vector space Y. We
write L(X) instead of L(X, X) and X' instead of L(X, K). For each T €
L(X), the dual operator T": X' > X' is defined as usual: (T" f)(x)=f (Tx)
for f € X' and x € X. By a quotient of a topological vector space X we
mean the space X/Y, where Y is a closed linear subspace of X. We start
by recalling some definitions and facts.

Notation and definitions

A topological vector space is called locally convex if it has a base
of neighborhoods of zero consisting of convex sets. Equivalently, a
topological vector space is locally convex if its topology can be defined
by a family of seminorms. For brevity, we say locally convex space for
a locally convex topological vector space. A subset B of a topological
vector space X is called bounded if for any neighborhood U of zero in
X, a scalar multiple of U contains B. We say that 7 is a locally convex
topology on a vector space X if (X, 7) is a locally convex space. If X is a
vector space and Y'is a linear space of linear functionals on X separating
points of X, then the weakest topology on X, with respect to which all
functionals from Y are continuous, is denoted o(X, Y). The elements of
X can be naturally interpreted as linear functionals on Y, which allows
one to consider the topology o(Y, X) as well. If B is a family of bounded
subsets of (Y, o(Y, X)), whose union is Y, then the seminorms

pa()=sup| f(x)| for Bes&
feB

define the topology on X of uniform convergence on sets of the family
B. The topology on X of uniform convergence on all bounded subsets
of (Y, o(Y, X)) is called the strong topology and denoted (X, Y). The

topology of uniform convergence on all compact convex subsets of (Y,
o(Y, X)) is called the Mackey topology and is denoted 7 (X, Y). According
to the Mackey-Arens theorem, for a locally convex space (X, 7) and a
space Y of linear functionals on X, the equality Y=X"holds if and only if
o(X, Y) € 7S 7(X, Y). We say that a locally convex space (X, 1) carries
a weak topology if T coincides with o(X, Y) for some space Y of linear
functionals on X, separating points of X. If X is a locally convex space,
we write Xﬁ for (X', B(X, X"), X, for (X, 7 (X, X)) and X_ for (X, o(X,
X")). Similarly we denote (X, B(X', X)) by X ﬁ', (X', 1 (X', X)) by X 'and
(X', (X", X)) by X . An F -space is a complete metrizable topological
vector space. A locally convex F -space is called a Fréchet space. If {X :
a € A} is a family of locally convex spaces, then their (locally convex)

direct sum is the algebraic direct sum X = @X « of the vector spaces

X, endowed with the strongest locally convg)f /'gopology, which induces
the original topology on each X . Let {X,},cz_ be a sequence of vector
spaces such that X is a subspace of X  for each n € Z,_ and each X
carries its own locally convex topology 7, such that 7, is (maybe non-
strictly) stronger than the topology t . Then the inductive limit of

n+1|Xn
o0

the sequence {Xn} is the space x = U X, endowed with the strongest
n=0

locally convex topology 7 such that 7|, S 7 for each n € Z _. In other

words, a convex set U is a neighborhood of zero in X if and only if U

N X is a neighborhood of zero in X for each n € Z . An LB-space

is an inductive limit of a sequence of Banach spaces. An LB-space is

an inductive limit of a sequence of separable Banach spaces. We use
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symbol @@ to denote the locally convex direct sum of countably many
copies of the one- dimensional space K and the symbol w to denote
the product of countably many copies of K. Note that ¢ is a space of
countable algebraic dimension and carries the strongest locally convex
topology (=any seminorm on ¢ is continuous). We can naturally
interpret w as the space K" of all sequences with coordinatewise
convergence topology. Clearly w is a separable Fréchet space. Recall
also that if X is a locally convex space and A € X', then A is called
uniformly equicontinuous if there exists a neighborhood U of zero in X
such that |[f(x)| < 1 forany x € Uand f€ A.

Let T be a continuous linear operator on a topological vector space
X. A vector x € X is called a cyclic vector for T if the linear span of the
orbit O(T, x)={T": n € Z } of x is dense in X. The operator T is called
cyclic if T has a cyclic vector. Recall also that for n € N, T is called
n-cyclic if there are vectors Xpo X, € X such that the linear span of
the set {T"x,: n € Z,, 1 < j < n} is dense in X. Obviously, 1-cyclicity
coincides with cyclicity. We say that T is multicyclic if it is n-cyclic for
some n € N.

Let X and Y be topological spaces and {T, : a € A} be a family of
continuous maps from X to Y. An element x € X is called universal for
this family if the orbit {T x: a € A} is dense in Yand {T: a € A} is said to
be universal if it has a universal element. We say that a family {T : n €
7.} is hereditarily universal if any its infinite subfamily is universal. An
operator semigroup on a topological vector space X is a family {T } €, of
elements of L(X) labeled by elements of an abelian monoid A (monoid
is a semigroup with identity) and satisfying T,=I, T =T,T foranyt, s €
A (unless stated otherwise, we use additive notation for the operation
on A). A norm on A is a function | « | : A > [0, =) satisfying |na|=n]q|
and |a + b| < |a| + |b| for any for any n € Z and a, b € A. An abelian
monoid equipped with a norm will be called a normed semigroup. We
will be mainly concerned with the case when A is a closed (additive)
subsemigroup of R* containing 0 with the norm |a| being the
Euclidean distance from a to 0. In the latter case we consider A to be
equipped with topology inherited from R¥ and we say that an operator
semigroup {T},_, is strongly continuous if the map ¢ T,x from A to
X is continuous for any x € X. We say that an operator semigroup
{T} ., is uniformly continuous if there exists a neighborhood U of zero
in X such that for any sequence {t } _, of elements of A converging to
t€A, T, x converges to T'x uniformly on U. Clearly, uniform continuity
is strictly stronger than strong continuity. It is also worth mentioning
that many authors use the term ’uniformly continuous semigroup’ for
semigroups satisfying the weaker of uniform convergence of T, x to T x
on any bounded subset of X.

If A is a normed semigroup and {T },., is an operator semigroup on
a topological vector space X, then we say that {T'},_, is (topologically)
transitive if for any non-empty open subsets U, V of X, the set {|t| : t E A,
T(U)NV #@}is unbounded. Wesay that {T} _, is (topologically) mixing
if for any non-empty open subsets U, V of X, there is r=r(U,V) > 0 such
that T(U)NV#Q provided |¢| > r. We also say that {T}},_, is hypercyclic
(respectively, supercyclic) if the family{T, : t € A} (respectively, {zT, :
z € K, t € A}) is universal. {T}, is said to be hereditarily hypercyclic
(respectively, hereditarily supercyclic) if for any sequence {t} ., of
elements of A such that |t | > e, the family {T, : n € Z } (respectively,
{ 2T, :z €K, n€Z}) is universal. A continuous linear operator T
acting on a topological vector space X is called hypercyclic, supercyclic,
hereditarily hypercyclic, hereditarily supercyclic, mixing or transitive if
the semigroup {T"}, , has the same property. It is worth noting that
our definition of a hereditarily hypercyclic operator follows Ansari [1],
while in the terminology of references [2,3], the same property is called

"hereditarily hypercyclic with respect to the sequence n,=k of all non-
negative integers’. Hyper- cyclic and supercyclic operators have been
intensely studied during last few decades, [4-6] and references therein.
Clearly mixing implies transitivity and hereditary hypercyclicity
(respectively, hereditary supercyclicity) implies hypercyclicity
(respectively, supercyclicity). Recall that a topological space X is called
a Baire space if the intersection of countably many dense open subsets
of X is dense in X. According to the classical Baire theorem, complete
metric spaces are Baire.

Proposition 1.1. Let X be a topological vector space, A be a normed

semigroup and S={T } _, be an operator semigroup on X. Then

(1.1.1) if S is hereditarily hypercyclic, then S is mixing.

If additionally X is Baire separable and metrizable, the converse
implication holds:

(1.1.2) if S is mixing, then S is hereditarily hypercyclic.

The above proposition is a combination of well-known facts,
appearing in the literature in various modifications. It is worth noting
that a similar statement holds for hypercyclicity and transitivity under
certain natural additional assumptions. One can also write down and
prove a supercyclicity analogue of the above proposition. In the next
section we shall prove Proposition 1.1 for sake of completeness. It is
worth noting that for any subsemigroup A of A, not lying in the kernel
of the norm, {T'} . A is mixing if {T)},_, is mixing. In particular, if {T},_,
is mixing, then T, is mixing whenever [t| > 0.

Results

The question of existence of supercyclic or hypercyclic operators or
semigroups on various types of topological vector spaces was intensely
studied. There are no hypercyclic operators on any finite dimensional
topological vector space and there are no supercyclic operators on a
finite dimensional topological vector space of real dimension > 2.
These facts follow, for instance from the main result of reference [7].
Herzog [8] demonstrated that there is a supercyclic operator on any
separable infinite dimensional Banach space. Later Ansari [9] and
Bernal-Gonziles [10], answering a question raised by Herrero, showed
independently that for any separable infinite dimensional Banach
space X there is a hypercyclic operator T € L(X). Using the same idea as
in reference [9], Bonet and Peris [11] proved that there is a hypercyclic
operator on any separable infinite dimensional Fréchet space and
demonstrated that there is a hypercyclic operator on an inductive limit
X of a sequence X, for n € Z_of separable Banach spaces provided
there is n € Z_for which X is dense in X. Grivaux [3] observed that
hypercyclic operators T constructed in references [9-11] are in fact
mixing and therefore hereditarily hypercyclic. They actually come from
the same source. Namely, according to Salas [12] an operator of the
shape I + T, where T is a backward weighted shift on /,, is hypercyclic.
Virtually the same proof as in reference [12] demonstrates that these
operators are in fact mixing. Moreover, all operators constructed in the
above papers, except for the ones acting on w, are hypercyclic because
of a quasisimilarity with one of the operators of the shape identity
plus a backward weighted shift. The same quasisimilarity transfers the
mixing property as effectively as it transfers hypercyclicity. A similar
idea was used by Bermudez, Bonilla and Martinén [13] and Bernal-
Gonzalez and Grosse-Erdmann [14], who have demonstrated that any
separable infinite dimensional Banach space supports a hypercyclic
strongly continuous semigroup {T'} . . Bermudez, Bonilla, Conejero
and Peris [15] have shown for any separable infinite dimensional
complex Banach space X, there exists a mixing strongly continuous
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semigroup {T} ., with IT={z € C : Re z > 0} such that the map? T}
is holomorphic on the interior of II. As a matter of fact, one can
easily see that the semigroup constructed in reference [15] extends
to a holomorphic mixing group {T} .. Finally, Conejero [16] proved
that any separable infinite dimensional complex Fréchet space non-
isomorphic to w supports a uniformly continuous mixing operator
semigroup {T}

tER+"

The following theorem extracts the maximum of the method both
in terms of the class of spaces and semigroups. Although the general
idea remains the same, the proof requires dealing with a number of
technical details of various nature. In particular, we will prove and
apply a multi- operator version of the Salas theorem. For brevity we
shall introduce the following class of locally convex spaces.

Definition 1.2. We say that a sequence {x} , of elements of a

topological vector space X is an /,-sequence if x, > 0 in X and the series
0

4n¥n converges in X for each a € /..
n=0

We say that a locally convex space X belongs to the class 91 if its
topology is not weak and there exists an /,-sequence in X with dense
span.

Theorem 1.3. Let X € 9. Then for any k € N, there exists a
hereditarily hypercyclic (and therefore mixing) uniformly continuous
operator group {T} _.x. Moreover, if K=C the map - 1.x from C*to X
is holomorphic for each x € X.

Since for any hereditarily hypercyclic semigroup {T} ., and any
non-zero t € KX, the operator T, is hereditarily hypercyclic, we have the
following corollary.

Corollary 1.4. Let X € . Then there is a hereditarily hypercyclic
(and therefore mixing) operator T € L(X).

Remark 1.5. It is easy to see that if X € 91, then X_€ 9. Indeed,
if {x } ., is an £ -sequence in X with dense span, then {27x } _ is
an /,-sequence in X with dense span. Of course, X never belongs to
2. On the other hand, it is well-known that L(X )=L(X ). Moreover,
since o(X, X') € ©(X, X'), then any strongly continuous hereditarily
hypercyclic operator semigroup {T'} e, O X, s also strongly
continuous and hereditarily hypercyclic as an operator semigroup on
X_. Thus in the case X_€ M1, Theorem 1.3 implies that there is a strongly
continuous hereditarily hypercyclic operator semigroup {T'} .., on X .
Unfortunately, the nature of the weak topology does not allow to make
such a semigroup uniformly continuous.

It is worth noting that any separable Fréchet space admits an /.-
sequence with dense span. It is also well-known [17] that any Fréchet
space carries the Mackey topology and the topology on a Fréchet space
X differs from the weak topology if and only if X is infinite dimensional
and is non-isomorphic to w. That is, any separable infinite dimensional
Fréchet space non-isomorphic to w belongs to 9. Similarly, one can
verify that an infinite dimensional inductive limit X of a sequence X,
for n € Z_ of separable Banach spaces belongs to 9t provided there is n
€ Z for which X  is dense in X. Thus all the above mentioned existence
theorems are particular cases of Theorem 1.3.

Grivaux [3] raised a question whether each separable infinite
dimensional Banach space supports a hypercyclic non-mixing
operator. Since the class 9t contains separable infinite dimensional
Banach spaces, the following theorem provides an affirmative answer
to this question.

Theorem 1.6. Let X € M. Then there exists T € L(X) such that T is
hypercyclic and non-mixing.

The simplest separable infinite dimensional locally convex space
space (and the only Fréchet space) outside 9 is w. Curiously, the
situation with w is totally different. Hypercyclic operators on the
complex space w have been characterized by Herzog and Lemmert
[18]. Namely, they proved that a continuous linear operator T on
the complex Fréchet space w is hypercyclic if and only if the point
spectrum o (T") of T' is empty. It also worth mentioning that Bés and
Conejero [19] provided sufficient conditions for T € L(w) to have an
infinite dimensional closed linear subspace, each non-zero vector of
which is hypercyclic, and found common hypercyclic vectors for some
families of hypercyclic operators on w. See also the related work [20]
by Petersson. The following theorem extends the result of Herzog and
Lemmert and highlights the difference between w and other Fréchet
spaces.

Theorem 1.7. Let T € L(w) be such that T' has no non-trivial
finite dimensional invariant subspaces and {Pl},_, be a sequence of
polynomials such that deg p, > oo as 1> 0. Then the family {p,(T) : | €
7.} is universal. Moreover, there is no strongly continuous supercyclic

semigroup {T} ., on .

Note that in the case K=C, T’ has no non-trivial finite dimensional
invariant subspaces if and only if 0,(T")=@. The first part of the above
theorem implies that any hypercyclic operator on w is mixing. We
shall, in fact, verify the following more general statement.

Theorem 1.8. Let X be a locally convex space carrying weak topology
and T € L(X). Then the following conditions are equivalent

(1.8.1) T" has no non-trivial finite dimensional invariant subspaces;
(1.8.2) T is transitive;
(1.8.3) T is mixing;

(1.8.4) the semigroup {p(’[)}pep* is mixing, where P=K[z] \ {0} is
the multiplicative semigroup of non-zero polynomials with the norm
|p|=deg p.

Remark 1.9. Chan and Sanders [21] observed that on the
space (£,) , being the Hilbert space ¢, with the weak topology, there
is a transitive non-hypercyclic operator. Theorem 1.8 provides a huge
supply of such operators. For instance, the backward shift T on ¢, is
mixing on (/,)o (T’ has no non-trivial finite dimensional invariant
subspaces) and T is clearly non-hypercyclic (each its orbit is bounded).

Theorems 1.3, 1.6 and 1.7 imply the following curious corollary.

Corollary 1.10. Let X be a separable infinite dimensional Fréchet
space. Then the following are equivalent

(1.10.1) there is a hypercyclic non-mixing operator T € L(X);

(1.10.2) there is a mixing uniformly continuous semigroup {T }
onX;

tER+

(1.10.3) there is a supercyclic strongly continuous semigroup
{T}ew, on X;

(1.10.4) X is non-isomorphic to w.

Another simple space outside 9t is . Bonet and Peris [11] observed
that there are no supercyclic operators on ¢. On the other hand, Bonet,
Frerick, Peris and Wengenroth [22] constructed a hypercyclic operator

on the locally convex direct sum x-J* /4 of countably many
n=0"1

J Generalized Lie Theory Appl

Algebra, Combinatorics and Dynamics

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S1-009

Citation: Shkarin S (2015) Existence Theorems in Linear Chaos. J Generalized Lie Theory Appl S1: 009. doi:10.4172/1736-4337.S1-009

Page 4 of 34

copies of the Banach space /,. The space X is clearly an LB -space, is
complete and non-metrizable. It is also easy to see that X¢ 91 (there are
no £ -sequences in X with dense span). We find sufficient conditions of
existence and of non-existence of a hypercyclic operator on a locally
convex space. These conditions allow us to characterize the LBs-spaces,
which admit a hypercyclic operator.

Theorem 1.11. Let X be the inductive limit of a sequence {X } _, of
separable Banach spaces. Then the following conditions are equivalent:

(1.11.1) X admits no hypercyclic operator;

(1.11.2) X admits no cyclic operator with dense range;

(1.11.3) X is isomorphic to Y x@, where Y is the inductive limit of a
sequence {Y,} _ of separable

Banach spaces such that Y, is denseinY;

(1.11.4) for any sufficiently large n, X,/ X,, is finite dimensional
and the set {neZ, :X,,# X,}is infinite, where X, is the closure of
X, in X.

The proof is based upon the following result, which is of

independent interest.

Theorem 1.12. Let X be a topological vector space, which has no
quotients isomorphic to ¢. Then there is no cyclic operator with dense
range on X xX@.

The following theorem provides another generalization of the
mentioned result of Bonet, Frerick, Peris and Wengenroth.

Theorem 1.13. Let {X }
Then there is a hypercyclic operator on X = C—Bf:OXn if and only if the

ez, be asequence of separable Fréchet spaces.

set {n € Z_: X, is infinite dimensional} is infinite.

We derive the above theorem from the following result, concerning
more general spaces.

Theorem 1.14. Let X, € M for each n € Z+ and)(:@jfzoxn_
Then there is a hypercyclic operator on X.

The next issue, we discuss, are dual hypercyclic operators. Let X be
alocally convex space. Recall that X,"is the dual space X' endowed with
the strong topology (X', X). It is worth noting that if X is a normed
space, then the strong topology on X' coincides with the standard
norm topology. Salas [23] has constructed an example of a hypercyclic
operator T on /, such that both T and T" are hypercyclic. This result
motivated Petersson [24] to introduce the following definition. We
say that a continuous linear operator T on a locally convex space X
is dual hypercyclic if both T and T’ are hypercyclic on X and X'
respectively. Using the construction of Salas, Petersson proved that any
infinite dimensional Banach space X with a monotonic and symmetric
Schauder basis and with separable dual admits a dual hypercyclic
operator. He also raised the following questions. Does there exist a
dual hypercyclic operator on any infinite dimensional Banach space
with separable dual? Does there exist a non-normable Fréchet space
that admits a dual hypercyclic operator? The first of these questions was
recently answered affirmatively by Salas [25]. The following theorem
provides a sufficient condition for existence of a dual hypercyclic
operator on a locally convex space.

Theorem 1.15. Let X be an infinite dimensional locally convex
space admitting an ( -sequence with dense span. Assume also that there
is an ( -sequence {f },_, with dense span in X," and at least one of the
following conditions is satisfied:

(1.15.1) the topology of X coincides with o(X, X);
(1.15.2) the topology of X coincides with T (X, X');
(1.15.3) the set {f,_ : n € Z } is uniformly equicontinuous.
Then X admits a dual hypercyclic operator.

Since every separable Fréchet space admits an /-sequence with
dense span and every Fréchet space carries the Mackey topology, the
above theorem implies the following corollary.

Corollary 1.16. Let X be a separable infinite dimensional Fréchet
space, such that there is an [ -sequence with dense span in X Then there
exists a dual hypercyclic operator T € L(X).

If X is a Banach space, X' is also a Banach space and therefore
has an / -sequence with dense span if and only if it is separable. Thus
Corollary 1.16 implies the next corollary, which is the mentioned
recent result of Salas.

Corollary 1.17. Let X be an infinite dimensional Banach space with
separable dual. Then there exists a dual hypercyclic operator T € L(X).

Corollary 1.16 also provides plenty of non-normable Fréchet spaces
admitting a dual hypercyclic operator, thus answering the second of
the above questions of Petersson. For instance, take the complex
Fr’echet space X of entire functions on one variable with the topology
of uniform convergence on compact sets. It is easy to verify that the
sequence of functionals g (f)=(n!)"'f*(0) is an £ -sequence with dense
spanin X" Since X is also infinite dimensional and separable,Corollary
1.16 implies that X supports a dual hypercyclic operator.

The proofs of the above results are based upon the two main
ingredients. One of them are sufficient conditions of mixing and the
other is a criterion for a generic (in the Baire category sense) operator
from a given class to be hypercyclic. Our sufficient conditions of
mixing extend the result of Salas on hypercyclicity of perturbations of
the identity by adding a backward weighted shift. Apart from providing
us with tools, these extensions are of independent interest.

Theorem 1.18. Let X be a topological vector space and T € L(X) be
such that the space

A(T) = span U (T - zD)"(X) "kex(T —zI)") (1.1)

neN, |zl=1

is dense in X. Then T is mixing. If additionally, X is Baire, separable and
metrizable, then T is hereditarily hypercyclic.

We shall see that the above theorem implies not only the mentioned
result of Salas, but also is applicable in many other situations. For
instance, we use the above theorem to prove the following results.

Theorem 1.19. Let X be a separable infinite dimensional Banach
space and N be the operator norm closure in L(X) of the set of finite rank
nilpotent operators. Then the set of T € N for which T is supercyclic and
I+ Tis hypercyclic is a dense G, subset of the complete metric space N. If
additionally X'is separable, then the set of T € N for which T and T' are
supercyclic and I + T and I + T'are hypercyclic is a dense G, subset of N.

Note that if a Banach space X has the approximation property [26],
then the set NV from the above corollary is exactly the set of compact
quasinilpotent operators (in the case K=R by quasinilpotency of T we
mean quasinilpotency of the complexification of T or equivalently that

[|T"|]'™ > 0). Thus we have the following corollary.

J Generalized Lie Theory Appl

Algebra, Combinatorics and Dynamics

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S1-009

Citation: Shkarin S (2015) Existence Theorems in Linear Chaos. J Generalized Lie Theory Appl S1: 009. doi:10.4172/1736-4337.S1-009

Page 5 of 34

Corollary 1.20. Let X be a separable infinite dimensional Banach
space with the approximation property and N' C L(X) be the set of
compact quasinilpotent operators. Then the set of T € N for which T is
supercyclic and I + T is hypercyclic is a dense G, subset of the complete
metric space N. If additionally X' is separable, then the set of T € N for
which T and T' are supercyclic and I + T and I + T' are hypercyclic is a
dense G, subset of N.

Theorem 1.21. Let X be a separable infinite dimensional Banach
space and N be the set of nuclear quasinilpotent operators endowed with
the nuclear norm metric. Then the set of T € N for which T is supercyclic
and I + T is hypercyclic is a dense G, subset of the complete metric space
N. If additionally X' is separable, then the set of T € N for which T and
T' are supercyclicand I + T and I + T" are hypercyclic is a dense G subset

of V.

Theorems 1.21 and 1.19 provide a large supply of dual hypercyclic
operators T on any infinite dimensional Banach space with separable
dual.

Extended Backward Shifts

Godefroy and Shapiro [27] have introduced the notion of a
generalized backward shift. Namely, a continuous linear operator T on
a topological vector space X is called a generalized backward shift if its
generalized kernel

o0
ker*T = U kerT"
n=1

is dense in X and ker T is one-dimensional. We introduce a more
general concept. Namely, we say that T is an extended backward shift if

ker'T =span U(T”(X)mkerT") (2.1)

n=1
is dense in X. From the easy dimension argument [27] it follows that
if T € L(X) is a generalized backward shift, then dimker T"=n and T
(kerT"*!)=ker T" for each n € N. Hence ker T"=T" (ker T?") and therefore
ker T"=T" (X) N ker T" for any n € N. It follows that ker*T=ker'T for
a generalized backward shift. That is, any generalized backward shift is
an extended backward shift.

We also consider the following analog of the concept of an
extended backward shift for a k-tuple of operators. Let T,...T, be
continuous linear operators on a topological vector space X. We say
that T=(T,..,T,) € L(X)* is a EBS,_ -tuple if TmT]:Tij for any j,m €
{1,..., k} and

k
(T) = span U x(n,T) | where x(n,T)= Tlnl...Tknk (ﬂkersz"j), (2.2)

neNF Jj=1
is dense in X.

It is easy to see that in the case of one operator (that is, k=1 and
T=T, € L(X)), x(n,T)=T"(kerT*")=kerT" NT"(X)and therefore the
last definition is a generalization of the previous one. In order to study
extended backward shifts we need to establish some properties of the
backward shift on the finite dimensional space K*".

Backward shift on K**

The following lemma is a modification of a lemma from reference
[28].

Lemma 2.1. For each n € N and z € C\{0}, the matrix

JJrk=1]" o .
Ay p = is invertible.
ZT Gk
Jok=1

5

(k+n—-0)!
Proof. For each n, k € N consider the matrixw,, - {m}’,’, -

First, we demonstrate that the determinants of Mn,k satisfy the recurrent
formula

—D'k! !
detM,, 4 = (n=DHkik+1) (2.3)

mdetMn_uﬁz forn>2.

