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Applications of an Inverse Abel Transform for Jacobi Analysis:
Weak-L! Estimates and the Kunze-Stein Phenomenon

Takeshi KAWAZOE

Keio University

Abstract. For the Jacobi hypergroup (R4, A, %), the weak-L! estimate of the Hardy-Littlewood maximal
operator was obtained by W. Bloom and Z. Xu, later by J. Liu, and the endpoint estimate for the Kunze-Stein phe-
nomenon was obtained by J. Liu. In this paper we shall give alternative proofs based on the inverse Abel transform for
the Jacobi hypergroup. The point is that the Abel transform reduces the convolution * to the Euclidean convolution.
More generally, let T be the Hardy-Littlewood maximal operator, the Poisson maximal operator or the Littlewood-
Paley g-function for the Jacobi hypergroup, which are defined by using *. Then we shall give a standard shape of
Tf for f e L1(4), from which its weak-L! estimate follows. Concerning the endpoint estimate of the Kunze-Stein
phenomenon, though Liu used the explicit form of the kernel of the convolution, we shall give a proof without using
the kernel form.

1. Introduction

Let w(x) be a positive measurable function on R;. We denote by L”(w) the space of
measurable functions f on Ry with finite L”-norm || fl7» @) With respect to w(x) dx. For
1 < p,q < oo we define the Lorentz space L”9(w) on R4 with respect to w(x) dx by the
usual way (see [8]) and denote its quasi-norm by || - || 1.r.a (). We see that L9 (w) C LP"f/(w)
ifg <q', LP?(w) = LP(w) and L?-*°(w) coincides with the space consisting of all weak-
L? (w) functions on Ry. We denote L? (1) by L” (Ry). We often regard functions f on R4
as even functions on R, which are denoted by the same symbol f.

Leta > B > —1/2 and A(x) = Agqg(x) be a weight function on R defined by
(2sinh x)?**1(2 coshx)*#*1. For @ > —J we denote by (R4, A, *) the Jacobi hypergroup
with the convolution structure * (see §2). Roughly speaking, Jacobi analysis is a harmonic
analysis on Ry with a convolution and a weight measure having an exponential growth or-
der. As in the Euclidean case, by using the convolution %, we can introduce the Hardy-
Littlewood maximal operator My, the Poisson maximal operator Mp and the Littlewood-
Paley g-function for (R4, A, %) as follows.

MuL f (x) = sup | f * Xi (x)
t>0
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Mpf(x) = Sulg Lf * pe ()], (D)
t>

9(Hx) = (/OOO \f*z%mf?)%.

See §6 for the definitions of the normalized characteristic function ¥; and the Poisson kernel
p:. In particular, when «, B are specialized integers or half-integers, the Jacobi analysis co-
incides with harmonic analysis on real rank one noncompact semisimple Lie groups and the
convolution * coincides with one defined from the group structure.

For a noncompact semisimple Lie group G with general rank, the strong type L? estimate
of the Hardy-Littlewood maximal operator My, on G was proved by Clerc and Stein [6] for
p > 1 and later, the weak type L! estimate was obtained by Stromberg [15]. His proof was
improved in [11] and was applied to the weak-L! estimates of the Poisson maximal operator
Mp and the Littlewood-Paley g-function on G (see [1]).

On the other hand, Kunze and Stein proved that functions on SL(2, R) satisfy

1 % gll2cy < epll FlLrcaligliaa

for 1 < p < 2. Cowling [4] extended this inequality for all noncompact semisimple Lie
groups G and, if G is of real rank one, he deduced the Lorentz space version:

1f*gllLrway < cllfllLreaylgliorecay .
wherel < p <2,1 <u,v,w < oo, and 1+$ = %4—% (see [5]). Then Ionescu [9] obtained
that

I f g”LZ»OQ(A) = C||f||L2»1(A)||g||L2~l(A)

at the endpoint p = 2, which covers Cowling’s result by interpolation.

As mentioned above, since harmonic analysis on G of real rank one corresponds to the
Jacobi analysis, these weak-L'(A) estimates and the Kunze-Stein phenomena hold for the
Jacobi hypergroup with special «, . Furthermore, we can easily generalize their proofs to
general «, B. Hence, we can deduce the following:

THEOREM 1. Let f € L'(A) and » > 0. Then

x € Ry | Mppf(x) > A} < c”f”%,

where |S| denotes the volume of S with respect to A(x) dx. Moreover, this inequality holds if
My, is replaced by Mp and the g-function.
THEOREM 2. Let f € LP(A),1 < p <2,and g € L*(A). Then

ILf *gllz2a) < cpllfllLraliglizzcay -

where ¢, does not depend on f or g.
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THEOREM 3. Let f, g € L' (A). Then
If % gllp2000ay < cllf g2 ayllglizzicay
where ¢ does not depend on f or g.

Later, J. Liu gave, respectively in [13] and [14], quite simple proofs of Theorem 1 and The-
orem 3 based on a kernel form of the convolution structure (see (8)). The aim of this paper
is to give other simple proofs based on the inversion formula for the Abel transform obtained
in [10] (see (13)). Since the kernel can be expressed by using the inverse Abel transform
(see Remark 1 in §7), our approach corresponds to a transfer of Liu’s one. However, we can
deduce a standard shape of the maximal function, from which the weak-L! estimate appeared
in Theorem 1 follows easily (see §6).

2. Jacobi and Abel transforms

We recall the basic properties of the Jacobi hypergroup (R, Ay g, x). We refer to [7]
and [12] for the details of content stated below. We denote A = Ay gandput p =+ B+ 1.
For A € C the solutions of the differential equation

1 4 duy _ 24 2
Ax) 5(4\@5)——@ + pHu(x)

with u(0) = 1 and u’(0) = 0 are given as the Jacobi functions of the first kind with order
(a, B):

$1(x) = 2F1 (3(0 + %), 3(p — iM); @ + 15 —(sinhx)?),
where 7 F7 denotes the hypergeometric function. We note that

$r(x) = O(1 +x)e” . (@)

For f € L'(A), the Jacobi transform f (X), A € R, is defined by

foy= F @) (x)AX) dx . 3)

l (0.¢]
V2 ./0
The Paley-Wiener theorem asserts that the map f — f is a bijection of the space of compactly

supported smooth even functions on R onto the space of entire holomorphic even functions of
exponential type, and the inverse transform is given by

1 [> .
= A CV)|2dx,
fx) \/E~/O F)g.(x)|[C(A)]

where C(A) is Harish-Chandra’s C-function. Moreover, the Plancherel theorem asserts that
the map f — f extends to an isometry of L?(A) onto L2(Ry, |C(L)|~2dA):

./o If(X)IzA(X)dx:/O I FDPICO)I 2 dA. )
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When o > —%,
function A (-, x), which is compactly supported on [0, x]:

as a function of A, ¢, (x) is the Fourier Cosine transform of a bounded

A (x) = /0 cosAyA(y, x)dy. (%)
Then the Abel transform W, (f) of f is defined by
Wi (f)x) = / FOMAx, y)dy (6)

forx € Ry.

EXAMPLE 1. (i) When (o, ) = (=3, —%), A = 1, p = 0, ¢5(x) = cos(Ax) and
C (1) = 1. Hence the Jacobi transform is nothing but the Fourier Cosine transform.

(i) When (o, B) = (3, —3) and G = SO(3, 1), A(x) = 4(sinhx)2, p = 1,

sin Ax 1 el 1 e

P = S hx ~ in2sinhx | —i% 2sinhx

—iix

and C(A) = (ir)~!. Hence A(y, x) in (5) is given by
A(x, y) = 4sinhx - xj0,x(y) -

Substituting ¢ (x) A(x) in (3) with (5) and changing the order of integrations, we see that for
fell(a),

FO) = FeWe (/)G @)

where F¢ is the Fourier Cosine transform on R.
We define the kernel function K (x, y, z) as

. (x)P(y) =/0 $()K(x,y,2)AR) dz.

