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On a Variational Problem Arising from the
Three-component FitzHugh-Nagumo Type
Reaction-Diffusion Systems
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Abstract. We study a variational problem arising from the three-component Fitzhugh-Nagumo type reaction
diffusion systems and its shadow systems.

In [15], Oshita studied the two-component systems. He revealed that a minimizer of energy corresponding to the
problem oscillates under an appropriate condition and also studied its stability. Moreover, he mentioned its energy
estimate without a proof.

We investigate the behavior of a minimizer corresponding to the three-component problem, its stability and
its energy estimate and extend some results of Oshita to the three-component systems and its shadow systems. In
particular, we give a necessary and sufficient condition that the minimizer highly oscillates as € — 0. Also, we
establish a precise order of the energy estimate of the minimizer as € — 0. In the proof of the energy estimate, we
propose a new interpolation inequality.

1. Introduction

In this paper, we study the existence and its stability of some steady states to the follow-
ing reaction-diffusion systems:

ur(x, 1) = €2 Aux, 1) + fu(x, 1) —v(x, 1) —w(x, 1), xe€,t>0,

.0 Tivr(x, 1) = d1Av(x,t) — yrv(x, t) + Su(x,t), xef,t>0,
’ w(x,1) = dyAw(x, t) — yw(x, t) + Su(x,t), xefR,t>0,
Bue,t) =0, =3x,1)=0, x€0982,t>0,

where 2 ¢ RY (N > 1) is a bounded domain with the smooth boundary 052; % is a normal
derivative on 0§2; € > 0,7 > 0,d; > 0,6; > 0and y; > 0( = 1, 2) are constants; f is a
function satisfying the following conditions:

(f1) f(1) € C*(R).
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(f2) There are 0 < 71 < 1 such that f(r;) < 0, f(2) > 0, f'(¢t) < 0ifr €

(=00, 11) U (12, 00),and f'(t) > 0ifr € (z1, 12). Moreover, lim;— f(t) =

f(t) —00.

—00, lim;_ _
(f3) Let I_; = (—o0, ‘1,'1), Iy = (11, 2) and I} = (12, 00). Moreover, leta; € I; (i =

—1,0, 1) be zero points of f(¢). We assume that fa”_'l f(s)ds > 0.

Typical examples include f (1) = u(1—u)(u—a) (0 <a < %) and f(u) = u(u—%)(l—u)%—c
with ¢ > 0 small.

Equations (1.1) is called the FitzHugh-Nagumo type system, which is originally intro-
duced in the field of physiology. This is also studied mathematically as a model which gen-
erates complex patterns. Oshita and Dancer-Yan studied steady state solutions of the two-
component system, which corresponds to the case 6o = 0 in (1.1), and proved that the
minimizer of the energy associated with (1.1) highly oscillates between two stable values
([6, 15]). Moreover, Nishiura and Ren-Wei studied several constructions of solutions of the
two-component system in the case the dimension N = 1 ([12, 16]).

In recent years, the three-component system (1.1) is proposed as a qualitative model of
gas discharge phenomena and there are several studies on (1.1) ([1, 7, 10, 13]).

The steady state problem of (1.1) is

0=e2Au(x) + fux)) —vx) —w(kx), x¢€s,

1.2) 0=dAv(x) — y1v(x) + S1u(x), x €S2,
’ 0 dzAw(x) yzw(x) + Su(x), x €S2,
(x)—an(x)—an(x)_o x €082.

First, we assume d; = 1 (i = 1, 2) for the systems (1.2).

Before we state our results, we give some notations. Let u = hy (v), v € f(I1), be the
inverse function of v = f(u) restricted to /1, and let u = h_(v),v € f(I-1), be the inverse
function of v = f(u) restricted to /_;. Then there exists a unique number g such that

h (@)
/ (f(s) —ag)ds = 0
h_(ap)

from (f3). Foreachu € H'(£2),letv = G u be the unique solution of the following problem:

—Av(x)+yv(x) =u(x), x €,
Bx)=0, x€df2.

Then we see that (1.2) withd; = 1 (i = 1, 2) is reduced to the following nonlocal elliptic
problem:

(13) {—ezAu = fw) —81Gpu —8Gpu, xe€ 2,

ux)=0, X €d82.
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The energy associated with (1.3) is
14 I.(w)==| €|Vu|"dx + — uGpudx + — uGypudx — F(u)dx,
2Ja 2 Ja 2 Ja 2
where F(t) = f if_(ao) f(r) dt. Then we can see the following problem has a minimizer (see
Proposition 2.1):
(1.5) o =inf{lc(u) : u € H(2)}.
Next, we also study the shadow system as follows:

us(x,t) = ezAu(x,t) 4+ fulx,t) —vx,t) —&@), xe€£2, t>0,

(1.6) Tiv(x, 1) = Av(x, 1) — y1v(x, 1) + Sju(x, 1), xef2, t>0,
' k(1) = k() + 5 [ou(e, 0 dt >0,
M, t) =L@, 1)=0, xed2, t>0.

Shadow systems are often used to approximate reaction-diffusion systems when one of the
diffusion rates is large. (1.6) corresponds to the case that d; = 1 and d; is large in (1.1).
We consider the steady state of (1.6) as follows:

0=e2Au(x) + f(ux)) —vx) — %]_Qu(;)d;, x € R,
(1.7) 0= Av(x) — yv(x) + S1u(x), x € 2,
g_z(x):g_z(x):o, X €082

The energy associated with (1.7) is

(1.8) Jo(u) 1/ 2\vul?d +51/ Goudx 4+ —2 (/ d)2 /F()d
. u) = — € u X - u udax udax —_ u X .
‘ 2Jo 2 Jo " 2y 1821 \Ug 17,

Then we consider the minimizing problem:

(1.9) inf {Je(u): ue H'(2)}.

First, for the existence and properties of the minimizer of (1.5), we have the following
result.

THEOREM 1.1. Let ue be a global minimizer of (1.5) and let ve = 8§1Gy Ue, We =
852Gy, ue. Moreover, let s; = f/—' (i =1,2), S =s1+s2. Then we have

M IfO0 < § < %, then ue = hi(c),ve = %c,we = %c for any € >
0, where c is the constant that satisfies S = m

2) If h_(ag) < 0,5 > % or h_(ap) > 0,% > S > %, then ve —
Tag in CLB(2), we — Zag in CLA(2) ase — 0 forall B € (0,1). Moreover,
uc has following properties;
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(@) ue — %" weakly in L%(£2). However, (uc)e does not have any subse-

quence that converges strongly in L' (£2).
(b) Forany 6 > 0 small,

lim ‘9590969‘ 0,
where .Q::g, $2. o are defined as follows:

20, ={x € 2 Jue(x) — hy (o) > 6},

R2.9=1{x €2 |uc(x) —h_(ao)| = 0} .

Moreover, (u¢)e does not have any subsequence that converges in mea-
sure.

3) If h—(ag) > 0,8 > #‘;0), then uc = h_(c), ve = %‘c, We = %cforanye > 0,

. . o
where c is the constant that satisfies S = RGR

REMARK 1. Itis easy to see that hi_(xg) < 0 holds for f(u) = u(u — a)(1 — u) with
a € (0, %) and i (ag) > 0 holds for f(u) = u(u — %)(1 — u) + ¢ with ¢ > 0 small.

REMARK 2. Oshita [15] studied the case 6, = 0 and &_(ap) < 0 and proved almost
the same results by using the notion of the Young measure.

Dancer-Yan [6] studied the both cases Z_(xg) < 0 and &_(ag) > O for the Dirichlet
boundary condition.

For the minimizer of (1.9), we have the following result.

THEOREM 1.2. Let u. be a global minimizer of (1.9) and let ve = 61Gy,ue. More-
over, let s; = i—' (i=1,2), S=s1+ 3. Then we have

(D If0 < § < %, then u¢ = hi(c), ve = %'cfor any € > 0, where c is the
. _ C

constant that satisfies S = IMOE

2) If h_(ag) < 0,5 > %,orh () > 0,% > S > %,thenv6 —
—ao inCLB(2) as e - 0 for all B € (0, 1). Moreover, uc holds (a) and (b) in
Theorem 1.1.

3) If h_(ap) > 0,8 > %, then ue = h_(c), ve = %c for any € > 0, where c is
the constant that satisfies S = h%(c)

For the stability of the global minimizer obtained in Theorems 1.1 and 1.2, we have the
following results, which extend Theorem 1.2 in [15].

THEOREM 1.3. Assume 5},/_:2, + 5)2/% < 1. Then the following statements hold.
1 2
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(1) Foralocal minimizer ug of I (u) on HY($2), (ug, vo, wo) is a stable solution to the
problem (1.1), where vo = 861G, up and wo = 62G, uo.

(2) For a local minimizer uq of Je(u) on H'(£2), (uo, vo, &) is a stable solution to the
problem (1.6), where vo = 861G, up and & = % f_Q up(x) dx.

We can prove Theorems 1.3 using essentially the same arguments as in the proof of the
Theorem 1.2 in [15]. However, emphasizing the case of the shadow system, we give the proof
for the sake of completeness in the Appendix A.

Furthermore, we give the following precise order of the energy estimates as € — 0.

THEOREM 1.4. Let £2 = (0, l)N Cc RV (N = 1), ¢ be a small positive constant, and
8 be any positive constant. Let uc be a minimizer of (1.5). We assume S = s1 + s with

§; = i—'l (i =1, 2) satisfies the following conditions;

1) Ifh_(ap) <0, then S € (% +, oo) .

(ii) Ifh_(ap) =0, then S € ( D t¢, —h+§a°)) )

h ()
(iii) Ifh—(ao) > O, then S € (% T . ;) _

Then there exist positive constants €, = €,(¢, S), lo = 10(¢), Lo such that
2 1 1 2 1 1
(1.10) loe3<813 +823>—C*§I(ué)§L063<813 ~|—823>—C*

forall e € (0, €),8; € (¢,8), where

2

(1.11) C, = <Z—g - aoh_(ao)) 2.

