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Abstract. For C1 diffeomorphisms of three dimensional closed manifolds, we provide a geometric model of
mixing Lyapunov exponents inside a homoclinic class of a periodic saddle p with non-real eigenvalues. Suppose
p has stable index two and the sum of the largest two Lyapunov exponents is greater than log(1 − δ), then δ-weak

contracting eigenvalues are obtained by an arbitrarily small C1 perturbation. Using this result, we give a sufficient

condition for stabilizing a homoclinic tangency within a given C1 perturbation range.

1. Introduction

For diffeomorphisms of smooth closed manifolds, homoclinic tangencies and heterodi-
mensional cycles are understood as two basic phenomena of bifurcations beyond uniform
hyperbolic systems. They are defined as follows: Let � and � be transitive hyperbolic sets of
a diffeomorphism f (throughout the paper, the index of a transitive hyperbolic set �, denoted
by ind (�), is defined as the dimension of its stable subspace).

• f has a cycle associated to � and � if the stable manifold Ws(�) of � intersects the
unstable manifold Wu(�) of � and the same holds for Wu(�) and Ws(�). The cycle is
called heterodimensional if the indices of � and � are different. In particular, the cycle
is said to be co-index one if ind (�) = ind (�) ± 1.

• f has a homoclinic tangency associated to � if there exist x, y ∈ � such that Ws(x)

intersects Wu(y) non-transversally.

Obviously, by definition, heterodimensional cycles only exist on manifolds of dimension
at least three. Lots of interesting phenomena, for instance, super exponential growth of the
number of periodic points [BDF], existence of infinitely many sinks or sources [N1], non-
hyperbolic robust transitivity [BDPR] and entropy-expansiveness [LVY] are closely related
to them. It is conjectured by Palis that these two are typical mechanisms beyond uniform
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hyperbolicity, especially in the C1 topology (see [B] for a brief introduction on this topic).
Let M be a closed manifold of dimension greater than or equal to two.

C1 Palis Conjecture C1 diffeomorphisms of M exhibiting either a homoclinic tangency or

a heterodimensional cycle are C1 dense in the complement of the C1 closure of hyperbolic
systems.

In particular, we can consider heterodimensional cycles and homoclinic tangencies asso-
ciated to hyperbolic periodic saddles. Note that both heterodimensional cycles and homoclinic
tangencies associated to periodic points contain non-transversal intersections, which can be
easily destroyed by small perturbations.

Towards the study of Palis Conjecture, if one wants to develop perturbations keeping
these bifurcations surviving, he needs to consider the robust version of them. More precisely,
if there is a neighbourhood U of f such that for every g ∈ U , the hyperbolic continuation
�g of � for g exhibits homoclinic tangencies, then, we say that f has a robust homoclinic
tangency associated to �. Robust heterodimensional cycles are defined in a similar way. Ob-
viously, robust homoclinic tangencies and robust heterodimensional cycles must be associated
to non-trivial hyperbolic sets. Concrete examples of them can be found in [A] and [AS], for
instance. Then, a natural question arises immediately: Starting from a homoclinic tangency
(resp. heterodimensional cycle) associated to a hyperbolic periodic saddle p (resp. hyperbolic
periodic saddles p and q) of f , is there an arbitrarily small perturbation g of f , exhibiting
robust homoclinic tangencies (resp. robust heterodimensional cycles)? This problem is called
the stabilization of homoclinic tangencies (resp. heterodimensional cycles).

In the C2 topology, Newhouse gave a positive answer to the stabilization of homoclinic
tangencies [N2]. This result was extended to higher dimensions by Palis and Viana [PV]. See
[BC2] for the stabilization of homoclinic tangencies in some other situation, which gives an
alternative proof of a theorem in [PV] on the existence of the Newhouse domain in higher

dimensions. In the C1 topology, for heterodimensional cycles, the first result was obtained by
Bonatti and Díaz by introducing a model of blender horseshoe, a kind of thick hyperbolic set.
They proved that every co-index one heterodimensional cycle can be stabilized [BD1]. Later,
this result was improved by Bonatti, Díaz and Kiriki in [BDK] (see Lemma 2.4). Compared
with [BD1], the stabilization in [BDK] is stronger in the following sense: the hyperbolic
sets � and � (to which the robust heterodimensional cycle of g is associated) contain the
continuation pg and qg respectively. Moreover, examples (called fragile cycles) which cannot
be stabilized in this sharp sense were constructed [BD2].

By these observations, we propose the following question: In the C1 topology, is it
possible to stabilize a homoclinic tangency? In fact, this question only makes sense when the
dimension of M (denoted by dim M) is larger or equal to three. Since according to [Mo], for

surface diffeomorphisms, C1 robust homoclinic tangencies do not exist. In higher dimensional
case, Bonatti and Díaz built the so-called folding manifolds which exhibit robust tangent
intersections in a natural setting [BD3]. Later, Bonatti, Díaz, Crovisier and Gourmelon gave
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a sufficient condition for the existence of robust homoclinic tangencies for homoclinic classes
with the absence of some particular dominated splittings [BCDG]. In that paper, as a key
step, weak eigenvalues inside homoclinic classes are obtained by using Bochi and Bonatti’s
result [BB]. It is well known that the absence of some type of dominated splittings leads to

the C1-creation of homoclinic tangencies [W]. So the above situation of three-dimensional
case is close to ours, but here we construct a three-dimensional geometric model providing
weak eigenvalues directly by perturbing a homoclinic tangency. This method gives a more
concrete procedure than [BCDG] to provide weak eigenvalues in this particular case, which
even allows us a slightly weaker hypothesis on the Lyapunov exponents of periodic points.

Now, we state the main theorem of this paper. Let M be a compact smooth Riemannian

manifold without boundary. In particular, write Md if it is necessary to emphasize the dimen-
sion d of M . Denote by Diff 1(M) the space of C1 diffeomorphisms of M endowed with the

C1 topology. Recall that any Riemannian metric ‖ · ‖ on M can induce a distance d on T M .

We define the C1 distance between two diffeomorphisms f and g of M as follows:

dist C1(f, g) = sup
v∈T M,w∈T M

{
d(Df (v),Dg(v)), d

(
Df −1(w),Dg−1(w)

)}
.

For f ∈ Diff 1(M3) and a hyperbolic periodic point p of f , let orb (p) denote the orbit of
p and ind (p) denote the index of p, i.e. the dimension of its stable subspace. Let χ1(p) ≤
χ2(p) ≤ χ3(p) be the Lyapunov exponents of p, counting with multiplicities. We write
‖Df ±(p)‖ = max{‖Df β(x)‖ : β = ±1, x ∈ orb (p)}, where ‖A‖ denotes the operator
norm of a linear map A.

THEOREM A. For any a > 1, there exists δ0(a) > 0 with δ0(a) → 0 as a → 1,
such that if 0 < δ < δ0(a) and f ∈ Diff 1(M3) exhibits a homoclinic tangency associated to
a hyperbolic periodic saddle p having non-real contracting eigenvalues satisfying χ2(p) +
χ3(p) > log(1−δ), then there exists g with dist C1(f, g) < aδ‖Df ±(p)‖, exhibiting a robust
heterodimensional cycle and a robust homoclinic tangency.

REMARK 1.1.

• When ind (p) = 1, replacing f by its inverse, the symmetric version of this theorem is
also valid.

• If χ2(p) + χ3(p) > 0, then dist C1(f, g) can be required arbitrarily small, which also
follows from [BCDG, Theorem 1].

It is worth mentioning that the aforementioned [BCDG] dealt with the stabilization of
homoclinic tangencies in case of dim M ≥ 3 (an earlier version is due to Shinohara [S]).
Within a fixed perturbation range, Theorem A says that the stabilization of homoclinic tan-
gencies, at least in the weak sense, can be realized if χ2(p) + χ3(p) > log(1 − δ) compared
with [BCDG] which requires χ2(p) + χ3(p) > −δ.

As a corollary, the following result is available if one wants to stabilize a homoclinic
tangency in the strong sense. See Definition 2.2 for the definition of dominated splittings and
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their dimensions. δ0(a) > 0 is the number in the statement of Theorem A.

COROLLARY B. For any a > 1, suppose f ∈ Diff 1(M3) exhibits a homoclinic tan-
gency associated to a hyperbolic periodic point p such that

• H(pg) does not admit dominated splittings of dimension ind (pg ) for all g in a neigh-
bourhood Uf of f ; and

• p has non-real contracting eigenvalues satisfying χ2(p) + χ3(p) > log(1 − δ),

where 0 < δ < δ0(a) is sufficiently small, depending on Uf . Then, there exists g with

dist C1(f, g) < aδ‖Df ±(p)‖, exhibiting a robust heterodimensional cycle and a robust ho-
moclinic tangency associated to a hyperbolic set � containing pg .

Actually, in the proof of Theorem A, the main part is devoted to the creation of weak
contracting eigenvalues. Let us be more precise. Suppose H(p) is a homoclinic class of
some hyperbolic periodic saddle p of f (see Section 2 for relevant definitions), then the set
of hyperbolic periodic saddles of f which are homoclinically related to p is a dense subset
of H(p), which is denoted by �(p). We say that H(p) has weak eigenvalues associated to
periodic points homoclinically related to p if for any ε > 0, there exists q ∈ �(p) such

that q has some contracting eigenvalue λs(q) satisfying |λs(q)| > (1 − ε)π(q) or q has some

expanding eigenvalue λu(q) satisfying |λu(q)| < (1 + ε)π(q), where π(q) is the period of
q . Such an eigenvalue is called ε-weak. It is not hard to show that if H(p) does not admit
dominated splittings of dimension ind (p), then we can obtain arbitrarily weak eigenvalues
associated to periodic points homoclinically related to pg by an arbitrarily small perturbation
g of f . However, unless additional assumptions are given, in general, we cannot designate
in advance that such a weak eigenvalue to be contracting or expanding. For example, when
dim M = 3 and ind (p) = 2, if we want to use folding manifolds and blender horseshoes
to construct robust homoclinic tangencies by small perturbations, as a preliminary step, we
should find a periodic point q ∈ �(p) with sufficiently weak contracting eigenvalues and then
decrease ind (q) by stretching Df over T M| orb (q). Otherwise, if the weak eigenvalue of

q ∈ �(p) we obtain is always expanding, we might thus get nothing but a sink after C1small
perturbations, which of course escape the continuation of the original homoclinic class.

By this observation, we see that designating the type of a weak eigenvalue is very im-
portant in some situation. Along this direction, Bochi and Bonatti developed a method which
said, in rough terms, that under some hypothesis, one can mix two consecutive Lyapunov
exponents of some periodic point such that both of them move continuously towards their
midpoint [BB, Theorem 4.1 and Proposition 3.1]. As a result, under the same setting as above
(i.e. dim M = 3 and ind (p) = 2), if we want to get δ-weak contracting eigenvalues by using
[BB], the assumption of χ2+χ3 > −δ is necessary. For otherwise, along the parameter curve,
χ3 decreases to zero before χ2 increases to −δ. In fact, according to the so-called isotopic
Franks’ Lemma (Lemma 2.5), in order to guarantee the above perturbation does not make the
periodic point go out of the continuation of the original homoclinic class, none of the Lya-
punov exponents is permitted to pass through zero. [BCDG] borrowed [BB] to obtain δ-weak
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contracting eigenvalues. In this paper, by directly perturbing a homoclinic tangency (Sec-
tions 3 and 4), we also give a sufficient condition for getting δ-weak contracting eigenvalues,
which is slightly better than [BB] when p has non-real eigenvalues.