The equality (2.3) for n=2 is trivial. Suppose now that n > 3.
Subtracting the previous column from each column of M, , except the

,(k+nflfl)!},1,1

= N, = .
ﬁrstone,weseethatdetMﬂyk detNﬂykwhere nk Grn—ta ) S

- Dividing the j-th row of N by j and multiplying the j-th column by

a}.:(k +n—j+1)(k+n-j)for1<j<n, wearrive at the matrix M
Hence

n—1,k+2°

n—1

det My j =detM,_ 1k+2HJ =

Jj=1
which proves (2.3). Since det M, =1 for each k € N, from (2.3),
it follows that det M, , # 0 for any n, k € N. Let now B, be the matrix
obtained from A, by putting the columns of A | in the reverse order.
Clearly det A, —( 1)*~! det B,. On the other hand multiplying the j-th
column of B by (m—-j+1)! for 1 <j<n, we get the matrix M, . Hence,

=Dk +DT

Thtn—Dk+ny LK

det A4, = (-1t detMn,ll_[(J'!Y1 foreachn € N
j=1
Since det M, # 0, we see that det A | # 0 and therefore A |
invertible. Fmally, for any z € C consider the diagonal # x n matrix D
with the entries (1, z,..., 2*"!) on the main diagonal. It is stralghtforward
to verify that

A =zD A D, foranyzEC. (2.4)

Since A and D, for z # 0 are invertible, we see that A ,is invertible

foreachnENandzE(C\{O}

Lemma 2.2. Let n € Nand e,,....e,, be the canonical basis of K*" and
S € L(K?*") be the backward shift defined by Se,=0 and Se,=e, , for 2 <
k < 2n and P the linear projection on K" onto the subspace E=span
{e,...e f along F=span {e_,....e, }. Then for any z € K\ {0} and u, v E E,
there exists a unique x*=x* (u, v) € K*" such that

Px*=u and Pe*x*=v. (2.5)

Moreover, for any bounded subset B of E and any € > 0, there is
c=c(&, B) > 0 such that

sup | (x*(u,v)psj IS cl2 [/ for1<j<nand |z>¢ (2.6)
u,veB
SUPy veB \(eZSxZ(u,v))n_U- <clz| J for 1< j<nand |z|2 €. (2.7)

In particular, x* (u, v) > u and e x* (u, v) > v as |z| > oo uniformly
for u, v from any bounded subset of E.

Proof. Let u, v € E and z € K\ {0}. For y € K*" we denote

y:(yn+la'~'5y2n)EKn

One easily sees that (2.5) is equivalent to the vector equation
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A X" =w, (2.8)

where A s the matrix from Lemma 2.1 and w*=w* (u, v) € K* is
defined as
n k+j-n—1
z z e . .
W=V, .1— — % forl<j<n
J n—j+1 z Y f J >
Py (k+j—-n-1)!

provided we set x=u for 1 <j < n. According to Lemma 2.1, the matrix
A, s invertible for any z € K \{0} and therefore (2.8) is uniquely
solvable. Thus there exists a unique x°=x(z, u, v) € K" satisfying (2.5). It
remains to verify the estimates (2.6) and (2.7). From (2.9) it follows that
for any bounded subset B of E and any ¢ > 0, there is a=a(e, B) such that

|(w* (u, v))j | <alz'ifu,vEB, |z| zeand 1 <j < n. (2.10)

Recall that D, _is the diagonal n x n matrix with the entries (1, z,...,
z"1) on the d1agona1 Equalities (2.8) and (2.4) imply

- -1z 11 4-1p-1_ 2
:An,zw =z Dn,zAn,an,zW >

where we use invertibility of A | provided by Lemma 2.1. According to
(2.10), the set {D;lzwz (u,v):|z |2 €,u,ve B} is bounded in K". Hence
the set 0 ={4, D,

- Zw “(u,v):| z |> €, u,v € B} is bounded in K". From

the last display we see that

(XZ(M,V))n+j—X C{Z (Dnzy)j J’GQ} 1ﬂz\>euveB
Boundedness of Q implies now that (2.6) is satisfied with some
c=c, (&, B). Finally, since
1 Y
2n

I-n—j z
zS z z X
(€ x )y s =

(=n=p!

I=n+j

there exists c=c,(e, B) for which (2.7) is satisfied. Hence both (2.7) and
(2.6) are satisfied with

for 1<j<n,

c=max{ c,(& B), c,(&, B)}.
The next corollary follows immediately from Lemma 2.2.

Corollary 2.3. Let n € N, E € K* and S € L(K*") be as in Lemma
2.2. Then for any u, v € E and any sequence {z},_, in K satisfying |zj | >

JEZ+

oo, there exists a sequence {x},_, of elements of K*" such that x, > u and

E€Z+
eF X, >vasj-> e

Lemma 2.4. Let n € N, E € K*. and S € L(K*") be as in Lemma
2.2. Then for any bounded sequences {u}_, and {v},_, of elements of E,
there exists a sequence {x},, of elements OfKZn such that x, — u > 0 and
(I+S)1xj—vj90asj%oo.

Proof. It is easy to see that there is J€ L(K*") such that J has an upper
triangular matrix, J is invertible and S=J /(e — I)]. Indeed, S and e - I
are similar since they are nilpotent of maximal rank 27 — 1. Moreover,
since S and e* — I are upper triangular, the similarity operator can be
chosen upper triangular and therefore J (E) € E.

Let now x]:] “Ix (]uj, ]vj), where x* (u, v) is defined in Lemma 2.2.
Since the set

{]uJ.:jEZJU{]vj:jEZJ

is bounded and is contained in E because J (E) € E, from Lemma 2.2
it follows that x/ (]u ]v) - ]u > 0and &° ¥ (]u] ]vj) ]vj >0asj> oo
Multiplying by J !, we obtaln X - u > Oand ] e ]x (I+S) X -V 0
asj > oo,

In order to construct multi-parameter mixing semigroups, we need
the following multi-operator version of Corollary 2.3.

Lemma 2.5. Let kK € N, s 1, € N, for each j € {1,...3 k} let
e{',...,e’z/'n be the canonical basis in K*", E=span {e{,.,.,eﬁ_ } and

Sj € L( ]Kz"f ) be the backward shift: S e/=0and 2 <1< 2n Let also

X=K"®..® K™ E-E®.. ®F and for 1< j<k,
TeLX),T-1Q®.IQSQI®..QL

where S sits in the j"* place. Finally, let {z } _  be a sequence
of elements of K* with |z | > co. Then for any u, v € E, there
exists a sequence {x } _ of elements of X such that x > u and
e<z'"’T>xm — vas m —> oo, where(s,T) =51} +...+ 5, T.

Proof. If the statement of the lemma is false, then there are u, v € E
and a subsequence {z' } _ of {z } such that (4, v) does not belong to

the closure of the set {(x,e<zl”T>x) xeX,meZ,}-

Let K =K U {0} be the one-point compactification of K. Since
&Y is compact and metrizable, we can pick a convergent in ¥
subsequence {z_ "} of {z . Clearly the statement of the lemma remains
false with {z_} replaced by {z "}. That is, it suffices to consider the case

when {z } converges in K" .

Thus w1th0ut loss of generality, we can assume that {z, } converges
to w €KX. Let C= {j : w=co}. Since |z, | > oo, the set C is non-empty.
Without loss of generahty, we may also assume that C={1,..., r} with 1
<r<k.

Denote by X the set of (4, v) € X x X such that there exists a sequence
{x }z. of elements of X for which x - u and e<zm’T>xm —Svasm—o.
We have to demonstrate that E x E S X. Letu, € E for 1 < j < kand
u=u, ... ® u,. By Corollary 2.3, for 1 j < r, there exist sequences
{x. }cz, and {y. ) mez, Of elements of K2 such that

jom

(Zn);S;

S
X m U Yjim 2 uj and %)

Xjm = 0.e iyim —>0asm—wfor 1< j<r.

WS, )
Now we put x; , =e " ‘ujandy, =u forr<j<kandm€Z.

Consider the sequences {x } _ and{y } _ of elements of X defined
by the formula x =x, ®..Q x, andy =y Q.. & y, . According
to the definition of X, "and »,, and the above display, x > 0and y - u.
Indeed, x, > 0 because for any j, the sequence x,  is bounded and X,
> 0. Slmllarly, taking into account that (z,) > w, for j > r, we see that
o2 T>x —uand 5 >y — 0. Hence (u, 0)e ZJ and (0, u) € 2. Thus

({0} xE) U (E,x {0}) €,

where E={u, @... ® u, : uw€E,l1<j< k}. On the other hand, it is
easy to see that the linear span of the set ({0} x E) U (E, x {0}) is exactly
E x E. Since X is a linear space, the above display implies that Ex E € X.

For applications it is more convenient to reformulate the above
lemma in the coordinate form.

Corollary 2.6. Let k € N, Ny . 1, EN, for each j € {1,..., k}let
Nj={1,..., an}, Qj ={1,..., nj}. Consider the sets M=N, x... x N,, M ,=Q, x...
x Q, and let {e  : m € M} be the canonical basis of the finite dimensional
vector space X=K". Let E=span {e : m € M} and for 1 <j < k T €
L(X) be the operator acting on the canonical basis in the following way:
Te,=0ifm=1,T e, =e "ifm > 1, wherem/'=m’ ifl #j m'=m — 1. Then
for any sequence {zm of elements ofK" wzth |z, | oo and any u, v €
of elements of X such that x - u and

MmEZ+

E, there exists a sequence {x g

Dy v asm > oo,
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The key lemmas

Lemma 2.7. Let X be a Hausdorff topological vector space, k € N,
n=(n,..., n) € N‘and A=(A,,..., A)) € L(X)" be such that A. A=A A for
anyl,j€ {1, ., k}. Then for each xfrom the space x(n, A) deffned by (2 2),
there exists a common finite dimensional invariant subspace for A ..., A,
such that for any sequence {z }, _, of elements of K* with |z | > oo there
exist sequences {x_} .}z, 0f elements of Y for which

meZ+
Xy =0, e<z””A>xm =X, Yy X, e<z""A>ym — 0as m — o, (2.11)
where (s, 4) = (sj4 +...+sp 4 |y
Proof. Since x € k(n, T), there exists y € X such that x= 4" 4"y

and Aznfyzo for I <j < k.Foreachj € {1,.., k} let N]:{l,..., an} and
Qj:{l,.‘., n].}. Denote M=N, x... x N,, M;=Q, x... x Q,. For any | € M,
let fy = 4>l 4"l and let Y=span {h,: | € M}. Clearly Y is finite
dlmensmnal Itis also straightforward to Verlfy that Ah=0ifl=Iand A,
h=h,ifl > 1, where I'=] forr# j,I'=l - 1,1<j< k ItfollowsthatY
is 1nvar1ant for A, for 1< j < k. Consider the linear operator J:KM>Y
defined on the canonical basis by the formulas Je=h, for I € M. Let also
E=span {e;: | € M} and T] € L(K™) be the operators from Corollary 2.6.
Taking into account the definition of T’ and the action of A, on h, we
see that A/:]Tj for 1 <j< k. Clearly n=(n,..., n) € M, and therefore e,

€ E.Since x=A"... 4" y , we also see that x=h . According to Corollary
2.6, there exist sequences {u,_/ and {v } _. of elements of KMsuch

Z,. T
that u,, — e,,¢“u,, —0,v,, -0 and &y e asm — o -

mEL+ meZ+

Now
lety =Ju,_and x =Jv, form € Z . Then {x } and {y,} are sequences of

elements of Y. From the intertwining relations A J=JT' and the fact that
K™and Y are finite dimensional, it follows that x - J0=0, y, > Je =x,
&y s Je, =x, &y 5 J0=0 . Thus (2. 11) is satisfied.

Let X be a topological vector space and T=(T,..., T,) € L(X)*. We

write T € e(k, X) if for o any z € K, the series zl’(z,T)”x converges
n:

n=0

=Dy from KF x X to X is separately
0

in X and the map (z,x) —>e
1

continuous, where (z,T)=zT +...+z,T; and Sx= Z—'S”x _ The
n!

n=
following proposition is an elementary exercise. We leave its proof for
the reader.

Proposition 2.8. Let k € N, X be a locally convex space and T €
¢ (k, X). Assume also that T, Tm:TmTj for any m, j € {I,..., k}. Then

el
zeK
then the map 7 %1y from C* to X is holomorphic for each x € X.

. is a strongly continuous operator group. Moreover, if K=C,

Remark 2.9. It is worth noting that the semigroup property
LzwD) _ [(21) wT) fails if the operators T, are not pairwise

commuting.

Corollary 2.10. Let X be a locally convex space, k EN, n,,..., n, €N
and A=(A ..., A,) € € (k, X) be such that Aj AFA, Ajfor anyl, j € {1,...,
k}. Then for each x, y from the space ker" (A) defined by (2.2) and any

sequence {Z } . of elements of K¥ with |z | > o, there exist a sequence

mEZ+
{um}mez+ in X such that u >x and e<Zm’A>um — yasm-> oo,

Proof. Fix a sequence {z,} _, of elements of K*with |z_| > . Let

2 be the set of (x, y) € X x X for which there exists a sequence {u } _, in X

(2, 4)

such that u > xand e u,, —> y as m - oo, According to Lemma

2.7, k(n, A) x {0} € X and {0} x x(n, A) € X for any n=(n,.., n,) € N,
where the space k(n, A) is defined by (2.2). On the other hand, from
the definition of X it is clear that X is a linear subspace of X x X. Thus

kerT (4) x kerT (4) = span U ((K(n,A)x {0}) U (10} x K(n,A))) cs
neN¥
Hence (x, y) € X for any x, y € kert (A).
Lemma 2.11. Let X be a topological vector space, z € K, |z]=1, A E

L(X), m € N and x € A"(X) N ker A™. There exist sequences {u,}
v}y, of elements of X such that

kEL+

u>0,25I+A)fu>xv>x2(I+A}v,>0ask>0. (2.12)

Proof. If x=0, we can take u,=v,=0, so we may assume that x # 0.
Let n be the smallest positive integer for which A"x=0. Since A”x=0, we
have n < m. Hence x € A"(X) S A"(X). Thus we can pick w € X such
that A"w=x. Denote

hj=A"7w for 1 < j < 2nand Y=span {h,,..., h, }.

Clearly Ah=h , for 2 < j <  2n, h=A"h =A"w=x and
Ah=A""h, —A"x 0. By definition of n we have h =A2" 1h =A"1x # 0.
In partlcular A(Y) C Y, (A|y)2“—0 and (A|y )2l 0 Since the order of
nilpotency of a nilpotent operator on Y cannot exceed the dimension
of Y, we have dim Y > 2xn. On the other hand Y is the span of the
2n-elements set {hp---> th}- Hence {hp"-’ th} is a linear basis of Y. Thus
there exists a unique linear isomorphism J : K** > Y such that Je =
for I < j < 2n.Since Ah=h_, for 2 < j < 2n and Ah=0, we have
A| =JSJ”!, where S € L(Kz") is the backward shift operator from Lemma
22 Applying Lemma 2.4 with u"=(0,..., 0, 1) and v"=(0,..., 0, 0), we
find that there exists a sequence {gk}kEZ+ of vectors in K such that g,
> e, and (I +S)*g, - 0as k> . Applying Lemma 2.4 with u=(0...., 0,
0) and v"=(0,..., 0, z™), there exists also a sequence {fk}kEZ+ of vectors in
K> such that f, > 0 and 2" (I + S)*f, > e _as k > co. Define now u,=]f, and
v.=Jg, fork € Z,. Since Y and K?" are finite dimensional, we see that

Vg o Jep =x, uy >0, (I + vy =TI+ T gy =TI+ 8Y g >0,
K+ afuy =K+ 8% 57 up =K aa+ F £, > Jep =xas k— .
Thus the sequences {u,} and {v,} satisfy the desired conditions.

The following corollary of Lemma 2.11 seems to be of independent
interest.

Theorem 2.12. Let X be a topological vector space, T € L(X) and
A(T) be the set defined in (1.1). Then for any u, v € A(T), there exists a
sequence {Xylrez, in X such that x, > u and T x_> v as k> co.

Proof. Let X be the set of pairs (x, y) € X x X for which there exists
a sequence {Xjltez, of elements of X such that x> x and T* x, > .
Pick z € K with |z|=1 and n € N and let
x € ker (T — zI)" N (T — zI)"(X)=ker A" N A*(X), where A=z"'T — L.

By Lemma 2.11, there exist sequences {uitrez, and Witkez, in
X satisfying (2.12). Since I + A=z"'T, (2.12) can be rewritten in the
following way:

v,>% TV > 0,u >0, T'u >xas k> oo.
This shows that for any n € N and any z € K with |z]=1,
(ker(T—zl)" r\(T—zI)"(X))x {0yc= and {0}x (ker(T—zI)" r\(T—z])”(X)) cx

On the other hand, the fact that X is a linear subspace of X x X, the
definition of A(T) and the above display imply that A(T) x A(T) € X.
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Mixing semigroups and extended backward shifts

We start by proving Proposition 1.1. The next observation is
Proposition 1 in reference [28].

Proposition G. Let X be a topological space and F={T : a € A} be
a family of continuous maps from X to X such that T T;=T,T, for any
o« B € Aand T (X) is dense in X for any a € A. Then the set of universal
elements for F is either empty or dense in X.

The following general theorem can be found in reference [28].

Theorem U. Let X be a Baire topological space, Y a second countable
topological space and {T ;: a € A} a family of continuous maps from X
into Y. Then the following assertions are equivalent:

(U)) The set of universal elements for {T  : a € A} is dense in X;

(U,) The set of universal elements for {T : a € A} is a dense G -subset
of X;

(U,) The set {(x, Tx): x € X, a € A} is dense in X x Y.

Proof of Proposition 1.1. Assume that {T}_, is hereditarily
hypercyclic. That is, {7, :ne€Z,}is universal for any sequence
{tn}nez, of elements of A'such that |t | > co. Applying this property
to the sequence t =nt with t € A, |t| > 0, we see that T, is hypercyclic.
Since any hypercyclic operator has dense range [28], we get that T(X)
is dense in X for any t € A with |t| > 0. We proceed by reasoning ad
absurdum. Assume that {T'} €, is non-mixing. Then there exist non-
empty open subsets U and V of X and a sequence ninez, of elements
of A such that |t | > o and |2 > 0.7 (U)NV =D for each n € Z+. Since
each T} has dense range and T;, commute with each other, Proposition
G implies that the set W of universal elements of {7; :n€Z,} iseither
empty or dense in X. Since {7; :7€Z.}is universal, W is non-empty
and therefore dense in X. Hence we can pick x € W n U. Since x is
universal for {7, :neZ,}, there is n € Z_for which T; x € V. Hence
T, xeT, U)NV =2 - This contradiction completes the proof of (1.1.1).

Next, assume that X is Baire separable and metrizable, {T[} E, is
mixing and {#,},ez, is a sequence of elements of A such that |t | > co.
From the definition of mixing it follows that for any non-empty open
subsets U and V of X, T; (U)NV # for all sufficiently large n € Z_

Hence {(x,]; x):xeX,neZ,} is dense in X x X. By Theorem U,
{T; :n€Z,} isuniversal.

Theorem 2.13. Let X be a topological vector space, k € N and
A:(AI,..., Ak) €c(k, X)bea EBS, -tuple. Then the strongly continuous

group {€<Z’A>}Z€K1¢ is mixing. If additionally X is Baire separable and
metrizable, {e<z’A>}Z€Kk is hereditarily hypercyclic.

Proof. Assume that {e*" -
empty open subsets U and V of X and a sequence {z,, },,cz in K*such
that |z | > co as m > co and & ()~ =@ for each m € Z,.Let X be
the set of pairs (x, y) € X x X for which there exists a sequence {x;,}mez, of
elements of X such thatx_ > xand &on ’A>xm — y . According to Corollary
2.10, ker" (A) x ker" (A) € . Since A=(A ..., A,) is a EBS, -tuple, ker" (A)
is dense in X and therefore ¥ is dense in X x X. In particular, ¥ meets U
x V, which is not possible since {Zm>4) (U)nV =g foranym € Z . This
contradiction shows that {e!*} Lcik 18 mixin{g. If X is Baire separable
and metrizable, Proposition 1.1 implies that {e 24 -kt is hereditarily
hypercyclic.

is non-mixing. Then we can find non-

It is easy to see that if X is a Banach space and k € N, then L(X)f=¢
(k, X). Moreover, each operator group of the shape {e!>4}

zeKF

is uniformly continuous. Hence, we get the following corollary of
Theorem 2.13.

Corollary 2.14. Let X be a separable Banach space and (A,..., A,)
€ L(X)* be a EBS,_ -tuple. Then {¢f+4} o is a hereditarily hypercyclic
uniformly continuous group. -

(,-sequences, equicontinuous sets and the class 1

Lemma 3.1. Let Y, and Y, be closed linear subspaces of a locally
convex space Y such that Y, € Y, and the topology of Y /Y is not weak.
Then there is a sequence {f, : n € Z } in Y'such that

(3.1.1) ¢;{{f;1<y>}nez+ :erl};
(3.12) #, |Y0: 0foreachn € Z ;
(3.1.3) {f, : n € Z } is uniformly equicontinuous.

Proof. Since the topology of Y,/Y, is not weak, there exists a
continuous seminorm p on Y /Y, such that the closed linear space ker
5= p~1(0) has infinite codimension in Y /Y. Clearly the seminorm p
on Y, defined by the formula p(y)=jp(y +Y) is also continuous and
ker p has infinite codimension and contains Y. In particular the space
Y=Y /ker p endowed with the norm ||x+ker p||=p(x) is an infinite
dimensional normed space. Hence we can choose sequences {y,},c7
in Y, and {gu}nez, in V', such that ||g [| < 1 for each n € Z and g”(;/k
+ ker p)=6mk for n, k € Z+, where 6n,k is the Kronecker § (every infinite
dimensional normed space admits a biorthogonal sequence). Now let
the functionals & : Y, > K be defined by the formula k. (y)=g (y, + ker
p). The above properties of the functionals g, can be rewritten in terms
of b in the following way

|k, (| <p(y)and b (y)=6  foranyn k€Z+andy€ Y,

Since any continuous seminorm on a subspace of a locally convex
space extends to a continuous seminorm on the entire space [17,29], we

can find a continuous seminorm g on Y such that ¢ L=P.

Applying the Hahn-Banach theorem, we can ﬁndf“ €Y' forn €
7, such that

Jn |y =l and | f(y)[<q(y) foranyneZ, andyeY.

From the last two displays we have f, (y,)=0, ,, which implies (3.1.1)
since y, € Y,. From the inequality in the above display it follows that
each |f| is bounded by 1 on the unit ball W of the seminorm g. Since
W is a neighborhood of zero in Y, condition (3.1.3) is satisfied. Since Y,
€ ker p € ker g, from the inequality |f,(y)| < q(y) it follows that each f,

vanishes on Y. That is, (3.1.2) is satisfied.

Applying Lemma 3.1 with Y,=0 and Y =Y, we obtain the following
corollary.

Corollary 3.2. Let Y be a locally convex space, whose topology is
not weak. Then there exists a linearly independent sequence {f, : n
€ Z } in Y' such that { f, : n € Z } is uniformly equicontinuous and

pc {fn(y)}n€Z+:yEY ’

Recall that a subset D of a locally convex space X is called a disk if
D is bounded, convex and balanced (=is stable under multiplication
by any X € K with |\| < 1). The symbol X, stands for the space span
(D) endowed with the norm being the Minkowskii functional of the
set D. Boundedness of D implies that the topology of X is stronger
than the one inherited from X. A disk D in X is called a Banach disk if
the normed space X, is complete. It is well-known that a sequentially
complete disk is a Banach disk, see, for instance, [29]. In particular, a
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compact or a sequentially compact disk is a Banach disk. We say that
Dis a Banach s-disk in X if D is a Banach disk and the Banach space X,
is separable.

Lemma 3.3. Let {x } . be an ( -sequence in a locally convex
ne
space X. Then the set *

o0
K= {Zanxn raely,l|a H151}
n=0

is a compact and metrizable disk. Moreover, K is a Banach s-disk and
E=span {x :n € Z } is dense in the Banach space X,.