THEOREM 1.5. Let 2 = (0, l)N C RV (N = 1), ¢ be a small positive constant, and
§ be any positive constant. Let u. be a minimizer of (1.9). We assume S = s1 + s with
i

Si = o (i = 1, 2) satisfies the following conditions;

() I h-(@0) < 0, then S € (% +¢,00).
(i) Ifh—(@0) = 0, then S € (405 +¢, o).

h (o)

(i) Ifh_(ag) > O, then S € (% +4 s — ;) .
Then there exist positive constants €;' = €,'(¢,8), o) = 1o/ (¢), Ly, such that
) 203 ) 20%
(1.12) l/€387 — Cy < Je(ue) < Lie3s) — C,

forall e € (0,¢€,)),8; € (e, S), where C, is defined as (1.11).
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REMARK 3. We conjecture that the statement in Theorems 1.4 and 1.5 are also true
even for general bounded domains §2. However, to show this it will be more involved to es-
tablish technical lemmas (Lemmas 3.2 and 3.3) for general bounded domains §2 by modifying
the operator Ty suitably.

REMARK 4. In this paper, we consider the 3-component model, but our proof can also
be applied the following (n 4 1)-component model (one activator - n inhibitor model);

—€Au(x) = fu(x) = Yj_jvix), xe,

—Av;i(x) + yivi(x) = diu(x), xefR,i=1,...n,

fa) = () =0, x€dR, i=1,...n.
For example, if 1_(a9) <0, § =371, f/_[, c (%, 00), or h_(ag) > 0, S = Y"_, f/_[,
(%, %), then the minimizer u. exhibits the oscillatory behavior as in Theorem 1.1.

Roughly speaking, Theorems 1.1 and 1.2 imply that the minimizers of (1.5) and (1.9)
highly oscillate between i _(«p) and i («p) as € tends to O if we choose 81, 87 appropriately.
This result contains a part of the main theorem of [15], which treated the case § = 0 and
h_(ap) < 0. In addition, we have revealed the threshold of parameters that the behavior of
the minimizer changes dramatically at.

We shall note a feature of the effect of 6, in the shadow system in Theorem 1.2. In the
case 81 = 0,62 > Oand N = 1 in (1.7), Suzuki and Tasaki prove the minimizer of (1.9)
has only one internal layer ([17]). Moreover if 81 is small, 6o = 0 and h_(xp) < 0, then
minimizer of (1.9) is a constant from Theorem 1.2. However, Theorem 1.2 implies that if we
take 8 large enough, the minimizer of (1.9) oscillates between h_ (o) and k4 (o) even for
small 8.

Moreover, we have provided the precise order in the energy estimates of /. and J¢ in
a special case that 2 = (0, 1)" in Theorems 1.4 and 1.5. For the two-component system,
essentially the same statement was established in [15] without a proof. We also note that
for the one-dimension two-component system, more precise energy estimate was obtained
in [14]. Similar energy estimates have been proved for the Ohta-Kawasaki model and other
related problems (see [4, 5]).

This paper is arranged as follows. In Section 2, we prove Theorems 1.1 and 1.2.
Lemma 2.6 is a key lemma in the proof of the theorems. In Section 3, we prove Theorems 1.4
and 1.5. A new interpolation inequality in Lemma 3.4 is important in the proof of the lower
bound estimate. We give a proof of Theorem 1.3 in Appendix A, where we consider the
spectrum of the linearized problem and use the center manifold theory to show Theorem 1.3.

2. Proof of Theorems 1.1 and 1.2

2.1. Proof of Theorems 1.1. In this section, we prove a series of propositions and
lemmas to prove Theorem 1.1. For simplicity, we use the notation G1 := G, G2 := G,.
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First, we prove the existence of a global minimizer of (1.5).
PROPOSITION 2.1. The minimizing problem (1.5) has a global minimizer.

PROOF. Let {u,},eny be a minimizing sequence. From (f2), there exist a constant
C > 0 such that —F(t) > —C + Cr? forallt € R. Moreover, noting fg uGiudx =

||VGl-u||§2(m + yi ||G,»u||iz(m >0 (@G = 1,2) forany u € H'(2), we obtain I.(u) >

% ||Vu||iz(m + %Ilulliz(m — C for any u € H'(£2). Thus {u,}nen is bounded in
H'(£2). Then there exists uc € H'(£2) such that u, — u. weakly in HY(2), u, —
uc strongly in L?(£2). From the weak lower semicontinuity of L?(£2) norm, we have
lim inf,,— oo ||Vu,,||Lz(_Q) > IIVuEIILz(_Q) . Furthermore,

/ UnGiy +ucGiue dx =/ (up —u)Gi(upy —ue) +2u,Giue dx
Q Q

> 2/ u,Giucdx .
Q

Since Gjue € L*(£2), we have liminfy—oo [ unGittn dx > [ ucGjue dx.
Finally we show liminf, .o [ —F(uy)dx > [, —F(uc)dx. We define F(t) =
fatl f(s)ds = F(t) — faajl f(s)ds so that —F(r) > 0. Therefore we obtain
n—oo

liminf/ —F(un)dxzf —F(ue)dx
2 22

from Fatou’s lemma. Thus we have shown that there exists u. € H'(§2) such that /. (u¢)
liminf,_ I (u,) = o. O

IA

The following lemmas are well-known and very useful (see e.g. [2, 11]).

LEMMA 2.1. Let f € L2(2) and u € HY(£2) be such that

/Vu-V(l)dx—l—y/ u¢dx=/f¢dx forany(beHl(.Q).
2 2

Then we have, for a.e. x € 2,

1 1
—inf f(y) <u(x) < —sup f(y).
Y yes Y ye2

LEMMA 2.2. Letge C(2 xR)andw € C*(22 x R) N C(2 x R).
(1) We assume w satisfies the following inequalities:

Awx) + gx, wx)) >0, xe€ 82,
wx) <0, x€df.

If w(xo) = max, 5 w(x), then we have g(xo, w(xo)) > 0.
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(2) We assume w satisfies the following inequalities:

Aw(x) + glx,wx)) <0, xe€ £,
W (x) >0, x€df.

If w(xo) = min, .5 w(x), then we have g(xo, w(xp)) < 0.
Next, we will show the boundedness of a solution of (1.2). The idea of the proofis based
on [6].

LEMMA 2.3. There is a constant L1 > 0 which is independent of € > 0, such that
for any solution (ue, ve, we) of (1.2), we have |luell o2y s 1Vell Lo (2) > lwell Loy < Li. In
addition, if §; < § < +00, we can take Ly, which is independent of €, §; and which satisfies
< L1 for any solution of (1.2), where § = (81, §2).

”“2 ”LOO(.Q) | v ”LOQ(.Q) | w? HLOO(.Q)

PROOF. We only consider the case 8; € (0, §). We prove by contradiction. Namely we
suppose that there exist sequences {€, }neN, {01 }nen such that [lu, || o) — 00 asn — oo,

b
where u, = uc),. Then we note

SUlunllpoo(2))

2.1)
lunlloo2)

— —00 (n— 00).

Thus there exists a subsequence {un; } jeny which satisfies either (i) or (ii);

(1) For any j € N, there is a point x({ € £ which satisfies Un; (x({) =

max,eq Un; (X) = ||un, ”Loo(.o) :

(i) Forany j € N, thereis apointx{ € £2 which satisfies Un; (x{) = MiNyeQ Uy; (x) =
- H”V‘j ”LOO(_Q) :
Thus we consider each case.
(i) Substituting w = u € C?(2) N C1(2), g(x, 1) = f(t) — ve(x) — we(x) € C(2 x R)
in Lemma 2.2(1), we can see that f (uc(xg)) — ve(xg) — we(xp) > 0. Furthermore, we define

8 8
Up = Ve, , Wy = We, forn € N, and then we have

i i O1n; don;
J J
Unj(x0)+wnj(x0)2_ ( )/1] + J/21> ”un] ||Loo(_Q)

-1 1
e <; + E) |etn, HLOC(Q)

by Lemma 2.1. As a sequence, we obtain

non

H””/‘ HLOC(_Q)
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for all j € N. But this contradicts (2.1).
(ii) Repeating the proof of (i), we can easily see

Vi V2

F(ln |y )
B ” "/”L (2) 58(1 1)
”””j ”Lw(Q)
for all j € N and this contradicts (2.1). O
REMARK 5. From Lemma 2.3 and elliptic estimates for the second and third formulas

of (1.2), we can see that v., w. are bounded in WZ’I’(Q) for any p > 1. Especially, taking
p > N, we have the compact embedding wW2r(2) c CHA(2) for p = 1 — % > 0.

Then for any 8 € (0, 1), there are v, w € C'#(£) such that ve — vin C"A(2), we —
win CLA(2) as € — 0 if we take a subsequence.

We transform (1.2) in the following way.

LEMMA 2.4. Let (u, v, w) be afunction which satisfies (1.2) and let s; = f,—’[ (i=12)
and S = s1 + s2. Then we define U, V, W, H and my as follows:

U =) :=au—>b,
V. =a(v- %),

2.2) W =a(w- %),
Ht)=—a [ | (f(@7'(s)) —ao)ds,
my = %Oa —b,

where
2
a=—|
hy (o) — h—(cp)

_ h4 (@) +h—(20)
hy (o) —h_(ag)

and @~ is the inverse function of @, that is ,
1 1
D (s)=—-(s+Db).
a
Then (U, V, W) satisfies

—E2AU(x) = —H'(Ux) = Vx)—Wkx), xe,

2.3) —AV(x)+ 1 V(x) =681(U(x) —mo), x e,
’ —AW(x) + 2 W(x) = 8U(x) — my), x €,
W)=y =) =0, xe€df.

