Токуо J. Матн. Vol. 41, No. 1, 2018 DOI: 10.3836/tjm/1502179259

A Sufficient Condition That $J(X^*) = J(X)$ Holds for a Banach Space X

Naoto KOMURO, Kichi-Suke SAITO and Ryotaro TANAKA

Hokkaido University of Education, Niigata University and Kyushu University (Communicated by Y. Sawano)

Abstract. It is shown that the James constant of the space \mathbf{R}^2 endowed with a $\pi/2$ -rotation invariant norm coincides with that of its dual space. As a corollary, we have the same statement on symmetric absolute norms on \mathbf{R}^2 .

1. Introduction and the main result

Let X be a Banach space, and let S_X be the unit sphere of X. The symbol X^* stands for the dual space of X. The James constant J(X) of X is given by

$$J(X) = \sup\{\min\{||x + y||, ||x - y||\} : x, y \in S_X\}.$$

The notion of James constant was introduced in [3], and is sometimes referred as the non-square constant since J(X) < 2 if and only if X is uniformly non-square, that is, there exists a $\delta > 0$ such that min{||x+y||, ||x-y||} $\leq 2(1-\delta)$ for each $x, y \in S_X$. Some basic properties of J(X) are as follows:

- (i) $\sqrt{2} \le J(X) \le 2$ for any Banach space X ([3]).
- (ii) $J(H) = \sqrt{2}$ for any Hilbert space H.
- (iii) If dim $X \ge 3$, then $J(X) = \sqrt{2}$ if and only if X is a Hilbert space ([6]).
- (iv) If dim X = 2, then there exist various non-Hilbert spaces X satisfying $J(X) = \sqrt{2}$ ([3, 6, 7]).

We recall that another important geometric constant, the so-called von Neumann-Jordan constant $C_{NJ}(X)$ of a Banach space X, satisfies the equality $C_{NJ}(X^*) = C_{NJ}(X)$ for any Banach space X ([9]). In other words, von Neumann-Jordan constant is invariant under taking the dual space. However, this is not the case for James constant ([4, Example 2]). Hence it is natural to estimate differences between $J(X^*)$ and J(X). In this direction, for example, we

Received June 24, 2016; revised September 1, 2016

Mathematics Subject Classification: 46B20

Key words and phrases: James constant, rotation invariant norm, isosceles orthogonality

have $|J(X^*) - J(X)| \le (\sqrt{2} - 1)^2$ by [10, Corollary 4] and

$$|J(X^*) - J(X)| \le \max\left\{\frac{2J(X) - J(X)^2}{4}, \frac{2J(X^*) - J(X^*)^2}{4}\right\}$$

by [11, Corollary 2.1]; see also [2]. On the other hand, this estimation problem includes the following important part: When does the equality $J(X^*) = J(X)$ hold? In [8], it was shown that if X is a two-dimensional symmetric absolute normed space, then $J(X^*) = J(X)$, where a norm $\|\cdot\|$ on \mathbb{R}^2 is said to be *symmetric* if $\|(\alpha, \beta)\| = \|(\beta, \alpha)\|$ for each (α, β) , and *absolute* if $\|(\alpha, \beta)\| = \|(|\alpha|, |\beta|)\|$ for each (α, β) . Although the proof is complicated, this result provides various examples of normed spaces X satisfying $J(X^*) = J(X)$.

The purpose of this paper is to develop the study on normed spaces X satisfying $J(X^*) = J(X)$ in the two-dimensional setting. More precisely, we aim to extend the above result in [8] to the wider class of $\pi/2$ -rotation invariant norms on \mathbf{R}^2 by a quite simple argument. For $\theta \in \mathbf{R}$, let $R(\theta)$ be the θ -rotation matrix, that is,

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Then a norm $\|\cdot\|$ on \mathbb{R}^2 is said to be θ -rotation invariant if $\|R(\theta)x\| = \|x\|$ for each $x \in \mathbb{R}^2$. From the definition, a norm $\|\cdot\|$ on \mathbb{R}^2 is $\pi/2$ -rotation invariant if $\|(-\beta, \alpha)\| = \|(\alpha, \beta)\|$ for each (α, β) . If $\|\cdot\|$ is a symmetric absolute norm on \mathbb{R}^2 , then it follows from

$$\|(-\beta, \alpha)\| = \|(|\beta|, |\alpha|)\| = \|(\beta, \alpha)\| = \|(\alpha, \beta)\|$$

for each (α, β) that $\|\cdot\|$ is $\pi/2$ -rotation invariant. Hence the class of $\pi/2$ -rotation invariant norms contains that of symmetric absolute norms.

The main result in this paper is the following.

THEOREM 1.1. Let $\|\cdot\|$ be a $\pi/2$ -rotation invariant norm on \mathbb{R}^2 . Then $J((\mathbb{R}^2, \|\cdot\|)^*) = J((\mathbb{R}^2, \|\cdot\|))$.