Proof. Let Q={a € /, :|[a]|1 < 1} be endowed with the coordinatewise
convergence topology. It is easy to see that Q is a metrizable compact
topological space as a closed subspace of D%, where D={z € K: |z| < 1}.

o0
Obviously, the map ¢: Q > K, ®(a)= Zanxn is onto. It is also easy to
n=0
see that ¢ is continuous. Indeed, let p be a continuous seminorm on X,
a € Qand € > 0. Since x, > 0, there is m € Z_such that p(x ) < e for n >
m. Let 0=¢(1 + p(x) +... + p(x, )) " and W={b € Q: |u]. - b]. |<dforo<;j
< m}. Then W is a neighborhood of a in Q and for each b € W we have

POB) - D(a)) = p(i(bn RAE ilbn ~ay | Py
n=0

n=0

Taking into account that p(x ) < e forn >mand [a - b | < 8 for n
< m, we obtain

m o0
PO -0@)Z5 D plim)+e D by=anl.
n=0

n=m+1

Using the definition of & and inequalities [|a||, < L, [|b]| , < 1, we

see that p(p(b) — ¢(a)) < 3e. Since a, p and ¢ are arbitrary, the map ¢ is
continuous. Hence K is compact and metrizable as a continuous image
of a compact metrizable space. Obviously K is convex and balanced.
Hence K is a Banach disk (any compact disk is a Banach disk). Let us
show that E is dense in X,. Take u € X,. Then there is a € /, such that
0 n
u :Zakxk . Clearly, for any n € Z , up = Zakxk cE.
k=0 k=0

Let || - || be the norm of the Banach space X,. Then foranyn € Z ,

0
< Z laj | >0 asn— oo,

k=n+1
Hence E is dense in X, and therefore X, is separable and K is a
Banach s-disk.

o0

2w

k=n+1

llu—u, =

Lemma 3.4. Let X be a separable metrizable topological vector space
and ninez, be a linearly independent sequence in X. Then there exist
sequences {(¥u}nez, in X and{ay jik jez., j<k ,in K such that span {x, :
k€Z }is dense in X, g (x,)=0 for n # k and g (x) # 0 for n € Z , where

gn=Jn+ E ‘Zn,jfj'

Jj<n

Proof. Let {U,},cz, beabase of topology of X. First, we construct
inductively sequences i@, ik, jez,,j<k in K and {inez, in X such
that forany k € Z ,

(bl)yk EU;

(b2) g, (y,) # 0, where gk =fk + Zak,jfj;
J<k

(b3) g, (y)=0if m < k.

Let g =f,. Since f, # 0, there is y, € U, such that f,(y )=g,(y,) # 0. This
provides us with the base of induction. Assume now that n € Nand y,,
o, with j < k < n satisfying (b1- b3) are already constructed. According

to (b2) and (b3), we can find « ,0,..., a, €K such that g (y )=0 for m

= —+ . f . . .
< n, where &n=/n ZO’"J» J- Next since f are linearly independent, g,
Jj<n
# 0 and therefore there is y, € U, such that g (y ) # 0. This concludes
the description of the inductive procedure of constructing sequences
{ k jikjez j< and {Vylpez, satisfying (b1-b3) for eachk € Z .

Using (b2) and (b3), one can easily demonstrate that there is
a sequence {f i}t ez, j<k in K such that g (x)=0 for k = m,

X = Vit zﬂk,jyj . From (b2) and (b3) it also follows that g (x ) 0 for
J<k

each n € Z . It remains to notice that according to (b1), {y : n € Z } is

dense in X. Since {y :n € Z } Sspan{y :n€Z }=span{x :n€Z },

we see that span {x_:n € Z } is dense in X.

Lemma 3.5. Let X € 9. Then there exist sequences {x,,}”e% and
{fiskez, in X and X' rspectively, such that

(3.5.1) {xn}nEZ+ is an [ -sequence in X;

(3.5.2) the space E=span {x : n € Z } is dense in X;
(3.5.3)f, (x )=0ifk #nandf, (x)# 0foreachk €Z ;
(3.54) {f, : k € Z } is uniformly equicontinuous.

Moreover, {f,} can be chosen from the linear span of any linearly
independent uniformly equicontinuous sequence in X'.

Proof. According to Lemma 3.3, there exists a Banach s-disk K
in X such that X, is dense in X. By Corollary 3.2, there is a linearly

independent sequence {g,},.y, inX'such that{g :n € N} is uniformly
equicontinuous. Since X, is dense in X, the functionals g, |y, on X, are
linearly independent. Applying Lemma 3.4 to the sequence {g, |y, },we
find that there exist sequences {y,},ez, in X and {&y ;i jez,, <k in

K such that E=span {y, : k € Z } is dense in X, h (y =0 for n #k and
h(y,) # 0 for n € Z , where hy =gy +20€n,jgj . Let q be the norm

Jj<n
-1
of the Banach space X, Consider fn:cnhn, where ¢n :(1+ Zlan,j ‘) .
Jj<n
Since {g,: n € N} is uniformly equicontinuous and » =& * Z”‘n,jgj ,
Jj<n
we immediately see that {f, : n € N} is uniformly equicontinuous. Next,
let x =by , where b =2""q(x ). Since x, converges to 0 in the Banach

space X, {xn }nEN is an /,-sequence in X,. Since the topology of X, is
stronger than the one inherited from X, { X, }neN is an /,-sequence in

X. Since span {x :n € Z }=span {y, : n € Z } is dense in X,, it is also
dense in X, in the topology inherited from X. Since X, is dense in X,
span {x : n € Z } is dense in X. Finally since f,(x )=c b, h (y,), we see
that f (x )=0 if n # k and f,(x ) # 0 for any n € Z . Thus conditions
(3.5.1-3.5.4) are satisfied.

Lemma 3.6. Let X be a locally convex space, whose topology is not
weak and Y be a locally convex space admitting an ( -sequence with
dense span. Then there is T € L(Y, X) such that T (X) is dense in Y.
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Proof. Let {ynlnez, be an £ -sequence in Y with dense span. By

Corollary 3.2, there is a uniformly equicontinuous sequence {/n}neN,
in X'such that o { {fnnez, xe X} ,. Consider the linear operator T':
o0

X > Y defined by the formula 7x 222_"fn (¥)yn .Since {f,} is uniformly

equicontinuous, there is a continugug seminorm p on X such that [f, (x)|
< p(x) for any x € X and n € Z_. Since {y } is an / -sequence, Lemma
3.3 implies that the closed convex balanced hull Q of {y : n € Z } is
compact and metrizable. Let g be the Minkowskii functional of Q (=the
norm on YQ). It is easy to see that q(T x) < p(x) for each x € X. Hence
T is continuous as an operator from X to the Banach space Y. Since

Q
the latter carries the topology stronger than the one inherited from Y,

T € L(X, Y). Next, the inclusion ¢ { {fn(D}nez, 1xe€ x} , implies that

T (X) contains the linear span of {y : n € Z }, which is dense in Y. Thus
T has dense range.

Lemma 3.7. Let X be an infinite dimensional locally convex space
and assume that there exist { -sequences with dense span in both X and
X'y, Then there exist sequences {Xntnen, and Sitkez, in X and X'
respectwely, such that

(3.7.1) {Xulnez, is an (-sequence in X and {fy}nez, is an (-
sequence in X'ﬁ;

(3.7.2) E=span {x : n € Z } is dense in X and F=span {f : n € Z } is
dense in X’ﬁ;

(3.7.3) f(x, )=0 if k # nand f, (x,) # 0 for each k € Z..

If the original ( -sequence in X', is uniformly equicontinuous, than
we can also ensure that (3.7.4) { f, : n € Z } is uniformly equicontinuous.

Proof. By Lemma 3.3, there exists a Banach s-disk K in X such
that X, is dense in X. Fix an / -sequence {8ntnen in X’ﬂ with dense
span. Since any sequence of elements of a linear space with infinite
dimensional span has a linearly independent subsequence with the
same span, we, passing to a subsequence, if necessary, can assume
that g are linearly independent. Since X, is dense in X, the functionals

2 |x, o0 X, are linearly independent. Let D be the closed absolutely

convex hull of the set {gn: ne Z+} in X 'ﬁ By Lemma 3.3, D is a Banach

disk in X s Applying Lemma 3.4 to the sequence { &n |x, } , we find

that there exist sequences {Vn}nez, in Xand {oy by jez, j<rin K
such that E=span {y,: k€ Z }isdensein X,, h (y,)=0forn#kandh (y )
= &n +Za’1’fgf . Let g be the norm of the

Jj<n
Banach space X, and p be the norm of the Banach space X',. Consider

#0forn € Z,, where h

f,=¢c b, where <u =27 (' +Zb‘n,j \)_1 . Since p(g ) < 1foreachn € Z,

and " =&n +Zan,jgj N vjvznimmediately see that p(f ) < 27" for any
Jj<n
n € Z,. Hence {Uninez, is an £ -sequence in the Banach space X' .
Since the topology of X' is stronger than the one inherited from X',
{fn}nez+ is an / -sequence in X'ﬁ. Similarly,{fn :n € Z+} is uniformly
equicontinuous if {g, : n € Z } is. Since the sequences {8n}nez, and
Uninez, have the same spans, the span of {f,: n € Z } is dense in X'
Next, let xn:b V. where hn:Z’”q(xn)". Since x, converges to 0 in the

Banach space X, {x,},.y isan { -sequence in X,. Since the topology
of X, is stronger than the one inherited from X, {x,},cy is an /£ -
sequence in X. Since span {x,: n € Z }=span {y,: n € Z } is dense in X,
it is also dense in X, in the topology inherited from X. Since X, is dense
in X, span {x : n € Z } is dense in X. Finally since f (x )=c bh (y), we
see that f (x )=0 if n # kand f (x ) # 0 for any n € Z . Thus conditions
(3.7.1-3.5.3) (and (3.5.4) if {g : n € Z } is uniformly equicontinuous)
are satisfied.

Lemma 3.8. The class 9 is stable under finite or countable products.
Moreover, if X € I, then X x K € M.

Proof. It is clear that if the topology of one of the locally convex
spaces X, is not weak, then so is the topology of their productHXj . Thus
the only thing we have to worry about is the existence of an /,-sequence
with dense span. Let ] be a finite or countable infinite set, X, € M for

eachj € Jand *- HX,/ Let for anyj € ], {x]n}neZ

in Xj with dense’ span For (j, n) € J x Z, let u,, € X be such that j*
component of u,  is x, , while all other components are 0. Clearly {u,
j€J, n€Z }isacountable subset of X. It is easy to see that enumeratlng
this subset by elements of Z , we get an /,-sequence in X with dense
span. The proof of the second part of the lemma is even easier: one have
just to add one vector (0, 1) to an £,-sequence with dense span in X=X x
{0}, to obtain an /,-sequence with dense span in X x K.

Proof of Theorem 1.3

Let X € M. By Lemma 3.5, there exist sequences {Xp}nez, and
{ft}kez, in X and X' respectively satisfying (3.5.1-3.5.4). Uniform
equicontinuity of {f} is equivalent to the existence of a continuous
seminorm p on X such that each |f | is bounded by 1 on the unit ball
{x € X : p(x) < 1} of p. Since {x } is an / -sequence in X, Lemma 3.3,
absolutely convex closed hull K of {x :n € Z } is compact and is a
Banach disk in X. Let g be the norm of the Banach space X,. Then g(x,)
< 1foreachn € Z . Let c=sup{p(x) : x € K}. Compactness of K implies
that c is finite. Clearly ¢ > 0 and p(x) < ¢q(x) for any x € Y.

be an £ -sequence

Lemma 4.1. Let a, f3 : Zﬁ Z+ be any maps and a={ay}nez, € L,
Then the formula

Tx = Z anfa(n)(x)xﬁ(n)
nez,

(4.1)
defines a linear operator on X. Moreover, the series Z—T”x ATy
converges in X for any x € X anid z € K and =0

A <al px), g x-x)<c” ecHaH\z\p(x) foreachx € Xand z€ K, (4.2)
where ||al| is the /,-norm of a.

Proof. Condition (3.5.4) implies that the sequence {f, (ﬂ)(x)} is
bounded for any x € X. Since {x,} is an £,-sequence and a € /, we see
that the series in (4.1) converges for any x € X and therefore defines a
linear operator on X. Moreover, if p(x) < 1, then [f, (x)| < 1 for each k
€ Z, and since g(x ) < 1 for m € Z , formula (4.1) implies that q(Tx) <
||a||- Hence q(Tx)< ||a||p(x) for each x € X. Then q(T?x) < ||a|| p(Tx) <
c||a]|q(Tx) < c||a||*p(x). Iterating this argument, we see that

q(T'x) < c*1||a|*p(x) for each n € N.
0 Z}’l
It follows that for any x € X, the series ZFT "x is absolutely
n=1
convergent in the Banach space X, (and therefore in X) for any z € K.
Naturally we denote its sum as e*” x. Moreover, using the above display,
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we obtain
. N2 Yoo NCClallz) S
9@ Tx-x)=¢ ZFT x)<c p(x)z p <c e P(x).
n=l n=1 ‘

Thus (4.2) is satisfied.

Now fix a bijection ¢: Zﬁ -7, . By symbol e we denote the element
of Zk defined by (e ) 8] » where §. is the Kronecker delta. Forn € Z
also write |n|=n, oot n,. For each mEZ, let

&y, =min

nezh | T Go(m) |-
|n|=m+1

According to (3.5.1), (3.5.3) and (3.5.4), {¢, } is a bounded sequence

positive numbers. Next, we pick any sequence {a,}, _, of positive

numbers such that

meZ,

«, >2"a ¢ “‘foranym€Z, (4.3)
and consider the operators A, € L(X) for I < j < k defined by the
formula
)/, (x)
ij_ Z [nl/ p(n+e;) ()
e a|n|+lf(p(n+e )(x¢(n+e ))

From the estimates (4.3) it follows that the series defining Aj can
be written as

Ajx= z C_j,nf¢(n+ej)(x)x¢(n) with 0<‘Cj,n|<2>|n‘

k
neZ’,

Clearly A, have shape (4.1) with [[a[<C= Z a7, By Lemma

k
nez’,

4.1, A; are linear operators on X satisfying q(T x) < Cp(x) for any x

€ X. Hence A. are continuous as operators from X to the Banach
space X,. Since X, carries a stronger topology than the one inherited
from X, A € L(X) for I < j < k. Next, using the definition of A it
is easy to verlfy that AAx =AAx, forany I <] <l<kandne Z

Indeed, for any n € Z there is a unique m eZ such that n= (p(m)
If either m; =0 or m=0, from the definition of A, and A, it follows that
AArx A[Ax =0. Ifm >1and m,> 1 from the same deﬁnltlon we obtain
aljxmm_e__e).From (3.5.2) it follows now that

| S
the operators A peeo An are pairwise commuting. Next, for z € KX, the

AjAlxn = A]ijn =

operator (z, 4) has shape (4.1) with ||a|| < C | 2]|, where ||]| is the ¢ -

0
1
norm of z. By Lemma 4.1, the series E —{z A" converges pointwisely
n:
n=0

to a linear operator (z,4) and
q(e<Z’A>x— x)< c_leCCHZ”p(x) for any x € Xand z € K~ (4.4)

Exactly as for the operat ors A, we see that A54) € LX) for any
z € KX From (4.4), if z, > z in K&, then {24y _; ,(:4)  uniformly
on {x € X: p(x) < 1}. By Proposition 2.8, {e<Z’A>}Z€KA is a uniformly
continuous group and the map ;s o(%4); is holomorphic for any
x € X provided K=C. The proof will be complete if we show that the
group {e<Z’A>}Z€Kk is hereditarily hypercyclic. To this end consider

the restrictions B; of A, to X, as bounded linear operators on the

Banach space X,. Then B, commute with each other as the restrictions
of commuting operators. Let us show that the operator group

(z,4)
{e }ze]K

suffices to verify that B=(B,,..., B,) is a EBS, -tuple. We already know
that B, are pairwise commuting. From the definition of B, it is easy to

» on X, is hereditarily hypercyclic. By Corollary 2.14, it

see that ker B", contains E; , =span{x,,): neZ+,n <m-1} .Using

this fact it is easy to see that for any m € NX, the set x(m, B) defined by
(2.2) contains

k
Em:ﬂEjm 7vpan{x¢(n) neZﬁ, ~71,13j3k},
j=1
Hence the space ker' B defined in (2.2) contains

U Ep =span{x, :neZ.} . By Lemma 3.3, ker'(B) is dense in X,. Hence

meNF

B is an EBS, -tuple. Thus according to Corollary 2.14, el Lekk 1S
hereditarily hypercyclic. Since X, is dense in X and carries a topology

stronger than the one inherited from X, {e<Z’A>}Z€K/( is hereditarily

hypercyclic. By Proposition 1.1, {€<Z’A>}zeK" is mixing.

Theorem 1.18: proof and applications

Proof of Theorem 1.18. Assume that T is non-mixing. Then we can
choose non-empty open subsets U and V of X and a strictly increasing
sequence {nk}keZJr of positive integers such that 7" U)nr =g for

any k € Z_. Let X be the set of (x, y) € X x X for which there exists a

sequence {xk} of elements of X such that x, > x and 7"%x; >y .

neZ+

According to Theorem 2.12, X contains A(T) x A(T). Since A(T) is dense
in X, we see that ¥ is dense in X x X. Hence X intersects U x V, which

is impossible since 77% )~y = for any k € Z . This contradiction
shows that T is mixing. If X is Baire separable and metrizable, then by
Proposition 1.1, T is hereditarily hypercyclic.

Extensions of the Salas theorem

It is easy to see that ker'T € A(I + T) for any linear operator T. Thus
Theorem 1.18 implies the following corollary.

Corollary 5.1. Let T be an extended backward shift on a topological
vector space X. Then I + T is mixing. If additionally X is Baire, separable
and metrizable, then I + T is hereditarily hypercyclic.

Recall that a backward weighted shift on £ =/ (Z,) for 1 <p < eo

or ¢,=c,(Z,) is the operator T acting on the canonical basis {e, },q as

follows: Te,=0 and Te =w e, for n > 1, where w={w } _ isabounded
sequence of non-zero numbers in K. Clearly any backward weighted
shift is a generalized backward shift and therefore is an extended
backward shift. Hence Corollary 5.1 contains the Salas theorem on
hypercyclicity of the operators I + T with T being a backward weighted
shift as a particular case. It is also easy to see that if X is a topological
vector space and T € L(X) is surjective, then ker’" T=ker*T. Thus we
obtain the following corollary.

Corollary 5.2. Let X be a topological vector space and T € L(X)
be such that T (X)=X and ker* T is dense in X. Then I + T is mixing.
If additionally X is Baire, separable and metrizable, then I + T is
hereditarily hypercyclic.

We can further generalize Corollary 5.1 by means of the following
observation.
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Lemma 5.3. Let X be a topological vector space, k €N, T € L(X) and
0

, . k+j
{a} ., be a sequence in K such that the series ZajT ﬂ of operators

Jj=1
converges pointwise to a continuous linear operator S on X. Then ker" T¢

C ker' (T* +S).

Proof. In order to prove the inclusion ker " T% < ker T(T* +5), it is
enough to show that ker Tk ATk 30y = ker T (1K 1) for any n € N. Thus
pick n € Nandlet x € ker T¥" AT"(X) . Then rkn, _( and there isy

€ X such that Tk”y:x .For 1 £ j < 2kn denote hj :TZk”*jy .Itis easy
to see that Th) =0, Thj=h;_y for 2< j < 2knand hy, =x . Consider
the backward shift B on the spaceK*", which acts on the canonical basic
vectors by the same rule: Be=0 and Be; =e;_; for 2 < j < 2kn. Let
Y =span{h,: 1 < j < 2kn} and consider the surjective linear operator
J: K*' > Y defined by Jej=h; for 1 < j < 2kn. It is easy to see that
Y is T-invariant and T J=/B, where T € L(Y) is the restriction of T
to Y. Since B #"=0, we see that T%k" =0 and therefore the restriction
ReL(Y) of Tk 4§ to Y is given by the formula R=p(Ty), where P
2kn—k-1

. . _k K] - .
is the polynomial defined by p(z)=z"+ Z ajz"/ . Let E =spanfe; :
1 < j < knj. Considering the matrix of fhe operator p(B), it is easy
to see that e, € E = ker p(B)" = p(B)" (K) . Using the intertwining
relation Ty ] = JB, we see that x = J(ey,) € J(E) < ker p(Ty)" A p(Ty YY) .
Since R= p(Ty) is the restriction to Y of the operator T* +8, we see that
x € ker p(Tk +3)" m(Tk +9"(X) < kerT(Tk +S).

The following result is an immediate consequence of Lemma 5.3
and Corollary 5.1.

Corollary 5.4 Let X be a topological vector space, k € N, T € L(X)
and {a;}jen be a sequence in K such that the series ZakaH of

L ) ; j=1
operators converges pointwise to a continuous linear operator S on X.
Assume also that T* is an extended backward shift. Then the operator
I+T*+S is mixing. If additionally X is Baire separable and metrizable,
then I+T*+S is hereditarily hypercyclic.

It is straightforward to verify that any power of a generalized
weighted shift is an extended backward shift. Thus the above corollary
implies the next observation.

Corollary 5.5 Let X be a topological vector space, T € L(X) be a
generalized backward shift and {a_/}jez+ be a sequence in K such that

ag =1, thereis n € N for which a, #0 and the series a;T) converges
j=0

pointwise to a continuous linear operator S on X. Then S is mixing. If

additionally X is Baire separable and metrizable, then S is hereditarily

hypercyclic.

An extension of the Hilden-Wallen theorem

Lemma 5.6 Let X be a Baire topological space, Y be a second
countable topological space and {Tn}neZ+ be a sequence of continuous
maps from X to Y. Let alsoX be the set of (X,y)€ XXY for which there
exists a sequence \Xn }neZ+ of elements of X such that x, —>x and
T,x, —y as n—© . If¥is dense in XXY, then {Tn}neZ+ is hereditarily
universal.

Proof. The density of ¥ in XxY implies that for any infinite set
AcCZ,, condition (U3) from Theorem U is satisfied for the family

{T,:ne A} and therefore this family is universal.

Hilden and Wallen [30] demonstrated that any backward weighted
shift on £ for 1< p<co is supercyclic. Many particular cases of the
following proposition are known, see for instance [31]. We include it
here in its full generality for the sake of completeness.

Proposition 5.7 Let X be a Baire separable metrizable topological
vector space T € L(X). Suppose also that T has dense range and dense
generalized kernel. Then T is hereditarily supercyclic.

Proof. Since T has dense range, we have that T%(X) is dense in X for
each k € Z_. Thus for any x €X there exists a sequence {uj } kez, inX

k . .
such that T"uf —>x as k— . Fix a dense countable set B< X . Since
X is metrizable and B is countable, we can choose a sequence A} keZ,

of positive numbers such that 4 lu,’CC —0 as k—oo for each x EB.

Letnow Tj = /1ka foreachk € Z and Zbethesetof (x.y)€ XxX for
which there exists a sequence {x, } kez, of elements of X such that x;, — x
and Tyxy — ¥ as k—> oo .Forany x€ B, let X :lk_lulf . Then x; -0
as k —»>oo and Tpx, =x for each k € Z+. Hence {0}xBcX. On
the other hand, for any x € ker *T, we have T;x=0 for all sufficiently
large k and therefore Tjx >0 as k—> oo .‘Considering the constant
sequence x, =x fork € Z , we see that ker Tx{0}cX.

Finally, observe that X is a linear subspace of XxX. Hence
ker*TxBc X . Since both B and ker *T are dense in X, we see that

2 is dense in Xx X. By Lemma 5.6, for each infinite set ACZ, , the
family {T,:neA}= {ﬂnT” :ne A} is universal. Hence T is hereditarily
supercyclic.

Remarks on Theorem 1.18

Theorem 1.18 is reminiscent of the following criterion of
hypercyclicity of Bayart and Grivaux [32] in terms of the unimodular
point spectrum.

Theorem BG Let X be a complex separable infinite dimensional
Banach space, T € L(X)and assume that there exists a continuous Borel
probability measure y on the unit circle T such that for each Borel set
Ac T with u(A)=1, the space

span U ker (T —zI)

zeA

is dense in X. Then T is hypercyclic.

It is worth noting that in the case of operators on Banach spaces,
neither Theorem 1.18 implies the result of Bayart and Grivaux, nor their
result implies Theorem 1.18, see Examples 5.9, 5.10 and 5.12 below.
Theorem 1.18 is also strictly stronger than Proposition 2.2 in the article
[33] by Herrero and Wang, which is a key tool in the proof of the main
result in reference [33] that any element of the operator norm closure
of the set of hypercyclic operators on /, is a compact perturbation of a
hypercyclic operator. Namely, they assume that the span taken in (1) is
dense taking only into account the 2’s for which T -zI has closed range,
and this allows them to use the Kitai criterion. We would like also to
mention the following fact.

Proposition 5.8 Let X be a locally convex space and Y be a closed
linear subspace of X such that X admits an [ -sequence with dense
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span and the topology of X/Y is not weak. Then there is a hereditarily
hypercyclic operator T € L(X) such that Ty=y forany y € Y.

Proof. Since the topology of X/Y is not weak, Lemma 3.1 implies
that there is a linearly independent uniformly equicontinuous

sequence {g,},.z such that yckerg, for each n € Z.. By Lemma 3.5,

+

we can find sequences {xn}neZ+ and {fk}kgz+ in X and X' respectively,

such that conditions (3.5.1-3.5.4) are satisfied and each f, belongs to
span{g, meZ,}. Hence Y C ker f for any k € Z . Uniform

equicontinuity of {f,} and the fact that {x,} is an ¢ -sequence implies
that the formula

0
Tx=» 27" fr()x,
n=0
defines a continuous linear operator on X, which also acts continuously
on the Banach space X,, where K is the Banach disk being the closed
convex balanced hull of {x; :k€Z,}. By Lemma 3.3, X, is separable
and E = span{x; :k€Z,} isdensein X,. It is also straightforward to

verify that ker T(Tx) contains E, where T, € L(X,) is the restriction of T
to X,. Hence T, is an extended backward shift on the separable Banach
space X,. By Corollary 5.1, I+T, is hereditarily hypercyclic. Since X, is

dense in X and carries stronger topology, I+T e L(X) is hereditarily
hypercyclic. Since Y  ker f, for each k € Z, from the definition of T'it

follows that (I+T)y =y for each y € Y. Thus I + T satisfies all required
conditions.