Moreover, H satisfies following conditions.
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(H1) H € C3(R).

(H2) H(t) =0ift = x1,and H(t) > 0, otherwise.

(H3) H"(£1) > 0.

(H4) There exist positive constants c, C' such that H(t) > —C' + ct* for allt € R.

PROOF. By (2.2), we readily see

u=oU) =
(2.4) v=1 (Vi
w= 1 (W+22a) .

Substituting (2.4) into (1.2), we have
1 - 1 s 1 k

—€GAU = f(@71(W)) — 5 (V + 25%a) — 3 (W + %a) |
—LAV 4+ 8 (v 4 22%4) = 2 (U 4 ),
—LAW + 2 (W +20a) =2 U +b) .

From the definition of H, we have

—AU =a (f ((D_l(U)) - ao) —V-w
=—HU) -V -W.
We also have

1
—AV+nV =4 <U+b— —%aao) = 81(U — my),
51

1
—AW + W =68 (U +b— —%aao) = 62(U — my)
52

from the definition of mo. Moreover it is easy to check that H satisfies (H1)—(H4). O

LEMMA 2.5. We define 76 . HY(2) — R is the energy associated with (2.3), that is,

2
2.5) i(u):e—f |Vu|2dx+5—1/ ( — mo)G1 (1 — mo) dx
2 Jo 2 Jo

+8—2/ (u—mo)Gz(u—mo)dx—i—/ Hu)dx.
2 Jo 2

Then I:(u) > 0 forallu € H'(82). Moreover, let u € H'(2) and U = ® (u). Then we have
2.6) I(U) = a® () + C)
where Cy is the constant defined by (1.11).

PROOF.  Since [, uGiudx = |Vull2, o + 1Giull?, ) = 0and [ H(w)dx > 0 for

allu € H(2), itis clear I (u) > 0 forall u € H(£2).
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Moreover,

I.(U) = I (au — b)
2

€ 2 2 81
=—/ a” |Vu| dx—l——/(au—b—mo)Gl(au—b—mo)dx
2 Ja 2 Ja

P
+32/ (au—b—mo)Gg(au—b—mo)dx+/ H (®)) dx
2 22
=A1+ A2+ Az + Asg.

Then we have

8
Ay = 51 / a*uGiu — 2auG (b + mg) + (b + mo)G1(b + mq) dx
Q

b+m0/ udx_l_(b-l—m0)251
o) 1

_6128—1 uGiudx — 81a — |£2|
) ! ! 2

o Y1
)
:aZEI/_QMGde - %Otoazfgudx+ %a§a2|9| :

Similarly,

)
Az = aZEZ /Q uGoudx — %aoazfgudx + ;—;zaéaz |£2] .

Furthermore,

H () = —a /j(“) (f <¢—1(s)) - ao) ds

=—a’ / L0 — a0 dr
h

—(a0)
=—a’F(u) 4+ a’ao(u — h_(ap)) -

Then we have
A4 = —a2/ F(u)dx +a2a0/ udx — a’aph_(ag) |82] .
2 2

As a consequence, we obtain

T.(U)=A| + Ay + A3 + Ay
2
_ 2 % o _
=a (IE(M)Jr 3s |£2] aoh—(ao)lﬂl)

=a® (I (u) + Cy) .
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By Proposition 2.1 and Lemma 2.5, the following minimizing problem has a minimizer
Ue:
2.7 inf(I.(u): ue H (2)}.

Moreover U, satisfies that U, = @ (u.), where u, is a minimizer of (1.5).

Then we will show Lemmas 2.6 and 2.7, which play important roles to show that the
minimizer oscillates under the appropriate conditions. We mention that the ideas of these
proofs are based on [15].

LEMMA 2.6. We assume that the following condition (x):
© hete S0, 5> gy or ot =0, 5> 5>

Then we have

min I:(u)—>0 as € > 0.
ucH ()

PROOF. From the condition (), we can easily see that mg € (—1,1). Since i

is nondecreasing with respect to €, it suffices to consider the case €> = niﬁ (n € N).
Moreover let u, € C®[RY) N L®RY) be a function satisfying u,(—x1, x2, ..., xy) =
Up(X1,x2,...,xXN), Uy(x1+ %, X2, ..., XN) = Up(x1, X2, ..., xn) and the following:

-1, 0<xi <ay,
(2.8) () = 1 x (P01 —an)) , an < x1< by,

I, b, <x1 < % s

where x € C*(R, [-1, 1]), ap, b, are defined by

-1, s<0,
1, s>1,

Cl—mpf1 1
=" n n3)’

1—mg1l 1+mp 1
b, = - —.
2 n 2 nld

(2.9) x(s) = {

Then we will show that lim,— oo Ic (1,) = 0. Let 2’ be
Q' = {x’ e R¥"!: There exists x; € R such that (x1, x") € 2} .

Thereis L > O such that 2 C [—L, L] x £2’. Then

L
/|wn|2dx5/ / |Vun|>dx'dx;
22 —L J
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< C|9’|Ln/ [ (1 - an))

by, 2
=C|.Q/|Ln7/ ‘X’(n3(x1 —a,,))‘ dxi
dan

2
dx

by
n

1
=C|9/|Ln4/0 X (s)2ds

< cn®.
It follows that
2 2 c

(2.10) € [Vu,| dx§—2—>0 as n — 00.

0 n
Next, we will show
(2.11) up, — mo weakly in L>(2) as n — oo.

Let & be a function satisfying u(—xy, x2,...,xy) = u(xy,x2,...,xy), U(x; +

2,X2,...,xN) = i#(x1, X2, ..., xy) forall x = (xq,...,xy) € RN and

~ _ _17 Ofxlfl_zmoa
(2.12) u(x)—{l’ 1_%53“51‘

Then we define i1, (x) = i (nx). Furthermore, let

N
2 1 2 1
Tz(n)=H<;Zi—;,;Zi+;> ZGZN,HGN.
i=1

Especially, let T = To(1). Then it € L?(T) and @ is T-periodic, that is, i (x + Tej) =u(x)
forx € RV, j=1,..., N. As a consequence, we can see

1
Up —> m/ udx = mo weakly in L*(2) as n — o0
T
(see [3]). In addition, there exists a constant C > 0 such that
~ 2 1
(uy — ty)“dx < Cn—3 = —
Q n
for all n € N. Thus for any ¢ € L?(£2), we obtain

=

‘ / (1 — mo)d dx
2

/ (i — mo)p dx +‘ / (n — )b dx
2 2

=<

JC
+ ol 2 -

/ (i — mo)p dx
2
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As a consequence, we conclude (2.11).
Next, we will show

(2.13) lim (uy —mo)Gi(u, —mpo)dx =0.
2
Since G; is a compact operator from L2(£2) to L2(£2), (2.11) implies

Gi(up —mg) — 0 strongly in L2(.Q) as n — 00.

Then from Holder’s inequality, we can see

‘/ (un —mo)Gi(up —mo) dx| < lup —moll L2\ |1Gi(un —mo)ll 122y
2

<ClGi(un —mo)llL2(g) -

It follows (2.13). Finally, we will show lim / H(u,;)dx = 0. We can see
n—oo Q

(2.14) / H(u,) dx:/ H(u,)dx
2 {xe2:wm, (x)#x1}

=Cl({x € £ 1uu(x) # £1})|

1
n
from (H2). Combining (2.10), (2.13) and (2.14), we obtain lim._, ¢ I: (un) = 0 and completes
the proof. U
We will show next lemma.
LEMMA 2.7. Let uc be a minimizer of I, ve = §1Gue, we = 82Gouc. Under the

condition (x), for any 0 > 0 small, we have

lim |27, N 27,| =0.

e—0

PROOF. Let U, = ®(uc). Then
N2, ={xe2; Ucx)-1z0}Nn{xe2; [Ucx)+1] =6},

where 8’ = @ (). From Lemma 2.6, we can easily see that 0 < I:(UE) < I:(u,,) — 0ase —
0. Then it follows lim¢_, f o H(Ue) dx = 0. Moreover, for any 9’ > 0, there is a constant
cg' > Osuch thatif |[s — 1| > 6" and |s + 1| > @', then H(s) > cy holds by (H2). Thus we
can see

0 <co |27, N 27| 5/ H(U)dx .
' ’ 2

Finally, taking ¢ — 0, we have the conclusion. O
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PROOF OF THEOREM 1.1.
(1) Thecase0 < S < m

Let ¢ be a constant satisfying S = m Then we have
5.
= / uGiudx
2 Ja
8.
== / (U —h(©))Gi(u —hy(0) +2uGihy(c) — hi()Gihy(c)dx

= —/ u—hy()Gi(u—hy(c))dx + h+(c)/ udx — (S—hz (c) |82],

/F(u)dx

2

://u (f(t)—c)dtdx—l—c(/ udx—h_(a0)|[2|>.
2 Jh_(ap) 2

52_

— C
Vz =S= o We have

Notmg
62 2 51
I (u) =/ {7 [Vul” + f(u —hi()G1(u — hy(c))
2
8 u
+ 52(14 —hi(c)Ga(u — hy(c)) — / (f®)—o dt} dx
h— ()

Sh?2

+ (— ;(6) n ch_(ao)) 2.

