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Abstract
Chaotic linear dynamics deals primarily with various topological ergodic properties of semigroups of continuous 

linear operators acting on a topological vector space. In this survey paper, we treat questions of characterizing which 
of the spaces from a given class support a semigroup of prescribed shape satisfying a given topological ergodic 
property.

In particular, we characterize countable inductive limits of separable Banach spaces that admit a hypercyclic 
operator, show that there is a non-mixing hypercyclic operator on a separable infinite dimensional complex Fréchet 
space X if and only if X is non-isomorphic to the space ω of all sequences with coordinatewise convergence topology. 
It is also shown for any k ∈ , any separable infinite dimensional Fréchet space X non-isomorphic to ω admits a mixing 
uniformly continuous group { } ∈ nt t CT of continuous linear operators and that there is no supercyclic strongly continuous 
operator semigroup {Tt}t≥0 on ω. We specify a wide class of Fréchet spaces X, including all infinite dimensional Banach 
spaces with separable dual, such that there is a hypercyclic operator T on X for which the dual operator T′ is also 
hypercyclic. An extension of the Salas theorem on hypercyclicity of a perturbation of the identity by adding a backward 
weighted shift is presented and its various applications are outlined.

Keywords: Hypercyclic operators; Mixing semigroups; Backward 
weighted shifts; Bilateral weighted shifts

Introduction
Unless stated otherwise, all vector spaces in this article are over the 

field , being either the field  of complex numbers or the field  of 
real numbers, all topological spaces are assumed to be Hausdorff and all 
vector spaces are assumed to be non-trivial. As usual, ={z ∈  : |z|=1}, 
 is the set of integers, + is the set of non-negative integers,  is the 
set of positive integers and + is the set of non-negative real numbers. 
Symbol L(X, Y) stands for the space of continuous linear operators 
from a topological vector space X to a topological vector space Y. We 
write L(X) instead of L(X, X) and X′ instead of L(X, ). For each T ∈ 
L(X), the dual operator T′: X′ → X′  is defined as usual: (T′ f)(x)=f (Tx) 
for f ∈ X′ and x ∈ X. By a quotient of a topological vector space X we 
mean the space X/Y, where Y is a closed linear subspace of X. We start 
by recalling some definitions and facts.

Notation and definitions

A topological vector space is called locally convex if it has a base 
of neighborhoods of zero consisting of convex sets. Equivalently, a 
topological vector space is locally convex if its topology can be defined 
by a family of seminorms. For brevity, we say locally convex space for 
a locally convex topological vector space. A subset B of a topological 
vector space X is called bounded if for any neighborhood U of zero in 
X, a scalar multiple of U contains B. We say that τ is a locally convex 
topology on a vector space X if (X, τ) is a locally convex space. If X is a 
vector space and Y is a linear space of linear functionals on X separating 
points of X, then the weakest topology on X, with respect to which all 
functionals from Y are continuous, is denoted σ(X, Y). The elements of 
X can be naturally interpreted as linear functionals on Y, which allows 
one to consider the topology σ(Y, X) as well. If  is a family of bounded 
subsets of (Y, σ(Y, X)), whose union is Y, then the seminorms

( ) sup | ( ) | for
∈

= ∈B
f B

p x f x B 

define the topology on X of uniform convergence on sets of the family 
. The topology on X of uniform convergence on all bounded subsets 
of (Y, σ(Y, X)) is called the strong topology and denoted β(X, Y). The 

topology of uniform convergence on all compact convex subsets of (Y, 
σ(Y, X)) is called the Mackey topology and is denoted τ (X, Y). According 
to the Mackey-Arens theorem, for a locally convex space (X, τ) and a 
space Y of linear functionals on X, the equality Y=X′ holds if and only if 
σ(X, Y) ⊆ τ ⊆ τ (X, Y). We say that a locally convex space (X, τ) carries 
a weak topology if τ coincides with σ(X, Y) for some space Y of linear 
functionals on X, separating points of X. If X is a locally convex space, 
we write Xβ for (X′, β(X, X′)), Xτ for (X, τ (X, X′)) and Xσ for (X, σ(X, 
X′)). Similarly we denote (X, β(X′, X)) by X β′, (X′, τ (X′, X)) by X τ′ and 
(X′, σ(X′, X)) by Xσ′. An  -space is a complete metrizable topological 
vector space. A locally convex  -space is called a Fréchet space. If {Xα: 
α ∈ A} is a family of locally convex spaces, then their (locally convex) 

direct sum is the algebraic direct sum α
α∈

=⊕
A

X X of the vector spaces 

Xα endowed with the strongest locally convex topology, which induces 
the original topology on each Xα. Let { }

+∈n nX be a sequence of vector 
spaces such that Xn is a subspace of Xn+1 for each n ∈ Z+ and each Xn 
carries its own locally convex topology τn such that τn is (maybe non-
strictly) stronger than the topology τn+1|Xn. Then the inductive limit of 

the sequence {Xn} is the space 
0

∞

=

=


n
n

X X endowed with the strongest 

locally convex topology τ such that τ|Xn ⊆ τn for each n ∈ +. In other 
words, a convex set U is a neighborhood of zero in X if and only if U 
∩ Xn is a neighborhood of zero in Xn for each n ∈ +. An LB-space 
is an inductive limit of a sequence of Banach spaces. An LBs-space is 
an inductive limit of a sequence of separable Banach spaces. We use 
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symbol ϕϕ to denote the locally convex direct sum of countably many 
copies of the one- dimensional space  and the symbol ω to denote 
the product of countably many copies of . Note that ϕ is a space of 
countable algebraic dimension and carries the strongest locally convex 
topology (=any seminorm on ϕ is continuous). We can naturally 
interpret ω as the space  of all sequences with coordinatewise 
convergence topology. Clearly ω is a separable Fréchet space. Recall 
also that if X is a locally convex space and A ⊂ X′, then A is called 
uniformly equicontinuous if there exists a neighborhood U of zero in X 
such that |f (x)| ≤ 1 for any x ∈ U and f ∈ A.

Let T be a continuous linear operator on a topological vector space 
X. A vector x ∈ X is called a cyclic vector for T if the linear span of the 
orbit O(T, x)={Tn : n ∈ +} of x is dense in X. The operator T is called 
cyclic if T has a cyclic vector. Recall also that for n ∈ , T is called 
n-cyclic if there are vectors x1,..., xn ∈ X such that the linear span of 
the set {Tnxj : n ∈ +, 1 ≤ j ≤ n} is dense in X. Obviously, 1-cyclicity 
coincides with cyclicity. We say that T is multicyclic if it is n-cyclic for 
some n ∈ .

Let X and Y be topological spaces and {Ta : a ∈ A} be a family of 
continuous maps from X to Y. An element x ∈ X is called universal for 
this family if the orbit {Tax: a ∈ A} is dense in Y and {Ta : a ∈ A} is said to 
be universal if it has a universal element. We say that a family {Tn : n ∈ 
+} is hereditarily universal if any its infinite subfamily is universal. An 
operator semigroup on a topological vector space X is a family {Tt}t∈A of 
elements of L(X) labeled by elements of an abelian monoid A (monoid 
is a semigroup with identity) and satisfying T0=I, Ts+t=TtTs for any t, s ∈ 
A (unless stated otherwise, we use additive notation for the operation 
on A). A norm on A is a function | • | : A → [0, ∞) satisfying |na|=n|a| 
and |a + b| ≤ |a| + |b| for any for any n ∈ + and a, b ∈ A. An abelian 
monoid equipped with a norm will be called a normed semigroup. We 
will be mainly concerned with the case when A is a closed (additive) 
subsemigroup of k containing 0 with the norm |a| being the 
Euclidean distance from a to 0. In the latter case we consider A to be 
equipped with topology inherited from k and we say that an operator 
semigroup {Tt}t∈A is strongly continuous if the map  tt T x from A to 
X is continuous for any x ∈ X. We say that an operator semigroup 
{Tt}t∈A is uniformly continuous if there exists a neighborhood U of zero 
in X such that for any sequence {tn}n∈+ of elements of A converging to 
t∈A, Ttnx converges to Ttx uniformly on U. Clearly, uniform continuity 
is strictly stronger than strong continuity. It is also worth mentioning 
that many authors use the term ’uniformly continuous semigroup’ for 
semigroups satisfying the weaker of uniform convergence of Ttnx to Ttx 
on any bounded subset of X.

If A is a normed semigroup and {Tt}t∈A is an operator semigroup on 
a topological vector space X, then we say that {Tt}t∈A is (topologically) 
transitive if for any non-empty open subsets U, V of X, the set {|t| : t ∈ A, 
Tt(U)∩V  ≠∅} is unbounded. We say that {Tt}t∈A is (topologically) mixing 
if for any non-empty open subsets U, V of X, there is r=r(U,V) > 0 such 
that Tt(U)∩V≠∅ provided |t| > r. We also say that {Tt}t∈A is hypercyclic 
(respectively, supercyclic) if the family{Tt : t ∈ A} (respectively, {zTt : 
z ∈ , t ∈ A}) is universal. {Tt}t∈A is said to be hereditarily hypercyclic 
(respectively, hereditarily supercyclic) if for any sequence {tn}n∈+ of 
elements of A such that |tn| → ∞, the family {Ttn : n ∈ +} (respectively, 
{ zTtn  : z ∈ , n ∈ +}) is universal. A continuous linear operator T 
acting on a topological vector space X is called hypercyclic, supercyclic, 
hereditarily hypercyclic, hereditarily supercyclic, mixing or transitive if 
the semigroup {Tn} n∈+ has the same property. It is worth noting that 
our definition of a hereditarily hypercyclic operator follows Ansari [1], 
while in the terminology of references [2,3], the same property is called 

’hereditarily hypercyclic with respect to the sequence nk=k of all non-
negative integers’. Hyper- cyclic and supercyclic operators have been 
intensely studied during last few decades, [4-6] and references therein. 
Clearly mixing implies transitivity and hereditary hypercyclicity 
(respectively, hereditary supercyclicity) implies hypercyclicity 
(respectively, supercyclicity). Recall that a topological space X is called 
a Baire space if the intersection of countably many dense open subsets 
of X is dense in X. According to the classical Baire theorem, complete 
metric spaces are Baire. 

Proposition 1.1. Let X be a topological vector space, A be a normed 
semigroup and S={Ta}a∈A be an operator semigroup on X. Then

(1.1.1) if  is hereditarily hypercyclic, then  is mixing.

If additionally X is Baire separable and metrizable, the converse 
implication holds: 

(1.1.2) if  is mixing, then  is hereditarily hypercyclic.

The above proposition is a combination of well-known facts, 
appearing in the literature in various modifications. It is worth noting 
that a similar statement holds for hypercyclicity and transitivity under 
certain natural additional assumptions. One can also write down and 
prove a supercyclicity analogue of the above proposition. In the next 
section we shall prove Proposition 1.1 for sake of completeness. It is 
worth noting that for any subsemigroup A0 of A, not lying in the kernel 
of the norm, {Tt}t∈A0

 is mixing if {Tt}t∈A is mixing. In particular, if {Tt}t∈A 
is mixing, then Tt is mixing whenever |t| > 0.

Results

The question of existence of supercyclic or hypercyclic operators or 
semigroups on various types of topological vector spaces was intensely 
studied. There are no hypercyclic operators on any finite dimensional 
topological vector space and there are no supercyclic operators on a 
finite dimensional topological vector space of real dimension > 2. 
These facts follow, for instance from the main result of reference [7]. 
Herzog [8] demonstrated that there is a supercyclic operator on any 
separable infinite dimensional Banach space. Later Ansari [9] and 
Bernal-Gonzáles [10], answering a question raised by Herrero, showed 
independently that for any separable infinite dimensional Banach 
space X there is a hypercyclic operator T ∈ L(X). Using the same idea as 
in reference [9], Bonet and Peris [11] proved that there is a hypercyclic 
operator on any separable infinite dimensional Fréchet space and 
demonstrated that there is a hypercyclic operator on an inductive limit 
X of a sequence Xn for n ∈ + of separable Banach spaces provided 
there is n ∈ + for which Xn is dense in X. Grivaux [3] observed that 
hypercyclic operators T constructed in references [9-11] are in fact 
mixing and therefore hereditarily hypercyclic. They actually come from 
the same source. Namely, according to Salas [12] an operator of the 
shape I + T, where T is a backward weighted shift on 1, is hypercyclic. 
Virtually the same proof as in reference [12] demonstrates that these 
operators are in fact mixing. Moreover, all operators constructed in the 
above papers, except for the ones acting on ω, are hypercyclic because 
of a quasisimilarity with one of the operators of the shape identity 
plus a backward weighted shift. The same quasisimilarity transfers the 
mixing property as effectively as it transfers hypercyclicity. A similar 
idea was used by Bermúdez, Bonilla and Martinón [13] and Bernal-
González and Grosse-Erdmann [14], who have demonstrated that any 
separable infinite dimensional Banach space supports a hypercyclic 
strongly continuous semigroup {Tt}t∈R+. Bermúdez, Bonilla, Conejero 
and Peris [15] have shown for any separable infinite dimensional 
complex Banach space X, there exists a mixing strongly continuous 
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semigroup {Tt}t∈Π with Π={z ∈  : Re z ≥ 0} such that the map  tt T  
is holomorphic on the interior of Π. As a matter of fact, one can 
easily see that the semigroup constructed in reference [15] extends 
to a holomorphic mixing group {Tt}t∈. Finally, Conejero [16] proved 
that any separable infinite dimensional complex Fréchet space non-
isomorphic to ω supports a uniformly continuous mixing operator 
semigroup {Tt}t∈R+.

The following theorem extracts the maximum of the method both 
in terms of the class of spaces and semigroups. Although the general 
idea remains the same, the proof requires dealing with a number of 
technical details of various nature. In particular, we will prove and 
apply a multi- operator version of the Salas theorem. For brevity we 
shall introduce the following class of locally convex spaces.

Definition 1.2. We say that a sequence {xn}n∈+ of elements of a 
topological vector space X is an 1-sequence if xn → 0 in X and the series

0

∞

=
∑ n n
n

a x converges in X for each a ∈ 1.

We say that a locally convex space X belongs to the class M if its 
topology is not weak and there exists an 1-sequence in X with dense 
span.

Theorem 1.3. Let X ∈ M. Then for any k ∈ , there exists a 
hereditarily hypercyclic (and therefore mixing) uniformly continuous 
operator group {Tt}t∈k. Moreover, if = the map   zz T X  from k to X 
is holomorphic for each x ∈ X.

Since for any hereditarily hypercyclic semigroup {Tt}t∈k and any 
non-zero t ∈ k, the operator Tt is hereditarily hypercyclic, we have the 
following corollary.

Corollary 1.4. Let X ∈ M. Then there is a hereditarily hypercyclic 
(and therefore mixing) operator T ∈ L(X).

Remark 1.5. It is easy to see that if X ∈ M, then Xτ ∈ M. Indeed, 
if {xn}n∈+ is an 1-sequence in X with dense span, then {2−nxn} n∈+ is 
an 1-sequence in Xτ with dense span. Of course, Xσ never belongs to 
M. On the other hand, it is well-known that L(Xσ)=L(Xτ). Moreover, 
since σ(X, X′) ⊆ τ(X, X′), then any strongly continuous hereditarily 
hypercyclic operator semigroup {Tt}t∈k

 on Xτ is also strongly 
continuous and hereditarily hypercyclic as an operator semigroup on 
Xσ. Thus in the case Xτ ∈ M, Theorem 1.3 implies that there is a strongly 
continuous hereditarily hypercyclic operator semigroup {Tt}t∈k on Xσ. 
Unfortunately, the nature of the weak topology does not allow to make 
such a semigroup uniformly continuous.

It is worth noting that any separable Fréchet space admits an 1-
sequence with dense span. It is also well-known [17] that any Fréchet 
space carries the Mackey topology and the topology on a Fréchet space 
X differs from the weak topology if and only if X is infinite dimensional 
and is non-isomorphic to ω. That is, any separable infinite dimensional 
Fréchet space non-isomorphic to ω belongs to M. Similarly, one can 
verify that an infinite dimensional inductive limit X of a sequence Xn 
for n ∈ + of separable Banach spaces belongs to M provided there is n 
∈ + for which Xn is dense in X. Thus all the above mentioned existence 
theorems are particular cases of Theorem 1.3.

Grivaux [3] raised a question whether each separable infinite 
dimensional Banach space supports a hypercyclic non-mixing 
operator. Since the class M contains separable infinite dimensional 
Banach spaces, the following theorem provides an affirmative answer 
to this question.

Theorem 1.6. Let X ∈ M. Then there exists T ∈ L(X) such that T is 
hypercyclic and non-mixing.

The simplest separable infinite dimensional locally convex space 
space (and the only Fréchet space) outside M is ω. Curiously, the 
situation with ω is totally different. Hypercyclic operators on the 
complex space ω have been characterized by Herzog and Lemmert 
[18]. Namely, they proved that a continuous linear operator T on 
the complex Fréchet space ω is hypercyclic if and only if the point 
spectrum σp(T′) of T′ is empty. It also worth mentioning that Bés and 
Conejero [19] provided sufficient conditions for T ∈ L(ω) to have an 
infinite dimensional closed linear subspace, each non-zero vector of 
which is hypercyclic, and found common hypercyclic vectors for some 
families of hypercyclic operators on ω. See also the related work [20] 
by Petersson. The following theorem extends the result of Herzog and 
Lemmert and highlights the difference between ω and other Fréchet 
spaces.

Theorem 1.7. Let T ∈ L(ω) be such that T′  has no non-trivial 
finite dimensional invariant subspaces and {Pl}l∈Z+ be a sequence of 
polynomials such that deg pl → ∞ as l → ∞. Then the family {pl (T) : l ∈ 
+} is universal. Moreover, there is no strongly continuous supercyclic 
semigroup {Tt}t∈R+ on ω.

Note that in the case =, T′  has no non-trivial finite dimensional 
invariant subspaces if and only if σp(T′)=∅. The first part of the above 
theorem implies that any hypercyclic operator on ω is mixing. We 
shall, in fact, verify the following more general statement.

Theorem 1.8. Let X be a locally convex space carrying weak topology 
and T ∈ L(X). Then the following conditions are equivalent

(1.8.1) T′ has no non-trivial finite dimensional invariant subspaces; 

(1.8.2) T is transitive;

(1.8.3) T is mixing;

(1.8.4) the semigroup {p(T)}p∈∗ is mixing, where ∗=[z] \ {0} is 
the multiplicative semigroup of non-zero polynomials with the norm 
|p|=deg p.

Remark 1.9. Chan and Sanders [21] observed that on the 
space (2)σ, being the Hilbert space 2 with the weak topology, there 
is a transitive non-hypercyclic operator. Theorem 1.8 provides a huge 
supply of such operators. For instance, the backward shift T on 2 is 
mixing on (2)σ (T′ has no non-trivial finite dimensional invariant 
subspaces) and T is clearly non-hypercyclic (each its orbit is bounded).

Theorems 1.3, 1.6 and 1.7 imply the following curious corollary.

Corollary 1.10. Let X be a separable infinite dimensional Fréchet 
space. Then the following are equivalent

(1.10.1) there is a hypercyclic non-mixing operator T ∈ L(X);

(1.10.2) there is a mixing uniformly continuous semigroup {Tt}t∈R+ 
on X ; 

(1.10.3) there is a supercyclic strongly continuous semigroup 
{Tt}t∈R+ on X;

(1.10.4) X is non-isomorphic to ω.

Another simple space outside M is ϕ. Bonet and Peris [11] observed 
that there are no supercyclic operators on ϕ. On the other hand, Bonet, 
Frerick, Peris and Wengenroth [22] constructed a hypercyclic operator 

on the locally convex direct sum 10
∞= =⊕ X n of countably many 
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copies of the Banach space 1. The space X is clearly an LBs-space, is 
complete and non-metrizable. It is also easy to see that X∉ M (there are 
no 1-sequences in X with dense span). We find sufficient conditions of 
existence and of non-existence of a hypercyclic operator on a locally 
convex space. These conditions allow us to characterize the LBs-spaces, 
which admit a hypercyclic operator.

Theorem 1.11. Let X be the inductive limit of a sequence {Xn}n∈+ of 
separable Banach spaces. Then the following conditions are equivalent:

(1.11.1) X admits no hypercyclic operator;

(1.11.2) X admits no cyclic operator with dense range;

(1.11.3) X is isomorphic to Y ×ϕ, where Y is the inductive limit of a 
sequence {Yn}n∈ of separable

Banach spaces such that Y0 is dense in Y;

(1.11.4) for any sufficiently large n, 1 /+n nX X is finite dimensional 
and the set 1{ : }+ +∈ ≠ n nn X X is infinite, where kX  is the closure of 
Xk in X. 

The proof is based upon the following result, which is of 
independent interest.

Theorem 1.12. Let X be a topological vector space, which has no 
quotients isomorphic to ϕ. Then there is no cyclic operator with dense 
range on X ×ϕ.

The following theorem provides another generalization of the 
mentioned result of Bonet, Frerick, Peris and Wengenroth.

Theorem 1.13. Let {Xn}n∈+ be a sequence of separable Fréchet spaces. 

Then there is a hypercyclic operator on 0
∞
==⊕n nX X  if and only if the 

set {n ∈ + : Xn is infinite dimensional} is infinite.

We derive the above theorem from the following result, concerning 
more general spaces.

Theorem 1.14. Let Xn ∈ M for each n ∈ + and 0 .∞
==⊕n nX X  

Then there is a hypercyclic operator on X. 

The next issue, we discuss, are dual hypercyclic operators. Let X be 
a locally convex space. Recall that Xβ′ is the dual space X′ endowed with 
the strong topology β(X′, X). It is worth noting that if X is a normed 
space, then the strong topology on X′ coincides with the standard 
norm topology. Salas [23] has constructed an example of a hypercyclic 
operator T on 2 such that both T and T′ are hypercyclic. This result 
motivated Petersson [24] to introduce the following definition. We 
say that a continuous linear operator T on a locally convex space X 
is dual hypercyclic if both T and T′ are hypercyclic on X and Xβ′ 
respectively. Using the construction of Salas, Petersson proved that any 
infinite dimensional Banach space X with a monotonic and symmetric 
Schauder basis and with separable dual admits a dual hypercyclic 
operator. He also raised the following questions. Does there exist a 
dual hypercyclic operator on any infinite dimensional Banach space 
with separable dual? Does there exist a non-normable Fréchet space 
that admits a dual hypercyclic operator? The first of these questions was 
recently answered affirmatively by Salas [25]. The following theorem 
provides a sufficient condition for existence of a dual hypercyclic 
operator on a locally convex space.

Theorem 1.15. Let X be an infinite dimensional locally convex 
space admitting an 1-sequence with dense span. Assume also that there 
is an 1-sequence {fn}n∈+ with dense span in Xβ′ and at least one of the 
following conditions is satisfied:

(1.15.1) the topology of X coincides with σ(X, X′);

(1.15.2) the topology of X coincides with τ (X, X′);

(1.15.3) the set {fn : n ∈ +} is uniformly equicontinuous.

Then X admits a dual hypercyclic operator.

Since every separable Fréchet space admits an 1-sequence with 
dense span and every Fréchet space carries the Mackey topology, the 
above theorem implies the following corollary.

Corollary 1.16. Let X be a separable infinite dimensional Fréchet 
space, such that there is an 1-sequence with dense span in Xβ′. Then there 
exists a dual hypercyclic operator T ∈ L(X).

If X is a Banach space, Xβ′ is also a Banach space and therefore 
has an 1-sequence with dense span if and only if it is separable. Thus 
Corollary 1.16 implies the next corollary, which is the mentioned 
recent result of Salas.

Corollary 1.17. Let X be an infinite dimensional Banach space with 
separable dual. Then there exists a dual hypercyclic operator T ∈ L(X).

Corollary 1.16 also provides plenty of non-normable Fréchet spaces 
admitting a dual hypercyclic operator, thus answering the second of 
the above questions of Petersson. For instance, take the complex 
Fr´echet space X of entire functions on one variable with the topology 
of uniform convergence on compact sets. It is easy to verify that the 
sequence of functionals gn(f)=(n!)−1f(n)(0) is an 1-sequence with dense 
span in Xβ′. Since X is also infinite dimensional and separable,Corollary 
1.16 implies that X supports a dual hypercyclic operator.

The proofs of the above results are based upon the two main 
ingredients. One of them are sufficient conditions of mixing and the 
other is a criterion for a generic (in the Baire category sense) operator 
from a given class to be hypercyclic. Our sufficient conditions of 
mixing extend the result of Salas on hypercyclicity of perturbations of 
the identity by adding a backward weighted shift. Apart from providing 
us with tools, these extensions are of independent interest.

Theorem 1.18. Let X be a topological vector space and T ∈ L(X) be 
such that the space 

, | | 1

( ) span (( ) ( ) ker( ) )
∈ =

 
 Λ = − ∩ − 
 
 



n n

n z

T T zI X T zI 	              (1.1)

is dense in X. Then T is mixing. If additionally, X is Baire, separable and 
metrizable, then T is hereditarily hypercyclic.

We shall see that the above theorem implies not only the mentioned 
result of Salas, but also is applicable in many other situations. For 
instance, we use the above theorem to prove the following results.

Theorem 1.19. Let X be a separable infinite dimensional Banach 
space and  be the operator norm closure in L(X) of the set of finite rank 
nilpotent operators. Then the set of T ∈  for which T is supercyclic and 
I + T is hypercyclic is a dense Gδ subset of the complete metric space . If 
additionally X′ is separable, then the set of T ∈  for which T and T′ are 
supercyclic and I + T and I + T′are hypercyclic is a dense Gδ subset of .

Note that if a Banach space X has the approximation property [26], 
then the set  from the above corollary is exactly the set of compact 
quasinilpotent operators (in the case = by quasinilpotency of T we 
mean quasinilpotency of the complexification of T or equivalently that 
||Tn||1/n → 0). Thus we have the following corollary.
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Corollary 1.20. Let X be a separable infinite dimensional Banach 
space with the approximation property and  ⊂ L(X) be the set of 
compact quasinilpotent operators. Then the set of T ∈  for which T is 
supercyclic and I + T is hypercyclic is a dense Gδ subset of the complete 
metric space . If additionally X′ is separable, then the set of T ∈  for 
which T and T′ are supercyclic and I + T and I + T′ are hypercyclic is a 
dense Gδ subset of .

Theorem 1.21. Let X be a separable infinite dimensional Banach 
space and  be the set of nuclear quasinilpotent operators endowed with 
the nuclear norm metric. Then the set of T ∈  for which T is supercyclic 
and I + T is hypercyclic is a dense Gδ subset of the complete metric space 
. If additionally X′ is separable, then the set of T ∈  for which T and 
T′ are supercyclic and I + T and I + T′ are hypercyclic is a dense Gδ subset 
of .

Theorems 1.21 and 1.19 provide a large supply of dual hypercyclic 
operators T on any infinite dimensional Banach space with separable 
dual.

Extended Backward Shifts
Godefroy and Shapiro [27] have introduced the notion of a 

generalized backward shift. Namely, a continuous linear operator T on 
a topological vector space X is called a generalized backward shift if its 
generalized kernel

1

ker* ker
∞

=

=


n

n

T T

is dense in X and ker T is one-dimensional. We introduce a more 
general concept. Namely, we say that T is an extended backward shift if

1

†ker spa ( ( ) ke )n r
∞

=

 
 = ∩  
 


n n

n

T T X T 			               (2.1)

is dense in X. From the easy dimension argument [27] it follows that 
if T ∈ L(X) is a generalized backward shift, then dimker Tn=n and T 
(kerTn+1)=ker Tn for each n ∈ . Hence ker Tn=Tn (ker T2n) and therefore 
ker Tn=Tn (X) ∩ ker Tn for any n ∈ . It follows that ker*T=ker†T for 
a generalized backward shift. That is, any generalized backward shift is 
an extended backward shift.

We also consider the following analog of the concept of an 
extended backward shift for a k-tuple of operators. Let T1,...,Tk be 
continuous linear operators on a topological vector space X. We say 
that T=(T1,...,Tk) ∈ L(X)k is a EBSk -tuple if TmTj=TjTm for any j,m ∈ 
{1,..., k} and

1 2
1

1

†ker ( ) ( , ) , where ( , ) ks n era ,p ( )κ κ
=∈

 
 = = …  
 

 

jk

k

k
nnn

jk
jn

T n T n T T T T  (2.2)

is dense in X.

It is easy to see that in the case of one operator (that is, k=1 and 
T=T1 ∈ L(X)), 2( , ) (ker ) ker ( )κ = = ∩n n n nn T T T T T X and therefore the 
last definition is a generalization of the previous one. In order to study 
extended backward shifts we need to establish some properties of the 
backward shift on the finite dimensional space 2n.

Backward shift on 2n

The following lemma is a modification of a lemma from reference 
[28].

Lemma 2.1. For each n ∈  and z ∈ \{0}, the matrix 
1

, ( 1)!
, 1

+ −  =  + −   =

nj kzAn z j k
j k

is invertible.

Proof. For each n, k ∈ 	 consider the matrix , , 1
( )!

( 1)!
{ } =

+ −
=

+ − + −
n

n k j l
k n lM

k n l j
. 

First, we demonstrate that the determinants of Mn,k satisfy the recurrent 
formula

, 1, 2
( 1)! !( 1)!det det for n 2.

( 1)!( )! − +
− +

= ≥
+ − +n k n k

n k kM M
k n k n

	               (2.3)

The equality (2.3) for n=2 is trivial. Suppose now that n ≥ 3. 
Subtracting the previous column from each column of Mn,k except the 

first one, we see that det Mn,k=det Nn,k where 1
, , 1

( 1)!
( )!