As an immediate consequence of the main theorem, we have the following.

COROLLARY 1.2 ([8]). Let $\|\cdot\|$ be a symmetric absolute norm on \mathbb{R}^2 . Then $J((\mathbb{R}^2, \|\cdot\|)^*) = J((\mathbb{R}^2, \|\cdot\|))$.

2. Proof of the main theorem

For two elements x, y of a normed space, x is said to be *isosceles orthogonal* to y, denoted by $x \perp_I y$, if ||x + y|| = ||x - y||. Then, as was shown in [3], the James constant can be written as

$$J(X) = \sup\{||x + y|| (= ||x - y||) : x, y \in S_X, x \perp_I y\}.$$

This is a key ingredient of our argument.

We start this section with the following useful lemma.

220

LEMMA 2.1 (Gao-Lau [3]; Alonso [1]). Let X be a two-dimensional normed space. Suppose that $x \in S_X$. Then there exists a unique (up to the sign) element $y \in S_X$ such that $x \perp_I y$.

In what follows, let X be a normed space $(\mathbf{R}^2, \|\cdot\|)$ unless otherwise stated. Using the preceding lemma, we can completely determine the isosceles orthogonality in a $\pi/2$ -rotation invariant normed space. Although it was already mentioned in Komuro, Saito and Mitani [5], we give its proof only for the sake of completeness.

LEMMA 2.2 ([5]). Let X be a $\pi/2$ -rotation invariant normed space, and let $x, y \in S_X$. Then $x \perp_I y$ if and only if $x \perp y$ in the usual sense, that is, $\langle x, y \rangle = 0$. Equivalently, if $x \in S_X$, then $x \perp_I y$ if and only if $y = \pm R(\pi/2)x$.

PROOF. From the preceding lemma, it is enough to show that $x \perp_I R(\pi/2)x$ for each $x \in S_X$. Put $y = R(\pi/2)x \in S_X$. Since $R(\pi/2)$ is an isometry also on the Euclidean space $(\mathbf{R}^2, \|\cdot\|_2)$, it follows that $\|x\|_2 = \|y\|_2$. From this, we have $\langle x + y, x - y \rangle = 0$, which and $\|x + y\|_2 = \|x - y\|_2$ together imply that $x + y = \pm R(\pi/2)(x - y)$. Hence we have $\|x + y\| = \|x - y\|$ since $R(\pi/2)$ is an isometry on X, that is, $x \perp_I y$.

As a consequence of Lemma 2.2, if X is a $\pi/2$ -rotation invariant normed space, then $J(X) = \sup\{||x + R(\pi/2)x|| : x \in S_X\}$. We now remark that $I + R(\pi/2) = \sqrt{2}R(\pi/4)$. Then one has the following.

THEOREM 2.3. Let X be a $\pi/2$ -rotation invariant normed space. Then $J(X) = \sqrt{2} \|R(\pi/4)\|_X$, where $\|\cdot\|_X$ denotes the operator norm with respect to the space X.

Now, [7, Theorem 3.10] is an easy consequence of the preceding theorem.

COROLLARY 2.4 ([7]). Let X be a $\pi/2$ -rotation invariant normed space. Then $J(X) = \sqrt{2}$ if and only if X is $\pi/4$ -rotation invariant.

PROOF. If X is $\pi/4$ -rotation invariant, then $||R(\pi/4)|| = 1$; and so $J(X) = \sqrt{2}$ by the preceding theorem. Conversely, suppose that $J(X) = \sqrt{2}$. Then, again by the preceding theorem, we have $||R(\pi/4)|| = 1$. Moreover, since X is $\pi/2$ -rotation invariant, one has that $R(\pi/2)$ and its inverse $R(-\pi/2)$ are both isometries on X. Thus it follows that

$$\|R(\pi/4)^{-1}\| = \|R(-\pi/4)\| = \|R(-\pi/2)R(\pi/4)\| \le \|R(-\pi/2)\|\|R(\pi/4)\| = 1,$$

which implies that $R(\pi/4)$ is an isometry on X.

Naturally, the dual space X^* of X can be identified with $(\mathbf{R}^2, \|\cdot\|_*)$ under $X^* \ni f \leftrightarrow (f(1,0), f(0,1)) \in \mathbf{R}^2$. In this manner, the adjoint operator (as a Banach space operator) A^* of a matrix A can be represented by the transpose A^T . Moreover, it is well-known that $\|A^*\|_{X^*} = \|A\|_X$. These facts provide another key ingredient.

LEMMA 2.5. Let $\theta \in \mathbf{R}$. Suppose that $\|\cdot\|$ is a θ -rotation invariant norm on \mathbf{R}^2 . Then the dual norm $\|\cdot\|_*$ is also θ -rotation invariant.