Thus we can easily see that u = h4(c) is a minimizer of (1.5). It is also clear that v, =

Fe, we = .
(2) The case h_(ag) <0, S >
It is clear that

orh_(ag) >0

_ oy [8d1)
Iy ()’ > () ( 0 §> hi (o)

. + — _
tim |22 0.2, | =0

from Lemma 2.7. Then we will show that u, — “TO weakly in L?(£2). It suffices to show
Ue — mo weakly in L2(£2), where U, = ® (u.). From Lemma 2.3, U, is bounded in L2(£2).
Then there exists U € L2(£2) such that U, — U weakly in L2(£2). Therefore it follows that

lim/ (Ue —mp)G1(Ue —mg)dx = / (U —mo)G1(U —mg)dx .
Q 2

e—0

In fact, noting that G;U, — G U strongly in Lz(.Q), we can see

/(Ug—mwGl(Ue—mo)dx—/ (U = mo)G1 (U — mo) dx
2 2
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=

/Q (Ue = m0)G1(Ue = mo) — (Ue — mo)G1(U — mo) dx

+ ‘/Q(Ue —mo)G1(U —mo) — (U —mo)G1(U — mo) dx

<CIGi1(Ue = U)llL2) >0 (e —>0).

Moreover, from Lemma 2.6, [, (U —mg)G1(U—mg) dx = 0. Noting that [, (U—mo)G (U —

mo)dx = [VG1(U =mo)2, o) + 1IG1(U = mo)|, 5. we conclude VG1 (U = mo) =

G1(U — mp) = 0. As aresult, we can get U = my, that is, U¢ — mo weakly in LZ(Q).

Next, we will show (u¢) does not have any subsequence that converges strongly in
L'(£2). It suffices to show (u¢)e does not have any subsequence that converges in measure.
We assume (u¢) has a subsequence (u,),cn that converges some function u#( in measure.
Then we have

11{20 {x € 2 : |up(x) —up(x)| =60} =0

for any 6 > 0 small. We may also assume u,(x) — uo(x) a.e. x € £2 (see [8]). Moreover
noting u, is uniformly bounded in L°°(£2), we can see (u,),en has subsequence (un;) jen

such that u,, — ug weak* in (L1*. In addition, u,,, — % weak* in (L1)* since u,,, — %
J j S j S

weakly in L2(£2). Thus we obtain ug = %2. It follows that lim, o | By,0| = 0 for any 6 > 0,

where B, g = {x € 2; |un(x) — “T°| > 6}. As a consequence, we have

lim
n—oo

By g U275 U (82, )"
=121 - lim |Byo| +121— lim |27, 02, =212]

for sufficiently small & > 0. But it is a contradiction. Thus (u¢) does not have any subse-
quence which converges in measure.

Finally, we will show that ve — Fag in CA(£2) and we — Fapin ClhA(2)ase — 0.
From Remark 5, there exist v, w € CU“#(£2) such that v. — vinC"#(2), we —
w in Cl’ﬁ(Q) as € — 0. On the other hand, noting that ve = §1Gue — %ao strongly in
L2(£2) and we = 81Gue — %ao strongly in L2(£2), we can see that v = ‘%‘ao, w= %ao.
(3) The case h_(cg) > 0, S > %

Let c be a constant satisfying S = m Then repeating the proof of (1), we have

Ie(M)=/ {?|VM| + 5 U= h ()G —h_(c))
2

u

B
+ 32(1,[ — h_(c))Ga(u — h_(c)) — /

h—(ap)

(f@® —c)dt}dx



THREE-COMPONENT FHN TYPE REACTION-DIFFUSION SYSTEMS 147

2
n (— Sh‘z © 4 ch_(ao)) 2| .

Thus we can easily deduce that uc = h_(c), ve = %‘c, We = ‘%c for any € > 0. O

2.2. Proof of Theorem 1.2. We give a proof of Theorem 1.2 in this section. We just
mention the differences from the proof of Theorem 1.1 although we can prove it by repeating
almost the same arguments as in the proof of Theorem 1.1.

PROOF OF THEOREM 1.2. First, it is easy to check the existence of the minimizer of

. 2
(1.9) since % (foudx)” =0.

For the uniform boundedness of a solution (u¢, ve) of (1.7), we can also prove that there

is a constant L1 > 0 such that |[uc||poo2)» Vell o2y < L1 by applying Lemma 2.2 with

w=uc € C*2)NCHR)and g(x,1) = f (1) — ve(x) — % Joue(y)dy € C(2 x R).
Next, we transform (1.7). Let (u, v) be functions which satisfy (1.7). Then we define
U, V, H, mg in the same way as in Lemma 2.4 and we can easily see that (U, V) satisfies

—eZAU(x):—H’(U(x))—V(x)—%fQ(U—mo) dx, x¢€$2,
(2.15) —AV(x) + 1V (x) = 81(U(x) —mo), x € 2,
%_[r{(x):%_x(x):()’ X €082.

Moreover, we define the energy 75 . H(£2) — R associated with (2.3), that is ,

- 2 8
Jg(u)z%/g|Vu|2dx+EI/Q(u—mo)Gl(u—mo)dx
o )+
+ u—moy)dx | + Hu)dx,
AATTAV A o

(2.16) TeU) = a* (Je(u) + Cy) |

and we have

where u, U, C, are defined in the same way as in Lemma 2.5. Thus we can see the following
minimizing problem has a minimizer Uk:

2.17) inf{i(u); " e Hl(.Q)}.
Then let u,, be the same function in Lemma 2.6 and we have

J:(u,,)—>Oasn—>oo

under the condition ().
Now, repeating the same arguments as in the proof of Theorem 1.1, we can complete the
proof of Theorem 1.2. O
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3. Energy Estimate

In this section, we study energy estimates. For the sake of simplicity, throughout this
section, we assume that 2 = (0, 1)3 c R3 and 8 < 8, where § is a fixed positive constant.

Our main energy theorems in this section are the following. Combining the formulas
(2.6) and (2.16) with Theorems 3.1 and 3.2, we can easily prove Theorems 1.4 and 1.5.

THEOREM 3.1. Let uc be the minimizer of (2.7), ¢ > 0 be a small constant and
mo € (—1 4+ ¢, 1 — ). Then we have the following statements:

(1) There exist positive constants €y = €o(¢, 8) and Lo independent of 8, ¢ such that
~ 2 1 1
Ic(ue) < Loes <513 + 523>
forall € € (0, €), 61, 62 € (€, S).
(2) There exist positive constants € = €1(¢, 8) and lo = lo(¢) such that
~ 2 1 1
Ic(ue) = lpes (513 + 523>

foralle € (0,€1),8; € (¢,8) (i =1,2).

THEOREM 3.2. Let ue be the minimizer of (2.17), ¢ > 0 be a small constant and
mo € (—1+ ¢, 1 —¢). Then we have the following statements:

(1) There exist positive constants €y’ = €o/(¢, 8), Lo independent ofg, ¢ such that
~ 2 1
Je(ue) < 11063513

forall e € (0,€), 81,82 € (€, 8).
(2) There exist positive constants €;' = €,'(¢, 8), lo = lo(¢) such that

~ 2 1
Je(ue) > 1067513
foralle € (0,¢1'),8; € (6,8) (i =1,2).

To prove these theorems, we present several lemmas. The interpolation inequality in
Lemma 3.4 is the key for the lower bound estimate. Lemmas 3.1-3.3 are used in the proof of
Lemma 3.4. We also prepare Lemma 3.5 for the upper bound estimate.

Also, we define h as follows:

h(s) = /S,/H(t)dt.
-1

Then there exists a constant L, > 0 depending only H such that for any X, Y € [—1, 1],

3.1 X — Y| < Ly [h(X) — h(Y)| .
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Although (3.1) was stated in [4] without a proof, we present a proof of (3.1) in Appendix B
for reader’s convenience.

LEMMA 3.1. Let D be a bounded domain. There exist constants L3, L’3 > 0 such that

/ / () — () dxdy
D2

<20l [ Queoi =17 dx 25 [[Ihtute) —hioidxdy

foranyu € H'(D), where D' = {x € D; |u(x)| > 1}.

PROOF. Let D" = {x € D; |u(x)| < 1}. Then we have

/ / () — u()[? dxdy
D2

= //1)2 u(x) = u(WI* xpr () xpr(y)dxdy
+2//D2 lu(x) — M()’)|2 xp" (x)xp (y)dxdy

[ 1) =) 6000 00ixdy
=1 +2Lh+ J3.

First, we can readily see

h< L //D Ih(u(x)) — h(u(y))| dxdy

from (3.1).
Next, we will show

62 =200l [ ueol=02dx+2ts [[ ) —hopldsdy.
If lu(x)| < 1,u(y) > 1, we have
) = u(P =lu(y) =1+ 1= u(x)
=2{ul = D? + (1 =}

<2(u()| — D> +2Ls [h(1) — h(u(x))|
<2(lu)| — ) +2La [h(u(y)) — h(u(x))] .

Similarly, if |u(x)| < 1, u(y) < —1, we also have

u(x) —u()P <2 (u) = 1> +2L2 [hu(y)) — hux))| .
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Thus we have (3.2).
Finally, we will show

(33) 1356|D|/ (|u(x>|—1>2dx+3L2//2|h(u(x>)—h(u(x>)|dxdy.
D’ D

Ifu(x) > 1and u(y) > 1,itis clear
() = u)P < lu(y) = 117
Thenif u(x) > 1 and u(y) < —1, we can see
u () = uP = {@@) = D+ 1= (=) + (=1 —u(y))
< 3{ (el = 12+ L2 (1) = (=1 + (u )] - D?]
= 3{ (el = 12+ Lz @) = )|+ (u)] = D} .

As a consequence, we have (3.3) and it follows

// () — u() 2 dxdy
D2

< 10|D|/ (u()| = 12 dx +8L2//2 () — h(u ()| dxdy
D’ D

= L3 |D]| /D/ (Ju(x)| — 1)2 dx + L/3 //m [h(u(x)) — h(u(x))|dxdy.
O

We introduce some more notations. First, for fixed N € N, we define £, (m €
{0,1,2, ..., (N — 1)}3) as follows:

2m =%(m+[2): {%(m—i—x);xe&?} .