Then the generalized translation 7 f of f is defined by
o
Txf(y)=/0 F@Kx,y,2)A(z)dz
and the convolution of f, g € L'(A) is given by

fxglx) = /o SO Tg(y)A(y)dy = /0 /O SMg)K(x,y, 2)A)A(z) dydz. (8)
Similarly as the Euclidean Fourier transform, it follows that
TofG) = ) f (), Frg) = F)a0).
Hence, it follows from (7) and the fact that F(e”* f)(A) = F(f)(A + ip) that
Wilf *g)=Wi(f) @ Wi(g),
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ePTWo(f % g) = (P Wi () ® (" Wi(9), ©)

where we regard each function as an even function on R and denote by ® the Euclidean
convolution on R. To analyze the Abel transform W., Koornwinder [12] generalizes the
classical Weyl type fractional operator as follows: Leto > 0,n =0, 1,2,... and u > —n.
For a function F on Ry, Wl‘j (F) is defined by

o * d
WO (F)(s) = e / (

m)n F(t)(coshot — coshos)* "~ d(coshor), (10)

(=D"

where ¢, , = SR By using generalized Weyl type fractional operators the Abel transform

W, (f) is given as a composition of W
3
F=Wi(f)=2""W, goWg,, n(f). (11)
Therefore, the inverse transform W_ of W, is given by

—Ba+3) 12 1
f=Wo(F) =270 DW2 oy 0 Wiy (F).

3. A version of the inverse Abel transform

In [10] we compare W7 (see (10)) with the classical Weyl type fractional operator W}}:

R _ Ay pAn—1
WR(F)(s) _C”’"/s <E) F)(t —5) dt
and we can rewrite the inverse Abel transform W_ in terms of W}f. Actually, by letting
vV =o+ % and v/ = a — B in [10], Theorem 3.6 or by replacing F with e?* F in [10],
Corollary 3.7, we can deduce the following formula: Let 8 + % =n+panda—B=n"+u,
where n,n’ € Zand 0 < u, u’ < 1, and put

Nn={tk+u+plkeZ lyy <k<n-+n'},
No={kk+pk+ulkeZ ly <k<n+n'}, (12)
where 1, = 1ifn > 1 and 1, = 0if n = 0. Then for F = W, (f),

ePx R
F0~ 5 (y;oaanhx)yw_y(m(x)
+ Z(tanhx)yfoo WR (F)©)A, (x,9)ds),  (13)
vl *

where A, (x, s) is of the form A, (x,s) = Q,(x,s)Z,(s —x) and A, Oy, Z, satisfy the
following estimates: For y € I7, there exists 0 < &, < 1 such that

(i) 1Z, )| < c(tanhu)u= 1) foru >0,
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tanh x)&”
(i) 1090, 9)] < e BT g g o)
tanh s
A
(iii) / 1Ay (x, s)|dx < cforalls >0, (14)
0

o
(iv) / Ay (x,s)|ds <c forallx > 0.
X

Moreover, checking the process for the proof of (13) (see [10]), we may suppose that &,
satisfies y + &, <a + %

PROPOSITION 1. Let notations be as above. The integral term in (13) can be rewritten
as

/x WBV(F)(S)Ay(x,s)dszfx WE e (FY®A, (x,9)ds,

where
|;4V),(x, )| < c(tanhx)"’ﬁy_1 forx <s.

PROOF. Clearly, KV (x, s) is given by Wg}/ (xgAy(x,-))(s), where x{ is the character-

istic function of [x, co) and VT’; is the dual operator of WERV' Since

(tanh x)x ~1+8) < x =&

it follows that
S (tanhx)&

—& & -1
t— (s — 1) dt
+ tanht E=x)>ris=n

IWE (£ A, (x, D) <e
~ (tanhx)%r ! /S(t —x) (s =0 ldr.

Since the last integral is bounded, the desired estimate follows. ]

PROPOSITION 2. Let the notations be as above, and suppose that f is supported on
{x > 1}. Then

G) Ifa > % or (o, B) = (%, :I:%), then we may suppose thaty > 1 forally € Iy U I in
(13).
) Ifa = % and—% < B < %, then (13) can be rewritten as

ep-x / o 1
fx) ~ M(F (x) —I—/x F"(s)B(x,s) ds), (15)

where |B(x, s)| < cforall x > 1.
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(iii) If—% <a< %, then (13) can be rewritten as

fx)~ i(WR

oo R
A0 _(a+%)(F)(x)~|—/x W_ZaF(s)C(x,s)ds), (16)

o0
where/ |C(x,s)|ds < cforall x > 1.
X

PROOF.  Since f(x) is supported on {x > 1}, we may ignore the QF -functions in (14)
in the following arguments.

(i) We assume that o > % or (a, B) = (%, :t%) The domain of («, B) is a union of the
following sets of (&, B): (D B+ 4 >1,Qa—B=1,B3a>3p+1<la—p <L
Hence, if we denote 8 +% =n+panda —B =n'+u/, where n,n’ = 0,1,2,... and
0 < u, ' < 1, the above conditions are equivalentto () n > 1,2)n’ > 1, 3) u+u' > 1
ifn =n" = 0. When n = n’ = 0, we can deduce that the integral terms in (13) consist of

/00 F(s)Ao(x, s)ds ,

[ W E©A, e ds v = (17)

where the Z-functions in (14) satisfy, by letting y’ = w'if y = pand y' = pif y = i/,

[Zo(x)| < c(tanhx)x—l—(wru’) ’

1Zy (x)] < C(tanhx)x—(1+)/’) )

We rewrite the above integrals as

/ F/(s)WR (Ao(x, ))(s) ds .

X

(0.¢]
| O,y ds y =
X
Then the renewed Z-functions are dominated by (tanh x)x_(“‘“‘,). Since | < u+pu' < 2,
WR(Ao(x, ))(s) and WlR_y(Ay(x, N(G), ¥y = w, i, still satisfy (14). Therefore, we may
suppose that y > 1 fory € I U I'.

(ii) We note that u + /' = o + % = 1. We recall the process in [10], §3 to deduce (13).
Then integration by parts yields the desired result.

(iii) We note that u + ' = o + % < 1. We rewrite the integral term (17) as

/ W§2aF(S)W21§x_y(Ay(x1 ))(S) dS, Yy = MK, M/ .
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Then the corresponding Z-functions are dominated by (tanh x)x_”(”‘_%). Since —1 < o —
5 <0, WR_ (A, (x,))(s) satisfies the desired condition. O

4. Key estimates

We shall obtain some L? estimates of WB}, (F), which will be used in the proofs of
Theorems 1, 2 and 3 (see §6 and §7).

PROPOSITION 3. Let F = Wy (f) for f € L'(A). Then

() IfO<y <a+ 3%, then

||WBV(F)||L°°(R+) < el f L1 (anh x)2e—7 erxy -
(i1) We have

IWE i P)l=wey = el £

+ 1A

3 1 .
L1((tanhx)* "2 erx) L1((tanhx)* T2 erx)

(i) Ify > 0, then
IWRE) loo®) < llf It (anhxy2axreos) -

PROOF. We use (6) to obtain these estimates. The explicit form of A(x, y) is given by
[12], (2.19), from which A(x, y) satisfies

A(x, y) = R(x, y) sinh y(cosh y — coshx)?~? (18)
and fork =0, 1,
d \k
(2 8] ey
y

for y > x. Then, it follows that

F(x) = foo F(»)R(x, y)sinh y(cosh y — cosh x)*~Zdy

= C/oo diy(f(y)R(X, y))(COShy — COth)aJr%dy .