{ } −
=

+ − −
=

+ − +
n

n k j l
k n lN j
k n l j

. Dividing the j-th row of Nn,k by j and multiplying the j-th column by 

aj=(k + n − j + 1)(k + n − j) for 1 ≤ j ≤ n, we arrive at the matrix Mn−1,k+2. 
Hence

1
1

, 1, 2 1, 2
1

( 1)! !( 1)!det det det ,
( 1)!( )!

−
−

− + − +
=

− +
= =

+ − +∏
n

n k n k j n k
j

n k kM M ja M
k n k n

which proves (2.3). Since det M1, k=1 for each k ∈ , from (2.3), 
it follows that det Mn,k ≠ 0 for any n, k ∈ . Let now Bn be the matrix 
obtained from An,1 by putting the columns of An,1 in the reverse order. 
Clearly det An,1=(−1)n−1 det Bn. On the other hand, multiplying the j-th 
column of Bn by (n − j + 1)! for 1 ≤ j ≤ n, we get the matrix Mn,1. Hence,

1 1
,1 ,1

1

det ( 1) det ( !)− −

=

= − ∏
n

n
n n

j

A M j  for each n ∈ 

Since det Mn,1 ≠ 0, we see that det An,1 ≠ 0 and therefore An,1 is 
invertible. Finally, for any z ∈  consider the diagonal n × n matrix Dn,z 
with the entries (1, z,..., zn−1) on the main diagonal. It is straightforward 
to verify that

An,z=zDn,z An,1Dn,z for any z ∈ .			              (2.4)

Since An,1 and Dn,z for z ≠ 0 are invertible, we see that An,z is invertible 
for each n ∈  and z ∈  \ {0}.

Lemma 2.2. Let n ∈  and e1,...,e2n be the canonical basis of 2n and 
S ∈ L( 2n) be the backward shift defined by Se1=0 and Sek=ek−1 for 2 ≤ 
k ≤ 2n and P the linear projection on  2n  onto the subspace E=span 
{e1,...,en} along F=span {en+1,...,e2n}. Then for any z ∈  \ {0} and u, v ∈ E, 
there exists a unique xz=xz (u, v) ∈ 2n such that

Pxz=u 	 and PezSxz=v.			               (2.5)

Moreover, for any bounded subset B of E and any ε > 0, there is 
c=c(ε, B) > 0 such that

,
sup | ( ( , )) | | |  1   | | ;−

+
∈

≤ ≤ ≤ ≥z j
n j

u v B
x u v c z for j n and z  	             (2.6)

| ( ( , )) | | |  1   | | .∈ + ≤ ≤ ≤ ≥zS z j
u v B n jsup e x u v c z for j n and z     (2.7)

In particular, xz (u, v) → u and ezS xz (u, v) → v as |z| → ∞ uniformly 
for u, v from any bounded subset of E.

Proof. Let u, v ∈ E and z ∈  \ {0}. For y ∈ 2n we denote 

1 2( , , )+= … ∈ n
n ny y y 

One easily sees that (2.5) is equivalent to the vector equation
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, ,z z
n zA x w= 				                 (2.8)

where An,z is the matrix from Lemma 2.1 and wz=wz (u, v) ∈ 2n is 
defined as

1

1
1

1 ,
( 1)!

+ − −

− +
= − +

= − ≤ ≤
+ − −∑

n k j n
z k
j n j

k n j

z uw v for j n
k j n

provided we set xj=uj for 1 ≤ j ≤  n. According to Lemma 2.1, the matrix 
An,z is invertible for any z ∈  \{0} and therefore (2.8) is uniquely 
solvable. Thus there exists a unique xz=x(z, u, v) ∈ 2n satisfying (2.5). It 
remains to verify the estimates (2.6) and (2.7). From (2.9) it follows that 
for any bounded subset B of E and any ε > 0, there is a=a(ε, B) such that

|(wz (u, v))j | ≤ a|z|j−1 if u, v ∈ B, |z| ≥ ε and 1 ≤ j ≤  n. 	         (2.10) 

Recall that Dn,z is the diagonal n × n matrix with the entries (1, z,..., 
zn−1) on the diagonal. Equalities (2.8) and (2.4) imply

1 1 1 1 1
, , ,1 , ,− − − − −= =z z z

n z n z n n zx A w z D A D w

where we use invertibility of An,1 provided by Lemma 2.1. According to 

(2.10), the set 1
,{ ( , ) :| | , , }− ≥ ∈z

n zD w u v z u v B  is bounded in n. Hence 

the set 1 1
,1 ,{ ( , ) :| | , , }− −= ≥ ∈z

n n zQ A D w u v z u v B is bounded in n. From 
the last display we see that

1 1
,( ( , )) { ( ) : } if|z| ,u,v B.− −

+ = ⊆ ∈ ≥ ∈z z
n j j n z jx u v x z D y y Q 

Boundedness of Q implies now that (2.6) is satisfied with some 
c=c1(ε, B). Finally, since 

2
( ) for 1 ,

( )!

− −

+
= +

= ≤ ≤
− −∑

n l n j z
zS z l

n j
l n j

z xe x j n
l n j

there exists c=c2(ε, B) for which (2.7) is satisfied. Hence both (2.7) and 
(2.6) are satisfied with

c=max{ c1(ε, B), c2(ε, B)}.

The next corollary follows immediately from Lemma 2.2.

Corollary 2.3. Let n ∈ , E ⊆ 2n and S ∈ L(2n) be as in Lemma 
2.2. Then for any u, v ∈ E and any sequence {zj}j∈+ in  satisfying |zj | → 
∞, there exists a sequence {xj}j∈+ of elements of 2n  such that xj → u and 
ezjS xj → v as j → ∞.

Lemma 2.4. Let n ∈ , E ⊆ 2n. and S ∈ L(2n) be as in Lemma 
2.2. Then for any bounded sequences {uj}j∈+ and {vj}j∈+ of elements of E, 
there exists a sequence {xj}j∈+ of elements of 2n such that xj − uj → 0 and 
(I + S)j xj − vj → 0 as j → ∞.

Proof. It is easy to see that there is J∈ L(2n) such that J has an upper 
triangular matrix, J is invertible and S=J −1(eS − I)J. Indeed, S and eS − I 
are similar since they are nilpotent of maximal rank 2n − 1. Moreover, 
since  S and eS − I are upper triangular, the similarity operator can be 
chosen upper triangular and therefore J (E) ⊆ E.

Let now xj=J −1xj (Juj, Jvj), where xz (u, v) is defined in Lemma 2.2. 
Since the set 

{ Juj : j ∈ +} ∪ { Jvj : j ∈ +}

is bounded and is contained in E because J (E) ⊆ E, from Lemma 2.2 
it follows that xj (Juj, Jvj) − Juj → 0 and ejS xj (Juj, Jvj) − Jvj → 0 as j → ∞. 
Multiplying by J −1, we obtain xj − uj → 0 and J −1 ejS Jxj(I+S)j xj − vj → 0 
as j → ∞.

In order to construct multi-parameter mixing semigroups, we need 
the following multi-operator version of Corollary 2.3.

Lemma 2.5. Let k ∈ , n1,..., nk ∈ , for each j ∈ {1,..., k} let 

1 2, ,
j

j j
ne e… be the canonical basis in 2 jn , Ej=span { 1 , ,…

j

j j
ne e } and 

Sj ∈ L( 2 jn ) be the backward shift: Sj e1
j=0 and 2 ≤ l ≤ 2nj. Let also 

1 22
1 ,= ⊗…⊗ = ⊗…⊗knn

kX E E E   and for 1 ≤  j ≤ k, 

Tj ∈ L(X), Tj=I ⊗...I ⊗ Sj ⊗ I ⊗... ⊗ I,

where Sj sits in the jth place. Finally, let {zm}m∈+ be a sequence 
of elements of k with |zm| → ∞. Then for any u, v ∈ E, there 
exists a sequence {xm}m∈+ of elements of X such that xm → u and 

,
1 1as ., ,〈 〉 → →∞ 〈 〉 = +…+mz T

m k ke x v m where s T s T s T

Proof. If the statement of the lemma is false, then there are u, v ∈ E 
and a subsequence {z′m}m∈+ of {zm} such that (u, v) does not belong to 
the closure of the set ,{( , ) : , }′〈 〉

+∈ ∈lz Tx e x x X m .

Let { }= ∪ ∞  be the one-point compactification of . Since 
k  is compact and metrizable, we can pick a convergent in k  

subsequence {zm′′} of {zm′}. Clearly the statement of the lemma remains 
false with {zm} replaced by {zm′′}. That is, it suffices to consider the case 
when {zm} converges in k .

Thus without loss of generality, we can assume that {zm} converges 
to w ∈ k . Let C={j : wj=∞}. Since |zm| → ∞, the set C is non-empty. 
Without loss of generality, we may also assume that C={1,..., r} with 1 
≤ r ≤ k.

Denote by Σ the set of (u, v) ∈ X × X such that there exists a sequence 
{xm}m∈+ of elements of X for which xm → u and , as 〈 〉 → →∞mz T

me x v m . 
We have to demonstrate that E × E ⊆ Σ. Let uj ∈ Ej for 1 ≤ j ≤  k and 
u=u1 ⊗... ⊗ uk. By Corollary 2.3, for 1  j ≤  r, there exist sequences 
{xj,m}m∈+ and {yj,m} m∈+ of elements of 2 jn  such that

m j j m j j(z ) S (z ) S
j,m j,m j j,m j j,mx 0,e x u , y u and e y 0 as m for 1 r. j→ → → → →∞ ≤ ≤

Now we put ,
−= j jw S

j m jx e u and yj,m=uj for r < j ≤ k and m ∈ +. 

Consider the sequences {xm}m∈+ and {ym}m∈+ of elements of X defined 
by the formula xm=x1,m ⊗... ⊗ xk,m and ym=y1,m ⊗... ⊗ yk,m. According 
to the definition of xm and ym and the above display, xm → 0 and ym → u. 
Indeed, xm → 0 because for any j, the sequence xj,m is bounded and x1,m 
→ 0. Similarly, taking into account that (zm)j → wj for j > r, we see that

, , 0〈 〉 〈 〉→ →m mz T z T
m me x u and e y . Hence (u, 0) ∈ Σ and (0, u) ∈ Σ. Thus

({0} × E0) ∪ (E0 × {0}) ⊆ Σ,

where E0={u1 ⊗... ⊗ uk : uj ∈ Ej, 1 ≤ j ≤  k}. On the other hand, it is 
easy to see that the linear span of the set ({0} × E0) ∪ (E0 × {0}) is exactly 
E × E. Since Σ is a linear space, the above display implies that E × E ⊆ Σ.

For applications it is more convenient to reformulate the above 
lemma in the coordinate form.

Corollary 2.6. Let k ∈ , n1, ..., nk ∈ , for each j ∈ {1,..., k}let 
Nj={1,..., 2nj}, Qj ={1,..., nj}. Consider the sets M=N1 ×... × Nk, M0=Q1 ×... 
× Qk and let {em : m ∈ M} be the canonical basis of the finite dimensional 
vector space X=M. Let E=span {em : m ∈ M0} and for 1 ≤ j ≤  k, Tj ∈ 
L(X) be the operator acting on the canonical basis in the following way: 
Tjem=0 if mj=1, Tj em=em′ if mj > 1, where ml′=m′l if l ≠ j, mj′=mj − 1. Then 
for any sequence {zm}m∈+ of elements of k with |zm| → ∞ and any u, v ∈ 
E, there exists a sequence {xm}m∈+ of elements of X such that xm → u and 

,〈 〉 →mz T
me x v as m → ∞.
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The key lemmas

Lemma 2.7. Let X be a Hausdorff topological vector space, k ∈ , 
n=(n1,..., nk) ∈ k and A=(A1,..., Ak) ∈ L(X)k be such that Aj Al=Al Aj for 
any l, j ∈ {1,..., k}. Then for each x from the space κ(n, A) defined by (2.2), 
there exists a common finite dimensional invariant subspace for A1,..., Ak 
such that for any sequence {zm}m∈+ of elements of k with |zm| → ∞ there 
exist sequences {xm}m∈+, {ym}m∈+of elements of Y for which 

, ,0, , , 0 ,〈 〉 〈 〉→ → → → →∞m mz A z A
m m m mx e x x y x e y as m         (2.11)

where 1 1 ., ( )|〈 〉 = +…+ k k Ys A s A s A

Proof. Since x ∈ κ(n, T), there exists y ∈ X such that 1= … knnx A A y
and 2 0=jnA y for 1 ≤ j ≤  k. For each j ∈ {1,..., k} let Nj={1,..., 2nj} and 
Qj={1,..., nj}. Denote M=N1 ×... × Nk, M0=Q1 ×... × Qk. For any l ∈ M, 
let 1 1 22 −−= … k kn ln l

lh A A y and let Y=span {hl : l ∈ M}. Clearly Y is finite 
dimensional. It is also straightforward to verify that Ajhl=0 if lj=1 and Aj 
hl=hl′ if lj > 1, where l′r=lr for r ≠  j, l′j=lj − 1, 1 ≤ j ≤  k0. It follows that Y 
is invariant for Aj for 1 ≤ j ≤  k. Consider the linear operator J : M → Y 
defined on the canonical basis by the formulas Jel=hl for l ∈ M. Let also 
E=span {el : l ∈ M0} and Tj ∈ L(M) be the operators from Corollary 2.6. 
Taking into account the definition of Tj and the action of Aj on hl, we 
see that AjJ=JTj for 1 ≤ j ≤  k. Clearly n=(n1,..., nk) ∈ M0 and therefore en 
∈ E. Since 1= … knnx A A y , we also see that x=hn. According to Corollary 
2.6, there exist sequences {um}m∈+ and {vm}m∈+of elements of M such 

that ,, 0, 0〈 〉→ → →mz T
m n m mu e e u v and ,〈 〉 → →∞mz T

m ne u e asm . Now 

let ym=Jum and xm=Jvm for m ∈ +. Then {xm} and {ym} are sequences of 

elements of Y. From the intertwining relations AjJ=JTj and the fact that 
M and Y are finite dimensional, it follows that xm → J0=0, ym → Jen=x, 

,〈 〉 → =mz A
m ne x Je x , , 0 0〈 〉 → =mz T

me y J . Thus (2.11) is satisfied.

Let X be a topological vector space and T=(T1,..., Tk) ∈ L(X)k. We 

write T ∈ ε(k, X) if for ∞ any z ∈ k, the series
0

1 ,
!

∞

=

〈 〉∑ n

n

z T x
n

 converges 

in X and the map ,( , ) z Tz x e x〈 〉→ from k × X to X is separately 

continuous, where 1 1,〈 〉 = +…+ k kz T z T z T and
0

1
!

∞

=

=∑S n

n

e x S x
n

. The 

following proposition is an elementary exercise. We leave its proof for 
the reader.

Proposition 2.8. Let k ∈ , X be a locally convex space and T ∈ 
ε (k, X). Assume also that Tj Tm=TmTj for any m, j ∈ {1,..., k}. Then 

,{ }〈 〉
∈ k

z T
ze 

is a strongly continuous operator group. Moreover, if =, 

then the map ,〈 〉


z Tz e x from k to X is holomorphic for each x ∈ X.

Remark 2.9. It is worth noting that the semigroup property 
, , ,〈 + 〉 〈 〉 〈 〉=z w T z T w Te e e fails if the operators Tj are not pairwise 

commuting.

Corollary 2.10. Let X be a locally convex space, k ∈ , n1,..., nk ∈  
and A=(A1,..., Ak) ∈ ε (k, X) be such that Aj Al=Al Aj for any l, j ∈ {1,..., 
k}. Then for each x, y from the space ker† (A) defined by (2.2) and any 
sequence {Zm}m∈+of elements of k with |zm| → ∞, there exist a sequence 
{um}m∈+ in X such that um → x and ,〈 〉 →mz A

me u y as m → ∞.

 Proof. Fix a sequence {zm}m∈+of elements of k with |zm| → ∞. Let 
Σ be the set of (x, y) ∈ X × X for which there exists a sequence {um}n∈ in X 
such that um → x and ,〈 〉 →mz A

me u y as m → ∞. According to Lemma 

2.7, κ(n, A) × {0} ⊆ Σ and {0} × κ(n, A) ⊆ Σ for any n=(n1,..., nk) ∈ k, 
where the space κ(n, A) is defined by (2.2). On the other hand, from 
the definition of Σ it is clear that Σ is a linear subspace of X × X. Thus

† †ker ( ) ker ( ) span ( ( , ) {0}) ({0} ( , )) .( )κ κ

 
 

× = × ∪ × ⊆ Σ 
 
∈ 



k

A A n A n A

n

Hence (x, y) ∈ Σ for any x, y ∈ ker† (A).

Lemma 2.11. Let X be a topological vector space, z ∈ , |z|=1, A ∈ 
L(X), m ∈  and x ∈ Am(X) ∩ ker Am. There exist sequences {uk}k∈+ and 
{vk}k∈+ of elements of X such that

uk → 0, zk (I + A)kuk → x, vk → x, zk (I + A)k vk → 0 as k → ∞.      (2.12)

Proof. If x=0, we can take uk=vk=0, so we may assume that x ≠ 0. 
Let n be the smallest positive integer for which Anx=0. Since Amx=0, we 
have n ≤ m. Hence x ∈ Am(X) ⊆ An(X). Thus we can pick w ∈ X such 
that Anw=x. Denote

hj=A2n−j w for 1 ≤ j ≤  2n and Y=span {h1,..., h2n}.

Clearly Ahj=hj-1 for 2 ≤ j ≤  2n, hn=Anh2n=Anw=x and 
Ah1=A2nh2n=Anx=0. By definition of n we have h1=A2n−1h2n=An−1x ≠ 0. 
In particular A(Y) ⊆ Y, (A|y)

2n=0 and (A|y)
2n-1≠ 0. Since the order of 

nilpotency of a nilpotent operator on Y cannot exceed the dimension 
of Y, we have dim Y ≥ 2n. On the other hand Y is the span of the 
2n-elements set {h1,..., h2n}. Hence {h1,..., h2n} is a linear basis of Y. Thus 
there exists a unique linear isomorphism J : 2n → Y such that Jek=hk 
for 1 ≤ j ≤  2n. Since Ahj=hj−1 for 2 ≤ j ≤  2n and Ah1=0, we have 
A|y=JSJ−1, where S ∈ L(2n) is the backward shift operator from Lemma 
2.2. Applying Lemma 2.4 with um=(0,..., 0, 1) and vm=(0,..., 0, 0), we 
find that there exists a sequence {gk}k∈+ of vectors in 2n such that gk 
→ en and (I + S)kgk → 0 as k → ∞. Applying Lemma 2.4 with um=(0,..., 0, 
0) and vm=(0,..., 0, z−m), there exists also a sequence {fk}k∈+ of vectors in 
2n such that fk → 0 and zk (I + S)kfk → en as k → ∞. Define now uk=Jfk and 
vk=Jgk for k ∈ +. Since Y and 2n are finite dimensional, we see that 

1

1

, 0, ( ) ( ) ( ) 0,

( ) ( ) ( ) .

−

−

→ = → + = + = + →

+ = + = + → = →∞

k k k
k n k k k k
k k k k k k

k k k n

v Je x u I A v J I S J Jg J I S g

z I A u z J I S J Jf z J I S f J as ke x

Thus the sequences {uk} and {vk} satisfy the desired conditions.

The following corollary of Lemma 2.11 seems to be of independent 
interest.

Theorem 2.12. Let X be a topological vector space, T ∈ L(X) and 
Λ(T) be the set defined in (1.1). Then for any u, v ∈ Λ(T), there exists a 
sequence { }

+∈k kX in X such that xk → u and Tk xk → v as k → ∞.

Proof. Let Σ be the set of pairs (x, y) ∈ X × X for which there exists 
a sequence { }

+∈k kX of elements of X such that xk → x and Tk xk → y. 

Pick z ∈  with |z|=1 and n ∈  and let

x ∈ ker (T − zI)n ∩ (T − zI)n(X)=ker An ∩ An(X), where A=z−1T − I.

By Lemma 2.11, there exist sequences { }
+∈k ku and { }

+∈k kv  in 
X satisfying (2.12). Since I + A=z−1T, (2.12) can be rewritten in the 
following way:

vk → x, Tkvk → 0, uk → 0, Tkuk → x as k → ∞.

This shows that for any n ∈  and any z ∈  with |z|=1, 

ker( ) ( ) ( ) {0} and {0} ker( ) ( ) ( ) .( ) ( )− ∩ − × ⊆ Σ × − ∩ − ⊆ Σn n n nT zI T zI X T zI T zI X

On the other hand, the fact that Σ is a linear subspace of X × X, the 
definition of Λ(T) and the above display imply that Λ(T) × Λ(T) ⊆ Σ.

http://dx.doi.org/10.4172/1736-4337.S1-009
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Mixing semigroups and extended backward shifts

We start by proving Proposition 1.1. The next observation is 
Proposition 1 in reference [28].

Proposition G. Let X be a topological space and ={Tα : α ∈ A} be 
a family of continuous maps from X to X such that TαTβ=TβTα for any 
α, β ∈ A and Tα(X) is dense in X for any α ∈ A. Then the set of universal 
elements for  is either empty or dense in X.

The following general theorem can be found in reference [28].

Theorem U. Let X be a Baire topological space, Y a second countable 
topological space and {Ta: a ∈ A} a family of continuous maps from X 
into Y. Then the following assertions are equivalent:

(U1) The set of universal elements for {Ta : a ∈ A} is dense in X;

(U2) The set of universal elements for {Ta : a ∈ A} is a dense Gδ -subset 
of X;

(U3) The set {(x, Tax): x ∈ X, a ∈ A} is dense in X × Y.

Proof of Proposition 1.1. Assume that {Tt}t∈A is hereditarily 
hypercyclic. That is, { : }+∈

ntT n is universal for any sequence 
{ }

+∈n nt of elements of A such that |tn| → ∞. Applying this property 
to the sequence tn=nt with t ∈ A, |t| > 0, we see that Tt is hypercyclic. 
Since any hypercyclic operator has dense range [28], we get that Tt(X) 
is dense in X for any t ∈ A with |t| > 0. We proceed by reasoning ad 
absurdum. Assume that {Tt}t∈A is non-mixing. Then there exist non- 
empty open subsets U and V of X and a sequence { }

+∈n nt of elements 
of A such that |tn| → ∞ and | | 0, ( )> ∩ =∅

nn tt T U V for each n ∈ +. Since 
each ntT has dense range and ntT commute with each other, Proposition 
G implies that the set W of universal elements of { : }+∈

ntT n  is either 
empty or dense in X. Since { : }+∈

ntT n is universal, W is non-empty 
and therefore dense in X. Hence we can pick x ∈ W ∩ U. Since x is 
universal for { : }+∈

ntT n , there is n ∈ + for which ntT x ∈ V. Hence 
( )∈ ∩ =∅

n nt tT x T U V . This contradiction completes the proof of (1.1.1).

Next, assume that X is Baire separable and metrizable, {Tt}t∈A is 
mixing and { }

+∈n nt is a sequence of elements of A such that |tn| → ∞. 
From the definition of mixing it follows that for any non-empty open 
subsets U and V of X, ( )∩ ≠∅

ntT U V for all sufficiently large n ∈ +. 
Hence {( , ) : , }+∈ ∈

ntx T x x X n  is dense in X × X. By Theorem U, 
{ : }+∈

ntT n  is universal.

Theorem 2.13. Let X be a topological vector space, k ∈  and 
A=(A1,..., Ak) ∈ ε (k, X) be a EBSk -tuple. Then the strongly continuous 
group ,{ }〈 〉

∈ k
z A

ze  is mixing. If additionally X is Baire separable and 

metrizable, ,{ }〈 〉
∈ k

z A
ze  is hereditarily hypercyclic.

Proof. Assume that ,{ } k
z A

z
e〈 〉

∈  is non-mixing. Then we can find non-
empty open subsets U and V of X and a sequence { }

+∈m mz in k such 
that |zm| → ∞ as m → ∞ and , ( )〈 〉 ∩ =∅mz Ae U V for each m ∈ +. Let Σ be 
the set of pairs (x, y) ∈ X × X for which there exists a sequence { }

+∈m mx of 
elements of X such that xm → x and ,〈 〉 →mz A

me x y . According to Corollary 
2.10, ker† (A) × ker† (A) ⊆ Σ. Since A=(A1,..., Ak) is a EBSk -tuple, ker† (A) 
is dense in X and therefore Σ is dense in X × X. In particular, Σ meets U 
× V, which is not possible since , ( )〈 〉 ∩ =∅mz Ae U V  for any m ∈ +. This 
contradiction shows that ,{ }〈 〉

∈ k
z A

ze  is mixing. If X is Baire separable 
and metrizable, Proposition 1.1 implies that ,{ }〈 〉

∈ k
z A

ze  is hereditarily 
hypercyclic.

It is easy to see that if X is a Banach space and k ∈ , then L(X)k=ε 
(k, X). Moreover, each operator group of the shape ,{ }〈 〉

∈ k
z A

ze   

is uniformly continuous. Hence, we get the following corollary of 
Theorem 2.13.

Corollary 2.14. Let X be a separable Banach space and (A1,..., Ak) 
∈ L(X)k be a EBSk -tuple. Then ,{ } k

z A
z

e〈 〉
∈

is a hereditarily hypercyclic 
uniformly continuous group.

1-sequences, equicontinuous sets and the class M
Lemma 3.1. Let Y0 and Y1 be closed linear subspaces of a locally 

convex space Y such that Y0 ⊂ Y1 and the topology of Y1/Y0 is not weak. 
Then there is a sequence {fn : n ∈ +} in Y′such that

(3.1.1) 1{ ( )} : ;{ }φ
+∈⊆ ∈
n nf y y Y

(3.1.2) 
0

0| =n Yf for each n ∈ +;

(3.1.3) {fn : n ∈ +} is uniformly equicontinuous.

Proof. Since the topology of Y1/Y0 is not weak, there exists a 
continuous seminorm 

p on Y1/Y0 such that the closed linear space ker 
1(0)−= p p has infinite codimension in Y1/Y0. Clearly the seminorm p 

on Y1 defined by the formula ( )0(y)  = +p p y Y  is also continuous and 
ker p has infinite codimension and contains Y0. In particular the space 
Yp=Y1/ker p endowed with the norm ||x+ker p||=p(x) is an infinite 
dimensional normed space. Hence we can choose sequences { }

+∈n ny  
in Y1 and {g }

+∈n n in Y′p such that ||gn|| ≤ 1 for each n ∈ + and gn(yk 
+ ker p)=δn,k for n, k ∈ +, where δn,k is the Kronecker δ (every infinite 
dimensional normed space admits a biorthogonal sequence). Now let 
the functionals hn : Y1 →  be defined by the formula hn(y)=gn(yk + ker 
p). The above properties of the functionals gn can be rewritten in terms 
of hn in the following way

| hn(y)| ≤ p(y) and hn(yk)=δn,k for any n, k ∈ + and y ∈ Y1.

Since any continuous seminorm on a subspace of a locally convex 
space extends to a continuous seminorm on the entire space [17,29], we 

can find a continuous seminorm q on Y such that 1
| =Yq p .

Applying the Hahn–Banach theorem, we can find fn ∈ Y′ for n ∈ 
+ such that

1 +and | ( ) | ( ) for any n and y Y.| = ≤ ∈ ∈n Y n nf h f y q y

From the last two displays we have fn(yk)=δn,k, which implies (3.1.1) 
since yk ∈ Y1. From the inequality in the above display it follows that 
each |fn| is bounded by 1 on the unit ball W of the seminorm q. Since 
W is a neighborhood of zero in Y, condition (3.1.3) is satisfied. Since Y0 
⊆ ker p ⊆ ker q, from the inequality |fn(y)| ≤ q(y) it follows that each fn 
vanishes on Y0. That is, (3.1.2) is satisfied.

Applying Lemma 3.1 with Y0=0 and Y1=Y, we obtain the following 
corollary.

Corollary 3.2. Let Y be a locally convex space, whose topology is 
not weak. Then there exists a linearly independent sequence {fn : n 
∈ +} in Y′ such that { fn : n ∈ +} is uniformly equicontinuous and 

{ ( )} :{ }ϕ
+∈⊆ ∈
n nf y y Y .

Recall that a subset D of a locally convex space X is called a disk if 
D is bounded, convex and balanced (=is stable under multiplication 
by any λ ∈  with |λ| ≤ 1). The symbol XD stands for the space span 
(D) endowed with the norm being the Minkowskii functional of the 
set D. Boundedness of D implies that the topology of XD is stronger 
than the one inherited from X. A disk D in X is called a Banach disk if 
the normed space XD is complete. It is well-known that a sequentially 
complete disk is a Banach disk, see, for instance, [29]. In particular, a 
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compact or a sequentially compact disk is a Banach disk. We say that 
D is a Banach s-disk in X if D is a Banach disk and the Banach space XD 
is separable.

Lemma 3.3. Let { }nnx
+∈

be an 1-sequence in a locally convex 
space X. Then the set

1 1
0

: , || || 1{ }∞

=

= ∈ ≤∑ n n
n

K a x a a

is a compact and metrizable disk. Moreover, K is a Banach s-disk and 
E=span {xn : n ∈ +} is dense in the Banach space XK.

Proof. Let Q={a ∈ 1 : ||a||1 ≤ 1} be endowed with the coordinatewise 
convergence topology. It is easy to see that Q is a metrizable compact 
topological space as a closed subspace of +, where D={z ∈ : |z| ≤ 1}. 