Note that {£2,,} are disjoint and

Q= U o -

mel0,1,2,...,(N—1)}3
Next, let n € C2°(§2) be a function satisfying fg n(x)dx = 1and n,, € C°(£2,,) be
Nm (x) = N'n(Nx —m), x € 2.

Notefgm nm(x)dx = 1. Finally, we define the operator Ty : L?(£2) — L*(£2) defined in [4]

as follows:

Tyu(x) =) (/ ()N (y) dy) X2 (%) -

m m
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The next lemma is proved by Lemma 3.1 and the arguments in [4].

LEMMA 3.2. There exists a constant L4 > O such that

(3.4) / lu(x) —mo — Tn(u — mo)|> dx
22

5L4{i/ IV(hou)(x)Idx—i—/ lu(x) — 1) dx}
N Jao Q'

foranyu € H'(2), where 2' = {x € 2; [u(x)| > 1}.

PROOF. By the definition of Ty, we have

f i = mo — Ty — mo) P dx
2

=Z/ u(x)—mo—{Z/ (u(y)—mo)nk(wdymk(x)]
2m Y52

2
dx

2
dx

=% [ e —mo— [ @)= moymn) dy xa )

=Z/ u(x)—/g U (y) dy x@,, (%)

Thus it suffices to show

3.5) /

2
dx .

2
dx

u(x) - / U () () dy
2m

5L4{i/ |V(hou)(x)|dx~|—/ |u(x)—1|2dx}
N Ja, Q!

m

foreachm € {0, 1,..., (N — 1)}*, where 2/ = {x € Q2u; lu(x)| > 1}.
Then we can see
J4 22/

Z/Qm

<12l [[ o) —u)P i) dya.

2
dx

u(x) - / U () () dy
2m

2
dx

/Q (u(x) —u()nm(y)dy
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From Lemma 3.1 and |n,, (y)|* < ”'7”%00«2) N®, we have

Ja < I3 !L3N3 f/g () — hu()] dydx + Ly /9 ) — 1|2dx}
Now we will show
C
(3.6) ssi= [[ 1o - pidxy < 7 [ 19pcoldx.
22 N* Ja,

where ¢ = hou.

First, we can estimate J5 as follows

1
J5S// f|V¢<rx+(1—t)y)-(x—y>|drdxdy
2 Jo

_ V3
=5 et 7).

V3 { : i
<— / // Vo (tx + (1 —t)y|dydxdt +/ // IV (tx + (1 —1)yldxdydt
N e 3 JJa;

We choose ¢t € (O, %) , X € §2), and define z = tx + (1 — ¢)y. Thus from convexity of £2,,,
we have

: 1 8

Similarly, we have J; <

Finally, we have

164/3L),
J4§||n||%m(m{ v 3/9 [V(hou)(x)|dx + L3 /Q/ |u(x)—1|2dx}

5L4!l/ |V(hou)(x)|dx+/ |u(x)—1|2dx].
N Ja, 2

From these estimates, we can complete the proof of Lemma 3.2.

f-Qm V@ (z)| dz. As a result, we can arrive at (3.6).

We define e, : 2 — R as

{en(x) =1,

n=(0,0,0),
e,(x) = 23/2 cosn x| COSNATX) COSNATX3, 1 #(0,0,0)

forn = (ny,ny,n3) € N3. We note that e, are eigenfunctions of —A under the Neumann
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boundary condition. Then we can write

S; &; u — mo, e, 2
| = m0Gi =y ax =5 Y T

2
s Vit inl n?

where (-, -) denotes the inner product on L2(£2).
Then we will show the following lemma, which is a modification of Lemma 2.3 in [5].

LEMMA 3.3. There exists a constant Ls > 0 such that
G.7) / TG — mo) P dx < L5N2/ = mo)Gi(u —mydx (i =1,2)
Q 2

forany N € N.

PROOF.  For simplicity, let y = y;. We define T}, as the adjoint of T, which is easily
seen to be

Tigx) =Y </ 9() dy) M () .

m m

Then we see that it suffices to show

2.2
(3.8) Zmax{l,yﬂ#}|(T1$§,en>|25L5/9|C(X)|2 dx (¢ e LX9)
neN3

to prove (3.7). From the Cauchy-Schwarz inequality, we have

(3.9) N? / (u — mo)G; (u — mo) dx
2

2
=) ———5 5 llu—mo,e)l

v
2.
=
e e,
=
[\ )
N
S
!
3
S
o
I
o

2
p y + In|* 72
S 2
i [ N° —
< , min {1, y+n2ﬂ2} (u —mo, en)a >

= Sup )

2

anel? Zn |an|

where 2 = {{ap}uen @ an € R, Y02 lan|> < oo}. We note that if f € L2, then
{(f, en)Inen € I3, where (f, e,) is the n-th Fourier coefficient of f. Then (3.8) and (3.9)



154 TAKASHI KAJIWARA AND KAZUHIRO KURATA

2
with @, = max <1, 7*”“;\,’1'“) (T3¢, en) (n=1,....) yield

2
N2/ (u —mo)Gi(u —mo)dx = sup (32, fu = mo. e”>2< T¢, en)) .
’ cer2(@ X, max(1, ERE) (15 )
! (Jo (Tw (u — mo))¢dx)’

> — S 3
Ls cer20) Jo l¢17dx

1
=—/ |TN(u—m0)|2dx.
Ls Jo

For the proof of (3.8), we can see

+ |n|27r2 .
> max !1’ VT (Txe, en>|2]
v+ Inl 2 N
< S e + e

1
=N2/ Vo dx + L /(TNg)de

1
= — dy | Vnn, d
NZ/Q!;</Q,"§(” y) n (x)} x
+V+N2/ Z(/ ()d) wl
o |2, cordr ) mmeor ax

2 2 2
IV (x)|1” v+ N
;!(,/_Qm Z(y)dy) /_Qm N T T |'7m(x)|2dx}
2 2 14 )
S;/Qm 146l dy/QIVn(X)| +(m+l)ln(X)I dX

5L5/ P dy.
2

where Ls = f_Q |V77(X)|2 +y+D |r7(X)|2dX. Thus we complete the proof of Lemma
3.3. O

We next show an interpolation inequality using Lemmas 3.1-3.3. The following inequal-
ity is closely related to the one which is proposed in [15] without a proof.

LEMMA 3.4. Letu € H'(82). Then there exists a positive constant Lg such that for
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allo € (0,1),i e {1,2},

f (u — mo)*
2

§L6{o/ IV(hou)I—i—/ (u—l)z—i-iz/(u—mo)Gi(u—mo)}.
2 {xef2:lu(x)|>1} o 2

PROOF. First, we prove for the case o0 =

(3.10) /(u—mo)2
2

% (N € N). We can easily see

< 2f () — mo — Ty (u — mo) 2+ 2f Ty (4 — mo)
2 2

<q {i/ |V(hou)|+/ (u—1)2+N2/ (u—mo)Gi(M—mo)}
N Jo {xe2:lu(x)|>1} 2

for any N from Lemmas 3.2 and 3.3, where C; = 2 max{L4, Ls}.

Next, let 0 € (0, 1) C R. Then there exist N € N, ¢ € (0, 1) such that 0 = 1\1,;+’1 +
We consider the following two cases:

=]~

() Ift e [%, 1], since 0 > §; and ﬁ > N2, by (3.10) we have
1
a/ |V(hou)|+/ (’4—1)2+—2/(’4_m0)Gi('4_m0)
2 {xe2:lu(x)|>1} o 2
t
z—/ |V(hou>|+/ (u—1)2+1v2/ (= mo)Gy (u — mo)
N (reR:lu)|=1) Q

_CI/(u—mm2

2
_2C1/(M mo)°~.

(i) Ift € [o, %], since 0 > 4=t > 4o > L and & > N2, by (3.10), we have

1
a/ |V(hou>|+/ (u—1>2+—2f (u —mo)Gi (u — mo)
{xe2:lu(x)|>1} o~ Je
> f|V(hou>|+/ (”—1)2+N2/(u—m0)Gi(”—m0)
4N (xe2:lu(x)|=1} Q

2
_4C1/(u—mo)

Thus we set Lg = 4C and conclude the lemma.

2
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The next lemma is used for the upper bound estimate (cf. [4]).

LEMMA 3.5. Let

1 0 < x; < Zotl
3.11 = ’ 2
(3.11) u(x) {_1’ mOTH§x1<1-
Moreover, we define u, as follows.
For x € [0,4/m],
u(%x1, x2,x3) 0<x1§%,
(3.12) um(x1, x2,x3) = m {4 2 4
M(j (; —X1,X2,X3>) v om <X =4,

For x € (4/m, 1], we define u,, as a periodic function of the period 4/m, that is,
4
U (X1, X2, X3) = U | X1 — Ek,xw@

forxy € [4k/m, 4k + 1)/m], k=1,2,..., % — 1. Then there exists a positive constant L7
such that

L
/ (m —mo)Gi(um —mo) dx < ; (i=12)
2] m

forallm € N.
PROOF. Since f_Q u(x) —modx = 0, there exists a unique solution v to

—Av(x) =u(x) —mg, x €82,
(3.13) Bx)=0, x €982,
Jov(x)dx =0.

