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Abstract
We present an Euler-Poincar´e (EP) formulation of a new class of peakon equations with cubic nonlinearity, viz., 

Fokas-Qiao and V. Novikov equations, in two almost equivalent ways. The first method is connected to flows on the 
spaces of Hill’s and first order differential operator and the second method depends heavily on the flows on space 
of tensor densities. We give a comparative analysis of these two methods. We show that the Hamiltonian structures 
obtained by Qiao and Hone and Wang can be reproduced by EP formulation. We outline the construction for the 
2+1-dimensional generalization of the peakon equations with cubic nonlinearity using the action of the loop extension 
of Vect(S1) on the space of tensor densities.

Keywords: Spaces of tensor densities; Fokas-Qiao equation; Novikov 
equation; Bi-Hamiltonian; 2+1-dimensional peakon equation
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Introduction 
The one-parameter family of shallow water equations

ut-uxxt +(b+1)uux =buxuxx+uuxxx,                 (1)

where b is a real parameter, has recently drawn some attention. This 
equation is called the b-field equation by Degasperis, Holm and Hone 
[1,2], who introduced this equation. They showed the existence of multi-
peakon solutions for any value of b, although only the special cases b=2, 
3 are integrable, having bi-Hamiltonian formulations. In the literature 
the partial differential equation (1) is also known as the Degasperis-
Holm-Hone (or DHH) equation. The b=2 case is the well-known 
Camassa-Holm (CH) equation [3] and b=3 is the integrable system 
discovered by Degasperis and Procesi [4]. The most interesting feature 
of the CH equation is to admit peaked soliton (peakon) solutions. A 
peakon is a weak solution in some Sobolev space with corner at its 
crest. The stability and interaction of peakons were discussed in several 
references [5-7]. Using the Helmholz field m=u-uxx, the DHH equation 
(1) allows reformulation in a more compact form

mt+umx+buxm=0 ,                   (2)

where the three terms correspond respectively to evolution, convection 
and stretching of the one-dimensional flow. Recently Lundmark and 
Szmigielski [8,9] used an inverse scattering approach to determine a 
completely explicit formula for the general n-peakon solution of the 
DP equation.

An Euler-Poincare formalism has been studied for the Degasperis 
and Procesi (DP) equation [10]. It has been shown that DP equation 
is a superposition of two flows, on the space of Hill’s operators and 
the first order differential operators. Thus the Poisson operators of the 
Degasperis-Procesi flow are the pencil of two operators. Moreover, 
the Hamiltonian structure obtained from the EP framework exactly 
coincides with the Hamiltonian structues of the DP equation obtained 
by Degasperis, Holm and Hone. More recently we have given a short 
derivation [11,12] of the DP equation using algebra of tensor densities 
on S1.

In an interesting paper Fokas et al. [13] proposed an algorithmic 
construction of (2+1) dimensional integrable systems which yield 
peakon/dromion type solutions.

2 2( ) ( )ν ν− + + + + − +xt xxxt xy xxxy xx y x xy xxxx y xxx xyq q aq bq c q q q q c q q q q .  (3)

This equation can also be identified [11,12] with the potential 
form of the Camassa-Holm or peakon analogue of the Calogero-
Bogoyavlenskii-Schiff (CBS) equation (for a=0), one of the most 
well-known (2+1)-dimensional KortewegdeVries (KdV) type system. 
Equation (3) reduces CBS equation for ν=0. It is known [12] that (3) is 
an Euler-Poincare flow on the co-adjoint orbit of loop Virasoro algebra 
with respect to H1-Sobolev norm.

In addition to the CH equation and DP equation, other integrable 
models with peakon solutions have been studied in recent years. The 
topic of this communication is to formulate the Euler-Poincare theory 
of the peakon type equations with cubic nonlinearity. One must note 
that the nonlinear term in the Camassa-Holm type systems and their 
two component generalizations are quadratic. So it is natural to ask 
whether there exist integrable systems admitting peakon solutions with 
cubic nonlinear terms. Among these models, there are two integrable 
peakon equations with cubic nonlinearity. Recently Qiao found a 
peakon equation with cubic nonlinearity, which can also be written as:

2 2 2( ) 2 0+ − + =t x x xm u u m u m .                  (4) 

This inspired Novikov to find another peakon equation with cubic 
nonlinearity while studying symmetry classification of nonlocal PDEs 
with quadratic or cubic nonlinearity.