Obviously, the map ϕ: Q → K, 
0

( )
∞

=

Φ =∑ n n
n

a a x is onto. It is also easy to 

see that ϕ is continuous. Indeed, let p be a continuous seminorm on X, 
a ∈ Q and ε > 0. Since xn → 0, there is m ∈ + such that p(xn) ≤ ε for n > 
m. Let δ=ε(1 + p(x0) +... + p(xm))−1 and W={b ∈ Q : |aj − bj | < δ for 0 ≤ j 
≤ m}. Then W is a neighborhood of a in Q and for each b ∈ W we have

0 0

( ( ) ( )) ( ) | | ( ).( )∞ ∞

= =

Φ −Φ = − ≤ −∑ ∑n n n n n n
n n

p b a p b a x b a p x

Taking into account that p(xn) < ε for n > m and |an − bn| < δ for n 
≤ m, we obtain

( ( ) ( )) ( ) | | .

0 1

δ
∞

Φ −Φ ≤ + −

= = +
∑ ∑

m
p b a p x b am n n

n n m



Using the definition of δ and inequalities ||a||1 ≤ 1, ||b|| 1 ≤ 1, we 

see that p(ϕ(b) − ϕ(a)) ≤ 3ε. Since a, p and ε are arbitrary, the map ϕ is 
continuous. Hence K is compact and metrizable as a continuous image 
of a compact metrizable space. Obviously K is convex and balanced. 
Hence K is a Banach disk (any compact disk is a Banach disk). Let us 
show that E is dense in XK. Take u ∈ XK. Then there is a ∈ 1 such that

0

∞

=

=
∑u a xk k
k

. Clearly, for any n ∈ +,
0

= ∈

=
∑

n
u a x En k k

k

.

Let || ⋅ || be the norm of the Banach space XK. Then for any n ∈ +,

1 1

|| | | 0 as .||
∞ ∞

= + = +

− = ≤ → →∞∑ ∑n k k k
k n k n

u u a x a n

Hence E is dense in XK and therefore XK is separable and K is a 
Banach s-disk.

Lemma 3.4. Let X be a separable metrizable topological vector space 
and { }

+∈n nf be a linearly independent sequence in X. Then there exist 
sequences { }

+∈n nx in X and ,,{ }α
+∈ <k jk j j k ,in  such that span {xk : 

k ∈ +} is dense in X, gn(xk)=0 for n ≠ k and gn(xk) ≠ 0 for n ∈ +, where 

, .α= +

<
∑g f fn n n j j
j n

Proof. Let { }
+∈n nU  be a base of topology of X. First, we construct 

inductively sequences , ,,{ }α
+∈ <k jk j j k in  and { }

+∈yn n  in X such 
that for any k ∈ +,

(b1) yk ∈ Uk;

(b2) gk (yk) ≠ 0, where k, ;α= +

<
∑g f fj
j k

k jk  

(b3) gk (yk)=0 if m < k.

Let g0=f0. Since f0 ≠ 0, there is y0 ∈ U0 such that f0(y0)=g0(y0) ≠ 0. This 
provides us with the base of induction. Assume now that n ∈  and yk, 
αk,j with j < k < n satisfying (b1– b3) are already constructed. According 

to (b2) and (b3), we can find αn,0,..., αn,n−1 ∈  such that gn(ym)=0 for m 

< n, where , .α= +

<
∑g f fn n n j j
j n

 Next since fj are linearly independent, gn 

≠ 0 and therefore there is yn ∈ Un such that gn(yn) ≠ 0. This concludes 
the description of the inductive procedure of constructing sequences 

,  { } ∈ <k j jk j and { }
+∈n ny  satisfying (b1–b3) for each k ∈ +.

Using (b2) and (b3), one can easily demonstrate that there is 
a sequence ,,  ,{ }β

+∈ <k j jk j k  in  such that gn(xk)=0 for k ≠ m, 

,β
<

= +∑k k k j j
j k

x y y . From (b2) and (b3) it also follows that gn(xn)  0 for 

each n ∈ +. It remains to notice that according to (b1), {yn : n ∈ +} is 
dense in X. Since {yn : n ∈ +} ⊆ span {yn : n ∈ +}=span {xn : n ∈ +}, 
we see that span {xn : n ∈ +} is dense in X.

Lemma 3.5. Let X ∈ M. Then there exist sequences { }
+∈n nx and 

{ }
+∈k kf in X and X′ rspectively, such that

(3.5.1) { }
+∈n nx is an 1-sequence in X;

(3.5.2) the space E=span {xn : n ∈ +} is dense in X;

(3.5.3) fk (xn)=0 if k ≠ n and fk (xk) ≠ 0 for each k ∈ +; 

(3.5.4) {fk : k ∈ +} is uniformly equicontinuous.

Moreover, {fk} can be chosen from the linear span of any linearly 
independent uniformly equicontinuous sequence in X′.

Proof. According to Lemma 3.3, there exists a Banach s-disk K 
in X such that XK is dense in X. By Corollary 3.2, there is a linearly 
independent sequence { }

+∈n ng   in X′ such that {gn : n ∈ } is uniformly 
equicontinuous. Since XK is dense in X, the functionals |

Kn Xg on XK are 
linearly independent. Applying Lemma 3.4 to the sequence{ }|

Kn Xg , we 
find that there exist sequences {y }

+∈n n  in XK and ,,  ,{ }α
+∈ <k j jk j k in 

 such that E=span {yk : k ∈ +} is dense in XK, hn(yk)=0 for n ≠k and 

hn(yn) ≠ 0 for n ∈ +, where ,α
<

= +∑n n n j j
j n

h g g . Let q be the norm 

of the Banach space XK. Consider fn=cnhn, where
11 | |,( )α −= +

<
∑cn n j
j n

. 

Since {gn : n ∈ } is uniformly equicontinuous and ,α= +

<
∑h g gn n n j j
j n

, 

we immediately see that {fn : n ∈ } is uniformly equicontinuous. Next, 
let xn=bnyn, where bn=2−nq(xn)

−1. Since xn converges to 0 in the Banach 

space XK, { }nnx
+∈ is an 1-sequence in XK. Since the topology of XK is 

stronger than the one inherited from X, { }nnx
+∈ is an 1-sequence in 

X. Since span {xn : n ∈ +}=span {yn : n ∈ +} is dense in XK, it is also 
dense in XK in the topology inherited from X. Since XK is dense in X, 
span {xn : n ∈ +} is dense in X. Finally since fn(xk)=cnbk hn(yk), we see 
that fn(xk)=0 if n ≠ k and fn(xn) ≠ 0 for any n ∈ +. Thus conditions 
(3.5.1–3.5.4) are satisfied.

Lemma 3.6. Let X be a locally convex space, whose topology is not 
weak and Y be a locally convex space admitting an 1-sequence with 
dense span. Then there is T ∈ L(Y, X) such that T (X) is dense in Y.
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Proof. Let { }
+∈yn n be an 1-sequence in Y with dense span. By 

Corollary 3.2, there is a uniformly equicontinuous sequence { }
+∈fn n 

in X′ such that { ( )} :{ }ϕ
+

⊆ ∈∈f x x Xn n ,. Consider the linear operator T : 

X → Y defined by the formula 2 ( )

0

∞
−=

=
∑ nTx f x yn n
n

.Since {fn} is uniformly 

equicontinuous, there is a continuous seminorm p on X such that |fn(x)| 
≤ p(x) for any x ∈ X and n ∈ +. Since {yn} is an 1-sequence, Lemma 
3.3 implies that the closed convex balanced hull Q of {yn : n ∈ +} is 
compact and metrizable. Let q be the Minkowskii functional of Q (=the 
norm on YQ). It is easy to see that q(T x) ≤ p(x) for each x ∈ X. Hence 
T is continuous as an operator from X to the Banach space YQ. Since 
the latter carries the topology stronger than the one inherited from Y, 

T ∈ L(X, Y). Next, the inclusion { ( )} :{ }ϕ
+∈⊆ ∈
n nf x x x , implies that 

T (X) contains the linear span of {yn: n ∈ +}, which is dense in Y. Thus 
T has dense range.

Lemma 3.7. Let X be an infinite dimensional locally convex space 
and assume that there exist 1-sequences with dense span in both X and 
X′β. Then there exist sequences { }

+∈n nx  and { }
+∈k kf in X and X′ 

respectively, such that

(3.7.1) { }
+∈n nx  is an 1-sequence in X and { }

+∈n nf  is an 1-
sequence in X′β ;

(3.7.2) E=span {xn : n ∈ +} is dense in X and F=span {fn : n ∈ +} is 
dense in X′β ;

(3.7.3) fk(xn)=0 if k ≠ n and fk (xk) ≠ 0 for each k ∈ +. 

If the original 1-sequence in X′β is uniformly equicontinuous, than 
we can also ensure that (3.7.4) { fn : n ∈ +} is uniformly equicontinuous.

Proof. By Lemma 3.3, there exists a Banach s-disk K in X such 
that XK is dense in X. Fix an 1-sequence { } ∈n ng  in X′β with dense 
span. Since any sequence of elements of a linear space with infinite 
dimensional span has a linearly independent subsequence with the 
same span, we, passing to a subsequence, if necessary, can assume 
that gn are linearly independent. Since XK is dense in X, the functionals 

|
Kn Xg on XK are linearly independent. Let D be the closed absolutely 

convex hull of the set {gn: n ∈ +} in X′β. By Lemma 3.3, D is a Banach 

disk in X′β. Applying Lemma 3.4 to the sequence | 
 
 Kn Xg , we find 

that there exist sequences { }
+∈n ny   in XK and ,,  ,{ }α

+∈ <k j jk j k in  

such that E=span {yk : k ∈ +} is dense in XK, hn(yk)=0 for n ≠ k and hn(yn) 

≠ 0 for n ∈ +, where ,α
<

= +∑n n n j j
j n

h g g . Let q be the norm of the 

Banach space XK and p be the norm of the Banach space X′D. Consider 

fn=cnhn, where 12 1 | |,( )α− −= +

<
∑ncn n j
j n

. Since p(gn) ≤ 1 for each n ∈ + 

and ,α
<

= +∑n n n j j
j n

h g g , we immediately see that p(fn) ≤ 2−n for any 

n ∈ +. Hence { }
+∈n nf   is an 1-sequence in the Banach space X′ D. 

Since the topology of X′ D is stronger than the one inherited from X′β, 
{ }

+∈n nf  is an 1-sequence in X′β. Similarly,{fn : n ∈ +} is uniformly 
equicontinuous if {gn : n ∈ +} is. Since the sequences { }

+∈n ng  and
{ }

+∈n nf   have the same spans, the span of {fn : n ∈ +} is dense in X′β. 
Next, let xn=bnyn, where bn=2−nq(xn)

−1. Since xn converges to 0 in the 

Banach space XK, { } ∈n nx   is an 1-sequence in XK. Since the topology 
of XK is stronger than the one inherited from X, { } ∈n nx   is an 1-
sequence in X. Since span {xn : n ∈ +}=span {yn : n ∈ +} is dense in XK, 
it is also dense in XK in the topology inherited from X. Since XK is dense 
in X, span {xn : n ∈ +} is dense in X. Finally since fn(xk)=cnbkhn(yk), we 
see that fn(xk)=0 if n ≠ k and fn(xn) ≠ 0 for any n ∈ +. Thus conditions 
(3.7.1–3.5.3) (and (3.5.4) if {gn : n ∈ +} is uniformly equicontinuous) 
are satisfied.

Lemma 3.8. The class M is stable under finite or countable products. 
Moreover, if X ∈ M, then X ×  ∈ M.

Proof. It is clear that if the topology of one of the locally convex 
spaces Xj is not weak, then so is the topology of their product∏X j . Thus 
the only thing we have to worry about is the existence of an 1-sequence 
with dense span. Let J be a finite or countable infinite set, Xj ∈ M for 

each j ∈ J and =

∈
∏X X j
j J

. Let for any j ∈ J, ,{ }j n nx
+∈ be an 1-sequence 

in Xj with dense span. For (j, n) ∈ J × + let uj,n ∈ X be such that jth 
component of uj,n is xj,n, while all other components are 0. Clearly {uj,n : 
j ∈ J, n ∈ +} is a countable subset of X. It is easy to see that enumerating 
this subset by elements of +, we get an 1-sequence in X with dense 
span. The proof of the second part of the lemma is even easier: one have 
just to add one vector (0, 1) to an 1-sequence with dense span in X=X × 
{0}, to obtain an 1-sequence with dense span in X × .

Proof of Theorem 1.3
Let X ∈ M. By Lemma 3.5, there exist sequences { }

+∈n nx and 
{ }

+∈k kf  in X and X′ respectively satisfying (3.5.1–3.5.4). Uniform 
equicontinuity of {fn} is equivalent to the existence of a continuous 
seminorm p on X such that each |fn| is bounded by 1 on the unit ball 
{x ∈ X : p(x) ≤ 1} of p. Since {xn} is an 1-sequence in X, Lemma 3.3, 
absolutely convex closed hull K of {xn : n ∈ +} is compact and is a 
Banach disk in X. Let q be the norm of the Banach space XK. Then q(xn) 
≤ 1 for each n ∈ +. Let c=sup{p(x) : x ∈ K}. Compactness of K implies 
that c is finite. Clearly c > 0 and p(x) ≤ cq(x) for any x ∈ Y.

Lemma 4.1. Let α, β : +→ + be any maps and a= { }
+∈an n  ∈ 1. 

Then the formula 

( ) ( )( )α β

+∈

= ∑


n n n
n

Tx a f x x 				                  (4.1)

defines a linear operator on X. Moreover, the series 
!

0

∞

=

=
∑

nz n zTT x e x
n

n

 
converges in X for any x ∈ X anid z ∈  and

1 || ||| |( ) || || ( ), ( ) ( )−≤ − ≤zT c a zq Tx a p x q e x x c e p x for each x ∈ X and z ∈ ,  (4.2)

where ||a|| is the 1-norm of a.

Proof. Condition (3.5.4) implies that the sequence {fα(n)(x)} is 
bounded for any x ∈ X. Since {xn} is an 1-sequence and a ∈ 1, we see 
that the series in (4.1) converges for any x ∈ X and therefore defines a 
linear operator on X. Moreover, if p(x) ≤ 1, then |fk (x)| ≤ 1 for each k 
∈ + and since q(xm) ≤ 1 for m ∈ +, formula (4.1) implies that q(Tx) ≤ 
||a||. Hence q(Tx)≤ ||a||p(x) for each x ∈ X. Then q(T2x) ≤  ||a|| p(Tx) ≤ 
c||a||q(Tx) ≤  c||a||2p(x). Iterating this argument, we see that

q(Tnx) ≤ cn−1||a||n p(x) for each n ∈ .

It follows that for any x ∈ X, the series k!
1

∞

=
∑

nz nT x

n

 is absolutely 

convergent in the Banach space XK (and therefore in X) for any z ∈ . 
Naturally we denote its sum as ezT x. Moreover, using the above display, 
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we obtain
1 1 || ||| |

1 1

( || ||| |)( ) ( ) ( ).
! !

( )∞ ∞
− −

= =

− = ≤ <∑ ∑
n n

zT n c a z

n n

z c a zq e x x q T x c p x c e p x
n n

Thus (4.2) is satisfied.

Now fix a bijection :ϕ →+ + 

k . By symbol ej we denote the element 
of +

k defined by (ej)l=δj,l, where δj,l is the Kronecker delta. For n ∈ +
k , we 

also write |n|=n1 +... + nk. For each m ∈ + let

( ) ( )

| | 1

min ( ) .| |ϕ ϕε
+∈

= +

=


km n nn
n m

f x

According to (3.5.1), (3.5.3) and (3.5.4), {εm} is a bounded sequence 
positive numbers. Next, we pick any sequence { }mmα +∈ of positive 
numbers such that

αm+1 ≥ 2mαmεm
−1 for any m ∈ +			             (4.3)

and consider the operators Aj ∈ L(X) for 1 ≤  j ≤  k defined by the 
formula

| | ( )
( )

| | 1 ( ) ( )

( )
.

( )
ϕ

ϕ
ϕ ϕ

α

α
+

+

+ + +
∈

= ∑


j

k j j

n n e
j n

n n e n e
n

f x
A x x

f x

From the estimates (4.3) it follows that the series defining Aj can 
be written as

, ( ) ( )( )φ φ

+

+

∈

= ∑


j
k

j j n n e n
n

A x c f x x with -|n|
j,n0 |c | 2< <  

Clearly Aj have shape (4.1) with | ||| || 2 .

+

−

∈

≤ = ∑


k

n

n

a C By Lemma 

4.1, Aj are linear operators on X satisfying q(T x) ≤ Cp(x) for any x 

∈ X. Hence Aj are continuous as operators from X to the Banach 
space XK. Since XK carries a stronger topology than the one inherited 
from X, Aj ∈ L(X) for 1 ≤ j ≤ k. Next, using the definition of Aj, it 
is easy to verify that AjAlxn=AlAjxn for any  1 ≤ j < l ≤ k and n ∈ +. 
Indeed, for any n ∈ +, there is a unique +∈km such that n=ϕ(m). 
If either mj=0 or ml=0, from the definition of Aj and Al it follows that 
AjAlxn=AlAjxn=0.If mj ≥ 1 and ml ≥ 1 from the same definition we obtain

| | 2
( )

| |
ϕ

α
α

−
− −= =

j l
m

j l n l j n m e e
m

A A x A A x x .From (3.5.2) it follows now that 

the operators A1,..., An are pairwise commuting. Next, for z ∈ k, the 

operator ,z A has shape (4.1) with ||a|| ≤ C || z||, where ||z|| is the 1-

norm of z. By Lemma 4.1, the series 
0

1 ,
!

∞

=

〈 〉∑ n

n

z A
n converges pointwisely 

to a linear operator ,z Ae and 

, 1 || ||( ) ( )〈 〉 −− ≤z A cC zq e x x c e p x  for any x ∈ X and z ∈ k.	           (4.4)

Exactly as for the operat	 ors Aj, we see that ,z Ae ∈ L(X) for any 

z ∈ k. From (4.4), if zn → z in k, then , ,〈 〉 〈 〉→nz A z Ae x e x uniformly 

on {x ∈ X: p(x) < 1}. By Proposition 2.8, ,{ }〈 〉
∈ k

z A
ze  is a uniformly 

continuous group and the map ,〈 〉


z Az e x  is holomorphic for any 

x ∈ X provided =. The proof will be complete if we show that the 

group ,{ }〈 〉
∈ k

z A
ze 

 is hereditarily hypercyclic. To this end consider 

the restrictions Bj of Aj to XK as bounded linear operators on the 

Banach space XK. Then Bj commute with each other as the restrictions 
of commuting operators. Let us show that the operator group 

,{ }〈 〉
∈ k

z A
ze 

on XK is hereditarily hypercyclic. By Corollary 2.14, it 

suffices to verify that B=(B1,..., Bk) is a EBSk -tuple. We already know 
that Bj are pairwise commuting. From the definition of Bj it is easy to 

see that ker Bm
j contains , ( )spa , }n{ : 1ϕ += ∈ ≤ −

k
j m n jE x n n m .Using 

this fact it is easy to see that for any m ∈ k, the set κ(m, B) defined by 
(2.2) contains

{ : , 1,1 }., ( )
1

ϕ= = ∈ ≤ − ≤ ≤+

=



 j

k
kE E span x n n m j km j m n j j

j
Hence the space ker† B defined in (2.2) contains 

spa {n : }= ∈ +

∈







k

E x nm n

m

. By Lemma 3.3, ker†(B) is dense in XK. Hence 

B is an EBSk -tuple. Thus according to Corollary 2.14, ,{ }〈 〉
∈ k

z A
ze   is 

hereditarily hypercyclic. Since XK is dense in X and carries a topology 

stronger than the one inherited from X, ,{ }〈 〉
∈ k

z Ae z   is hereditarily 

hypercyclic. By Proposition 1.1, ,{ }〈 〉
∈ k

z Ae z   is mixing.

Theorem 1.18: proof and applications
Proof of Theorem 1.18. Assume that T is non-mixing. Then we can 

choose non-empty open subsets U and V of X and a strictly increasing 
sequence { }kkn ∈ +  of positive integers such that ( )∩ =∅knT U V for 

any k ∈ +. Let Σ be the set of (x, y) ∈ X × X for which there exists a 

sequence { }nkx ∈ +  of elements of X such that xk → x and →knT x yk . 

According to Theorem 2.12, Σ contains Λ(T) × Λ(T). Since Λ(T) is dense 
in X, we see that Σ is dense in X × X. Hence Σ intersects U × V, which 
is impossible since ( )∩ =∅knT U V for any k ∈ +. This contradiction 
shows that T is mixing. If X is Baire separable and metrizable, then by 
Proposition 1.1, T is hereditarily hypercyclic.

Extensions of the Salas theorem

It is easy to see that ker†T ⊆ Λ(I + T) for any linear operator T. Thus 
Theorem 1.18 implies the following corollary.

Corollary 5.1. Let T be an extended backward shift on a topological 
vector space X. Then I + T is mixing. If additionally X is Baire, separable 
and metrizable, then I + T is hereditarily hypercyclic.

Recall that a backward weighted shift on p=p (+) for 1 ≤ p < ∞ 

or c0=c0(+) is the operator T acting on the canonical basis 0{ }∞=n ne as 
follows: Te0=0 and Ten=wnen−1 for n ≥ 1, where w={wn}n∈ is a bounded 
sequence of non-zero numbers in . Clearly any backward weighted 
shift is a generalized backward shift and therefore is an extended 
backward shift. Hence Corollary 5.1 contains the Salas theorem on 
hypercyclicity of the operators I + T with T being a backward weighted 
shift as a particular case. It is also easy to see that if X is a topological 
vector space and T ∈ L(X) is surjective, then ker† T=ker*T. Thus we 
obtain the following corollary. 

Corollary 5.2. Let X be a topological vector space and T ∈ L(X) 
be such that T (X)=X and ker* T is dense in X. Then I + T is mixing. 
If additionally X is Baire, separable and metrizable, then I + T is 
hereditarily hypercyclic.

We can further generalize Corollary 5.1 by means of the following 
observation.
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Lemma 5.3. Let X be a topological vector space, k ∈ , T ∈ L(X) and 

{aj}j∈ be a sequence in  such that the series 
1

∞
+

=
∑ k j

j
j

a T of operators 

converges pointwise to a continuous linear operator S on X. Then ker† Tk 
⊆ ker† (Tk + S).

Proof. In order to prove the inclusion † † ( )k kker T ker T S⊆ + , it is 

enough to show that †( ) ( )kn kn kker T T X ker T S∩ ⊆ +  for any n ∈ . Thus 

pick n ∈  and let ( )kn knx ker T T X∈ ∩ . Then = 0knT x  and there is y 

∈ X such that =knT y x . For 1 ≤  j ≤  2kn denote 2= kn j
jh T y− . It is easy 

to see that 1 = 0Th , 1=j jTh h −  for 2 ≤  j ≤  2kn and =knh x . Consider 

the backward shift B on the space2kn, which acts on the canonical basic 
vectors by the same rule: Be1=0 and 1=j jBe e −  for 2 ≤  j ≤  2kn. Let 
Y =span{hj : 1 ≤  j ≤  2kn} and consider the surjective linear operator 
J: 2kn → Y defined by =j jJe h  for 1 ≤  j ≤  2kn. It is easy to see that 
Y is T-invariant and TYJ=JB, where TY∈ L(Y) is the restriction of T 
to Y. Since B 2kn=0, we see that 2 = 0kn

YT  and therefore the restriction 
( )R L Y∈  of kT S+  to Y is given by the formula = ( )YR p T , where P 

is the polynomial defined by 
2 1

=1

( ) =
kn k

k k j
j

j

p z z a z
− −

++ ∑ . Let E =span{ej : 

1 ≤  j ≤  kn}. Considering the matrix of the operator p(B), it is easy 
to see that = ( ) = ( ) ( )n n

kne E ker p B p B∈  . Using the intertwining 
relation =YT J JB , we see that = ( ) ( ) ( ) ( ) ( )n n

kn Y Yx J e J E ker p T p T Y∈ ⊆ ∩ . 

Since = ( )YR p T  is the restriction to Y of the operator Tk +S, we see that 
†( ) ( ) ( ) ( )k n k n kx ker p T S T S X ker T S∈ + ∩ + ⊆ + . 

The following result is an immediate consequence of Lemma 5.3 
and Corollary 5.1.

Corollary 5.4  Let X be a topological vector space, k ∈ , T ∈ L(X) 

and { }j ja ∈  be a sequence in  such that the series 
=1

k j
j

j

a T
∞

+∑  of 

operators converges pointwise to a continuous linear operator S on X. 
Assume also that Tk is an extended backward shift. Then the operator 
I+Tk+S is mixing. If additionally X is Baire separable and metrizable, 
then I+Tk+S is hereditarily hypercyclic. 

It is straightforward to verify that any power of a generalized 
weighted shift is an extended backward shift. Thus the above corollary 
implies the next observation.

Corollary 5.5  Let X be a topological vector space, T ∈ L(X) be a 
generalized backward shift and { }j ja ∈ +  be a sequence in  such that 

0 = 1a , there is n ∈  for which 0na ≠  and the series 
=0

j
j

j

a T
∞

∑  converges 

pointwise to a continuous linear operator S on X. Then S is mixing. If 
additionally X is Baire separable and metrizable, then S is hereditarily 
hypercyclic. 

An extension of the Hilden–Wallen theorem

Lemma 5.6  Let X be a Baire topological space, Y be a second 
countable topological space and { } ∈ +n nT   be a sequence of continuous 

maps from X to Y. Let alsoΣ be the set of ( , )x y X Y∈ ×  for which there 

exists a sequence { }n nx ∈ +  of elements of X such that nx x→  and 

n nT x y→  as n→∞ . If Σ is dense in X×Y, then { } ∈ +n nT   is hereditarily 
universal. 

Proof. The density of Σ in X×Y implies that for any infinite set 

+⊆A  , condition (U3) from Theorem U is satisfied for the family 
{ : }nT n A∈  and therefore this family is universal. 

Hilden and Wallen [30] demonstrated that any backward weighted 
shift on p for 1 <p≤ ∞  is supercyclic. Many particular cases of the 
following proposition are known, see for instance [31]. We include it 
here in its full generality for the sake of completeness.

Proposition 5.7  Let X be a Baire separable metrizable topological 
vector space T ∈ L(X). Suppose also that T has dense range and dense 
generalized kernel. Then T is hereditarily supercyclic. 

Proof. Since T has dense range, we have that Tk(X) is dense in X for 
each k ∈ +. Thus for any x ∈X there exists a sequence { }x

k ku ∈ +
 in X 

such that k x
kT u x→  as k →∞ . Fix a dense countable set B X⊆ . Since 

X is metrizable and B is countable, we can choose a sequence { }λ ∈ +k k   

of positive numbers such that 1 0x
k kuλ− →  as k →∞  for each x ∈B.

Let now = k
k kT Tλ  for each k ∈ + and Σ be the set of ( , )x y X X∈ ×  for 

which there exists a sequence 
+∈kkx }{  of elements of X such that kx x→  

and k kT x y→  as k →∞ . For any x B∈ , let 1= x
k k kx uλ− . Then 0kx →  

as ∞→k  and =k kT x x  for each k ∈ +. Hence {0} B× ⊆ Σ . On 
the other hand, for any x ∈ ker *T, we have = 0kT x  for all sufficiently 
large k and therefore 0kT x →  as k →∞ . Considering the constant 
sequence =kx x  for k ∈ +, we see that * {0}ker T × ⊆ Σ .

Finally, observe that Σ is a linear subspace of X×X. Hence 
*ker T B× ⊆ Σ . Since both B and ker *T are dense in X, we see that 

Σ is dense in X× X. By Lemma 5.6, for each infinite set A +⊆  , the 
family { : } = { : }n

n nT n A T n Aλ∈ ∈  is universal. Hence T is hereditarily 
supercyclic. 

Remarks on Theorem 1.18

Theorem 1.18 is reminiscent of the following criterion of 
hypercyclicity of Bayart and Grivaux [32] in terms of the unimodular 
point spectrum.

Theorem BG   Let X be a complex separable infinite dimensional 
Banach space, T ∈ L(X)and assume that there exists a continuous Borel 
probability measure  µ on the unit circle  such that for each Borel set 

⊆A  with µ(A)=1, the space 

( )
z A

span ker T zI
∈

 
 −
 
 


is dense in X. Then T is hypercyclic. 

It is worth noting that in the case of operators on Banach spaces, 
neither Theorem 1.18 implies the result of Bayart and Grivaux, nor their 
result implies Theorem 1.18, see Examples 5.9, 5.10 and 5.12 below. 
Theorem 1.18 is also strictly stronger than Proposition 2.2 in the article 
[33] by Herrero and Wang, which is a key tool in the proof of the main 
result in reference [33] that any element of the operator norm closure 
of the set of hypercyclic operators on 2 is a compact perturbation of a 
hypercyclic operator. Namely, they assume that the span taken in (1) is 
dense taking only into account the z’s for which T -zI has closed range, 
and this allows them to use the Kitai criterion. We would like also to 
mention the following fact.

Proposition 5.8  Let X be a locally convex space and Y be a closed 
linear subspace of X such that X admits an 1-sequence with dense 
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span and the topology of X/Y is not weak. Then there is a hereditarily 
hypercyclic operator T ∈ L(X) such that Ty=y for any y ∈ Y. 