Grivaux [34] proved that if Y is a closed linear subspace of a
separable Banach space X such that X/Y is infinite dimensional, then
there exists a hypercyclic T € L(X) such that Ty=y for any y € Y.
This result is an immediate corollary of Proposition 5.8. If we apply
Proposition 5.8 in the case when X is a separable Fréchet space, we
obtain that whenever Y is a closed linear subspace of X such that X/Y
is infinite dimensional and non-isomorphic to w, there is a hereditarily
hypercyclic T € L(X) such that Ty=y for any y € Y. Itis also worth noting
that any non-normable Fréchet space has a quotient isomorphic to w,
[29]. If X is a non-normable separable Fréchet space non-isomorphic
to w and Y is a closed linear subspace of X such that X/Y is isomorphic
to w, then there is no hypercyclic operator T € L(X) such that Ty=y for
each y € Y. Indeed, assume that such a T does exist. Then §: X/Y —» X
, S(x+Y)=Tx-x is a continuous linear operator with dense range from
X/Y to X. Since X/Y is isomorphic to w and w carries the minimal
locally convex topology, S is onto and therefore X is isomorphic to w,
which is a contradiction.

Example 5.9 Let H be the complex Sobolev space W12 (T) which

consists of the distributions f on T such that Z [P n®) ! <o,
~ n=-w

where the f, denotes the n™ Fourier coefficient of f. Then the operator

T acting on H as Tf(z)=zf(z) satisfies the conditions of Theorem BG

(and therefore is hypercyclic) and does not satisfy the conditions of

Theorem 1.18.

Proof. For each z € T, ker(T—zI)=ker (T—zI) is the one-
dimensional space spanned by the Dirac § -function §, which does not
belong to the range of T —z1 . Thus A(T)={0} and T does not satisfy
conditions of Theorem 1.18. On the other hand, span{J,:ze A} is
dense in H for any set 4 T which is dense in T. Since any subset of
T of full Lebesgue measure is dense, the conditions Theorem BG are
satisfied with y being the normalized Lebesgue measure.

Example 5.10 If  is the complex Sobolev space |y ~%2 (T) which

consists of the distributions f on T such that z |}'n PA+n?) 2 <o,
then the operator Tf(z)=zf(z) acting on H satisfies the conditions of
both Theorem BG and Theorem 1.18.

Proof. For each z € T, &, € ker(T —z) (T —z[)(7/) and
therefore the dense linear span of the set {5, :z€T} is contained in
A(T) - Hence T satisfies the conditions of Theorem 1.18. As in the
above example, span {0, :z€ A} is dense in H for anyset 4 T which
is dense in T and therefore T satisfies conditions of Theorem BG.

Example 5.11 If T is a quasinilpotent generalized backward shift
on a separable complex Banach space, then I+T satisfies the conditions
of Theorem 1.18 and does not satisfy the conditions of Theorem BG.

Proof. Since 0(I+T)={1}, conditions of Theorem BG are not
satisfied for the operator I+T. On the other hand, ker "TCAUI+T) is
dense and therefore I+T satisfies conditions of Theorem 1.18.

Examples of chaotic operators on a complex Hilbert space H which
are not mixing are constructed in [35]. For such an operator, the linear
span of the union of ker(T—zI) for z € T satisfying " =1 for
some 7 € N is dense in H. This shows that the assumption of Theorem
1.18 cannot be relaxed into a weaker assumption like density of the
linear span of the union of ker (T —zI)" for z € T and n € Z. Note also
that the class of operators T for which A(T) is dense is closed under
finite direct sums. Moreover, this class for operators acting on Banach
spaces is closed under infinite ¢ ,-sums and / -sums for 1< p <. In
particular, I+T is mixing, when T is a finite or countable ¢,sum or { -
sum with 1< p <o of (possibly different) backward weighted shifts.

Now we describe another class of operators to which Theorem 1.18
applies. Let @ €L[0,1] and ¢:[0,1]—>[0,1] be a Borel measurable
map. Consider the integral operator T, defined by

o(x)
Topf )= atfo

It is straightforward to verify that T is a compact linear operator
on LP[O,I] for 1< p<oo.

Example 5.12 Assume that¥ is continuous, strictly increasing,
w(x)<x for 0<x<1 and that g(x)#0 almost everywhere on
[0.1]. Then T =T, acting on L,[0,1] for 1< p<co is hereditarily
supercyclic and I+T is mixing.

Proof. Consider the sequence @, =%(1) and a,,, =w(a,) forn €

N. Clearly {a " } is strictly decreasing and tends to zero as 11— o0 . One
can easily verify that

ker T” = {f : f |[0)un]: 0}.
Using this equality it is straightforward to check that T( ker T"*')
is dense in kerT" for each n € N and that ker *T is dense in the entire

space. Thus ker'T is dense in L,[0,1]. That is, T is an extended
backward shift. It remains to apply Proposition 5.7 and Corollary 5.1.

Universality of generic families

Theorem 6.1 Let X be a separable metrizable Baire topological
space, Q be a Baire topological space, A be a set, and for each a € A
let ¥ be a map from Q into the set C(X, X) of continuous maps from X
to X such that
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for any a € A,themap @,:Qx X — X,®, (a,x)=¥, (a)x is continuous (6.1)
and{(a,x, ¥, (2)x):ax € Qx € X,a € A}is dense in QxXxX. (6.2)
Then

U={aeQ:{¥,(a)acA}is universal} is a dense G5 —subset of Q.

Proof. Let { nine  be a sequence of non-empty open subsets
of X, which form a basis of the topology of X. By Theorem U,

{¥,(@):ac A} is universal if and only if for each k,meZ, there
exists a € A for which @ ,(a)(U)NU,, #< . Thus we have

U= ﬁ U U{aeQ:d)a(a,x)eUm}.

k,m=0 erk acA

According to (18), the sets {&¢ e Q: D (a,x)eU,,} are open in Q.
Hence, the above display implies that U is a G,-subset of Q. It remains
to show that U is dense in Q. Let

U, ={(a,x) e Qx X:x is a universal element for {¥, (a):a € A}}.

Clearly U is the projection of U, onto Q. On the other hand, U,
is the set of universal elements of the family {®,:ae A}. Since the
product of two Baire spaces, one of which is second countable, is Baire
[36], Q x X is Baire. Applying Theorem U, we see that U, is dense in Q
x X. Since the projection onto Q of a dense subset of QO x X is dense,
we get that Uis dense in Q.

We apply the above general result to two types of universality:
hypercyclicity and supercyclicity.

Theorem 6.2 Let X be a separable metrizable Baire topological
vector space, Q be a Baire topological space and & = T, be a map from
Q intoL(X)such that

for any n € Z, the map @,,:QxX — X,®, (a,x)=Tyx is continuous. (6.3)
Then the following conditions are equivalent-

{(ax,Tyx):aeQ,xeX,neZ,}is dense in Qx X xX, (6.4)

H ={a € Q:T,is hypercyclic} is a dense G5 —subset of Q. (6.5)

Proof. Let A € Z_and ¥,:Q— L(X) for n€ 4 be defined as
¥, (a)=T) . Applying Theorem 6.1, we see that (6.4) implies (6.5).
Since the set of hypercyclic vectors of any hypercyclic operator is dense,
(6.5) implies (6.4).

Theorem 6.3 Let X be a separable metrizable Baire topological
vector space, Q be a Baire topological space and @ T, be a map from
Q to L(X) such that (6.3) is satisfied. Then the following conditions are
equivalent:

{(axATyx):a e QxeX,neZ,,AeClis dense in Qx X x X, (6.6)
(6.7)

Proof. Let 4=Z,xC and ¥,,,:Q—>LX) for (n,A)e A be defined
as ¥, (@)= AT, . Applying Theorem 6.1, we see that (6.6) implies

S ={a €Q:T,is supercyclic} is a dense G 5 —subsetof Q.

(6.7). Since the set of supercyclic vectors of any supercyclic operator is
dense, (6.7) implies (6.6).

Corollary 6.4 Let X be a separable Baire metrizable topological
vector space,  be a Baire topological space and & = T, be a map from
Q to L(X) satisfying (6.3). Suppose also that for any non-empty open
subset W of Q and any nonempty open subsets U, V of X, there exist

aew, xeU and Y€V such that x,yeA(T,), where A(T,) is
defined in (1.1). Then the set of « € Q for which T _is hypercyclic is a
dense G -subset of Q.

Proof.Let (a, x, y) € Qx X x X besuchthat x, y € A(T, ) .ByTheorem
2.12 (x, y) is in the closure of the set {(u,T(;'u) ‘ueX,neZ,} . Hence

(a,x,) is in the closure of the set {(@,u,Tju):aecQueX,nel,},

By the assumptions of the corollary, the last set is dense in Q x X x X.
It remains to apply Theorem 6.2.

The following supercyclicity analog of the above corollary turns out
to be much easier.

Proposition 6.5 Let X be a Baire separable metrizable topological
vector space, 2 be a Baire topological space and a+> T, be a map from
Q to L(X) satisfying (6.3). Suppose also that for any non-empty open
subset W of Q and any nonempty open subsets U and V of X, there
exist gew,> *€U, yeV and n € N such that x<kerT), and
y€TS(X). Then the set of aeQ for which T  is supercyclic is a dense
G, -subset of Q.

Proof. Let (a,x,y)eQxXxX be such that there exists n € N
for which x € ker T, and yeTh(X). Let v € X be such that T'v=y.

For each m € N consider u,, =x+m . Then U, —>X as m—>0.
Moreover, mT”um =y for any m € N. Thus for all sufficiently large m,

(>t mT"u, ) €W xUXV" Since W, U and V were arbitrary, the set

{(a,u,zT"u):a e Q nel,,zeK} is dense in Q x X x X. It remains
to apply Theorem 6.3.

The obvious inclusion ker'(I'=I) A(T) and the fact that a map
a—T, satisfies (6.3) if and only if the map a —I+T, satisfies (6.3)
imply the following corollary of Corollary 6.4 and Proposition 6.5.

Corollary 6.6 Let X be a Baire separable metrizable topological
vector space, Q) be a Baire topological space and a1+ T, be a map from
Q to L(X) satisfying (6.3). Suppose also that for any non-empty open
subset W of Q and any nonempty open subsets U and V of X, there exist
aecW,x€Uandy€ Vsuchthat x,y € kerTTa . Then the set of ¢ c Q
forwhich T, is supercyclicand 1+T,, is hypercyclicis a dense G-subset
of Q.

Now we apply the above general results. In particular, we shall
prove Theorems 1.19 and 1.21. For a while we shall assume that X
and Y are two infinite dimensional Banach spaces, b: X xY > K isa
continuous bilinear form separating points of X and of Y. That is, for
each non-zero x € X, there is y € Y satisfying b(x, y) #0 and for each
non-zero y € Y, there is x € X such that b(x, y)#0 . In particular,b is
a dual pairing between X and Y. Recall that the injective norm on the
tensor product X®Y is defined by the formula

n n
56)=supll ) ¢ W) id Xy eV IGlLIw IS 1 for §= ) ;@ ;X @Y.
j=1 J=1
The completion of X ®Yy with respect to this norm is called the
injective tensor product of X and is Y and denoted X®,Y . It is again
a Banach space. For each £ € X®Y we consider the linear operators

Te € LX) and S. <L(Y) defined by the formulae

n n n
Tex= Zh(x,yj)xj and Sgy= Zh(xj,y)yj, where &= ij ®yj. (6.8)
j=1 j=1 j=1
Clearly T, and ¢ S: are bounded linear operators from
X ®Y endowed with the injective norm into the Banach spaces L(X)
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and L(Y) respectively. Hence they admit unique continuous extensions
to X®,Y , which we again denote by & Tg and . Note that
S¢ is the dual operator of Tz with respect to the dual pairing b:

b(Téx, y)=0b(x, Ssgy) foranyx € Xandy € Y. (6.9)

Let now M be a linear subspace of X@)gY which we suppose
to be endowed with its own F-space topology stronger than the
one inherited from X®,Y . Suppose also that X®Y is a dense

linear subspace of M and let M*" be the closure in M of the set
{{ e X®Y:T; is nilpotent} . Remark that (6.9) implies that 7' =0
ifand only if S; = 0. Thus nilpotency of 7 is equivalent to nilpotency
of S, and this implies that M coincides with the closure in M of the
set {£e X®Y : S, isnilpotent} -
Proposition 6.7 If the Banach space X is separable, then the set
{¢e MV T ¢ Is supercyclic and [ +T¢ is hypercyclic}
is a dense G, subset of M. If X and Y are both separable, then the set

{&e MV :Te and S; are supercyclic and I+ T and I+8S ¢ are hypercyclic}

is a dense G, subset of M*.

Proof. Let W be a non-empty open subset of M*and U, U, be non-
empty open subsets of X. Pick x; € U; and X, €U, . By the definition of

M, there exists £€ X®Y such that €W and T; is nilpotent. Let n
€ N be such that 7;' = 0. Clearly the space

L:{er:S§y=0,b(x1,y):b(x2,y)=0}

has finite codimension in Y, while ker T§ has finite codimension
in X. Since b is a dual pairing of X and Y, we can find f €L and
uj € kerT§ for 1< j<2n such that b(uk,fj):5k)j for 1< j,k<2n.
Consider the element

n=x®fi+x® f +Z(“j—1 ® fi+uy,j1® frij)eXOY

j=2

and let & =&+t for t € K. From the above properties off]. and u, it
immediately follows that the range of Tgt is contained in the range Q

of Tg and that the restrictions of Tft and T§ to Q coincide. Hence

ngtn =0 forany t € K. Thusall T, = are nilpotent and therefore all S
t

belong to M*. Since W is open in M* we can pick 5K\ {0} close

enough to zero to ensure that £ € W . Now from the definition of 2 it

immediately follows that T7 u, =s"x, T} u,, =s"x, , T x =T¢x; =0
s s s

<
and Tg %y =TFx, =0 Thus
S

X1, %, € ker Tg ﬁTg X)c kerTTée .
s s S

Summarizing the above, we have found x; €U}, x,eU, and
s eWw such that X;,X; € kerTTés . Using the fact that M carries a
topology stronger than the one defined by the injective norm, we see
that the map £ T: from M* to L(X) satisfies (6.3). By Corollary
6.6, the set of £¢ MV for which T: is supercyclic and I+T¢ is
hypercyclic is a dense G, subset of M*. The proof of the first part of the
proposition is complete.

Applying the first part of the proposition to (Y, X) instead of (X, Y)
with b(x,y) replaced by b(y,x), we obtain that if Y is separable, then the

setof & e MY for which § ¢ is supercyclic and I+S; is hypercyclic

is a dense G, subset of M*. The second part now follows from the
first part and the fact that the intersection of two dense G, subsets of a
complete metric space is again a dense G, set.

Proof of Theorems 1.19 and 1.21

Let us consider the case where Y=X, b(x,y)=y(x) and M=X®: X' 1n
this case the map &+ T§ is an isometry and {Té e ./\/lN } is exactly
the operator norm closure of the set of finite rank nilpotent operators.
Moreover, taking into account that Tg' =S,§ for any e M, we see
that Theorem 1.19 is an immediate corollary of Proposition 6.7 for this
specific choice of M and b.

Recall that the projective norm on the tensor product X @ Y of the
Banach spaces X and Y is defined by the formula

(@ =inf {3 1% lly; 1.

where the infimum is taken over all possible representations of & as
a finite sum Z"J®J’;. If we consider the case Y=X', b(x,y)= y(x) and

M=X®,X' the completion of X @ X' with respect to the projective

norm, then {7; :£ e N} is exactly the set of nuclear quasinilpotent
operators, and we see that Theorem 1.21 is an immediate corollary of
Proposition 6.7 for this choice of M and b.

Proof of Theorem 1.6

Let X € 90t By Lemma 3.5, there exist sequences {x”}”EZJr and

{fn }neZ+ in X and X' respectively such that conditions (3.5.1-3.5.4)
are satisfied. Since{f } is uniformly equicontinuous, we can pick a non-
zero continuous seminorm p on X such that | 1, (x)|<1 foranyn € Z_
whenever p(x) < 1. By Lemma 3.3, the closed balanced convex hull K of
{x,:n € Z } a Banach s-disk. That is, the Banach space X, is separable. It

0
is also clear from Lemma 3.3 that any x € X, has shape x = Zanxn for

n=0
some a€/, and | x|[<]|a | , where ||x|| is the norm of X in the Banach
space X, Consider the bilinear form on X x ¢, defined by the formula
. a

b(x,a)= Zanfn(x).
n=0

It is easy to see that b is well-defined, continuous and
b(x,a)< p(x)|lall; for any x € X and a€l . Moreover, b separates
poin'gg of X, and ZL Indeed, let x € X, x#0. Pick « €/, such that
X:Zanxn' Since x # 0, there is m€ 7, such that a, = 0.

n=0
Using (3.5.3), we see that b(x,e,,) = frn (%) =y frn(X,,) £ 0 5 where
{e j} jez, is the standard basis in £ . Similarly, let a€/,, a = 0. Then

there is m€ 7, for which a, #0 and therefore, according to (3.5.3),
b(x,,,2) = Ay f (%) % 0 - Thus b separates points of X, and £,. Let
M= Xy é” ‘ be the projective tensor product of the Banach spaces

X, and ¢, and M"be the closure in M of the set of EeXg®L, for
which the operator Tz defined in (6.8) is nilpotent. By Proposition 6.7,
the set {£ € MY T+ Ty and I+S; are both hypercyclic} isa dense
G, subset of M*. In particular, we can pick & e MV < Xp (;),r(/,l such
that I +T: and I+S, arehypercyclic. Using the theorem characterizing
the shape of elements of the projective tensor product [17], we see

that there exist bounded sequences Watnez N and {w, }neZ+ in X,
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and /, respectively and Ae/; such that ¢= Zﬂn ¥n ®w,, . Then the

n=
operators T and S: act according to the following formulae on X,
and /, respectively:

0 0
Tgx = Zﬂnb(x,wn)yn, and S,:a = Z/lnb(yn,a)wn.
n=0 n=0
Using boundedness of {y } in X, and {w} in £, summability of
{|4,]} and the definition of b, we see that the right-hand side of the
first equality in the above display defines a continuous linear operators
T : X » X, taking values in X,. Since the restriction I+T; of I+T to
X, is hypercyclic on X, X, is dense in X and X, carries the topology
stronger than the one inherited from X, we see that I+T is hypercyclic
(any hypercyclic vector for I+T; is also hypercyclic for I+T). Pick a
hypercyclic vector a for I+S¢ . Since a # 0 and b separates points of £,
the functional b(:,@) is non-zero. Since a is hypercyclic for I+8; , we
can pick a strictly increasing sequence "k SkeZ, of positive integers
such that || (1+55)"k al<1 for any k € Z . Then

[b(U +T)"% x,a) |=| b(x,(I +S)"* @) < p(x) || (I +5£)" a ;< p(x) forany x e X and ke Z,.

Let U={xeX:p(x)<1} and V={xeX:|b(x,a)|>1}. Clearly U
and V are non-empty open subsets of X (/¢ since the functional
b(-,a) is non-zero). Moreover, from the above display it follows that
1+1)'k(U)~V = for each k € Z . Hence I+T is non-mixing. Since
I+T is hypercyclic, the proof of Theorem 1.6 is complete.

Proof of theorem 1.15

Let X be an infinite dimensional locally convex space, such that both
Xand X admit £ -sequences with dense span. By Lemma 3.7, there

exist sequences 1% }neZ+ and {fn}nez+ in X and X' respectively,
satisfying (3.7.1-3.7.3). By Lemma 3.3, the closed balanced convex
hulls K and D of {x,: n € Z} and {f,: n € Z} are Banach s-disks in X
and X} respectively. Moreover, X, is dense in X and X}, is dense
in X. Since D is f-compact, it is also (X', X) -compact. Hence the
seminorm p(x)=sup{| f(x)|: f € D} on X is continuous with respect
to the Mackey topology 7=7(X,X'). Clearly each |f,| is bounded
by 1 on {(xeX:p(x)<1} and therefore {f”: n € Z} is uniformly

equicontinuous. By Lemma 3.7, we can assume that the same holds
true if the original /,-sequence in X is uniformly equicontinuous.
Assume for time being that either X carries the Mackey topology 7 or

the original /,-sequence in X} is uniformly equicontinuous. Then {f :
n € Z} is uniformly equicontinuous.

Consider the bilinear form on X x X' defined by the formula
Blx, f)=fx) - Clearly 8 separates points of X and X' and f is
separately continuous on Xx X . Since X is dense in X and X,
is dense in X[ , the bilinear form b:XgxXp—oK, being the
restriction of 3 to X x X[, , separates points of X, and X}, . Moreover
separate continuity of S implies separate continuity of b and

therefore continuity of b on Xy xX}, by means of the uniform
boundedness principle (every separately continuous bilinear form on
product of Banach spaces is continuous). Let M= X, ®; X, be

the projective tensor product of the Banach spaces X, and X}, and
M be the closure in M of the set of &e X, ® X}, , for which the
operator T defined in (6.8) is nilpotent. By Proposition 6.7, the set

{£e MmN :I+T;and I+S; arebothhypercyclic} is a dense G;

subset of MY . In particular, we can pick &€ MV cx D é:);rf 1 such
that I+T; and 1+§ ¢ are hypercyclic. Using once again the theorem

characterizing the shape of elements of the projective tensor product,

we see that there exist bounded sequences {Vx }nEZ+ and {&x }neZ+ in

X, and XJ, respectively and 4 €/} such that &= zﬂnyn ® g, . Then

n=
the operators T and Sg¢ act according to the following formulae on

X.and X 2) respectively:

0 0
Tex= D 2@y and Sef = D A (1)g
n=0 n=0

where we used the specific shape of our bilinear form. Using boundedness
of {y} in X and {g} in Xj, and summability of {|4, |}, we see that
the right-hand sides of the equalities in the above display define linear
operators T'and S on X and X', taking values in X, and X7, respectively.
Since {f : n € Z } is uniformly equicontinuous and {g } is bounded in
Xp,1{g,:n €Z} isalso uniformly equicontinuous. It follows that T
is continuous as an operator from X to X, and therefore T' € L(X). It
is also easy to verify that §=7" and therefore S€L(X}). Since the
restriction I+T; of I+T to Xy is hypercyclic on X,, X, is dense in
X and X, carries the topology stronger than the one inherited from X,
we see that I+T is hypercyclic (any hypercyclic vector for 1+T: is also
hypercyclic for I+T). Similarly [+§=(I+T)" is hypercyclic on Xj

(any hypercyclic vector for [+, is also hypercyclic for I+S). Hence
I+T is a dual hypercyclic operator. In order to complete the proof of
Theorem 1.15, it remains to consider the case when X carries the weak
topology ¢ =0(X,X'). By the already proven part of Theorem 1.15,
there is a dual hypercyclic operator R on X . Since L(X,;)=L(X,), R €
L(X). Since 7is stronger than o, R is hypercyclicon X = X, - Hence R is
dual hypercyclic on X. The proof of Theorem 1.15 is complete.

Generic bilateral weighted shifts

For each w € {_(Z), T, stands for the bounded linear operator
acting on fP(Z), 1< p<ow or c(Z), defined on the canonical basis
{en}neZ bY

T, =w,e,_; for neZ.

If additionally w, #0 for each n € Z, the operator T is called the

bilateral weighted shift with weight sequence w. Cyclic properties of
bilateral weighted shifts have been intensely studied. Hypercyclicity
and supercyclicity of bilateral weighted shifts were characterized by
Salas [12,31] in terms of the weight sequences. It was observed in [37],
Proposition 5.1 that the Salas conditions admit a simpler equivalent
form:

Theorem B Let T be a bilateral weighted shift with weight sequence
w acting on { () with 1< p <co or ¢ (Z). Then T is hypercyclic if and
only if foranym € Z,

lim max{w(m—n+1,m),(w(m+1,m+n)) }=0 (6.10)
—w

and T is supercyclic if and only if for any m € Z ,
M1:/(m—n+1,m)%(m+1,m+n)71 =0, (6.11)

n—>+00
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b
where w(a,b) =H| w;| for a,b€Z with a<b.
Jj=a
We address the issue of hypercyclicity and supercyclicity of generic
bilateral weighted shifts in the Baire category sense. For each ¢ > 0 let

B.=iwel (@) wln<ci.

Clearly B_ endowed with the coordinatewise convergence topology
is a compact metrizable topological space.

Theorem 6.8 Let 1< p <oo. Foreach ¢ > 1 the set of wE B, for which
T, acting on { (Z) is hypercyclic is a dense G- subset of B.. For each ¢ >
0 the set of we B_for which T is supercyclic and I+T is hypercyclic is a
dense G-subset of B

It is worth noting that if w =0 for some n € Z then the range of
the operator T is not dense and therefore T, can not be supercyclic.
Thus any T, for w from the dense G, -sets in the above theorem are
indeed bilateral weighted shifts. Recall that T is compact if and only
if we c,(Z). For compact bilateral weighted shifts we can replace the
coordinatewise convergence topology on the space of weights by
stronger topologies.

Theorem 6.9 Let 1< p<o. Let E be a linear subspace of c(7Z)
carrying its own F -space topology stronger than the one inherited from
c,(Z) and such that the space y(Z) of sequences with finite support is
densely contained in E. Then the set of wEE for which T, acting on ( (Z)
is supercyclic and I+T, is hypercyclic is a dense G-subset of E.