We note that cosh y —coshx ~ ¢” tanh(y2 —xz). Therefore,if 0 <y < o+ %, then it follows
that

IWR,(F)] =c

/00 FOIR(x, y)dd—yWBV ((coshy — Cosh-)‘“%)(x) dy‘
= C/OO I f IR, y)le("‘+21)y(tanhy)2a—y dy

o0
<c / | ()| (tanh y)2* 7 e dy .
0
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Moreover,if y = o + %, then

IWE,(F)| = ¢

> d
/X E(f(}’)R(x, y))e(a+71)y(tanh y)"‘+% dy‘

< C/O (If/(y)l(tanhy)a+% + If(y)l(tanhy)“+%)epy dy.

Hence (i) and (ii) follow. As for (iii), since |A(x, y)| < ce””(tanh y)2°‘, it follows that for
y >0,

whEwi= [T ([ 1renaeas)e—orta
X t

- /Oo |f(s)|(/s AL, 5)(t —x)V—ldt) ds

< /00 If(s)leps(tanhs)z”‘(/s(t _ x)V—ldt) ds .

Hence the desired result follows. O

To estimate the L'-norm of WB}, (F), we first prepare the following lemma.

LEMMA 1. Let notations be as above andputy = u+n,0<u <1,n=0,1,2,....
(i) Let§ > 0 and ¢ satisfy

&> —1, uw=0,
e >0, u=>0.

Then

R
”W—y © W;/T (f)“Ll((tanhx)sem = C||f||Ll((tanhx)s+ye(ny+6)X) .

(ii) Let —oy + 6 > 0 and ¢ satisfy

&> —1, y =0,
&>y, O<y<l1,
e>2y =12, O<y, u=0,

e>2y—1—u, O<y, u>0.
Then
IW,, 0 WRA L1 (tanhryeesry < N F L1 canhxye—r et-or+om) -

PROOF. We may suppose that oH—% > 0. When y is an integer (i.e., £ = 0), the lemma
is obvious from the definitions of ny and WZ, . Next, let us suppose that 0 < y < 1. As
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for (i), we note that WBV (f)(x) can be rewritten as
o0
/ f($)(s —x)7ds
X

*° hos — cosh
=/ j”(s)(coS gy —co8 ax)y(coshas —coshox) 7V ds
X S —X

o0
= / f'(s)(o sinhox)” (coshos — coshox)™ ds
X

© hos — cosh Y
+/ f’(s)((cos g8~ co8 ”) —( sinhox)y)(coshas—coshax)_y ds
X

s—X
=(o sinhox)nyy(f)(x) + /00 f()By(x,s)ds,

where, by letting

coshos — coshox
HX (S) = k)
s —X

we put
d
By (x,s) = a((Hx(S)y — Hy(x)")Hy(s) 7" (s —x)7").

Here we used the fact that the inside of the parentheses in By, (x, s) is equal to 0 at s = x.
Then it follows that

WR, (W ()@) = (0 sinhox)? f(x) + f WS (f)(5)By (x. ) ds
= (o' sinhox)? f(x) + f " PO, B dr,

where 2 in the bottom suffix of VNV)‘/’ , implies that we apply VNV;,’ to the second variable, that is,

(WS ,By)(x. 1) = W (By (x, ))(1)
t
= sinhot/ B, (x,s)(coshot — coshos)” ' ds.
X

Since
|By (x,5)| < cH.(s)Hyx(s)" (s —x)™" < c(s — x)77 (tanh x) ™"

fors > x, (W;sz)(x, t) is dominated by

t
c(sinho7)(tanh x) ™! / (s — x) "V (coshot — coshos)” ! ds
X

t
<c(sinhot)(tanh x) " 'e® Y~V (tanh 1)¥ ! / (s —x)7V(@t—s)"lds

X



WEAK-L! ESTIMATES AND THE KUNZE-STEIN PHENOMENON 87

< c(tanh?)” (tanh x) " 1e? .

Therefore, since ¢ — 1 > —1, it follows that

/ b IWR (WS (£))(x)|(tanh x)* ™ dx
0

o0
SC/ | £ (x)|(tanh x)e+7 e OV 0¥ g x
0

o0 t
+c/ |f(t)|(tanht)VeV“’(/ (tanh x)° 5 dx) dt
0 0
o0
< c/ | £ (x)|(tanhx)5 7 @Y% g
0
As for (ii), similarly as above, we can deduce that
o0
W, (f)(x) = (o sinhox) ™ WR (/) (x) + / F$)Cy(x,5)ds,
X
where we put
d _ _
Cy(x,s) = d—((Hx Y(s) — Hy " (x))H{ (s)(coshos — coshox) 7).
s
Hence it follows that
o0
W, (WR(f)(x) = (o sinhox) ™ f(x) + / WR(F)($)Cy (x, 5) ds
X
S ~
= (o sinhox)™7 f(x) —l—/ f(t)(W)EZCV)(x, t)dt,
X
where
~R _ R _ ! y—1
(VR 1) = WRCy (v, (1) = / Cy(x.5)(t — )" " ds.
X
Since
|Cy (x,5)| < c(tanhx) ™! (coshos — coshox)™”
fors > x, (WJEZCV)()C, t) is dominated by
t
(tanh x)~! / (coshos —coshox) ™" (1 — s) 1 ds < c(tanhx) 177707
X

Therefore, sincee — 1 —y > —land —oy + § > 0, it follows that

/ oo|Wzy(vv;‘( £)()](tanh x)% e dx
0



88 TAKESHI KAWAZOE

o0
SC/ | £ (x)|(tanh x)® 7 e —OY+¥ g
0

o0 t
~|—c/ |f(t)|</ (tanh x )¢~ 177 OV dx)dt
0 0
o0
50/ | £ (x)|(tanh x)? 7 OV FIX g x|
0

Hence we obtain the desired estimate for 0 < y < 1.
Finallylet y =n + @ > 1 and u > 0. As for (i), we note that

WE, o Wy ()
=WR, o WR o W o W (f)(x)

—n

o0
_ wR R —1
=WZ>, oW, (/x Wi (f)(s)(coshos — coshox)"™" d cosh as)

=wk, (cwg(f)(x)(sinhax)" + c/x WS (f)($)B(x, s) ds) ,
where
B(s,x) = (%)n(coshas — coshox)" 'sinhos .

The first term in (19) can be written as

WE, (W (f)(x)(sinhox)")

=c /OO(WZ (f)(s)(sinhos)") (s — x) " Hds

c/xoo (% WS (f)(s)(sinh 0.x)"

+ i(WZ (f)(s)(sinhos)" — (sinhox)"))(s —x)"*ds
ds
=cWR, o W (f)(x)(sinhox)"
+c /00 Wy (f)(s)((sinhos)" — (sinhox)")(s — x)* s

=11 (x) + I12(x)

Clearly, it follows from the previous result for 0 < y < 1 that for e, § > 0,

e¢]

o0
/ |I11(x)|(tanh x)¢e®*dx < ¢ / | f (x)|(tanh x)#F7 @V )% g x|
0 0

19)
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As for 117, we note that 1, is estimated as

[e'e] t
/ |f(t)|</ (coshot — cosh gs)!

» (sinhos)" — (sinhox)"

(s —x)~ " ds) dcoshot

S —X

o I
5/ |f(z)|ef’yf(tanht)y—1(/ (t — )1 (s —x)_“ds> dt

o0
5/ | £ ()€Y (tanh 1) " dt .
X
Hence for e, § > 0,
o0 o0
f |112(x)|(tanh x)%e®* dx < c/ | £ (x)|(tanh x)2F7 @V T g |
0 0

Then the second term in (19) can be written as

WEM(/ Wi (@B, 5)ds)
o d o0 - _
=/x E</t W (NS B( $)ds) (@ = x) 7 dr
o o0 d
:/ (W;;(f)(t)B(z,t)Jr/ WZ(f)(s)EB(t,s)ds)(t—x)_“dt
X t
:c/oo Wo ()@ B, t)(t —x) " Hdt

+C/xoo (/too Wg(f)(s)%B(z,s)ds)(z —x)Hdi
=D (x) + 2(x) .