This equation can also be expressed as
2 24 3− + = +t xxt x x xx xxxu u u u uu u u u .                    (5)

Hone and Wang [14] gave the Lax pair, bi-Hamiltonian structure, 
and peakon solutions of this equation.

Note that the equation (4) was proposed independently by Fokas 
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[15], Fuchssteiner [16], Olver and Rosenau [17]. Qiao [18] derived 
Lax pair, M/W-shaped soliton and peaked/cusped solitons. Recently, 
the peakon stability of equation (5) in the case of b=0 was worked 
out by Gui et al. [19]. In this communication we will show that the 
Hamiltonian structures obtained by Qiao [18,20] and independently 
Hone and Wang [14] for these two peakon equations with cubic 
nonlinearity can be obtained from the Euler-Poincare framework.

Result and plan

In section 2 we present the Euler-Poincare formulation of the 
cubic peakon equations. We compute the Hamiltonian structures of 
Camassa-Holm-Whitham- Burger equation and b-field equation using 
two different methods. The first method is based on Euler-Poincar´e 
flows on the space of first and second order differential operators and 
second is associated to the flows on tensor densities. Using these two 
equivalent methods we derive the Hamiltonian structure of the b-field 
equation. We use this result to compute the Hamiltonian structures of 
the cubic peakon equations in Section 3. We also give a formulation 
of 2+1-dimensional cubic peakon equation using the action of the 
loop extension of Vect(S1) on the space of tensor densities. We actually 
demonstrate that the algebra of tensor densities is more effective than 
the first method for the construction of higher-dimensional cubic 
peakon equation.

Euler-Poincare Construction of b-field Equations and 
Hamiltonian Structures

Our goal is to derive Hamiltonian structures of the cubic peakon 
equations, and this has to go through the construction of b-field 
structure. So in this section we give an Euler-Poincare (EP) derivation 
of the b-field equation in two different methods: (A) one of them is 
related to the flows on the space of first and second order differential 
operators with respect to H1-Sobolev norm [10] and (B) other one is 
connected to the flows on tensor densities [11,12]. One of the main 
reasons that we are shifting to Lie derivative approach is that there is no 
equivalent description of EP flows on the space first order differential 
operators in terms of co-adjoint orbit. We collate all the definitions and 
background materials in the next section.

Lie-derivative method: a different way of interpreting Vect(S1) 
action

Denote Fµ(S
1) the space of tensor-densities of degree µ on S1

1{ ( )  | ( ) ( )}µ
µ

∞= ∈F a x dx a x C S ,

where µ is the degree, x is a local coordinate on S1. As a vector 
space, Fµ(S

1) is isomorphic to C∞(S1).

Let Ω=T∗S1 be the cotangent bundle of S1. Geometrically we say 
Fλ 

∈ Γ(Ω⊗λ), where Ω⊗λ=(T∗S1)⊗λ. This space plays an important role 
in equivariant quantization. This space is endowed with a structure of 
Diff(S1) and Vect(S1)-module. Here F0(M )=C∞(M), the space F1(M ) 
and F−1(M) coincide with the spaces of differential forms and vector 
fields respectively. The section of Ωλ is locally given by s=g(x)dxλ, where 

g(x)=g(x+2π). The action of a vector field ˆ = df f
dx

 on s is given by the 
Lie derivative of degree λ

ˆ ( ) λλ′ ′= +fL s fg f g dx ,                   (6) 

which describes action of a vector field ( ) df x
dx

 on the space of tensor 
densities Fλ.