Remark 6.10 As a corollary of the above theorem we obtain that the
set of weights w€ c,(Z) for which T, acting on { (Z) is supercyclic and
I+T, is hypercyclic is a dense G, -subset of the Banach space c (7).

It is easy to see that the dual of T, actingon / (Z) for 1< p<ao acts

on £,(Z) with 1.1, according to the formula
P 4q

! —
Tre, =W, 1€,.1 for neZ.

Y for each

n € Z, we see that UﬁlTé/U =T, where W}, =w)_, forany n € Z. Thus

Considering the isometry Uon ( (Z) defined by Ue, =e_

T,, is hypercyclic or supercyclic if and only if ~ + (acting on Zq(Z)) is.

In the case p =2, the Hilbert space adjoint T:, acts on £,(Z) in a similar

way T:,en =W, ,1€,,1 and is unitarily similar to T, with a diagonal
unitary operator providing the similarity. Thus the cyclicity properties

of T, and T; are the same.

Taking into account the fact that the map wHWw is a
homeomorphism of B, onto itself for each ¢ > 0, we immediately obtain
the following corollary of Theorem 6.8.

Corollary 6.11 For each ¢ > 1 the set of wE B, for which both T, and
T,, acting on { (Z) are hypercyclic is a dense G-subset of B.. For each c >
0 the set of wE B_for which both T and T,, are supercyclic and both I +
T, and I+T,, are hypercyclic is a dense G -subset of B.

Similarly the next corollary follows from Theorem 6.9.

Corollary 6.12 Suppose that the space E from Theorem 6.9 satisfies
the additional symmetry condition that (Jx), =xy_, is an invertible
continuous linear operator on E for some k€ Z. Then set of w€ E for
which both T and T,, acting on ( (Z) are supercyclic and both I+T, and
I+T,, are hypercyclic is a dense G, -subset of E.

Applying the above corollary to weighted ¢ -spaces with symmetric
weight sequence yields the following result.

Corollary 6.13 Let {4, }nEZJr be any sequence of positive numbers.
Then there exists wE ¢ (Z) such that | W, [Say, for eachn € Z, T, and
T,, acting on ( (Z) are supercyclic and I+T and I1+T,, are hypercyclic.

We conclude this section by proving Theorems 6.8 and 6.9.

Proof of Theorem 6.8. It is straightforward to verify that the maps
w T, and wi>I1+T,, from Q=B, into L(EP(Z))satisfy (6.3). Pick
a non-empty open subset U of B, and non-empty open subsets V and
Wof £ (Z).

Case ¢ > 1: By definition of the topology of B, there exist wEU
and a positive integer m such that w =c for k > m, w_=c” for k <-m
and Wy 20 for —-m<k<m. According to Theorem B, the bilateral
weighted shift T, is hypercyclic. Hence we can choose X€V andn € Z,
such that Tjx e W . Thus (w,x,T,,x)eUxVxW and therefore (6.4) is

satisfied. By Theorem 6.2, the set of w€ B_ for which T is hypercyclic is
a dense G, -subset of B..

Case ¢ > 0: As above, there exist w€ U and a positive integer m
such that w=c for k > m, w,=c/2 for k <-m and w20 for —m<k<m.

According to Theorem B, the bilateral weighted shift T, is supercyclic.
Hence we can choose x€ V,n € Z Z _ and 4 e K such that AT,xeW.
Thus (w,x, AT}x) e UxV xW and therefore (6.6) is satisfied. By Theorem
6.3, the set of we B, for which T is supercyclic is a dense G(;-subset of B.
Finally, we can pick m € Z, w€ U, x€ V, and y€ W, such that w =

0, w,_ # 0 for k > m, x and y have finite supports and x; = y, =0 for k
> m. It is straight forward to check that

x,y e spanie, e, .1  ker ' T,

By Corollary 6.6, the set of w€ B, for which I+T is hypercyclic is a
dense G-subset of B..

Proof of Theorem 6.9. We use the same notation as in the
proof of Theorem 6.8. Since ¢(Z) is dense in ZP(Z) and in E, we can

choose w'eU, x'cy, Y €W and a positive integer m such that

X}, = ¥k =w} =0 if |k|>m . Choosing positive ngmbers g, forn>-m

small enough, we can ensure that the series Z €nén converges in
n=m-+l1

Eto w'eE, with w=w'+w"eU and w; =W;C +W%¢0 for k>-m.

Clearly F={ue?,(Z):u; =0for k<-mj is a closed invariant subspace

of T, and x,y €F. Moreover, the restriction R of T, toFis isometrically
similar to the backward weighted shift on ¢ with weight sequence

{W_p>W_pms1>-.+ By the Hilden and Wallen theorem [30] and the Salas
theorem [12], R is supercyclicand I + R is hypercyclic. Since x'e VA F

and ' € WNF we see that the open subsets vV ~ F and W ~ F of Fare
non-empty. Since R is supercyclic, we can choose x e VNF ,n€Z_and
A eK such that AR"x=AT)x e WNF . Thus (w,x,ATyx)eUxVxW

and therefore (6.6) is satisfied. By Theorem 6.3, the set of weE

for which T, is supercyclic is a dense G,-subset of E. Finally, since I
+ R is hypercyclic, we can choose xeVNF and n € Z_ such that
(I+R)"x=(I+T,)'xeWnF. Thus (y, x (I+T,)'x)eUxVxW and
therefore (6.4) is satisfied for the map wt>I+T,, . By Theorem 6.2,
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the set of we E for which I+T is hypercyclic is a dense G,-subset of E.

Mixing Operators on Spaces with Weak Topology

In this section we shall prove Theorem 1.8. In order to do so we need
a characterization of linear maps with no non-trivial finite dimensional
invariant subspaces. The underlying field plays no role in this linear
algebraic statement, so, for sake of generality we formulate and prove it
for linear maps on linear spaces over an arbitrary field.

Linear maps without finite dimensional invariant subspaces

Throughout this subsection k is a field, X is a linear space over k,
T: X>X 1is a k -linear map, P=k[z] is the space of polynomials on one
variable, P=k(z) is the space of rational functions and M is the operator
on P of multiplication by the argument:

M:R->R, Mf(z)=zf(z).

We denote P*=p\ {0} and consider the degree function
deg:R — Z U {—x}, extending the conventional degree of a
polynomial. We set deg(0)=- and let deg(p/q)=deg p—degq,
where P and q are non-zero polynomials and the degrees in the right
hand side are the conventional degrees of polynomials. Clearly this
function is well-defined and is a grading on P, that is, it satisfies the
properties:

(d1) deg(nyry) = deg (r)+ deg (r,) forany 1,n € R ;
(d2) deg(r+r)<max{degn, degn} for any 1.7 €R;
(d#) if 5., eR and degni#degn then deg(n +ry)=max{ degr, degr,} .

Note that if p is a non-zero polynomial, then deg P is the usual
degree of P.

As usual, a linear subspace E of X is called T - invariant if T(E)c E
and it is called T- biinvariant if T(E)c E and T YE)cE. The
following lemma is a key ingredient in the proof of Theorem 1.8.

Lemma 7.1 Let T be a linear operator on a linear space X with no
non-trivial finite dimensional invariant subspaces and let L be a finite

dimensional subspace of X. Then there exists ny =ng(L) € N such that
p(TYLYNL={0} forany peP with degp2ny.
In order to prove the above lemma, we need some preparation.

Lemma 7.2 Let T be a linear operator on a linear space X. Then T
has no non-trivial finite dimensional invariant subspaces if and only if
p(T) is injective for any non-zero polynomial P.

Proof. If p is a non-zero polynomial and p(T) is non-injective,
then there is non-zero x € X such that p(T)x=0. Let k=deg p. It is
straightforward to verify that E= span{x,Tx,...,Tk_lx} is a non-
trivial finite dimensional invariant subspace for T. Assume now that
T has a non-trivial finite dimensional invariant subspac L. Let p be the
characteristic polynomial of the restriction of T'to L. By the Hamilton-
Cayley theorem p(T) vanishes on L. Hence p(T) is non-injective.

Definition 7.3 For a linear operator T on a linear space X we say
that vectors x,,..., x, in )5; are T - independent if for any polynomials

Py P, the equality E pi(Mx; =0 implies p=0 for 1<j<n.
j=1

Otherwise, we say that x ..., x, are T - dependent. A set A< X is called

T - independent if any pairwise different vectors x,,...,x, €A are T -

independent.

For any non-zero x € X, we define

F(T,x)={ye X :there arep e P andq & Psuch that p(T)y = q(T)x}.  (7.1)

Lemma 7.4 Let T be a linear operator on a linear space X, x € X \{0}
and F(T, x)be the space defined in (29). Then F(T, x) is a T -biinvariant
linear subspace of X.

Proof. Let y, u€ F(T, x) and t,s € k . Then we can pick P1LP2 € ’P*
and 91-92 € P such that p(T)y = ¢;(T)x and Po(Tu=q,(T)x . Hence
(12 (T)(ty + su) = (tqy p, +5q,p,)(T)x - Since p, and p, are non-zero, the
polynomial p, p, is also non-zero and we have ty+sue F(T,x) and
therefore F(T, x) is a linear subspace of X. Clearly »1(T)(Ty) = ¢ (D)x , where
Z]l(z):zq(z)_ Hence Tye F(T, x), which proves the T-invariance
of F(T, x). Assume now that we X and Twe€ F(T, x). Thus we can
pick p3 eP’ and ¢3€P such that p3(T)Tw=q5(T)x . Hence
;73(T)W: q3(T)x , where ;73 (2) = zp3(2), and therefore w€ F(T, x).
That is, F(T, x) is T-biinvariant.

By the above lemma, we can consider linear operators, being
restrictions of T to the invariant subspaces F(T, x). The following

lemma describes these restrictions in the case when T has no non-
trivial finite dimensional invariant subspaces.

Lemma 7.5 Let T be a linear operator on a linear space X with no
non-trivial finite dimensional invariant subspaces. Let also x € X \{0}
and F(T, x) be defined in (7.1). For each y€ F(T, x) and any pe’P*,

qe P satisfying p(T)y=q(T)x, we write r_= q/p. Then the rational
function 1 does not depend on the choice of peP and 9€P
satisfying p(T)y = q(T)x » the map S y=r,  from F(T, x) to P is linear

and S Ty=MS,y for any y€ F(T, x).

Proof. Let y€ F(T, x) and p,py 677*, 4.9 € P be such that
p(M)y=q(T)x and p(T)y=4,(T)x . Hence (p p)(T)y=(q,p)(T)x = (gp,)(T)x
and therefore (q,p—qp,)(T)x=0. Since x # 0, Lemma 7.2 implies
that ¢,p=4p,, or equivalently, q/p=q,/p,. Thus q/p does not depend
on the choice of pe’P* and g€P satisfying p(T)y=4q(T)x. In
particular, the map y+>71,, from F(T, x) to P is well defined. Next,
let y, u€ F(T, x) and t,sek. Then we can pick pi,P» EP* and
91,92 € P such that p(T)y=¢q,(T)x and p,(Tu=q,(T)x. Hence
(p)(T)ty + su) = (t,p, + 5q,p,)(T)x - 1t follows that

_laptsap 4, 9,

P, 2N 2

+ s,

Xty +su Ty X

and the linearity of the map ¥ = x, isalso verified. It remains to show
that § Ty=MS, y . Clearly S,y=q,/p,. Since p(D)(Ty)=Tq(T)x, we
have § Ty(z) = zq,(z)/ p,(z) - Hence SiIy=MSyy.

Lemma 7.6 Let T be a linear operator with no non-trivial finite

dimensional invariant subspaces acting on a linear space X and A bea T
-independent subset of X. Then for each xe€ A,

F(T,x)N span U F(T,y) |={0},
yeA\{x}

where the spaces F(T, u) are defined in (7.1).

J Generalized Lie Theory Appl

Algebra, Combinatorics and Dynamics

ISSN: 1736-4337 GLTA, an open access journal


http://dx.doi.org/10.4172/1736-4337.S1-009

Citation: Shkarin S (2015) Existence Theorems in Linear Chaos. J Generalized Lie Theory Appl S1: 009. doi:10.4172/1736-4337.S1-009

Page 19 of 34

Proof. Assume that the intersection in the above display contains
*
a non-zero vector u. Since ue F(T,x) , there exist peP and geP

such that p(T)u=q(T)x . Since u=#0 and p#0 ,according to Lemma
7.2, p(T)u#0. It follows that g#0. On the other hand, since u is a
non-zero element of the span of the union of F(T, Y) for y € A\{x}, there
exist pairwise different xj,...,x, € A\{x} and u; € F(T,x;)\{0} such that
u=u +...+u, .Pick p; eP" and q; € P forwhich pj(T)u;=q;(T)x;
for 1< j<n. Since Uj #0 and P; #0, from Lemma 7.2 it follows
that p;(T)u;#0 and therefore q;#0. Consider the polynomials
Po=pP1--Pn, Po=Po/ P, Pj=Po/p; for 1< j<n.Then

poTyu = (go)(T)x and po(Thu; = (q;5,)(T)x; for 1< j<n.

Taking into account that # =u, +...+u,, we obtain

n
(q PoXT)x =D (4, p;)D)x;.
j=1
Since the polynomials gy and ¢;P; are non-zero, the last display
contradicts the T -independence of A, since X, X, ,..., X, are pairwise
different elements of A.

Proof of Lemma 7.1. Clearly there exists in L a maximal T
-independent subset A ={x,,...,x;} (since T -independence implies
linear independence and L is finite dimensional, A is a finite set). It

follows from the maximality of A that L is contained in the sum of
F(T,x j) for 1< j <k . The last sum is direct according to Lemma 7.6:

LcN= @F(T,x ).

=1
Thus any x € N can be uniquely presented as a sum " +...+u}»

where uj € F(T,x;). Using Lemmas 7.5 and 7.4, we can consider the
linear operator
R:N—R*  R()=(Rpx,...,Rex), where Ryx =S, u} for 1< <k.
J
According to Lemmas 7.4 and 7.5 we also have that N is a
T-biinvariant subspace of X and R(Tx)j = M(Rx)j for 1< j<k . For
each xe N, let

(x)= max degR x.
<j<k

Clearly §(0)=-w and §(x)eZ foreach x €N \{0} . Let also

At = supd(x) and A” = inf O(x).
xel xeL\{0}

Using the fact that L is finite dimensional, we will show that A* and
A~ are finite. Indeed, assume that either A™ =400 or A~ =—o0. Then

there exists a sequence {t;}1en of non-zero elements of L such that
the sequence {5(u)};c is strictly monotonic. For each [ we can pick
j)e{l,..,k} such that &(w)= deg Ry . Then there is vell,...,k}
such that the set B, ={/eN: j(/)=v} is infinite. It follows that the
degrees degR,u; for le B, are pairwise different. Property (d3) of
the degree function implies that the rational functions R, for [€ B,

are linearly independent. Hence the infinite set {1;:I€ B} is linearly
independent in X, which is impossible since all u, belong to the finite
dimensional space L. Thus A" and A™ are finite.

Now let pe ’p* and m=degp. From (d1) and the equality
Rij = Mij , we immediately get that 6(p(T)x)=0(x)+m for each
x € N - Therefore, inf{5(x):x € p(T)(L)\{0}} =A™ +m . In particular, if

m>AT —A™, then

inf  5(x)=A"+m>A" = supd(x).
pr(T)(L)\{O} xel

Thus §(u)>6(v) for any non-zero ye P(T)(L) and veL, which
implies that p(T) (L) L={0} whenever deg p> AT —A~ . Thus the

number ny=A" —A” +1 satisfies the desired condition.

Proof of Theorem 1.8

The implications (1.8.4) = (1.8.3)= (1.8.2) are trivial. Assume
that T is transitive and T"has a non-trivial finite dimensional invariant
subspace. Then T has a non-trivial closed invariant subspace of finite
codimension. Passing to the quotient by this subspace, we obtain a
transitive operator on a finite dimensional topological vector space.
Since there is only one Hausdorftlinear topology on a finite dimensional
space, we arrive to a transitive operator on a finite dimensional Banach
space. Since transitivity and hypercyclicity for operators on separable
Banach spaces are equivalent [3], we obatin a hypercyclic operator on
a finite dimensional Banach space. On the other hand, it is well known
that such operators do not exist, see, for instance, [7]. This proves the
implication (1.8.2) = (1.8.1) . It remains to show that (1.8.1) implies
(1.8.4).

Assume that (1.8.1) is satisfied and (1.8.4) fails. Then there exist
non-empty open subsets U and V of X and a sequence {21}z . of
deg py—>© and p(T)N(V)NU=3 for each
leZ, - Since X carries weak topology, there exist two finite linearly

polynomials such that

independent sets {fj>...»f,} and {g1>-->&m} in X’ and two vectors

(a,...,a,) K" and (b,....h,)eK" UycU and
Vo<V, where

such that

UOZ{ueX:fj(u):aj for 1< j<n}and VOZ{ueX:gj(u):bj for 1< j<m}.

Let L= span{fj,.... f»§1>---»&m} - Since T'has non non-trivial finite
dimensional invariant subspaces, by Lemma 7.1, for any sufficiently
large /, p,(T")(L) L ={0} .Forsuchanl, the equality P/(T)(L)NL={0}
together with the injectivity of p;(T"), provided by Lemma 7.2, and the
definition of L imply that the vectors p;(T") fis-- s P/(T") fs 81>+ &m
are linearly independent. Hence there exists a vector u € X such that

pl(Tin(u)=aj Jorl<j<n and g;(w)=b; forl<j<m.

Since pl(T')fj(u)=fj(Pl(T)u), the last display implies that
and p(TueU,cU. Hence p(D(V)NU

P(T)u and therefore is non-empty. This contradiction completes the

ueVycV contains

proof.

Spaces without Supercyclic Semigroups {7, }tER+

We shall prove Theorem 1.7 and show that on certain topological
vector spaces there are no strongly continuous supercyclic semigroups
{T,}’,E[R+ . In this section by the dimension dimX of a vector space X

we mean its algebraic dimension (=the cardinality of the Hamel basis).

<
Symbol ¢ stands for the cardinality of continuum: ¢ =20 . The next
theorem is the main result of this section.
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Theorem 8.1 Let X be an infinite dimensional locally convex space
such that either in X or in X there are no compact metrizable subsets
whose linear span has dimension c. Then there are no strongly continuous
supercyclic semigroups T, }tER+ onX.

The above theorem immediately implies the following corollary.

Corollary 8.2 Let X be an infinite dimensional locally convex space
such that dim X < ¢ or dimX'< c. Then there are no strongly
continuous supercyclic semigroups {Tt}teR+ onX.

We prove Theorem 8.1 at the end of this section. First, we shall
prove Theorem 1.7 by means of application of Theorems 1.8 and 8.1.

Proof of Theoreml1.7.Let T ¢ [(g) be such that T" has no non-
trivial finite dimensional invariant subspaces and {P/}iez_ be a
sequence of polynomials such that deg pj > as | o0 . Since the
topology of w is weak, Theorem 1.8 implies that for each non-empty

open subsets U and V of w, 2{(U)NV#D for all sufficiently large
L. Hence {(x,p;(T)x):xewm,leZ,} is dense in wxw. By Theorem
U, {p;(T):1€Z,} is universal. It remains to show that there are no
strongly continuous supercyclic semigroups {77 }/cr , onX. Recall that
®'=¢ and dimp=¥;<c . Thus Corollary 8.2 implies that there are
no supercyclic strongly continuous operator semigroups /7 }rcR . on
w.

The rest of the section is devoted to the proof of Theorem 8.1. We
need some preparation.

Lemma 8.3 Let X be a finite dimensional topological vector space of
the real dimension >2. Then there is no supercyclic strongly continuous
operator semigroup {Tt}teR+ onX.

Proof. As well-known, any strongly continuous operator
semigroup ‘{Tz}teR+ on K" has shape {etA }tER+ » where 4 e [(K")-
Assume the contrary. Then there exists n € Nand 4 e L(K") such that
the semigroup {etA}tER is supercyclic and n>3 if K=R, n>2

+

if K=C _ Since the operators e” are invertible and commute with
each other, Proposition G implies that the set W of universal elements

for the family {ZetA :zeK,teR,} is dense in K*. On the other hand,
for each ¢ > 0 and any x € K", from the restrictions on # it follows
that the closed set {zetAx:ze]K,OStSc} is nowhere dense in K"
(one can use smoothness of the map (z,t) — ze'*x to see that the
topological dimension of {ze"'x:2€K,0<1<c} is less than that of
K"). Hence, each x e W is universal for the family {zetA zeK,t>¢}
for any ¢ > (. Now if (a,b) is a finite subinterval of (0,00), it is
easy to see that the family {zetkA izeK,a<t<b,keZ,} contains
{ze’A :zeK,t>¢} for a sufficiently large ¢ > 0. It follows that for
each x € W the set {ze’kAx:z eK,a<t<b,keZ,} is dense in K"
Taking into account that (a,b) is arbitrary and W is dense in K7,
we see that {(t,x,z¢"™x:1eR,,zeK,xeR" keZ,} is dense in
R, xK" xK" . Applying Theorem 6.3, we see that for a generic t €

R, in the Baire category sense the operator ¢ is supercyclic. This
contradicts the well-known fact that there are no supercyclic operators
on finite dimensional spaces of real dimension >2.

The following lemma appears as Lemma 2 in reference [38]. It
is worth noting that under the Continuum Hypothesis its statement
becomes trivial.

Lemma 8.4 Let (M, d) be a separable complete metric space and X be
a topological vector space. Then for any continuous map f:M—>X | the
algebraic dimension of spanf(M) is either finite or countable or continuum.

We use the above lemma to prove the following dichotomy.
Lemma 8.5 Let {I };E]R+ be a strongly continuous operator

semigroup on a topological vector space X and x € X. Then the space
C(x)= span{T;x:t e R} iseither finite dimensional or has dimension c.

Proof. From Lemma 8.4 it follows that dim C(x) is either finite or
N, or c. Thus it suffices to rule out the case dim C(x) =R,

Assume that dim C(x)=¥, . Restricting the operators T, to the
invariant subspace C(x), we can without loss of generality assume
that C(x)=X . Thus
increasing sequence £y }nez . of finite dimensional subspaces. For
eache>O0let X, = span{l;x:t > ¢} . First, we shall show that each X,

dim X=X, and therefore X is the union of an

is finite dimensional. Let € > 0, 0<a <& and 4, ={tcla.el:TixeE,}

for n € Z_. Clearly A are closed subsets of the interval [a,¢] and

[a,e]= UA" since X is the union of E . By the Baire category theorem

n=0
there is n € 7, such that A has non-empty interior in [¢,¢]. Hence

we can pick a,beR such that a<a<b<e¢ and T;x€E, for any
te[a,b]- We shall show that X, c E, . Assume, it is not the case.
Then the number ¢ =inf{t €[a,0): Tyx € E;} belongs to [b,00) . Since the
set {teR, :T, €E,} is closed, T.xeE, . Since [g,b] is uncountable
and the span of {I;:te[a,b]} is finite dimensional, we can pick

a<ty<t <..<t,<b and ¢,...,c,_] €K such that

n—-1
T, x= E ciTy x.
n J
j=t

Since T.x € E,,, by definition of ¢, we can pick t €(c,c+t,—t,_;)

(8.1)

such that T;x ¢ E, . Since ¢ > ¢ 21, , formula (8.1) implies that

n-1 n-1
Tix=Ty Ty x=Tp, E cily x= ) ¢iliy 44 x€Ey,.
nn n j nj
Jj=1 j=1

because @<!—t, +1; <¢ for 1< j<n—1. This contradiction proves

that X, c X, c E, . Thus X  is finite dimensional for each € > 0. Since

T,(X)=T,(C(x)) < X, , it follows that T has finite rank for any ¢ > 0.
Now assume that ¢ > 0. Since T, has finite rank, E =kerT, is

a closed subspace of X of finite codimension. It is also clear that
F,is T -invariant for each s € R . Passing to quotient operators,

Sse L(X/E), S(u+F)=Tu+F  wearrive to a strongly continuous
semigroup {S.}.cz, on the finite dimensional space X/F, . Hence

there is AeL(X/F,) such that S, = ed foranys e R_. Thus each S is
invertible. Since each S, is a quotient of T, we see that

rkT, >rkS; = dim X | F, = rkT, foranyt>0and s>0.

It follows that T, for ¢ > 0 have the same rank k € N. Passing to
the limit as £ > 0, we see that the identity operator I=T,is the strong
operator topology limit of a sequence of rank k operators. Hence
rkI <k .Thatis, X is finite dimensional. This contradiction completes
the proof.
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Lemma 8.6 Let X be a topological vector space in which the linear
span of each metrizable compact subset has dimension <c. Then for any
strongly continuous operator semigroup {7, }te]R+ on X and any x € X,
the space C(x)= span{T;x:t R} is finite dimensional.

Proof. Let {1i}icr . beastrongly continuous operator semigroup
on X and x € X. Strong continuity of {{}}/cR . implies that for any n
€ N, the set K; ={T;x:0<#<n} is compact and metrizable. Hence
dimE, < ¢ for any n € N, where E, = span (K,) . Since the sum of

countably many cardinals strictly less than ¢ is strictly less than ¢, we
see that

o0 o0
dim C(x) = dim (UEn) < Z dimE, < c.
n=1 n=1
By Lemma 8.5, C(x) is finite dimensional.
Proposition 8.7 Let X be an infinite dimensional locally convex
space such that in X[ the span of any compact metrizable subset has

dimension <c. Then there is no strongly continuous supercyclic operator
semigroup {Tt}’ERJr onX.