Since B(t, t) = c(sinh t)"_1 cosht, I>; is dominated by

/oo |f(s)|(/s(sinht)"_l cosh t

x (coshos — coshor)* (1 — x)_“dt) dcoshos
o0 N
< c/ |f(s)|e”V~‘(tanhs)V—1(/ (s — 1t — x)_“dt) ds
X X

o0
< c/ | f(s)]e®” (tanh s)Y " ds .

Hence fore, § > 0,
o0

o0
/ |11 (x)|(tanh x)e®dx < ¢ / | £ (x)|(tanhx)e T @Y% g |
0 0

89

(20)
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As for Iy, we note that | £ B(t, s)| < ce®™(tanh s)"~2. Hence I»; is dominated by

o0 s d
f |W,57(f>(s)|(/ T B(t.s)(t =) dr) ds

< / ” |W3 (f)(s)]e”™ (tanh s)" ! ds

o0 t
< / |f(t)|(/ ¢°™ (tanhs)" "~ (coshot — cosh as)"_1 ds) dcoshot
X X
[ee) t
5/ If(t)leg’”(tanht)y_l(/ sTH@ —s)“_lds) dt
X X

< /oo | £ ()] (tanh)? ~ dr .

X
Therefore, I also satisfies (20). As for (ii), we note that
R
W, o WR(f)(x)
=W?, 0 W2, 0 WX o WR(f)(x)

=we, 0w, ( / WR(NE) 6 — 0" ds)

—we, (cw}}( )(x)(sinhox)™"

n—1 (555 1+1
+ cu(cosh o)+ (sinh o) "2 HF2AWR_ ( f)(x)) , 1)
k=1 [=0

where [-] is the Gauss symbol. The first term in (21) can be written as

W2, (WR(f)(x)(sinhax)™")

o0
d
= c/ —— (WR(f)(s)(sinhos) ") (coshos — coshox) ™™ d coshos
. dcoshos *

- UC/:O (%W}}(f)(s)(sinhax)_"
+ %(W}f(f)(s)(sinhas)_" — (sinhox)_"))(coshos —coshox)™"ds
=cW?, 0 WR(f)(x)(sinhox)™"
+ cfoo WR(f)(s)((sinhos)™ — (sinhox)™")

x (coshos — coshox) ™ !sinhos ds

=Jui(x) + Jia(x) .
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Clearly, it follows from the previous result for 0 < y < 1thatfore > y,§ > oy,

]

o0
/ [J11(x)|(tanh x)?e®*dx < c/ | (x)|(tanh x)® 7 e —OVFx g |
0 0

As for Ji2, we note that Jq; is estimated as

/Oo If(t)l</t(t — syt (sinhos)™ — (sinhox)™"

§—X

S —X

(coshos — coshox)™#sinhos ds) dt
coshos — coshox

00 t
Se_ayx(tanhX)_y_l/ |f(t)|</ (t =) s —x)™H dS) dt

X

<e " (tanhx) V! /00 |f () dt .

X

Here we used the fact that coshos — coshox = 2sinh @ sinh @ > ce®® (tanhs)
tanh(s — x). Since —y — 1l +¢ > -y —14+2y —1—pu=n—-2> —1forn > 1 and
—oy +§ > 0, it follows that

o0

o0
/ |112(x)|(tanh x)¢e®* dx < c/ | £ (x)|(tanh x)* 77 e OV +O¥ g x|
0 0

To estimate the second term in (21), we note that

W, ((coshox)" ™ =2 (sinhgx) 2+ WR () (x)

o0
d il _
=c f m((coshax)" =2 (sinh o) TP HFHWR (1)) (5)
X
x (coshos — coshox) " dsinhos

—c / h (%((coshax)"—k—”(sinh o) I HRIWR (1) (s)

+ (cosh o) 2 (sinh o) 2 HHAWR f)(s))
x (coshos — coshox) Hds
=J1(x) + J2(x).

Jr1 is dominated as

/"o ™™ (tanhs) " HHWR L (£)(5)|(coshos — coshox) ™ ds
< / LANEIO!

t
x ( / (t — s)* e (tanhs) "2 L (coshos — coshax)_“ds) dt
X
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[e'e) t
gce—”(tanhx)—2"+"—1—“f |W,}‘_k(f)(t)|(/ (t — )1 (s — x)—“ds) dt

X

o0
< ce 7 (tanh.x)- 218 / IWR (F)@)]de .

X

Since —2n+k—1—pu+e> -2n—p+e > —1and —oy + 8 > 0, by repeating integration
by parts, it follows that

o0
/ [I21(x)|(tanh x)¢e®* dx fc/ IWR L (f)(x)|(tanh x)e =21 Th=H oy 0 g
0 0

00
= C/ |f(x)|(tanhx)'s_3’e(—(fy+8)x dx .
0

As for Jp, by changing k to k 4+ 1, we can deduce the same estimate. This completes the
proof of Lemma 1. |

PROPOSITION 4. Let F = Wy(f) for f € L'(A). Thenfor0 <y < a+ 1 and
6> 0,

R
l W—y (F) ||L1((tanhx)re&r) = C||f||L1((tanhx)2a+le(p+6)X) .

Moreover,if | <y <o+ % is an integerory = lifa = %, then the above inequality holds
fors = 0.

PROOF. We first consider the case that§ > Oand y = o + % We recall that

_ wR 1 2
W(+ )(F) %)OWJ,_(f)—W_(a_‘rl)OWa_ﬁOWﬁ_i_%(f)
R 1 1 R R
(W—(a+ >Wa+%) ° (W—(ﬁ+2)Wﬂ+2) (W—(ﬂ+ ) ﬁ+2)(f)
=AoBoC(f).
Then it follows from Lemma 1 that
wR =|]]AoBoC
H (Ot+ )( )||Ll((tanhx)a+%e‘$x) ” ° o (f)”Ll((tanhx)ot-%—%egX)

=clBoC(N

1
L ((tanh x)2e+1@FT 270y

= c[[CNI

L ((tanhx)Z“H*””%kwfﬂﬁm
< cll fllL1 (ranh x)2e+1e0x) -

We suppose that 0 < y < o + % andputy = o + % — i, 1 > 0. Then it follows from the
previous case that

W sy (P

Nl

” (F) ”Ll((tanhx)ye‘sx) Ll((tanhx)a+%7”eax)

=[wE

(@+3) Ll((tanhx)”%em
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<c || f ”Ll ((tanhx)2a+1e(p+d)x) -

Hence we obtain the desired result for § > 0. Last we consider the case that y is an integer.
First we suppose that | <y =n <o + % Since

d
Kd_)nA(X, y)‘ < ceP=Dy > (tanhy)‘“'% (tanh(y — x))a—%—n ’
X

it follows that

o0
/ |WR F(x)|(tanh x)" dx
0

2/000 fxoo f(y)(%)nA(x,y)dy‘(tanhx)"dx

< [Tiron( [ |(5) aw»|wnrar)ay

<c /oo | £ (7)€DY (tanh y)*+ (/V ¢* (tanh(y — x))@ 2" (tanhx)"dx) dy
0 0

o0
<c / £ (9)]e® (tanh )2+ dy .
0

Wheny =1l anda = %, we see from the explicit form of A(x, y) that

d
‘(—)A(x, y)‘ < celP=Dyex tanhy .
dx

Hence the desired inequality similarly holds. This completes the proof of Proposition4. [