Proof. Since the topology of X/Y is not weak, Lemma 3.1 implies 
that there is a linearly independent uniformly equicontinuous 
sequence 

+∈nng }{  such that nY ker g⊆  for each n ∈ +. By Lemma 3.5, 

we can find sequences +∈nnx }{  and +∈kkf }{  in X and X′ respectively, 

such that conditions (3.5.1–3.5.4) are satisfied and each fk belongs to
{ : }mspan g m +∈ . Hence kY ker f⊆  for any k ∈ +. Uniform 

equicontinuity of {fk} and the fact that {xk} is an 1-sequence implies 
that the formula 

1
=0

= 2 ( )n
n n

n

Tx f x x
∞

−
+∑

defines a continuous linear operator on X, which also acts continuously 
on the Banach space XK, where K is the Banach disk being the closed 
convex balanced hull of { : }kx k +∈ . By Lemma 3.3, XK is separable 
and = { : }kE span x k +∈  is dense in XK. It is also straightforward to 
verify that †( )Kker T  contains E, where Tk ∈ L(Xk) is the restriction of T 
to XK. Hence TK is an extended backward shift on the separable Banach 
space XK. By Corollary 5.1, I+Tk is hereditarily hypercyclic. Since XK is 
dense in X and carries stronger topology, ( )I T L X+ ∈  is hereditarily 
hypercyclic. Since kY ker f⊆  for each k ∈ + from the definition of T it 
follows that ( ) =I T y y+  for each y ∈ Y. Thus I + T satisfies all required 
conditions. 

Grivaux [34] proved that if Y is a closed linear subspace of a 
separable Banach space X such that X/Y is infinite dimensional, then 
there exists a hypercyclic T ∈ L(X) such that Ty=y for any y ∈ Y. 
This result is an immediate corollary of Proposition 5.8. If we apply 
Proposition 5.8 in the case when X is a separable Fréchet space, we 
obtain that whenever Y is a closed linear subspace of X such that X/Y 
is infinite dimensional and non-isomorphic to ω, there is a hereditarily 
hypercyclic T ∈ L(X) such that Ty=y for any y ∈ Y. It is also worth noting 
that any non-normable Fréchet space has a quotient isomorphic to ω, 
[29]. If X is a non-normable separable Fréchet space non-isomorphic 
to ω and Y is a closed linear subspace of X such that X/Y is isomorphic 
to ω, then there is no hypercyclic operator T ∈ L(X) such that Ty=y for 
each y ∈ Y. Indeed, assume that such a T does exist. Then XYXS →/:
, ( ) =S x Y Tx x+ −  is a continuous linear operator with dense range from 
X/Y to X. Since X/Y is isomorphic to ω and ω carries the minimal 
locally convex topology, S is onto and therefore X is isomorphic to ω, 
which is a contradiction.

Example 5.9  Let  be the complex Sobolev space 1,2( )− W  which 

consists of the distributions f on  such that 

2 2 1

=

| | (1 ) <
∞

−

−∞

+ ∞∑ n
n

f n , 

where the nf  denotes the nth Fourier coefficient of f. Then the operator 
T acting on  as ( ) = ( )Tf z zf z  satisfies the conditions of Theorem  BG 
(and therefore is hypercyclic) and does not satisfy the conditions of 
Theorem 1.18. 

Proof. For each z ∈ , *( ) = ( )ker T zI ker T zI− −  is the one-
dimensional space spanned by the Dirac δ -function δz, which does not 
belong to the range of T zI− . Thus ( ) = {0}TΛ  and T does not satisfy 
conditions of Theorem 1.18. On the other hand, { : }zspan z Aδ ∈  is 
dense in  for any set ⊆A  which is dense in . Since any subset of 
 of full Lebesgue measure is dense, the conditions Theorem BG are 
satisfied with µ being the normalized Lebesgue measure. 

Example 5.10  If  is the complex Sobolev space 2,2 ( )W −   which 

consists of the distributions f on  such that 

2 2 2

=

| | (1 ) <
∞

−

−∞

+ ∞∑ n
n

f n , 

then the operator ( ) = ( )Tf z zf z  acting on  satisfies the conditions of 
both Theorem  BG and Theorem 1.18. 

Proof. For each z ∈ , ( ) ( )( )δ ∈ − ∩ −z ker T zI T zI   and 
therefore the dense linear span of the set { : }z zδ ∈  is contained in 

( )TΛ . Hence T satisfies the conditions of Theorem 1.18. As in the 
above example, { : }zspan z Aδ ∈  is dense in  for any set A⊆   which 
is dense in  and therefore T satisfies conditions of Theorem BG. 

Example 5.11  If T is a quasinilpotent generalized backward shift 
on a separable complex Banach space, then I+T satisfies the conditions 
of Theorem 1.18 and does not satisfy the conditions of Theorem BG. 

Proof. Since ( ) = {1}p I Tσ + , conditions of Theorem BG are not 
satisfied for the operator I+T. On the other hand, † ( )ker T I T⊆ Λ +  is 
dense and therefore I+T satisfies conditions of Theorem 1.18. 

Examples of chaotic operators on a complex Hilbert space H which 
are not mixing are constructed in [35]. For such an operator, the linear 
span of the union of ( )ker T zI−  for z ∈   satisfying 1=nz  for 
some n ∈  is dense in H. This shows that the assumption of Theorem 
1.18 cannot be relaxed into a weaker assumption like density of the 
linear span of the union of ( )nker T zI−  for z ∈  and n ∈ . Note also 
that the class of operators T for which ( )TΛ  is dense is closed under 
finite direct sums. Moreover, this class for operators acting on Banach 
spaces is closed under infinite c0-sums and p-sums for 1 <p≤ ∞ . In 
particular, I+T is mixing, when T is a finite or countable c0-sum or p-
sum with 1 <p≤ ∞  of (possibly different) backward weighted shifts.

Now we describe another class of operators to which Theorem 1.18 
applies. Let [0,1]Lα ∞∈  and :[0,1] [0,1]ϕ →  be a Borel measurable 
map. Consider the integral operator Tαϕ defined by 

( )
,

0
( ) = ( ) ( ) .

x
T f x t f t dt

ϕ
α ϕ α∫

It is straightforward to verify that Tαϕ  is a compact linear operator 
on [0,1]pL  for 1 p≤ ≤ ∞ .

Example 5.12  Assume thatΨ is continuous, strictly increasing, 
( ) <x xψ  for 0 < 1x ≤  and that ( ) 0xα ≠  almost everywhere on 

[0.1]. Then ,=T Tα ψ  acting on [0,1]pL  for 1 <p≤ ∞  is hereditarily 
supercyclic and I+T is mixing. 

Proof. Consider the sequence 1 = (1)a ψ  and 1 = ( )n na aψ+  for n ∈ 
. Clearly }{ na  is strictly decreasing and tends to zero as n→∞ . One 
can easily verify that 

[0, ]= { : | = 0}.n
an

ker T f f

Using this equality it is straightforward to check that 1( )nT ker T +  
is dense in kerTn for each n ∈  and that ker *T is dense in the entire 

space. Thus †ker T  is dense in [0,1]pL . That is, T is an extended 
backward shift. It remains to apply Proposition 5.7 and Corollary 5.1. 

Universality of generic families 
Theorem 6.1  Let X be a separable metrizable Baire topological 

space, Ω be a Baire topological space, A be a set, and for each Aa∈  
let Ψa be a map from Ω into the set C(X, X) of continuous maps from X 
to X such that 
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a a afor any a A,themap : X X, ( ,x)= ( )x is continuousα α∈ Φ Ω× → Φ Ψ (6.1)

aand{( ,x, ( )x): ,x X, a A}is dense in X X.α α αΨ ∈Ω ∈ ∈ Ω× ×   (6.2)

Then 

a= { :{ ( ):a A}is universal} is a dense G subset of .U δα α∈Ω Ψ ∈ − Ω

 Proof. Let { }n n∈  be a sequence of non-empty open subsets 
of X, which form a basis of the topology of X. By Theorem U, 
{ ( ) : }a a AαΨ ∈  is universal if and only if for each ,k m +∈  there 
exists a ∈ A for which ( )( )a k mU UαΦ ∩ ≠∅ . Thus we have 

, =0

= { : ( , ) }.a m
k m x U a Ak

U x Uα α
∞

∈ ∈

∈Ω Φ ∈
  

According to (18), the sets { : ( , ) }a mx Uα α∈Ω Φ ∈  are open in Ω. 
Hence, the above display implies that U is a Gδ -subset of Ω. It remains 
to show that U is dense in Ω. Let 

0 a= {( , ) :x is a universal element for{ ( ):a A}}.α α∈Ω× Ψ ∈U x X

 Clearly U is the projection of U0 onto Ω. On the other hand, U0 
is the set of universal elements of the family { : }a a AΦ ∈ . Since the 
product of two Baire spaces, one of which is second countable, is Baire 
[36], Ω × X is Baire. Applying Theorem U, we see that U0 is dense in Ω 
× X. Since the projection onto Ω  of a dense subset of Ω × X is dense, 
we get that U is dense in Ω. 

We apply the above general result to two types of universality: 
hypercyclicity and supercyclicity.

Theorem 6.2  Let X be a separable metrizable Baire topological 
vector space, Ω be a Baire topological space and αα T  be a map from 
Ω intoL(X)such that 

n
n nfor any n ,the map : X X, ( ,x)=T x is continuous.αα+∈ Φ Ω× → Φ  (6.3)

 Then the following conditions are equivalent:  
n{( ,x,T x): , x X, n }is dense in X X,αα α +∈Ω ∈ ∈ Ω× ×            (6.4)

= { :T is hypercyclic} is a dense G subset of .H α δα ∈Ω − Ω             (6.5)

Proof. Let A ∈ + and : ( )n L XΨ Ω→  for An∈  be defined as 
( ) = n

n TααΨ . Applying Theorem 6.1, we see that (6.4) implies (6.5). 

Since the set of hypercyclic vectors of any hypercyclic operator is dense, 
(6.5) implies (6.4). 

Theorem 6.3  Let X be a separable metrizable Baire topological 
vector space, Ω be a Baire topological space and αα T  be a map from 
Ω to L(X) such that (6.3) is satisfied. Then the following conditions are 
equivalent: 

n{( ,x, T x): ,x X, n , }is dense in X X,αα λ α λ+∈Ω ∈ ∈ ∈ Ω× ×  (6.6)

= { :T is supercyclic} is a dense G subset of .S α δα ∈Ω − Ω      (6.7)

Proof. Let =A + ×  and , : ( )n L XλΨ Ω→  for ( , )n Aλ ∈  be defined 
as , ( ) = n

n Tλ αα λΨ . Applying Theorem 6.1, we see that (6.6) implies 
(6.7). Since the set of supercyclic vectors of any supercyclic operator is 
dense, (6.7) implies (6.6). 

Corollary 6.4  Let X be a separable Baire metrizable topological 
vector space, Ω be a Baire topological space and αα T  be a map from 
Ω to L(X)  satisfying (6.3). Suppose also that for any non-empty open 
subset W of Ω  and any nonempty open subsets U, V of X, there exist 

Wα∈ , Ux∈  and y V∈  such that , ( )x y Tα∈Λ , where )( αTΛ  is 
defined in (1.1). Then the set of α ∈ Ω  for which Tα is hypercyclic is a 
dense G -subset of Ω.

Proof. Let ( , , )x y X Xα ∈Ω× ×  be such that , ( )x y Tα∈Λ . By Theorem 
2.12 (x, y) is in the closure of the set {( , ) : , }nu T u u X nα +∈ ∈ . Hence 
( , , )x yα  is in the closure of the set {( , , ) : , , }nu T u u X nαα α +∈Ω ∈ ∈ . 
By the assumptions of the corollary, the last set is dense in Ω × X × X. 
It remains to apply Theorem 6.2. 

The following supercyclicity analog of the above corollary turns out 
to be much easier.

Proposition 6.5  Let X be a Baire separable metrizable topological 
vector space, Ω be a Baire topological space and Tαα   be a map from 
Ω to L(X) satisfying (6.3). Suppose also that for any non-empty open 
subset W of Ω and any nonempty open subsets U and V of X, there 
exist Wα∈ , Ux∈ , y V∈  and n ∈  such that nx ker Tα∈  and 

( )ny T Xα∈ . Then the set of α∈Ω  for which Tα is supercyclic is a dense 
Gδ -subset of Ω. 

Proof. Let ( , , )x y X Xα ∈Ω× ×  be such that there exists n ∈  
for which nx ker Tα∈  and ( )ny T Xα∈ . Let v ∈ X be such that yvT n =α . 

For each m ∈  consider 1=mu x m v−+ . Then mu x→  as m→∞ . 
Moreover, =n

mmT u y  for any m ∈ . Thus for all sufficiently large m, 

( , , )n
m mu mT u W U Vα ∈ × × . Since W, U and V were arbitrary, the set 

{( , , ) : , , }nu zT u n zα α +∈Ω ∈ ∈  is dense in Ω × X × X. It remains 
to apply Theorem 6.3. 

The obvious inclusion †( ) ( )ker T I T− ⊂ Λ  and the fact that a map 
Tαα →  satisfies (6.3) if and only if the map I Tαα → +  satisfies (6.3) 

imply the following corollary of Corollary 6.4 and Proposition 6.5.

Corollary 6.6  Let X be a Baire separable metrizable topological 
vector space, Ω be a Baire topological space and Tαα   be a map from 
Ω to L(X) satisfying (6.3). Suppose also that for any non-empty open 
subset W of Ω and any nonempty open subsets U and V of X, there exist 

Wα∈ , x ∈ U and y ∈ V such that †,x y ker Tα∈ . Then the set of α∈Ω  
for which Tα  is supercyclic and I Tα+  is hypercyclic is a dense Gδ-subset 
of Ω. 

Now we apply the above general results. In particular, we shall 
prove Theorems 1.19 and 1.21. For a while we shall assume that X 
and Y are two infinite dimensional Banach spaces, :b X Y× →  is a 
continuous bilinear form separating points of X and of Y. That is, for 
each non-zero x ∈ X, there is y ∈ Y satisfying ( , ) 0b x y ≠  and for each 
non-zero y ∈ Y, there is x ∈ X such that ( , ) 0b x y ≠ . In particular,b is 
a dual pairing between X and Y. Recall that the injective norm on the 
tensor product X Y⊗  is defined by the formula 

( ) = sup{| ( ) ( ) |: , , || || 1, || || 1} for = .

=1 =1

ε ξ φ ψ φ ψ φ ψ ξ′ ′∈ ∈ ≤ ≤ ⊗ ∈ ⊗∑ ∑
n n

x y X Y x y X Yj j j j
j j

The completion of X Y⊗  with respect to this norm is called the 
injective tensor product of X and is Y and denoted ε⊗X Y . It is again 
a Banach space. For each X Yξ ∈ ⊗  we consider the linear operators 

( )T L Xξ ∈  and )(YLS ∈ξ  defined by the formulae 

=1 =1 =1

= ( , ) and = ( , ) , where = .
n n n

j j j j j j
j j j

T x b x y x S y b x y y x yξ ξ ξ ⊗∑ ∑ ∑  (6.8)

 Clearly ξξ T  and ξξ S  are bounded linear operators from 
YX ⊗  endowed with the injective norm into the Banach spaces L(X) 
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and L(Y) respectively. Hence they admit unique continuous extensions 
to X Yε⊗ , which we again denote by Tξξ   and . Note that 
Sξ  is the dual operator of Tξ  with respect to the dual pairing b: 

( , ) = ( , ) foranyx Xandy Y.b T x y b x S yξ ξ ∈ ∈ 		               (6.9)

Let now  be a linear subspace of X Yε⊗  which we suppose 
to be endowed with its own -space topology stronger than the 
one inherited from X Yε⊗ . Suppose also that X Y⊗  is a dense 
linear subspace of  and let N be the closure in  of the set 
{ : is nilpotent}X Y Tξξ ∈ ⊗ . Remark that (6.9) implies that 0=nTξ  
if and only if 0=nSξ . Thus nilpotency of ξT  is equivalent to nilpotency 
of ξS  and this implies that N coincides with the closure in  of the 
set { : isnilpotent}X Y Sξξ ∈ ⊗ .

Proposition 6.7 If the Banach space X is separable, then the set 

{ : is supercyclic and is hypercyclic}T I Tξ ξξ ∈ +

is a dense Gδ subset of N. If X and Y are both separable, then the set 

{ : T and S are supercyclic and I T and I S are hypercyclic}ξ ξ ξ ξξ ∈ + +

is a dense Gδ subset of N.

Proof. Let W be a non-empty open subset of N and U1, U2 be non-
empty open subsets of X. Pick 1 1x U∈  and 2 2x U∈ . By the definition of 
N, there exists X Yξ ∈ ⊗  such that Wξ ∈  and Tξ  is nilpotent. Let n 
∈  be such that 0=nTξ . Clearly the space 

1 2= { : = 0, ( , ) = ( , ) = 0}L y Y S y b x y b x yξ∈

has finite codimension in Y, while ker Tξ  has finite codimension 
in X. Since b is a dual pairing of X and Y, we can find f L∈  and 

ju ker Tξ∈  for 1 2j n≤ ≤  such that ,( , ) =k j k jb u f δ  for 1 , 2j k n≤ ≤ . 
Consider the element 

1 1 2 1 1 1
=2

= ( )
n

n j j n j n j
j

x f x f u f u f X Yη + − + − +⊗ + ⊗ + ⊗ + ⊗ ∈ ⊗∑
and let =t tξ ξ η+  for t ∈ . From the above properties of fj and uj it 

immediately follows that the range of n
t

Tξ  is contained in the range Q 

of Tξ  and that the restrictions of t
Tξ  and Tξ  to Q coincide. Hence 

2 = 0n
t

Tξ  for any t ∈ . Thus all 
t

Tξ  are nilpotent and therefore all tξ  

belong to N. Since W is open in N we can pick \{0}s∈  close 

enough to zero to ensure that s Wξ ∈ . Now from the definition of sξ  it 

immediately follows that 1=n n
ns

T u s xξ , 2 2=n n
ns

T u s xξ , 1 1= = 0n n
s

T x T xξξ  

and 2 2= = 0n n
s

T x T xξξ . Thus 
†

1 2, ( ) .n n
ss s

x x ker T T X ker Tξξ ξ∈ ∩ ⊂

Summarizing the above, we have found 1 1x U∈ , 2 2x U∈  and 

s Wξ ∈  such that 
†

1 2,
s

x x ker Tξ∈ . Using the fact that N carries a 
topology stronger than the one defined by the injective norm, we see 
that the map Tξξ   from N to L(X) satisfies (6.3). By Corollary 
6.6, the set of ξ ∈   for which Tξ  is supercyclic and I Tξ+  is 
hypercyclic is a dense Gδ  subset of N. The proof of the first part of the 
proposition is complete.

Applying the first part of the proposition to (Y, X)  instead of (X, Y) 
with b(x,y) replaced by b(y,x), we obtain that if Y is separable, then the 
set of ξ ∈   for which Sξ  is supercyclic and I Sξ+  is hypercyclic 

is a dense Gδ  subset of N. The second part now follows from the 
first part and the fact that the intersection of two dense Gδ  subsets of a 
complete metric space is again a dense Gδ  set. 

Proof of Theorems 1.19 and 1.21

Let us consider the case where Y=X′, b(x,y)=y(x) and = X Xε ′⊗ . In 
this case the map Tξξ   is an isometry and { : }ξ ξ ∈ T  is exactly 
the operator norm closure of the set of finite rank nilpotent operators. 
Moreover, taking into account that =T Sξ ξ′  for any ξ ∈ , we see 
that Theorem 1.19 is an immediate corollary of Proposition 6.7 for this 
specific choice of M and b.

Recall that the projective norm on the tensor product X ⊗ Y of the 
Banach spaces X and Y is defined by the formula 

{ }( ) = inf || |||| || ,π ξ ∑ j jx y

where the infimum is taken over all possible representations of ξ  as 
a finite sum j jx y⊗∑ . If we consider the case Y=X′, b(x,y)= y(x)  and 

= X Xπ ′⊗  the completion of X ⊗ X′ with respect to the projective 
norm, then { : }Tξ ξ ∈  is exactly the set of nuclear quasinilpotent 
operators, and we see that Theorem 1.21 is an immediate corollary of 
Proposition 6.7 for this choice of M and b.

Proof of Theorem 1.6

Let X ∈ M By Lemma 3.5, there exist sequences { }n nx ∈ +  and 
{ } ∈ +n nf  in X and X′ respectively such that conditions (3.5.1–3.5.4) 
are satisfied. Since{fn} is uniformly equicontinuous, we can pick a non-
zero continuous seminorm p on X such that | ( ) | 1nf x ≤  for any n ∈ + 
whenever p(x) ≤ 1. By Lemma 3.3, the closed balanced convex hull K of  
{xn : n ∈ +} a Banach s-disk. That is, the Banach space Xk is separable. It 

is also clear from Lemma 3.3 that any x ∈ XK has shape 
=0

= n n
n

x a x
∞

∑  for 

some a∈1 and 1|| || || ||x a≤ , where ||x|| is the norm of X in the Banach 
space Xk.. Consider the bilinear form on X × 1 defined by the formula 

=0

( , ) = ( ).n n
n

b x a a f x
∞

∑
It is easy to see that b is well-defined, continuous and 

1( , ) ( ) || ||b x a p x a≤  for any x ∈ X and a∈1. Moreover, b separates 

points of Xk. and 1. Indeed, let x ∈ XK, x ≠ 0. Pick α ∈1 such that 

=0

= n n
n

x xα
∞

∑ . Since x ≠ 0, there is m∈ +  such that αm ≠ 0. 

Using (3.5.3), we see that ( , ) = ( ) = ( ) 0m m m m mb x e f x f xα ≠ , where 
{ } ∈ +j je  is the standard basis in 1. Similarly, let a∈1, a ≠ 0. Then 
there is m∈ + for which am ≠ 0 and therefore, according to (3.5.3), 

( , ) = ( ) 0m m m mb x a a f x ≠ . Thus b separates points of Xk and 1. Let 

1= KX π⊗


  be the projective tensor product of the Banach spaces 

Xk  and 1 and N be the closure in  of the set of 1KXξ ∈ ⊗  , for 
which the operator Tξ  defined in (6.8) is nilpotent. By Proposition 6.7, 

the set { : and are both hypercyclic}I T I Sξ ξξ ∈ + +  is a dense 
Gδ  subset of N. In particular, we can pick 

1DX πξ ∈ ⊂ ⊗ 

  such 
that I Tξ+  and I Sξ+  are hypercyclic. Using the theorem characterizing 
the shape of elements of the projective tensor product [17], we see 
that there exist bounded sequences { }n ny ∈ +  and { }n nw ∈ +  in Xk 
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and 1 respectively and 1λ∈  such that 
=0

= n n n
n

y wξ λ
∞

⊗∑ . Then the 

operators Tξ  and Sξ  act according to the following formulae on Xk 

and 1 respectively: 

=0 =0

= ( , ) , and = ( , ) .n n n n n n
n n

T x b x w y S a b y a wξ ξλ λ
∞ ∞

∑ ∑
Using boundedness of {yn}  in Xk and {wn} in 1, summability of 

{| |}nλ  and the definition of b, we see that the right-hand side of the 
first equality in the above display defines a continuous linear operators 
T : X → X, taking values in Xk. Since the restriction I Tξ+  of I+T to 
Xk is hypercyclic on Xk, Xk is dense in X and Xk carries the topology 
stronger than the one inherited from X, we see that I+T is hypercyclic 
(any hypercyclic vector for I Tξ+  is also hypercyclic for I+T). Pick a 
hypercyclic vector a for I Sξ+ . Since a ≠ 0 and b separates points of 1, 
the functional ),( ab ⋅  is non-zero. Since a is hypercyclic for I Sξ+ , we 
can pick a strictly increasing sequence { }k kn ∈ +  of positive integers 
such that 1|| ( ) || 1nkI S aξ+ ≤  for any k ∈ +. Then 

1| (( ) , ) |=| ( ,( ) ) | ( ) || ( ) || ( ) for any x X and k .n n nk k kb I T x a b x I S a p x I S a p xξ ξ ++ + ≤ + ≤ ∈ ∈

Let = { : ( ) <1}U x X p x∈  and = { :| ( , ) |>1}V x X b x a∈ . Clearly U 
and V are non-empty open subsets of X ( V ≠∅  since the functional 

( , )b a⋅  is non-zero). Moreover, from the above display it follows that 
( ) ( ) =

nkI T U V+ ∩ ∅  for each k ∈ +. Hence I+T is non-mixing. Since 
I+T is hypercyclic, the proof of Theorem 1.6 is complete.

Proof of theorem 1.15

Let X be an infinite dimensional locally convex space, such that both 
X and Xβ′  admit 1-sequences with dense span. By Lemma 3.7, there 
exist sequences { }n nx ∈ +  and { }n nf ∈ +

 in X and X′ respectively, 
satisfying (3.7.1–3.7.3). By Lemma 3.3, the closed balanced convex 
hulls K and D of {xn : n ∈ }  and {fn : n ∈ }  are Banach s-disks in X 
and Xβ′  respectively. Moreover, XK is dense in X and DX′  is dense 
in Xβ′ . Since D is β-compact, it is also ( , )X Xσ ′ -compact. Hence the 
seminorm ( ) = sup{| ( ) |: }p x f x f D∈  on X is continuous with respect 
to the Mackey topology = ( , )X Xτ τ ′ . Clearly each | |nf  is bounded 
by 1 on { : ( ) 1}x X p x∈ ≤  and therefore {fn : n ∈ }  is uniformly 
equicontinuous. By Lemma 3.7, we can assume that the same holds 
true if the original 1-sequence in Xβ′  is uniformly equicontinuous. 
Assume for time being that either X carries the Mackey topology τ or 
the original 1-sequence in Xβ′  is uniformly equicontinuous. Then {fn : 
n ∈ }  is uniformly equicontinuous.

Consider the bilinear form on X x X′  defined by the formula 
( , ) = ( )x f f xβ . Clearly β separates points of X and X′  and β is 

separately continuous on X Xσ′× . Since XK is dense in X and DX′  
is dense in Xσ′ , the bilinear form : ′× →K Db X X , being the 
restriction of β to K DX X′× , separates points of XK and DX′ . Moreover 
separate continuity of β implies separate continuity of  b and 
therefore continuity of b on K DX X′×  by means of the uniform 
boundedness principle (every separately continuous bilinear form on 
product of Banach spaces is continuous). Let = K DX Xπ ′⊗  be 
the projective tensor product of the Banach spaces XK and DX′  and 
N  be the closure in  of the set of K DX Xξ ′∈ ⊗ , for which the 
operator Tξ  defined in (6.8) is nilpotent. By Proposition 6.7, the set 

{ : and areboth hypercyclic}I T I Sξ ξξ ∈ + +  is a dense Gδ 

subset of N . In particular, we can pick 

1DX πξ ∈ ⊂ ⊗ 

  such 
that I Tξ+  and I Sξ+  are hypercyclic. Using once again the theorem 
characterizing the shape of elements of the projective tensor product, 

we see that there exist bounded sequences { }n ny ∈ +  and { }n ng ∈ +  in 

XK and DX′  respectively and 1λ∈  such that 
=0

= n n n
n

y gξ λ
∞

⊗∑ . Then 

the operators Tξ  and Sξ  act according to the following formulae on 

XK and DX ′  respectively: 

=0 =0

= ( ) , and = ( ) ,n n n n n n
n n

T x g x y S f f y gξ ξλ λ
∞ ∞

∑ ∑
where we used the specific shape of our bilinear form. Using boundedness 
of {yn}  in XK and {gn}  in DX′  and summability of {| |}nλ , we see that 
the right-hand sides of the equalities in the above display define linear 
operators T and S on X and X′, taking values in XK and DX′  respectively. 
Since {fn : n ∈ +}  is uniformly equicontinuous and {gn} is bounded in 

DX′ , {gn : n ∈ +}  is also uniformly equicontinuous. It follows that T 
is continuous as an operator from X to XK and therefore T ∈ L(X). It 
is also easy to verify that =S T ′  and therefore ( )S L Xβ′∈ . Since the 
restriction I Tξ+  of I+T to KX  is hypercyclic on XK, XK is dense in 
X and XK carries the topology stronger than the one inherited from X, 
we see that I+T is hypercyclic (any hypercyclic vector for I Tξ+  is also 
hypercyclic for I+T). Similarly = ( )I S I T ′+ +  is hypercyclic on Xβ′  
(any hypercyclic vector for I Sξ+  is also hypercyclic for I+S). Hence 
I+T is a dual hypercyclic operator. In order to complete the proof of 
Theorem 1.15, it remains to consider the case when X carries the weak 
topology = ( , )X Xσ σ ′ . By the already proven part of Theorem 1.15, 
there is a dual hypercyclic operator R on Xτ. Since ( ) = ( )L X L Xτ σ , R ∈ 
L(X). Since τ is stronger than σ, R is hypercyclic on =X Xσ . Hence R is 
dual hypercyclic on X. The proof of Theorem 1.15 is complete.

Generic bilateral weighted shifts

For each w ∈ ∞(), Tw stands for the bounded linear operator 
acting on p(), 1 <p≤ ∞  or c0(), defined on the canonical basis 
{ }n ne ∈  by 

1= for .w n n nT e w e n− ∈

If additionally 0nw ≠  for each n ∈ , the operator Tw is called the  
bilateral weighted shift with weight sequence w. Cyclic properties of 
bilateral weighted shifts have been intensely studied. Hypercyclicity 
and supercyclicity of bilateral weighted shifts were characterized by 
Salas [12,31] in terms of the weight sequences. It was observed in [37], 
Proposition 5.1 that the Salas conditions admit a simpler equivalent 
form:

Theorem B  Let T be a bilateral weighted shift with weight sequence 
w acting on p() with 1 <p≤ ∞  or c0(). Then T is hypercyclic if and 
only if for any m ∈ +, 

 max{ ( 1, ),( ( 1, )) } = 0lim w m n m w m m n
→∞

− + + + 	           (6.10)

and T is supercyclic if and only if for any m ∈ +, 

 

1( 1, ) ( 1, ) = 0,
n

lim w m n m w m m n −

→+∞
− + + + 		              (6.11)
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where 

=

( , ) = | |
b

j
j a

w a b w∏   for ,a b∈  with a b≤ . 

