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Abstract
Canonical bases for subspaces of a vector space are introduced as a new effective method to analyze subalgebras 

of Lie algebras. This method generalizes well known Gauss-Jordan elimination method.
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Introduction
This article has two parts. In Part I, the canonical bases for 

5-dimensional subspaces of a 6-dimensional vector spaces are 
introduced, and all of them are found. Then the nonequivalent canonical 
bases are classified in Theorem 1. The corresponding evaluation in Part 
I has a universal character, and it can be called a generalization of the 
well-known Gauss - Jordan elimination method [1]. Canonical bases 
for subspaces of 3-, 4-, and 5-dimensional vector spaces are already 
found too, and they will be demonstrated in the separate manuscripts. 
The canonical bases for the (n–1)-dimensional subspaces of vector 
spaces of dimension n>6 can be constructed in the way similar to this 
in Part I. This new method of canonical bases helps to study all objects 
associated with subspaces of vector spaces.

In Part II, this method is applied to study subalgebras of Lie 
algebra of Lorentz group. It’s a fact that a classification problem 
of subalgebras of low dimensional real Lie algebras was discussed 
during 1970-1980 years. That classification of subalgebras of all real 
Lie algebras of dimension n ≤ 4 only was obtained in the form of 
representatives for equivalent classes of subalgebras considering under 
their groups of inner automorphisms [2,3]. The subalgebras of real Lie 
algebras of dimension n ≥ 5 were not classified before. As a step of 
the further classification, the 5-dimensional hypothetical subalgebras 
of 6-dimensional Lie algebra of Lorentz group are investigated in Part 
II [4]. The corresponding procedure involves nonequivalent canonical 
bases from Part I. It is proved that Lie algebra of Lorentz group has no 
subalgebras of the dimension 5. This means also that Lorentz group has 
no connected 5-dimensional subgroups.

Part I

Canonical bases for 5-dimensional subspaces of a 6-dimensional 
vector space

Let 1 1 2 2 3 3 4 4 5 5 6 6a a e a e a e a e a e a e= + + + + +
      

, 1 1 2 2 3 3 4 4 5 5 6 6b b e b e b e b e b e b e= + + + + +
      

,

1 1 2 2 3 3 4 4 5 5 6 6c c e c e c e c e c e c e= + + + + +
      

, 1 1 2 2 3 3 4 4 5 5 6 6d d e d e d e d e d e d e= + + + + +
      

,   (I)

1 1 2 2 3 3 4 4 5 5 6 6f f e f e f e f e f e f e= + + + + +
      

 be a general basis for 
arbitrary 5-dimensional subspace S of a 6-dimensional vector space V 
with its standard basis 1 2 3 4 5 6{ , , , , , }e e e e e e

     

. We associate the next matrix 
M with the basis (I)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

a a a a a a
b b b b b b

M c c c c c c
d d d d d d
f f f f f f

 
 
 
 =
 
 
  

.

Definition 1

The basis (I) is called canonical if its associated matrix M is in 
reduced row echelon form.

Definition 2

Two bases are called equivalent if they generate the same subspace 
of a given vector space, and two bases are nonequivalent if they generate 
different subspaces.

We start our transformation procedure for the basis (I) to find all 
canonical nonequivalent bases for the subspace S.

Suppose that at least one coefficient from a1, b1, c1, d1, f1 is 
not zero. Without any loss in the generality, we can propose that 
a1≠0. Perform the linear operation 1/a a



 first, and the operations 

1b b a−
 

, 1c c a−
 

, 1d d a−
 

, 1f f a−
 

 after the first one. The 
following basis is obtained 1 2 2 3 3 4 4 5 5 6 6a e a e a e a e a e a e= + + + + +

      

, 
2 2 3 3 4 4 5 5 6 6b b e b e b e b e b e= + + + +

     

,

2 2 3 3 4 4 5 5 6 6c c e c e c e c e c e= + + + +
     

, 2 2 3 3 4 4 5 5 6 6d d e d e d e d e d e= + + + +
     

, (a)

 
2 2 3 3 4 4 5 5 6 6f f e f e f e f e f e= + + + +

     

.

Remark

The first components of vectors , , , ,a b c d f
    

 are changed as the 
result of the operations performed but all other components of them 
are saved just for convenience. This idea will be used throughout of 
Part I.

Suppose now that at least one coefficient from b2, c2, d2, f 2 in the 
basis (a) is not zero. Without any loss in generality, let b2 ≠ 0. Perform 
the first linear operation 2/b b



, and the operations 2a a b−
 

, 2c c b−
 

, 
bff 2− , bff 2−  after the first one. The following new basis is obtained

 1 3 3 4 4 5 5 6 6a e a e a e a e a e= + + + +
     

, 2 3 3 4 4 5 5 6 6b e b e b e b e b e= + + + +
     

,

 3 3 4 4 5 5 6 6c c e c e c e c e= + + +
    

, 3 3 4 4 5 5 6 6d d e d e d e d e= + + +
    

,        (1)
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3 3 4 4 5 5 6 6f f e f e f e f e= + + +

    

.

Suppose that at least one coefficient among c3, d3, f 3 in the basis (1) 
is not zero. Again, without any loss in the generality, let c3≠0. Perform 
the first operation 3/c c



, and the operations 3a a c−
 

, 3b b c−
 

, 3d d c−
 

, 
3f f c−

 

 then. We obtain the following basis

 2 4 4 5 5 6 6b e b e b e b e= + + +
    

, 
2 4 4 5 5 6 6b e b e b e b e= + + +

    

,

 3 4 4 5 5 6 6c e c e c e c e= + + +
    

, 4 4 5 5 6 6d d e d e d e= + +
   

,                        (2)

 4 4 5 5 6 6f f e f e f e= + +
   

.