5. Weak-L' functions

Let w be a positive measurable function on R;. We say that a function f(x) on R4
satisfies the weak-L! (w) estimate provided that there exists a constant ¢ such that

A/ wx)dx <c.
{xeR4|f(x)>1}

We call such a function a weak-L' (w) function. Here we recall that some maximal functions
of f € Ll(R) are weak-L! functions. For example, the classical Hardy-Littlewood maximal
operator MgL on R, which is defined by
1 x+t
MEF@) = sup - / [F()ldy,
t xX—t

0<t<oo

satisfies the so-called maximal theorem, that is, MII{{L is bounded from L?(R) to L?(R) for

1 < p <ooand MII_}L f is a weak-L! function for f € L'(R). More generally, for a function
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¢ on R, the radial maximal function M;}F is defined by

M(}}F(x)z sup |F @ ¢ (x)],

O<t<oo

where ¢, is the dilation of ¢: ¢;(x) = %q&(;—f) and ® is the Euclidean convolution. Since

1
R _ R
MEF = oMy IF).

where xgs is the characteristic function of § C R, M R satisfies the maximal theorem.

X[—1,1]
Furthermore, if ¢ € S(R), then M;} also satisfies the maximal theorem. We denote by MII}LO

and M;}’O the local maximal operators, which are defined by replacing sup in the above
0<t<oo
definitions by sup .
O<t<l1

EXAMPLE 2. We shall give some examples of weak-L!(A) functions on R.

X
(1) Let B(x) = / A(x)dx. Then it is obvious that
0

1
f(x)=%

is a weak-L!(A) function on R;.
(2) Let F e L'(R) and suppose that supp F C [2, o). Then

1
fx) = mM&ﬁ’F(x)

is a weak-L!(A) function on R,. Actually, we divide R as

o0
Ry = U I,
k=0

where Iy = [k, k 4+ 1]. We let fi = fxi, and Frx = Fxj,, where xj, is the characteristic

function of 7. Since Mgio islocal and F is supported on [2, 00), it follows that f is supported
on [1, co) and moreover,

{1 supp " Fp) 0 1 0 = k= 1k k4 1)

for k > 1. Hence, by noting that A(x) is increasing on R4 and A(x) ~ e2PX for x > 1, we
see that
o0

A/ A(x)dx = X
{xeR4|f(x)>A} Z

/ A(x)dx
k=1 {xeli] fi (x)>Ar}
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(0.¢]
<3 Ak+1) dx

= el Mp° Fe (o> 1 Aoy

o

Ak + 1)A
2

<3 Z W”Fk”LI(R)

k=2
<cllFll iRy -

Therefore, f(x)isa weak-L! (A) function on Ry..
(3) Let ¢ be a smooth function on R supported on [—1, 1]. Let F € LY(R). We suppose
that supp F C [0, 2] and WEV (F) € L'((tanhx)?) for y > 0. Then

_ (tanhx)”

FO) = =305 MEOWR (F)(x)

14

is a weak-L'(A) function on R... To obtain this result, first we note that f (x) is supported on
[0,3]and for 0 < x < 3,
(tanh x)”

S0 TR e WE,(F) ® ¢ (x)

(tanh x)Y
A0 oot

X+t
il / R @)y

=1(x)+ hx).
As for 17, we note that
WE (P @¢=F@WE, (¢)=1""F@WE, @)
Since % < t, it follows that

(tanh x)Y H WBV (9) ”LOO(R)

1i(x)] <c A0 Ty I FllL1 R

F
SC” 2R
| B(x)]

By (1), I1(x) is a weak-L!(A) function on Ry. As for I, since t < 1, we can apply a
covering argument used in the proof of the weak-L! estimate for MII{{L. When x belongs to
S). = {z | R4 | I(z) > A}, there exists ¢ such that

A(x)

X+t
WwR (F)(y)|d —
| W Pwly > et

We note that, since 0 < x < 3 and? < %, A(x) ~ (tanhx)>**! and x + 2r < 2x. Then it
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follows that

x+2t
[B(x, 21)] =/ A(y)dy
x—2t

<A(x +20)t < cA(x)t
1 X+t
< (anhx)? / \FO)ldy.

x—t

Sincey >x —t>x — % = %, it follows that

HBG 201 e [ [WR, ()0 anhy)dy.

x4+t
Then the covering argument yields that

R
Al < C”W_y (F)“Ll((tanhx)y) :
Finally, we obtain that

)\/ A(x)dx < C{||F||LI(R+) + ||WBy(F)||LI((tanhx)y)} .
{xeR4|f(x)>A}

Combining Example 2 (2) and (3), we can deduce the following.

PROPOSITION 5. Let y > 0 and @ be the even extension of W)B()([OJ]). Let F €
LY(R) and suppose that WB), (F) € LY((tanh x)). Then

_ (tanhx)”

F0) = 3o Ma W, (F)()

satisfies the weak-L' (A) estimate:

A / Adx < c(IF gy + TWR Pt sy -
{xeRy|f(x)>A}

PROOF. Let ¥ be an even smooth function on R such that ¢(x) = 1 if [x] < 2 and
Y(x) = 0if |x| > 3. Since

(tanh x)¥
F0) = =5 Ma (A = Y ) WE, (F)) ()
(tanh x)” ’
a0 Me (PWE, )
=f1(x) + fo(x),

it is enough to obtain the desired estimate for fy and fj. As for fj, we note that

(1 — w(x))WBy (F)(x) is supported on [2, 00). Then it follows from Example 2 (2) that
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A f{x6R+\f| (r)>1) A(x) dx is dominated by

[ = DWE, (B 1w,y = < IWE O L anhnyr) -

As for fo, we note that W(x)WBy (F)(x) is supported on [0, 3] and

1
[WE (@Y + )0 < ey

Then, applying the same argument used in Example 2 (3), we can deduce that
)‘f{xek+\fl(x)>)\}A(x)dx is dominated by ||F||L1(R+) + ”WBV (F)ll 1 ((tanhx)r)- This com-

pletes the proof of Proposition 5. O

6. Shape of maximal functions

Similarly as in the Euclidean case, for the Jacobi hypergroup, we can introduce
the Hardy-Littlewood maximal operator Myr, the Poisson maximal operator Mp and the
Littlewood-Paley g-function g(f) as in (1), where the normalized characteristic function X,
is defined by

- 1
Xe(x) = mXB(r)(x) s

where xp()(x) denotes the characteristic function of B(t) = [0, ¢] and |B(¢)| the volume
of B(t) with respect to A(x) dx, and the Poisson kernel p; is defined as the function whose
Jacobi transform is given by

pr(h) = eIV
Then it follows from [2], Theorem 4.3.1 that

! t+x < 1
72’ x J— 9
pi(x) ~ e=Pre—pVErat L (E ) txs1 22)
s r+x >
(t +x)3
and

d* d* . x1-b . _

me,(x) ~ m1n[t, 1+ 7} min{l,  + x} kp,(x) .

The aim of this section is to give an alternative proof of the weak-L!(A) estimates for the
operators M = Myr,, Mp, g (see Theorem 1). Actually, we show that M f, f € L! (A), has a

standard shape of weak-L'(A) functions obtained in §5.

6.1. Basic idea. The process to obtain a standard shape of M(f) for M =
M1, Mp, g is based on (13) in §2 and key estimates obtained in §4. Actually, we use the
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fact that the convolution * in the above definitions of M is replaced by the Euclidean convolu-
tion ® through the Abel transform (see (9)) and thus, letting F = W (f) and K; = W4 (k;),

where k; = X;, pr and t% respectively, we see that

f ok ki(x) ~

(Y anhxy? WR, (F) @ K, (@)

el
A(x) STt

+ Z(tanhx)V/oo WR (F) ®K,(s)Ay(x,s)ds). (23)
veln x

Therefore, if K; = W4 (k;) is related to a Euclidean dilation, then the maximal operator M is
reduced to a Euclidean one. We use the following facts.