THEOREM C. Let δ be a positive real number. Suppose p is a hyperbolic periodic

saddle of f ∈ Diff 1(M3) satisfying:

• p has non-real contracting eigenvalues satisfying χ2(p) + χ3(p) > log(1 − δ); and
• f exhibits a homoclinic tangency associated to p.

Then, there exist g arbitrarily C1 close to f and a hyperbolic saddle q of g , homoclinically
related to pg , having δ-weak contracting eigenvalues.

REMARK 1.2.

• When ind (p) = 1, replacing f by its inverse, we can give the symmetric version of
this theorem.

• According to its proof, this theorem is still valid when δ = 0 (which also follows from
[BCDG]). In this case, δ-weak should be read as arbitrarily weak. That is, for any
ε > 0, there exist g arbitrarily close to f and q ∈ �(pg ) admitting ε-weak contracting
eigenvalues.

When δ is positive, to get δ-weak contracting eigenvalues, our assumption on Lyapunov
exponents is a little weaker than that of [BCDG] which comes from [BB]. Indeed, the mixing
process of Lyapunov exponents in [BB] is obtained by induction on dimensions. In case of
planar dynamics, in a periodic orbit orb (q), once there exists some r ∈ orb (q) with small
angle θ between its two eigendirections, by composing a rotation in the tangent space at r with
size less than θ , one can mix the Lyapunov exponents of orb (q) (see [BDP, Lemma 3.2] for
instance). But in our perturbations, only rotating at a single point is not sufficient, we also need
additional perturbations on tangent spaces over many points in orb (q) with relatively large
angles. These points are so many that the number of them take a positive proportion in orb (q)

especially when q has a large period. The additional perturbations at the many points should
make some effect on the exponential growth of tangent vectors which assists the eigenvalues
condition of p, causing the weaker assumption of inequality than [BCDG]’s. The selection
of such periodic orbit heavily relies on the delicate constructions of the horseshoe model in
Section 4.

As mentioned before, the proof of Theorem C occupies the central position of this pa-
per. Independent of [BB], we adopt a different way which is somewhat geometric. Let Eu

(resp. Es) denote the unstable (resp. stable) subspace of a periodic point. Our proof involves
looking at the interplay between � (Es,Eu) and contracting rate of vectors in Es (shortly, Es-
rate). Roughly speaking, for a sequence of periodic saddles qn ∈ �(p), if � (Es(qn),E

u(qn))

decrease to zero more rapidly than Es(qn)-rate, then weak contracting eigenvalues can be

created by C1 small perturbations inside the homoclinic class. In fact, in order to apply the
isotopic Franks’ Lemma, we need to find a continuous path Ct (t ∈ [0, 1]) of matrices which
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connects the derivative of the original first return map and a matrix with weak contracting
eigenvalues. In general, finding such a path is not so difficult, while ensuring its hyper-
bolicity is much harder and more important. Our strategy is the following: Choose a path
Dgn(q) ◦ Ct without paying attention to its hyperbolicity for a while. Then, modify this path
by adding another matrix, say Dt , which aims to recover the expanding eigenvector. As a
consequence, the expanding eigenvalue survives all the time along the modified path, which
indicates that the weak eigenvalue we obtain must be contracting. Let us remark that although
it is necessary only in theoretic sense, the introduction of Dt is the main reason for assuming
χ2(p) + χ3(p) > log(1 − δ). In the foreseeable future, this assumption is difficult to be
removed, see [B, Conjecture 8].

This paper is organized as follows. In Section 2, through a brief review of some basic
facts and background of this topic, we summarize without proofs some basic properties as the
set-up of notation and terminology. In Section 3, we provide a sufficient condition for getting
weak contracting eigenvalues inside homoclinic classes by arbitrarily small perturbations.
Theorem C will be proved in Section 4 by building a horseshoe model near a homoclinic
tangency. Theorem A and Corollary B are proved in Section 5 where index change is shown
by using weak eigenvalues.

2. Preliminaries

Let f ∈ Diff 1(M) and p be a hyperbolic periodic point of f , denote by π(p) the period

of p. Suppose the eigenvalues of Df π(p)(p), counting with multiplicities, satisfy |λ1(p)| ≤
· · · ≤ |λs(p)| < 1 < |λs+1(p)| ≤ · · · ≤ |λd(p)| where d = dim M and s = ind (p),
then, λs(p) is called the central contracting eigenvalue. In particular, if |λs−1(p)| < |λs(p)|,
we say that λs(p) has multiplicity one. For any 1 ≤ i ≤ s, we say that Df π(p)(p) has i-
strong stable direction if |λi(p)| < |λi+1(p)|. In this case, one can define the i-strong stable
manifold of p, denoted by Wss

i (p), as the unique submanifold in the stable manifold Ws(p)

of p, which is tangent to the i-strong stable direction of Df π(p)(p). Similar definitions can
also be given for unstable eigenvalues.

A set is residual in Diff 1(M) if it can be written as a countable intersection of open and

dense subsets of Diff 1(M). In particular, residual sets of Diff 1(M) are dense. Throughout

the paper, we say that a property holds generically in Diff 1(M) if it is satisfied by diffeomor-

phisms contained in a residual subset of Diff 1(M).

Generically in Diff 1(M), homoclinic classes exhibit many good properties which are
similar to the basic sets in the spectral decomposition theorem of Axiom A diffeomorphisms.

For this reason, we will mainly focus on the dynamics of C1 diffeomorphisms restricted to
homoclinic classes. Recall that the homoclinic class of a hyperbolic periodic saddle p of f ,
denoted by H(p), is defined as the closure of transversal intersections of the stable and unsta-
ble manifolds of p. We can equivalently define H(p) as the closure of all hyperbolic periodic
saddles q homoclinically related to p (i.e. the stable manifold manifold of p transversally
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meets the unstable manifold of q and vice versa). Another sort of elementary dynamical
pieces which are closely related to homoclinic classes are chain recurrent classes. In gen-
eral, a homoclinic class is a proper subset of a chain recurrent class [BCGP]. However, it was

shown by Bonatti and Crovisier that as long as periodic points are involved, C1 generically,
these two notions coincide.

LEMMA 2.1 ([BC1]). Generically in Diff 1(M), every homoclinic class is a chain re-
current class; Equivalently, every chain recurrent class containing a periodic point p coincide
with the homoclinic class of p.

Recall that an ε-pseudo-orbit of f is a sequence xi ∈ M such that all the jumps
dist (f (xi), xi+1) are less than ε. A point x ∈ M is called chain recurrent if for every ε > 0,
there exists ε-pseudo orbit starting and ending at x. The chain recurrent class of x, denoted
by C(x), is the collection of all points y ∈ M such that there are pseudo orbits of arbitrarily
small jumps from x to y and from y to x. The following fact is straightforward: Suppose f

has a heterodimensional cycle associated to transitive hyperbolic sets � and �, then � and �

are contained in the same chain recurrent class of f .

DEFINITION 2.2. Let f ∈ Diff 1(M) and let � ⊂ M be a compact f -invariant subset.
A continuous splitting T�M = E ⊕ F of the tangent bundle over � is called dominated if it
is Df -invariant and there exists N ∈ N such that for all x ∈ �, one has

‖Df N(x)u‖
‖Df N(x)v‖ <

1

2
,

where u and v are any unit vectors in E and F respectively. The dimension of this dominated
splitting is defined as dim E.

Nowadays, homoclinic tangencies are known to be closely related to the absence of some
particular type of dominated splitting [W]. For the existence of robust tangencies, the follow-
ing criterion is quite useful.

LEMMA 2.3 ([BD3, Theorem 1.2]). Let M be a compact manifold with dim M ≥ 3.

There is a residual subset R of Diff 1(M) such that, for every f ∈ R and every periodic
saddle p of f such that

• H(p) has a periodic saddle q with ind (p) �= ind (q); and
• H(p) does not admit dominated splittings of dimension ind (p),

the saddle p belongs to a transitive hyperbolic set having a C1 robust homoclinic tangency.

As another kind of homoclinic bifurcation, heterodimensional cycles can be stabilized in
most cases (see also [BD1] for an earlier result):

LEMMA 2.4 ([BDK, Theorem 1]). Let f be a C1 diffeomorphism with a co-index one
heterodimensional cycle associated to periodic saddles p and q . Suppose that at least one of
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the homoclinic classes of these saddles is non-trivial. Then there exist an arbitrarily small
perturbation g of f and hyperbolic sets � � pg , � � qg such that g exhibits a robust
heterodimensional cycle associated to � and �.

Now, let us introduce the basic tool which will be used in our perturbation. Usually,
Franks’ Lemma ([F, Lemma 1.1]) is well known as a simple but helpful result which allows
us to realize linear perturbations of Df along a finite set of M by perturbing f itself in
an arbitrarily small neighbourhood of that finite set. However, this result has an inherent
disadvantage, especially when someone wants to perturb f along some periodic orbit with its
homoclinic (or heteroclinic) relation with another periodic point being kept. In other words,
unless additional assumptions are given (for instance, the homoclinic class is isolated), a
periodic point might escape the continuation of the original homoclinic class (resp. chain
recurrent classes). However, Gourmelon’s result gave a sufficient condition for controlling the
behaviour of stable/unstable manifolds. By applying this isotopic version of Franks’ Lemma,
we are allowed to give perturbations inside a homoclinic class.

LEMMA 2.5 (Isotopic Franks’ Lemma [G1, G2]). Given f ∈ Diff 1(M), let Q be a
periodic point of f with period n. Consider ε > 0 and i, j ∈ N. Suppose

(Al,t )l=0,...,n−1,t∈[0,1]

is a one-parameter family of linear cocycle in GL(R, d) satisfying

• Al,0 = Df (f l(Q)) for l = 0, . . . , n − 1;
• The radius of the curve, defined by

max
l=0,...,n−1

t∈[0,1]

{∥∥Al,t − Al,0
∥∥, ∥∥A−1

l,t − A−1
l,0

∥∥} ,

is less than ε;

• For any t ∈ [0, 1], the product
∏n−1

l=0 Al,t = An−1,t ◦ · · · ◦ A0,t admits i-strong stable
direction and j -strong unstable direction.

Then, for any neighbourhood V of orb f (Q) in M , there exists g ∈ Diff 1(M) such that

• dist C1(g, f ) < ε;
• g = f on orb f (Q) and on M \ V , in particular, Qg = Q;

• Dg(g l (Q)) = Al,1 for l = 0, . . . , n − 1;
• g preserves the local i-strong stable manifold of Q outside V and the local j -strong

unstable manifold outside V .

where the local i-strong stable manifold of Q outside V is the set of points contained in
Wss

i (f l(Q)) ∩ (M \ V ) whose positive iterations enter V without leaving it.