By Lazutkin and Penkratova [21], the dual space of the Virasoro 

algebra can be identified with the space of Hill’s operator or the space 
of projective connections

2

2 ( )∆ = +
d u x
dx

,                     (7) 

where u is a periodic potential: u(x+2π)=u(x) ∈C∞(R). The Hill’s 
operator maps

1 3
2 2

:
−

∆ →F F  .                       (8)

The action of Vect(S1) on the space of Hill’s operator ∆ is defined by 
the commutation with the Lie derivative

3 1
2 2

( ) ( ) ( )
[ , ] :

−
∆ = °∆ − ∆°d d df x f x f xdx dx dx

L L L .                  (9)

Thus, right hand side denotes the co-adjoint action of Vect(S1) on 
its dual ∆ with respect to L2 norm on the space of algebra.

Lemma 2.1: The Lie derivative action on ∆ yields

2
3

( )

1[ , ] ( 2 )
2

′∆ = ∂ + ∂ +d Lf x
dx

L u u f ,                 (10)

and this gives the (second) Hamiltonian structure of the KdV equation

31( 2 )
2

′= ∂ + ∂ +KdVO u u

Proof: By direct computation. 

It is clear from the definition of the Lie derivative on the space of 
Hill’s operator that this coincides with the co-adjoint action of a vector 

( )η = f x d
dx

on its dual udx2:

2
2

( )
( ) [ , ]η

∗ = ∆d Lf x
dx

ad udx L ,

and for this reason one obtains the same Hamiltonian operator from 
two different computations.

Lemma 2.2: The Hamiltonian vector field on udx2 ∈g∗ corresponding 
to a Hamiltonian function H, computed with respect to the Lie-Poisson 
structure is given by

( )∗= − = −dH KdV
du ad u O u
dt

                  (11)

Proposition 2.3: The KdV equation is the Euler-Poincare equation 

for 
1

21( )
2

= ∫SH u u dx and it is given by

+  + 6 = 0t xxx xu u uu  .                   (12)

Camassa-Holm in lie derivative method 

Before we are going to embark the Camassa-Holm equation let 
us briefly recapitulate the usual co-adjoint method with respect to H1 
norm.

On the Virasoro algebra we consider the H1 inner product, which is 

defined as ( ( ) , )ν ∈
df x Vir
dx

and a point (udx⊗2, λ) or (udx2, λ) on the 

dual space is given by

 1
1 1

2( ( ) , ), ( , ) ( ) ( )ν λ λν⊗< > = + +∫ ∫ x xH S S

df x udx f x u x dx f u
dx

.     (13)
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Let us compute the co-adjoint action 1ˆ ˆ |∗
Hfad u of the vector field 

( ( ) , )ν ∈
df x Vir
dx

its dual (udx⊗2, λ) with respect to H1 norm.

Lemma 2.4:

1
2 1 2 2

ˆ ˆ | (1 ) [ ( )(1 ) 2 (1 ) ]λ∗ − ′ ′′′= − ∂ − ∂ + − ∂ +xHfad u f x u f u f ,   (14)

where 2ˆ ( , )λ⊗=u u dx  and ˆ ( ( ) , )ν=
df f x
dx .

Proof: By direct computation. 

Corollary 2.5: Using the Helmholtz function m=u-uxx Equation 
(14) can be rewritten as

1
2 1

ˆ ˆ | (1 ) [ 2 ]λ∗ −= − ∂ + +x x xxxHfad u fm f m f ,                 (15)

and corresponding Hamiltonian operator is given by
1 2 1 3(1 ) ( )λ−= − ∂ ∂ + ∂ + ∂HO m m .                    (16)

Let us state co-adjoint action of Vect(S1) on its dual in terms of 
Lie derivative language. It is clear that Lie derivative of Vect(S1) on the 
space of Hill’s operator should reflect the co-adjoint action with respect 
to H1 norm, hence the Lie derivative equation must be expressed in 
terms m, i.e., Helmholtz operator acting on u.

Definition 2.6: The Vect(S1) action on the space of Hill’s operator ∆ 
with respect to H1 –metric is defined as

1

3 1
2 2

( ) ( ) ( )
[ , ] :

−
∆ = °∆ − ∆° 

d d dHf x f x f xdx dx dx

L L L ,                  (17)

where
2

2 ( ) ( )λ∆ = + = −

xx
d m x m u u
dx

.