LEMMA 2. (1) Let @ be the even extension of Wf+1 (x10,17) and X; the normalized
2
characteristic function on B(t). Then for0 <t < 1,

eP W (Xe) (x) ~ Dr(x).

(2) Let ¥ (x) be the function on R defined by W (x) = 1+1—2 iflx| <land ¥(x) = ——~ if
(I+[x)2
x| > 1. Then for0 <t < 1,
P W (p)(x) ~ u (X) ¥ (x)

where u;(x) = 1if |x| < 1 and u;(x) = /1t if |x| > 1. Moreover, for0 <t < 1,

d
PTW, (t%)(x) ~ U (D)W (x) .

1
PROOF. (1) Clearly, @(x) = (1 — [x)*T2x_1.1)(x) and &;(x) = £(1 — E)**2
Xi—r.11(x). Both W4 (X;)(x) and &, (x) are even and supported on [—7, ¢]. For0 <x <t < 1,
it follows from (18) that

PEW () (x) = P / T A, 5)ds

1 12
~ P / s(s2 — xz)a_% ds
X
a—i—l ot+l
-2y
t t t
“4DAX).

(2) It follows from [1], p. 289 that

Wi (p)(x) = ct(£ + xz)_%]{l (ov/12 + x2)
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where K is the modified Bessel function of the second kind. Since K;(z) = O(Z_%e_z)
if x > o0, Oz if x - 0, and e PV L oY for 0 < t < 1, it follows that
ePX W (p) (x) ~ uy (X)W (x). Since B ~ 1~ p; (see (22)), e Wiy (142) (x) ~ us (X) ¥ (x).

O

6.2. The case of My.. We shall give a proof of Theorem 1. We define
M f(x) = sup [f]x X (x) and My f(x) =sup|f| 3 (x). (24)

O<t<l t>1
Then it is easy to see that Theorem 1 is true if each MﬁL f and MﬁL f satisfies the desired

inequality. Usually, the weak L'(A)-estimate for Ml(_)[L is proved by applying the covering
argument used in the Euclidean case (see [13]). Our alternative proof is based on the following
new estimate of M}, f in (26).

THEOREM 4. Let f € L'Y(A) and F = W, (f). Then

1A lLca)
M), <c—=, 25
LS (x) <c¢ A0 (25)
(NAlFA (tanh x)”
0 (A) R.0
Miy f(x) < c=pro=+ec > a0 Mo (e W_, (F))(x). (26)
velp
Especially, My, satisfies the weak-L! (A) estimate:
A / A dx < el I @7
{xeRy|MuL f (x)>A}

PROOF. In the following, we denote | f| by f for simplicity. The weak-L'(A) estimate
(27) follows from (25) and (26), because of Example 2 (1) and Proposition 5 with the fact that

[le”* w_, (F)“Ll((tanhx)y) = C“f“L](A)

(see Proposition 4). First we shall consider MII{L. We divide f into f = fo + fi, where
fo=f-xswand fi = f — fo. Since

MlllLf = MlliLfO + MlllLfl )

it is enough to show that both MlllLfo and Mll[Lfl satisfy (25). As for MlllLfl’ we use (23) to
handle f * ¥; in the definition of HﬁL and note that

P WR(F) @ K, = (" WR (F) ® (" K)) = (" F) ® (" WX, (K))) .

where F = W, (f1) and K, = W,()X;). Then it follows from Proposition 4 with y = 0 and
6 = p that

le” Flloim,y < cllfillLicay-
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Moreover, since t > 1, it follows from the proof of Proposition 3 that for0 < y < o + % and
0<x<t,

1
|B(1)]

t
d
PIWR (K ()] < ceP™ WRy( f 4y R - (coshy - cosh x)%+3 dy)
X

ePx t
< cezpt /X ePdy <c.
Hence, for y € I'hy U I'1, we see that
”eprBy(F‘X’ K’)“L"Q(RQ = ”epxF||L1(R+) ’|eprB}’(K’)HL°°(R+)
<clfillLray-
Therefore, by noting (14), it follows from (23) that

I f1llzray

Ifix X ()| < ¢ A

As for Mllﬂdfo, we note that fo * X; is supported on [0, 1 +7) and r > 1. Since || X; || Loo(a) =

1 1 1 1 :
B ~ A0 and A050 < Cm for 0 <x < 1+t, it follows that

[fo * x: GO < Il foll L1 ayllXe llLooca)
. Il foll L1 ay
- B@)]
c ||f0||Ll(A)
- A(x)
Thus we have obtained (25).
Next we shall consider MI(_)IL. By noting (23), to prove (26) it is enough to prove that the

following (28) and (29) are estimated as (26):
pPX

Ax) (tanh x)” oiljgl WBV(F) ® K;(x), (28)
Al:;) (tanh x)¥ Oiljgl /:XJ WE),(F) ® K/ (s)Ay(x,s)ds . (29)

As shown in Lemma 2, ¢”* K, ~ &, and therefore, (28) is dominated by

%M;}O(W WR (F)) ().

As for (29), when 0 < % < t, we see that

ePx (tanhx)”/oo WR (F ® Ki)(5)A, (x. 5) ds
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R o0
V|| pPX px
<c(tanhx)” | Fll1r,) e W_V(Kt)||LOQ(R+)/X Ay (x,s)ds

gc(tanhX)ny”Ll(A)W

SC”fMLuA)'
tanh x

On the other hand, when % > t, we use Proposition 1. Then it follows that

o0
ePx (tanhx)V/ WR (F) ® K/(s)Ay (x, s)ds
X
(>o ~
= e"* (tanh x)” / WE e \(F) ® Ki () Ay (x, 5) ds

< c(tanh x)7 6! / ( / (P WR e, (F))(s — y)ds ) (e K) () dy.

Since K; is supported on [—1, ], we may suppose that |y| < ¢. Then it follows that s — y >

X —y>x—t>7and thus,

(tanh x)? ¥ < (tanh(s — y))? T .
Therefore, by Proposition 4, the last integral is dominated by
-1 R
(tanh .x) H epx W—()/“l‘sy) (F) H L! ((tanhx)V-Féy) “epx Kt ”LI (Ry)

<c(tanhx) 7| 1l i) Xl )

<C”fﬂLWA).
tanh x

Here we used tha fact that y + &, < o + % for y € I7. Finally, we have proved that (29) is
dominated by

1 I fllLia - C”f”Ll(A)
A(x) tanhx —  |B(x)|

This completes the proofs of Theorem 4 and Theorem 1 for My . O
6.3. The case of Mp. Let M9 and M, be the operators defined by
Mpf(x)= sup |f*pi() and Mpf(x)=sup|f s pi(x)l.
1>

O<t<l1
Similarly as Theorem 4, we shall prove the following.

THEOREM 5. Ml(,) and Mli satisfy the same inequalities in Theorem 4 replaced M(I;,O
with Mg’o. Especially, Mp satisfies the weak-L'(A) estimate.
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PROOF. We shall prove that Mﬁ and Ml(,) also satisfy (25) and (26) respectively. We

put F = Wo(f) and K, = Wi(p,). As for M}, we let f = fo + f1 as in 6.2. Since
e’ Ky (x) ~ u; (x)¥(x) (see Lemma 2 (2)), it follows that for 7 > 1,

”epx WE}, (Kt) ||L°°(R+) =

Therefore, (25) holds for f; similarly as in 6.2. On the other hand, we note that fy is supported
on B(1) and for r > 1 and p,(x) < ce™>* (see (22)). Hence, it follows that

|fox (] = ce” | foll 1 a) -
Therefore (25) also holds for fy. We have obtained that Mfl, satisfies (25).
As for Ml(,), we shall estimate (28) and (29) for K; = Wy (p;). First we note that
P K (x) ~ up ()W (x) < Y (x)
(see Lemma 2 (2)). Hence (28) is dominated by

(tanh x)¥

At M@ WEO)®.