Suppose now that at least one coefficient from d4, f 4 in the basis (2) 
is not zero. Let d4≠0. Perform the operation 4/d d



 first, and then the 
operations 4a a d−

 

, 4b b d−
 

, 4c c d−
 

, 4f f d−
 

. The new transformed 
basis is

 
1 5 5 6 6a e a e a e= + +

   

, 2 5 5 6 6b e b e b e= + +
   

,

 
3 5 5 6 6c e c e c e= + +

    , 5 5 6 6f f e f e= +
  

,                     (3)

 
5 5 6 6f f e f e= +

   .

At least one coefficient from f 5, f 6 is not zero in the basis (3). If f 5 ≠ 
0, then perform the operation 5/f f



 first, and the operations 5a a f−
 

, 

5b b f−
 

, 5c c f−
 

, 5d d f−
 

 after the first one. The following canonical 
basis is obtained

1 6 6a e a e= +
  

, 2 6 6b e b e= +
  

, 3 6 6c e c e= +
  

, 
4 6 6d e d e= +

  

, 

5 6 6f e f e= +
  

.                   (a1)

If f 6 ≠ 0, then perform operation 6/f f


 first, and the operations 

6b b f−
 

, 
6b b f−

 

,

6c c f−
 

,
6d d f−

 

 after the first one. The new basis is obtained

1 5 5a e a e= +
   , 

2 5 5b e b e= +
  

, 
3 5 5c e c e= +

   , 4 5 5d e d e= +
  

, 

5 5 6f f e e= +
  

.

The last basis is equivalent to the basis 1( )a  if f5 ≠ 0. So, f 5=0, and the 
new canonical basis is obtained

 
1 5 5a e a e= +

   , 2 5 5b e b e= +
   , 3 5 5c e c e= +

  

, 4 5 5d e d e= +
  

, 
6f e=

 

.       (a2)

1. Suppose that both coefficients d4, f4 at the basis (2) are zero. 
We have

 1 4 4 5 5 6 6a e a e a e a e= + + +
    

, 2 4 4 5 5 6 6b e b e b e b e= + + +
    

,

 
3 4 4 5 5 6 6c e c e c e c e= + + +

    

, 5 5 6 6d d e d e= +
  

, 5 5 6 6f f e f e= +
  

.     (4)

 Suppose that at least one coefficient from d5, f5 at (4) is not zero. 
It’s easy to see that the alternative case with d5=0 and f5=0 is impossible 

because the corresponding vectors 6 6d d e=
 

, 6 6f f e=
 

 are linearly 
dependent. Let d5 ≠ 0. Perform operation 5/d d



 first, and the 

operations 5a a d−
 

, 5b b d−
 

, 5f f d−
 

, 5f f d−
 

 next. The following 
basis is obtained

1 4 4 6 6a e a e a e= + +
   

, 
2 4 4 6 6b e b e b e= + +

   

,

3 4 4 6 6c e c e c e= + +
   

, 5 6 6d e d e= +
  

,

6 6f f e=
 

.

It’s obvious that f6 ≠ 0 for the vector f


 at the last basis. Perform the 
operation 6/f f



 first, and the operations 6a a f−
 

, 6b b f−
 

, 6c c f−
 

, 
6d d f−

 

 after the first one. We obtain the new canonical basis

 
2 4 4b e b e= +

  

, 
2 4 4b e b e= +

  

, 
3 4 4c e c e= +

  

, 
5d e=

 

, 
6f e=

 

.       (a3)

If f5 ≠ 0 at the basis (4), perform the operation 5/f f


 first, and then 
the operations 5a a f−

 

, 5b b f−
 

, 5c c f−
 

, 5d d f−
 

. The following 
basis is obtained

1 4 4 6 6a e a e a e= + +
   

, 2 4 4 6 6b e b e b e= + +
   

,

3 4 4 6 6c e c e c e= + +
   

, 6 6d d e=
 

, 5 6 6f e f e= +
  

.

We have d6 ≠ 0 in the last basis. Perform the first operation 6/ ,d d


 
and then the operations 6a a d−

 

, 6b b d−
 

, 6c c d−
 

, 6f f d−
 

. The 
following canonical basis is obtained

 
1 4 4a e a e= +

  

, 2 4 4b e b e= +
  

, 3 4 4c e c e= +
  

, 6d e=
 

, 5f e=
 

.

 This basis is not new, it’s equivalent to the basis (a3).

2. Suppose, in opposition to the step 2, that all coefficients c3, d3, 
f3 are zero in the basis (1). We have

2 3 3 4 4 5 5 6 6b e b e b e b e b e= + + + +
     

, 
2 3 3 4 4 5 5 6 6b e b e b e b e b e= + + + +

     

,

4 4 5 5 6 6c c e c e c e= + +
   

, 4 4 5 5 6 6d d e d e d e= + +
   

,               (5)

4 4 5 5 6 6f f e f e f e= + +
   

.

Consider coefficients c4, d4, f4 in the basis (5). Suppose that at least 
one of them is not zero.

Let c4≠0 (without any loss in generality). Perform the operation 

4/c c


 first, and then the operations 4a a c−
 

, 4b b c−
 

, 4d d c−
 

, 

4f f c−
 

. The following basis is obtained

1 3 3 5 5 6 6a e a e a e a e= + + +
    

, 2 3 3 5 5 6 6b e b e b e b e= + + +
    

,

4 5 5 6 6c e c e c e= + +
    , 5 5 6 6d d e d e= +

  

, 5 5 6 6f f e f e= +
  

.               (5a)

At least one coefficient among d5, f5 is not zero in the basis (5a). If 
both coefficients d5, f5 are zero, then 6 6d d e=

 

, 6 6f f e=
 

, and vectors 

,d f
 

 are linearly dependent but it’s impossible for any basis. Let d50. 
Perform the operation 5/d d



 first, and then the operations 5a a d−
 

, 

5b b d−
  , dcc 5− , 5f f d−

 

. The following basis is obtained

1 3 3 6 6a e a e a e= + +
    , 4 6 6c e c e= +

  

,

4 6 6c e c e= +
  

, 5 6 6d e d e= +
  

, 6 6f f e=
 

.