We address the issue of hypercyclicity and supercyclicity of generic 
bilateral weighted shifts in the Baire category sense. For each c > 0 let 

= { ( ) :|| || }.cB w w c∞ ∞∈ ≤ 

 Clearly Bc endowed with the coordinatewise convergence topology 
is a compact metrizable topological space.

Theorem 6.8 Let 1 <p≤ ∞ . For each c > 1 the set of w∈ Bc for which 
Tw acting on p() is hypercyclic is a dense Gδ- subset of Bc. For each c > 
0 the set of w∈ Bc for which Tw is supercyclic and I+Tw is hypercyclic is a 
dense Gδ-subset of Bc. 

It is worth noting that if wn=0 for some n ∈  then the range of 
the operator Tw is not dense and therefore Tw can not be supercyclic. 
Thus any Tw for w from the dense Gδ -sets in the above theorem are 
indeed bilateral weighted shifts. Recall that Tw is compact if and only 
if w∈ c0(). For compact bilateral weighted shifts we can replace the 
coordinatewise convergence topology on the space of weights by 
stronger topologies.

Theorem 6.9 Let 1 <p≤ ∞ . Let E be a linear subspace of c0() 
carrying its own  -space topology stronger than the one inherited from 
c0() and such that the space ψ() of sequences with finite support is 
densely contained in E. Then the set of w∈E for which Tw acting on p()  
is supercyclic and I+Tw is hypercyclic is a dense Gδ-subset of E. 

Remark 6.10 As a corollary of the above theorem we obtain that the 
set of weights w∈ c0() for which Tw acting on p() is supercyclic and 
I+Tw is hypercyclic is a dense Gδ -subset of the Banach space c0(). 

It is easy to see that the dual of Tw acting on p() for 1< <p ∞  acts 

on ( )q   with 1 1 = 1
p q
+  according to the formula 

1 1= for .w n n nT e w e n+ +′ ∈
Considering the isometry U on q()  defined by =n nUe e−  for each 

n ∈ , we see that 1 =w wU T U T−
′′ , where 1=n nw w −′  for any n ∈ . Thus 

wT ′  is hypercyclic or supercyclic if and only if ′  (acting on q()) is. 
In the case  p =2, the Hilbert space adjoint *

wT  acts on 2() in a similar 
way *

1 1=w n n nT e w e+ +  and is unitarily similar to wT ′  with a diagonal 
unitary operator providing the similarity. Thus the cyclicity properties 

of wT′  and *
wT  are the same.

Taking into account the fact that the map ww ′
  is a 

homeomorphism of Bc onto itself for each c > 0, we immediately obtain 
the following corollary of Theorem 6.8.

Corollary 6.11 For each c > 1 the set of w∈ Bc for which both Tw and 

wT′  acting on 2() are hypercyclic is a dense Gδ-subset of Bc. For each c > 
0 the set of w∈ Bc for which both Tw and wT ′  are supercyclic and both I + 
Tw and wI T′+  are hypercyclic is a dense Gδ-subset of Bc. 

Similarly the next corollary follows from Theorem 6.9.

Corollary 6.12 Suppose that the space E from Theorem 6.9 satisfies 
the additional symmetry condition that ( ) =n k nJx x −  is an invertible 
continuous linear operator on E for some k∈ . Then set of w∈ E for 
which both Tw and wT′  acting on 2() are supercyclic and both I+Tw and 

wI T′+  are hypercyclic is a dense Gδ -subset of E. 

Applying the above corollary to weighted c0-spaces with symmetric 
weight sequence yields the following result.

Corollary 6.13 Let { }n na ∈ +  be any sequence of positive numbers. 
Then there exists w∈ c0() such that | || |n nw a≤  for each n ∈ , Tw and 

wT′  acting on 2() are supercyclic and I+Tw and wI T ′+  are hypercyclic. 

We conclude this section by proving Theorems 6.8 and 6.9.

Proof of Theorem 6.8. It is straightforward to verify that the maps 
ww T  and ww I T+  from = cBΩ  into L(p())satisfy (6.3). Pick 

a non-empty open subset U of Bc and non-empty open subsets V and 
W of p(). 

  Case c > 1: By definition of the topology of Bc, there exist w∈U 
and a positive integer m such that wk=c for k > m, wm=c-1 for k <-m 
and 0kw ≠  for m k m− ≤ ≤ . According to Theorem B, the bilateral 
weighted shift Tw is hypercyclic. Hence we can choose x V∈  and n ∈ + 
such that n

wT x W∈ . Thus ( , , )n
ww x T x U V W∈ × ×  and therefore (6.4) is 

satisfied. By Theorem 6.2, the set of w∈ Bc for which Tw is hypercyclic is 
a dense Gδ -subset of Bc.

Case c > 0: As above, there exist w∈ U and a positive integer m 
such that wk=c for k > m, wk=c/2 for k <-m and wk ≠ 0 for m k m− ≤ ≤ . 
According to Theorem B, the bilateral weighted shift Tw is supercyclic. 
Hence we can choose x∈ V, n ∈   +  and λ∈  such that n

wT x Wλ ∈ . 
Thus ( , , )n

ww x T x U V Wλ ∈ × ×  and therefore (6.6) is satisfied. By Theorem 
6.3, the set of w∈ Bc for which Tw is supercyclic is a dense Gδ-subset of Bc. 

 Finally, we can pick m ∈ , w∈ U, x∈ V, and y∈ W, such that wm= 
0, wm ≠ 0 for k > m, x and y have finite supports and = = 0k kx y  for k 
> m. It is straight forward to check that 

†
1, { , , } .m m wx y span e e ker T+∈ ⊆

By Corollary 6.6, the set of w∈ Bc for which I+Tw is hypercyclic is a 
dense Gδ-subset of Bc. 

Proof of Theorem 6.9. We use the same notation as in the 
proof of Theorem 6.8. Since ϕ() is dense in p() and in E, we can 
choose w U′∈ , x V′∈ , y W′∈  and a positive integer m such that 

= = = 0k k kx y w′ ′ ′  if | |>k m . Choosing positive numbers nε  for n >-m 

small enough, we can ensure that the series 
= 1

n n
n m

eε
∞

+
∑  converges in 

E to w E′′∈ , with =w w w U′ ′′+ ∈  and = 0k k kw w w′ ′′+ ≠  for k>-m. 

Clearly = { ( ) : = 0 for < }∈ − p kF u u k m  is a closed invariant subspace 
of Tw and x,y ∈F. Moreover, the restriction R of Tw to F is isometrically 
similar to the backward weighted shift on p with weight sequence 

1{ , , }m mw w− − +   By the Hilden and Wallen theorem [30] and the Salas 

theorem [12], R is supercyclic and I + R is hypercyclic. Since x V F′∈ ∩  
and y W F′∈ ∩  we see that the open subsets V F∩  and W F∩  of F are 
non-empty. Since R is supercyclic, we can choose x V F∈ ∩ , n ∈ + and 
λ∈  such that =n n

wR x T x W Fλ λ ∈ ∩ . Thus ( , , )n
ww x T x U V Wλ ∈ × ×  

and therefore (6.6) is satisfied. By Theorem 6.3, the set of w E∈  
for which Tw is supercyclic is a dense Gδ-subset of E. Finally, since I 
+ R is hypercyclic, we can choose x V F∈ ∩  and n ∈ +  such that 
( ) = ( )n n

wI R x I T x W F+ + ∈ ∩ . Thus ( , ,( ) )n
ww x I T x U V W+ ∈ × ×  and 

therefore (6.4) is satisfied for the map ww I T+ . By Theorem 6.2, 
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the set of w E∈  for which I+Tw is hypercyclic is a dense Gδ-subset of E. 

Mixing Operators on Spaces with Weak Topology 
In this section we shall prove Theorem 1.8. In order to do so we need 

a characterization of linear maps with no non-trivial finite dimensional 
invariant subspaces. The underlying field plays no role in this linear 
algebraic statement, so, for sake of generality we formulate and prove it 
for linear maps on linear spaces over an arbitrary field.

Linear maps without finite dimensional invariant subspaces

Throughout this subsection k is a field, X is a linear space over k, 
T: X→X  is a k -linear map, P=k[z]  is the space of polynomials on one 
variable, P=k(z) is the space of rational functions and M is the operator 
on P of multiplication by the argument: 

: , ( ) = ( ).→ M Mf z zf z

We denote * = \{0}   and consider the degree function 
: { }→ ∪ −∞deg , extending the conventional degree of a 

polynomial. We set (0) =deg −∞  and let ( / ) =deg p q deg p deg q− , 
where P and q are non-zero polynomials and the degrees in the right 
hand side are the conventional degrees of polynomials. Clearly this 
function is well-defined and is a grading on P, that is, it satisfies the 
properties: 

(d1) 1 2 1 2( ) = ( ) ( )deg r r deg r deg r+  for any 1 2,r r ∈ ; 

(d2) 1 2 1 2( ) max{ , }deg r r deg r deg r+ ≤  for any 1 2,r r ∈ ; 

(d#) if 1 2,r r ∈  and 1 2deg r deg r≠ , then 1 2 1 2( ) = max{ , }deg r r deg r deg r+ . 

 Note that if p is a non-zero polynomial, then deg P is the usual 
degree of P.

As usual, a linear subspace E of X is called T - invariant if ( )T E E⊆  
and it is called T- biinvariant if ( )T E E⊆  and 1( )T E E− ⊆ . The 
following lemma is a key ingredient in the proof of Theorem 1.8.

Lemma 7.1  Let T be a linear operator on a linear space X with no 
non-trivial finite dimensional invariant subspaces and let L be a finite 
dimensional subspace of X. Then there exists 0 0= ( )n n L ∈  such that 

( )( ) = {0}p T L L∩  for any p∈  with 0deg p n≥ . 

In order to prove the above lemma, we need some preparation.

Lemma 7.2  Let T be a linear operator on a linear space X. Then T 
has no non-trivial finite dimensional invariant subspaces if and only if 
p(T) is injective for any non-zero polynomial P. 

Proof. If p is a non-zero polynomial and p(T) is non-injective, 
then there is non-zero x ∈ X such that p(T)x=0. Let k=deg p. It is 
straightforward to verify that 1= { , , , }kE span x Tx T x−

  is a non-
trivial finite dimensional invariant subspace for T. Assume now that 
T has a non-trivial finite dimensional invariant subspac L. Let p be the 
characteristic polynomial of the restriction of T to L. By the Hamilton–
Cayley theorem p(T)  vanishes on L. Hence p(T) is non-injective. 

Definition 7.3  For a linear operator T on a linear space X we say 
that vectors x1,…, xn in  X are T - independent if for any polynomials 

p1,…, pn, the equality 
=1

( ) = 0
n

j j
j

p T x∑  implies pj= 0  for 1 j n≤ ≤ . 

Otherwise, we say that x1,…, xn are T - dependent. A set A X⊂  is called 
T - independent if any pairwise different vectors 1, , nx x A∈  are T - 
independent.

For any non-zero x ∈ X, we define 

*( , ) = { : there arep andq such that }.F T x y X p(T)y = q(T)x∈ ∈ ∈       (7.1)

Lemma 7.4  Let T be a linear operator on a linear space X, x ∈ X \{0} 
and F(T, x)be the space defined in (29). Then F(T, x) is a T -biinvariant 
linear subspace of X. 

Proof. Let y, u∈ F(T, x) and ,t s k∈ . Then we can pick *
1 2, ∈p p  

and 1 2,q q ∈  such that 1 1( ) = ( )p T y q T x  and 2 2( ) = ( )p T u q T x . Hence 

1 2 1 2 2 1( )( )( ) = ( )( )p p T ty su tq p sq p T x+ + . Since p1 and p2 are non-zero, the 

polynomial p1 p2 is also non-zero and we have ( , )ty su F T x+ ∈  and 

therefore F(T, x) is a linear subspace of X. Clearly 

1 1( )( ) = ( )p T Ty q T x , where 


1( ) = ( )q z zq z . Hence Ty∈ F(T, x), which proves the T-invariance 

of F(T, x). Assume now that w X∈  and Tw∈ F(T, x). Thus we can 

pick *
3p ∈  and 3q ∈  such that 3 3( ) = ( )p T Tw q T x . Hence 



33( ) = ( )p T w q T x , where  33( ) = ( )p z zp z , and therefore w∈ F(T, x). 

That is, F(T, x) is T-biinvariant. 

By the above lemma, we can consider linear operators, being 
restrictions of T to the invariant subspaces F(T, x). The following 
lemma describes these restrictions in the case when T has no non-
trivial finite dimensional invariant subspaces.

Lemma 7.5  Let T be a linear operator on a linear space X with no 
non-trivial finite dimensional invariant subspaces. Let also x ∈ X \{0} 
and F(T, x) be defined in (7.1). For each y∈ F(T, x) and any *p∈ , 
q∈  satisfying ( ) = ( )p T y q T x , we write rx,y= q/p. Then the rational 
function rx,y does not depend on the choice of *p∈  and q∈  
satisfying ( ) = ( )p T y q T x , the map ,=x x yS y r  from F(T, x)  to P is linear 

and =x xS Ty MS y  for any y∈ F(T, x).

Proof. Let y∈ F(T, x) and *
1,p p ∈ , 1, ∈q q  be such that 

( ) = ( )p T y q T x  and 1 1( ) = ( )p T y q T x . Hence 
1 1 1( )( ) = ( )( ) = ( )( )p p T y q p T x qp T x  

and therefore 1 1( )( ) = 0q p qp T x− . Since x ≠ 0, Lemma 7.2 implies 

that 1 1=q p qp , or equivalently, q/p=q1/p1. Thus q/p does not depend 

on the choice of *p∈  and q∈  satisfying ( ) = ( )p T y q T x . In 

particular, the map ,x yy r  from F(T, x) to P is well defined. Next, 

let y, u∈ F(T, x)  and ,t s k∈ . Then we can pick *
1 2,p p ∈  and 

1 2,q q ∈  such that 1 1( ) = ( )p T y q T x  and 2 2( ) = ( )p T u q T x . Hence 

1 2 1 2 2 1( )( )( ) = ( )( )p p T ty su tq p sq p T x+ + . It follows that 

1 2 2 1 1 2
, , ,

1 2 1 2

= = =x ty su x y x u
tq p sq p q qr t s tr sr

p p p p+

+
+ +

and the linearity of the map ,x yy r  is also verified. It remains to show 
that =x xS Ty MS y . Clearly 1 1= /xS y q p . Since 1 1( )( ) = ( )p T Ty Tq T x , we 

have 1 1( ) = ( ) / ( )xS Ty z zq z p z . Hence =x xS Ty MS y . 

Lemma 7.6  Let T be a linear operator with no non-trivial finite 
dimensional invariant subspaces acting on a linear space X and A be a T 
-independent subset of X. Then for each x A∈ , 

\{ }

( , ) ( , ) = {0},
y A x

F T x span F T y
∈

 
 ∩  
 
 


where the spaces F(T, u) are defined in (7.1). 
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Proof. Assume that the intersection in the above display contains 
a non-zero vector u. Since ( , )u F T x∈ , there exist *p∈  and q∈  

such that ( ) = ( )p T u q T x . Since 0u ≠  and 0p ≠ , according to Lemma 
7.2, ( ) 0p T u ≠ . It follows that 0q ≠ . On the other hand, since u is a 
non-zero element of the span of the union of F(T, Y) for \ { }y A x∈ , there 
exist pairwise different 1, , \ { }nx x A x∈  and ( , ) \ {0}j ju F T x∈  such that 

1= nu u u+ + . Pick *
jp ∈  and jq ∈  for which ( ) = ( )j j j jp T u q T x  

for 1 j n≤ ≤ . Since 0ju ≠  and 0jp ≠ , from Lemma 7.2 it follows 
that ( ) 0j jp T u ≠  and therefore 0jq ≠ . Consider the polynomials 

0 1= np pp p , 0 0= /p p p , 0= /j jp p p  for 1 j n≤ ≤ . Then 

0 0 0( ) = ( )( ) and ( ) = ( )( ) for 1 j n.≤ ≤ j j j jp T u qp T x p T u q p T x

Taking into account that nuuu ++1= , we obtain 

0
=1

( )( ) = ( )( ) .
n

j jj
j

q p T x q p T x∑ 

Since the polynomials 0qp  and j jq p  are non-zero, the last display 
contradicts the T -independence of A, since nxxx ,,, 1   are pairwise 
different elements of A. 

Proof of Lemma 7.1. Clearly there exists in L a maximal T 
-independent subset 1= { , , }kA x x  (since T -independence implies 
linear independence and L is finite dimensional, A is a finite set). It 
follows from the maximality of A that L is contained in the sum of 

( , )jF T x  for 1 j k≤ ≤ . The last sum is direct according to Lemma 7.6: 

=1

= ( , ).L N F T x⊆ ⊕
Thus any x ∈ N can be uniquely presented as a sum 1

x x
ku u+ +

, 

where ( , )x
j ju F T x∈ . Using Lemmas 7.5 and 7.4, we can consider the 

linear operator 

1: , ( ) = ( , , ), where = for 1 .→ ≤ ≤

k x
k j x jj

R N R x R x R x R x S u j k

According to Lemmas 7.4 and 7.5 we also have that N is a 
T-biinvariant subspace of X and ( ) = ( )j jR Tx M Rx  for 1 j k≤ ≤ . For 
each x N∈ , let 

( ) = .max
j k

x deg R x
≤ ≤

Clearly (0) =δ −∞  and ( )xδ ∈  for each \ {0}x N∈ . Let also 

\{0}
= ( ) and = ( ).sup inf

x Lx L
x xδ δ+ −

∈∈
∆ ∆

Using the fact that L is finite dimensional, we will show that +∆  and 
−∆  are finite. Indeed, assume that either =+∆ +∞  or =−∆ −∞ . Then 

there exists a sequence { }l lu ∈  of non-zero elements of L such that 
the sequence { ( )}l luδ ∈  is strictly monotonic. For each l we can pick 

( ) {1, , }j l k∈   such that ( )( ) =l j l lu deg R uδ . Then there is {1, , }kν ∈   

such that the set = { : ( ) = }B l j lν ν∈  is infinite. It follows that the 
degrees ldeg R uν  for l Bν∈  are pairwise different. Property (d3) of 
the degree function implies that the rational functions lR uν  for l Bν∈  
are linearly independent. Hence the infinite set { : }lu l Bν∈  is linearly 
independent in X, which is impossible since all u1 belong to the finite 
dimensional space L. Thus +∆  and −∆  are finite.

Now let *p∈  and =m deg p . From (d1) and the equality 
=j jR Tx MR x , we immediately get that ( ( ) ) = ( )p T x x mδ δ +  for each 

Nx∈ . Therefore, inf{ ( ) : ( )( ) \ {0}} =x x p T L mδ −∈ ∆ + . In particular, if 

>m + −∆ −∆ , then 

( )( )\{0}
( ) = > = ( ).supinf

x p T L x L
x m xδ δ− +

∈ ∈
∆ + ∆

Thus ( ) > ( )u vδ δ  for any non-zero ( )( )u P T L∈  and v L∈ , which 

implies that ( )( ) = {0}p T L L∩  whenever >deg p + −∆ −∆ . Thus the 

number 0 = 1n + −∆ − ∆ +  satisfies the desired condition. 

Proof of Theorem 1.8

The implications (1.8.4) (1.8.3) (1.8.2)⇒ ⇒  are trivial. Assume 
that T is transitive and T′ has a non-trivial finite dimensional invariant 
subspace. Then T has a non-trivial closed invariant subspace of finite 
codimension. Passing to the quotient by this subspace, we obtain a 
transitive operator on a finite dimensional topological vector space. 
Since there is only one Hausdorff linear topology on a finite dimensional 
space, we arrive to a transitive operator on a finite dimensional Banach 
space. Since transitivity and hypercyclicity for operators on separable 
Banach spaces are equivalent  [3], we obatin a hypercyclic operator on 
a finite dimensional Banach space. On the other hand, it is well known 
that such operators do not exist, see, for instance, [7]. This proves the 
implication (1.8.2) (1.8.1)⇒ . It remains to show that (1.8.1) implies 
(1.8.4).

Assume that (1.8.1) is satisfied and (1.8.4) fails. Then there exist 
non-empty open subsets U and V of X and a sequence { }l lp ∈ +  of 
polynomials such that ldeg p →∞  and ( )( ) =lp T V U∩ ∅  for each 
l +∈ . Since X carries weak topology, there exist two finite linearly 

independent sets 1{ , , }nf f  and 1{ , , }mg g  in X′ and two vectors 

1( , , ) n
na a ∈   and 1( , , ) m

mb b ∈   such that 0U U⊆  and 
0V V⊆ , where 

0 0= { : ( ) = for 1 } and = { : ( ) = for 1 }.j j j jU u X f u a j n V u X g u b j m∈ ≤ ≤ ∈ ≤ ≤

 Let 1 1= { , , , , , }n mL span f f g g  . Since T′ has non non-trivial finite 
dimensional invariant subspaces, by Lemma 7.1, for any sufficiently 
large l , ( )( ) = {0}lp T L L′ ∩ . For such an l, the equality ( )( ) = {0}lp T L L′ ∩  
together with the injectivity of ( )lp T ′ , provided by Lemma 7.2, and the 
definition of L imply that the vectors 1 1( ) , , ( ) , , ,l l n mp T f p T f g g′ ′

   
are linearly independent. Hence there exists a vector u ∈ X  such that 

l j j j jp (T )f (u)= a for 1 j n and g (u)= b for1 j m.′ ≤ ≤ ≤ ≤

Since ( ) ( ) = ( ( ) )l j j lp T f u f p T u′ , the last display implies that 
0u V V∈ ⊆  and 0( )lp T u U U∈ ⊆ . Hence ( )( )lp T V U∩  contains 

( )lp T u  and therefore is non-empty. This contradiction completes the 
proof.

Spaces without Supercyclic Semigroups 
+∈ttT }{

We shall prove Theorem 1.7 and show that on certain topological 
vector spaces there are no strongly continuous supercyclic semigroups 

+∈ttT }{ . In this section by the dimension dimX of a vector space X 
we mean its algebraic dimension (=the cardinality of the Hamel basis). 

Symbol c stands for the cardinality of continuum: 0= 2ℵc . The next 
theorem is the main result of this section.
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Theorem 8.1  Let X be an infinite dimensional locally convex space 
such that either in X or in Xσ′  there are no compact metrizable subsets 
whose linear span has dimension c. Then there are no strongly continuous 
supercyclic semigroups 

+∈ttT }{  on X. 

The above theorem immediately implies the following corollary.

Corollary 8.2  Let X be an infinite dimensional locally convex space 
such that <dim X c  or <dim X ′ c . Then there are no strongly 
continuous supercyclic semigroups 

+∈ttT }{  on X. 

We prove Theorem 8.1 at the end of this section. First, we shall 
prove Theorem 1.7 by means of application of Theorems 1.8 and 8.1.

Proof of Theorem1.7.Let ( )T L ω∈  be such that T′ has no non-
trivial finite dimensional invariant subspaces and { }l lp ∈ +  be a 
sequence of polynomials such that ldeg p →∞  as l →∞ . Since the 
topology of ω is weak, Theorem 1.8 implies that for each non-empty 
open subsets U and V of ω, ( )lp U V∩ ≠∅  for all sufficiently large 
l. Hence {( , ( ) ) : , }lx p T x x lω +∈ ∈  is dense in ω×ω. By Theorem 
U, { ( ) : }+∈lp T l  is universal. It remains to show that there are no 
strongly continuous supercyclic semigroups { }t tT ∈ +  on X. Recall that 

=ω ϕ′  and 0= <dim cϕ ℵ . Thus Corollary 8.2 implies that there are 
no supercyclic strongly continuous operator semigroups { }t tT ∈ +  on 
ω. 

The rest of the section is devoted to the proof of Theorem 8.1. We 
need some preparation.

Lemma 8.3 Let X be a finite dimensional topological vector space of 
the real dimension >2. Then there is no supercyclic strongly continuous 
operator semigroup { }t tT ∈ +  on X. 

Proof. As well-known, any strongly continuous operator 
semigroup { }t tT ∈ +  on n has shape { }tA

te ∈ +
, where ( )nA L∈  . 

Assume the contrary. Then there exists n ∈  and ( )nA L∈   such that 
the semigroup { }tA

te ∈ +
 is supercyclic and 3n ≥  if =  , 2n ≥  

if =  . Since the operators tAe  are invertible and commute with 
each other, Proposition G implies that the set W of universal elements 
for the family { : , }tAze z t +∈ ∈   is dense in n. On the other hand, 
for each c > 0 and any x ∈ n, from the restrictions on n it follows 

that the closed set { : , 0 }tAze x z t c∈ ≤ ≤  is nowhere dense in n 

(one can use smoothness of the map ( , ) tAz t ze x  to see that the 

topological dimension of { : , 0 }tAze x z t c∈ ≤ ≤  is less than that of 

n). Hence, each x W∈  is universal for the family { : , > }tAze z t c∈  
for any 0>c . Now if (a,b) is a finite subinterval of (0, )∞ , it is 
easy to see that the family { : , < < , }tkAze z a t b k +∈ ∈   contains 
{ : , > }tAze z t c∈  for a sufficiently large c > 0. It follows that for 

each x ∈ W the set { : , < < , }tkAze x z a t b k +∈ ∈   is dense in n. 

Taking into account that ),( ba  is arbitrary and W is dense in n, 

we see that {( , , : , , , }tkA nt x ze x t z x k+ +∈ ∈ ∈ ∈     is dense in 
n n

+ × ×   . Applying Theorem 6.3, we see that for a generic t ∈ 
+ in the Baire category sense the operator tAe  is supercyclic. This 
contradicts the well-known fact that there are no supercyclic operators 
on finite dimensional spaces of real dimension >2. 

The following lemma appears as Lemma 2 in reference [38]. It 
is worth noting that under the Continuum Hypothesis its statement 
becomes trivial.

Lemma 8.4  Let (M, d) be a separable complete metric space and X be 
a topological vector space. Then for any continuous map :f M X→ , the 
algebraic dimension of spanf(M) is either finite or countable or continuum. 

We use the above lemma to prove the following dichotomy.

Lemma 8.5  Let { }t tT ∈ +  be a strongly continuous operator 
semigroup on a topological vector space X and x ∈ X. Then the space 

( ) = { : }+∈tC x span T x t  is either finite dimensional or has dimension c. 

Proof. From Lemma 8.4 it follows that ( )dimC x  is either finite or 

0ℵ  or c. Thus it suffices to rule out the case 0( ) =dim C x ℵ .

Assume that 0( ) =dimC x ℵ . Restricting the operators Tt to the 
invariant subspace ( )C x , we can without loss of generality assume 
that ( ) =C x X . Thus 0=dim X ℵ  and therefore X is the union of an 
increasing sequence { }n nE ∈ +  of finite dimensional subspaces. For 
each ε > 0 let = { : }tX span T x tε ε≥ . First, we shall show that each Xε  

is finite dimensional. Let ε > 0, 0 < <α ε  and = { [ , ] : }n t nA t T x Eα ε∈ ∈  
for n ∈ +. Clearly An are closed subsets of the interval [ , ]α ε  and 

=0

[ , ]= n
n

Aα ε
∞



 since X is the union of En. By the Baire category theorem 

there is n ∈ + such that An has non-empty interior in [ , ]α ε . Hence 
we can pick ,a b∈  such that <a bα ε≤ ≤  and t nT x E∈  for any 

[ , ]t a b∈ . We shall show that a nX E⊆ . Assume, it is not the case. 

Then the number = inf{ [ , ) : }t nc t a T x E∈ ∞ ∉  belongs to [ , )b ∞ . Since the 
set { : }t nt T E+∈ ∈  is closed, c nT x E∈ . Since [ , ]a b  is uncountable 
and the span of { : [ , ]}tT t a b∈  is finite dimensional, we can pick 

0 1< < < na t t t b≤ ≤

 and 1 1, , nc c − ∈   such that 

1

=1

= .
n

t j tn j
j

T x c T x
−

∑ 				                  (8.1)

Since c nT x E∈ , by definition of c, we can pick 1( , )n nt c c t t −∈ + −  

such that t nT x E∉ . Since > nt c t≥ , formula (8.1) implies that 
1 1

=1 =1

= = = .
n n

t t t t t t j t j t t t nn n n j n j
j j

T x T T x T c T x c T x E
− −

− − − + ∈∑ ∑
because n ja t t t c≤ − + ≤  for 1 1j n≤ ≤ − . This contradiction proves 

that a nX X Eε ⊆ ⊆ . Thus Xε is finite dimensional for each ε > 0. Since 
( ) = ( ( ))t t tT X T C x X⊆ , it follows that Tt has finite rank for any t > 0.

Now assume that t > 0. Since Tt has finite rank, =t tF ker T  is 
a closed subspace of X of finite codimension. It is also clear that 
Ft is Ts-invariant for each s ∈ +. Passing to quotient operators, 

( / )s tS L X F∈ , ( ) =s t s tS u F T u F+ + , we arrive to a strongly continuous 

semigroup +∈ssS }{  on the finite dimensional space / tX F . Hence 

there is ( / )tA L X F∈  such that = sA
sS e  for any s ∈ +. Thus each Ss is 

invertible. Since each Ss is a quotient of Ts, we see that 

= / = for any t >0and s 0.s s t trkT rk S dim X F rkT≥ ≥

It follows that Tt for t > 0 have the same rank k ∈ . Passing to 
the limit as t → 0, we see that the identity operator I=T0 is the strong 
operator topology limit of a sequence of rank k operators. Hence 
rk I k≤ . That is, X is finite dimensional. This contradiction completes 
the proof. 
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Lemma 8.6  Let X be a topological vector space in which the linear 
span of each metrizable compact subset has dimension <c. Then for any 
strongly continuous operator semigroup { }t tT ∈ +  on X and any x ∈ X, 
the space ( ) = { : }tC x span T x t +∈  is finite dimensional. 