1
v——/vdx
|£2]

by the Poincaré¢ inequality. Moreover, we define v, as a periodic function as follows:

Then we note

||U||L2(_Q) =

, =< po ”VU”LZ(_Q) < pollu— mO”LZ(_Q)
L2(2)

_ 4 m 2
U (X1, X2, x3) = povl (TX1,)Q,)C3) , 0<x1 < =,
=24u(n(4— 2 4
(3.14) Um (X1, X2, X3) = mzv(z (m xl,X2,x3)> s <X S,
4 4k 4(k+1
Um (X1, X2, X3) = Um (x1 — 5.k, X2, X3), oy <MD
k = 15 27 L) % - 1
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Then it is easy to see that vy, is a unique solution to

—Avpy (x) = up(x) —mo, x €82,
(3.15) Pm (x) =0, x €08,

vam(x)dx=O.
Therefore, we obtain
(um — moyumdx < — [ @ — moywdx < 22 — mo2
Qum Omx_mzﬂu Ovdx = 5 Jlu ol 20 -

From the definition of u,

1—
[ = moP = (=m0 0T 1 mo? -
Q 2 2
=1-mj<1.
Moreover, noting

lun — mol? |t — mol?
(U — mo)vy dx = E _— > E —_—
o m n2 = n2

neN3\(0,0,0) neN3\(0,0,0) tr
=/ (Wm —mo)Gi(um — mo) dx ,
2

W€ can see

4 L
/(um—mo)G (um —mo)dx < 22 = =1
2 m m

Finally, we prove Theorems 3.1 and 3.2.

PROOF OF THEOREM 3.1(1). Lete < 2¢/m and i, be a periodic function satisfying
the following condition:

motl2 €
15 Oﬁxlﬁ 2 m 27
~ _ 1 1 1
() = 1 =2 (5 -y 2) ) 2 oy <2y
_ mo+12 | ¢ 2
L, > m T3 <X =
2 4
U (X1, X2,X3) = Um | — —X1,Xx2,X3 ), — <x1 < —
m m
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Then we readily see

<€ =me,

~ m
/ Vil dx = €> - — .
o 4

LN \S)

~ m
/ HWu,)dx < max H(s)- —-€¢ =Cime.
o se(—1,1) 4

We define e} as follows:

1, j=0,

/ f—
¢j(x) = {23/2c0sjnx1, j#0.

Then note that

2
[ = mo. <)

s U —m)G1 (U —mo)dx =68
1/9(,,, 0)G 1 (i, — mo) 12 FEEc—

For any j € N, we have

~ /
(@ = mo. e})

= / (thm, — mo) cos jx; dxi
2

+ / (i — uy) cos joxy dxi
I?)

< / (um — mo) cos jwxy dxi
Q

=< <Mm — my, e;>‘ + me )

where u,, is defined in Lemma 3.5. Therefore we obtain
2

s < ‘> 3 A
81/ (U —m)G1 (U —mo) dx <281 -

<25 {L—; + (i +2> (me)z}
m 4!

1
< C281— + C381(me)’
m

from Lemma 3.5. Similarly we also have

~ ~ 1
5 / @ = m0) G2 — mo) dx = a2 + Cada(me)?.
2

1
Thus letting m = [(@)%} (where [x] = max{n € Z; n < x}) and ¢¢ > 0 be small
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4 2
enough so that (28)3¢; < 1, we have
- 1
e(iln) < (1+ Cyme + Co (81 + 82) —5 + C3(61 + 82) (me)’?
1 1 _ 4 2 1 1
<(2+2C1 +2C)e3 (8] +85) +2C3 - (28)3¢ - €3 (5] +85)
2 1 1
<Loe3 (8] +45)
for any € € (0, €p), §; € (e, 5). O

PROOF OF THEOREM 3.1(2). It suffices to show that

2

€ &; 1 1
6160 w0 = [ 1Vl + 5 [ e = moGitue —mo)+ 5 [ Ho = el
fori =1, 2. Since

1
€ |Vue|* + SH@) 22|V (hou)l

we have
I (ue) e% E% € 1 8%
= / — (Z|wé|2+2—mué>) + — (e = mo)Gi(ue — mo)dx
di 53 Q 53 € 2€3
: !
€3 €3
> € f —,|V(houe>|dx+/ (luel — 12 dx
287 2 53 {lue(x)|=1}
1 1
51% 6% 2
+— (e —mo)Gi(ue —mo)dx ¢ — — (luel = )" dx.
€3 JR 3 Hlue(x)|=1}
28;
Then from Lemma 3.4 with o = (E/Sl’)l/3, we have
Liwe) _ 1 €3 3
A4 €3 €3
> ——— | lue —mol* dx — —5 (luel — 1)* dx
8i Le 555 Jo 283 Mlue)z1)
1 1

forany 0 < € < §;. Letting & > 0 be a small constant which we will specify later, we have

/lue—molzde/ e — mo[? dx
2 Qé,e

> min{|1 — 6 — mol, Imo — (—1 +0)]} (12] — |2ec.6])
> (¢ —0) (121 - |2e0]) ,
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where 2.9 = {x € 2; |(Jue(x)] — 1)| = 6} . On the other hand, by Lemma 2.3 we have

/ (ue| = 1) dxs/ (ue| — 1)2dx+/ (ue| — 12 dx
{lue(x)|=1} ¢ (£2¢,0)¢

<2LT+ 1) 20| +6%|(2e0)] .
As a consequence, we obtain

2
I (u 3 —0 0
it ‘)_—{ 2] — <§—+2(L%+1>)|96,9|—(—+92> |9|}.
Si 25 Le Le Le

We set 6 > 0 small so that (L% + 02) |£2] < fTﬁ |§2]. From Theorem 3.1(1), we note
1
2ol = [ Hwodx
o J
L 1 1
< 20387 +63)
Cco

253 L

o

w\
I

€

for any € € (0, €p), é; € (e, 5), where ¢y = min {H (s); |s| — 1 > 6} > 0. Thus letting €] > 0
small so that €; < ¢g and

0
(552 23+ 1) 120l < 51121

W€ can see

L»II\J
Wit

Ii (ue) L 12] -
§; ~ 4Lg

m

= lo—
8

1

T2
3

25,

Wi

for any € € (0, €1), 8; € (¢, 5). O

PROOF OF THEOREM 3.2. Let i, be a function defined in the proof of Theo-
rem 3.1(1). Then we will show

3.17) / Um(x)dx =mg.
Q

In fact,

2
/ﬁmdxzf 2.@/m’ﬁmdx1dx’
Q 2 4 Jo

2 Lmg ¢ 2 2 1mg 4 o
m m 2 2 m ,
== / ldX1+/ (= l)dXH-/ U (x1, x")dx1 ]
2 0 ,1+m0+ 2 Iimg e
m m 2 2
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where x = (x1, x') € R x R?. We can readily see

2 I4mp e 2
m w2 m 2 (14+mg 1—mo € €|m
— 1d —Ddx1|=|— - e
2(/0 ’”+/zl+mo+e( )x1> |:m< 2 2 ) 2+2}2
m 2 2
=my,
2ltm e e 215 mo+1 2\,
S limy . Um(x1,x) dx; = Jlmg ¢ e = )dn
m 2 2 m 2 2
LA
= ——XdX
./_g 2

Therefore we obtain (3.17). As a consequence, letting m = (§1/ e)% and €(’ be small enough

-4 2
so that §3¢p’3 < 1, we can see

~ 1
Je(@im) = (14 Ciyme + Cob1— + C381(me)?

Wl
wIN

2
-€38

—

<(1+C+Coeds) +Cy i)
2 1
< Lyeds)
for any € € (0, e(’)), 8; € (e, 8) as in the proof of Theorem 3.1(1) and we complete the upper
bound estimate.
For the lower bound estimate, we can prove as in the proof of Theorem 3.1(2) since

(fou(x) — mo) dx)2 > 0. O

Appendix A. On the stability of stationary solutions

In this section, we give a proof of Theorem 1.3. We mainly treat the shadow system
(1.6) since we can treat the problem (1.1) as in the proof of Theorem 1.2 in [15]. Then we

consider the spectrum of the linearized operator T : (LZ(.Q))2 XR — (Lz(.Q))2 X R defined
as follow:

Ap + f'(uo)p — ¥ — p
(Al)  To=|+QAY-ny+89) . D =(p, U, 1) € X2 xR,

S Jo (Cr2u + 82¢) dx

n

where X = {¢ € HX(@2); 52(x) =0, x € 92}.
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We denote by X', X, X the point spectrum, the continuous spectrum and the residual
spectrum of 7', respectively. Let ¥' = X, U X. U X, be the spectrum of 7. Moreover, we
define [|-|| = Il (z2(2)2xR), thatis, [Pl = l9ll.2@) + 1Vl L22) + 11l (P = (P, ¥, 1) €
{L2(£2)}* x R).

The goal of this section is to show the following stability result:

THEOREM A.l. Assume that ug is a local minimizer of Je and 5)1/_121 + ‘3}2% < 1. Then
1 2

the spectrum of T lies in the stable region and (ug, vo, &) is a stable solution to equation
(1.6), where vo = 81Gug, & = % Jo uo dx.

Before the proof of Theorem A.1, we introduce some notations.

Let N = {; € C:Re¢ > max{~2, —Z—g}}. Noting Re(y; + At) > 0 (i = 1,2) if

A € N, there exists a unique solution ¥ € L?(£2) of the equation

W _ on 052.

!—Awmﬂiw =¢ in 2,
on

Then we write ¢ = (—A + y; + tik)_1¢. Moreover we define

o ST
Lip=A¢+ f(uo)p —di(=A+yi+ud)” ¢ 12| (y2 + T2) QMX

for A, € N,¢ € X. Theorem A.l follows from Lemmas A.1-A.6. In addition, we mention
that throughout this section, the proofs are essentially the same argument as in [15].

LEMMA A.l. (1) If*x € ¥ N N, then there holds either (a) or (b):
(a) X is an eigenvalue of L.
(b) X is an eigenvalue of L.

dim | b . Sty X2 .
(2) Assume 7 + 7 < 1. Then Eﬂi{ eC: R + R < 1} consists

of real numbers.

PROOF. (1) First, if A € X, N N, then there exists a function @ = (¢, ¥, u) €
X2 x R\ {0} such that T® = A, that is,

Ap(x) + fluo)p(x) =Y (x) —pn =21p(x), x €82,

AY(x) =1y (x) +819(x) = 1Ay (x), x €82,
A2 o+ B [ 00 dx = o
¥oy=%w=0, xedn.