The coefficient f6 is not zero at the last basis. Perform the operation 

6/f f


 first, and The operations 
6a a f−

 

, 6b b f−
 

, 6c c f−
 

, 6d d f−
 

 
after the first one. We obtain the new canonical basis

1 3 3a e a e= +
   , 

2 3 3b e b e= +
  

, 
5d e=

  , 
5d e=

 

, 
6f e=

 

.                 (a4)

If f5 ≠ 0 at the basis (5a), then perform the operation 5/f f


 first, 
and the operations 5a a f−

 

, 5b b f−
 

, 5c c f−
 

, 5d d f−
 

 after the first 
operation. The following basis is obtained

1 3 3 6 6a e a e a e= + +
   

, 
2 3 3 6 6b e b e b e= + +

   

,

4 6 6c e c e= +
  

, 6 6d d e=
 

, 5 6 6f e f e= +
  

.

The previous basis generates the next canonical basis

1 3 3a e a e= +
   , 2 3 3b e b e= +

  

, 4c e=
 

, 6d e=
 

, 5f e=
 

.

This basis is obviously equivalent to the basis (a4), so it’s not a new one.
3. If all coefficients c4, d4, f4 are zero at (5), then the basis has the 

following structure:
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1 3 3 4 4 5 5 6 6a e a e a e a e a e= + + + +
     

, 2 3 3 4 4 5 5 6 6b e b e b e b e b e= + + + +
     

,

5 5 6 6c c e c e= +
  

, 
5 5 6 6d d e d e= +

  

, 5 5 6 6f f e f e= +
  

.                   (6)

It’s obvious that 3 vectors , ,c d f
  

 at (6) are located at the same plane 
determined by vectors 5,e



 6e


. So, they are linearly dependent that 
contradicts the fact that all vectors , , , ,a b c d f

    

 are linearly independent. 
So, the case c4=0, d4=0, f4=0 doesn’t generate any canonical basis.

4. Suppose, in opposition to the Step 1, that the second coefficients 
b2, c2, d2, f2 at the basis (a) are zero. We obtain the following 
basis

 
1 2 2 3 3 4 4 5 5 6 6a e a e a e a e a e a e= + + + + +

      

, 3 3 4 4 5 5 6 6b b e b e b e b e= + + +
    

,
 

3 3 4 4 5 5 6 6c c e c e c e c e= + + +
    

, 
3 3 4 4 5 5 6 6d d e d e d e d e= + + +

    

,        (7)

 
3 3 4 4 5 5 6 6f f e f e f e f e= + + +

    

.

Consider coefficients b3, c3, d3, f3 at the basis (7). Suppose that at 
least one of them is not zero. Without any loss in the generality, let b3 ≠ 
0. Perform the operation 3/b b



 first, and then the operations 3a a b−
 

, 

3c c b−
 

, 3d d b−
 

, 3f f b−
 

. The following basis is obtained

1 2 2 4 4 5 5 6 6a e a e a e a e a e= + + + +
      , 3 4 4 5 5 6 6b e b e b e b e= + + +

    

,

4 4 5 5 6 6c c e c e c e= + +
   

, 4 4 5 5 6 6d d e d e d e= + +
   

,

4 4 5 5 6 6f f e f e f e= + +
    .

Consider coefficients c4, d4, f4 at the previous basis. Suppose that at 
least one of them is not zero. Let c4 ≠ 0. Perform the operation 4/c c



 
first, and the operations 4a a c−

 

, 4b b c−
 

, 4d d c−
 

, 4f f c−
 

 after the 
first one. The following basis is obtained

1 2 2 5 5 6 6a e a e a e a e= + + +
    

, 3 5 5 6 6b e b e b e= + +
   

,

4 5 5 6 6c e c e c e= + +
   

, 5 5 6 6d d e d e= +
  

,                    (8)

5 5 6 6f f e f e= +
  

.

 At least one coefficient among d5, f5 in the basis (8) is not zero. If 
both coefficients d5, f5 are zero, then vectors 

6 6d d e=
 

, 
6 6f f e=

 

 are 
linearly dependent but it’s impossible for (8) to be a basis. Let d5 ≠ 0. 
Perform the operation 5/d d



 first, and the operations 5a a d−
 

, 5b b d−
 

, 

5c c d−
 

, 5f f d−
 

 after the first one at the basis (8). The following new 
basis is obtained

1 2 2 6 6a e a e a e= + +
   

, 3 6 6b e b e= +
  

,

4 6 6c e c e= +
  

, 5 6 6d e d e= +
  

, 6 6f f e=
 

.

It’s obvious that f6 ≠ 0 at the last basis, and it generates the new 
canonical basis

1 2 2a e a e= +
  

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                (a5)

If f5 ≠ 0 at the basis (8), perform the operation 5/f f


 first, and then 
the operations 5a a f−

 

,

fbb 5− , 5c c f−
 

, 5d d f−
 

 at the basis (8). The following basis 

obtained

1 2 2 6 6a e a e a e= + +
    , 3 6 6b e b e= +

  

,

4 6 6c e c e= +
  

, 6 6d d e=
 

, 5 6 6f e f e= +
  

.

It’s obvious that d6 ≠ 0 in the last basis. So, the following canonical 
basis is generated

1 2 2a e a e= +
  

, 3b e=
 

, 4c e=
 

, 6d e=
 

, 5f e=
 

.

The last basis is equivalent to the basis (a5), so it’s not a new one.

5. Suppose that coefficients b3, c3, d3, f3 at (8) are zero. We receive 
the basis

1 2 2 4 4 5 5 6 6a e a e a e a e a e= + + + +
     

, 4 4 5 5 6 6b b e b e b e= + +
   

,

3 3 5 5 6 6c c e c e c e= + +
   

, 4 4 5 5 6 6d d e d e d e= + +
   

,                (9)

4 4 5 5 6 6f f e f e f e= + +
   

.