Therefore Lie derivative ( ) df x
dx

L  action yields the following scalar 

operator, i.e. the operator of multiplication by a function.

Proposition 2.7:

 1
3

( )

1[ , ] ( 2 )
2
λ ′∆ = ∂ + ∂ +d Hf x

dx

L m m f .             (18)

The L.H.S. of equation denotes the co-adjoint action evaluated with 
respect to H1 norm. Thus we obtain the R.H.S. of Equation (18). 

Lemma 2.8: The co-adjoint action of vector field ( ) df x
dx

 on its 

dual with respect to the right invariant H1 metric can be realized as

1 1
2 1

ˆ
( )

ˆ | (1 ) [ , ]∗ −= − ∂ ∆dH Hf f x
dx

ad u L

This yields the Hamiltonian structure of the Camassa-Holm 
equation

1 2 1 31(1 ) ( 2 )
2
λ− ′= − ∂ ∂ + ∂ +HO m m .               (19)

At this stage we assume λ=0, since we do not require the cocycle 
term to compute the Camassa-Holm equation. It is clear that the term 

31
2
λ∂ manufactures from the cocycle term. 

Therefore, the Euler-Poincare equation
1 δ
δ

= − H
t CH

Hu O
u

 where 1
 2 ′= ∂ +H

CHO m m  

2 1(1 ) (2 ) ]− ′= − − ∂ +p m m  with 
1

21
2

= ∫SH u dx

 2 0′ ′+ + =⇒ tm mu m u

yields the Camassa-Holm equation.

Euler-Poincare formalism of Whitham-Burgers equations

Let us consider a first order differential operator  1 ( )∆ = +
d u x
dx

acting on the space of tensor densities of degree 
1

2
−

 , i.e., 
1
2

1
2

( )
−

−
∈Γ ΩF .

This ∆1 maps

1 1 1
2 2

( ) : 
−

∆ = + →
d u x F F
dx

Definition 2.9: The Vect(S1)-action on ∆1 is defined by the 
commutator with the Lie derivative

1 1
2 21 1 1( ) ( ) ( )

o o[ , ] :
−

∆ = ∆ − ∆d d df x f x f xdx dx dx

L L L

The result of this action is a scalar operator, i.e. the operator of 
multiplication by a function, given by

1( )
1[ , ] ( ) ( ) ( )
2

′′ ′ ′∆ = + +df x
dx

L f x uf x u f x .                  (22)

This action yields the operator of the Burgers equation
2

2
1 ( )
2

′= + +B
d dO u u x

dxdx
.                 (23)

Remark: The operator (23) is not a Poisson operator, since it does 
not satisfy the skew symmetric condition. When a vector field Vect(S1) 
acts on the space of Hill’s operator, it generates a Poisson flow, that is, 
operator involves in this flow is Poisson operator. But when Vect(S1) 
acts on the space of first order differential operators, it does not 
generate a Poisson flow. Thus we obtain an almost Poisson operator.

Now we study the H1 analogue of our previous construction Let 

us normalize the first order differential operator as 1 2 ( )∆ = +
d u x
dx

.

Lemma 2.10:

1
( )

[ , 2 ( )] ( ) ( ) ( ),′′ ′ ′+ = + + = −d xxHf x
dx

dL u x f x mf x m f x m u u
dx  (24)

Again, we can interpret this equation as an action of the vector field 

( ) df x
dx

L on the space of modified first order scalar differential operator

2 +
d m
dx

. The factor “2” is just the normalization constant.

The L.H.S. denotes co-adjoint action with respect to H1 norm. Once 
again we convert this to L2 action, given as

2 1
2 1

( ) ( )
[ , 2 ( )] (1 ) [ , 2 ( )]−+ = − ∂ +d dL Hf x f x

dx dx

d dL u x L u x
dx dx

.