Since ¥ = 81(—A+y1 + 1A g, u = m [ ¢(x) dx, we can see Li¢p = A,
Nextif L € X, N N, we have a sequence Fy = (fk, gk, hx) € (Lz(.Q))2 x R such
that || F| < % and || W —T)"'F || = 1forany k € N, which means that there exists a
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sequence (¢x, Vi, k) € X 2 % R such that

Adr(x) + o) (x) — Y (x) — ik = A (x) + fr(x), x € £2,

AP (x) — y1¥r(x) + 819k (x) = T1AYi (x) + ge(x) , x e,
—Yauk + % Jo &k dx = Tahpk + hi
(A-3) Bk (x) = We(x) =0, x €082,

16k117 2 ) + I1WklI7 ) + Il* = 1.
1172 ) + 196017 ) + il < 1 -

From the second and third equations of (A.3), [Vl 2oy » Ikl < Cillgill 2o + % Then
there exists a positive constant ¢3 such that liminfy— oo |l 22y = ¢3 > 0 from the fourth
equation of (A.3). Moreover, since

1G22y = =" @o)de + Vi + sk + 2ic + fiell 12y < Ca

we can see |I¢k||H1(_Q) < Cs for any k € N. This implies there exists ¢ € H(£2) such that
¢r — ¢ weakly in H'(£2) and ¢y — ¢ strongly in L?(£2). Thus we have
_ hi .
Lk =2 = fr — (A +yi+ 1) g — ———— = 0in L*(2) (k - o0).
v2 + T2A
We define B;, as follow:

A Vs gy %
Bip = A¢ r1¢ Si(=A+yi+T1A) ¢ |Q|(y2+m)/9¢dx

for ¢ € X. Since ReA > —’T’—l', A & o(B,), where o (18,) is the spectrum of B;. Moreover,

Bux — i = Brg — Mpi + (—Z—I - f’(uo)> it (—% - f’(uo)) ¢.
Thus we have
¢ =B 1" (—% - f’(uo)) ¢.
As a consequence, we can see
Lrdp— b= Br—0)— (—Z—I - f’(uo>)¢ — 0.

Finally, we will show in the case A € X, N N. We have a function b = (D, ¥, n) €
R(I — T)* \ {0}, which means that & = (¢, ¥, p) satisfies that (A — T) @, &) = 0 for

all ® € D(T) = X2 x R, where (-, -) denotes the complex inner product on (LZ(Q))3. This
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implies that P e D(T*) and A is an eigenvalue of T* corresponding to @. We can easily see
A is also an eigenvalue of L5 corresponding to .

(2) It suffices to show that if A € C is an eigenvalue of £, with A € C such that
5]1’] 521’2
(n+uRed)?  (+nRet)?

Let A = x + iy be an eigenvalue of £, such that

< 1, then A is real.

8179 S
n+n1x)? (y2+m2x)?
and let ¢ be an eigenfunction corresponding to A satisfying [|¢|l; 2,y = 1. Moreover, letting

&, be eigenvalues of —A under the Neumann boundary condition and e, be eigenfunctions

<1,y e R,

. . 1
corresponding to &,, we can see ¢ = Y oo, aye,. Notice 00 |a,|> = 1, eg = |£2]7 and
& = 0. Since

A= (‘C).¢s ¢>
= [P axt [ raniof dx=oi [ {a+n+nnTo)pdr
2 2 2

2 (o)
%2 ([ ¢ax
2+ 1121 \Ja

2 : ) o lanl? |aol?
=/ V| dx+f fwo) p* dx — 581y — 8
2 2 2

+y1+ i Y2+ d’

there holds
o0 2 2
31 |an| 82 laol
yl=m{>" L+
SEgtntur ok
_i 81 lan) 71 Iyl 82 laol* T2 ||
S E+n+u)’+ @y’ (n+nn’+(ny)
5171 51 2
<yl < + ) |
1 +1x)? (2 + 0x)? Z !
5]1’] 521’2

= i D
P e~ < 1, we have y = 0. The proof is complete.

Before Lemma A.2, we define i()) as follows:

(A.4) A = max  (Lrd,d), Ae]:(max{—ﬁ,—&},oo>.

1Pl 2(0)=! 71 2

LEMMA A.2. (1) If ) € J is an eigenvalue of L, then .. < h()) and X is an eigen-
value of T.

2) If» € J, A = h(A), then A is an eigenvalue of T .

PROOF. (1) If A € J is an eigenvalue of £, , then there exists 5 € X such that ng =

= 1. Letting ¥ = 8 (—A+y +1r) ' .0 = mw‘;ﬁf_@d) dx, we
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have T'(@, ¥, &) = A, ¥, ). Moreover,
=(0:4.0) = max_ (L:4,¢) =h(h).

6ll;20)=
(2) Itis clear from the characterization of an eigenvalue of £, . O

LEMMA A.3. (1) h(0) <O.
(2) The function h : J — R is nondecreasing. Moreover, if A1 < Az, we have

_ 3171 51 _
h(2) =hGa) = [(VH-TIM)Z + (72+12)»1)2} 2 = A1)

PROOF. (1) Since ug is a local minimizer of J,

(Lod, ) = f VP dx + / Fluo)d® dx

—51/[(—A+yl+m\)—l¢}¢dx— %2 (/ ¢dx)2
Q 72 182| \Jo

= J" (uo) (¢, ¢) <0

for any ¢ € H'(£2). Hence we have 1(0) < 0.
(2) For A1 < Ay, there holds

(0.8 =— [ {1902+ 7 wor?) dx SN L L
g tritTua Y2 + 121

00 2 2
|an| laol
— | {1veP + £ wog?} dx - — 5
./sz{ / rgofrd-yl-l-fl)»z V2 + A2
<h(2)

for any ¢ with ||¢||L2(Q) =1, where a, = (¢, e,) .
Now if ¢ is an eigenfunction with [|@2| 2oy = 1 corresponding to i (42), we can see

o0 2 2
|| 82 |ao|
h(k) =/ Véal? dx +/ (o) I dx — 81 - ,
Q .Qf r§)§n+)/1 + 11k 2+ TAp

lan|? 82 lao|?
Sn + v+ T Y2+ 1Al

po0 = [ ol dxt [ ol d x—alz

Thus we have

hG2) — h(h) <8 Z il il
? : : E v+ TiA &y Tk
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+5 jaol> laol?
v+ni 2+ nh

=51§: T1 (A2 — A1)
= G trntui) Gty i)
A — A
s (A2 — A1) ao?
(2 + ©2A1) (2 + 2A2)
S{ 51Ty . 51 .
(1 +11h1) (y2 + 2A1)

}(kz—kl)-

Therefore, A is locally Lipschitz continuous. o

LEMMA A.4. Assume 5;% + 5;# < 1. Then there holds h(\) < A for all ) > 0.
1 2

PROOF. From Lemma A.3, we have

417 8212 sit1 . Sm
h(x>sh(0)+( + )As LILINNE -3 PSP
i +10)?  (n+nh)? vi o v3

a

LEMMA A.5. There holds ¥ C {0} U{¢ € C: Re¢ < a} for some a < 0. If, in addi-
tion, h(0) < 0, then ¥ C {¢ € C:Re¢ < «a}.

7181 768
PROOF. Let B be a constant such that R + Ornp? < land 8 < 0. If

A € XN{¢eC:Re¢ > B}, then from Lemma A.1, A is real and an eigenvalue of L.
By Lemma A.2(1), we have A < h(A). In addition, by Lemma A.4, we have A < 0.
Next, we will prove the essential spectrum of £;, denoted by o, (L, ) is empty. Now, let

Hy= A, V¢ = f'up)p — 81 (—A+y1+ 10" ¢ — o= [ ¢ dx for ¢ € L*(2).
Then noting that Hp and V are self adjoint operators from L?(£2) to L?*(2) and V is

Hy-compact, we have 0.(L,) = o.(Hyp) = @. This implies that A is an eigenvalue with
finite multiplicity. Thus, there exist A1, A2, ..., A € (B, 0] such that

Y={¥N{ceC:Re¢ >p}1U{XnNn{¢c eC:Ret < B}}
={A1, A2, ..., At U{XZN{¢ e C:Ret < B}}.
The proof is complete. o
We recall the basic center manifold theory (see [9]).
PROPOSITION A.l. Let X,%), 3 be Banach spaces such that 3 — ) < X with

continuous embeddings. We consider a differential equation in X of the form

(A5) ‘fl_”; — Lu+R)
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in which we assume the following hypothesis for the linear part L and the nonlinear part R.
(1) Hypothesis 1. We assume that L. and R have the following properties:

(1) L : 3 — X is bounded linear operator.
(ii) For some k > 2, there exists a neighborhood U C 3 of 0 such that
R € CK(2,9) and R(0), DR(0) = 0.
(2) Hypothesis 2.  Consider the spectrum o of the linear operator L and write 6 =
o+ UogUo_ inwhichoy ={A €0 :Rexr >0},00={L €0 :Rek=0},0_ =
{A € 0 : ReAr < 0}. We assume that (i) and (ii):

(1) There exists a positive constant y > 0 such that

inf ReA > y, sup ReA < —y.
A€ot AEo—
(i) The set oy consists of a finite number of eigenvalues with finite algebraic
multiplicities.