The four vectors b


, c


, d


, f


 in the basis (9) are linearly 
dependent because they are located at the same 3-dimensional subspace 

4 5 6{ , , }Span e e e
  

 but it contradicts to the fact that vectors , , , ,a b c d f
    

 
form a basis. So, this case doesn’t generate any canonical basis.

A. Suppose that a1=b1=c1=d1=f1=0 in the basis (I). The following 
basis (b) is obtained

2 2 3 3 4 4 5 5 6 6a a e a e a e a e a e= + + + +
      , 

2 2 3 3 4 4 5 5 6 6c c e c e c e c e c e= + + + +
     

,

2 2 3 3 4 4 5 5 6 6c c e c e c e c e c e= + + + +
     

, 2 2 3 3 4 4 5 5 6 6d d e d e d e d e d e= + + + +
     

, (b)

2 2 3 3 4 4 5 5 6 6f f e f e f e f e f e= + + + +
     

.

Suppose that at least one coefficient among a2, b2, c2, d2, f2 is not zero 
in (b). Like before, we can suppose that a2≠0. Perform the operation 

2/a a


 first, and the operations 2b b a−
 

, 2c c a−
 

, 2d d a−
 

, 2f f a−
 

 
after the first one. The following new basis appears

2 3 3 4 4 5 5 6 6a e a e a e a e a e= + + + +
     

, 3 3 4 4 5 5 6 6c c e c e c e c e= + + +
    

,

3 3 4 4 5 5 6 6c c e c e c e c e= + + +
    

, 3 3 4 4 5 5 6 6d d e d e d e d e= + + +
    

,         (1)

3 3 4 4 5 5 6 6f f e f e f e f e= + + +
    

.

Consider coefficients b3, c3, d3, f3 in the basis (1). Suppose that 
at least one of them is not zero. We can suggest that b3≠0 (without 
any loss in the generality). Perform the operation 3/b b



 first, and the 
operations baa 3− , 3c c b−

 

, 3d d b−
 

, 3f f b−
 

 after the first one. The 
following basis is obtained

2 4 4 5 5 6 6a e a e a e a e= + + +
    

, 3 4 4 5 5 6 6b e b e b e b e= + + +
    

,

4 4 5 5 6 6c c e c e c e= + +
   

, 
4 4 5 5 6 6d d e d e d e= + +

    ,                (2)

4 4 5 5 6 6f f e f e f e= + +
   

.

If all coefficients b3, c3, d3, f3 in (1) are zero, then vectors , , ,b c d f
   

 
are linearly dependent but it’s impossible because these vectors form 
a basis.

1. Consider coefficients c4, d4, f4 in the basis (2). At least one of 
them is not zero. If all of them are zero, then vectors

5 5 6 6c c e c e= +
  

, 5 5 6 6d d e d e= +
  

, 5 5 6 6f f e f e= +
  

are linearly dependent because they are located at the same 
2-dimensional subspace generated by vectors 5 6,e e

 

. This means that 
the case c4=d4=f4=0 is impossible.

Suppose that c4 ≠ 0. Perform the operation 4/c c


 in the basis (2) 
first, and the operations 4a a c−

 

, 4d d c−
 

, 4d d c−
 

, 4f f c−
 

 after the 
first operation. The following basis is obtained

2 5 5 6 6a e a e a e= + +
   

, 3 5 5 6 6b e b e b e= + +
   

,

4 5 5 6 6c e c e c e= + +
    , 

5 5 6 6d d e d e= +
  

,                   (3)

 5 5 6 6f f e f e= +
  

.
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Consider coefficients d5, f5 in the basis (3). At least one of them is 
not zero. Otherwise, the vectors 6 6d d e=

 

 and 6 6f f e=
 

 are linearly 
dependent but it’s impossible. Suppose that d5 ≠ 0. Perform the 

operation 5/d d


 first, and the operations 5b b d−
 

, 
5b b d−

 

, 5c c d−
 

, 

5f f d−
 

 after the first one. The following basis is obtained

2 6 6a e a e= +
  

, 
3 6 6b e b e= +

  

,

4 6 6c e c e= +
  

, 
5 6 6d e d e= +

   ,                    (4)

6 6f f e=
 

.

The coefficient f6 is not zero in the basis (4). Perform the operation 
6/f f



 in the basis (4) first, and the linear operations 6a a f−
 

, 6 ,b b f−
 

 

6c c f−
 

, 6d d f−
 

 after the first one. We obtain the following new 
canonical basis

2a e=
 

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                   (b1)

If f5 ≠ 0 in the basis (4), we obtain the same canonical basis (b1).

2. Suppose that all coefficients a2, b2, c2, d2, f2 are zero in the basis 
(b). The following possible basis is obtained

3 3 4 4 5 5 6 6a a e a e a e a e= + + +
    

, 
3 3 4 4 5 5 6 6b b e b e b e b e= + + +

    

,

3 3 4 4 5 5 6 6c c e c e c e c e= + + +
     , 3 3 4 4 5 5 6 6d d e d e d e d e= + + +

    

,           (5)

3 3 4 4 5 5 6 6f f e f e f e f e= + + +
    

.

These 5 vectors , , , ,a b c d f
    

 in (5) are linearly dependent because 
they are located at the same 4-dimensional subspace generated by 
vectors 3 4 5 6, , ,e e e e

   

. So, the system (5) of the vectors , , , ,a b c d f
    

 
doesn’t produce any canonical basis.