Therefore, the Hamiltonian operator of the Whitham-Burgers 
equation becomes

1 2 1 2(1 ) ( )−= − − ∂ ∂ + ∂H
WBO m .                     (25)
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The Euler-Poincare flow on the space of first order operators with 

respect to H1 norm yields the Whitham Burgers equation

mt+uxx+(mu)x=0.                 (26)

Euler-Poincare formalism and b-field equation and the 
Camassa-Holm-Whitham-Burgers equation

In this section we will state the Euler-Poincar´e construction for 
the the Degasperis-Procesi equation

mt+umx+3mux=0, with  m=u-uxx,                (27)

b-field equation and the Camassa-Holm-Whitham-Burgers equation. 
Latter one is the peakon analogue of the KdV-Burgers equation.

We need to combine the Vect(S1) action on both second and first 
order differential operators, ∆2 and ∆1 respectively, with respect to H1 
norm.

Definition 2.1: The Vect(S1) action the pencil of operators 
,

2 1:λ µ λ µ∆ = ∆ + ∆ is given by

1 1 1
,

2 1( ) ( ) ( )
[ , ] [ , ] [ , ]λ µ λ µ∆ = ∆ + ∆d d dH H Hf x f x f x

dx dx dx

L L L ,  (28)

where
2

2 1 2 ( )∆ = +
dk m x
dx

,    1 22 ( )∆ = +
dk m x
dx

.

The pencil of Hamiltonian structures corresponding to Vect(S1) 
action on ∆λ,µ is given by

1 2 1 3 2
, 1 2

1(1 ) ( ) ( )
2λ µ ν λ µ−= − − ∂ ∂ + ∂ + ∂ + ∂ + ∂HO k m m k m , ν= − xxm u u .   (29)

If we assume k1=k2=0 and λ=2 and µ=-1, we obtain the operator of 
Degasperis-Procesi equation

2 1(1 ) ( 2 )ν −= − − ∂ ∂ + ∂DPO m m .                 (30)

The operator of the b-field equation can be obtained from k1=k2=0 
and λ=b-1 and µ=-(b-2), given by

2 1(1 ) ( )ν −= − − ∂ + ∂B xO m bm .                  (31)

It is clear from this expression and the construction that for b=3 
case we obtain the Degasperis-Procesi operator and for b=2 we recover 
the famous Camassa-Holm equation.

The Euler-Poincare equation

δ
δ

= −t B
Hm O
u

, ( )= + ∂B xO m bm , 
1

21
2

= ∫SH u dx                (32)

yields the b -field equation 

mt+mxu+bmux=0=0, m=u-νuxx.

This is the derivation of the b-field equation using tensor algebra, 
and it was given in [11,12]. Consider the dual space of Fb with a frozen 
m structure. In other words, we fix some point m0 ∈ Fb and define the 
generalized Hamiltonian structure. This immediately yields the first or 
frozen Hamiltonian structure

OFrozen=bm0∂.                  (33) 

This can be easily normalized as OFrozen=∂. 

The Camassa-Holm-Whitham-Burgers equation: The KdV-
Burgers equation is given by

ut+κuux+βuxxx+ηuxx=0,                   (34)

where κ,β and η are constants. It appears naturally in unmagnetized 
dusty plasma and yields shock waves.

Proposition 2.12: The Euler-Poincare flow 
1

,λ µ
δ
δ

= − H
t

Hu O
u on 

space of Hill’s and first-order differential operators with respect to H1-
metric yields the Camassa-Holm-Whitham- Burgers equation

( ) (2 ) 0,λ µ λ µ κ β ν+ + + + + + = = −t x x xxx xx xxm m u mu u u m u u ,

where 1 / 2κ λ= k and 2β µ= k . This reduces to the KdV-Burgers 
equation for ν=0.

Computation of Hamiltonian structure via deformed bracket

Let us introduce a new algebraic structure, called b-algebra. The 
commutator (or Lie bracket) is defined in a following way: 

Definition 2.13: The b-bracket between ( ) dv x
dx

and ( ) dw x
dx

 is 
defined as

[v, w]b=vwx-(b-1)vxw                   (35)

This b-bracket can also be expressed as 

2[ , ] [ , ] [ , ]
2 2

−
= − sym

b
b bv w v w v w ,                 (36) 

where [v, w]=vwx-vxw and [v, w]sym=vwx+vxw.