(3) Hypothesis 3. Let Py : X — X be a bounded linear operator and be the
the spectral projection corresponding to og. Moreover let & = ImPy, X; =
Im(/ — Py) = KerPy, Lo = Llg,, and L, = Ll|x, . Then there exist wy, C > 0
such that for any w € {w € R : |w| > wp},

c
io e p(L)and sup H (il — L)~ ¢H <=
lpllx=1 X7 ol

Then there exists amap ¥ € Ck(&y, 3p) with ¥ (0) = 0, D¥ (0) = 0. Moreover, a neighbor-
hood O of 0 in 3 such that the center manifold

Mo={u+¥wy) :uecé&}Cl
has the following properties:
(1) My is locally invariant, i.e., if u is a solution of (A.5) satisfying u(0) € MonN O,
thenu(t) € MoNQOforallt €0, T].
(2) My contains the set of bounded solutions of (A.5) staying in O forallt € R, then
u(0) € M.

Now, we show the stability of the local minimizer in the case that 0 is an eigenvalue of
T.

LEMMA A.6. Assume h(0) = 0 and let M€ be the center manifold of the equilibrium
point (ug, vo, wo). Letu = u(t), v = v(t), w = w(t) be a flow on M. Then %I (u()) <0,
in a neighborhood of (uo, vo, wo) is a descending flow for the functional I restricted to a
neighborhood of (ug, vo, wo) on M€. Furthermore the equality holds if and only if (u, v, w) =
(u(t), v(), w(t)) is an equilibrium solution.
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PROOF. First,letU = u—ug, V =v—v9, W = £ —&p and we rewrite (1.2) as follows:

U, = AU + f'(uo) — V — W + Aug
+ f(U +up) —vo —wo — f'wo)U, xe€8,t>0,

(A.6) nVi =4V -yV +4U, xeR, t>0,
T2Wt=_V2W+\(_SQ_2|f.Qde’ t>0,
g_zzg_;i:o’ xe€edf2, t>0.

Then we define L, R that
AU+ f(ug)U —V — W

U
(A7) Llv]=| 2@v-nv+s0
1 S
W 1 <—y2W+ B o U d)
U Aug + f(U +up) —vo —wo — f'(uo)U
(A.8) RV |= 0
w 0

for (U, V, W) € X3. Therefore we have
d
(A.9) E(U’ V. W)=LU,V,W)+RWU,V,W).

Now we check that (A.9) satisfies Hypothesis 1 to 3 to apply Proposition A.1.
(1) Hypothesis 1.  From definition of L and R, we can readily check:
e L : 3 — X is abounded linear operator.

e there exists a neighborhood U C 3 of ugp such that R € C2(‘B, Y)) and
R(0), DR(0) =0,
where X =9) = (Lz(.Q))2 xR, 3=X2xR.
(2) Hypothesis 2. From Lemma A.5, sup,., ReA <« < 0,04 = . Moreover, op = {0}

and the multiplicity of 0 is finite.
(3) Hypothesis 3. From Lemma A.S, if || # 0, theniw € p(L). Let F = (f, g,h) €

(LZ(.Q))2 x R be a function satisfying || F|| = ||f||L2(Q) + ||9||L2(sz) + |h| =1, and let
D= (o, ¥, ) € X? x R be a function satisfying (iwl —L)® = F, i.e.

iwg — (Ap+ f'(uo)p —v —pw)=f, ing2,

iy — LAY — 1Y +819) = g, in 2,
(A.10) . I 5

iop— L~y + % [obd)=h,

L on 2.

on on
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Then from the second and third equations of (A.10), we have
Y=(—A+yi+ine)” Gip+19) ,

) /
p=——""—"+|[| ¢+ n2hdx.
(2 +inw) (22| /o

Noting iw € p(L), we have

1
Il 20y < —— 1619 + T1gll 12
LX@) = 7] L2(£2)

/
- C'max{§1, 11}

£
71 |w|
C
S T
2]
p)
pl s ———— ¢ + n2hll 2
72 |w||£2]2
C
<.
2]

Moreover, we can see
V1720, + (i@ = /@) 16172 = /Q (f =¥ — ) ¢pdx
£/ @o)| 1811720, + |0l 1811720, < CIFI 1l 2¢0)

C
ol 200y < — -
(£2) ol

It follows that there is F = (Fy, Fa, F3) € C*(&, 3,) with F(0) = DF(0) = 0 and the
center manifold M€ can be written
M ={d+F(®D):®Pec&}
iu(s) =uo+s¢ +U(s),
=1 (1), (), W(s)) : D(s) =vo+s¥ +V(s), ¢,
w(s) = wy + s+ W(s)
where @ = (¢, ¢, n) is a O-eigenfunction of L with [|¢[l;2p) = 1 and (U, V, W) be-

longs to the orthogonal complement of span{(¢, ¥, u)} in (Lz(.Q))2 x R. Then |U(s)| =
o), IV = o), IWE)| = o6), |U ()] = o), |[V()] = o), [W(s)| =
o(l)as |s| = 0.
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Moreover, we have

Ap+ f'uo)p —y —pu =0, ing2,

Ay — 1 + 619 =0, in £2,
A1l
(A1D ot B [ ddx =0,

9 9

ﬁ:%:o, on 2.

Note that y = 81 (—A+y1) L ¢, u= % [o¢dx.
Letting u = ii(s(?)), v = 0(s(2)), & = E(s(1)) be a flow on M€, we have

(¢+U(S))W—Au+f(u)—v—w,
(A.12) (V+V'©®) % =+ (Av—yiv+ i),
(h+Wi() L = %<—V2§+%fﬂudx).

In particular, noting v(¢) = vo + s¥ + V (s), we have

110 =AV(s) — 1 Vi(s) + 61U (s)
=A-yD&GIU-V).

Similarly, we have 12§, = —y» (% f_Qde—W>.We can compute
dJ((t)) / —Au+61Gu + %2 d f(u)
—Je (u = u U+ — u x— f(u)u
dt € o 1U1 |_Q| t
)
=/ (—Au—f(u)+v+§~|—81G1u—v+ 2 /udx—g>u,
2 12| Jo

Z/ (—u,+81G1U(s)—V(s)+ %2 /udx—W(s))ut
2 12| Je

) / >
udx) .
12| Jo

— N1y = (e, V() = 51G1U(s)) — <u Ws) -

Moreover we can see that

ds\*

d 2
= (1600, + 206U+ 1O | (%)

dt
d 2
=(1+0(1)) (d—j> ,
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and
—(ur, V(s) = 81G1U(s)) = — (ur, 1 Gvy)
=11 (G1us, V)
ds’\’ : :
=-17 (E) (Gi(@+U'(®). ¥+ V'(s))
ds\?
=-7 (E) (81 1G1915 g +0(D)
< _ 5_1<§>2+ (D
= ‘Clyl2 dr o .
Similarly,

—<u W(s) — —2 /U(s)dx>——<u 35><ﬁ)2
a 1821 Ja B "t \ar

T [(ds 2 / 4
--2 <E) (6 +U'), 1+ W)

n (ds\*> & (/ )2
—= (= d 1
= 2 <df) 2 182] sz¢ ) +od

52 ds 2
<-n—=|— 1.
< szz (dt> +o(1)

2

d]((t))<<ds)21 <t181 r252) ) <0
ar < =\ B y—12+y—22 o =0
d

If 7 Je(u(z)) = 0, then we have (u, v, §) = (uo, vo, §0)- Hence it follows the statement. O

Thus we have

Appendix B. Proof of (3.1)

We present a proof of the inequality (3.1). Before we prove (3.1), we will show Claims
1,2:

CLaM 1. Let &y > 0 be a small number such that for any r € [1 — &y, 1], H'(¢) €
(%H”(l), %H”(l)) . Then forany x, y € [1 — &4, 1],

1 [H"(1)

Ihx) = h] = 3 = lx —yI?.
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PROOF OF CLAIM 1. We may assume 1 — &4 <y < x < 1. Then we have

1
h(x) = h(y) + 1 (»)(x —y) + Eh”(Z)(x -7

where z € (y, x) C (1 — £, 1). Since /' (y) = VH) > 0, B (z) = 22 we have

2 H(2)
H/(Z) N2
h(x)zh(y)+4 _H(Z)(x »°.

Moreover,

H@=HO+H' Qz-1D=H'QEz-1),
H=H0N)+H)(z-1)+ %H”(Z)(z —1)?= %H”(Z)(z - 1?2,

where Z, Z € (z, 1). Then it follows

H'Q@E-1

4/ H"E)(z - 1)?

V2 3H'(1)

4 J3H")
_LJHY )
=7y 3 @

Thus we complete the proof of Claim1.
Similarly, we can show Claim2:

h(x) > h(y) + (x —y)?

(x —y)?

=

CLAIM 2. Let&_ > 0 be a small number such that forany r € [—1, —1+&_], H'(¢) €
(%H”(—l), %H”(—l)) . Then forany x,y € [—1, =1 4+ £_],

1 /H"(—1
h) — )l = (3 -y

PROOF OF (3.1). We prove by contradiction. Namely we assume that there exist
Xn, Yu € [—1, 1] such that x,, > y, and

(B.1) 0 < h(xn) — h(yn) < l(xn — yn)?
n

for all n € N. Since both (x,), and (y,), are bounded, we may assume that there exist x, y
such that x, — x,y, — y asn — oo. Then we can see h(x) = h(y) from (B.1), which
implies x = y. Then we consider the following three cases.

(i) Casel. x =y =1.
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Since y, <x, < landy, — lasn — 00, xp, y, satisfy x,, y, € [l — &4, 1] and (B.1)
for large n. But it clearly contradicts Claim 1.

(i) Case2. x =y = —1.

We can prove in a similar way to Case 1.

(iii) Case3. —1<x=y < 1.

In this case, there exists & > 0 such that x,,, y, € (—1 + &, 1 — &p). Then we have

h(xn) = h(yn) = h' (D) (xn — yn) = E(x = y),

where ¢ = min{y/H(2); z € (—1 4 &, | —£)} > 0. In addition, noting |x — y| > § |x — y|?
for x, y € [—1, 1], we obtain

¢
h() = h(ya) 2 50 = 3)°.
But it clearly contradicts (B.1). Thus we complete the proof. O
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