Proof. Assume that there exists a supercyclic strongly continuous
operator semigroup {Tt},ER+ on X. It is straightforward to verify
that {I/}ier . is a strongly continuous semigroup on X . Pick
three linearly independent vectors f, f, and f, in X". By Lemma 8.6,
E;=spani{l}f;:teR,} is finite dimensional for 1< j<3. Clearly
each E is 7-invariant for any t € R. Then E=E +E,+E; is
finite dimensional and T} -invariant for any ¢ € R . Since ]je E for

1</<3, dim E >3 . Since E is T' invariant, we see that its annihilator

F={xeX:f(x)=0 forany feE} if T,-invariant for each t € R . Thus we
can consider the quotient operators S, e L(X/F), S,(x+F)=T,x+F.

Clearly {St}[€R+ is a strongly continuous operator semigroup on

X/F. Moreover, {St}t€R+ is supercyclic since {T;}, <R, is. Now since
dimE=dimX/F , X/F is finite dimensional and has dimension >3.

By Lemma 8.3, there are no strongly continuous supercyclic operator
semigroups on X/F. This contradiction completes the proof.

Proof of Theorem 8.1. If X has no compact metrizable subsets
whose linear span has dimension ¢, Lemma 8.6 implies that the linear
span of any orbit {T,x: t € R } is finite dimensional. It follows that

{T}ier . is not supercyclic. It remains to consider the case when X/

has no compact metrizable subsets whose linear span has dimension ¢
and apply Proposition 8.7.

The space ¢

Recall that ¢ is a linear space of countable algebraic dimension
carrying the strongest locally convex topology. In this section we
mention certain properties of @, mainly those which are related to
continuous linear operators. It is well known [17] that ¢ is complete
and all linear subspaces of ¢ are closed. Moreover, infinite dimensional
subspaces of ¢ are isomorphic to ¢. It is also well-known that for any
topology 6 on @ such that (¢,0) is a topological vector space, 8 is weaker
than the original topology of ¢. The latter observation immediately
implies the following lemma.

Lemma 9.1 For any topological vector space X and any linear map
T:p— X, Tis continuous.

Lemma 9.2 Let X be a topological vector space and T:X — ¢ bea
surjective continuous linear operator. Then X is isomorphicto ¢x ker T .
Proof. Since T is linear and surjective, there exists a linear map

S:¢— X such that TS=I. By Lemma 9.1, § is continuous. Consider
the linear maps

A:pxkerT - X, A(u,y)=y+Su and B: X > @x kerT, Bx=(Tx,x—STx).

It is easy to see that A and B are continuous and that AB=I and
BA=I. Hence B is a required isomorphism.

Corollary 9.3 Let X be a topological vector space. Then the following
conditions are equivalent. pt

(9.3.1) X is isomorphic to a space of the shape Y x @,, where Yis a
topological vector space’

(9.3.2) X has a quotient isomorphic to ¢;
(9.3.3) thereis T e L(X,p) such that T(X) is infinite dimensional.

Proof. The implications (9.3.1)=(9.3.2)=(9.3.3) are trivial.
Assume that (9.3.3) is satisfied. That is, thereis T € L(X, @) with infinite
dimensional T(X). Since any infinite dimensional linear subspace of ¢
is isomorphic to ¢, we see that T(X) is isomorphic to ¢. Hence there is
a surjective S e L(X,¢) . By Lemma 9.2 X is isomorphic to Y x ¢, where
Y = ker S . Hence (9.3.3) implies (9.3.1), which completes the proof.

Cyclic operators on ¢

Clearly ¢ is isomorphic to the space P of all polynomials over K
endowed with the strongest locally convex topology. The shift operator
on ¢ is obviously similar to the operator

M:P—>P, Mp(z)=zp(z). 9.1)
For each n € N we denote

7 ={peP:degp<nj. 9.2)
Clearly P is an n-dimensional subspace of P.

Lemma 9.4 An operator T € L(¢) is cyclic if and only if T is similar
to the operator M.

Proof. Clearly 1 is a cyclic vector for M. Hence any operator similar
to M is cyclic. Now let T € L(p) be cyclicand X € ¢ be a cyclic vector
for T. Then the vectors T" x for n € Z are linearly independent. Indeed,
otherwise their span is finite dimensional, which contradicts cyclicity

of x for T. Since any linear subspace of @ is closed, we see that {T" x: n
€ Z } is an algebraic basis of ¢. It is easy to see then that the linear map
J:P =@, Jp=p(T)x is invertible and T = M By Lemma 9.1, ]
and J'are continuous. Hence T is similar to M.

We need a multicyclic version of the above lemma.

Lemma 9.5 Let Tel(p)-
equivalent.

Then the following conditions are

(9.5.1) T is multicyclic;

(9.5.1) there exists k€ Z and a linear subspace Y of ¢ of finite
codimension such that T(Y)cY and the restriction T|yeL(Y) is
similar to M*, where M is the operator defined in (9.1).

Proof. First, assume that (9.5.2) is satisfied. Pick a finite dimensional
subspace Z of such that p=Z@®Y . Since T |y is similar to M*, we can
pick an invertible linear operator J : Z — ¢ such that Ty = MRy
forany yeY .Let L =Z + J(7,), where P, is defined in (9.8). Clearly
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Lis a finite dimensional subspace of ¢. From the equality T'|, = JM k-1
it easily follows that for any n € N,

L+T(L)+...+T" L) Z+J(By).

Hence the linear span of the union of Ti (L) for j € Z, contains
Z+J(P)=Z+Y=¢. Thus T is m -cyclic with m=dimL. The
implication (9.5.2) = (9.5.1) has been verified.

Assume now that T is n -cyclic for some n € N. Then there is an n
-dimensional subspace L of ¢ such that

span(_Jr@n=o 93)
k=0

(again, we use the fact that any linear subspace of ¢ is closed and
therefore a dense subspace of ¢ must coincide with ¢). We will use
the concept of T -independence, introduced in Section 7. Since T
-independence implies linear independence, any T -independent
subset of L has at most n elements. Let k be the maximum of
cardinalities of T -independent subsets of L and A be a T -independent
subset of cardinality k. Since A is linearly independent, we can pick
a subset B L of cardinality n-k such that AVYB is a basis in L.
From the definition of k it follows that for any be B, AU{b} is not
T independent and therefore using T -independence of A, we can find
polynomials p, and p, for @ € A such that

pp#0 and pu(T)b= Zpb,a(T)& (9.4)

acA
Now let m=0if B = J and m =max deg p, otherwise. Consider
the spaces e
zZ= span{T"-b:beB,OSjSm} and Y = span{T"-a:aeA,jeZJF}.
Then Z is finite dimensional and T(Y)cY . Obviously,
T/aeYcY+Z foranya € Aandje Z, . (9.5)

Let beB and j € Z . Since p, #0 and deg p, <m, we can find
polynomials g,r such that degr<m and t/ =qt)py(t)+r(t) . Then
TIb = q(T)py(TYb+r(T)b . Since degr<m, ,(T)pcz . According to
(9.4), pp(T)beY . Since Y is invariant for T, q(M)p,(TYbeY - Thus

T/beY+Z foranybeBand jeZ,. (9.6)

Since AVYB s a basis of L, from (9.5) and (9.6) it follows that
TIL)cY+Z for each j € Z . According to (9.3), ¢=Y +Z . Since
Z is finite dimensional, we see that Y has finite codimension in ¢. In

particular, Y is non-trivial and therefore A=< . Thatis, 1 <k < nand
A={ay,...,ar}. Now consider the linear operator J/:P —Y, which
sends the monomial # to Tjas, where j € Z+ and s€{l,....k} are
uniquely defined by the equation /+1= jk+s . By definition of Y, J is
onto. From T -independence of A it follows that J is also one-to-one. By
definition of ], we have ]tl+k = T]tl .Hence ]Mkp =TJp forany p € P.
That is, M*and Ty are similar.

Corollary 9.6 Let T be a multicyclic operator on ¢. Then T is not onto.

Proof. According to Lemma 9.5, we can decompose ¢ into a direct

sum p=Y ®Z , where Z has finite dimension m € Z , T(Y)CY and

Ty issimilar to M*for some k € N. Since T |y is similar to MY, T™(Y)

has codimension k(m+1)>m in Y. Hence dime/T™™(Y)>m . On the
other hand, dimT""(Z)< dimZ=m. Thus pm+l(,) _pm+l 7y pm+ly)

has positive codimension in @. Hence T is not onto and so is T.
Proof of Theorem 1.12

In this section X is a topological vector space, which has no quotient
isomorphic to @. We have to show that there are no cyclic operators
with dense range on Xx¢. Assume the contrary and let T € L(X x¢) be
a cyclic operator with dense range. Consider the matrix representation
of T:

A

T=
g
With T acting according to the formula T(x,u)=(Ax+Bu,Cx+Du).
Since T is cyclicc, we can pick a vector (x,u)eXx¢@ such that
E=span{T*(x,u):keZ,} is dense in Xx¢. Since T has dense
range, then T" has dense range for any m € Z_. Thus
E, =T"(E)= span {Tk(x,u):kz m} is dense in Xx¢ for each m
€ Z,. Let Tk(x,u):(xk,uk) for k € Z_, where x; €X and u_ =¢.

B
DJ, where A e L(X), Be L(p,X),CeL(X,p)and D € L(p)

Since E,, = span{(x;,u;):k>m} is dense in Xx@, we see that
F, = spaniuy .k 2m} is dense in ¢ for any m € Z_. Hence F, = ¢
for any m € Z . Since X has no quotients isomorphic to ¢, Lemma 9.3
implies that Ly =C(X) is a finite dimensional subspace of ¢. Then the
space

L = span(Ly U{u}).

is  also  finite  dimensional.  Clearly

U =Cx +Dug e Dug + L for any k € Z_. It follows that each
u, belongs to the space spanned by the union of D™(L) for m €
Z,. Since L is finite dimensional, D is multicyclic. By Lemma 9.5,
we can decompose ¢ into a direct sum @=Y @Z , where Z is finite
dimensional, D(Y)cY and D|y issimilar to M" for some n € N. That
is, there exists an invertible J € L(Y,”Z) such that D|, =] “IM"] . Let
also P e L(p) be the linear projection onto Y along Z. We consider two
cases.

uy=uel and

Case 1. The sequence { deg JPu;} is bounded from above. In

this case span{JPu; :keZ,} is finite dimensional. Since J is
invertible, span{Pu; 1k €Z.,} isfinite dimensional. Since P has finite
dimensional kernel, Fy = span{u; :keZ,} is finite dimensional. We
have arrived to a contradiction with the equality F =.

Case 2. The sequence {deg JPu;} is unbounded from above.
Since N =(L+Z+D(Z))nY is finite dimensional,

m= sup degJwelZ,.
WweN\{0}

We shall show that deg JPuy .y =n+ deg JPuy whenever
deg JPu; >m . Indeed, let k € Z_ be such that deg JPu, >m. By
definition of P, w—Pu eZ and w, —Pug, €Z. As we know,
upy €Du +L . Hence Puyyy €D DPuyp+L+Z+D(Z) . Since Puy,; and
DPu,. belong to, Y we have Puy,; € DPuy + N . Thus thereis we N

such that Pu,, = DPu; +w . Hence JPu,=]DPuj+]Jw=M"]Pu +]w.
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Since deg M" JPu, = n+ deg JPu, > m> deg Jw, we have
deg JPuj_ | =n+ deg JPu; (the degree of the sum of two polynomials of

different degrees equals to the maximum of the degrees). Since the
sequence { deg JPu;} is unbounded from above, there is k € Z_such
that degJPu, >m and according to the just proven statement, we
will have deg JPu; = deg JPu +n(j—k) for j > k. Since any family of
polynomials with pairwise different degrees is linearly independent,
we see that the vectors JPu, for j = k are linearly independent.
Since JP is a linear operator, the vectors u, for j > k are linearly
independent in ¢. Hence the sequence of spaces F. for j 2 k is strictly
decreasing. On the other hand, we know that F=¢ for each j € Z .
This contradiction completes the proof.

Hypercyclicity of operators on direct sums

We shall prove the following lemma, which is a key for the proof
of Theorem 1.13.

Lemma 10.1 Let {Xn},,ez+ be a sequence of infinite dimensional

locally convex spaces such that

(10.1.1) there exists a dense linear subspace Y of X, carrying a
topology, stronger than the one inherited from X and turning Y into a
separable metrizable topological vector space;

(10.1.2) there exists Ty € L(Xg, X, ® X;) with dense range;

(10.1.3) for each n € N, there exists T,eL(X,,X,.,xK) with dense

range. -

Then there is a hypercyclic operator S on X = @Xn .
n=0
It is worth noting that condition (10.1.1) implies that X, is
separable, condition (10.1.2) implies that X, is separable and condition
(10.1.3) implies that X for n>2 are all separable. Thus X is separable.
We need the following auxiliary lemma.

Lemma 10.2 Let X and Y be topological vector spaces such that there
exists T e L(X,Y xK) with dense range. Then for any closed hyperplane
H of X, there exists S € L(H,Y) with dense range.

Proof. Let T, e L(H,Y xK) be the restriction of T to H. We can
write Ty =(Sy-€) > where Sy € L(H,Y) and geH'. If T, has dense

range, then S=§, is a continuous linear operator from H to Y with
dense range. It remains to consider the case when the range of T, is
not dense. Since the range of T is dense and T, is a restriction of T to
a closed hyperplane, the codimension of the closure of T,(H) in Y x K
does not exceed 1. Thus the codimension of the closure of T,(H) in Y
x KK is exactly 1 and there is a non-zero y e (Y xK)' such that T (H)

is a dense subspace of kery . If kery =Y x{0}, then again we can take
S=S, If kery #Y x{0}, we can pick y € Y such that y(y)=1. Take
SeL(H,Y), Sx=Syx+g(x)y - It is straightforward to verify that S has
dense range.

Proof of Lemma 10.1. Let {Un}nez+ be a base of topology of Y
and

Zn:{xeX:xj:O for j>n}.

Clearly X is the union of the increasing sequence of subspaces
n

Z, and each Z is naturally isomorphic to @)X, . We shall construct
k=0

inductively a sequence of operators S, € L(Z,,Z,,,) and vectors y, € Y

satisfying the following conditions for any k € Z :

(al) Sjx=Spx forany j<k and x€Z;;

(a2) S¢(Z;) is dense in Zis

(a3) Sy Sovx & Zs 5

(a4) S ... Soyk1 =i if k215

(a5) y, €Uy .

By (10.1.2) there exists S, e L(Zy,Z;) with dense range. Since Y
is dense in X _Z, S, has dense range and Z, is nowhere dense in Z ,
we can pick y, €U, such that Syy, ¢ Z,. The basis of induction has
been constructed. Assume now that n € N and Y, EY, S e L(Zy,Z 1)
satisfying (al-a5) for k < n are already constructed. According to (a3)
for k=n-1, we have W =Sy—1---S0¥n-1 € Zy-1. That is, the n* component
w_ of w is non-zero. Since X is locally convex, we can pick a closed
hyperplane H in X such that w, & H . Let P be the linear projection
onZ onto Halong Z, | ® span{w,}. From (10.1.3) and Lemma 10.2
it follows that there is Re L(H,X,,;) with dense range. According
to (a3) for k=n-1, the operator S, ;...Sy from Z, to Z has dense
range. Hence the operator Q=RPS, ;...S, from Z to X, , has
dense range. Since Y is dense in Z, we can pick y, €U, such that
Qy, #0 - Now we define the operator S,:Z, = Z,,;. It is easy to see
that Z, =2,  ® H® span{w} . We set

S,(x+y+sw)=8,_1x+Ry+sy, for xeZ, ;,yeHand sekK

The operator S iscontinuoussinceS,  and Rare continuous. Clearly
(al) and (a5) for k=n are satisfied. Next, S,(Z,) 2S,_,(Z,_1)+R(H) .
Since S,_1(Z,_1) is dense in Z_(condition (a2) for k=n-I) and R(H)
is dense in X, we see that S,(Z,) is densein Z,,; =Z,® X, ,which
gives us (a2) for k=n. From the last display and the relation Qy, #0
it follows that (a3) is satisfied for k=n. Finally, since S,w=y, from

the definition of w we see that (a4) for k=n is also satisfied. Thus the
inductive construction of S, and Y, is complete.

Condition (a2) ensures that there is a unique operator S€ L(X) such
that S|, =S, foranyn € Z . From (a4) it now follows that
n

Sk”yk,] =y, foreachkeZ,.

According to the above display, the set A={y :n € Z } is contained
in the orbit 0(S, y,) - BY (a5) A is dense in Y. Since Y is dense in X
and carries a stronger topology, A is dense in X =Z By (a2) §™(A)
is dense in z, for each m € Z,. Since AcO(S,y,), we have that

S™(A) O(S, y,) and therefore O(S,y,)NZ,, is densein Z for each

m € Z,_. Hence O(S, y,) is dense in X. That is, Y is a hypercyclic vector
for S.

Remark 10.3 The orbit of the hypercyclic vector constructed in the
proof of Lemma 10.1 is not just dense. It is sequentially dense. The latter
property is strictly stronger than density already for countable direct
sums of separable infinite dimensional Banach spaces.

Proof of Theorem 1.14
Let X € M for each n € Z_and x=@yx,. We shall apply Lemma

n=0

10.1. Condition (10.1.1) is satisfied according Lemma 3.3. Indeed X,
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admits a Banach s -disk with dense span. By Lemma 3.8, spaces X x X,
and X x K belong to 9. From Lemma 3.6 it follows that conditions
(10.1.2) and (10.1.3) are also satisfied. Thus by Lemma 10.1, there is
hypercyclic T € L(X).

Proof of Theorem 1.13

As we have already mentioned, s Fréchet space X belongs to 91 if
and only if X is infinite dimensional, separable and non-isomorphic
to . Moreover, in any separable Fréchet space there is an /-sequence
with dense span.

Lemma 10.4 Let X and Y be separable infinite dimensional Fréchet
spaces. Then the following conditions are equivalent

(10.4.1) thereisno T € L(X, Y) with dense range;
(10.4.2) X is isomorphic to w and Y is not isomorphic to Q.

Proof. If both X and Y are isomorphic to w, then obviously there is a
surjective T € L(X,Y). If X is isomorphic to w, Yis notand T € L(X,Y),
then Z=T(X) carries minimal locally convex topology [29] since w does.
It follows that Z is either finite dimensional or isomorphic to w and
therefore complete. Hence Z is closed in Y. It follows that Z=Z#Y
since Y is neither finite dimensional nor isomorphic to . Thus there is
not T € L(X,Y) with dense range. It remains to show that there is T €
L(X,Y) with dense range if X is not isomorphic to w. In this case the
topology of X is not weak and it remains to apply Lemma 3.6.

Lemma 10.5 Let X be the countable locally convex direct sum of a
sequence of separable Fréchet spaces infinitely many of which are infinite
dimensional. Then one of the following two possibilities occurs:

(10.5.1) X is isomorphic to Y ® Z , where Y is a separable infinite

dimensional Fréchet space and Z is the locally convex direct sum of an
infinite countable number of copies of w;

0
(10.5.2) X is isomorphic to @Yﬂ , where each Y isa separable
n=0
infinite dimensional Fréchet space non-isomorphic to w.
Proof. Separating the finite dimensional spaces, spaces isomorphic
to w and infinite dimensional spaces non-isomorphic to w, we see that

X= @Xa @@Xﬂ @@Xy,

acA p<B yeC

where the sets A, Band Care pairwise disjoint, X _is isomorphic to w for
each @€ A, X isaseparable infinite dimensional Fréchet space non-
isomorphic to w for any pBeB,X is finite dimensional for each y€C,
AU B is infinite and countable and C is either finite or countable.

If Band C are finite, then A is infinite. Pick ¢, € A . Then

X=Y® @ X,,» where Y:Xao®®Xﬁ@®Xy.

aeA\{aO} PeB yeC

Clearly Y is a separable infinite dimensional Fréchet space. Since
each X_is isomorphic to w, we fall into the case (10.5.1). If B is finite
and C is infinite, then A is infinite and both A and C can be enumerated
by elements of Z : A={a : n € Z }, C={y : n € Z }. Then

X=Y® (—IZ-) (Xa‘n+1 @Xyn) whereY:Xa0 @/}E}-%Xﬂ.

Again Y is a separable infinite dimensional Fréchet space. Since
each X, ©@ X, is isomorphic to w, (10.5.1) is satisfied. If B is infinite
n

and AuUC is innﬁnite, then we enumerate both B and AuC by the

elements of Z : B={p,:neZ,}, AvC={p,:neZ,}. We arrive
to

X = @(Xﬁn @Xpn).

neZ+

Since each Xz @ X, is a separable infinite dimensional Fréchet
n n

space non-isomorphic to w, (10.5.2) is satisfied. Finally, if B is infinite
and AuUC is finite, we fix £, € B and write

X=Z® @ Xﬁ,whereZ:Xﬁo(-B @ X,
BeB\MBy} peAUC

Again Z and each X, are separable infinite dimensional Fréchet
spaces non-isomorphic to w and we fall into the case (10.5.2).

We are ready to prove Theorem 1.13. Let X be a countable infinite
direct sum of separable Fréchet spaces. If all the spaces in the sum, except
for finitely many, are finite dimensional, then X is isomorphic to Yx¢,
where Y is a Fréchet space. According to Theorem 1.12, X admits no
cyclic operator with dense range. In particular, there is no supercyclic
operator on X. If there are infinitely many infinite dimensional spaces
in the sum defining X, then according to Lemma 10.5, we see that X is
isomorphic to

Y=97v,

nez +
where Y, areall separable infinite dimensional Fréchet spaces and either
all Y, are non-isomorphic to w orall Y, for n>1 are isomorphic to . In
any case from Lemma 10.4 it follows that there exists T, e L(Y,,Y, ®Y;)
with dense range and for each n € N, there exists T, e L(Y,.Y,.1 xK)

with dense range. By Lemma 10.1, there is a hypercyclic operator on X.
The proof of Theorem 1.13 is complete.

Hypercyclic operators on countable unions of spaces
The following lemma is a main tool in the proof of Theorem 1.11.
Lemma 11.1 Let a locally convex space be the union of an increasing

sequence {X,},cn Of its closed linear subspaces. Assume also that for

any n € N there is an {,-sequence with dense span in X _and the topology
of X,/ X, is not weak, where X, ={0}. Then there exists a linear map

S:X — x and xy € X, such that foranyn €N, § an e L(X,,X,11) and

the orbit O(S,x)= {Skx kel,) is dense in X.

Note that we do not claim continuity of the above operator S on X.
Although if, for instance, X is the inductive limit of the sequence {Xn},
then continuity of S will immediately follow from the continuity of the

restrictions S|y .
n

Proof of Lemma 11.1. For each neN, let {xn,k}keZ+ be
an /-sequence with dense span in X . For any n € N, we apply

Lemma 3.1 with the triple of spaces (Y.Y1.Yp) being (X,X,,X,_;)
to obtain a sequence {fn,k}kez+ in X' such that {/ur:ke€Z,}
is uniformly equicontinuous, each f , vanishes on X , and
=ik (x)}kez+ :xeX,} . According to Lemma 3.3, there exists a
Banach disk Kin X such that X, is a dense subspace of X, and the Banach
space X, is separable. Let {U,}, .y be abase of topology of X,. We shall

construct inductively a sequence of operators Sy € L(X, X;.,,) and
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vectors Yy € X satisfying the following conditions for any k €Z, :

(p1) Sjx=S;x forany j<k and x€X;;

(p2) Si(X;) isdensein X; 3

(P3) fier1,0(Sk - Sy # 05

(P4) S Spyp-r =k if k223

(p5) yg €Uy -

Consider the linear map S;: X = X, defined by the formula

0
Spr= Y 27K f @
k=0

Since {x) s }rez
. . ~+ . .
uniformly equicontinuous, the above display defines a continuous

is an £ -sequence in X, and {f, , :keZ,} is

linear operator from X to X,. Since o hxWhez, :xeXihs §(X))
contains span{x,;:keZ,}. Hence §(X;) is dense in X, Since
X, is dense in X, S, has dense range and X, M ker f,, is nowhere
dense in X,, we can pick y; €U; such that f2.0(8191) 20 . The basis
of induction has been constructed. Assume now that n>2 and
Yk € Xk » S € L(X, X,q) » satisfying (p1-p5) for k <n—1,are already
constructed. According to (p3) for k=n—1, we have f,o(w)=0,
where w=S, ;...8y,_; .Since H=X, N ker f,, isaclosed hyperplane
in X, we have X, =H® span{w}. Let also Hy=Hnkerf,,.
Then H, is a closed hyperplane of H. By (p2) for k<n , the operator
N

1.5, from X to X has dense range. Since X is dense in X,

we can pick y,eU, such that u=S, ...y, ¢ Hy® span{w}. Thus
X, =H, ® span{u,w}- From definition of H, it now follows that the

JaoW) fra(w)
fn,O(”) fn,l(u)

for any two vectors x,,x; € X,

matrix ( j is invertible. The latter property allows us

41 tofind yg,y; € spanixg,x}c X,y
satisfying f, o(w)yo + fu1(Wy1 =x and f, (u)y, + f,(w)y; = x, - Pick
any vector V€ X,11 such that f,,10(v)#0 and let

o o
—k —k
X0=Vn— n71W722 fn,k+2(w)xn+1,k> X1 =V*sn71”722 fn,k+2(”)xn+l,k'
k=0 k=0

The above series converge since {xn+1,k}k€Z+ is an £ -sequence
and {f, , :ke€Z,} is uniformly equicontinuous. Applying the above

property to the pair x,,x, € X, ;> wefind yy,y € X,,,; such that

fn,0(W)yo + 1 (Wly1=xgandf, o W)y + £, 1 (Wy1=x5.