PROOF. Put $X = (\mathbf{R}^2, \|\cdot\|)$. Then $X^* = (\mathbf{R}^2, \|\cdot\|_*)$. We note that the adjoint operator of $R(\theta)$ is given by $R(\theta)^* = R(\theta)^T = R(-\theta)$. Since $\|\cdot\|$ is θ -rotation invariant and $R(-\theta) = R(\theta)^{-1}$, we have $\|R(\theta)\|_{X^*} = \|R(-\theta)\|_{X^*} = 1$. Then it follows that

$$||R(\theta)x||_* \le ||R(\theta)||_{X^*} ||x||_* = ||x||_*$$

for each $x \in X^*$, and that

$$\|x\|_{*} = \|R(-\theta)R(\theta)x\|_{*} \le \|R(-\theta)\|_{X^{*}}\|R(\theta)x\|_{*} = \|R(\theta)x\|_{*}$$

for each $x \in X^*$. Thus $||R(\theta)x||_* = ||x||_*$ for each $x \in X^*$, that is, $|| \cdot ||_*$ is also θ -rotation invariant.

We are now ready to prove the main theorem.

PROOF OF THEOREM 1.1. Let $\|\cdot\|$ be a $\pi/2$ -rotation invariant norm on \mathbb{R}^2 . Put $X = (\mathbb{R}^2, \|\cdot\|)$. Then its dual norm $\|\cdot\|_*$ is also $\pi/2$ -rotation invariant by Lemma 2.5. It follows from Theorem 2.3 that $J(X) = \sqrt{2} \|R(\pi/4)\|_X$ and $J(X^*) = \sqrt{2} \|R(\pi/4)\|_{X^*}$. However, since $R(\pi/2)$ is an isometry on X^* , one has that

$$\|R(\pi/4)\|_X = \|R(\pi/4)^*\|_{X^*} = \|R(-\pi/4)\|_{X^*}$$
$$= \|R(\pi/2)R(-\pi/4)\|_{X^*} = \|R(\pi/4)\|_{X^*}.$$

This proves that $J(X^*) = J(X)$, as desired.

ACKNOWLEDGMENT. The second and third authors were supported in part by Grantsin-Aid for Scientific Research Grant Numbers 15K04920, 16J01162, Japan Society for the Promotion of Science, respectively.

References

- J. ALONSO, Uniqueness properties of isosceles orthogonality in normed linear spaces, Ann. Sci. Math. Québec 18 (1994), 25–38.
- [2] J. ALONSO, P. MARTÍN and P. L. PAPINI, Wheeling around von Neumann-Jordan constant in Banach spaces, Studia Math. 188 (2008), 135–150.
- [3] J. GAO and K.-S. LAU, On the geometry of spheres in normed linear spaces, J. Aust. Math. Soc. Ser. A 48 (1990), 101–112.
- [4] M. KATO, L. MALIGRANDA and Y. TAKAHASHI, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275–295.
- [5] N. KOMURO, K.-S. SAITO and K.-I. MITANI, Convex property of James and von Neumann-Jordan constant of absolute norms on R², Proceedings of the 8th International Conference on Nonlinear Analysis and Convex Analysis, 301–308, Yokohama Publ., Yokohama, 2015.
- [6] N. KOMURO, K.-S. SAITO and R. TANAKA, On the class of Banach spaces with James constant √2, Math. Nachr. 289 (2016), 1005–1020.
- [7] N. KOMURO, K.-S. SAITO and R. TANAKA, On the class of Banach spaces with James constant √2: Part II, Mediterr. J. Math. 13 (2016), 4039–4061.

- [8] K.-S. SAITO, M. SATO and R. TANAKA, When does the equality $J(X^*) = J(X)$ hold for a two-dimensional Banach space *X*?, Acta Math. Sin. (Engl. Ser.) **31** (2015), 1303–1314.
- [9] Y. TAKAHASHI and M. KATO, von Neumann-Jordan constant and uniformly non-square Banach spaces, Nihonkai Math. J. 9 (1998), 155–169.
- [10] F. WANG, On the James and von Neumann-Jordan constants in Banach spaces, Proc. Amer. Math. Soc. 138 (2010), 695–701.
- [11] C. YANG and H. LI, An inequality between Jordan-von Neumann constant and James constant, Appl. Math. Lett. 23 (2010), 277–281.

Present Addresses: NAOTO KOMURO DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY OF EDUCATION, ASAHIKAWA CAMPUS, ASAHIKAWA 070–8621, JAPAN. *e-mail*: komuro.naoto@a.hokkyodai.ac.jp

KICHI-SUKE SAITO DEPARTMENT OF MATHEMATICAL SCIENCES, INSTITUTE OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950–2181, JAPAN. *e-mail:* saito@math.sc.niigata-u.ac.jp

RYOTARO TANAKA FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY, FUKUOKA 819–0395, JAPAN. *e-mail*: r-tanaka@math.kyushu-u.ac.jp