The research performed for the set of coefficients a1, b1, c1, d1, f1 
in the cases A and B produces 6 canonical bases (a1) – (a5) and (b1). 
To find other canonical bases, we should repeat the similar evaluations 
considering the following five sets of coefficients {a2, b2, c2, d2, f2}, {a3, b3, 
c3, d3, f3}, {a4, b4, c4, d4, f4},{a5, b5, c5, d5, f5}, and {a6, b6, c6, d6, f6} in the basis 
(I). According the equity principle, we will obtain 6 similar canonical 
bases for each set of coefficients. Details are very close to those in the 
cases A, B, and we omit them. The total list of canonical bases is

1 6 6a e a e= +
  

, 
2 6 6b e b e= +

  

, 
3 6 6c e c e= +

  

, 
4 6 6d e d e= +

  

, 

5 6 6f e f e= +
   .                  (a1)

1 5 5a e a e= +
  

, 2 5 5b e b e= +
  

, 3 5 5c e c e= +
  

, 4 5 5d e d e= +
  

, 6f e=
 

.   ( a2)

1 4 4a e a e= +
  

, 2 4 4b e b e= +
  

, 3 4 4c e c e= +
  

, 5d e=
 

, 6f e=
 

.        (a3)

1 3 3a e a e= +
  

, 2 3 3b e b e= +
  

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                 (a4)

1 2 2a e a e= +
  

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                (a5)

2a e=
 

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                (b1)

2 6 6a e a e= +
  

, 1 6 6b e b e= +
  

, 3 6 6c e c e= +
  

, 4 6 6d e d e= +
  

, 

5 6 6f e f e= +
  

.                  (c1)

2 5 5a e a e= +
  

, 1 5 5b e b e= +
  

, 4 5 5d e d e= +
  

, 4 5 5d e d e= +
  

, 6f e=
 

. (c2)

2 4 4a e a e= +
  

, 1 4 4b e b e= +
  

, 3 4 4c e c e= +
  

, 5d e=
 

, 6f e=
 

.        (c3)

2 3 3a e a e= +
  

, 1 3 3b e b e= +
  

, 4c e=
 

, 6f e=
 

, 6f e=
 

.                     (c4)

1 1 2a a e e= +
  

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                               (c5)

1a e=
 

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                                         (d1)

3 6 6a e a e= +
  

, 
1 6 6b e b e= +

  

, 
2 6 6c e c e= +

  

, 
4 6 6d e d e= +

  

, 

5 6 6f e f e= +
  

.                  (e1)

3 5 5a e a e= +
  

, 1 5 5b e b e= +
  

, 2 5 5c e c e= +
  

, 4 5 5d e d e= +
  

, 6f e=
 

.  (e2)

3 4 4a e a e= +
  

, 1 4 4b e b e= +
  

, 2 4 4c e c e= +
  

, 5d e=
 

, 6f e=
 

.         (e3)

2 2 3a a e e= +
  

, 1 2 2b e b e= +
  

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                   (e4)

1 1 3a a e e= +
  

, 2b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                 (e5)

1a e=
 

, 2b e=
 

, 4c e=
 

, 5d e=
 

, 
6f e=

 

.                  (f1)

4 6 6a e a e= +
  

, 
1 6 6b e b e= +

  

, 
3 6 6d e d e= +

  

, 
3 6 6d e d e= +

  

, 

5 6 6f e f e= +
   .                    (g1)

4 5 5a e a e= +
   , 

1 5 5b e b e= +
   , 

2 5 5c e c e= +
   , 

3 5 5d e d e= +
  

, 
6f e=

  .   (g2)

3 3 4a a e e= +
  

, 
1 3 3b e b e= +

  

, 
2 3 3c e c e= +

  

, 
6f e=

 

, 
6f e=

 

.           (g3)

2 2 4a a e e= +
  

, 
1 2 2b e b e= +

  

, 
3c e=

  , 
5d e=

  , 
6f e=

  .                (g4)

1 1 4a a e e= +
  

, 
2b e=

  , 
3c e=

  , 
5d e=

  , 
6f e=

 

.                (g5)

1a e=
 

, 2b e=
 

, 3c e=
 

, 5d e=
 

, 6f e=
 

.                       (h1)

5 6 6a e a e= +
  

, 1 6 6b e b e= +
  

, 2 6 6c e c e= +
  

, 3 6 6d e d e= +
  

, 

4 4 5a a e e= +
  

.                      (i1)

4 4 5a a e e= +
  

, 1 4 4b e b e= +
  

, 2 4 4c e c e= +
  

, 3 4 4d e d e= +
  

, 6f e=
 

. (i2)

3 3 5a a e e= +
  

, 1 3 3b e b e= +
  

, 2 3 3c e c e= +
  

, 4d e=
 

, 6f e=
 

.           (i3)

1 2 2b e b e= +
  

, 1 2 2b e b e= +
  

, 3c e=
 

, 4d e=
 

, 6f e=
 

.                (i4)

1 1 5a a e e= +
  

, 2b e=
 

, 3c e=
 

, 4d e=
 

, 6f e=
 

.               (i5)

1a e=
 

, 2b e=
 

, 3c e=
 

, 4d e=
 

, 6f e=
 

.                  (j1)

5 5 6a a e e= +
  

, 1 5 5b e b e= +
  

, 2 5 5c e c e= +
  

, 3 5 5d e d e= +
  

, 

4 5 5f e f e= +
  

.                    (k1)

4 4 6a a e e= +
  

, 1 4 4b e b e= +
  

, 2 4 4c e c e= +
  

, 3 4 4d e d e= +
  

, 5f e=
 

.  (k2)

3 3 6a a e e= +
  

, 1 3 3b e b e= +
  

, 2 3 3c e c e= +
  

, 4d e=
 

, 5f e=
 

.         (k3)

2 2 6a a e e= +
  

, 1 2 2b e b e= +
  

, 3c e=
 

, 4d e=
 

, 5f e=
 

.                 (k4)

1 1 6a a e e= +
  

, 2b e=
 

, 3c e=
 

, 4d e=
 

, 5f e=
 

.                               (k5)