On the other hand, for (29), let ¢ be an even smooth function supported on :t[%, 3]and 1 on

=l | i 2] Furthermore, we suppose that
X
> o(5) ~1
kel

We note that
" WE (F ® Ki)(x)

~ / (e WR (F) (x = y)us (0¥ () dy

-y / (W, () & = () (5 ) dy

keZ
“"’W(z")/ (" WR, (F))(x —Wb(%)
keZ

logt
log2*

where ay; = 1if k < n; and ax; = Jtifk > n, with n;, = — Therefore, since

0 <t < 1, it follows that

e (tanh x)”

/ WR (F) @ K () Ay (x, s)ds‘

o0
<c) w292 (tanh x)” / e WR (F) ® ¢yus1,(s)Ay (x,5)ds
keZ *
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= szk)zkﬂlk(z, x).

keZ

Since ¢ is compactly supported, we can apply the argument used in the proof of Theorem 4
replaced ¢ with 2¥*1¢. Hence it follows that

Ie(t, x) < c(tanhx) ™[ fll14)-

Therefore, since

S w2 < 1w, -
keZ

(29) is dominated by B(x)™'|| I L1(4)- This completes the proof of Theorem 5. O
6.4. The case of g. We define

P = ([ el %)

o0 d 2dty;
= ([P )’

and
gE’O(Fxx):(/OI\F@ Do L)

where ¥ is given by Lemma 2 (2). We note that gg’o satisfies the weak-L! estimate on R. We
shall prove the following.

THEOREM 6. Let f € L'(A) and F = W, (f). Then

1 1Az ay
g (Hx) < CiA(x) , (30)
1Az ay (tanhx)” g
(N = e=pei= +e > Wg;}o(wl‘y(n)(x). (31)

yelp

Especially, g satisfies the weak-L'(A) estimate.

PROOF. We shall prove (30). We divide f = fy + f1 as before. As for ¢! fi, we use
(23) to handle f7 * tdp L and thus, we estimate the following terms:

e , t %
A(x)( ;{)(tanhx)y(/1 |W§y(F)®K,(x)| 7)

(/ ‘(tanhx)”/ BV(F)®Kt(s)Ay(x,s)ds‘2$)%), (32)

yel"
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where F' = W, (f1) and K;(x) = W4 (17 dp ~)(x). First we shall deduce that
o0
/ |e“WRy(Kt><x)| — <c
1

By using (22) with r > 1, we see that
e WR (K ()]
*d

d
<ceP* WBV(/x a(t%(s)R(x, s)) - (cosh y — cosh s)“+%ds>

00 2

4 s — o121 s2

Scepx/ e PPN el gy
x  (t+s)2

When x > %, since t < 2x < 2s, it follows that

t *© )
e WR (K)(x)| < ce 1 / SNV
(t+x)2

Vi 452
<cel” - —e TPV 12
(t+x)2

Hence it follows that

/ |epr§y(Kt)(X)|2_ sceZPX/ L [
1 t 1 m
When x < %, we see that
R t * 1? pt 3
|epr V(K,)(x)|<ce2e L / ~ds <ce 212,
x (t+s)2

Hence we have deduced (33).
By using (33), we see that
1

(/1 | (tanh x)” WR (F) ® K, (x)] —)

oo oo d
<c | |(ef”CF)(x—y)|(f1 7 WR, (Ko t)

SC||erF||L1(R+) <clfillLicay

and

00 00 1
( / ‘e“(tanhx)y / WE (F)® K,(S)Ay(x,s)dsdx‘z?)z
1 X

o o0 1
§(tanhx)7/ e F| ® (/ P WR (K ()] —) A, (x. 5)| dsdx
X 1

(33)



WEAK-L! ESTIMATES AND THE KUNZE-STEIN PHENOMENON 105

o0
sclle""FllLl(R+)f 1A, G, )l ds < el fill e -
X

Therefore, (30) follows from (23).
As for g' fo, if t > land? < 1 + Z, then t ”’ ~ p: (see (22)). Hence (33) holds
and thus, similarly as above, (30) follows. We suppose that# > 1landt > 1+ 7. Then

2 3 _ _ 2 2
tdﬁr ~ tfi-_xpt ~ —L _eTPXeTPNVITTAT (gee (22)). Hence
(t4+x)2

/ ol e / i eV dy
1 (t +)C)5
< ce2pX /Oo 2PN gy
(e + x2)2

< ce 4x

Since fj is supported on [0, 1], it is easy to see that

d 2d
9" (o)) SCIfoI*(/ [ty ary?
1 t

-2
<clfollLrae L

Therefore, ¢'( o) also satisfies (30). We have obtained that ¢! satisfies (30).

Next we shall consider ¢°. We use (23) to handle f x tdp L and estimate the following
terms.

(Z(tanhx)y / |WR (F) ® K/(x)]| —)
yely
+ Z / ‘(tanhx)yf E},(F)®Kz(S)Ay(X,S)dS‘2?)%)’ (34

yel

where F' = W, (f) and K;(x) = W+(tdp’)(x). Since e”* K; ~ uy(x)W(x) forz < 1 (see
Lemma 2 (2)), the first term is dominated by

h
> (tan<x>) g5 (W, (F)) ().

vel

We shall consider the second term of (34). When 0 < % <t < 1, we note that e”* WBV (Ky)
WR () and

/ wE e[ s
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Hence, it follows from (14) that

o) 1
e (tanh x)” ( / WR (F) ® Ki(s)A, (x, s)dsr?) :

00 1 1
g(tanhx)”/ (€ F)® (/ |epr§y(Kt)(s)|2dt)2Ay(x,s)ds
x 0

c oo
5c(tanhx)V||epxF||L1(R+)xl—+y/ Ay (x,s)ds
X

SC”f”Ll(A) .

tanh x

When 5 > ¢, similarly as in the proof of Theorem 5, we may replace K; by ¢, where ¢ is an
even smooth compactly supported function on R. We divide ¢, = Xg¢z + x$ ¢¢, where X%
2

and x§ denote the characteristic functions of [0, 5] and [5, 00) respectively. Moreover, we
2

rewrite the action of WBV as

R : R :
W2, (F)® X%¢t =FQ® W_V(X%@),

R R R R
W—V(F) ® ng)t - W—(l—fy)(W—(V"‘fy)(F) ® W (X%(Pt)) :

Changing the order of integration and using the duality of operators, we see that

¢ (tanh x)” foo WE (F) ® ¢1(s)Ay (x, 5)ds
<c(tanhx)” / ( / (T F)s = 1) Ay (x, 5)ds ) (e WX, (x5 8)) )y

+ c(tanh x)” / (/(ePXWB(VJrSy)(F))(s - y)VT/l‘(1 sy)(XxAy(x ))(s)ds)

x (e WR(xz¢r)) (»)dy
=111(x) + la(x).

As for 111, since y > 5 > t and ¢ is a smooth compactly supported function, it follows that

</ ‘ (¢z)(y)‘ ) <ylc+)’</x $2H2y Z_f(s)f?)%

c
< ——.
- yxl+r

Therefore, since ||e”* F || LRy = Cllflz1(a), similarly as before, we see that

/Ih()ﬁ‘” < M

tanh x
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As for 11, we note that (e”* WIR(X%d)t))(y) is supported on [0, 5]. Then for y < 5, we see

thats—ny—ny—%=§andthus,

tanhx < tanh(s — y).