Since we will make a systematic application of this result, especially for preserving some
particular homoclinic or heteroclinic relations, the following version of Lemma 2.5 is conve-
nient.
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LEMMA 2.6. Under the hypothesis of Lemma 2.5, if we assume further that the i-
strong stable manifold Wss

i (Q) of Q intersect the unstable manifold of another periodic point
R of f , then the perturbed diffeomorphism g also satisfies Wss

i (Qg ) ∩ Wu(Rg ) �= ∅.

Note that the existence of Rg is guaranteed since orb f (R) is outside the support of the
perturbation. The proof of this lemma is similar in spirit to [S, Lemma 4.6], just noting that the
statement there includes the transversality of the intersection, but in the proof, transversality
is not used at all.

In the application of Lemma 2.6, we often give the perturbation of Df separately in
its invariant subspaces, say, E and F with E ⊕ F = T M . At this moment, we should
be very careful because the angle between E and F might cause some trouble. When this
angle is small, even if perturbations of Df |E and Df |F are both small, the total size of the
perturbation probably becomes pretty large. For subspaces E and F of Rd with E ∩ F =
{0}, let Angle (E, F ) ∈ [0, π/2] denote the Euclidean angle between E and F , and define
� (E, F ) ∈ [0,+∞] as tan Angle (E, F ). Obviously, when Angle (E, F ) is very small, these
two quantities become almost the same since limθ→0 θ/ tan θ = 1. The following lemma will
be frequently used when estimating the sizes of perturbations.

LEMMA 2.7 ([M, Lemma II.10]). Let Rd = E ⊕ F , and T : Rd → Rd is a linear
map having E and F as its invariant subspaces, then, the operator norm of T has an upper
bound:

‖T ‖ ≤ 1 + � (E, F )

� (E, F )

(∥∥T |E
∥∥+ ∥∥T |F

∥∥) .

3. Weak contracting eigenvalues

In this section, we give a sufficient condition for getting weak contracting eigenvalues
inside homoclinic classes, which will be used in the proof of Theorem C. Recall that the
index of a hyperbolic periodic point is defined as the dimension of its stable bundle and �(p)

denotes the set of hyperbolic saddles which are homoclinically related to p.

PROPOSITION 1. Let f ∈ Diff 1(M3) and a hyperbolic periodic point p of f with
index 2 be given. Suppose that there is a constant σ > 0 such that for any γ > 0 small,
there exist g ∈ Diff 1(M) γ -close to f and coinciding with f outside a neighbourhood U of
orb (p), a periodic point q ∈ �(pg ) of period n, and λ ∈ (0, 1) satisfying the following:

(i) λn < γ ;
(ii) Angle (Dgn(q)ξ, ξ) > σ ;

(iii) ‖Dgn|Es (q)‖ < γλn;
(iv) λn � (Es(q),Eu(q)) < γ ‖Dgn(q)ξ‖,

where ξ is the unit vector in the image of orthogonal projection of Eu(q) into Es(q). Then,
there exists a cγ -small C1 perturbation h of f , coinciding with f outside U and admitting
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(1 − λ)-weak contracting eigenvalues associated to q ∈ �(ph), where c > 0 is a constant
that only depends on f .

REMARK 3.0.1.

(1) If γ < 1, conditions (iii) and (iv) together imply that � (Es(q),Eu(q)) < γ .
(2) By replacing f by f −1, we obtain the symmetric version of Proposition 1 which pro-

vides arbitrarily weak expanding eigenvalues.
(3) The neighbourhood U of orb (p) in the statement will be specified in Section 4.
(4) We can require that the weak eigenvalue is real, central, and has multiplicity one. This

is because we have the following:

LEMMA 3.0.2 ([GY, Lemma 2.3]). For generic f in Diff 1(M) and any hyperbolic
periodic point p of f , if f has a periodic point q ∈ �(p) having an ε-weak eigenvalue, then
f has a periodic point p1 ∈ �(p) with an ε-weak eigenvalue, whose eigenvalues are all real.

Although it is stated as a property for C1 generic diffeomorphisms, this lemma is actually
a perturbation result. Moreover, by checking its proof, we see that if the weak eigenvalue in
the hypothesis is contracting (resp. expanding), then after the perturbation, one gets also
contracting (resp. expanding) weak eigenvalues. Once a real weak eigenvalue is obtained by
Lemma 3.0.2, which is associated to some q ∈ �(pg ), then an additional arbitrarily small
perturbation using the isotopic Franks’ Lemma will help us to split the eigenvalues such that
all of them have multiplicity one. This last perturbation still preserves the homoclinic relation
because the matrix keeps its hyperbolicity in the process.

Now, let us turn to the proof of Proposition 1. It suffices to consider the case that p is a
fixed point. The main idea is as follows: Firstly, we find a small perturbation g of f which
induces weak contracting eigenvalues by modifying [M, Lemma II.9]. Secondly, we create a
one-parameter family Ct (0 ≤ t ≤ 1) of matrices in GL(R, 3) which connects the identity
and the perturbation obtained in the previous step. But this isotopic perturbation cannot be
used directly, since the hyperbolicity might be destroyed until t arrives at its endpoint. To
avoid this happens, thirdly, we recover the unstable eigenvector by adding another isotopic
perturbation Dt before Ct . In this step, we will make use of the own dynamics in the 2-
dimensional subspace Es(q) to guarantee, that the additional perturbation Dt can be given
separately in two invariant subspaces which have a relatively large angle. This will help us to
control the size of the perturbation. Finally, we apply the isotopic Franks’ Lemma to the new
perturbation Dgn(q) ◦Ct ◦Dt of Dgn(q), obtaining the desired weak contracting eigenvalue.

3.1. A small perturbation. Given a hyperbolic fixed point of saddle type whose an-
gle is very small. Following Mañe [M], we construct a perturbation which induces the desired
eigenvalue.

LEMMA 3.1.1. Let H ∈ GL(R, 3) have stable index 2. Denote the stable (unstable)
subspace of H by Es (resp. Eu) and � (Es,Eu) by θ . If there is a constant μ ∈ (0, 1)
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such that ‖H |Es‖ < 1
2μ. Then, there exists a 6θ -perturbation H ′ of H which exhibits an

eigenvector with eigenvalue μ.

PROOF. We take an orthogonal coordinate chart {(Es)⊥, Es} of R3. Since Es is H -

invariant, we write H =
(

A 0
P B

)
in this chart. Here

A = (Q ◦ H)|(Es)⊥ ∈ GL(R, 1) = R \ {0} ,

B = H |Es ∈ GL(R, 2) ,

where Q is the orthogonal projection of R3 into (Es)⊥. Clearly, ‖A−1‖ = |A|−1 < 1 since
dim(Es)⊥ = 1. Note that A is a 1×1 invertible matrix which can also be treated as a non-zero
real number. For notational simplicity, in the following, the notation A can be read either as
a 1 × 1 matrix or as a real number. This do not cause any confusion because for the scalar
multiplication of a matrix, the real number and the matrix can change their position. For the
same reason, a real number μ will be identified as the scalar matrix μI . Define a linear map
L : (Es)⊥ → Es such that

Eu = graph(L) = {
v + Lv : v ∈ (Es)⊥

}
.

Thus θ = � (Es,Eu) = ‖L‖−1. Since Eu is H -invariant, we obtain LA = P + BL. Accord-

ing to the assumption that ‖B‖ ≤ 1
2μ < 1

2 , we have

‖L‖ ≤ ‖PA−1‖ + ‖BLA−1‖ ≤ ‖PA−1‖ + ‖B‖ · ‖L‖ ≤ ‖PA−1‖ + 1

2
‖L‖ ,

which implies ‖PA−1‖−1 ≤ 2‖L‖−1 = 2θ . Now, for (x, y) ∈ R×R2, consider the following
linear equation: (

A 0
P B

)(
I C

0 I

)(
x

y

)
= μ

(
x

y

)
(1)

where I is the identity matrix and the blocks of

(
I C

0 I

)
has the same sizes as those of H .

The definition of C will be clear later. This equation is equivalent to{
x = −(I − μA−1)−1

Cy (2)

y = (μ − B)−1P(I − (I − μA−1)−1)Cy . (3)

The inverse does make sense, because μ − B = μ(I − μ−1B) and by the assumption,

‖μ−1B‖ ≤ 1

2
, which implies that (μ − B) is invertible ([PdM, Lemma 2.4.2]). Notice that

I = (I − μA−1)(I − μA−1)−1 = (I − μA−1)−1 − μA−1(I − μA−1)−1 ,
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then (3) can be rewritten as

y = −μ(μ − B)−1PA−1(I − μA−1)−1Cy .

To solve (1), we take v ∈ (Es)⊥ satisfying ‖v‖ = ‖PA−1‖−1 and ‖PA−1v‖ = 1. Let

y = μ(μ − B)−1PA−1v ∈ Es .

By taking norms of the equality μPA−1v = (μ − B)y, we have

μ = ‖μPA−1v‖ = ‖(μ − B)y‖ ≤ 3

2
μ‖y‖ ,

which gives ‖y‖ ≥ 2

3
. Let w = −(I − μA−1)v, we conclude that ‖w‖ ≤ 2‖v‖. Define

C as a linear map from Es to (Es)⊥ satisfying Cy = w and ‖C‖ = ‖w‖
‖y‖ . By the previous

estimations,

‖C‖ ≤ 2‖v‖
2/3

= 3‖v‖ = 3‖PA−1‖−1 ≤ 6

‖L‖ = 6θ .

It is easy to verify that for C defined as above,(
x

y

)
=
(

v

μ(μ − B)−1PA−1v

)

is exactly the solution of (1), hence H

(
I C

0 I

)
is the desired perturbation of H . The proof

is complete now.

3.2. Recovering the unstable subspace. As we explained in the beginning of Sec-

tion 3, for g ∈ Diff 1(M3) which satisfies the assumption of Proposition 1 for sufficiently
small γ , since the hypothesis of Lemma 3.1.1 is satisfied (take μ = λn for some λ ∈ (0, 1)

which is sufficiently close to 1), we want to consider the isotopic perturbation (Al,t ) l=0,...,n−1
t∈[0,1]

of Dg on orb g(q) which is defined as follows: (C is the matrix obtained in the proof of
Lemma 3.1.1)

• A0,t = Dg(q) ◦ Ct , where Ct =
(

I tC

0 I

)
;

• Al,t = Dg(g l (q)) for l = 1, . . . , n − 1.

As a consequence of Lemma 3.1.1,
∏n−1

l=0 Al,1 admits an eigenvector with eigenvalue λn as we
desired, hence we can apply Lemma 2.6 to this one-parameter family. However, in general,

when t moves from 0 to 1, the composition
∏n−1

l=0 Al,t (although it begins as a hyperbolic

matrix
∏n−1

l=0 Al,0 = Dgn(q)) might lose its hyperbolicity before t arrives at 1, which will
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destroy the established plan. To overcome this obstacle, our strategy is to introduce another
perturbation Dt which is used for ensuring the hyperbolicity of the perturbed derivatives by
recovering its expanding eigenvector for every t ∈ [0, 1]. Using the same notations as in the

proof of Lemma 3.1.1, in particular, H =
(

A 0
P B

)
is a 3× 3 hyperbolic matrix of index 2

whose stable and unstable subspace are Es and Eu. Here, A = (Q ◦ H)|(Es)⊥ ∈ GL(R, 1),

B = H |Es ∈ GL(R, 2) where Q is the orthogonal projection of R3 into (Es)⊥, L : (Es)⊥ →
Es is a linear map with graph(L) = Eu. For every t ∈ [0, 1], Ct =

(
I tC

0 I

)
is a

perturbation of identity such that H ◦C1 exhibits an eigenvector (x, y) with eigenvalue μ. We
will show the existence of a recovering matrix Dt which is sufficiently close to identity and
satisfies the following conditions:

For every t ∈ [0, 1],(D1)

Dt

(
v

Lv

)
=
(

v − tCLv

Lv

)
;

D1

(
x

y

)
=
(

x

y

)
.(D2)

First, let us observe a geometric fact. Denote by G the 2-dimensional plane spanned
by (v, 0) and (0, Lv). Recall that ξ ∈ Es is the unit vector in the image of the orthogonal
projection of Eu into Es .