Proof. Let { }t tT ∈ +  be a strongly continuous operator semigroup 
on X and x ∈ X. Strong continuity of { }t tT ∈ +  implies that for any n 
∈ , the set = { : 0 }s tK T x t n≤ ≤  is compact and metrizable. Hence 

<ndim E c  for any n ∈ , where = ( )n nE span K . Since the sum of 
countably many cardinals strictly less than c is strictly less than c, we 
see that 

=1=1

( ) = ( ) < .
∞ ∞

≤∑

n n
nn

dim C x dim E dim E c

By Lemma 8.5, )(xC  is finite dimensional. 

Proposition 8.7  Let X be an infinite dimensional locally convex 
space such that in Xσ′  the span of any compact metrizable subset has 
dimension <c. Then there is no strongly continuous supercyclic operator 
semigroup { }t tT ∈ +  on X. 

Proof. Assume that there exists a supercyclic strongly continuous 

operator semigroup 
+∈ttT }{  on X. It is straightforward to verify 

that { }t tT ∈ +
′   is a strongly continuous semigroup on σX ′ . Pick 

three linearly independent vectors f1, f2 and f3 in X′. By Lemma 8.6, 
= { : }j t jE span T f t +′ ∈  is finite dimensional for 1 3j≤ ≤ . Clearly 

each Ej is tT ′ -invariant for any t ∈ +. Then 1 2 3=E E E E+ +  is 

finite dimensional and tT ′ -invariant for any t ∈ +. Since fj∈ E for 

1 3j≤ ≤ , 3dim E ≥ . Since E is tT ′  invariant, we see that its annihilator 
= { : ( ) = 0 forany }F x X f x f E∈ ∈  if Tt -invariant for each t ∈ +. Thus we 

can consider the quotient operators ( / )tS L X F∈ , ( ) = .t tS x F T x F+ +  

Clearly { }t tS ∈ +  is a strongly continuous operator semigroup on 

X/F. Moreover, { }t tS ∈ +  is supercyclic since { }t tT ∈ +
 is. Now since 

= /dim E dim X F , X/F is finite dimensional and has dimension ≥3. 

By Lemma 8.3, there are no strongly continuous supercyclic operator 
semigroups on X/F. This contradiction completes the proof. 

Proof of Theorem 8.1. If X has no compact metrizable subsets 
whose linear span has dimension c, Lemma 8.6 implies that the linear 
span of any orbit {Tt x : t ∈ +} is finite dimensional. It follows that 
{ }t tT ∈ +  is not supercyclic. It remains to consider the case when Xσ′  
has no compact metrizable subsets whose linear span has dimension c 
and apply Proposition 8.7. 

The space ϕ 
Recall that ϕ is a linear space of countable algebraic dimension 

carrying the strongest locally convex topology. In this section we 
mention certain properties of ϕ, mainly those which are related to 
continuous linear operators. It is well known [17] that ϕ is complete 
and all linear subspaces of ϕ are closed. Moreover, infinite dimensional 
subspaces of ϕ are isomorphic to ϕ. It is also well-known that for any 
topology θ on ϕ such that (ϕ,θ) is a topological vector space, θ is weaker 
than the original topology of ϕ. The latter observation immediately 
implies the following lemma.

Lemma 9.1  For any topological vector space X and any linear map 
:T Xϕ → , T is continuous. 

Lemma 9.2  Let X be a topological vector space and :T X ϕ→  be a 
surjective continuous linear operator. Then X is isomorphic to ker Tϕ× . 

Proof. Since T is linear and surjective, there exists a linear map 
:S Xϕ →  such that TS=I. By Lemma 9.1, S is continuous. Consider 

the linear maps 

: , ( , ) = and : , = ( , ).A ker T X A u y y Su B X ker T Bx Tx x STxϕ ϕ× → + → × −

It is easy to see that A and B are continuous and that AB=I and 
BA=I. Hence B is a required isomorphism. 

Corollary 9.3  Let X be a topological vector space. Then the following 
conditions are equivalent. pt 

(9.3.1) X is isomorphic to a space of the shape Y × ϕ,, where Y is a 
topological vector space ;  

(9.3.2) X has a quotient isomorphic to ϕ; 

(9.3.3) there is ( , )T L X ϕ∈  such that T(X) is infinite dimensional. 

 Proof. The implications (9.3.1) (9.3.2) (9.3.3)⇒ ⇒  are trivial. 
Assume that (9.3.3) is satisfied. That is, there is ( , )T L X ϕ∈  with infinite 
dimensional T(X). Since any infinite dimensional linear subspace of ϕ 
is isomorphic to ϕ, we see that T(X) is isomorphic to ϕ. Hence there is 
a surjective ( , )S L X ϕ∈ . By Lemma 9.2 X is isomorphic to Y × ϕ, where 

=Y ker S . Hence (9.3.3) implies (9.3.1), which completes the proof. 

Cyclic operators on ϕ
Clearly ϕ is isomorphic to the space  of all polynomials over  

endowed with the strongest locally convex topology. The shift operator 
on ϕ is obviously similar to the operator 

: , ( ) = ( ).→M Mp z zp z  			            (9.1)

For each n ∈  we denote 

= { : < }.∈n p deg p n  			                (9.2)

Clearly n is an n-dimensional subspace of .

Lemma 9.4  An operator ( )T L ϕ∈  is cyclic if and only if T is similar 
to the operator M. 

Proof. Clearly 1 is a cyclic vector for M. Hence any operator similar 
to M is cyclic. Now let ( )T L ϕ∈  be cyclic and ϕ∈x  be a cyclic vector 
for T. Then the vectors Tn x for n ∈  are linearly independent. Indeed, 
otherwise their span is finite dimensional, which contradicts cyclicity 
of x for T. Since any linear subspace of ϕ is closed, we see that {Tn x : n 
∈ +} is an algebraic basis of ϕ. It is easy to see then that the linear map 

: ϕ→J  , = ( )Jp p T x  is invertible and 1=T JMJ− . By Lemma 9.1, J 
and J-1 are continuous. Hence T is similar to M. 

We need a multicyclic version of the above lemma.

Lemma 9.5  Let ( )T L ϕ∈ . Then the following conditions are 
equivalent.

(9.5.1) T is multicyclic; 

(9.5.1) there exists k∈  and a linear subspace Y of ϕ of finite 
codimension such that ( )T Y Y⊆  and the restriction | ( )YT L Y∈  is 
similar to Mk, where M is the operator defined in (9.1). 

Proof. First, assume that (9.5.2) is satisfied. Pick a finite dimensional 
subspace Z of  such that = Z Yϕ ⊕ . Since YT |  is similar to Mk, we can 
pick an invertible linear operator : ϕ→J   such that 1= kTy JM J y−  
for any y Y∈ . Let = ( )+ kL Z J  , where k is defined in (9.8). Clearly 
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L is a finite dimensional subspace of ϕ. From the equality 1| = k
YT JM J−  

it easily follows that for any n ∈ , 
1( ) ( ) ( ).−+ + + ⊇ +

n
nkL T L T L Z J 

Hence the linear span of the union of ( )jT L  for  j ∈ + contains 
( ) = = ϕ+ +Z J Z Y . Thus T is m -cyclic with m=dimL. The 

implication (9.5.2) (9.5.1)⇒  has been verified.

Assume now that T is n -cyclic for some n ∈ . Then there is an n 
-dimensional subspace L of ϕ such that 

=0

( ( )) =n

k

span T L ϕ
∞



				                  (9.3)

(again, we use the fact that any linear subspace of ϕ  is closed and 
therefore a dense subspace of ϕ must coincide with ϕ). We will use 
the concept of T -independence, introduced in Section 7. Since T 
-independence implies linear independence, any T -independent 
subset of L has at most n elements. Let k be the maximum of 
cardinalities of T -independent subsets of L and A be a T -independent 
subset of cardinality k. Since A is linearly independent, we can pick 
a subset B L⊂  of cardinality n-k such that A B∪  is a basis in L. 
From the definition of k it follows that for any b B∈ , { }A b∪  is not 
T independent and therefore using T -independence of A, we can find 
polynomials pb and pb,a for Aa∈  such that 

,0 and ( ) = ( ) .b b b a
a A

p p T b p T a
∈

≠ ∑ 			               (9.4)

Now let m=0 if ∅=B  and b
Bb

pdegm max=
∈

 otherwise. Consider 
the spaces 

= { : , 0 } and = { : , }.j jZ span T b b B j m Y span T a a A j +∈ ≤ ≤ ∈ ∈

Then Z is finite dimensional and ( )T Y Y⊆ . Obviously, 

foranya Aandj .jT a Y Y Z +∈ ⊆ + ∈ ∈ 		               (9.5)

Let b B∈  and j ∈ +. Since 0bp ≠  and bdeg p m≤ , we can find 

polynomials q,r such that <deg r m  and = ( ) ( ) ( )j
bt q t p t r t+ . Then 

= ( ) ( ) ( )j
bT b q T p T b r T b+ . Since <deg r m , ( )r T b Z∈ . According to 

(9.4), ( )bp T b Y∈ . Since Y is invariant for T, ( ) ( )bq T p T b Y∈ . Thus 

for any b B and j .jT b Y Z +∈ + ∈ ∈ 		               (9.6)

Since A B∪  is a basis of L, from (9.5) and (9.6) it follows that 
( )jT L Y Z⊆ +  for each j ∈ +. According to (9.3), =Y Zφ + . Since 

Z is finite dimensional, we see that Y has finite codimension in ϕ. In 
particular, Y is non-trivial and therefore A ≠∅ . That is, 1 ≤ k ≤ n and 

1= { , , }kA a a . Now consider the linear operator YJ →: , which 

sends the monomial lt  to j
sT a , where j ∈ + and {1, , }s k∈   are 

uniquely defined by the equation 1=l jk s+ + . By definition of Y, J is 

onto. From T -independence of A it follows that J is also one-to-one. By 

definition of J, we have =l k lJt TJt+ . Hence =kJM p TJp  for any ∈p  . 

That is, Mk and |YT  are similar. 

Corollary 9.6  Let T be a multicyclic operator on ϕ. Then T is not onto. 

Proof. According to Lemma 9.5, we can decompose ϕ into a direct 

sum =Y Zϕ ⊕ , where Z  has finite dimension m ∈ +, ( )T Y Y⊆  and 

|YT  is similar to Mk for some k ∈ . Since 
YT |  is similar to Mk, 1( )mT Y+  

has codimension ( 1) >k m m+  in Y. Hence 1/ ( ) >mdim T Y mϕ + . On the 

other hand, mZdimZTdim m =)(1 + . Thus 1 1 1( ) = ( ) ( )m m mT T Z T Yϕ+ + ++  

has positive codimension in ϕ. Hence Tm+1 is not onto and so is T. 

Proof of Theorem 1.12

In this section X is a topological vector space, which has no quotient 
isomorphic to ϕ. We have to show that there are no cyclic operators 
with dense range on X×ϕ. Assume the contrary and let )( ϕ×∈ XLT  be 
a cyclic operator with dense range. Consider the matrix representation 
of T: 

= , where ( ), ( , ), ( , ) and ( )
A B

T A L X B L X C L X D L
C D

ϕ ϕ ϕ
 

∈ ∈ ∈ ∈ 
 

With T  acting according to the formula ( , ) = ( , ).T x u Ax Bu Cx Du+ +
Since T is cyclic, we can pick a vector ( , )x u X ϕ∈ ×  such that 

= { ( , ) : }kE span T x u k +∈  is dense in X×ϕ. Since T has dense 
range, then Tm has dense range for any m ∈ +. Thus 

= ( ) = { ( , ) : }m k
mE T E span T x u k m≥  is dense in X×ϕ for each m 

∈ +. Let ( , ) = ( , )k
k kT x u x u  for k ∈ +, where kx X∈  and uk =ϕ.  

Since = {( , ) : }m k kE span x u k m≥  is dense in X×ϕ,  we see that 
= { : }m kF span u k m≥  is dense in ϕ for any m ∈ +. Hence Fm= ϕ 

for any m ∈ +. Since X has no quotients isomorphic to ϕ, Lemma 9.3 

implies that 0 = ( )L C X  is a finite dimensional subspace of ϕ. Then the 
space 

0= ( { }).L span L u∪

is also finite dimensional. Clearly 0 =u u L∈  and 
1 =k k k ku Cx Du Du L+ + ∈ +  for any k ∈ +. It follows that each 

uk belongs to the space spanned by the union of ( )mD L  for m ∈ 
+. Since L is finite dimensional, D is multicyclic. By Lemma 9.5, 
we can decompose ϕ into a direct sum =Y Zϕ ⊕ , where Z is finite 
dimensional, ( )D Y Y⊆  and |YD  is similar to Mn for some n ∈ . That 
is, there exists an invertible ( , )∈J L Y   such that 1| = n

YD J M J− . Let 
also ( )P L ϕ∈  be the linear projection onto Y along Z. We consider two 
cases.

 Case 1.   The sequence { }kdeg JPu  is bounded from above. In 

this case { : }kspan JPu k +∈  is finite dimensional. Since J is 

invertible, { : }kspan Pu k +∈  is finite dimensional. Since P has finite 

dimensional kernel, 0 = { : }kF span u k +∈  is finite dimensional. We 
have arrived to a contradiction with the equality F0=ϕ.

 Case 2.   The sequence { }kdeg JPu  is unbounded from above. 
Since = ( ( ))N L Z D Z Y+ + ∩  is finite dimensional, 

\{0}
= .sup

w N
m deg Jw +

∈
∈

We shall show that 1 =k kdeg JPu n deg JPu+ +  whenever 
>kdeg JPu m . Indeed, let k ∈ + be such that >kdeg JPu m . By 

definition of P, k ku Pu Z− ∈  and 1 1k ku Pu Z+ +− ∈ . As we know, 

1k ku Du L+ ∈ + . Hence 1 ( )k kPu DPu L Z D Z+ ∈ + + + . Since 1kPu +  and 

kDPu  belong to, Y we have 1k kPu DPu N+ ∈ + . Thus there is Nw∈  

such that 1 =k kPu DPu w+ + . Hence 1 = = .n
k k kJPu JDPu Jw M JPu Jw+ + +
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Since JwdegmJPudegnJPuMdeg kk
n >= + , we have 

1 =k kdeg JPu n deg JPu+ +  (the degree of the sum of two polynomials of 
different degrees equals to the maximum of the degrees). Since the 
sequence { }kdeg JPu  is unbounded from above, there is k ∈ + such 
that mJPudeg k >  and according to the just proven statement, we 
will have = ( )j kdeg JPu deg JPu n j k+ −  for j ≥ k. Since any family of 
polynomials with pairwise different degrees is linearly independent, 
we see that the vectors JPuj for j ≥ k are linearly independent. 
Since JP is a linear operator, the vectors uj for  j ≥ k are linearly 
independent in ϕ. Hence the sequence of spaces Fj for j ≥ k is strictly 
decreasing. On the other hand, we know that Fj=ϕ for each j ∈ +. 
This contradiction completes the proof.

Hypercyclicity of operators on direct sums
We shall prove the following lemma, which is a key for the proof 

of Theorem 1.13.

Lemma 10.1  Let { }n nX ∈ +  be a sequence of infinite dimensional 

locally convex spaces such that 

(10.1.1) there exists a dense linear subspace Y of X0, carrying a 
topology, stronger than the one inherited from X0 and turning Y into a 
separable metrizable topological vector space; 

(10.1.2) there exists 0 0 0 1( , )T L X X X∈ ⊕  with dense range; 

(10.1.3) for each n ∈ , there exists 1( , )n n nT L X X +∈ ×  with dense 
range. 

 Then there is a hypercyclic operator S on 
=0

= n
n

X X
∞

⊕ . 

It is worth noting that condition (10.1.1) implies that X0 is 
separable, condition (10.1.2) implies that X1 is separable and condition 
(10.1.3) implies that Xn for 2n ≥  are all separable. Thus X is separable. 
We need the following auxiliary lemma.

Lemma 10.2  Let X and Y be topological vector spaces such that there 
exists ( , )T L X Y∈ ×  with dense range. Then for any closed hyperplane 
H of X, there exists S ∈ L(H,Y) with dense range. 

Proof. Let 0 ( , )T L H Y∈ ×  be the restriction of T to H. We can 
write 0 0= ( , )T S g , where 0 ( , )S L H Y∈  and g H ′∈ . If T0 has dense 

range, then 0=S S  is a continuous linear operator from H to Y with 
dense range. It remains to consider the case when the range of T0 is 
not dense. Since the range of T is dense and T0 is a restriction of T to 
a closed hyperplane, the codimension of the closure of T0(H) in Y ×   
does not exceed 1. Thus the codimension of the closure of T0(H) in Y 
×  is exactly 1 and there is a non-zero ( )Yψ ′∈ ×  such that T0(H) 
is a dense subspace of kerψ . If = {0}ker Yψ × , then again we can take 
S=S0. If {0}ker Yψ ≠ × , we can pick y ∈ Y such that ( ) =1yψ . Take 

( , )S L H Y∈ , 0= ( )Sx S x g x y+ . It is straightforward to verify that S has 
dense range. 

Proof of Lemma 10.1. Let { }n nU ∈ +  be a base of topology of Y 
and 

= { : = 0 for > }.n jZ x X x j n∈

Clearly X is the union of the increasing sequence of subspaces 

Zn and each Zn is naturally isomorphic to 
=0

n

k
k

X⊕ . We shall construct 

inductively a sequence of operators ),( 1+∈ kkk ZZLS  and vectors yk ∈ Y 

satisfying the following conditions for any k ∈ +:

 (a1) =j kS x S x  for any <j k  and jx Z∈ ; 

(a2) ( )k kS Z  is dense in 1kZ + ; 

(a3) 0k k kS S y Z∉ ; 

 (a4) 0 1 =k k kS S y y−  if 1k ≥ ; 

 (a5) k ky U∈ . 

 By (10.1.2) there exists 0 0 1( , )S L Z Z∈  with dense range. Since Y 
is dense in X0=Z0, S0 has dense range and Z0 is nowhere dense in Z1, 
we can pick 0 0y U∈  such that 0 0 0S y Z∉ . The basis of induction has 
been constructed. Assume now that n ∈  and yk ∈ Y, 1( , )k k kS L Z Z +∈  
satisfying (a1–a5) for k < n are already constructed. According to (a3) 
for k=n-1, we have 1 0 1 1= n n nw S S y Z− − −∉ . That is, the nth component 
wn of w is non-zero. Since Xn is locally convex, we can pick a closed 
hyperplane H in Xn such that nw H∉ . Let P be the linear projection 
on Zn onto H along 1 { }n nZ span w− ⊕ . From (10.1.3) and Lemma 10.2 
it follows that there is 1( , )nR L H X +∈  with dense range. According 
to (a3) for k=n-1, the operator 1 0nS S−   from Z0 to Zn has dense 
range. Hence the operator 1 0= nQ RPS S−   from Z0 to Xn+1 has 
dense range. Since Y is dense in Z0, we can pick n ny U∈  such that 

0nQy ≠ . Now we define the operator 1:n n nS Z Z +→ . It is easy to see 
that 1= { }n nZ Z H span w− ⊕ ⊕ . We set 

1 1( ) = for , and .n n n nS x y sw S x Ry sy x Z y H s− −+ + + + ∈ ∈ ∈

The operator Sn is continuous since Sn-1 and R are continuous. Clearly 
(a1) and (a5) for k=n are satisfied. Next, 1 1( ) ( ) ( )n n n nS Z S Z R H− −⊇ + . 
Since 1 1( )n nS Z− −  is dense in Zn (condition (a2) for k=n-1) and ( )R H  
is dense in Xn+1, we see that ( )n nS Z  is dense in 1 =n n nZ Z X+ ⊕ ,which 
gives us (a2) for k=n. From the last display and the relation 0nQy ≠  
it follows that (a3) is satisfied for k=n. Finally, since =n nS w y  from 
the definition of w we see that (a4) for k=n is also satisfied. Thus the 
inductive construction of Sk and Yk is complete.

Condition (a2) ensures that there is a unique operator S∈ L(X) such 
that | =Z nn

S S  for any n ∈ +. From (a4) it now follows that 

1
1 = for each k .k

k kS y y+
− +∈

According to the above display, the set A={yn : n ∈ +} is contained 
in the orbit 

0( , )O S y . By (a5) A is dense in Y. Since Y is dense in X0 
and carries a stronger topology, A is dense in X0=Z0. By (a2) ( )mS A  
is dense in Zm for each m ∈ +. Since 0( , )A O S y⊂ , we have that 

0( ) ( , )mS A O S y⊂  and therefore 0( , ) mO S y Z∩  is dense in Zm for each 

m ∈ +. Hence 0( , )O S y  is dense in X. That is, Y is a hypercyclic vector 
for S. 

Remark 10.3 The orbit of the hypercyclic vector constructed in the 
proof of Lemma 10.1 is not just dense. It is sequentially dense. The latter 
property is strictly stronger than density already for countable direct 
sums of separable infinite dimensional Banach spaces. 

Proof of Theorem 1.14

Let Xn ∈ M for each n ∈ + and 
=0

= n
n

X X
∞

⊕ . We shall apply Lemma 

10.1. Condition (10.1.1) is satisfied according Lemma 3.3. Indeed X1 
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admits a Banach s -disk with dense span. By Lemma 3.8, spaces X0× X1 
and Xn×  belong to M. From Lemma 3.6 it follows that conditions 
(10.1.2) and (10.1.3) are also satisfied. Thus by Lemma 10.1, there is 
hypercyclic T ∈ L(X).

Proof of Theorem 1.13

As we have already mentioned, s Fréchet space X belongs to M if 
and only if X is infinite dimensional, separable and non-isomorphic 
to ω. Moreover, in any separable Fréchet space there is an 1-sequence 
with dense span.

Lemma 10.4  Let X and Y be separable infinite dimensional Fréchet 
spaces. Then the following conditions are equivalent

(10.4.1) there is no T ∈ L(X, Y) with dense range;

(10.4.2) X is isomorphic to ω and Y is not isomorphic to Ω. 

Proof. If both X and Y are isomorphic to ω, then obviously there is a 
surjective T ∈ L(X,Y). If X is isomorphic to ω, Y is not and T ∈ L(X,Y), 
then Z=T(X) carries minimal locally convex topology [29] since ω does. 
It follows that Z is either finite dimensional or isomorphic to ω and 
therefore complete. Hence Z is closed in Y. It follows that =Z Z Y≠  
since Y is neither finite dimensional nor isomorphic to . Thus there is 
not T ∈ L(X,Y) with dense range. It remains to show that there is T ∈ 
L(X,Y) with dense range if X is not isomorphic to ω. In this case the 
topology of X is not weak and it remains to apply Lemma 3.6. 

Lemma 10.5  Let X be the countable locally convex direct sum of a 
sequence of separable Fréchet spaces infinitely many of which are infinite 
dimensional. Then one of the following two possibilities occurs:

(10.5.1) X is isomorphic to Y Z⊕ , where Y is a separable infinite 
dimensional Fréchet space and Z is the locally convex direct sum of an 
infinite countable number of copies of ω; 

(10.5.2) X is isomorphic to 
=0

n
n

Y
∞

⊕ , where each Yn is a separable 

infinite dimensional Fréchet space non-isomorphic to ω. 

Proof. Separating the finite dimensional spaces, spaces isomorphic 
to ω and infinite dimensional spaces non-isomorphic to ω, we see that 

= ,
A B C

X X X Xα β γ
α β γ∈ ∈ ∈

⊕ ⊕⊕ ⊕ ⊕
where the sets A, B and C are pairwise disjoint, Xα is isomorphic to ω for 
each Aα∈ , Xβ  is a separable infinite dimensional Fréchet space non-
isomorphic to ω for any Bβ ∈ , Xγ  is finite dimensional for each Cγ ∈ , 
A B∪  is infinite and countable and C is either finite or countable.

If B and C are finite, then A is infinite. Pick 0 Aα ∈ . Then 

0
\{ }0

= , where = .
A B C

X Y X Y X X Xα α β γ
α α β γ∈ ∈ ∈

⊕ ⊕ ⊕⊕ ⊕ ⊕
Clearly Y is a separable infinite dimensional Fréchet space. Since 

each Xα is isomorphic to ω, we fall into the case (10.5.1). If B is finite 
and C is infinite, then A is infinite and both A and C can be enumerated 
by elements of +: A={αn : n ∈ +}, C={yn : n ∈ +}. Then 

.=where),(=
01 β

β
αγα XXYXXYX

B
nn

n
⊕⊕
∈

+
+∈

⊕⊕⊕


Again Y is a separable infinite dimensional Fréchet space. Since 
each 

1n n
X Xα γ+

⊕  is isomorphic to ω, (10.5.1) is satisfied. If B is infinite 
and A C∪  is infinite, then we enumerate both B and A C∪  by the 

elements of +: = { : }nB nβ +∈ , = { : }nA C nρ +∪ ∈ . We arrive 
to 

= ( ).β ρ
∈ +

⊕⊕


n n
n

X X X

Since each 
n n

X Xβ ρ⊕  is a separable infinite dimensional Fréchet 

space non-isomorphic to ω, (10.5.2) is satisfied. Finally, if B is infinite 
and A C∪  is finite, we fix 0 Bβ ∈  and write 

0
\{ }0

= , where = .
B A C

X Z X Z X Xβ β ρ
β β ρ∈ ∈ ∪

⊕ ⊕⊕ ⊕
Again Z and each Xβ are separable infinite dimensional Fréchet 

spaces non-isomorphic to ω and we fall into the case (10.5.2). 

We are ready to prove Theorem 1.13. Let X be a countable infinite 
direct sum of separable Fréchet spaces. If all the spaces in the sum, except 
for finitely many, are finite dimensional, then X is isomorphic to Y×ϕ, 
where Y is a Fréchet space. According to Theorem 1.12, X admits no 
cyclic operator with dense range. In particular, there is no supercyclic 
operator on X. If there are infinitely many infinite dimensional spaces 
in the sum defining X, then according to Lemma 10.5, we see that X is 
isomorphic to 

,= n
n

YY ⊕
+∈

where Yn are all separable infinite dimensional Fréchet spaces and either 
all Yn are non-isomorphic to ω or all Yn for 1n ≥  are isomorphic to . In 
any case from Lemma 10.4 it follows that there exists 0 0 0 1( , )T L Y Y Y∈ ⊕  
with dense range and for each n ∈ , there exists 1( , )n n nT L Y Y +∈ ×  
with dense range. By Lemma 10.1, there is a hypercyclic operator on X. 
The proof of Theorem 1.13 is complete.

Hypercyclic operators on countable unions of spaces
The following lemma is a main tool in the proof of Theorem 1.11.

Lemma 11.1  Let a locally convex space be the union of an increasing 
sequence { } ∈n nX  of its closed linear subspaces. Assume also that for 
any n ∈  there is an 1-sequence with dense span in Xn and the topology 
of 1/n nX X −  is not weak, where 0 = {0}X . Then there exists a linear map 

:S X X→  and 0 1x X∈  such that for any n ∈ , 1| ( , )X n nn
S L X X +∈  and 

the orbit ( , ) = { : }kO S x S x k +∈  is dense in X. 

Note that we do not claim continuity of the above operator S on X. 
Although if, for instance, X is the inductive limit of the sequence {Xn}, 
then continuity of S will immediately follow from the continuity of the 
restrictions |Xn

S .

Proof of Lemma 11.1. For each n∈ , let ,{ }n k kx ∈ +  be 
an 1-sequence with dense span in Xn. For any n ∈ , we apply 
Lemma 3.1 with the triple of spaces 1 0( , , )Y Y Y  being 1( , , )n nX X X −  

to obtain a sequence ,{ }n k kf ∈ +  in X′  such that ,{ : }n kf k +∈  
is uniformly equicontinuous, each fn,k vanishes on Xn-1 and 

,{{ ( )} : }n k k nf x x Xφ ∈ +
⊆ ∈ . According to Lemma 3.3, there exists a 

Banach disk K in X such that Xk is a dense subspace of X1 and the Banach 

space Xk is separable. Let { }n nU ∈  be a base of topology of Xk. We shall 
construct inductively a sequence of operators 

1( , )k kS L X X +∈  and 
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vectors k Ky X∈  satisfying the following conditions for any k +∈ :  

(p1) =j kS x S x  for any <j k  and jx X∈ ; 

(p2) ( )k kS X  is dense in 1kX + ;

(p3) 1,0 1( ) 0k k kf S S y+ ≠ ; 

(p4) 1 1 =k k kS S y y−  if 2k ≥ ; 

(p5) k ky U∈ . 

Consider the linear map 1 2:S X X→  defined by the formula 

1 1, 2,
=0

= 2 ( ) .k
k k

k

S x f x x
∞

−∑
Since 2,{ }k kx ∈ +

 is an 1-sequence in X2 and 1,{ : }kf k +∈  is 
uniformly equicontinuous, the above display defines a continuous 
linear operator from X to X2. Since 1, 1{{ ( )} : }ϕ ∈ +

⊆ ∈k kf x x X , 1 1( )S X  
contains 2,{ : }kspan x k +∈ . Hence 1 1( )S X  is dense in X2. Since 
Xk is dense in X1, S1 has dense range and 2 2,0X ker f∩  is nowhere 

dense in X2, we can pick 1 1y U∈  such that 2,0 1 1( ) 0f S y ≠ . The basis 
of induction has been constructed. Assume now that 2n ≥  and 

k Ky X∈ , 1( , )k kS L X X +∈ , satisfying (p1–p5) for 1k n≤ − , are already 
constructed. According to (p3) for = 1k n− , we have ,0( ) 0nf w ≠ , 
where 1 1 1= n nw S S y− − . Since ,0= n nH X ker f∩  is a closed hyperplane 
in Xn, we have = { }nX H span w⊕ . Let also 0 ,1= nH H ker f∩ . 