Consider now the linear map Sy XX, defined by the formula

o0
—k
8% = Su1X + fuo()yo + fra(¥)y; + 22 Jades2 (%41 -
k=0
The above display defines a continuous linear operator since

{xn+1,k}kez+ is an / -sequence and {f,;:keZ,} is uniformly

equicontinuous. From the last three displays it follows that S,w=y,

and S,u=v . From definition of w and u and the relation f,; 4(v) =0

it follows that (p3) and (p4) for k=n are satisfied. Clearly (p5) for k=n
is also satisfied. Since each f,  vanishes on X, » we have from the
last display that S, x=S, ;x for any xeX,_;. Hence (pl) for k=n
is satisfied. It remains to verify (p2) for k=n. Let U be a non-empty

open subset of X . Since E=spanix,, ;:keZ,} is dense in X,

1
we can find x€E and a convex balanced neighborhood W of zero

in X, such that x+W cU . Since (/Jg{{fn,k(x)}kez+ ixe X}, for

each x€E=span {xnﬂyk tkeZ,}, we can pick yeX, such that

o) =1,1(»)=0 and X=Z2_kfn)k+2(y)xn+1,k. It follows that
k=0
Spy=S,_1y+x- By (p2) for k=n-1, S,1(X,_;) is dense in X .

Since S,_;¥€X,, we can find reX, ; such that S,,r€S,_y—-W.
k=n,
Hence S,reS,_;y—W. Using the equality S,y=S,_;y+x, we get

By the already proven property (pl) for S,r=S,r .

S,(y—r)ex+W cU. Hence any non-empty open subset of X ,
contains elements of §,(X,), which proves (p2) for k=n. Thus the

inductive construction of S, and y, is complete.

Condition (p2) ensures that there is a unique linear map g. x 5 x
such that S|y =S,|x for any n € N. From (p4) it now follows that
n n

Sk“yk = Yien foreach k € N. Thustheset 4= {y, :n € N} iscontained

in the orbit O(S, y;) . By (p5) A is dense in X, and therefore is dense in
X,. By (p2) S§™(A) is dense in X,  foreachm€Z_.Since AcO(S,y)),
we have that §™(A) c O(S, y;) and therefore O(S, ;)N X,, is dense in
X, for each m € N. Hence O(S,y;) is dense in X.

Before proving Theorem 1.11, we need to make the following two
elementary observations.

Lemma 11.2 Let X be an LB-space and Y be a closed linear subspace
of X. Then either X /Y is finite dimensional or the topology of X /Y is not
weak.

Proof. Since X is an LB-space, it is the inductive limit of a sequence
(Xl 1) of Banach spaces. If X /Y is infinite dimensional, we can
find a linearly independent sequence {, ,,},,EZ+ in X' such that each fn
vanishes on Y. Next, we find a sequence {&,},c z, of positive numbers
converging to zero fast enough to ensure that &, H fn ‘Xk Hk_> 0
as n—oo for each keN. It follows that the sequence eofa is
pointwise convergent to zero on X. Since any LB-space is barrelled
[17,29], the set {¢,f, :n€Z,} is uniformly equicontinuous. Hence

p(x)=supie, | [,(x):neZ,} is a continuous seminorm on X. Since

each f vanisheson Y, Y < ker p. Then p(x+Y)= p(x) isacontinuous
seminorm on X /Y. Since fn are linearly independent ker p has infinite
codimension in X and therefore ker p has infinite codimension in X

/Y. Hence the topology of X /Y is not weak.

Lemma 11.3 Let X be an inductive limit of a sequence {Xn}neZ+
of Banach spaces such that X is dense in X. Then X has no quotients
isomorphic to @ .

Proof. Assume that X has a quotient isomorphic to ¢. By Lemma
9.2 then X is isomorphic to Yx¢ for some closed linear subspace Y of
X. Let J: Xo—> X be the natural embedding. Since X, is dense in X, J
has dense range. Hence J': X' — X, is injective. Since X is isomorphic
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to Yx@, we have that X} is isomorphic to Yzx® (w is naturally
isomorphic to ¢'3). Hence, there exists an injective continuous linear
operator from w to the Banach space X{ (with the topology B(Xg,Xg)).
That is impossible, since any injective continuous linear operator from
w to a locally convex space is an isomorphism onto image and w is
non-normable.

Proof of Theorem 1.11

Throughout this section X is the inductive limit of a sequence
{X, }neZ+ of separable Banach spaces. Letalso X, be the closure of X,

in X. First, we shall prove the implication (1.11.4)= (1.11.3) . Assume
that (1.11.4) is satisfied. Then we can pick a strictly increasing sequence

{”k}’kez+ of non-negative integers such that 0<dimXn, | / Xn_ <o
for each k € Z,. Hence, for any k € Z,, we can pick a non-trivial finite
dimensional subspace Y, of X et such that X”k DY = X”k+1 . Thus

the vector space X can be written as an algebraic direct sum

0
X=X, ® k€|_>Yk.
=0

Apart from the original topology 7 on X, we can consider the
topology 0, turning the sum (11.1) into a locally convex direct sum.
Obviously 7<@. On the other hand, if W is a balanced convex

0-neighborhood of 0 in X, then Wﬂ% is a 7-neighborhood

(11.1)

of zero in XTk for any k € Z,. Indeed, it follows from the fact that

— — k-1

X”k = X”o @Z, , where Zk:@Y, and Z, is finite dimensional. Since
=

the topology of each is stronger than the one inherited from X,

we see that Wank is a neighborhood of zero in X"k for each k €
Z,. Since X is the inductive limit of the sequence {X e }kez+, Wisart
-neighborhood of zero in X. Hence §c 7. Thus ¢=¢ and therefore
X is isomorphic to }no XY, where Y is the locally convex direct sum
of Y, fork € Z.. Since Y, are finite dimensional, Y is isomorphic to ¢.
Since }”0 is the inductive limit of the sequence {}"o N X"k T ez, of

separable Banach spaces (with the topology inherited from X, ), the
first one Xn0 of which is dense, we see that (1.11.3) is satisfied. The

implication (1.11.4)= (1.11.3) is verified.

Assume now that (1.11.3) is satisfied. By Lemma 11.3, Y has no
quotients isomorphic to @. Theorem 1.12 implies now that there are no
cyclic operators with dense range on X, which proves the implication

(1.11.3) = (1.11.2) - The implication (1.11.2)= (1.11.1) is obvious

since any hypercyclic operator is cyclic and has dense range. It remains
to show that (1.11.1) implies (1.11.4). Assume the contrary. That is,
(1.11.1) is satisfied and (1.11.4) fails. The latter implies that either there

is n € Z_ such that x, is dense in X or there is a strictly increasing
sequence {1 }keZ+ of non-negative integers such that Xn_ /Xn
is infinite dimensional for each k € Z,. In the first case, it is easy to

see that X € 9 and therefore there is a hypercyclic operator on X
by Corollary 1.4. We have obtained a contradiction with (1.11.1). It

remains to consider the case when there exists a strictly increasing

sequence {ny }keZ+ of non-negative integers such that Xnk Xnk

is infinite dimensional for each k € Z . By Lemma 11.2, the topology

of each Xn_ /Xs, is not weak. Let k € Z . Since Xy, is a separable
Banach space, there is an / -sequence ., j} jeZ, in X”k with dense

span. Since the topology on X”k inherited from X is weaker than the
Banach spaceiopology of X”k , {xk,j}jeZ+ is an /¢ -sequence with
densespanin Xy .ByLemma11.1, there exists alinear map §: X — X
and %y € X' such that for any k € Z , the restriction of S to Xn_ is

continuous and the orbit 0(S,x)= {Skx keZ,} is dense in X. Since

the topology of X, s stronger than the one inherited from X, we have

k

that each restriction of Sto X, is a continuous linear operator from

k
X"k to X. Since X is the inductive limit of the sequence {X, n }keZ+

, §:X — X is continuous. Hence S is a hypercyclic continuous linear

operator on X. The existence of such an operator contradicts (1.11.1).
The proof of the implication (1.11.1) = (1.11.4) and that of Theorem
1.11 is now complete.

Remarks on mixing versus hereditarily hypercyclic

We start with the following remark. As we have already mentioned,
¢ supports no supercyclic operator [11], which follows also from
Theorem 1.12. On the other hand, ¢ supports a transitive operator
[22]. The latter statement can be easily strengthened with the help of
Corollary 5.1. Namely, take the backward shift T on . That is Te =0
and Te, =e, , forn>1, where {¢ }neZ+ is the standard basis in ¢.
Clearly T'is a generalized backward shift and therefore T'is an extended
backward shift. By Corollary 5.1, I+T is mixing. Thus we have the
following proposition.

Proposition 12.1 @ supports a mixing operator and supports no
supercyclic operators.

On the other hand, a topological vector space of countable algebraic
dimension can support a hypercyclic operator, as observed by several
authors, [22], for instance. The following proposition formalizes and
extends this observation.

Proposition 12.2 Let X be a normed space of countable algebraic
dimension. Then there exists a hypercyclic mixing operator T€ L(X).

Proof. Let x be the completion of X. Then y is a separable
infinite dimensional Banach space. By Corollary 1.4, there is a hereditarily
hypercyclic operator on Se [(X). Let x e X be a hypercyclic vector for

S and E be the linear span of the orbit of x: E = span{S"x:neZ,}.
Grivaux [39] demonstrated that for any two countably dimensional dense
linear subspaces E and F of a separable infinite dimensional Banach space Y,
there is an isomorphism J:Y —Y such that J(E)=F . Hence there is an
isomorphism J: X — X such that J (X)=E .Letnow Ty =] ~157 . Since
J(X)=E and Eis S -invariant, X is T -invariant. Thus the restriction T of
To to X is a continuous linear operator on X. Moreover, since the S -orbit
of sisdensein X ,the T,-orbit of J"'x is dense in X . Since ]‘lx e X, the

latter orbit is exactly the T -orbit of J'x and therefore J'x is hypercyclic
for T. Hence T is hypercyclic. Next, T, is mixing since it is similar to
the mixing operator S. Hence T is mixing as a restriction of a mixing
operator to a dense subspace.

By Proposition 1.1, if X is a Baire separable and metrizable
topological vector space, then any mixing T€ L(X) is hereditarily
hypercyclic. From the above proposition it follows that there are mixing
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operators on countably dimensional normed spaces. The next theorem
however implies that there are no hereditarily hypercyclic operators
on countably dimensional topological vector spaces, emphasizing the
necessity of the Baire condition in Proposition 1.1.

Theorem 12.3 Let X be a topological vector space such that
there exists a hereditarily universal family {T,:neZ,}c L(X). Then
dimX >N, -

Proof. Since the topology of any topological vector space can
be defined by a family of quasinorms [17], we can pick a non-
zero continuous quasinorm P on X. That is, p:X —[0,,0) is non-
zero, continuous, p(x+y)< p(x)+ p(y) for any xy €X, p(0)=0,
plzx) = p(x) fx€EX, z€K, |z|=1 and (X’TP) is a (not necessarily
Hausdorff) topological vector space, where 7 is the topology defined
by the pseudometric d(x,y) = p(x—y) . The latter property implies that
pltx,) >0 for any ¢t € K and any sequence {xn}neZ+ in X such that
plx,)—>0-

Let « be the first uncountable ordinal (commonly denoted w,). We
shall construct inductively sequences {x } _ and{A} _ of vectorsin X

a< a<

and subsets of Z _respectively such that for any« < , pt

(s1) A_is infinite and x_ is a universal vector for the family {T : n
€Ak

(s2) p(Tnx/;)—>0 asn—>w,n€A foranyf<o;
(s3) A, \Aﬂ is finite for any f < a.

For the basis of induction we take A =Z_and x, being a universal
vector for the family {T': n € Z }. It remains to describe the induction
step. Assume that y<xand x , A satisfying (s1-s3) for a < y are already
constructed. We have to construct x and A satisfying (s1-s3) for a=y.

Case 1: y has the immediate predecessor. That is y = p+1 for
some ordinal p < . Since x is universal for T,:n€ A ,, we can pick
an infinite subset A, <A, such that PTxp) >0 a5 n—soo, ne A,
. Since Ay is contained in Ap, from (s3) for a < p it follows that Ay \A
is finite for any < y. Hence (s3) for a=y is satisfied. Now from (s3§
for a=y. and (s2) for a < y. it follows that (s2) is satisfied for a=y. Next,
since {T,: n € Z } is hereditarily universal, we can pick x € X universal
for {T :n€ Ay}. Hence (s1) for a=y. is also satisfied.

Case 2: y is a limit ordinal. Since y is a countable ordinal, we can
pick a strictly increasing sequence {a, }nez+ of ordinals such that
y=supla, :neZ,}. Now pick consecutively n, from Aol0 s ny >
from A“o ﬁAal , n,> n, from Aao mAal mAaz etc. The choice is
possible since by (s3) for « < y, each Aao N...NA, is infinite. Now

n
let 4, ={n;:j€Z,} Since ANA, c{ng,onj g}, A, \A“j is finite
for each j € Z . Now if B <y, we can pick j € Z_such that f < &,
< y. Then 4y \Apc(4, \Aaj)U(Aaj \Ag) s finite by (s3) with a=.
Moreover, since Ay is contained in Aaj up to a finite set, from (s2)
with a=a, it follows that p(Tx )—>0 as n—>w, n eA}, . Hence (s2)
and (s3) for a=y are satisfied. Finally, since {T : n € Z } is hereditarily

universal, we can pick x € X universal for {T :n € Ay}. Hence (s1) for
a=y is also satisfied. This concludes the construction of {x } __ and
{A}  satisfying (s1-s3).

a’ a<K
In order to prove that dim X > No > it suffices to show that vectors

{x } . are linearly independent. Assume the contrary. Then there

are n € N, z,...,z, e K\{0} and ordinals «<...<a <x such that
n

Z%y =0. By (s2) with a=a , we see that P(Tkxaj)—>0 as k— oo,

j=1
k eAan for 1 <j < n. Denoting ¢, = —Zj/Zn for 1 <j < nand using

linearity of T,, we obtain Tkxan = zcjnxaj for any k € Z . Since p
. . Ig<
is a quasinorm, we have !
p(T,x, )< Zp(chkxav) —>0ask >o,ke A, .
" 1g<n / n

The above display contradicts universality of x, for {7, :ke 4, },
which is (s1) with a= « . This contradiction completes the proof.

Corollary 12.4 A topological vector space of countable algebraic
dimension supports no hereditarily hypercyclic operators.

It is worth noting that there are infinite dimensional separable
normed spaces, which support no supercyclic or transitive operators.
We call a continuous linear operator T on a topological vector space
X simple if T has shape T=zr+S, where z € K and S has finite
rank. Observe that a simple operator on an infinite dimensional
topological vector space is never transitive or supercyclic. Indeed,
let T be a simple operator on an infinite dimensional topological
vector space and A € K, S€ L(X) be such that T=A7+S and S has
finite rank. Then L=S(X) is finite dimensional. Since X/Y is infinite
dimensional, we can pick non-empty open subsets U, and V, of
X/L such that U;={zu:zeK\{0},ueU,} does not intersect
N={zv:izeK\{0},vely}. Let U={zx:x+LeU,,zeK\{0}}
and V' ={zx:x+LeV,,ze K\{0}}. Clearly U and V are non-empty
open subsets of X. Using the equalities T = A1+ S and S(X)=L, it is easy

to see that T"(U)NV = for any n € 7. Hence T is non-transitive.
Moreover since U and V are stable under multiplication by non-zero

scalars, the projective orbit {zT"x:neZ,,zeK} of any x € U does
not meet V. Hence U contains no supercylic vectors for T. Since the set
of supercyclic vectors of any continuous linear operator is either dense
or empty, T is non-supercyclic.

We say that a topological vector space X is simple if it is infinite
dimensional and any T€ L(X) is simple. Thus simple topological
vector spaces support no supercyclic or transitive operators. Various
examples of simple separable infinite dimensional normed spaces can
be found in the literature [38,40-44]. Moreover, according to Valdivia
[40], in any separable infinite dimensional Fréche spaced there is a
dense simple hyperplane. All the examples of this type existing in the
literature with one exception [44] are constructed with the help of the
axiom of choice and the spaces produced are not Borel measurable in
their completions. In [44] there is a constructive example of a simple
separable infinite dimensional pre-Hilbert space H which is a countable
union of compact sets.

Finally recall that an infinite dimensional topological vector space
X is called rigid if L(X) consists only of the operators of the form I
for A € K. Of course, a rigid space can not be locally convex. Clearly
there are no transitive or cyclic continuous linear operators on a rigid
topological vector space. Since there exist rigid separable F-spaces [45],
we see that there are separable infinite dimensional F-spaces on which
there are no cyclic or transitive operators.

Concluding remarks and open problems

We start by observing that the following questions remain open.
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Problem 13.1 Is there a hereditarily hypercyclic operator on a
countable direct sum of separable infinite dimensional Banach spaces?

Problem 13.2 Is there a hypercyclic strongly continuous operator
semigroup on a countable direct sum of separable infinite dimensional
Banach spaces?

The most of the above results rely upon the underlying space being
locally convex or at least having plenty of continuous linear functionals
and for a good reason. As mentioned in the previous section, there are
separable infinite dimensional F -spaces on which there are no cyclic
or transitive operators. On the other hand, the absence of non-zero
continuous linear functionals on a topological vector space does not
guarantee the absence of hypercyclic operators on it. It is well-known
[45] that the spaces LP[O,l] for 0 < p <1 are separable F -spaces
having no non-zero continuous linear functionals. Ansari [9] raises a
question whether these spaces support hypercyclic operators. Theorem
1.18 provides an easy answer to this question. Namely, consider the
operator TGL(LP[OJ]), Tf(x) = f(x/2) . It is straightforward to see
that T'is onto and has dense generalized kernel. Thus I+T is hereditarily
hypercyclic according to Corollary 5.2.

It is obvious that an extended backward shift has dense range and
dense generalized kernel. Unfortunately, the converse is not true in
general. This leads naturally to the following question.

Problem 13.3 Let T be a continuous linear operator on a separable
Banach space, which has dense range and dense generalized kernel. Is it
true that I+T is mixing or at least hypercyclic?

From Corollary 5.1 and Corollary 2.14 it follows that if T is an
extended backward shift on a separable infinite dimensional Banach
space X, then both I+T and e” are hereditarily hypercyclic. This reminds
of the following question raised by Bermudez, Bonilla, Conejero and
Peris in reference [15].

Question B’CP. Let X be a complex Banach space and T€ L(X)
be such that its spectrum o(T) is connected and contains 0. Does
hypercyclicity of I+T imply hypercyclicity of e™? Does hypercyclicity of e”
imply hypercyclicity of I+T?

We show that the answer to both parts of the above question is
negative. Before doing this we would like to raise a similar question,
which remains open. I+T

Problem 13.4 Let X be a Banach space and T€ L(X) be
quasinilpotent. Is hypercyclicity of I+ T equivalent to hypercyclicity of e"?

First, we introduce some notation. Let D={ze C{z|<1}, H> (D)
be the Hardy Hilbert space on the unit disk and H® (D) be the space of
bounded holomorphic functions f:) — C . For any ¢ € H* (D), the
multiplication operator

M, f(2)=0(2)f(2)
is a bounded linear operator on H2(p). It is also clear that
O-(M(p)z(p(]ﬂ)). If M; is the adjoint of M¢, then G(M;) is the

reflection of O'(M(p) with respect to the real axis. The following
proposition is a direct consequence of a theorem by Godefroy and
Shapiro [27][Theorem 4.9].

Proposition 13.5 Let ¢ € H” (D). Then M; is hypercyclic if and
only if

o(D)NT = . (13.1)

The above Proposition calls for the following comment. A bounded

linear operator T on a separable infinite dimensional Banach space X is
said to satisfy the Kitai Criterion [46,47] if there exist dense subsets E and
FofXandamap §: F — F suchthat TSy=y forany ye F, T"x —0 and
Sny —0 as n— oo forany X € E and y€F . Asitis shown in [46,47],
any operator satisfying the Kitai Criterion is hypercyclic. Moreover, any
operator, satisfying the Kitai Criterion is hereditarily hypercyclic and
therefore mixing [3]. Hypercyclicity in the proof of the above result in
reference [27] is demonstrated via application of the Kitai Criterion.
Thus the following slightly stronger statement holds.

Corollary 13.6 Let peH™(D). Then M; is hereditarily

hypercyclic if (13.1) is satisfied and M; is non-hypercyclic if (13.1) is
not satisfied.

Now we demonstrate that the answer to both parts of
Question B*CP is negative. Consider the subset U of C being the
interior of the triangle with vertices -1, I and -i. In other words

U={a+bi:a,beR,a<0,b—a<l,b+a>-1}- Next, let
V={a+bi:abeR,0<b<l,|al<l-\I-b2}- The boundary of V consists

of the interval [-1+i,1+i] and two circle arcs. It is clear that U and
V are bounded, open, connected and simply connected. From the
definition of the sets U and V it immediately follows that the open set
1+U ={1+2z:zeU} intersects the unit circle. On the other hand, since
U is contained in the left half-plane, we see that V= {*:zeU}cD.
Similarly, we see that 1+ "D = and the open set €' intersects
the unit circle. According to the Riemann Theorem [48], there exist
holomorphic homeomorphisms ¢:ID — U and y :ID — V. Obviously
*

. * * M *
o,y e H*(D) - Since [+My=Myp> eV =M, and both

e

(1+¢)D)=1+U and & (D)= ¢ intersect the unit circle, Corollary

13.6 implies that 7+ M Z, and eM v are hereditarily hypercyclic. Since

*

M
[+My, =M, , ¢ *=M

*

P e’ =eV is contained in D, and
e

(1+y)M)=1+V does not intersect I, Corollary 13.6 implies that
Mo and T+M, y*, are non-hypercyclic. Finally, observe that o(M ;)

is the closure of U and o (M ,/*,) is the closure of -V and therefore the
spectra of M ; and M, y*, are connected and contain 0. Taking into

account that all separable infinite dimensional Hilbert spaces are
isomorphic, we arrive to the following result, which answers negatively
the Question B*CP.

Proposition 13.7 There exist bounded linear operators A, B on the
complex Hilbert space {, such that o(A) and o(B) are connected and
contain 0, I+A and e® are hereditarily hypercyclic, while e* and I+B are
non-hypercyclic.

Finally, if the answer to Question 13.4 is affirmative, then the
following interesting question naturally arises.

Problem 13.8 Let A be a quasinilpotent bounded linear operator on
a complex Banach space X and f be an entire function on one variable
suchthat f(0)=f'(0)=1. Is it true that hypercyclicity of f(A) is equivalent
to hypercyclicity of I+A?

Spaces C (M) and their duals

Let (M,d) be a separable metric space and C,(M) be the space of
continuous functions f:M — K with the compact-open topology
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(=the topology of uniform convergence on compact subsets of M). It
is easy to see that C,(M) is complete. Moreover, C,(M) is metrizable
if and only M is locally compact and C,(M) carries weak topology
if and only if M is discrete. On the other hand, there always is an /,-
sequence with dense span in C,(M). Indeed, let M be a metrizable

compactification of M. Since C(M) is a separable Banach space, there
is an / -sequence {f }nEZ+ with dense span in c(M) . Since C(M)
is densely and continuously embedded into C,(M), i }l}nez+ isan /-
sequence with dense span in C,(M). Thus C,(M) €M if and only if M
is non-discrete. Corollary 1.4 implies now the following proposition.

Proposition 13.9 If (M,d) is a separable non-discrete metric space,
then there is a hereditarily hypercyclic operator on C (X).

The reason for inclusion of the above proposition is to demonstrate
that Theorem 1.3 and Corollary 1.4 are applicable far beyond metrizable
or LB-spaces. The spaces C,(M) can have quite ugly structure indeed.
For instance, take M being the set Q of rational numbers with the
metric induced from R, and you have got the space C,(Q), which does
not fall into any of the well-understood and studied classes of locally
convex spaces. We would like to raise the following question.

Problem 13.10 Characterize separable metric spaces (M,d) such
that C (M) supports a dual hypercyclic operator.

It is worth noting that if M is discrete, then either C,(M) is finite
dimensional or is isomorphic to w and therefore does not support a
dual hypercyclic operator (there are no hypercyclic operators on p=w’).
In general, 7(M)=(C;(M)) can be naturally identified with the space
of finite K -valued Borel o -additive measures on M with compact
support. This dual space is separable in the strong topology if and only
if all compact subsets of M are finite or countable. If it is not the case,
there is no point to look for dual hypercyclic operators on C (M). Thus
the only spaces (M,d) for which C,(M) has a chance to support a dual
hypercyclic operator are non-discrete spaces with no uncountable
compact subsets. The first natural candidate to consider is Q.

Note also that although Theorem 1.15 provides answers to the
questions of Petersson, mentioned in the introduction, it does not
characterize Fréchet spaces, supporting a dual hypercyclic operator.