Hence I;> can be written as

c(tanhx)™! / ( / (tanh(s — )7 )P WR, o (F))(s — )

x (tanh0) 76 TR G Ay (o 0)(s) ds ) (7 WR (3 K1) () dy

Here we note that
1 1
Kdt 3
(/ e WROLed =) < e
0 t
Actually, since ¢, (y) = cj—y(wll‘(qs)(% )), it follows that

1 d o0 d
/|eﬂywll‘(xx¢,)(y>|2—tsc/ WR@) &[S
0 ! y S

<c.

Moreover, since y +§&, < o + % for y € I7, it follows from Proposition 1 that
(anh )~ [ TR G, )5 ds
= (tanh )~ W (x{ Ay (x, ))(5) ds = (tanhx) =5 Ax, ) (s)
<c.

Hence by Proposition 4, we see that
1

1
dt\ 2 _
(/0 |112(x)|27) < c(tanhx) 1||epxw§(y+§y)(F)}]Ll((tanhx)my)

_ C”f”Ll(A) ‘

~  tanhx
Therefore, the second term of (34) is dominated by H{gf}i;f). This completes the proof of
Theorem 6. O

7. The endpoint of the KS phenomenon

The Kunze-Stein phenomenon for the Jacobi analysis (see Theorem 2) is originally not
difficult. The following proof was found in [7], Theorem 5.5: We suppose that f € L?(A)
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and I < p < 2. Since g, the conjugate of p, is greater than 2, it follows (3) and (2) that

1 £lloo S/O Lf (Ol#5.(x)[A(x) dx

> 1
= ”f”LP(A)(/ (1 +x)qe—qpx82pxdx)q
0
=cpllfllLrca)-
Let g € L*>(A). Since f/*\g = f - §, it follows from (4) that

If % gl2s = [  1FGPFGOIACG)I2 dn
(4) 0

o0
< cillfllimfo 1GPICO) > dA

2 2 2
= Cp”f”LP(A)”g”LZ(A) .

This completes the proof of Theorem 2.
Now we shall give an alternative proof of the endpoint estimate (see Theorem 3) based

on (13) and the key estimates in §4. In order to show that fxg € L>(A) for f, g € L>!(A),
by noting the fact that the dual space of L>!(A) is given by L>°(A), it suffices to prove that
forall h € L% (A),

o
[ 1 a0heae ] < el flaallalins il - 69

First we may suppose that f, g, h are supported on [1, o). Actually, we note that the integral
of the left hand is written as f * ¢ % h(0) and, if one of f, g, h were supported on [0, 1), say
f, then we see that

[f g *xhO)] <I1f *gllp20a) 12l 12

=< ||f||L1(A)||9||L2(A)||f||L2(A)
1 1
2
< (/0 A(x)dx) I f 2y gl L2cay 1 F L2 ay -

Since L>1(A) ¢ L%(A), (35) is clear. We suppose that f, g, h are all supported on [1, co)
and use (13) again. Then it follows that

/00 fxgx)h(x)A(x)dx
0

~ Z /Ooo(tanhx)yWBy(F ® G)(x)H (x)dx
velp

+ Z /Ooo(tanh)c)y(/;>O WBV (F®G)(s)A,(x, s)ds)H(x) dx,

yel
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=Y D+ Y I,

yely yel
where F = Wi (f),G = W4 (g) and H(x) = h(x)el*.
According to the cases in Proposition 2, we shall estimate IJ} and I}%.

(i) Let ¢ > % or (o, B) = (%, :I:%) We may suppose that y > 1, because H(x) is

supported on [1, co0). Then, it follows from Propositions 3 and 4 that
R R R
” WZ,(F) ® G”L‘”(Rg = ” WZ(F)® W—(V—l)(G)||L°°(R+)
R R
<| W—I(F)HLl(R+) I W—()/—l)(G)HLOQ(R+)
<cllfllpieesylglprensy -
Hence, 1) and, by (14), I are dominated by || f |1 (o) 9]l L1 (o) 121l L1 (ex)- If @ function
a on Ry is supported on [1, 00), then [|all11 o) < cllalip2i2o) < cllallp21(ny (see [9],
Lemma 3). Therefore (35) follows.
(i) Let @ = % and —% < B < % Then, 111 is dominated similarly as in (i). It follows

from (15) that I)% can be rewritten as
o0 o
/ (/ F' ® G'(s)B(x, s)ds)H(x) dx , (36)
0 X

where |B(x, s)| < c¢ forall x > 1. Since
|F ® G/||L1(R+) = ||F/||L1(R+)||G/||L'(R+)
=cllfllpeey gLt ensy -
(36) is dominated by || f1l L1 erx) |9l L1 (ox) 121l L1 (eoxy- The desired result follows as in (i).
(iii) When —% <a< %, it follows from (16) that I}} can be rewritten as

/oo wWR  (FRG)(x)H(x)dx. (37)
0 —(UH‘j)

Then, by denoting « + % by yu, we see that

WwR (F® G)(x) (38)
B 00 00 R B 00 R
—fo </x_y| FOWR, Al yLs)ds)(/y gOWR, Adyl.ndr)dy

2/1/1 f(s)g(t)(/o WR A= sy OWR, AV 06 ()

X dsdt .



110 TAKESHI KAWAZOE

We shall consider tha case that x > y and y > 0. The other cases can be treated similarly.
Since ¢, s > 1, the integral in the inside parentheses is dominated by

t
eset/ (s —x + 0741 — )2 idy = et —x + )72
X—S

If (t — x +s5) > 1, then it is dominated by e*e’ and thus,
H WBV& (F ® G) HLoo(epx) S C”f”Ll(eﬂX) ”g”Ll(eﬂX) .

Hence the desired result follows as in (i). If (r —x +s) < 1,thenx < r+s < x + 1 and thus,
(37) is dominated by

/// |f()g(D)]e'e’ (t —x + )" 2dsdt|H (x)| dx
t,s>1,x<t+s<x+1

oo px+l1 |
=/1 / (/|f(s)|€s|g(t—S)|€t_st>(t—x)“_7|H(x)|dtdx

00 x+1 )
5C”f”LZ(ezﬂX)||g||L2(e2/’X)/ (/ ([ —x)a_?dl‘)|H(X)|dx
1 X

=cllflizeallglizzay il eexy -

Therefore, (35) follows. Last we note that IJ% can be rewritten as
o o0
/1 (/ WR_(F ® G)(5)C(x, s)ds)H(x) dx,
X
where
o0
/ |C(x,s)|ds < c
X

for all x > O (see (16)). Replacing WBya by W§2a in (38), we see that the integral in the

inside parentheses in (38) is bounded by e*¢’ and thus,
[WRe (F & G| ooy < €l f 1 ooy llgll 1 sy -

Therefore, (35) follows as in (i).
This completes the proof of Theorem 3. O

REMARK 1. In his proof Liu used the kernel form of the convolution
(e.¢] (0.¢]
9@ =/0 /0 J&) 9K (x, y,2)AX)A(y) dxdy

and the fact that K (x, y, 2) A(x)A(y)A(z) < ceP? T if x, y, z > 1. He quoted this
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estimate from the explicit form of K (x, y, z) obtained in [12]. Here we note that

Wi (K(x,y, () = AC,x)® A, y)(2)

1
A(x)A(y)
and thus,

K(x,y,2)Ax)A(y)A(z) = W_(A(, x) @ A(, ¥))(2)A(2) .

The above estimate of K (x, y, z) easily follows from this relation. Roughly speaking, our
argument used in the proof of Theorem 3 is a transfer of Liu’s one by using this relation.
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referee for his careful reading of the manuscript and for giving useful comments.
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