LEMMA 3.2.1. If Angle (Hξ, ξ) > 0, then (x, y) /∈ G.

PROOF. Suppose by contradiction that there are b1, b2 ∈ R satisfying(
v

μ(μ − B)−1PA−1v

)
=
(

x

y

)
= b1

(
v

0

)
+ b2

(
0

Lv

)
.

As a consequence,

μ(μ − B)−1PA−1v = b2Lv .

Combining Lv = PA−1v+BLA−1v, and noticing that A is actually a real number, we obtain

μ(μ − B)−1(Lv − BLA−1v) = b2Lv

μLv − μA−1BLv = b2(μ − B)Lv ,

(1 − b2)μLv = (μA−1 − b2)BLv .

But according to the assumption, Lv and BLv are linearly independent, we conclude

1 = b2 = μA−1 < 1 ,
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which is absurd. The lemma is proved.

Let θ = � (Es,Eu) as before. Now, we are ready to construct Dt .

LEMMA 3.2.2. Suppose there is a σ > 0 such that for any μ > 0 small enough and
any ε > 0 small enough, the following conditions hold:

(a) Angle (Hξ, ξ) > σ ;
(b) ‖H |Es ‖ < με;

(c)
600μθ

‖Hξ‖ < ε.

Then, there exists a one-parameter family of matrices Dt ∈ GL(R, 3) (0 ≤ t ≤ 1) satisfying
(D1) and (D2) such that Dt is ε-close to identity for all t ∈ [0, 1].

PROOF. According to Lemma 3.2.1, we will take F := span{(x, y)} and G as two
invariant subspaces of Dt and give the definition of Dt (0 ≤ t ≤ 1) in F and G separately.

• Define Dt |F as the identity map;
• Define Dt |G as a rotation of the form (under some 2-dimensional standard orthogonal

coordinate chart of G)

Dt |G = ρt

(
cos ωt − sin ωt

sin ωt cos ωt

)

such that

Dt

(
v

Lv

)
=
(

v − tCLv

Lv

)
,

where

ρt =
∥∥∥∥
(

v − tCLv

Lv

)∥∥∥∥
/∥∥∥∥

(
v

Lv

)∥∥∥∥ and

ωt = Angle

((
v

Lv

)
,

(
v − tCLv

Lv

))
.

Obviously, (D1) and (D2) follow directly from this definition, it remains to estimate
the distance between Dt and the identity map. In fact, since ‖C‖ ≤ 6θ by the proof of
Lemma 3.1.1,

ωt ≤ ω1 ≤ ‖v‖ + ‖CLv‖
‖Lv‖ ≤ 2θ + ‖C‖ ≤ 12θ .

Moreover,

ρ1 − 1 ≤
√‖v − CLv‖2 + ‖Lv‖2

‖Lv‖ − 1
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= ‖v − CLv‖2

‖Lv‖(√‖v − CLv‖2 + ‖Lv‖2 + ‖Lv‖)

≤ (‖v‖ + 6‖v‖)2

‖Lv‖(√‖Lv‖2 + ‖Lv‖) = 49

2

( ‖v‖
‖Lv‖

)2

≤ 49θ2 ,

hence

ρt − 1 ≤ ρ1 − 1 ≤ θ

whenever θ is sufficiently small. As a conclusion,

‖(Dt − id)|G‖ ≤ ‖(D1 − id)|G‖ =
∥∥∥∥ρ1

(
cos ω1 − sin ω1

sin ω1 cos ω1

)
− ρ1 · ρ−1

1

∥∥∥∥
≤ ρ1

(∥∥∥∥
(

cos ω1 − sin ω1

sin ω1 cos ω1

)
− id

∥∥∥∥+ ∥∥id − ρ−1
1

∥∥)

≤ 2ρ1ω1 + (ρ1 − 1) ≤ 24θ(1 + θ) + θ < 50θ .

Let β = � (F,G), we will estimate this angle in the triangle spanned by (v, Lv) and (x, y).
Let

�n :=
(

x

y

)
−
(

v

Lv

)
=
(

v

μ(μ − B)−1PA−1v

)
−
(

v

Lv

)

=
(

0
μ(μ − B)−1PA−1v − Lv

)

which is parallel to Es(q). Moreover, notice that

μ(μ − B)−1PA−1v − Lv = μ(μ − B)−1(Lv − BLA−1v) − (μ − B)−1(μ − B)Lv

= (μ − B)−1(μLv − μA−1BLv − μLv + BLv)

= μ−1(I − μ−1B)−1(I − μA−1)BLv ,

combining the assumption (b) and the fact that μ is sufficiently small, we can require that
μ−1B and μA−1 are sufficiently close to zero in advance. Since σ is independent of μ and ε,
the assumption (a) gives

Angle (�n,G) ≥ 1

2
Angle (BLv,Lv) ≥ σ

2
.

Moreover, by assumption (b),

‖�n‖ = ‖μ−1(I − μ−1B)−1(I − μA−1)BLv‖ ∈
[‖BLv‖

4μ
,

4‖BLv‖
μ

]
.

Intuitively, we see that �n has stood in G (see Figure 1). Again, since σ is uniform for

every ε > 0 small, we are allowed to estimate β using
‖�n‖

‖Lv‖ , up to a constant multiple, which
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FIGURE 1. Perturbations of Dg at TqM

can be assumed equal to 1 for simplicity. Thus, using (b) again, we have

‖BLv‖
4μ‖Lv‖ ≤ β ≤ 4‖BLv‖

μ‖Lv‖ ≤ 4‖B‖
μ

≤ 2 .

Thus, by Lemma 2.7,

‖Dt − id‖ ≤ ‖D1 − id‖ ≤ 1 + β

β

( ‖(D1 − id)|F ‖ + ‖(D1 − id)|G‖ )
<

1 + β

β

(
0 + 50θ

) ≤ 150θ

β
≤ 600μθ

‖Lv‖
‖BLv‖ ≤ ε ,

where the last inequality comes from (c). Recall that ξ is the unit vector in Lv direction.
Now, we complete showing the existence of the parameter curve Dt (0 ≤ t ≤ 1) which

is close to identity and satisfies (D1) and (D2). Using this Dt , let us finish the proof of
Proposition 1.
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3.3. Proof of Proposition 1. Under the hypothesis of Proposition 1 with a fixed point
p, for any fixed γ > 0 and a neighbourhood U of p, we are going to construct a cγ -
perturbation h of f having a periodic point homoclinically related to ph with (1 − λ)-weak

contracting eigenvalues. First, by assumption, we are allowed to select g ∈ Diff 1(M) coincid-
ing with f outside a neighbourhood U of p, a saddle q ∈ �(pg ) of period n and λ satisfying
the following conditions:

λn < γ ;(K0)

dist C1(g, f ) < γ ;(K1)

Angle (Dgn(q)ξ, ξ) ≥ σ ,(K2)

‖Dgn|Es (q)‖ < γλn ;(K3)

max

{
6θq,

600λnθq

‖Dgn(q)ξ‖
}

< γ ,(K4)

where θq = � (Es(q),Eu(q)).

By letting μ = λn, one easily verifies that the assumption of Lemmas 3.1.1 and 3.2.2
are satisfied by H = Dgn(q). Thus, we obtain one-parameter families of matrices Ct and Dt

(0 ≤ t ≤ 1) respectively. Consider the following parameter curves (Al,t ) l=0,...,n−1
t∈[0,1]

:

• A0,t = Dg(q) ◦ Ct ◦ Dt ;
• Al,t = Dg(g l (q)) (l = 1, . . . , n − 1).

Clearly, Al,0 = Dg(g l (q)) for l = 0, . . . , n− 1. To estimate the radius of the path, since

‖C±1
1 − id‖ ≤ ‖C‖ ≤ 6θq ≤ γ ≤ 1

gives ‖C1‖ ≤ 2, as a consequence,

max
l=0,...,n−1

t∈[0,1]

{‖Al,t − Al,0‖
}

= max
t∈[0,1]

‖A0,t − A0,0‖

= max
t∈[0,1]

‖Dg(q) ◦ Ct ◦ Dt − Dg(q)‖ ≤ ‖Dg(q)‖ · max
t∈[0,1]

‖Ct ◦ Dt − id‖

≤ D(U) max
t∈[0,1]

‖Ct‖
(‖Dt − id‖ + ‖id − C−1

t ‖) < 2D(U)(γ + γ ) = 4D(U)γ ,

where

D(U) := sup{‖Df (x)‖ + ‖Df −1(x)‖ : x ∈ U} + 1 .
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In fact, since M is compact, D(U) is a finite number. Moreover, for any g sufficiently C1

close to f coinciding with f outside U , we have

sup{‖Dg(x)‖ + ‖Dg−1(x)‖ : x ∈ U} ≤ D(U) .

Similar estimation shows that

max
l=0,...,n−1

t∈[0,1]

{‖A−1
l,t − A−1

l,0‖} < 4D(U)γ .

Hence, we conclude that the radius of the path is less than 4D(U)γ .
Immediately, we have two cases: either

(I)
∏n−1

l=0 Al,t keeps its hyperbolicity during all the time when t varies from 0 to 1; or

(II)
∏n−1

l=0 Al,t loses its hyperbolicity for the first time at some t0 ∈ (0, 1].
If case (I) occurs, applying Lemma 2.6 to orb g (q) and (Al,t ) l=0,...,n−1

t∈[0,1]
, we get a 4D(U)γ -

perturbation h of g (as a consequence, dist C1(h, f ) ≤ dist C1(h, g) + dist C1(g, f ) <

(4D(U) + 1)γ by (K1)), satisfying

• hl(q) = g l (q) for l = 0, . . . , n − 1;
• q is homoclinically related to ph;

• Dh(hl(q)) = Al,1 for l = 0, . . . , n − 1.

Since we also have, by (D2),

Dhn(q)

(
x

y

)
= Dgn(q) ◦ C1 ◦ D1

(
x

y

)
= Dgn(q) ◦ C1

(
x

y

)

=
(

A 0
P B

)(
I C

0 I

)(
x

y

)
= λn

(
x

y

)
,

Dhn(q) admits a contracting eigenvalue λn. In other words, we have found a (4D(U) + 1)γ -
perturbation h of f , having (1 − λ)-weak contracting eigenvalues associated to q ∈ �(ph).