Then H0 is a closed hyperplane of H. By (p2) for <k n , the operator 

1 1nS S−   from X1 to Xn has dense range. Since XK is dense in X1, 

we can pick n ny U∈  such that 1 1 0= { }n nu S S y H span w− ∉ ⊕ . Thus 

0= { , }nX H span u w⊕ . From definition of H0 it now follows that the 

matrix ,0 ,1

,0 ,1

( ) ( )
( ) ( )

n n

n n

f w f w
f u f u

 
  
 

 is invertible. The latter property allows us 

for any two vectors 0 1 1, nx x X +∈  to find 0 1 0 1 1, { , } ny y span x x X +∈ ⊂  

satisfying ,0 0 ,1 1 0( ) ( ) =n nf w y f w y x+  and ,0 0 ,1 1 1( ) ( ) =n nf u y f u y x+ . Pick 

any vector 1nv X +∈  such that 1,0( ) 0nf v+ ≠  and let 

0 1 , 2 1, 1 1 , 2 1,
=0 =0

= 2 ( ) , = 2 ( ) .k k
n n n k n k n n k n k

k k

x y S w f w x x v S u f u x
∞ ∞

− −
− + + − + +− − − −∑ ∑

The above series converge since 1,{ }n k kx + ∈ +  is an 1-sequence 
and ,{ : }n kf k +∈  is uniformly equicontinuous. Applying the above 

property to the pair 0 1 1, nx x X +∈ , we find 0 1 1, ny y X +∈  such that 

n,0 0 n,1 1 0 n,0 0 n,1 1 1f (w)y f (w)y =x andf (u)y f (u)y =x .+ +

Consider now the linear map 1:n nS X X +→  defined by the formula 

1 ,0 0 ,1 1 , 2 1,
=0

= ( ) ( ) 2 ( ) .k
n n n n n k n k

k

S x S x f x y f x y f x x
∞

−
− + ++ + +∑

The above display defines a continuous linear operator since 
1,{ }n k kx + ∈ +  is an 1-sequence and ,{ : }n kf k +∈  is uniformly 

equicontinuous. From the last three displays it follows that =n nS w y  

and =nS u v . From definition of w and u and the relation 1,0( ) 0nf v+ ≠  

it follows that (p3) and (p4) for k=n are satisfied. Clearly (p5) for k=n 
is also satisfied. Since each ,n kf  vanishes on Xn-1, we have from the 
last display that 1=n nS x S x−  for any 1nx X −∈ . Hence (p1) for k=n 

is satisfied. It remains to verify (p2) for k=n. Let U be a non-empty 
open subset of Xn+1. Since 1,= { : }n kE span x k+ +∈  is dense in Xn+1, 
we can find x E∈  and a convex balanced neighborhood W of zero 
in Xn+1 such that x W U+ ⊆ . Since ,{{ ( )} : }n k k nf x x Xϕ ∈ +

⊆ ∈ , for 

each 1,= { : }n kx E span x k+ +∈ ∈ , we can pick ny X∈  such that 

,0 ,1( ) = ( ) = 0n nf y f y  and , 2 1,
=0

= 2 ( )k
n k n k

k

x f y x
∞

−
+ +∑ . It follows that 

1=n nS y S y x− + . By (p2) for = 1k n− , 1 1( )n nS X− −  is dense in Xn. 

Since 1n nS y X− ∈ , we can find 1nr X −∈  such that 1 1 .n nS r S y W− −∈ −

By the already proven property (p1) for =k n , 1 =n nS r S r− . 

Hence 1n nS r S y W−∈ − . Using the equality 1=n nS y S y x− + , we get 
( )nS y r x W U− ∈ + ⊆ . Hence any non-empty open subset of Xn+1 

contains elements of ( )n nS X , which proves (p2) for k=n. Thus the 
inductive construction of Sk and yk is complete.

Condition (p2) ensures that there is a unique linear map :S X X→  
such that | = |X n Xn n

S S  for any n ∈ . From (p4) it now follows that 
1

1=k
k kS y y+

+  for each k ∈ . Thus the set = { : }nA y n∈  is contained 

in the orbit 1( , )O S y . By (p5) A is dense in Xk and therefore is dense in 

X1. By (p2) ( )mS A  is dense in Xm+1 for each m ∈ +. Since 1( , )A O S y⊂ , 

we have that 1( ) ( , )mS A O S y⊂  and therefore 1( , ) mO S y X∩  is dense in 

Xm for each m ∈ . Hence 1( , )O S y  is dense in X. 

Before proving Theorem 1.11, we need to make the following two 
elementary observations.

Lemma 11.2 Let X be an LB-space and Y be a closed linear subspace 
of X. Then either X /Y is finite dimensional or the topology of X /Y is not 
weak. 

Proof. Since X is an LB-space, it is the inductive limit of a sequence 
( ,|| || )n nX ⋅  of Banach spaces. If X /Y is infinite dimensional, we can 
find a linearly independent sequence { }n nf ∈ +  in X′ such that each fn 
vanishes on Y. Next, we find a sequence { }n nε ∈ +

 of positive numbers 
converging to zero fast enough to ensure that || | || 0n n X kk

fε →  
as n→∞  for each k∈ . It follows that the sequence n nfε  is 
pointwise convergent to zero on X. Since any LB-space is barrelled 
[17,29], the set { : }n nf nε +∈  is uniformly equicontinuous. Hence 

( ) = sup{ | ( ) |: }n np x f x nε +∈  is a continuous seminorm on X. Since 

each fn vanishes on Y, Y ker p⊆ . Then ( ) = ( )p x Y p x+  is a continuous 
seminorm on X /Y. Since fn are linearly independent ker p  has infinite 
codimension in X and therefore ker p  has infinite codimension in X 
/Y. Hence the topology of X /Y is not weak. 

Lemma 11.3  Let X be an inductive limit of a sequence { }n nX ∈ +  
of Banach spaces such that X0 is dense in X. Then X has no quotients 
isomorphic to ϕ . 

Proof. Assume that X has a quotient isomorphic to ϕ. By Lemma 
9.2 then X is isomorphic to Y×ϕ  for some closed linear subspace Y of 
X. Let 0:J X X→  be the natural embedding. Since X0 is dense in X, J 
has dense range. Hence 0:J X X′ ′ ′→  is injective. Since X is isomorphic 
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to Y×ϕ, we have that Xβ′  is isomorphic to Yβ ω′ ×  (ω is naturally 
isomorphic to βϕ′ ). Hence, there exists an injective continuous linear 
operator from ω to the Banach space 0X′  (with the topology 0 0( , )X Xβ ′ ). 
That is impossible, since any injective continuous linear operator from 
ω to a locally convex space is an isomorphism onto image and ω is 
non-normable. 

Proof of Theorem 1.11

Throughout this section X is the inductive limit of a sequence 
{ }n nX ∈ +  of separable Banach spaces. Let also nX  be the closure of Xn 

in X. First, we shall prove the implication (1.11.4) (1.11.3)⇒ . Assume 
that (1.11.4) is satisfied. Then we can pick a strictly increasing sequence 
{ }k kn ∈ +  of non-negative integers such that 10 < / <n nk kdim X X

+
∞  

for each k ∈ +. Hence, for any k ∈ +, we can pick a non-trivial finite 

dimensional subspace Yk of 
1+knX  such that 1=n nkk kX Y X

+
⊕ . Thus 

the vector space X can be written as an algebraic direct sum 

0
=0

= .n k
k

X X Y
∞

⊕⊕ 				              (11.1)

Apart from the original topology τ on X, we can consider the 
topology θ, turning the sum (11.1) into a locally convex direct sum. 
Obviously τ θ⊆ . On the other hand, if W is a balanced convex 

θ-neighborhood of 0 in X, then nk
W X∩  is a τ-neighborhood 

of zero in nk
X  for any k ∈ +. Indeed, it follows from the fact that 

0
=n n kk

X X Z⊕ , where 
1

=0

=
k

k j
j

Z Y
−

⊕  and Zk is finite dimensional. Since 

the topology of each  is stronger than the one inherited from X, 
we see that nk

W X∩  is a neighborhood of zero in nk
X  for each k ∈ 

+. Since X is the inductive limit of the sequence { } ∈ +n kk
X , W is a τ 

-neighborhood of zero in X. Hence θ τ⊆ . Thus =θ τ  and therefore 

X is isomorphic to 0nX Y× , where Y is the locally convex direct sum 
of Yk for k ∈ +. Since Yk are finite dimensional, Y is isomorphic to ϕ. 

Since 
0nX  is the inductive limit of the sequence 

0{ }n n kk
X X ∈ +

∩   of 

separable Banach spaces (with the topology inherited from nk
X ), the 

first one 
0nX  of which is dense, we see that (1.11.3) is satisfied. The 

implication (1.11.4) (1.11.3)⇒  is verified.

Assume now that (1.11.3) is satisfied. By Lemma 11.3, Y has no 
quotients isomorphic to ϕ. Theorem 1.12 implies now that there are no 
cyclic operators with dense range on X, which proves the implication 

(1.11.3) (1.11.2)⇒ . The implication (1.11.2) (1.11.1)⇒  is obvious 

since any hypercyclic operator is cyclic and has dense range. It remains 
to show that (1.11.1) implies (1.11.4). Assume the contrary. That is, 
(1.11.1) is satisfied and (1.11.4) fails. The latter implies that either there 
is n ∈ + such that nX  is dense in X or there is a strictly increasing 

sequence { }k kn ∈ +
 of non-negative integers such that 1 /n nk kX X

+  

is infinite dimensional for each k ∈ +. In the first case, it is easy to 

see that X ∈ M and therefore there is a hypercyclic operator on X 
by Corollary 1.4. We have obtained a contradiction with (1.11.1). It 
remains to consider the case when there exists a strictly increasing 

sequence { }k kn ∈ +  of non-negative integers such that n nk kX X  

is infinite dimensional for each k ∈ +. By Lemma 11.2, the topology 

of each 1 /n nk kX X
+  is not weak. Let k ∈ +. Since nk

X  is a separable 

Banach space, there is an 1-sequence ,{ }k j jx ∈ +  in nk
X  with dense 

span. Since the topology on nk
X  inherited from X is weaker than the 

Banach space topology of nk
X , ,{ }k j jx ∈ +

 is an 1-sequence with 

dense span in nkX . By Lemma 11.1, there exists a linear map :S X X→  

and 0x X∈  such that for any k ∈ +, the restriction of S to nkX  is 

continuous and the orbit ( , ) = { : }kO S x S x k +∈  is dense in X. Since 
the topology of knX  is stronger than the one inherited from X, we have 

that each restriction of S to nk
X  is a continuous linear operator from 

nk
X  to X. Since X is the inductive limit of the sequence { }n kk

X ∈ +
, :S X X→  is continuous. Hence S is a hypercyclic continuous linear 
operator on X. The existence of such an operator contradicts (1.11.1). 
The proof of the implication (1.11.1) (1.11.4)⇒  and that of Theorem 
1.11 is now complete.

Remarks on mixing versus hereditarily hypercyclic
We start with the following remark. As we have already mentioned, 

ϕ supports no supercyclic operator [11], which follows also from 
Theorem 1.12. On the other hand, ϕ supports a transitive operator 
[22]. The latter statement can be easily strengthened with the help of 
Corollary 5.1. Namely, take the backward shift T on ϕ. That is Te0=0 
and 1=n nTe e −  for n ≥ 1,  where { }n ne ∈ +  is the standard basis in ϕ. 
Clearly T is a generalized backward shift and therefore T is an extended 
backward shift. By Corollary 5.1, I+T is mixing. Thus we have the 
following proposition.

Proposition 12.1  ϕ supports a mixing operator and supports no 
supercyclic operators. 

On the other hand, a topological vector space of countable algebraic 
dimension can support a hypercyclic operator, as observed by several 
authors, [22], for instance. The following proposition formalizes and 
extends this observation.

Proposition 12.2 Let X be a normed space of countable algebraic 
dimension. Then there exists a hypercyclic mixing operator T∈ L(X). 

Proof. Let X  be the completion of X. Then X  is a separable 
infinite dimensional Banach space. By Corollary 1.4, there is a hereditarily 
hypercyclic operator on ( )S L X∈ . Let x X∈  be a hypercyclic vector for 

S and E be the linear span of the orbit of x: = { : }nE span S x n +∈ . 
Grivaux [39] demonstrated that for any two countably dimensional dense 
linear subspaces E and F of a separable infinite dimensional Banach space Y, 
there is an isomorphism :J Y Y→  such that ( ) =J E F . Hence there is an 
isomorphism :J X X→  such that ( ) =J X E . Let now 1

0 =T J SJ− . Since 
( ) =J X E  and E is S -invariant, X is T0-invariant. Thus the restriction T of 

T0 to X is a continuous linear operator on X. Moreover, since the S -orbit 
of  s is dense in X , the T0-orbit of J-1x is dense in X . Since 1J x X− ∈ , the 

latter orbit is exactly the T -orbit of J-1x and therefore J-1x is hypercyclic 
for T. Hence T is hypercyclic. Next, T0 is mixing since it is similar to 
the mixing operator S. Hence T is mixing as a restriction of a mixing 
operator to a dense subspace. 

By Proposition 1.1, if X is a Baire separable and metrizable 
topological vector space, then any mixing T∈ L(X) is hereditarily 
hypercyclic. From the above proposition it follows that there are mixing 
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operators on countably dimensional normed spaces. The next theorem 
however implies that there are no hereditarily hypercyclic operators 
on countably dimensional topological vector spaces, emphasizing the 
necessity of the Baire condition in Proposition 1.1.

Theorem 12.3  Let X be a topological vector space such that 
there exists a hereditarily universal family { : } ( )nT n L X+∈ ⊂ . Then 

0>dim X ℵ . 

Proof. Since the topology of any topological vector space can 
be defined by a family of quasinorms [17], we can pick a non-
zero continuous quasinorm P on X. That is, : [0, )p X → ∞  is non-
zero, continuous, ( ) ( ) ( )p x y p x p y+ ≤ +  for any x,y ∈X, (0) = 0p , 

( ) = ( )p zx p x  if x ∈ X , z ∈ , | |=1z  and ( , )pX τ  is a (not necessarily 
Hausdorff) topological vector space, where τp  is the topology defined 
by the pseudometric ( , ) = ( )d x y p x y− . The latter property implies that 

( ) 0np tx →  for any t ∈  and any sequence { }n nx ∈ +  in X such that 
( ) 0np x → .

Let κ be the first uncountable ordinal (commonly denoted ω1). We 
shall construct inductively sequences {xa}α<κ and {Aa}α<κ  of vectors in X 
and subsets of + respectively such that for anyα < κ, pt 

(s1) Aα is infinite and xα is a universal vector for the family {Tn : n 
∈ Aα }; 

(s2) ( ) 0np T xβ →  as n→∞ , n ∈ Aα  for any β < α; 

(s3) \A Aα β  is finite for any β < α. 

For the basis of induction we take A0=+ and x0 being a universal 
vector for the family {Tn : n ∈ +}. It remains to describe the induction 
step. Assume that γ < κ and xα, Aα  satisfying (s1–s3) for α < γ are already 
constructed. We have to construct xγ and Aγ satisfying (s1–s3) for α=γ.

 Case 1: γ has the immediate predecessor. That is = 1γ ρ +  for 
some ordinal ρ < κ. Since xp is universal for :nT n Aρ∈ , we can pick 

an infinite subset A Aγ ρ⊂  such that ( ) 0np T xρ →  as n→∞ , n Aγ∈

. Since Aγ is contained in Ap, from (s3) for α ρ≤  it follows that Aγ \Aβ 
is finite for any β  < γ. Hence (s3) for α=γ is satisfied. Now from (s3) 
for α=γ. and (s2) for α < γ. it follows that (s2) is satisfied for α=γ. Next, 
since {Tn : n ∈ +} is hereditarily universal, we can pick xγ ∈ X universal 
for {Tn : n ∈ Aγ}. Hence (s1) for α=γ. is also satisfied.

 Case 2: γ is a limit ordinal. Since γ is a countable ordinal, we can 
pick a strictly increasing sequence { }n nα ∈ +  of ordinals such that 

= sup{ : }n nγ α +∈ . Now pick consecutively n0 from 
0

Aα , n1 > n0 

from 
0 1

A Aα α∩ , n2 > n1 from 0 1 2
A A Aα α α∩ ∩  etc. The choice is 

possible since by (s3) for α < γ, each 
0 n

A Aα α∩ ∩  is infinite. Now 

let = { : }jA n jγ +∈ . Since 0 1\ { , , }jj
A A n nγ α −⊆  , \

j
A Aγ α  is finite 

for each j ∈ +. Now if β  < γ, we can pick j ∈ + such that β < αj 

< γ. Then \ ( \ ) ( \ )
j j

A A A A A Aγ β γ α α β⊆ ∪  is finite by (s3) with α=j. 

Moreover, since Aγ is contained in j
Aα  up to a finite set, from (s2) 

with α=αj it follows that ( ) 0p T x →  as n→∞ , n Aγ∈ . Hence (s2) 

and (s3) for α=γ are satisfied. Finally, since {Tn : n ∈ +} is hereditarily 
universal, we can pick xγ ∈ X universal for {Tn : n ∈ Aγ}. Hence (s1) for 
α=γ is also satisfied. This concludes the construction of {xa}α<κ  and 
{Aa}α<κ  satisfying (s1–s3).

In order to prove that 0>dim X ℵ , it suffices to show that vectors 
{xa}α<κ are linearly independent. Assume the contrary. Then there 

are n ∈ , 1, , \{0}nz z ∈   and ordinals α1<…<αn<κ such that 

=1

= 0
n

j j
j

z xα∑ . By (s2) with α=αn, we see that ( ) 0k j
p T xα →  as ∞→k , 

n
k Aα∈  for 1 ≤ j < n. Denoting njj zzc /= −  for 1 ≤ j < n and using 

linearity of Tk, we obtain jkj
nj

nk xTcxT αα ∑
<1

=


 for any k ∈ +. Since p 

is a quasinorm, we have 

.Ak,ask0)()(
n

<1
ααα ∈∞→→∑ jkj

nj
nk xTcpxTp




The above display contradicts universality of 
n

xα  for }:{
nk AkT α∈ , 

which is (s1) with α= αn. This contradiction completes the proof. 

Corollary 12.4 A topological vector space of countable algebraic 
dimension supports no hereditarily hypercyclic operators. 

It is worth noting that there are infinite dimensional separable 
normed spaces, which support no supercyclic or transitive operators. 
We call a continuous linear operator T on a topological vector space 
X simple if T has shape =T zI S+ , where z ∈ K and S has finite 
rank. Observe that a simple operator on an infinite dimensional 
topological vector space is never transitive or supercyclic. Indeed, 
let T be a simple operator on an infinite dimensional topological 
vector space and λ ∈ , S∈ L(X) be such that =T I Sλ +  and S has 
finite rank. Then L=S(X) is finite dimensional. Since X/Y is infinite 
dimensional, we can pick non-empty open subsets U0 and V0 of 
X/L such that 1 0= { : \{0}, }U zu z u U∈ ∈  does not intersect 

1 0= { : \{0}, }V zv z v V∈ ∈ . Let 0= { : , \{0}}U zx x L U z+ ∈ ∈  

and 0= { : , \{0}}V zx x L V z+ ∈ ∈ . Clearly U and V are non-empty 
open subsets of X. Using the equalities =T I Sλ +  and  S(X)=L, it is easy 
to see that ( ) =nT U V∩ ∅  for any n ∈ +. Hence T is non-transitive. 
Moreover since U and V are stable under multiplication by non-zero 
scalars, the projective orbit { : , }nzT x n z+∈ ∈  of any x ∈ U does 
not meet V. Hence U contains no supercylic vectors for T. Since the set 
of supercyclic vectors of any continuous linear operator is either dense 
or empty, T is non-supercyclic.

We say that a topological vector space X is  simple if it is infinite 
dimensional and any T∈ L(X)  is simple. Thus simple topological 
vector spaces support no supercyclic or transitive operators. Various 
examples of simple separable infinite dimensional normed spaces can 
be found in the literature [38,40-44]. Moreover, according to Valdivia 
[40], in any separable infinite dimensional Fréche spaced there is a 
dense simple hyperplane. All the examples of this type existing in the 
literature with one exception [44] are constructed with the help of the 
axiom of choice and the spaces produced are not Borel measurable in 
their completions. In [44] there is a constructive example of a simple 
separable infinite dimensional pre-Hilbert space H which is a countable 
union of compact sets.

Finally recall that an infinite dimensional topological vector space 
X is called  rigid if L(X) consists only of the operators of the form I 
for λ ∈ . Of course, a rigid space can not be locally convex. Clearly 
there are no transitive or cyclic continuous linear operators on a rigid 
topological vector space. Since there exist rigid separable -spaces [45], 
we see that there are separable infinite dimensional -spaces on which 
there are no cyclic or transitive operators.

Concluding remarks and open problems
We start by observing that the following questions remain open.
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Problem 13.1  Is there a hereditarily hypercyclic operator on a 
countable direct sum of separable infinite dimensional Banach spaces? 

Problem 13.2  Is there a hypercyclic strongly continuous operator 
semigroup on a countable direct sum of separable infinite dimensional 
Banach spaces? 

The most of the above results rely upon the underlying space being 
locally convex or at least having plenty of continuous linear functionals 
and for a good reason. As mentioned in the previous section, there are 
separable infinite dimensional  -spaces on which there are no cyclic 
or transitive operators. On the other hand, the absence of non-zero 
continuous linear functionals on a topological vector space does not 
guarantee the absence of hypercyclic operators on it. It is well-known 
[45] that the spaces [0,1]pL  for 0 ≤ p <1 are separable  -spaces 
having no non-zero continuous linear functionals. Ansari [9] raises a 
question whether these spaces support hypercyclic operators. Theorem 
1.18 provides an easy answer to this question. Namely, consider the 
operator ( [0,1])pT L L∈ , ( ) = ( / 2)Tf x f x . It is straightforward to see 
that T is onto and has dense generalized kernel. Thus I+T is hereditarily 
hypercyclic according to Corollary 5.2.

It is obvious that an extended backward shift has dense range and 
dense generalized kernel. Unfortunately, the converse is not true in 
general. This leads naturally to the following question.

Problem 13.3  Let T be a continuous linear operator on a separable 
Banach space, which has dense range and dense generalized kernel. Is it 
true that I+T is mixing or at least hypercyclic? 

From Corollary 5.1 and Corollary 2.14 it follows that if T is an 
extended backward shift on a separable infinite dimensional Banach 
space X, then both I+T and eT are hereditarily hypercyclic. This reminds 
of the following question raised by Bermúdez, Bonilla, Conejero and 
Peris in reference [15].

 Question B2CP.   Let X be a complex Banach space and T∈ L(X) 
be such that its spectrum ( )Tσ  is connected and contains 0. Does 
hypercyclicity of I+T imply hypercyclicity of eT? Does hypercyclicity of eT 
imply hypercyclicity of I+T?  

We show that the answer to both parts of the above question is 
negative. Before doing this we would like to raise a similar question, 
which remains open. I+T

Problem 13.4  Let X be a Banach space and T∈ L(X) be 
quasinilpotent. Is hypercyclicity of I+T equivalent to hypercyclicity of eT? 

First, we introduce some notation. Let = { :| |< 1}z z∈  , 2 ( )  
be the Hardy Hilbert space on the unit disk and ( )∞   be the space of 
bounded holomorphic functions :f →  . For any ( )ϕ ∞∈  , the 
multiplication operator 

( ) = ( ) ( )M f z z f zϕ ϕ

is a bounded linear operator on 2 ( )  . It is also clear that 

( ) = ( )ϕσ ϕM  . If *
ϕM  is the adjoint of Mϕ, then *( )ϕσ M  is the 

reflection of ( )Mϕσ  with respect to the real axis. The following 
proposition is a direct consequence of a theorem by Godefroy and 
Shapiro [27][Theorem 4.9].

Proposition 13.5  Let ( )ϕ ∞∈  . Then *
ϕM  is hypercyclic if and 

only if 

( ) .ϕ ∩ ≠ ∅  					               (13.1)

The above Proposition calls for the following comment. A bounded 

linear operator T on a separable infinite dimensional Banach space X is 
said to satisfy the  Kitai Criterion [46,47] if there exist dense subsets E and 
F of X and a map :S F F→  such that =TSy y  for any y F∈ , 0nT x →  and 

0nS y →  as n→∞  for any Ex∈  and y F∈ . As it is shown in [46,47], 
any operator satisfying the Kitai Criterion is hypercyclic. Moreover, any 
operator, satisfying the Kitai Criterion is hereditarily hypercyclic and 
therefore mixing [3]. Hypercyclicity in the proof of the above result in 
reference [27] is demonstrated via application of the Kitai Criterion. 
Thus the following slightly stronger statement holds.

Corollary 13.6  Let ( )ϕ ∞∈  . Then *
ϕM  is hereditarily 

hypercyclic if (13.1) is satisfied and *
ϕM  is non-hypercyclic if (13.1) is 

not satisfied. 

Now we demonstrate that the answer to both parts of 
Question B2CP is negative. Consider the subset U of  being the 
interior of the triangle with vertices -1, I and -i. In other words 

= { : , , < 0, < 1, > 1}U a bi a b a b a b a+ ∈ − + − . Next, let 
2= { : , , 0 < <1, | |<1 1 }+ ∈ − −V a bi a b b a b . The boundary of V consists 

of the interval [ 1 ,1 ]i i− + +  and two circle arcs. It is clear that U and 
V are bounded, open, connected and simply connected. From the 
definition of the sets U and V it immediately follows that the open set 
1 = {1 : }U z z U+ + ∈  intersects the unit circle. On the other hand, since 
U is contained in the left half-plane, we see that = { : } .∈ ⊆�U ze e z U
Similarly, we see that 1 =V+ ∩ ∅  and the open set eV intersects 
the unit circle. According to the Riemann Theorem [48], there exist 
holomorphic homeomorphisms : Uφ →  and : Vψ → . Obviously 

, ( )ϕ ψ ∞∈  . Since * *
1=I M Mϕ ϕ++ , 

*
*=

M

e
e Mψ

ψ
 and both 

(1 )( ) = 1 Uφ+ +  and ( ) = Ve eψ   intersect the unit circle, Corollary 

13.6 implies that *
ϕ+I M  and 

*M
e ψ  are hereditarily hypercyclic. Since 

* *
1=ψ ψ++I M M , 

*
*=ϕ
ϕ

M

e
e M , ( ) =ϕ Ue e  is contained in , and 

(1 )( ) = 1 Vψ+ +  does not intersect  , Corollary 13.6 implies that 
*
ϕM

e  and *I Mψ+  are non-hypercyclic. Finally, observe that *( )ϕσ M  

is the closure of U and *( )Mψσ  is the closure of -V and therefore the 

spectra of *
ϕM  and *Mψ  are connected and contain 0. Taking into 

account that all separable infinite dimensional Hilbert spaces are 
isomorphic, we arrive to the following result, which answers negatively 
the Question B2CP.

Proposition 13.7  There exist bounded linear operators A, B on the 
complex Hilbert space 2 such that σ(A) and σ(B) are connected and 
contain 0, I+A and eB are hereditarily hypercyclic, while eA and I+B are 
non-hypercyclic. 

Finally, if the answer to Question 13.4 is affirmative, then the 
following interesting question naturally arises.

Problem 13.8  Let A be a quasinilpotent bounded linear operator on 
a complex Banach space X and f be an entire function on one variable 
such that (0) = (0) = 1f f ′ . Is it true that hypercyclicity of f(A)  is equivalent 
to hypercyclicity of I+A? 

Spaces Ck(M) and their duals

Let (M,d) be a separable metric space and Ck(M) be the space of 
continuous functions :f M →  with the compact-open topology 
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(=the topology of uniform convergence on compact subsets of M). It 
is easy to see that Ck(M)  is complete. Moreover, Ck(M)  is metrizable 
if and only M is locally compact and Ck(M)  carries weak topology 
if and only if M is discrete. On the other hand, there always is an 1-
sequence with dense span in Ck(M). Indeed, let M  be a metrizable 
compactification of M. Since ( )C M  is a separable Banach space, there 
is an 1-sequence { }n nf ∈ +  with dense span in ( )C M . Since ( )C M  
is densely and continuously embedded into Ck(M), { }n nf ∈ + is an 1-
sequence with dense span in Ck(M). Thus Ck(M) ∈M if and only if M 
is non-discrete. Corollary 1.4 implies now the following proposition.

Proposition 13.9  If (M,d) is a separable non-discrete metric space, 
then there is a hereditarily hypercyclic operator on Ck(X). 

The reason for inclusion of the above proposition is to demonstrate 
that Theorem 1.3 and Corollary 1.4 are applicable far beyond metrizable 
or LB-spaces. The spaces Ck(M)  can have quite ugly structure indeed. 
For instance, take M being the set  of rational numbers with the 
metric induced from , and you have got the space Ck(), which does 
not fall into any of the well-understood and studied classes of locally 
convex spaces. We would like to raise the following question.

Problem 13.10 Characterize separable metric spaces (M,d) such 
that Ck(M)  supports a dual hypercyclic operator. 