1a e=
 

, 2b e=
 

, 3c e=
 

, 4d e=
 

, 5f e=
 

.                (l1)

 Analyze all these bases comparing them step by step. The bases 
(b1), (d1), (f1), (h1), (j1), (l1) are particular cases of (c5), (a5), (c4), (a3), (a2), 
(a1) respectively. The bases (c1) – (c4) are obviously equivalent to the 
bases (a1) – (a4). The basis (c5) is equivalent to the basis (a5) if a1≠0, and 
(c5) is equivalent to the basis (b1) if a1=0. The bases

(e1) – (e3) are equivalent to the bases (a1) – (a3). If a2≠0 then the 
basis (e4) is equivalent to the basis (a4); if a2=0 then (e4) is equivalent 
to (a5). The basis (e3) is a particular case of the basis (a4) if a1 ≠ 0, and 
(e5) is a particular case of (g5) if a1=0. The bases (g1), (g2) are obviously 
equivalent to the bases (a1), (a2). The basis (g3) is equivalent to the 
basis (a3) if a3 ≠ 0, and (g3) is equivalent to (a5) if a3=0. The basis (g4) is 
equivalent to the basis (a3) if a2 ≠ 0, and (g4) is equivalent to (a5) if a2=0. 
The basis (g5) is a particular case of the basis (a3) if a1 ≠ 0, and (g5) is a 
particular case of (i5) if a1=0. The basis (i1) is equivalent to the basis (a1). 
The basis (i2) is equivalent to the basis (a2) if a4 ≠ 0, so consider the basis 
(i2) if a4=0. The new basis (i2) is a particular case of the basis (a1) if f4=0, 
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and (i2) is equivalent to (a3) if f4=0. The basis (i3) is a particular case of 
the basis (a2) if a3 ≠ 0, and the basis (i3) is equivalent to the basis (a4) if 
a3=0. The basis (i4) is a particular case of the basis (a2) if a2 ≠ 0, and (i4) 
is equivalent to (a5) if a2=0. The basis (i5) is a particular case of the basis 
(a2) if a1 ≠ 0, and (i5) is a particular case of the basis (k5) if a1=0. The basis 
(k1) is equivalent to the basis (a2). The basis (k2) is equivalent to the 
basis (i2). The basis (k3) is a particular case of the basis (a1) if a3 ≠ 0, and 
(k3) is equivalent to the basis (a4) if a3=0. The basis (k4) is a particular 
case of the basis (a1) if a2 ≠ 0, and (k4) is equivalent to the basis (a5) if 
a2=0. The basis (k5) is a particular case of the basis (a1) if a1 ≠ 0, and (k5) 
is equivalent to the basis (b1) if a1=0.

The analysis performed above implies the following statement.

 Theorem 1

Each basis of any 5-dimensional subspace in a 6-dimensional vector 
space is equivalent to one and only one of the following 6 canonical 
bases

1 6 6a e a e= +
  

, 2 6 6b e b e= +
  

, 3 6 6c e c e= +
  

, 4 6 6d e d e= +
  

, 

5 6 6f e f e= +
  

;                     (a1)

1 5 5a e a e= +
  

, 
2 5 5b e b e= +

   , 3 5 5c e c e= +
  

, 4 5 5d e d e= +
  

, 
6f e=

 

;  (a2)

2 4 4b e b e= +
  

, 2 4 4b e b e= +
  

, 3 4 4c e c e= +
  

, 5d e=
 

, 6f e=
 

;      (a3)

1 3 3a e a e= +
  

, 2 3 3b e b e= +
  

, 4c e=
 

, 5d e=
 

, 6f e=
 

;                (a4)

1 2 2a e a e= +
  

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

;                (a5)

2a e=
 

, 3b e=
 

, 4c e=
 

, 5d e=
 

, 6f e=
 

.                 (b1)

Part II

5-dimensional subalgebras of Lie algebra of Lorentz group

Introduction: Lorentz group is the group of transformations of 
Minkowski space-time R4. This group is not compact, not abelian, and 
not connected 6-dimensional real Lie group. The identity component 
of Lorentz group is the group SO+ (3, 1). This component contains 
the generators for boots along x-, y- and z-axis, and it contains the 
generators for rotations in Minkowski space-time [4]. Lie algebra of 
the group SO+ (3, 1) is 6-dimensional real Lie algebra denoted below by 
L that has the following standard basis:

1

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

e

 
 
 =
 
 
 



, 
2

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

e

 
 
 =
 
 
 

 , 
3

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

e

 
 
 =
 
 
 



,

4

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

e

 
 
 =
 −
 
 



, 
5

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

e

 
 
 =
 
 

− 



, 
6

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

e

 
 
 =
 
 

− 



.

The Lie product of any two square matrices A, B is defined by [A, 
B]=AB – BA. For the standard basis of Lie algebra of Lorentz group, the 
non-zero products are

1 2 4,e e e  = 
  

, 
1 3 5,e e e  = 
  

, 
1 4 2,e e e  = 
  

, 
1 5 3,e e e  = 
   , 

2 3 6,e e e  = 
   , 

2 4 1,e e e  = − 
  

,

2 6 3,e e e  = 
  

, 3 5 1,e e e  = − 
  

, 
3 6 2,e e e  = − 
  

, 
4 5 6,e e e  = − 
  

, 

4 6 5,e e e  = 
  

, 
5 6 4,e e e  = − 
  

.  (*)

To determine which 5-dimensional subspace h of the given Lie 
algebra L is a subalgebra of L, we will check the condition [h, h]⊂ h 
applying to the nonequivalent canonical bases that are described in the 
Theorem 1.

Let the subspace h1 be generated by the canonical basis (a1). 
Compute all products between vectors , , , ,a b c d f

    

 in this basis. 
Utilizing the table of products (*), we have

1 6 6 2 6 6 4 6 3 1 2 3 4 5, ,a b e a e e b e e a e x a x b x c x d x f   = + + = − = + + + +   
             .