On the other hand, if case (II) occurs,
∏n−1

l=0 Al,t is hyperbolic for all t ∈ [0, t0). Then
we cut the path (Al,t ) just before t arrives at t0 such that its end point admits an eigenvalue
as weak as we need (in particular, weaker than 1 − λ). Applying Lemma 2.6 to the tail-cut
curve, we also obtain a (4D(U) + 1)γ -perturbation h of f , having (1 − λ)-weak eigenvalues
associated to q ∈ �(ph). By our construction, this weak eigenvalue must be contracting. In
fact, recalling (D1), for every t ∈ [0, 1], we have(

n−1∏
l=0

Al,t

)(
v

Lv

)

= Dgn(q) ◦ Ct ◦ Dt

(
v

Lv

)
= Dgn(q) ◦ Ct

(
v − tCLv

Lv

)
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= Dgn(q)

(
I tC

0 I

)(
v − tCLv

Lv

)
= Dgn(q)

(
v

Lv

)
= λu

(
v

Lv

)

where λu is the expanding eigenvalue of Dgn(q) associated to Eu(q). In other words, (v, Lv)

is an expanding eigenvector of
∏n−1

l=0 Al,t for all t ∈ [0, 1], which indicates, when t increases

from 0 to 1, that
∏n−1

l=0 Al,t loses its hyperbolicity for the first time by the absolute value of
one of its contracting eigenvalues passes through 1 from the left to the right. Therefore, the
weak eigenvalue obtained in case (II) should be contracting. Now, the proof of Proposition 1
is complete.

4. A horseshoe model: Proof of Theorem C

Theorem C is a straightforward consequence of Proposition 1 and the following propo-
sition. Recall that χ1(p) ≤ χ2(p) ≤ χ3(p) are the Lyapunov exponents of p.

PROPOSITION 2. For any δ > 0, suppose p is a hyperbolic periodic saddle of f ∈
Diff 1(M3) satisfying:

• p has non-real contracting eigenvalues and χ2(p) + χ3(p) > log(1 − δ); and
• f exhibits a homoclinic tangency associated to p.

Then, there is a constant σ > 0 such that for any γ > 0 and any neighbourhood U of

orb (p), there exist g ∈ Diff 1(M) γ -close to f coinciding with f outside U , a periodic point
q ∈ �(pg ) of period n, and λ ∈ (0, 1) satisfying (i)–(iv) as in the hypothesis of Proposition 1.
Moreover,

• If χ2(p) + χ3(p) ≥ 0, we have λ → 1− when γ → 0;
• If 0 > χ2(p) + χ3(p) > log(1 − δ), we have λ = 1 − δ for any γ > 0 small enough.

To prove this proposition, we can always assume that p is a fixed point of f . If not, it is

enough to consider f π(p) instead of f .
Let us give the outline of the proof. First, by choosing an orthogonal chart in a sufficiently

small neighbourhood Up of p in M , up to an arbitrarily small perturbation, the dynamics of f

in this neighbourhood can be identified with that of the linear map Df (p) (Section 4.1). Fix a
homoclinic point x of p in Up. Then, for any ε > 0, we are going to construct another periodic
point q of some ε-perturbation g of f . Accordingly, by shrinking the original neighbourhood
Up into a proper subset of it, we find that some iteration of g exhibits a topological horseshoe
� inside that subset (Section 4.2). By constructing a cone field, we prove in Section 4.3 that �

is in fact a hyperbolic horseshoe whose dynamics is conjugate to a full shift of two symbols.
This part is relatively standard. Readers can refer [PT, Section 2.3] for a two dimensional
model although we are dealing with a three dimensional one. Next, we select a particular
periodic point q in � (Section 4.4) and give appropriate 2ε-perturbations of g (still denoted
by g) along its orbit at which Es and Eu have large angles (Section 4.5). Thus, for any ε > 0
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fixed, we obtain a 3ε-perturbation g of f and a periodic point q ∈ �(pg ). Finally, we can
check that the conclusion of Proposition 2 is satisfied by this perturbation (Section 4.6).

4.1. Some Preparations. Under the assumption of Proposition 2, by an arbitrarily

small C1 perturbation of f (the readers can refer the proof of [F, Lemma 1.1]), there exists a

local coordinate chart φ : Up → R
3 ∼= C × R defined in a small neighbourhood Up ⊂ M of

p satisfying the following:

(A1) φ(Up) = {z ∈ C : |z| < 1} × (−1, 1) =: Bs × Bu =: B;
(A2) φ(p) = (0, 0) ∈ B;
(A3) Bs ⊂ φ(Ws

loc(p)) and Bu ⊂ φ(Wu
loc(p));

(A4) There exists x = (z, 0) ∈ B at which φ(Ws(p)) intersects φ(Wu(p)) non-
transversally;

(A5) φf φ−1 defined on B acts as the linear transformation Df (p), that is, for any (z, y) ∈ B,
we have φf φ−1(z, y) = (μsz, μuy) where μs and μu denote the eigenvalues of p

corresponding to χ2(p) and χ3(p) respectively;

(A6) There exists T ∈ N such that φ−1(x) /∈ f T −1(Up) but φ−1(x) ∈ f T (Up). By replacing

x if necessary, we can also assume φ−1(x) /∈ f j (Up) for j = 1, . . . , T −1. We assume

f T which is defined in a small neighbourhood of f −T (φ−1(x)) is affine and call it
transition map ([BDPR, Lemma 3.2]).

(From now on, points and vectors in Bs will be identified with complex numbers.) It is worth
pointing out that (A5) can be obtained by an arbitrarily small perturbation as long as Up is
taken small enough. For this Up, define

D(φ,Up) := sup
{‖D(φf φ−1)(x)‖ + ‖D(φf −1φ−1)(x)‖ : x ∈ φ(Up)

}+ 1 < +∞ .

Since φ is a rescaling map, there is C1 > 0 such that

D(Up) := sup
{‖Df (w)‖ + ‖Df −1(w)‖ : w ∈ Up

}+ 1 ≤ C1D(φ,Up) .

Moreover, there is C2 > 0 such that for any g sufficiently C1 close to f , we have

sup
{‖Dg(w)‖ + ‖Dg−1(w)‖ : w ∈ M

} ≤ C2D(Up) ≤ C1C2D(φ,Up) .

In the following, for notational simplicity, TxW
u(p) should be read as the tangent space of

Wu(p) at φ−1(x) and the action of φf φ−1 in this coordinate chart will be written directly as

f . We write D = C1C2D(φ,Up) and also after identifying φf φ−1 with f in this coordinate

chart, we still regard D as an upper bound of sup{‖Dg(w)‖ + ‖Dg−1(w)‖ : w ∈ M} for any
g near f . This upper bound will be frequently used in this section.

Before constructing the horseshoe, as preparations, let us fix some important constants.

LEMMA 4.1.1. If χ2(p)+χ3(p) > log(1−δ), then, for any ε > 0, there are constants
λ ∈ (0, 1) and κ > 2 such that the following inequalities hold:∣∣μu(μs)κ−1

∣∣ < 1 . (4)
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0 < λκ <
∣∣μu(μs)κ−1

∣∣ . (5)

∣∣μs(μu)κ−1
∣∣ > 1 . (6)

λκ >
(

1 − ε

D

)κ−2 ∣∣μu(μs)κ−1
∣∣ . (7)

Recall that D ≥ sup{‖Dg(x)‖ + ‖Dg−1(x)‖ : x ∈ M} for every g near f .

PROOF. For convenience, two cases are considered in separated ways: (Note that the
case of χ2(p) + χ3(p) = 0 can be dealt by using a limit process. That is, by selecting a
sequence δk → 0+, consider a sequence fk → f with 0 > χ2(pk) + χ3(pk) > log(1 − δk).
Then, it suffices to replace f by fk for sufficiently large k in the following argument).

CASE (I): χ2(p) + χ3(p) > 0. For ε > 0 fixed before, choose λ = λ(ε) ∈ (0, 1)

sufficiently close to 1, such that

log |μs | − log |μu| + 2 log
(
1 − ε

D

)
log |μs | + log

(
1 − ε

D

)− log λ
< 1 − log |μu|

log |μs | .

This is possible because the above inequality is equivalent to

log |μs |
(

log |μs | − log |μu| + 2 log
(

1 − ε

D

))
< (log |μs | − log |μu|)

(
log |μs | + log

(
1 − ε

D

)
− log λ

)
,

2 log |μs | log
(

1 − ε

D

)
< (log |μs | − log |μu|)

(
log

(
1 − ε

D

)
− log λ

)
,

log |μsμu| log
(

1 − ε

D

)
< log λ log

∣∣∣∣μu

μs

∣∣∣∣ .

By the assumption |μsμu| > 1, it suffices to choose λ ∈ (0, 1) sufficiently close to 1. Note
that λ(ε) → 1− when ε → 0. Next, select κ ∈ R such that

1 − log |μu|
log |μs | < κ <

log |μs | − log |μu|
log |μs | − log λ

.

This definition does make sense because it is easy to see

1 − log |μu|
log |μs | <

log |μs | − log |μu|
log |μs | − log λ

⇐⇒ |μs | < λ < 1 .

The choice of κ provides us two inequalities (4) and (5).

Moreover, since |μsμu| > 1 gives − log |μu|
log |μs | > 1, we know κ > 2. Thus

|μs(μu)κ−1| > |μsμu| > 1 ,
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which is (6). Besides, since

κ > 1 − log |μu|
log |μs | >

log |μs | − log |μu| + 2 log(1 − ε
D

)

log |μs | + log(1 − ε
D

) − log λ
,

we also obtain (7).
CASE (II): 0 > χ2(p) + χ3(p) > log(1 − δ). For ε > 0 fixed before, let λ = 1 − δ.

Note that in contrast with the previous case, here, λ does not depend on ε. Thus, 0 > χ2(p)+
χ3(p) > log(1 − δ) can be rewritten as 1 > |μsμu| > λ. Moreover, we can always assume
|μs | < λ, for otherwise, p itself has δ-weak contacting eigenvalues (recall that p is a fixed
point) and there is nothing to prove. By the choice of λ, for ε > 0 small enough, we have

1 − log |μs |
log |μu| <

log |μs | − log |μu| + 2 log(1 − ε
D

)

log |μs | + log(1 − ε
D

) − log λ
.

This is because, for ε > 0 small enough, the above inequality is equivalent to

log |μsμu| log

∣∣∣∣μu

μs

∣∣∣∣ > log λ log

∣∣∣∣μu

μs

∣∣∣∣+ log |μsμu| log
(

1 − ε

D

)
,

but |μsμu| > λ, thus it suffice to shrink ε if necessary. Next, select κ ∈ R satisfying

log |μs | − log |μu| + 2 log(1 − ε
D

)

log |μs | + log(1 − ε
D

) − log λ
< κ <

log |μu| − log |μs |
log λ − log |μs | .

κ is well-defined since

log |μs | − log |μu| + 2 log(1 − ε
D

)

log |μs | + log(1 − ε
D

) − log λ
<

log |μu| − log |μs |
log λ − log |μs | ⇐⇒ |μsμu| > λ2 .

The choice of κ provides inequalities (5) and (7).
Moreover,

κ >
log |μs | − log |μu| + 2 log(1 − ε

D
)

log |μs | + log(1 − ε
D

) − log λ
> 1 − log |μs |

log |μu|
gives (6).