Problem 13.11 Characterize Fréchet spaces X such that X supports
a dual hypercyclic operator.

The most natural Fréchet space for which we do not know whether
it supports a dual hypercyclic operator is the countable power fI;] of
the Hilbert space /,.

The Hypercyclicity Criterion

The following universality criterion is proved by Bés and Peris [2,
Theorem 2.3 and Remark 2.6]. It is formulated in [2] in the case when
X is an F -space, but the proof works without any changes for Baire
separable metrizable topological vector spaces.

Theorem BP Let {T;z}nEZ+ be a sequence of pairwise commuting
continuous linear operators with dense range on a Baire separable
metrizable topological vector space X. Then the following conditions are
equivalent:

(a) The family {7, ®T,} ¢ z, is universal;

(b)There exists an infinite subset A of Z_such that the family
{T,},.c4 is hereditarily universal’

(c)There exist a strictly increasing sequence {n,} of non-negative

integers, dense subsets E and F of X and maps S, :F —> X fork € Z,
such that T, x>0, §;y -0 and TnkSky—>y as k—>oo foranyx €
Eandy€F.

We formulate now the so-called Hypercyclicity and Supercyclicity
Criteria, which follow easily from the above theorem.

Theorem HC Let X be a Baire separable metrizable topological
vector space and T€ L(X). Then the following conditions are equivalent:

(a)T @ T is hypercyclic;

(b)There exists an infinite subset A of Z_such that the family
™ is hereditarily universal;
{ }neA Y

(c)There exist a strictly increasing sequence {n,} of non-negative
integers, dense subsets E and F of X and maps Sx:F—> X fork € Z,

such that T"kx -0, Sy —0 and TnkSky%y as k —>oo for any x
€E and y €F.

Theorem SC. Let X be a Baire separable metrizable topological
vector space and T€ L(X). Then the following conditions are equivalent:

(a) T © T is supercyclic;

(b) There exists an infinite subset A of Z_and a sequence {sptnea
of positive numbers such that the family {s,T"},.4 is hereditarily
universal;

(c) There exist a strictly increasing sequence {n} of non-negative

integers, dense subsets E and F of X, and a sequence {Sk}k€Z+ of

positive numbers and maps Sy :F — X for k € Z_such that Tk x>0,
slzlsky —0 and T'kS,y > y as k — oo forany x €E and y €F.

An operator satisfying the condition (c) of Theorem HC
(respectively Theorem SC) is said to satisfy the Hypercyclicity
(respectively, Supercyclicity) Criterion. The long standing question
whether any hypercyclic operator T on a Banach space satisfies the
Hypercyclicity Criterion, was recently solved negatively by Read and
De La Rosa [49]. Their result was extended by Bayart and Matheron
[50], who demonstrated that on any separable Banach space with an
unconditional Schauder basis such that the forward shift operator
associated with this basis is bounded, there is a hypercyclic operator
T such that T @ T is not hypercyclic. This leaves open the following
question raised in reference [50].

Problem 13.12 Does there exist a separable infinite dimensional
Banach space X such that any hypercyclic operator on X satisfies the
Hypercyclicity Criterion?

It is observed in reference [50] that any T€ L(w) satisfies the
Hypercyclicity Criterion. It also follows from Theorem 1.7 and
Theorem HC. Thus the above question in the class of Fréchet spaces
has an affirmative answer, which leads to the following problem.

Problem 13.13 Characterize separable infinite dimensional
Fréchet spaces X on which any hypercyclic operator on X satisfies the
Hypercyclicity Criterion?

It is worth noting that non-hypercyclicity of T @ T in references
[49,50] is ensured by the existence of a non-zero continuous
bilinear form p: X x X — K with respect to which T is symmetric:
b(Tx, y)=b(x,Ty) for any x,y € X . The following proposition formalizes
the corresponding implication. Similar statements have been proved
by many authors in various particular cases. The proof goes along the
same lines as in any of them.
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Let X and Y be topological vector spaces and b: XxX—>Y
be separately continuous and bilinear. We say that T€ L(X) is

b-symmetric if b(Tx, y)="b(x,Ty) for any %,y € X . Recall also that b is
called symmetric if b(x,y)=b(y,x) for any x,y€X and b is called
antisymmetric if b(x,y)=-b(y,x) forany x,ye€ X .

Proposition 13.14 Let X and Y be a topological vector spaces,
b Xx X —Y be separately continuous, non-zero and bilinear and T€

L(X) be b -symmetric. Then T @ T is non-cyclic. If additionally b is non-
symmetric, then T? is non-cyclic.

Proof. Consider the left and right kernels of b:
Xg ={x e X:b(x,y)=0 foranyy € X} and X; ={y € X : b(x, y) = 0 foranyx € X}. (13,2)

Separate continuity of b implies that X, and X, are closed linear
subspaces of X. Since b is non-zero, we have Xo# X and X #X.
From b -symmetry of T it follows that X and X, are both T -invariant.
Hence X x X and X x X, are T @ T -invariant proper closed subspaces
of X x X, they can not contain a cyclic vector for T @ T. Assume
that T @ T has a cyclic vector (x,y)e Xx X . Then x& X and V€ X,
Consider now a continuous linear operator @: Xx X — Y defined by
the formula

D(u,v) =b(x,v)-b(u, y).

Since x¢X; and y¢X;, we have ® =0 . On the other hand,
using b -symmetry of T, we have

DT ®T)"(x, ) =b(x, T"y) —b(T"x, y) = 0.

Thus the orbit of (x, y) with respect to T @ T lies in the proper
closed linear subspace ker @ of X, which contradicts cyclicity of (x, y)
forTO T.

Assumenow thatbisnon-symmetric. Then c(x, y) = b(x, y) —b(y, x)
is a non-zero separately continuous bilinear map from X x X to Y.
Moreover, T'is c-symmetric. Assume that x is a cyclic vector for 7. Then
x can not lie in the right kernel of ¢, which is a proper closed T-invariant
subspace of X. Hence the operator ¥ € L(X,Y) , ¥(u)=c(u,x) is non-
zero. On the other hand, for any n € /R

W(T?"x) = (T x,x) = c«(T"x, T"x) = b(T"x, T"x) — b(T"x, T" x) = 0.
Hence the orbit of x with respect to T? lies in the proper closed
linear subspace ker ¥ of X, which contradicts cyclicity of x for T2

This looks like a proper place to reproduce the following question
of Grivaux.

Problem 13.15 Let X be a Banach space and T€ L(X) be such that T
@ T is cyclic. Does it follow that T? is cyclic?

As a straightforward toy illustration of the above proposition one
can consider the following fact. Let (€2,.%, 1) be a measure space,
gel, (1),0< p<eoand Te L(L,, (1) bethe operator of multiplication
by &: Tf = fg for feL,(u). Then T @ T is non-cyclic. Indeed,
consider the continuous bilinear map b: L, (1)x L, (1) = L,, (1)
b(f,h)= fh .Clearly bis non-zero and T'is b-symmetric. By Proposition

13.14, T @ T is non-cyclic. The above mentioned result of Bayart and
Matheron can now be formulated in the following way.

Theorem BM Let X be a separable infinite dimensional Banach
space with an unconditional Schauder basis such that the forward
shift operator associated with this basis is bounded. Then there exists

a hypercyclic T€ L(X) and a non-zero continuous bilinear form
b: XxX —> K such that T is b -symmetric. In particular, T @ T is
non-cyclic.

The form b in the above theorem must be symmetric. Indeed,
otherwise, by Proposition 13.14, T? is non-cyclic, which contradicts
hypercyclicity of Taccording to the Ansari theorem [1] on hypercyclicity
of powers of hypercyclic operators. An answer to the following question
could help in better understanding of the phenomenon of hypercyclic
operators not satisfying the Hypercyclicity Criterion.

Problem 13.16 Let T be a hypercyclic continuous linear operator on
a Banach space X such that T @ T is non-hypercyclic. Does there exist a
non-zero symmetric continuous bilinear form b: X x X — K such that
T @ Tis b -symmetric?

It is worth noting that non-existence of such a form b is equivalent
to the density of the range of the operator I @ T -T & I acting on the

projective tensor product X®, X .

Another observation concerning Theorem BM is that operators
constructed in reference [50] have huge spectrum. Namely, their
spectrum contains a disk centered at 0 of radius >1. On the other hand,
we know (see Theorems 1.19 and 1.21) that any separable infinite
dimensional complex Banach space supports plenty of hypercyclic
operators with the spectrum being the singleton {1}. This leads to the
following question.

Problem 13.17 Let T be a hypercyclic continuous linear operator on
a complex Banach space X such that o(T)= {1}. Is T @ T hypercyclic?

It is worth noting that an affirmative answer to the above
question would take care of Problem 13.7. Indeed, the spectrum of
any hypercyclic operator on a hereditarily indecomposable complex
Banach space [51] is a singleton {z} with z € T.

n-supercyclic operators

Recently Feldman [52] hasintroduced the notion ofan # -supercyclic
operator for n € N. A bounded linear operator T on a Banach space X
is called n-supercyclic for n € N if there exists an n -dimensional linear
subspace L of X such that its orbit {T' x:ne ,xelL} is dense in
X. Such a space L is called an n - supercyclic subspace for T. Clearly,1-
supercyclicity coincides with the usual supercyclicity. In reference [52],
for any n € N, n > 2, a bounded linear operator T on /, is constructed,
which is n -supercyclic and not (n-1)-supercyclic. The construction is
based on the observation that if T, for 1< <, are bounded linear
operators on Banach spaces X, all satisfying the Supercyclicity Criterion
with the same sequence {n}, then the direct sum T, ... T, is n
-supercyclic. This observation leads to the natural question whether
the direct sum of n supercyclic operators should be # -supercyclic. The
following proposition provides a negative answer to this question.

Proposition 13.18 There exists a hypercyclic operator TE L((,)
such that T @ T is not n -supercyclic for any n € N.

The above proposition follows immediately from Theorem BM
and the next proposition, which implies that for the operator T from
Theorem BM, T @ T is not n -supercyclic for any n € N.

Proposition 13.19 Let X be an infinite dimensional topological
vector space, b: X x X — K be non-zero, separately continuous and
bilinear and T€ L(X) be a b-symmetric operator with no non-trivial closed
invariant subspaces of finite codimension. Then for any finite dimensional
linear subspace L of X x X, the set {(p(T)x,p(T)y):peP,(x,y)eL}
is nowhere dense in X x X.
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In order to prove Proposition 13.19, we need the following lemma.

Lemma 13.20 Let m € N, L and X be topological vector spaces, such
that dimL=k<m and B:Lx X — K™ be a continuous bilinear map
such that for each non-zero n € L, the linear map B(u,-) is surjective.

Then the set A={xeX:B(u,x)=0 forsomenon—zero uel} is
closed and nowhere dense in X.

Proof. First, observe that it is enough to prove the required
statement in the case, when X is finite dimensional. Indeed, let €pers

k
e, be a basis of L and X1 :ﬂ ker Blej,) . Then X, is a closed linear

j=1

subspace such that B(u, x)]:O for any (u,x)eLxX,. Moreover,
X, has codimension at most km in X. Thus we can pick a finite
dimensional subspace Y of X such that X=X, ®Y . Since B(u,x)=0
for any (u,x) e Lx X, , we have that for each u€L\{0}, the restriction
of B(u,) to Y is onto. It is also clear that A= ;fl(AO) , where
Ay={x€Y:B(u,x)=0 for some non—zero ue L} and 7m is the
projection in X onto Y along X,. Since 7 is continuous and open, A is
closed and nowhere dense in X if and only if A  is closed and nowhere
dense in Y, which is finite dimensional.

Thus without loss of generality, we can assume that X is finite
dimensional. Consider the unit sphere S in L with respect to some
Hilbert space norm on L. For each u € S, B(u,) is onto and we can
pick an m-dimensional subspace Z, of X such that the restriction of
B(u,”) to Z_is invertible. Clearly, the set V of those v € S for which

the restriction of B(u,-) to Z is invertible is open in S and contains u.
Thus we can pick a neighborhood W, of u such that B(v,-) is onto for
each v EWM . Since u € W ,the family {W, : u € S} is an open cover of
the compact space S and therefore we can choose u,,..., u € S such that

A=| |J4;, where Aj ={x e X :B(u,x) =0 forsomenon —zero u eﬁj}.
J=1

It suffices to show that each A, is closed and nowhere dense. Let
1< j<r- Closeness of A, is rather easy. Indeed, let X, }”€Z+ be a
sequence of elements of A, converging to x € X. Since x, € A, we can
pick w, GW*,AJ, such that B(w,,x,)=0. Since Wiuj is compacnle,
passing to a subsequence, if necessary, can assume that w, >we W“j .
Since Bis continuous, we have 0 = B(w,,, x,,) — B(w,x) - Thus B(w,x)=0
and x € Aj. That is, AJ. is closed. It remains to show that it is nowhere dense.
Pick a linear subspace Y of X such that Z, @Y;=X.Foreach ue V“j
let T, be the restriction of B(u,") to Z”j and S, be the restriction of p(y, )
toY, Let ze Zuj andy € Y. Then z+yeA; ifand only if there exists

ueW, such that T, z+S,y=0. Since T, is invertible, the latter is
]
equivalent to z=-T,'S,y. Thus Aj=F(ijWT4]_), where F:Y;xV, —X,
J
—1 —A1 ;. — —_
F(y,u)=y-T,'s,y- Let n=dim X. Then dim Yj=n-m-. Hence

YjXVuj is a manifold of dimension aln-m+k)-1> where a =1

if K=R and « =1 if K=C. It is clear that F is smooth and therefor is
Lipschitzian on any compact set. Since a Lipschitzian map does not

increase the Hausdorff dimension, we see that Aj =F (Yj xW, ) isa
J

countable union of compact sets of Hausdorft dimension at most
am-m+k)-1<an. Since X =", any compact subset of X of
Hausdorff dimension <an is nowhere dense. Thus A. is a Baire first
category set. Since A, is closed, it is nowhere dense.

Proof of Proposition 13.9. First, we consider the case of non-
degenerate b. That is, we assume that both the left and the right
kernels X, and X, of b defined by (13.2) are trivial. For each k € Z,
and (x.y)e XxX, consider the linear functional ®@;(x,y)e(XxX)'
defined by the formula

D (%, ) (uv) = (T x,v) —b(u, T* ).

First, we shall check that for any (x,y)#(0,0), the functionals
@ (x, y) fork€Z, arelinearlyindependent. Assume the contrary. Then
there exists a non-zero polynomial p such that b(p(T)x,v) =b(u, p(T) y)
for any u,v € X. Since the left-hand side of the last equality does not
depend on u and the right-hand side does not depend on v, they both do

notdepend onboth uand v. Hence b(p(T)x,v) = b(u, p(T)y) =0 foranyu,v
€ X. Since T is b -symmetric, we have b(x, p(T)v) =b(p(T)u, y)=0 for
any u,v € X. Hence p(T")¢=p(T")y =0, where g,y € X', p(v)=b(x,v)
w(u)=b(u, y) . Since T has no non-trivial closed invariant subspaces of
finite codimension, T' has no non-trivial finite dimensional invariant
subspaces. By Lemma 7.2, p(T") is injective. Hence ¢ =y =0 . Since b
is non-degenerate, we then have x=y=0, which contradicts with the
assumption (x, y) #(0,0) . Thus the functionals @ (x,y) fork € Z are

linearly independent for each (x,y)#(0,0).

Let L be a finite dimensional linear subspace of X x X,
dimL=keN and m € N, m > n. Consider the bilinear map

BiLx(XxX)—> K", B((x,).(,v) = {® ; (x, ), 1)}

Since for any non-zero (xy)€L, the functionals
Dy(x,)s...,P,,_1(x, ) arelinearly independent, we see that the linear
map B((x,y),") is onto. By Lemma 13.20, the set

A={(u,v) € X x X : there is non — zero(x,y) € L such that B((x,y),(u,v))=0}

is closed and nowhere dense in X x X. Let now (0,0) # (u,v) € p(T ® T)(L)
for some p € P. Then (u,v) =(p(T)x, p(T)y) for some (x,y) € L\{(0,0)} .
Then ®(x, y)(1,v) = (b(T/x, p(T)y) ~b(p(T)x,T/y)) =0 for anyj € Z, since
T is b-symmetric. It follows that (u,v) € A . That is, the nowhere dense

set A contains the set {(p(T)x,p(T)y): peP,(x,y)e L} . Thus the
latter set is nowhere dense.

It remains to reduce the general case to the case of non-
degenerate b. Since b is non-zero, at least one of the bilinear forms
by(x,y)=b(x,y)+b(y,x) or bx,y)=b(x,y)-b(y,x) is non-zero.
Clearly T is symmetric with respect to both b, and b,. Thus replacing
b by either b, or b, if necessary, we can assume that b is symmetric or
antisymmetric. Then leftand rightkernels X, and X, of b defined by (13.2)
coincide. Since T is b -symmetric, X, is T-invariant. Let Ty e L(X/ X)
be defined as To(x+ Xp)=Tx+ X, and  be the bilinear form on X /X,
defined by the formula f(x+ X, y + X)) =b(x, y) . Since X_ is the right
and the left kernel of b and is T -invariant, the operator T, and the form
B are well-defined and f3 is non-degenerate. Moreover, it is easy to see
that T, is f-symmetric and has no non-trivial closed invariant subspaces
of finite codimension. Assume now that L a finite dimensional linear
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subspace L of X x X, A={(p(T)x,p(T)y): peP,(x,y)eL} and

B ={(p(Ty)(x+X), p(Ty)(y + X)) : p € P,(x,y) € L} - According to
the first part of the proof, B is nowhere dense in X /X, Since A= z! (B),
where 7(x)=x + X, is the canonical map from X onto X /X , we see that
A is nowhere dense in X.

The following question is raised by Bourdon, Feldman and Shapiro
[53].

Problem 13.21 Let X be a complex Banach space, n € N and T€
L(X) be such that T is n-supercyclic and o,(T') =@ . Is T cyclic?

It is worth noting that the only known examples of n -supercyclic
operators T with o, (T)=D are the mentioned direct sums of
operators satisfying the Supercyclicity Criterion with the same
sequence {n,}. Such direct sums are all cyclic [54].

Feldman in reference [52] has also introduced the concept of an
oco-supercyclic operator. A bounded linear operator T on a Banach
space X is called oo -supercyclic if there exists a linear subspace L of X
such that its orbit {T" x: n € Z , t € L} is dense in X, the space T*(L)
is not dense in X for any n € Z_and L contains no non-zero invariant
subspace of T. Gallardo and Motes-Rodriguez [55], answering a
question of Salas, demonstrated that the Volterra operator

V:Ly[0,1]> L[0,1], Vf(x)= J-OX ft)dt
is not supercyclic. In [56] it is shown that V'is not n -supercyclic for any
n € N. However, it turns out that V is co-supercyclic.

Proposition 13.22 The Volterra operator is co-supercyclic.

Proof. For any non-zero h € LJ[0, 1] we denote by L,
L, ={f €L,[0,1]:(f,hy=0}. It is

straightforward to see that for any k € L [0, 1],

the orthocomplement of h:

1
V(L) =Ly, where v f(x)= L f ()t (13.3)

is  the adjoint of V.  Consider the  space
e={feC?[0,1]: fV(1)=0forany jeZ,}. If h is non-zero element of ¢,

then according to the above display, V' =—h . Thus by (13.3)

V(L) = Ly foranynon-zero/es andany nez,. (13.4)

h(1) =0 and
h(x):e(x—l)_l for 0<x<1. First, we shall show that L, does not

Consider now the following specific h € ¢ :

contain any non-zero invariant subspace of V. Assume the contrary.
Then there exists non-zero f € L,[0, 1] such that V" f€ L, for each n €

Z,.Thatis, 0= (V" f,h)y = (f,V*"h) . Hence h is not a cyclic vector for
V*. On the other hand, it is well-known that g € LZ[O, 1] is non-cyclic
for V* if and only if there is g € (0,1) such that g vanishes on [g, 1].
Thus h vanishes on a neighborhood of 1, which is obviously not the
case. Hence L, does not contain any non-zero invariant subspace of
V. According to (13.4), V(L) isa closed hyperplane in L,[0, 1] and
therefore V"(L,) is not dense in L,[0, 1] for each n € Z . Now, in order

to show that V is eo-supercyclic it suffices to verify that A:UV"(Lh) is
© n=0

dense in L [0, 1]. By (13.4), A:ULh(”) . It is easy to see that for any f €

n=0
L,[0, 1] and non-zero g € L,[0, 1], the distance from fto Lg is given by

the formula dist(f,L,)=| g 7' ¢(f,g)|-Letq € (0,1) and f€ L,[0, 1]
be such that fvanishes on [g, 1]. Then
1A

L,[0.4]

gyt
Ly[0,1]

A
gy

dist(f.L,(n)) = < £

On the other hand, analyticity of 4 on [0, q] and easy lower

. . (n) .
estimates if [| /" | 0.1] imply that

L, 0,
)l/n _

1/n . (n)
<ooand | n!l|h
) im (n!]] ||L2[0,q]

n—>0

Tlim (! ™ |

n—>0

Q0.
Ly[0.q]

From the last two displays it follows that dist(f,Lh(n))%O as

n— oo - Hence A contains the space of all functions vanishing on a

neighborhood of 1. Since the latter space is dense in 12[0,1] , A is dense
in L?[0, 1], which completes the proof.

R-cyclicity and supercyclicity

Let T be a continuous linear operator on a separable complex
topological vector space X. We say that T'is R - cyclic if there exists x €
X such that the linear span of the orbit {T" x: n € Z } in X considered as
alinear space over R is dense in X. Similarly, T'is called R- supercyclic if
thereis x € X such that {t7T"x: n € Z , t € R} is dense in X and T'is called
R*- supercyclic if there is x € X such that {tT" x: n € Z , t > O}is dense
in X. Clearly any R*-supercyclic operator is R -supercyclic and any
R -supercyclic operator is R -cyclic. The following theorem by Ledn-
Saavedra and Miiller is proved in reference [57]. It is proved in the case
when X is a Banach space, but exactly the same proof works in general.

Theorem LM Let T be a continuous linear operator on a complex
locally convex space X with &, (T") =@ . Then T is supercyclic if and only
if T is R*-supercyclic.

As we have shown, there are bilateral weighted shifts T on /,(Z)
with the weight sequence w converging to zero arbitrarily fast and
such that I+T and I+T" are both hypercyclic. This happens because
we allow w to behave irregularly while still satisfying the condition
|w, [€a, for every n € Z with a being any sequence of positive
numbers. The following proposition shows that hypercyclicity of I+T
is incompatible with the symmetry of the weight sequence. Recall that
a continuous linear operator on a Banach space X is called weakly
supercyclic if it is supercyclic on X with weak topology.

Proposition13.23 Let w e/ (Z) beaweightsuchthat |w, |=|w_, |
for any n € Z, and let p be a polynomial with real coefficients. Then the
operator p(T,) acting on complex {,(Z) is not R-cyclic. In particular, by
Theorem LM, p(T,) is not weakly supercyclic.

Corollary 13.24 Let wel (Z) with |w, [F|w_,| for any n € Z.
Then the operator I+T, acting on { (Z) is not weakly supercyclic.

Proof of Proposition 13.23. First, note that if w,w'e ¢ (Z) satisfy
|w, |=|wy,| for any n € Z, then T, and T, are isometrically similar
with a diagonal unitary operator implementing the similarity. Thus we
can, without loss of generality, assume that w_ € R for each n € Z. Then
the operators T, and S=p(T,) have real matrix coefficients with respect
to the canonical basis. Let H be the R -subspace of /,(Z) consisting
of the sequences with real entries. Then T,(H)cH, SH)cH,
T,,(iH)=iH and S(iH)ciH . Let T, be the restriction of T to H and
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S, the restriction of S to H considered as R -linear operators. Since T
and S, are similar to the restrictions of T, and S to iH, we see that T,
and S, considered as R -linear operators, are similar to T, (<3) T, and S,
@ S, Now the symmetry of the weight sequence w implies that T is
isometrically similar to T Indeed, T'= UTOU'I, where Ue=ce, for n
€ Z. Then S =p(T,) is similar to S’ =p(T"). Thus S considered as an R
-linear operator is similar to S, S',. The last operator is non-cyclic.
Indeed, if x @ y is a non-zero vector in H @ H, then the orbit of x® y
with respect to S, §’)is orthogonal to the non-zero vector y @ (-x)
€H @ H. Thus Sis not R -cyclic.

Since EP(Z) for 1< p <2 is contained in /,(Z) and carries a stronger
topology than the one inherited from /,(Z), Proposition 13.23 remains
true if we replace /,(Z) by ZP(Z) with 1 < p <2. On the other hand, the
unweighted shift on / (Z) with 2< p < e is weakly supercyclic [37] and
therefore the statement of Proposition 13.23 becomes false if we replace
(,(Z) by EP(Z) with p > 2. At this point it is interesting to remind that,
according to Theorem B, norm hypercyclicity and supercyclicity
of a bilateral weighted shift on EP(Z) do not depend on p. This leads
naturally to the following question.

Problem 13.25 Characterize hypercyclicity and supercyclicity of the
operators of the form I+T, where T is a bilateral weighted shift on { (7).
In particular, does hypercyclicity or supercyclicity of these operators
depend on the choice of P. 1 < p < +o0 ?
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