So, x1=0, x2=0, x3=–a6, x4=1, x5=0, and –a6c6+d6=0.

1 6 6 3 6 6 5 6 2 1 2 3 4 5, ,a c e a e e c e e a e y a y b y c y d y f   = + + = + = + + + +   
             .

So, y1=0, y2=a6, y1=0, y3=0, y4=0, y5=1, and a6b6+f6=0.

1 6 6 4 6 6 2 6 5 1 2 3 4 5, ,a d e a e e d e e a e z a z b z c z d z f   = + + = − = + + + +   
             .

So, z1=0, z2=1, z3=0, z4=0, z5=–a6 and b6 – a6f6=0.

1 6 6 5 6 6 3 6 4 1 2 3 4 5, ,a f e a e e f e e a e s a s b s c s d s f   = + + = + = + + + +   
             .

So, s1=0, s2=0, s3=1, s4=a6, s5=0, and c6+a6d6=0.

2 6 6 3 6 6 6 6 2 1 2 3 4 5, ,b c e b e e c e e b e p a p b p c p d p f   = + + = + = + + + +   
             .

So, p1=0, p2=b6, p3=0, p4=0, p5=0, and b6b6=1.

2 6 6 4 6 6 1 6 3 6 5 1 2 3 4 5, ,b d e b e e d e e d e b e q a q b q c q d q f   = + + = − + − = + + + +   
              .

So, q1=–1, q2=0, q3=d6, q4=0, q5=–b6, and –a6+ d6c6 –b6f6

2 6 6 5 6 6 6 3 6 4 1 2 3 4 5, ,b f e b e e f e f e b e r a r b r c r d r f   = + + = + = + + + +   
             .

So, r1=0, r2=0, r3=f6, r4=b6, r5=0, and f6c6+b6d6=0.

3 6 6 4 6 6 6 2 6 5 1 2 3 4 5, ,c d e c e e d e d e c e t a t b t c t d t f   = + + = − − = + + + +   
             .

So, t1=0, t2=–d6, t3=0, t4=0, t5=–c6, and –d6b6–c6 f6=0.

3 6 6 5 6 6 1 6 2 6 4 1 2 3 4 5, ,c f e c e e f e e f e c e v a v b v c v d v f   = + + = − − + = + + + +   
              .

So, v1=–1, v2=–f6, v3=0, v4=c6, v5=0, and –a6–f6b6+c6d6=0.

4 6 6 5 6 6 6 6 5 6 4 1 2 3 4 5, ,d f e d e e f e e f e d e n a n b n c n d n f   = + + = − + + = + + + +   
              .

So, n1=0, n2=0, n3=0, n4=d6, n5=f6, and d6d6 + f6 f6=–1.

The equation 2 2
6 6 1d f+ = −  has no solution in the set of all real 

numbers. This means that no 5-dimensional subalgebra of Lie algebra 
L with the basis (a1) exists.

Let the subspace h2 be generated by the canonical basis (a2). 
Compute all products between vectors , , , ,a b c d f

    

 in this basis. 
Utilizing the table of products (*), we have

1 5 5 2 5 5 4 5 3 1 2 3 4 5, ,a b e a e e b e e b e x a x b x c x d x f   = + + = + = + + + +   
             .

So, x1=0, x2=0, x3=b5, x4=1, x5=0, and b5c5+d5=0.

1 5 5 3 5 5 5 5 3 5 1 1 2 3 4 5, ,a c e a e e c e e c e a e y a y b y c y d y f   = + + = + + = + + + +   
              .

So, y1=a5, y2=0, y3=c5, y4=0, y5=0, and a5a5 + c5c5.

1 5 5 4 5 5 2 5 3 5 6 1 2 3 4 5, ,a d e a e e d e e d e a e z a z b z c z d z f   = + + = + + = + + + +   
              .

So, z1=0, z2=1, z3=d5, z4=0, z5=a5, and b5 +d5c5=0.

1 5 5 6 5 4 1 2 3 4 5, ,a f e a e e a e s a s b s c s d s f   = + = − = + + + +   
          

.

So, s1=0, s2=0, s3=0, s4=–a5, s5=0, and a5d5=0.

2 5 5 3 5 5 6 5 1 1 2 3 4 5, ,b c e b e e c e e b e p a p b p c p d p f   = + + = + = + + + +   
            

.

So, p1=b5, p2=0, p3=0, p4=0, p5=1, and b5a5=0.
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2 5 5 4 5 5 1 5 6 1 2 3 4 5, ,b d e b e e d e e b e q a q b q c q d q f   = + + = − + = + + + +   
            

.

So, q1=–1, q2=0, q3=0, q4=0, q5=b5, and –a5=0.

2 5 5 6 3 5 4 1 2 3 4 5, ,b f e b e e e b e r a r b r c r d r f   = + = − = + + + +   
           

.

So, r1=0, r2=0, r3=1, r4=–b5, r5=0, and c5–b5d5=0.

3 5 5 4 5 5 5 1 5 6 1 2 3 4 5, ,c d e c e e d e d e c e t a t b t c t d t f   = + + = − + = + + + +   
             .

So, t1=–d5, t2=0, t4=0, t5=c5, and –d5a5=0.

3 5 5 6 2 5 4 1 2 3 4 5, ,c f e c e e e c e v a v b v c v d v f   = + = − − = + + + +   
           

.

So, v1=0, v2=–1, v3=0, v4=–c5, v5=0, and –b5 –c5d5=0.

4 5 5 6 5 5 4 1 2 3 4 5, ,d f e d e e e d e n a n b n c n d n f   = + = − = + + + +   
           

.

So, n1=0, n2=0, n3=0, n4=–d5, n5=0, and –d5d5=1.