Since |μsμu| < 1 as we assumed in this case, κ > 1 − log |μs |
log |μu| > 2, which implies (4).

Therefore, we still have a constant κ > 2 satisfying completely the same inequalities
(4)–(7) as in Case (I). The proof of Lemma 4.1.1 is complete.

It should be pointed out that as long as these inequalities are obtained, the following
constructions are fit for both Case (I) and Case (II). The only difference is, λ(ε) → 1 − (ε →
0) when |μsμu| > 1 while λ = 1 − δ does not depend on ε when 1 > |μsμu| > 1 − δ.

From now on, let us fix an ε > 0 sufficiently small.
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4.2. Construction of the topological horseshoe. For any θ ∈ (0, ε), by an ε-small

perturbation of f near f −1(x), we get g such that the above facts (A1)–(A6) still hold for g
except (A4), which becomes

(A4’) x = (z, 0) ∈ B is a transversal homoclinic point of pg = p with

Angle (TxW
s(p), TxWu(p)) = θ.

In fact, this perturbation can be obtained as follows. Fix a small neighbourhood V of x.
Consider {e1, e2, e3} as the coordinate basis of TxM where

Es(x) = TxWs(p) = span{e1, e2} ;
Eu(x) = TxWu(p) = span{e2} .

Moreover, by changing the length of e3, we can require that ‖e3‖ = θ‖e2‖. Let L : TxM →
TxM be a linear map satisfying

• Le2 = e3;
• L = 0 in span{e1, e3};
• ‖L‖ = ‖e3‖

‖e2‖ = θ .

By applying the Franks’ Lemma to f at x, we obtain g with dist C1(f, g) ≤ ε such that

Dg(x) = (id + L) ◦ Df (x) .

It can be immediately checked that (A4’) holds for g . Moreover, g = f outside V .
Now, we are ready to construct the horseshoe. Define N = N(θ) ∈ R by∣∣∣∣μu

μs

∣∣∣∣
N

θ = 1 .

Clearly, N → ∞ when θ → 0. For some iteration of g , we are going to build a horseshoe
inside B, but notice that the above perturbation from f to g only affects the angle between
TxWs(p) and TxWu(p) which is in general not sufficient to guarantee that gT (B) passes
through B from its top to the bottom. Therefore, we need to cut B to get some subset with
smaller height. To be more precise, define

Bθ
H = Bs ×

(
1

|μu|[κN] B
u

)
= {z ∈ C : |z| < 1} ×

(
− 1

|μu|[κN] ,
1

|μu|[κN]

)
.

Here and subsequently, for s ∈ R, let [s] denote the smallest integer that is larger than s. (Note

that this notation is different from the usual one.) When θ → 0, the height of Bθ
H , denoted by

h(Bθ
H ), decreases to zero, but by inequality (6), we have

lim
θ→0

θ

h(Bθ
H )

= lim
N→∞

(∣∣∣∣μs

μu

∣∣∣∣
N

|μu|[κN]
)

≥ lim
N→∞

∣∣∣μs(μu)κ−1
∣∣∣N = ∞ ,
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FIGURE 2. A perturbation g of f

which shows that h(Bθ
H ) decreases more rapidly than θ . Therefore, by the local lineariza-

tion property, we can always assume that the connected component of gT ({0} × Bu) ∩ Bθ
H

containing x is a 1-dimensional curve C1-close to TxW
u(p) whose boundary is contained

in Bs × ∂

(
1

|μu|[κN] B
u

)
. Briefly, we say that gT ({0} × Bu) passes through Bθ

H along Bu-

direction. By continuity, we have:

FACT 4.2.1. If Ds ⊂ Bs is a disk centered at 0 ∈ Bs whose radius is sufficiently

small, then gT (Ds × Bu) passes through Bθ
H along Bu-direction. That is, for each y ∈ Ds ,

the leaf gT ({y} × Bu) passes through Bθ
H along Bu-direction.

Symmetrically, let

Bθ
V = (|μs |[κN]Bs

)× Bu =
{

z ∈ C : |z| < |μs |[κN]}× (−1, 1) .

When θ → 0, the width of Bθ
V , denoted by v(Bθ

V ), decreases to zero. Moreover, since T
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is independent of θ , there exists a constant cT ≥ 1 which only depends on T and a fixed
neighbourhood of f , such that

Angle (Tg−T (x)W
s(p), Tg−T (x)W

u(p)) =: � ∈ [c−1
T θ, cT θ ] . (8)

As above, by inequality (4), we have

lim
θ→0

�

v(Bθ
V )

≥ lim
θ→0

c−1
T θ

v(Bθ
V )

= lim
N→∞

(
c−1
T

|μs |[κN]

∣∣∣∣μs

μu

∣∣∣∣
N
)

≥ lim
N→∞ c−1

T

(
1

|μu(μs)κ−1|
)N

= ∞ ,

which shows that v(Bθ
V ) decreases to zero faster than Angle (Tg−T (x)W

s(p), Tg−T (x)W
u(p)).

Hence by an arbitrarily small perturbation, we can assume the connected component of

g−T (Bs × {0}) ∩ Bθ
V containing g−T (x) is a 2-dimensional disk whose boundary is con-

tained in ∂(|μs |[κN]Bs) × Bu. Briefly, we say that g−T (Bs × {0}) passes through Bθ
V along

Bs -direction.
If θ > 0 is very small, the above construction shows the existence of a topological

horseshoe of g [κN]+T inside Bθ
H . In fact,

�θ
H :=

+∞⋂
n=−∞

g([κN]+T )n(Bθ
H )

is a g [κN]+T -invariant subset, on which g [κN]+T is semi-conjugate to a full shift of two sym-
bols (see [KY] for instance).

4.3. Hyperbolicity of the horseshoe. By using the cone field criterion (see [BS, Sec-

tion 5.4] for instance), in this subsection, we will prove that �θ
H is actually a hyperbolic

horseshoe.
To see this, notice that g [κN]+T (Bθ

H ) = gT (Bθ
V ), thus, when θ is small, accord-

ing to Fact 4.2.1, there are two connected components of g [κN]+T (Bθ
H ) ∩ Bθ

H , contain-

ing p and x respectively, both of them pass through Bθ
H along Bu-direction. As a result,

g−([κN]+T )(Bθ
H ) ∩ Bθ

H has another two components which pass through Bθ
H along Bs -

direction. Therefore, Bθ
H ∩ g [κN]+T (Bθ

H ) ∩ g−([κN]+T )(Bθ
H ) has four components, three

of which contain p, x, g−([κN]+T )(x), respectively. We denote these three components by

comp(p), comp(x), comp(g−([κN]+T )(x)) and the other one by comp(�). Let us define an

unstable cone field on �θ
H as follows:

(UC1) For every w ∈ comp(p) ∪ comp(g−([κN]+T )(x)), let Cu
w(1) = {(z, y) ∈ TwM : |z| ≤

|y|};
(UC2) For every w ∈ comp(x) ∪ comp(�), let Cu

w

(
4

3θ

)
=
{
(z, y) ∈ TwM : |z| ≤ 4

3θ
|y|
}

.

In order to define a stable cone field, for convenience, we consider Bθ
V instead of Bθ

H . Simi-

larly as before, since g−([κN]+T )(Bθ
V ) = g−T (Bθ

H ), when θ is small, there are two connected
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components of g−([κN]+T )(Bθ
V ) ∩ Bθ

V , both of them pass through Bθ
V along Bs -direction. As

a result, g [κN]+T (Bθ
V ) ∩ Bθ

V has another two components which pass through Bθ
V along Bu-

direction. We denote the four connected components of Bθ
V ∩g [κN]+T (Bθ

V )∩g−([κN]+T )(Bθ
V )

by Comp(p), Comp(g−T (x)), Comp(g [κN](x)) and Comp(�), where the first three contains

p, g−T (x) and g [κN](x), respectively. Define a stable cone field on �θ
V as the following:

(SC1) For every w ∈ Comp(p)∪ Comp(g [κN](x)), let Cs
w(1) = {(z, y) ∈ TwM : |y| ≤ |z|};

(SC2) For every w ∈ Comp(g−T (x)) ∪ Comp(�), let Cs
w

( 4
3�

) = {
(z, y) ∈ TwM : |y| ≤

4
3�

|z|}.
Here, we gave the definition of unstable cone field on Bθ

H while stable cone field on Bθ
V .

Indeed, it does not matter because g [κN](Bθ
H ) = Bθ

V , which implies

�θ
V =

+∞⋂
n=−∞

g([κN]+T )n(Bθ
V ) =

+∞⋂
n=−∞

g([κN]+T )n+[κN](Bθ
H )

=
+∞⋂

n=−∞
g([κN]+T )n−T (Bθ

H ) = g−T

( +∞⋂
n=−∞

g([κN]+T )n(Bθ
H )

)
= g−T (�θ

H ) .

Thus �θ
V and �θ

H only differ by some fixed number of iterations of g . If we can show that

Cs
w is a stable cone field on �θ

V , by defining Es(w) = ∩∞
n=0Dg−([κN]+T )n(Cs

g ([κN]+T )n(w)
)

for every w ∈ �θ
V , it follows that gT (Es(g−T (w))) is the stable bundle for every w ∈ �θ

H .

In other words, to prove the hyperbolicity of �θ
H (or �θ

V ), it suffices to show that Cu
w is an

unstable cone field on �θ
H and Cs

w is a stable cone field on �θ
V .

LEMMA 4.3.1 (Uniform invariance). For every θ > 0 sufficiently small,

(1) Dg [κN]+T (w)(Cu
w(·)) ⊂ Cu

g [κN]+T (w)
( 6

7 ·) for every w ∈ �θ
H ;

(2) Dg−([κN]+T )(w)(Cs
w(·)) ⊂ Cs

g−([κN]+T )(w)
( 6

7 ·) for every w ∈ �θ
V .

PROOF. For convenience, we define the H-slope (V-slope) of a vector v = (z, y) ∈
Bs × Bu by |z|/|y| (resp. |y|/|z|). Thus the definition of unstable (stable) cone field can be
easily rewritten using the notion of H-slope (resp. V-slope).

(1a) For any w ∈ �θ
H ∩ (comp(p) ∪ comp(x)), we have

g [κN]+T (w) ∈ comp(p) ∪ comp(g−([κN]+T )(x)) .

Take any vector (z, y) ∈ Cu
w(∗), where ∗ = 1 or 4

3θ
, depending on the component that w

belongs to. Then Dg [κN]+T (w)(z, y) = (
(μs)[κN]+T z, (μu)[κN]+T y

)
whose H-slope is

|z|
|y|

∣∣∣∣μs

μu

∣∣∣∣
[κN]+T

≤ max

{
1,

4

3θ

} ∣∣∣∣μs

μu

∣∣∣∣
κN+T

= 4

3

∣∣∣∣μs

μu

∣∣∣∣
T

θκ−1 <
6

7
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whenever θ is sufficiently small. Recall that κ > 2.

(1b) For any w ∈ �θ
H ∩ (comp(g−([κN]+T )(x)) ∪ comp(�)), we have

g [κN]+T (w) ∈ comp(x) ∪ comp(�) .