It is worth noting that if M is discrete, then either Ck(M)  is finite 
dimensional or is isomorphic to ω and therefore does not support a 
dual hypercyclic operator (there are no hypercyclic operators on ϕ=ω′). 
In general, ( ) = ( ( ))kM C M ′M  can be naturally identified with the space 
of finite  -valued Borel σ -additive measures on M with compact 
support. This dual space is separable in the strong topology if and only 
if all compact subsets of M are finite or countable. If it is not the case, 
there is no point to look for dual hypercyclic operators on Ck(M). Thus 
the only spaces (M,d)  for which Ck(M)  has a chance to support a dual 
hypercyclic operator are non-discrete spaces with no uncountable 
compact subsets. The first natural candidate to consider is .

Note also that although Theorem 1.15 provides answers to the 
questions of Petersson, mentioned in the introduction, it does not 
characterize Fréchet spaces, supporting a dual hypercyclic operator.

Problem 13.11 Characterize Fréchet spaces X such that X supports 
a dual hypercyclic operator. 

The most natural Fréchet space for which we do not know whether 
it supports a dual hypercyclic operator is the countable power 2

  of 
the Hilbert space 2.

The Hypercyclicity Criterion

The following universality criterion is proved by Bés and Peris [2, 
Theorem 2.3 and Remark 2.6]. It is formulated in [2] in the case when 
X is an  -space, but the proof works without any changes for Baire 
separable metrizable topological vector spaces.

Theorem BP   Let { }n nT ∈ +  be a sequence of pairwise commuting 
continuous linear operators with dense range on a Baire separable 
metrizable topological vector space X. Then the following conditions are 
equivalent:

 (a) The family { }n n nT T ∈ +
⊕   is universal; 

(b)There exists an infinite subset A of + such that the family 
{ }n n AT ∈  is hereditarily universal ;  

(c)There exist a strictly increasing sequence {nk} of non-negative 

integers, dense subsets E and F of X and maps :kS F X→  for k ∈ + 
such that 0nk

T x → , 0kS y →  and n kk
T S y y→  as k →∞  for any x ∈ 

E and y ∈ F. 

We formulate now the so-called Hypercyclicity and Supercyclicity 
Criteria, which follow easily from the above theorem.

Theorem HC   Let X be a Baire separable metrizable topological 
vector space and T∈ L(X). Then the following conditions are equivalent:

(a)T ⊕ T is hypercyclic; 

(b)There exists an infinite subset A of + such that the family 
{ }n

n AT ∈
 is hereditarily universal; 

(c)There exist a strictly increasing sequence {nk} of non-negative 
integers, dense subsets E and F of X and maps :kS F X→  for k ∈ + 
such that 0

nkT x → , 0kS y →  and nk
kT S y y→  as k →∞  for any x 

∈E  and y ∈F. 

Theorem SC. Let X be a Baire separable metrizable topological 
vector space and T∈ L(X). Then the following conditions are equivalent: 

(a) T ⊕ T is supercyclic; 

(b) There exists an infinite subset A of + and a sequence { }n n As ∈  
of positive numbers such that the family { }n

n n As T ∈  is hereditarily 
universal; 

(c) There exist a strictly increasing sequence {nk} of non-negative 

integers, dense subsets E and F of X, and a sequence { }k ks ∈ +  of 

positive numbers and maps :kS F X→  for k ∈ + such that 0
nkks T x → , 

1 0k ks S y− →  and nk kT S y y→  as k →∞  for any x ∈E  and y ∈F. 

An operator satisfying the condition (c) of Theorem HC 
(respectively Theorem SC) is said to satisfy the Hypercyclicity 
(respectively, Supercyclicity) Criterion. The long standing question 
whether any hypercyclic operator T on a Banach space satisfies the 
Hypercyclicity Criterion, was recently solved negatively by Read and 
De La Rosa [49]. Their result was extended by Bayart and Matheron 
[50], who demonstrated that on any separable Banach space with an 
unconditional Schauder basis such that the forward shift operator 
associated with this basis is bounded, there is a hypercyclic operator 
T such that T ⊕ T is not hypercyclic. This leaves open the following 
question raised in reference [50].

Problem 13.12  Does there exist a separable infinite dimensional 
Banach space X such that any hypercyclic operator on X satisfies the 
Hypercyclicity Criterion? 

It is observed in reference [50] that any T∈ L(ω) satisfies the 
Hypercyclicity Criterion. It also follows from Theorem 1.7 and 
Theorem HC. Thus the above question in the class of Fréchet spaces 
has an affirmative answer, which leads to the following problem.

Problem 13.13 Characterize separable infinite dimensional 
Fréchet spaces X on which any hypercyclic operator on X satisfies the 
Hypercyclicity Criterion? 

It is worth noting that non-hypercyclicity of T ⊕ T in references 
[49,50] is ensured by the existence of a non-zero continuous 
bilinear form :b X X× →  with respect to which T is symmetric: 

( , ) = ( , )b Tx y b x Ty  for any ,x y X∈ . The following proposition formalizes 
the corresponding implication. Similar statements have been proved 
by many authors in various particular cases. The proof goes along the 
same lines as in any of them.
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Let X and Y be topological vector spaces and :b X X Y× →  
be separately continuous and bilinear. We say that T∈ L(X) is  
b-symmetric if ( , ) = ( , )b Tx y b x Ty  for any ,x y X∈ . Recall also that b is 
called  symmetric if ( , ) = ( , )b x y b y x  for any ,x y X∈  and b is called  
antisymmetric if ( , ) = ( , )b x y b y x−  for any ,x y X∈ .

Proposition 13.14  Let X and Y be a topological vector spaces, 
:b X X Y× →  be separately continuous, non-zero and bilinear and T∈ 

L(X) be b -symmetric. Then T ⊕ T is non-cyclic. If additionally b is non-
symmetric, then T2 is non-cyclic. 

Proof. Consider the left and right kernels of b: 

0 1= { : ( , ) = 0 foranyy X} and = { : ( , ) = 0 foranyx X}.X x X b x y X y X b x y∈ ∈ ∈ ∈   (13.2)

Separate continuity of b implies that X0 and X1 are closed linear 
subspaces of X. Since b is non-zero, we have 0X X≠  and 1X X≠ . 
From b -symmetry of T it follows that X0 and X1 are both T -invariant. 
Hence X0× X and X × X1 are T ⊕ T -invariant proper closed subspaces 
of X × X,  they can not contain a cyclic vector for T ⊕ T. Assume 
that T ⊕ T has a cyclic vector ( , )x y X X∈ × . Then 0x X∉  and 1y X∉ . 
Consider now a continuous linear operator : X X YΦ × →  defined by 
the formula 

( , ) = ( , ) ( , ).u v b x v b u yΦ −

Since 0x X∉  and 1y X∉ , we have 0Φ ≠ . On the other hand, 
using b -symmetry of T, we have 

(( ) ( , )) = ( , ) ( , ) = 0.n n nT T x y b x T y b T x yΦ ⊕ −

Thus the orbit of (x, y) with respect to T ⊕ T lies in the proper 
closed linear subspace ker Φ  of X, which contradicts cyclicity of (x, y) 
for T ⊕ T.

Assume now that b is non-symmetric. Then ( , ) = ( , ) ( , )c x y b x y b y x−  
is a non-zero separately continuous bilinear map from X × X to Y. 
Moreover, T is c-symmetric. Assume that x is a cyclic vector for T2. Then 
x can not lie in the right kernel of c, which is a proper closed T-invariant 
subspace of X. Hence the operator ( , )L X YΨ∈ , ( ) = ( , )u c u xΨ  is non-
zero. On the other hand, for any n ∈ +, 

2 2( ) = ( , ) = ( , ) = ( , ) ( , ) = 0.n n n n n n n nT x c T x x c T x T x b T x T x b T x T xΨ −

Hence the orbit of x with respect to T2 lies in the proper closed 
linear subspace ker Ψ  of X, which contradicts cyclicity of x for T2. 

This looks like a proper place to reproduce the following question 
of Grivaux.

Problem 13.15 Let X be a Banach space and T∈ L(X) be such that T 
⊕ T is cyclic. Does it follow that T2 is cyclic? 

As a straightforward toy illustration of the above proposition one 
can consider the following fact. Let ( , , )µΩ   be a measure space, 

)(µ∞∈Lg , 0 < p < ∞ and ))(( µpLLT ∈  be the operator of multiplication 
by g : =Tf fg  for )(µpLf ∈ . Then T ⊕ T is non-cyclic. Indeed, 

consider the continuous bilinear map )()()(: /2 µµµ ppp LLLb →× , 
( , ) =b f h fh . Clearly b is non-zero and T is b-symmetric. By Proposition 

13.14, T ⊕ T is non-cyclic. The above mentioned result of Bayart and 
Matheron can now be formulated in the following way.

Theorem BM  Let X be a separable infinite dimensional Banach 
space with an unconditional Schauder basis such that the forward 
shift operator associated with this basis is bounded. Then there exists 

a hypercyclic T∈ L(X) and a non-zero continuous bilinear form 
:b X X× →  such that T is b -symmetric. In particular, T ⊕ T is 

non-cyclic. 

The form b in the above theorem must be symmetric. Indeed, 
otherwise, by Proposition 13.14, T2 is non-cyclic, which contradicts 
hypercyclicity of T according to the Ansari theorem [1] on hypercyclicity 
of powers of hypercyclic operators. An answer to the following question 
could help in better understanding of the phenomenon of hypercyclic 
operators not satisfying the Hypercyclicity Criterion.

Problem 13.16 Let T be a hypercyclic continuous linear operator on 
a Banach space X such that T ⊕ T is non-hypercyclic. Does there exist a 
non-zero symmetric continuous bilinear form :b X X× →  such that 
T ⊕ T is b -symmetric? 

It is worth noting that non-existence of such a form b is equivalent 
to the density of the range of the operator I ⊗ T -T ⊗ I acting on the 
projective tensor product X Xπ⊗ .

Another observation concerning Theorem BM is that operators 
constructed in reference [50] have huge spectrum. Namely, their 
spectrum contains a disk centered at 0 of radius >1. On the other hand, 
we know (see Theorems 1.19 and 1.21) that any separable infinite 
dimensional complex Banach space supports plenty of hypercyclic 
operators with the spectrum being the singleton {1}. This leads to the 
following question.

Problem 13.17 Let T be a hypercyclic continuous linear operator on 
a complex Banach space X such that σ(T)= {1}. Is T ⊕ T hypercyclic? 

It is worth noting that an affirmative answer to the above 
question would take care of Problem 13.7. Indeed, the spectrum of 
any hypercyclic operator on a hereditarily indecomposable complex 
Banach space [51] is a singleton {z} with z ∈ .

n-supercyclic operators

Recently Feldman [52] has introduced the notion of an n -supercyclic 
operator for n ∈ . A bounded linear operator T on a Banach space X 
is called n-supercyclic for n ∈  if there exists an n -dimensional linear 
subspace L of X such that its orbit { : , }T x n x L∈ ∈  is dense in 
X. Such a space L is called an n - supercyclic subspace for T. Clearly,1-
supercyclicity coincides with the usual supercyclicity. In reference [52], 
for any n ∈ , n ≥ 2, a bounded linear operator T on 2 is constructed, 
which is n -supercyclic and not (n-1)-supercyclic. The construction is 
based on the observation that if Tk for 1 k n≤ ≤  are bounded linear 
operators on Banach spaces Xk all satisfying the Supercyclicity Criterion 
with the same sequence {nk}, then the direct sum T1 ⊕…⊕ Tn is n 
-supercyclic. This observation leads to the natural question whether 
the direct sum of n supercyclic operators should be n -supercyclic. The 
following proposition provides a negative answer to this question.

Proposition 13.18  There exists a hypercyclic operator T∈ L(2)  
such that T ⊕ T is not n -supercyclic for any n ∈ .

The above proposition follows immediately from Theorem BM 
and the next proposition, which implies that for the operator T from 
Theorem BM, T ⊕ T is not n -supercyclic for any n ∈ .

Proposition 13.19  Let X be an infinite dimensional topological 
vector space, :b X X× →  be non-zero, separately continuous and 
bilinear and T∈ L(X) be a b-symmetric operator with no non-trivial closed 
invariant subspaces of finite codimension. Then for any finite dimensional 
linear subspace L of X × X, the set {( ( ) , ( ) ) : , ( , ) }p T x p T y p x y L∈ ∈  
is nowhere dense in X × X. 
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In order to prove Proposition 13.19, we need the following lemma.

Lemma 13.20  Let m ∈ , L and X be topological vector spaces, such 
that =dim L k m≤  and : mB L X× →  be a continuous bilinear map 
such that for each non-zero n ∈ L, the linear map ( , )B u ⋅  is surjective. 
Then the set = { : ( , ) = 0 forsomenon zero }A x X B u x u L∈ − ∈  is 
closed and nowhere dense in X. 

Proof. First, observe that it is enough to prove the required 
statement in the case, when X is finite dimensional. Indeed, let e1,…, 

ek be a basis of L and 1
=1

= ( , )
k

j
j

X ker B e ⋅


. Then X1 is a closed linear 

subspace such that ( , ) = 0B u x  for any 1( , )u x L X∈ × . Moreover, 
X1 has codimension at most km in X. Thus we can pick a finite 

dimensional subspace Y of X such that 1=X X Y⊕ . Since ( , ) = 0B u x  
for any 1( , )u x L X∈ × , we have that for each \ {0}u L∈ , the restriction 
of ( , )B u ⋅  to Y is onto. It is also clear that 1

0= ( )A Aπ − , where 

0 = { : ( , ) = 0 for some non zero }A x Y B u x u L∈ − ∈  and π is the 
projection in X onto Y along X1. Since π is continuous and open, A is 
closed and nowhere dense in X if and only if A0 is closed and nowhere 
dense in Y, which is finite dimensional.

Thus without loss of generality, we can assume that X is finite 
dimensional. Consider the unit sphere S in L with respect to some 
Hilbert space norm on L. For each u ∈ S, ( , )B u ⋅  is onto and we can 
pick an m-dimensional subspace Zu of X such that the restriction of 

( , )B u ⋅  to Zu is invertible. Clearly, the set Vu of those v ∈ S for which 
the restriction of ( , )B u ⋅  to Zu is invertible is open in S and contains u. 
Thus we can pick a neighborhood Wu of u such that ( , )B v ⋅  is onto for 
each uv W∈ . Since u ∈ Wu,the family {Wu : u ∈ S} is an open cover of 
the compact space S and therefore we can choose u1,…, ur∈ S such that 

=1

=
r

uj
j

S W


. Then 

=1

= , where = { : ( , ) = 0 for some non zero }.∈ − ∈


r

j j u j
j

A A A x X B u x u W

It suffices to show that each Aj is closed and nowhere dense. Let 

1 j r≤ ≤ . Closeness of Aj is rather easy. Indeed, let { }n nx ∈ +  be a 

sequence of elements of Aj converging to x ∈ X. Since xn ∈ Aj, we can 

pick n uj
w W∈  such that ( , ) = 0n nB w x . Since uj

W  is compact, we, 

passing to a subsequence, if necessary, can assume that n uj
w w W→ ∈ . 

Since B is continuous, we have 0 = ( , ) ( , )n nB w x B w x→ . Thus ( , ) = 0B w x  

and x ∈ Aj. That is, Aj is closed. It remains to show that it is nowhere dense. 

Pick a linear subspace Yj of X such that =u jj
Z Y X⊕ . For each uj

u V∈  

let Tu be the restriction of ( , )B u ⋅  to uj
Z  and Su be the restriction of ( , )B u ⋅  

to Yj. Let uj
z Z∈  and y ∈  Yj. Then jz y A+ ∈  if and only if there exists 

uj
u W∈  such that = 0u uT z S y+ . Since Tu is invertible, the latter is 

equivalent to 1= u uz T S y−− . Thus = ( )j j u j
A F Y W× , where : ,j u j

F Y V X× →

1( , ) = u uF y u y T S y−− . Let n=dim X. Then =jdimY n m− . Hence 

j u j
Y V×  is a manifold of dimension ( ) 1n m kα − + − , where α =1 

if = and α =1 if =. It is clear that F is smooth and therefor is 
Lipschitzian on any compact set. Since a Lipschitzian map does not 

increase the Hausdorff dimension, we see that = ( )j j u j
A F Y W×  is a 

countable union of compact sets of Hausdorff dimension at most 
( ) 1<n m k nα α− + − . Since nX   , any compact subset of X of 

Hausdorff dimension <αn is nowhere dense. Thus Aj is a Baire first 
category set. Since Aj is closed, it is nowhere dense. 

Proof of Proposition 13.9. First, we consider the case of non-
degenerate b. That is, we assume that both the left and the right 
kernels X0 and X1 of b defined by (13.2) are trivial. For each k ∈ + 
and ( , )x y X X∈ × , consider the linear functional ( , ) ( )k x y X X ′Φ ∈ ×  
defined by the formula 

( , )( , ) = ( , ) ( , ).k k
k x y u v b T x v b u T yΦ −

First, we shall check that for any ( , ) (0,0)x y ≠ , the functionals 
( , )k x yΦ  for k ∈ +  are linearly independent. Assume the contrary. Then 

there exists a non-zero polynomial p such that ( ( ) , ) = ( , ( ) )b p T x v b u p T y  
for any u,v ∈ X. Since the left-hand side of the last equality does not 
depend on u and the right-hand side does not depend on v, they both do 
not depend on both u and v. Hence ( ( ) , ) = ( , ( ) ) = 0b p T x v b u p T y  for any u,v 

∈ X. Since T is b -symmetric, we have ( , ( ) ) = ( ( ) , ) = 0b x p T v b p T u y  for 

any u,v ∈ X. Hence ( ) = ( ) = 0p T p Tϕ ψ′ ′ , where , Xϕ ψ ′∈ , ( ) = ( , )v b x vϕ , 
( ) = ( , )u b u yψ . Since T has no non-trivial closed invariant subspaces of 

finite codimension, T′  has no non-trivial finite dimensional invariant 
subspaces. By Lemma 7.2, p(T′ ) is injective. Hence = = 0ϕ ψ . Since b 
is non-degenerate, we then have x=y=0,  which contradicts with the 
assumption ( , ) (0,0)x y ≠ . Thus the functionals ( , )k x yΦ  for k ∈ + are 

linearly independent for each ( , ) (0,0)x y ≠ .

Let L be a finite dimensional linear subspace of X × X, 
=dim L k∈  and m ∈ , m > n. Consider the bilinear map 

1
=0: ( ) , (( , ),( , )) = { ( , )( , )} .−× × → Φm m

j jB L X X B x y u v x y u v

Since for any non-zero ( , )x y L∈ , the functionals 
0 1( , ), , ( , )mx y x y−Φ Φ  are linearly independent, we see that the linear 

map (( , ), )B x y ⋅  is onto. By Lemma 13.20, the set 

= {( , ) : there is non zero(x,y) L such that B((x,y),(u,v))=0}A u v X X∈ × − ∈

is closed and nowhere dense in X × X. Let now (0,0) ( , ) ( )( )u v p T T L≠ ∈ ⊕  
for some p ∈ . Then ( , ) = ( ( ) , ( ) )u v p T x p T y  for some ( , ) \ {(0,0)}x y L∈ . 
Then ( , )( , ) = ( ( , ( ) ) ( ( ) , )) = 0j j

j x y u v b T x p T y b p T x T yΦ −  for any j ∈ + since 

T is b-symmetric. It follows that ( , )u v A∈ . That is, the nowhere dense 
set A contains the set {( ( ) , ( ) ) : , ( , ) }p T x p T y p x y L∈ ∈ . Thus the 
latter set is nowhere dense.

It remains to reduce the general case to the case of non-
degenerate b. Since b is non-zero, at least one of the bilinear forms 

0( , ) = ( , ) ( , )b x y b x y b y x+  or 1( , ) = ( , ) ( , )b x y b x y b y x−  is non-zero. 
Clearly T is symmetric with respect to both b0 and b1. Thus replacing 
b by either b0 or b1, if necessary, we can assume that b is symmetric or 
antisymmetric. Then left and right kernels X0 and X1 of b defined by (13.2) 
coincide. Since T is b -symmetric, X0 is T-invariant. Let 0 0( / )T L X X∈  
be defined as 0 0 0( ) =T x X Tx X+ +  and β be the bilinear form on X /X0 
defined by the formula 0 0( , ) = ( , )x X y X b x yβ + + . Since X0 is the right 
and the left kernel of b and is T -invariant, the operator T0 and the form 
β are well-defined and β is non-degenerate. Moreover, it is easy to see 
that T0 is β-symmetric and has no non-trivial closed invariant subspaces 
of finite codimension. Assume now that L a finite dimensional linear 
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subspace L of X × X, = {( ( ) , ( ) ) : ,( , ) }A p T x p T y p x y L∈ ∈  and 

0 0 0 0= {( ( )( ), ( )( )) : ,( , ) }B p T x X p T y X p x y L+ + ∈ ∈ . According to 

the first part of the proof, B is nowhere dense in X /X0. Since 1= ( )A Bπ − , 
where 0( ) =x x Xπ +  is the canonical map from X onto X /X0, we see that 
A is nowhere dense in X. 

The following question is raised by Bourdon, Feldman and Shapiro 
[53].

Problem 13.21 Let X be a complex Banach space, n ∈  and T∈ 
L(X) be such that T is n-supercyclic and ( ) =p Tσ ′ ∅ . Is T cyclic? 

It is worth noting that the only known examples of n -supercyclic 
operators T with ( ) =p Tσ ′ ∅  are the mentioned direct sums of 
operators satisfying the Supercyclicity Criterion with the same 
sequence {nk}. Such direct sums are all cyclic [54].

Feldman in reference [52] has also introduced the concept of an 
∞-supercyclic operator. A bounded linear operator T on a Banach 
space X is called ∞ -supercyclic if there exists a linear subspace L of X 
such that its orbit {Tn x: n ∈ +, t ∈ L} is dense in X, the space  Tn(L) 
is not dense in X for any n ∈ + and L contains no non-zero invariant 
subspace of T. Gallardo and Motes-Rodriguez [55], answering a 
question of Salas, demonstrated that the Volterra operator 

2 2
0

: [0,1] [0,1], ( ) = ( )
x

V L L Vf x f t dt→ ∫
is not supercyclic. In [56] it is shown that V is not n -supercyclic for any 
n ∈ . However, it turns out that V is ∞-supercyclic.

Proposition 13.22  The Volterra operator is ∞-supercyclic. 

Proof. For any non-zero h ∈ L2[0, 1] we denote by Lh 

the orthocomplement of h: 2= { [0,1]: , = 0}hL f L f h∈ 〈 〉 . It is 

straightforward to see that for any h ∈ L2[0, 1], 

1
*

*( ) = , where ( ) = ( )∫hV h x
V L L V f x f t dt 		             (13.3)

 is the adjoint of V. Consider the space 
( )= { [0,1] : (1) = 0 for any }jf C f jε ∞

+∈ ∈ . If h is non-zero element of ε, 

then according to the above display, * =V h h′ − . Thus by (13.3) 

( )( ) = for any non zero and any .n
h nh

V L L h nε +− ∈ ∈      (13.4)

Consider now the following specific h ∈ ε : h(1) =0 and 
1( 1)( ) = xh x e
−−  for 0 < 1x≤ . First, we shall show that Lh does not 

contain any non-zero invariant subspace of V. Assume the contrary. 
Then there exists non-zero f ∈ L2[0, 1] such that Vn f ∈ Lh for each n ∈ 

+. That is, *0 = , = ,n nV f h f V h〈 〉 〈 〉 . Hence h is not a cyclic vector for 
V*. On the other hand, it is well-known that g ∈ L2[0, 1] is non-cyclic 
for V* if and only if there is q ∈ (0,1) such that g vanishes on [q, 1]. 
Thus h vanishes on a neighborhood of 1, which is obviously not the 
case. Hence Lh does not contain any non-zero invariant subspace of 
V. According to (13.4), ( )n

hV L  is a closed hyperplane in L2[0, 1] and 
therefore Vn(Lh) is not dense in L2[0, 1] for each n ∈ +. Now, in order 

to show that V is ∞-supercyclic it suffices to verify that 
=0

= ( )n
h

n

A V L
∞



 is 

dense in L2[0, 1]. By (13.4), ( )
=0

= nh
n

A L
∞



. It is easy to see that for any f ∈ 

L2[0, 1] and non-zero g ∈ L2[0, 1], the distance from f to Lg is given by 

the formula 1( , ) =|| || | , |gdist f L g f g− 〈 〉 . Let q ∈ (0,1) and f ∈ L2[0, 1] 

be such that f vanishes on [q, 1]. Then 

( )
( ) [0, ]2

( ) ( ) ( )
[0,1]2

|| ||
| , |( , ) = || || .

|| || || ||
〈 〉

≤

n
n L q

n n nh
L

h
f hdist f L f
h h

On the other hand, analyticity of h on [0, q] and easy lower 

estimates if 
( )

[0,1]2
|| ||n

L
f  imply that 

( ) 1/ ( ) 1/
[0, ] [0, ]2 2

( !|| || ) < and ( !|| || ) = .limn n n n
L q L qnn

n h n hlim
→∞→∞

∞ ∞

From the last two displays it follows that ( )( , ) 0nh
dist f L →  as 

n→∞ . Hence A  contains the space of all functions vanishing on a 

neighborhood of 1. Since the latter space is dense in 2[0,1]L , A is dense 
in L2[0, 1], which completes the proof. 

-cyclicity and supercyclicity

Let T be a continuous linear operator on a separable complex 
topological vector space X. We say that T is  - cyclic if there exists x ∈ 
X such that the linear span of the orbit {Tn x: n ∈ +} in X considered as 
a linear space over  is dense in X. Similarly, T is called - supercyclic if 
there is x ∈ X such that {tTn x: n ∈ +, t ∈ } is dense in X and T is called 
+- supercyclic if there is x ∈ X such that {tTn x: n ∈ +, t > 0}is dense 
in X. Clearly any +-supercyclic operator is  -supercyclic and any 
 -supercyclic operator is  -cyclic. The following theorem by León-
Saavedra and Müller is proved in reference [57]. It is proved in the case 
when X is a Banach space, but exactly the same proof works in general.

Theorem LM  Let T be a continuous linear operator on a complex 
locally convex space X with ( ) =p Tσ ′ ∅ . Then T is supercyclic if and only 
if T is +-supercyclic. 

As we have shown, there are bilateral weighted shifts Tw on 2() 
with the weight sequence w converging to zero arbitrarily fast and 
such that I+Tw and I+T′w are both hypercyclic. This happens because 
we allow w to behave irregularly while still satisfying the condition 

| || |n nw a≤  for every n ∈  with a being any sequence of positive 
numbers. The following proposition shows that hypercyclicity of I+Tw 
is incompatible with the symmetry of the weight sequence. Recall that 
a continuous linear operator on a Banach space X is called  weakly 
supercyclic if it is supercyclic on X with weak topology.

Proposition 13.23  Let ( )w ∞∈   be a weight such that | |=| |n nw w−  
for any n ∈ , and let p be a polynomial with real coefficients. Then the 
operator p(Tw) acting on complex 2() is not -cyclic. In particular, by 
Theorem  LM, p(Tw) is not weakly supercyclic. 

Corollary 13.24  Let ( )w ∞∈   with ||=|| nn ww −  for any n ∈ . 
Then the operator I+Tw acting on 2() is not weakly supercyclic. 

Proof of Proposition 13.23. First, note that if , ( )w w ∞′∈   satisfy 
| |=| |n nw w′  for any n ∈ , then Tw and wT ′  are isometrically similar 
with a diagonal unitary operator implementing the similarity. Thus we 
can, without loss of generality, assume that wn ∈  for each n ∈ . Then 
the operators Tw and S=p(Tw)  have real matrix coefficients with respect 
to the canonical basis. Let H be the  -subspace of 2() consisting 
of the sequences with real entries. Then ( )wT H H⊆ , ( )S H H⊆ , 

( ) =wT iH iH  and ( )S iH iH⊆ . Let T0 be the restriction of Tw to H and 
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S0 the restriction of S to H considered as  -linear operators. Since T0 
and S0 are similar to the restrictions of Tw and S to iH, we see that Tw 
and S, considered as   -linear operators, are similar to T0 ⊕ T0 and S0 
⊕ S0. Now the symmetry of the weight sequence w implies that T0 is 
isometrically similar to T′0. Indeed, T′0=UT0U

-1, where Uen= e1-n for n 
∈ . Then S0=p(T0) is similar to S′0=p(T′0). Thus S considered as an  
-linear operator is similar to S0 ⊕ S′0. The last operator is non-cyclic. 
Indeed, if x ⊕ y is a non-zero vector in H ⊕ H, then the orbit of x ⊕ y 
with respect to S0 ⊕ S′0 is orthogonal to the non-zero vector y ⊕ (-x) 
∈H ⊕ H. Thus S is not  -cyclic. 

Since p() for 1 ≤ p ≤ 2 is contained in 2() and carries a stronger 
topology than the one inherited from 2(), Proposition 13.23 remains 
true if we replace 2() by p() with 1 ≤ p ≤ 2 . On the other hand, the 
unweighted shift on p() with 2< p < ∞ is weakly supercyclic [37] and 
therefore the statement of Proposition 13.23 becomes false if we replace 
2()  by p() with p > 2. At this point it is interesting to remind that, 
according to Theorem B, norm hypercyclicity and supercyclicity 
of a bilateral weighted shift on p() do not depend on p. This leads 
naturally to the following question.

Problem 13.25 Characterize hypercyclicity and supercyclicity of the 
operators of the form I+T, where T is a bilateral weighted shift on p(). 
In particular, does hypercyclicity or supercyclicity of these operators 
depend on the choice of P. 1 ≤ p < +∞ ?
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