Remark: The b -bracket can be interpretred as an action of Vect(S1) 
on 1

( 1) ( )− −bF S , a tensor densities on S1 of degree -(b-1). For b=2 this 
is just a vector field action corresponding to a Lie algebra. Moreover 
because of [v, w]sym term b -bracket is not a skew-symmetric bracket, it 
is a deformation of the bracket of vector fields.

There is a pairing

1, : µ µ−〈 〉 ⊗ → F F  

given by

1

1( )( ) , ( )( ) ( ) ( )µ µ−〈 〉 = ∫Sa x dx b x dx a x b x dx              (37)

which is Diff(S1) -invariant.

1

1( )( ) , ( )( ) ( ) ( )µ µ−〈 〉 = ∫Sa x dx b x dx a x b x dx .  

We denote b-algebra by F-(b-1) and its dual by Fb. Thus we can define 
a pairing according to (9)

 
1

( 1)( )( ) , ( )( ) ( ) ( )− −〈 〉 = ∫b b

S
a x dx b x dx a x b x dx . 

Let us compute the co-adjoint action with respect to the b-field 
equation.

Lemma 2.14:
1

( 1)
2 1 2 2

( )( ) ( ) (1 ) [ (1 ) (1 )ν ν− −
∗ −= − ∂ − ∂ + − ∂b

H b
x xf dxad udx f u bf k u .  (38)

Proof: We suppress all the density terms, thus from the definition 
we obtain

1 1( ), ,[ , ]∗< > = −< >f bH Had u g u f g

1
1,( ( 1) )( )′ ′ −≡− < − − >b b

Hudx fg b f g dx ,

hence the pairing is well-defined. Let us compute

http://dx.doi.org/10.4172/1736-4337.1000225
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1 1
 R.H.S.   ( ( 1) ) ( ( 1) )ν′ ′ ′ ′ ′ ′= − − + − −∫ ∫S S

ufg b uf g dx u fg b f g dx

1

2 2[ (1 v )u'+b '(1 v )  = − ∂ − ∂∫S f f u

1 1

1 1
. . . ( ) ) ( )ν∗ ∗ ′ ′= +∫ ∫H H

f f
S S

L H S ad u gdx ad u g dx

1

1

2[ (1 v ) ) u]gdx∗= − ∂∫ H
f

S
f ad .

Thus by equating the R.H.S. and L.H.S. we obtain the above 
formula. 

Proposition 2.15: The Euler-Poincare flow generated by the action 
of generalized vector field γ ∈ F-(b-1) on the dual space of tensor densities 
u ∈ Fb yields the b-field equation

mt+mxu+bmux=0,

where OB is the second generalized Hamiltonian structure.

Hamiltonian Structures of Integrable Peakon Equations 
with Cubic Nonlinearity

The subject of this section is to study the Hamiltonian structure of 
the partial differential equation 

22   0  
   

+


− =t x x
m m u u ,                (39)

which was recently obtained by Qiao [18,20]. One must note that 
this equation was first appeared in the paper of Thanasis Fokas [15]. 
Qiao described more details of its properties in the dispersion less case. 
So we propose to call this equation as the Fokas-Qiao equation. This 
equation has a cubic (rather than quadratic) nonlinear terms and was 
found to admit tri-Hamiltonian structure by Olver and Rosenau [17] 
and Qiao gave its Lax pair and cusp soliton solutions. This inspired 
Novikov [22] to seek other integrable equations of this kind, given by

mt+u2mx+3uuxm=0.                  (40)

Hone and Wang [14] gave a matrix Lax pair for Novikov’s 
equation, and showed how it is related by a reciprocal transformation 
to a negative flow in the Sawada-Kotera hierarchy.