Take any vector (z, y) ∈ Cu
w(∗), where ∗ = 1 or 4

3θ
, depending on the component that w

belongs to. then Dg [κN](w)(z, y) = (
(μs)[κN]z, (μu)[κN]y

)
whose H-slope is

|z|
|y|

∣∣∣∣μs

μu

∣∣∣∣
[κN]

≤ max

{
1,

4

3θ

} ∣∣∣∣μs

μu

∣∣∣∣
κN

= 4

3
θκ−1 .

Thus,

Angle
(
Dg [κN](w)(z, y), {0} × Bu

)
≤ arctan

(
4

3
θκ−1

)
, (9)

which is a higher order infinitesimal of θ . Since gT ({0} × Bu) intersects Bs × {0} at x with
angle θ (see (A4’) of Section 4.2), we obtain

Angle
(
Dg [κN]+T (w)(z, y), Bs ×{0}

)
∈
[
θ−cT arctan

(
4

3
θκ−1

)
, θ+cT arctan

(
4

3
θκ−1

)]
,

recall (8) that cT > 1 is a constant which only depends on T and a fixed neighbourhood of f .
The H-slope of Dg [κN]+T (w)(z, y) is smaller than

cot

(
θ − cT arctan

(
4

3
θκ−1

))
<

8

7θ
= 6

7
· 4

3θ

whenever θ > 0 is sufficiently small. The last inequality holds because

lim
θ→0

7θ

8
cot

(
θ − cT arctan

(
4

3
θκ−1

))
= 7

8
< 1 .

Now, (1a) and (1b) together imply (1).

(2a) For any w ∈ �θ
V ∩ (Comp(p) ∪ Comp(g−T (x))), we have

g−([κN]+T )(w) ∈ Comp(p) ∪ Comp(g [κN](x)) .

Take any vector (z, y) ∈ Cs
w(∗), where ∗ = 1 or 4

3�
, depending on the component that

w belongs to. Then Dg−([κN]+T )(w)(z, y) = (
(μs)−([κN]+T )z, (μu)−([κN]+T )y

)
whose V-

slope is (recall that c−1
T θ ≤ � ≤ cT θ )

|y|
|z|
∣∣∣∣μu

μs

∣∣∣∣
−([κN]+T )

≤ max

{
1,

4

3�

} ∣∣∣∣μs

μu

∣∣∣∣
κN+T

≤ 4

3

∣∣∣∣μs

μu

∣∣∣∣
T

cκ
T �κ−1 <

6

7

whenever θ (hence �) is sufficiently small.
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(2b) For any w ∈ �θ
V ∩ (Comp(g [κN](x)) ∪ Comp(�)), we have

g−([κN]+T )(w) ∈ Comp(g−T (x)) ∪ Comp(�) .

Take any vector (z, y) ∈ Cs
w(∗) where ∗ = 1 or 4

3�
, depending on the component that w

belongs to. Then Dg−[κN](w)(z, y) = (
(μs)−[κN]z, (μu)−[κN]y

)
whose V-slope is

|y|
|z|
∣∣∣∣μu

μs

∣∣∣∣
−[κN]

≤ max

{
1,

4

3�

} ∣∣∣∣μs

μu

∣∣∣∣
κN

≤ 4

3
cκ
T �κ−1 .

Thus,

Angle
(
Dg−[κN](w)(z, y), Bs × {0}

)
≤ arctan

(
4

3
cκ
T �κ−1

)
,

which is a higher order infinitesimal of �. Since g−T (Bs ×{0}) intersects {0}×Bu at f −T (x)

with angle � (recall (8)), we get

Angle (Dg−([κN]+T )(w)(z, y), {0} × Bu)

∈
[
� − cT arctan

(
4

3
cκ
T �κ−1

)
,� + cT arctan

(
4

3
cκ
T �κ−1

)]
.

The V-slope of Dg−([κN]+T )(w)(z, y) is smaller than

cot

(
� − cT arctan

(
4

3
cκ
T �κ−1

))
<

8

7�
= 6

7
· 4

3�

whenever θ (hence �) is sufficiently small. The last inequality holds because

lim
�→0

7�

8
cot

(
� − cT arctan

(
4

3
cκ
T �κ−1

))
= 7

8
< 1 .

Now, (2a) and (2b) together imply (2). the proof of Lemma 4.3.1 is complete.

REMARK 4.3.2. In the previous proof, we used the definition of unstable cone field
given by (UC). By this definition, it is relatively easy to check its invariance just by finding the
bounds of H-slope and V-slope as we did before. However, in the following, more accurate
estimations on the expanding rates of vectors in the cone field are needed. Thus, it is conve-
nient to replace the previous cone field by a thinner one which is “slanting” with respect to

the coordinate chart. Precisely, in the proof of (1b) above, since cT arctan( 4
3θκ−1) is a higher

order infinitesimal of θ , as a result, for every w ∈ �θ
H ∩ (comp(g−([κN]+T )(x)) ∪ comp(�)

)
,

we see that Dg [κN]+T (Cu
w) is contained in C̃u

w′ := {v ∈ Tw′M : Angle (v, TxWu(p)) ≤ θ
4 }

where w′ = g [κN]+T (w) ∈ �θ
H ∩ (comp(x) ∪ comp(�)). Thus we can modify the definition

of the unstable cone field as follows:

• For every w ∈ comp(p)∪comp(g−([κN]+T )(x)), let C̃u
w = {v ∈ TwM : Angle (v, {0}×

Bu) ≤ π
4 };
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• For every w ∈ comp(x) ∪ comp(�), let C̃u
w = {v ∈ TwM : Angle (v, TxWu(p)) ≤ θ

4 }.
Similarly, the definition of the stable cone field can be replaced by:

• C̃s
w = {v ∈ TwM : Angle (v, Bs × {0}) ≤ π

4 } for every w ∈ Comp(p) ∪
Comp(g [κN](x));

• C̃s
w = {v ∈ TwM : Angle (v, Tg−T (x)W

s(p)) ≤ �
4 } for every w ∈ Comp(g−T (x)) ∪

Comp(�).

From now on, to simplify the notation, we write C̃u
w and C̃s

w again by Cu
w and Cs

w. Obviously,
Lemma 4.3.1 still holds for these newly defined Cu

w and Cs
w .

LEMMA 4.3.3 (Uniform expansion). For every θ > 0 sufficiently small,

(1) ‖Dg [κN]+T (w)v‖ ≥ 2‖v‖ for all w ∈ �θ
H and all v ∈ Cu

w;

(2) ‖Dg−([κN]+T )(w)v‖ ≥ 2‖v‖ for all w ∈ �θ
V and all v ∈ Cs

w.

PROOF. By the definition of unstable cone field in the previous remark, vectors in

Cu
w (w ∈ comp(p) ∪ comp(g−([κN]+T )(x))) expands much more than vectors in Cu

w (w ∈
comp(x) ∪ comp(�)). Hence we only need to verify the expansion rate of the latter one.
Take any w ∈ comp(x) ∪ comp(�) and any unit vector v = (z, y) ∈ Cu

w . Obviously,

whenever θ is small, |z| > 1
2 and |y|

|z| ≥ tan( 3
4θ) ≥ θ

2 . We have Dg [κN]+T (w)v =
DgT (g [κN](w))((μs)[κN]z, (μu)[κN]y) whose norm is larger than

1

DT

∥∥∥((μs)[κN]z, (μu)[κN]y)

∥∥∥ ≥ 1

DT
|(μu)[κN]y| = |z|

DT

∣∣∣y
z

∣∣∣ |μu|[κN]

≥ 1

4DT
|μs(μu)κ−1|N > 2 .

The last inequality holds because 4DT is a constant which is independent of θ while (6) tell
us |μs(μu)κ−1|N goes to infinity as θ tends to 0. Recall that g is an ε-perturbation of f hence

D−1 ≤ ‖Dg(x)‖ ≤ D for all x ∈ M .
Symmetrically, by the definition of stable cone field in Remark 4.3.2, under negative

iterations, vectors in Cs
w (w ∈ Comp(p) ∪ Comp(g [κN](x))) expand much more than vectors

in Cs
w (w ∈ Comp(g−T (x)) ∪ Comp(�)). Thus, it suffices to verify the latter one. Take

any w ∈ Comp(g−T (x)) ∪ Comp(�) and any unit vector v = (z, y) ∈ Cs
w , we have |z| ≥

tan( 3
4�) ≥ �

2 . Thus,

Dg−([κN]+T )(w)v = Dg−T
(
g−[κN](w)

)(
(μs)−[κN]z, (μu)−[κN]y

)
whose norm is larger than

1

DT

∣∣(μs)−[κN]z
∣∣ ≥ �

2DT |μs |κN
>

1

2cT DT |μu(μs)κ−1|N > 2 (10)
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whenever θ is small. The last inequality follows from (4). The proof of Lemma 4.3.3 is
complete now.

To summarize, for any θ ∈ (0, ε) sufficiently small, by the cone field criterion of uniform
hyperbolicity (see [BS, Section 5.4] for instance), Lemmas 4.3.1 and 4.3.3 together imply that

�θ
H (also �θ

V ) is a uniformly hyperbolic horseshoe of g [κN]+T . In fact, for every w ∈ �θ
H ,

Eu(w) =
∞⋂

n=0

g([κN]+T )n(Cu
g−([κN]+T )n(w)

) and

Es(w) = gT

( ∞⋂
n=0

g−([κN]+T )n(Cs
g ([κN]+T )n−T (w)

)

)

are the expanding and contracting bundles of �θ
H . As a consequence, there are exactly two

fixed points of g [κN]+T in �θ
H : one is p (which is also a fixed point of g) and the other one is

denoted by q = q(θ). Recall that g also depends on θ , where we have omitted the symbol θ

for simplicity. By construction, q is homoclinically related to pg .

4.4. The dynamics of the orbit of q . In this section, we will investigate the dynamics
of orb (q), showing that the number of points in orb (q) whose angles are uniformly bounded
away from zero divided by the period of q tends to a positive number (this proportion does
not depend on θ ) as the period goes to infinity. This property allows us to give further pertur-
bations in Section 4.5. First, let us simplify the notation.

REMARK 4.4.1. Lemmas 4.3.1 and 4.3.3 are proved under the hypothesis that (re-
call (8))

Angle (Tg−T (x)W
s(p), Tg−T (x)W

u(p)) = � ∈ [c−1
T θ, cT θ ] .

But from the calculations in Section 4.3, we see that actually, cT does not bring any essential
effect, just appears as a constant which is independent of ε and θ . For instance, when proving
the uniform expansion of Dg [κN]+T in the the stable cone, in (10), cT appears as a constant
that depends only T and a fixed neighbourhood of f . Hence, by shrinking θ if necessary, for
N large enough, the above expansion rate is always larger than 2. Thus, in what follows, let
us set cT = 1 for simplicity. In other words, take � = θ directly. The readers can verify step
by step as in the proofs of Lemmas 4.3.1 and 4.3.3 that such a simplification involves no loss
of generality.