The last equation 2
5 1d = −  has no solution in the set of all real 

numbers. This means that no 5-dimensional subalgebra of Lie algebra 
L with the basis (a2) exists.

Let the subspace h3 be generated by the canonical basis (a3). 
Consider all products between vectors , , , ,a b c d f

    

 of this basis. 
Utilizing the table of products (*), we have

1 4 4 2 4 4 4 4 2 4 1 1 2 3 4 5, ,a b e a e e b e e b e a e x a x b x c x d x f   = + + = + + = + + + +   
              .

 So, x1=a4, x2=b4, x3=0, x4=0, x4=0, x5=0 and a4a4 + b4b4=1.

1 4 4 3 4 4 5 4 2 1 2 3 4 5, ,a c e a e e c e e c e y a y b y c y d y f   = + + = + = + + + +   
             .

So, y1=0, y2=c4, y3=0, y4=1, y5=0, and c4b4=0.

1 4 4 5 3 4 6 1 2 3 4 5, ,a d e a e e e a e z a z b z c z d z f   = + = − = + + + +   
           

.

So, z1=0, z2=0, z3=1, z4=0, z5=– a4, and c4=0.

1 4 4 6 4 5 1 2 3 4 5, ,a f e a e e a e s a s b s c s d s f   = + = = + + + +   
           .

So, s1=0, s2==0, s3=0, s4=a4, s5=0, and 0=0.

2 4 4 3 4 4 6 4 1 1 2 3 4 5, ,b c e b e e c e e c e p a p b p c p d p f   = + + = − = + + + +   
             .

So, p1=–c4, p2=0, p3=0, p4=0, p5=1, and –c4a4=0.

2 4 4 5 4 6 1 2 3 4 5, ,b d e b e e b e q a q b q c q d q f   = + = − = + + + +   
           .

So, q1=0, q2=0, q3=0, q4=0, q5=–b4, and 0=0.

2 4 4 6 3 4 5 1 2 3 4 5, ,b f e b e e e b e r a r b r c r d r f   = + = + = + + + +   
            .

So, r1=0, r2=0, r3=1, r4=b4, r5=0, and c4=0.

3 4 4 5 1 4 6 1 2 3 4 5, ,c d e c e e e c e t a t b t c t d t f   = + = − − = + + + +   
            .

So, t1=–1, t2=0, t3=0, t4=0, t5=–c4, and a4=0.

3 4 4 6 2 4 5 1 2 3 4 5, ,c f e c e e e c e v a v b v c v d v f   = + = − + = + + + +   
           

.

So, v1=0, v2=–1, v3=0, v4=c4, v5=0, and b4=0.

5 6 4 1 2 3 4 5, ,d f e e e n a n b n c n d n f   = = − = + + + +   
         

.

So, n1=0, n2=0, n3=0, n4=0, n5=0, and 0=–1.

 The last contradiction 0=–1 proves that Lie algebra L has no 
5-dimensional subalgebra generated by the basis (a3).

Let the subspace h4 be generated by the canonical basis (a4). 
Consider all products between vectors , , , ,a b c d f

    

 in this basis. 
Utilizing the table of products (*), we have

1 3 3 2 3 3 4 3 5 3 6 1 2 3 4 5, ,a b e a e e b e e b e a e x a x b x c x d x f   = + + = + − = + + + +   
              .

So, x1=0, x2=0, x3=1, x4=b3, x5=–a3, and 0=0.

1 3 3 4 2 1 2 3 4 5, ,a c e a e e e y a y b y c y d y f   = + = = + + + +   
           .

So, y1=0, y2=1, y3=0, y4=0, y5=0, and b3=0. 
1 3 3 5 3 3 1 1 2 3 4 5, ,a d e a e e e a e z a z b z c z d z f   = + = − = + + + +   

           

.

So, z1=–a3, z2=0, z4=0, z5=0, and 2
3 1a− = .

The last condition 2
3 1a = −  is impossible in the set of all real 

numbers. This means that the product ,a d  
 

 doesn’t belong to the 

5-dimensional subspace generated by the basis (a4). Thus, this subspace 
is not subalgebra of Lie algebra L.

Let the subspace h5 be generated by the canonical basis (a5). 
Consider all products between vectors , , , ,a b c d f

    

 in this basis. 
Utilizing the table of products (*), we have

1 2 2 3 5 2 6 1 2 3 4 5, ,a b e a e e e a e x a x b x c x d x f   = + = + = + + + +   
            .

So, x1=0, x2=0, x3=0, x4=1, x5=a2, and 0=0.

1 2 2 4 2 2 1 1 2 3 4 5, ,a c e a e e e a e y a y b y c y d y f   = + = − = + + + +   
           

.

So, y1=–a2, y2=0, y4=0, y5=0, and 2
2 1a− = .

The last condition 2
2 1a = −  is not satisfied in the set of all real 

numbers. This means that no 5-dimensional subalgebra with the basis 
(a5) exists in Lie algebra L.

Let the subspace h6 be generated by the canonical basis (b1). 
Consider all products between vectors , , , ,a b c d f

    

 in this basis. 
Utilizing the table of products (*), we have

2 3 6 1 2 3 4 5, ,a b e e e x a x b x c x d x f   = = = + + + +   
         

.

So, x1=0, x2=0, x3=0, x5=1, and 1=1.

 
2 4 1 1 2 3 4 5, ,a c e e e y a y b y c y d y f   = = − = + + + +   

          .

So, y1=0, y2=0, y3=0, y4=0, y5=0, and 0=– 1.

The last contradiction 0=– 1 shows that Lie algebra L has no 
5-dimensional subalgebra generated by the basis (b1).

The evaluations performed in Part II prove the following statements.

Theorem 2

Lie algebra of the Lorentz group doesn’t contain any 5-dimendional 
subalgebra.

Corollary

Lorentz group doesn’t contain any connected 5-dimensional 
subgroup.
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