Hamiltonian structures of the Fokas-Qiao equation

Qiao studied Hamiltonian structures for b=1 case of DHH equation 
with cubic nonlinearity. Recently Qiao and his coauthors showed that 
this cubic nonlinear equation possesses the bi-Hamiltonian structure, 
namely, it can be written as

0 1δ δ
δ δ

= =t
H Hm J K
m m

,                    (41)

where

1 3, ,= ∂ ∂ ∂ = ∂ ∂J m m K ,                  (42)

with

1 1

4 2 2 4
0 1

1 12 , ( 2 0)
4 3

= = + −∫ ∫ x x
S S

H umdx H u u u u dx .         (43)

The first Hamiltonian structure can be simplified to
1 2( )−= − ∂ ∂ + ∂xJ m m m .

 Proposition 3.1: The Fokas-Qiao equation in the Hamiltonian 
form

1. 0δ
δ

=t
Hm J
m

, with 0 2= ∫H umdx and 1−= −∂ ∂ ∂J m m  is 

equivalent to

δ
δ

=tm O
u
  for 

1

2 2( )= −∫ x
S

H u u dx ,                   (44)

where ( )= + ∂ = ∂xO m m m .

2. 1δ
δ

=t
Hm K
m

 with 
1

4 2 2 4
1

1 1( 2 0)
4 3

= + −∫ x x
S

H u u u u dx  and 

3= ∂ ∂K is equivalent to

δ
δ

= −∂tm
u
 .                   (45)

Proof: By simple computation we obtain

1 2 1 20 2( )( )δ
δ

− −= − ∂ ∂ + ∂ = − ∂ +t x x x x
Hm m m m m mu m u
m

.

Then using 2 21 ( )
2

= −x x xmu u u we obtain our first result. 

The second part can be proved in a similar way. The variational 
derivatives with respect to m and u are connected by

2(1 )δ δ
δ δ

= − ∂
H H
u m

.

Thus by straight forward calculation we obtain

2(1 )δ δ δ
δ δ δ

= −∂ = − − ∂ =t
H H Hm K
u m m

.

Hamiltonian structure of V. Novikov equation

Novikov [22] studied Hamiltonian structures for b=3/2 case of 
DHH equation with cubic nonlinearity. The V. Novikov equation can 
be expressed as

1
δ
δ

= i
t

Hm B
m

,                      (46)

where the second Hamiltonian structure is given by
3 1

1 2(3 2 )(4 ) (3 )−= − + − +x x x x x xB mD m D D mD m .                (47)

Proposition 3.2: The V. Novikov equation is equivalent to

δ
δ

=t
Hm O
u

 for 
1

31
12

= ∫SH u dx

where 2( 3 )= − + ∂xO m m for b=3/2 case.

Proof: Our goal is to show
3 1 1(4 ) (3 )δ δ

δ δ
−− + =x x x x

H HD D mD m
m u

, where 
11

1
2

= ∫SH mudx . 

We insert 1 1
2

δ
δ

=
H u
m

to left hand side of above equation. By simple 

computation one can check that

3 21(3 ) 4 3 (4 )( )
2

+ = − − = ∂ − ∂x x x x xx xxxmu m u uu u u u u u ,

thus we obtain

3 1 21 1(4 ) (3 )
2 4

−∂ − ∂ + =x xmu m u u

Finally we obtain the V. Novikov equation via 

http://dx.doi.org/10.4172/1736-4337.1000225
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2(3 )δ
δ

= − ∂ +t x
Hm m m
u

.

Therefore the Hamiltonian structure found by Hone and Wang 
[14] coincides with our Hamiltonian structure. The first or frozen 
Hamiltonian structure can be easily found as

0δ
δ

= −∂t
Hm
u

, where 2 20 2δ
δ

= − −x xx
H u u uu
u

.              (48)

This equation can also be expressed as 2(4 )( )= − − ∂t xm uu .

Proposed new peakon equation with cubic nonlinearity: Let 
us propose a new peakon equation with cubic nonlinearity which is a 
generalization of both the Fokas-Qiao equation and Novikov equation. 
It is given by

( )δ
δ

= − + ∂t x
Hm m bm
u

,  where 2 2( )δ µ ν
δ

= − x
H u u
u

,              (49)

or
2 2 2 2( ) ( ) 0µ ν µ ν+ − + − =t x x x xm m u u bm u u , where m=u-uxx.    (50)

This equation reduces to the Fokas-Qiao equation for b=µ=ν=1 
and V. Novikov equation [22] for b=3/2, µ=2 and ν=0.

2+1 cubic peakon equations

It is known that the Virasoro algebra can be extended to two space 
variables [23]. A natural way to do this is to consider the loops on it. 
One defines the loop group on Diff(S1) as follows

( ) { }1 1 1( ) : ( )| is differentiable ,φ φ= →L Diff S S Diff S ,

the group law being given by

( ) 1o ( ) ( )o ( ),φ ψ φ ψ= ∈y y y y S .

We also know that the corresponding Lie algebra L(Vect(S1)) 
consisting of vector fields on S1 depending on one more independent 
variable y ∈ S1. The loop variable is thus denoted by y and the variable 
on the “target” copy of S1 by x. The elements of L(Vect(S1)) are of the 

form: ( , ) ∂
∂

f x y
x

 where 1 1( )∞∈ ×f C S S and the Lie bracket reads as 
follows [?]

( )( , ) , ( , ) ( , ) ( , ) ( , ) ( , )∂ ∂ ∂  = − ∂ ∂ ∂ 
x xf x y g x y f x y g x y f x y g x y

x x x
.

We extend this scheme to the space of tensor densities [12]. 
Consider 1 1=G LG be the associated loop group corresponding to G1 
whose Lie algebra is given by



( 1)1 ( )− −= bL Fg .

Consider an action of L(Vect(S1)) on ( 1)( )− −bL F

( 1) ( 1)( ( ) ) ( ( 1) )( )− − − −
∂
∂

== − −b b
x xf

x

L g dx f g b f g dx ,                (51)

this yields a new bracket.

Let us introduce H1 norm on the algebra 1g .

Definition 3.3: The H1-Sobolev norm on the loop tensor density 
algebra is defined as

1
1 1

( 1)( , )( ) , ( , )( ) ν− −< > = +∫ ∫b b
x xH S S

f x y dx u x y dx f udx d fd udx , (52)

Proposition 3.4: The co-adjoint action with respect to H1 metric of 

the Lie algebra g  is given by

 ( )
*

( ( , )( ) )
 
 
 

= + +b b
x xdf

dx

ad u x y dx f m b f m dx ,

where 2(1 )ν= − ∂m u .

Corollary 3.5: The Hamiltonian operator corresponding to the co-
adjoint action of the cotangent loop Virasoro algebra with respect to 
H1 metric is given by



2 1(1 ) ( 1)( )ν −=− − ∂ ∂ + − ∂x x xO m b m
                 (53)

Proposition 3.6: The Euler-Poincare flow on the 1g orbit yields the 
2+1 – dimensional b-field equation

1 2 2 2 2( ) ( ) 0µ ν µ ν−+ ∂ − + − =t x x x y x ym m u u bm u u              (54)

where the Hamiltonian is given by 1 2 2( )δ µ ν
δ

−= ∂ −x x y
H u u
u

, which 

reduces to 1+1-dimensional b–field equation for y=x.

 It is clear that the equation becomes the Fokas-Qiao equation for 
y=x, b=µ=ν=1 and V. Novikov equation for y=x, b=3/2, µ=2 and ν=0.

Conclusion
We have studied the Euler-Poincare formalism of the cubic peakon 

equations using two different but equivalent methods. The first Euler-
Poincare framework is based on the flows defined on the spaces of 
Hill’s and first order differential operators and the second one is 
studied using the algebra of tensor densities. We have explicitly derived 
the Hamiltonian structures of the cubic peakon equations as given by 
Qiao, Hone and Wang using the Euler- Poincare formalism. We also 
derived 2+1-dimensional cubic peakon equations using the action of 
the loop extension of Vect(S1) on the space of tensor densities. It would 
be interesting to derive other novel features of these equations using 
EP theory.
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