LEMMA 4.4.2. The stable and unstable direction of q satisfy the following:

(1) Angle (Eu(q), TxW
u(p)) ≤ Cθκ−1, where C > 0 is a constant independent of θ . In

particular, Angle (Eu(q), Bs × {0}) ∈ ( 3
4θ, 5

4θ);

(2) Angle (Es(q), Bs × {0}) ∈ ( 4
5θκ−1, 4

3θκ−1);
(3) Angle (Es(q),Eu(q)) < 2θ .
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FIGURE 3. A conceptional picture of orb (q)

PROOF. Obviously, (3) follows directly from (1) and (2) because θκ−1 is a higher order
infinitesimal of θ (notice that κ > 2). We only prove the first two items.

(1) By (9) of Lemma 4.3.1, Angle (Dg [κN]Eu(q), TpWu(p)) ≤ arctan
( 4

3θκ−1
)

which is a

higher order infinitesimal of θ . Thus, by noticing that Eu(q) = Dg [κN]+T Eu(q), under the

action of gT which is assumed to be an affine map, we have Angle (Eu(q), TxW
u(p)) ≤

Cθκ−1.
(2) Take any two dimensional plane in Cs

g−T (q)
, let v = (z, y) be a vector contained in

that plane with the largest V-slope. Thus, by Remark 4.4.1 and the definition of the un-

stable cone field in Remark 4.3.2, there exists b ∈ [ 3
4 , 5

4

]
such that |z|

|y| = tan(bθ). Then,

Dg−[κN]v = (
(μs)−[κN]z, (μu)−[κN]y

)
whose V-slope is |y|

|z|
∣∣∣μu

μs

∣∣∣−[κN]
which is close to

1
b
θκ−1 ∈ [ 4

5θκ−1, 4
3θκ−1

]
when θ is small. Since Es(q) is contained in Dg−[κN]Cs

g−T (q)
, we

obtain the desired conclusion and finish the proof of Lemma 4.4.2.

Let us divide the iteration from q to g [κN](q) into three parts: [κN] = [N] + ([κN] −
2[N]) + [N] (see Figure 3 for a conceptional picture), recalling that κ > 2. The following
lemma tells us that, in the middle part, Es and Eu exhibit large angles.

LEMMA 4.4.3. If θ > 0 is small enough,

� (Es(g i (q)), Eu(g i (q))) >
1

2

for i = [N], . . . , [κN] − [N].
PROOF. By Lemma 4.4.2 (1) and (2), estimating in the similar way as in the proof of
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Lemma 4.4.2, for any a ∈ [0, κ],

inf
{
V-slope(u) : u ∈ Cu

g [aN](q)

} ≥ 3

4
θ

∣∣∣∣μu

μs

∣∣∣∣
aN

= 3

4
θ1−a ,

sup
{
V-slope(u) : u ∈ Cs

g [aN](q)

} ≤ 4

3θ

∣∣∣∣μs

μu

∣∣∣∣
(κ−a)N

= 4

3
θκ−1−a .

Thus, letting σa = Angle (Es(g [aN](q)), Eu(g [aN](q))),

� (Es(g [aN](q)), Eu(g [aN](q))) = tan σa ≥ tan

(
arctan

(
3

4
θ1−a

)
− arctan

(
4

3
θκ−1−a

))

=
3
4θ1−a − 4

3θκ−1−a

1 + θκ−2a
=: �a . (11)

As a lower bound of tan σa , let us see how �a varies with a.

CLAIM. �a ≥ �1 = �κ−1 for a ∈ [1, κ − 1].
In fact, letting a = 1 and a = κ − 1 in (11), we see that

�1 = �κ−1 =
3
4 − 4

3θκ−2

1 + θκ−2 .

On the other hand, �a ≥ �1 if and only if

3
4 − 4

3θκ−2

θa−1 + θκ−1−a
=

3
4θ1−a − 4

3θκ−1−a

1 + θκ−2a
≥

3
4 − 4

3θκ−2

1 + θκ−2 ,

That is,

1 + θκ−2 ≥ θa−1 + θκ−1−a .

By analyzing the derivatives, when a increases from 1 to κ − 1, the right hand term first
decreases, and then increases after reaching its minimum at a = κ/2, which implies that

max
a∈[1,κ−1]

{
θa−1 + θκ−1−a

}
= 1 + θκ−2 .

Thus the claim is proved. As a result, when θ is sufficiently small,

tan σa ≥ tan σ1 ≥ 1

2

which completes the proof of Lemma 4.4.3.

REMARK 4.4.4. Since the angle in Lemma 4.4.3 is larger than a constant which does
not depend on θ , when giving perturbations of the derivatives at these points keeping Es and
Eu invariant, we are allowed to estimate the size of the perturbation by considering the sum
of its norms in Es and Eu without paying attention to their angle (recall Lemma 2.7).
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FIGURE 4. Horizontal direction and slope direction

4.5. Additional perturbations along the orbit of q . In the coordinate chart Bs ×Bu,
we set Bs × {0} as the horizontal plane and {0} × Bu as the vertical axis. Given any 2-
dimensional plane G which is not parallel to Bs × {0}, there are two uniquely defined unit
vectors in G, denoted by uh and ul , where uh is called the horizontal direction, which is
parallel to Bs × {0} and ul is called the slope direction, which is perpendicular to uh (see
Figure 4). Obviously, ul has the largest angle with Bs × {0} among all vectors in G. It is very
easy to check that under the iterations of g , the horizontal (slope) direction is still sent to the
horizontal (slope) direction.

LEMMA 4.5.1. Suppose G is a two-dimensional plane with Angle (G,Bs ×{0}) = γ .
Let u be any vector in G with Angle (u, uh) = α. Then

Angle (u, Bs × {0}) = arcsin(sin γ sin α) .

PROOF. Indeed, set G = span{AB,AC}, Bs × {0} = span{AD,AE}, uh = BC,
ul = AB, u = AC and |AB| = 1 as in Figure 4. Then, by assumption, |CD| = |BE| = sin γ

and |AC| = 1

sin α
. Hence in �ACD,

sin Angle (u, Bs × {0}) = sin Angle (AC,AD) = |CD|
|AC| = sin γ sin α ,

which gives the conclusion immediately.

LEMMA 4.5.2. Let uh(q) be the horizontal direction of Es(q) and ξ(q) be the unit
vector in the direction of the orthogonal projection of Eu(q) into Es(q). Then, there exists
θ > 0 arbitrarily small such that

Angle (uh(q), ξ(q)) <
ε

32cD
,

where c =
∣∣∣∣μu

μs

∣∣∣∣ and D ≥ sup{‖Dg(x)‖ + ‖Dg−1(x)‖ : x ∈ M} for any g near f . Recall

that ε > 0 is sufficiently small which was fixed at the end of Section 4.1.
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PROOF. i) According to Lemma 4.4.2, when θ is small enough, both
Angle (Es(q), Bs × {0}) and Angle (Eu(q), TxW

u(p)) are higher order infinitesimals
of θ (briefly, we write o(θ)). Thus, if we denote the orthogonal projection of TxW

u(p) into
Bs × {0} by ζ , we get Angle (ξ(q), ζ ) = o(θ). Note that by our construction in the beginning
of Section 4.2, ζ does not depend on θ .
ii) On the other hand, when θ decreases to zero monotonically and continuously in R,
[κN] = [κN(θ)] increases to infinity monotonically and continuously in N, where the
topology of N is defined by the subspace topology of R. This implies that when [κN]
increases by one, uh(q) changes its direction in Es(q) by angle φ + o(θ) where φ is the
argument of the non-real contracting eigenvalue of p (By an arbitrarily small perturbation
if necessary, we can always assume that φ irrational). Indeed, when θ is small, since Es(q)

is o(θ)-close to g−[κN]Tg−T (x)W
s(p), their horizontal directions are also o(θ)-close. But

the horizontal direction of g−[κN]Tg−T (x)W
s(p) moves by angle φ as [κN] increases by 1.

Therefore, uh(q) moves in Es(q) by angle φ + o(θ) when [κN] increases by 1.
Summarizing the above two aspects i) and ii), it follows that

Angle (uh(q), ξ(q)) = o(θ) + [κN](φ + o(θ)) (mod 2π)

when θ → 0. As a result, for ε > 0 which has been fixed at the very beginning, by shrinking

θ if necessary, we are allowed to take θ such that Angle (uh(q), ξ(q)) <
ε

32cD
as desired.

We need some explanation for the choice of θ . In fact, recall that N ∈ R is defined by (see
Section 4.2) ∣∣∣∣μu

μs

∣∣∣∣
N

θ = 1 .

Thus,

0 ≤ o(θ)[κN] ≤ o(θ)(κN + 1) = o(θ)(κA log θ−1 + 1) ,

where A = (log |μu

μs |)−1 > 0. Since

lim
θ→0

o(θ)κA log θ−1 = 0 ,

we obtain

Angle (uh(q), ξ(q)) = o(θ) + [κN](φ + o(θ)) (mod 2π)

= o(θ) + [κN]φ (mod 2π) .

As a result, for ε > 0 which has been fixed at the very beginning, by shrinking θ if necessary,
we are allowed to choose [κN] as some large integer such that

0 < [κN]φ (mod 2π) <
ε

32cD
.
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This is because when [κN] increases by one, [κN]φ (mod 2π) moves on the unit circle as
an irrational rotation, but for irrational rotations, every orbit is dense on the unit circle. This
completes the proof of Lemma 4.5.2.

Let us point out that we can replace θ ∈ (0, ε) if necessary such that the conclusions of
Lemmas 4.3.1, 4.3.3, 4.4.3 and 4.5.2 are all satisfied.

The following lemma shows that by the action of g [N], The angle in Lemma 4.5.2 does
not change a lot. More precisely, it keeps to be the same order as ε.

LEMMA 4.5.3. Angle (Dg [N](q)ξ(q), uh(g
[N](q))) ≤ ε

2D
.

PROOF. Write ξ(q) = (z, y) ∈ Es(q). By item (2) of Lemma 4.4.2,

Angle (Es(q), Bs × {0}) ≤ 2θκ−1.

Applying Lemma 4.5.1, we get

Angle (ξ(q), Bs × {0}) ≤ arcsin
(

sin(2θκ−1) sin
( ε

32cD

))
.

Thus,

∣∣∣y
z

∣∣∣ = tan Angle (ξ(q), Bs × {0}) ≤ εθκ−1

8cD
.

Then Dg [N](q)ξ(q) = ((μs)[N]z, (μu)[N]y) whose V-slope is∣∣∣∣ (μu)[N]y
(μs)[N]z

∣∣∣∣ ≤ c

∣∣∣∣ (μu)Ny

(μs)Nz

∣∣∣∣ = c

θ

∣∣∣y
z

∣∣∣ ≤ εθκ−2

8D
.

On the other hand, by Lemma 4.4.2 (2), we have Angle (Es(q), Bs × {0}) ≥ 1
2θκ−1. Thus

Angle (Es(g [N](q)), Bs × {0}) ≥
∣∣∣∣μu

μs

∣∣∣∣
N

θκ−1

2
= θκ−2

2
.

Applying Lemma 4.5.1 again, we obtain

εθκ−2

8D
≥ tan Angle (Dg [N](q)ξ(q), Bs × {0})

≥ tan ◦ arcsin

(
sin

(
θκ−2

2

)
sin Angle

(
Dg [N](q)ξ(q), uh(g

[N](q))
))

≥ θκ−2

4
Angle (Dg [N](q)ξ(q), uh(g

[N](q))) .

That is, Angle (Dg [N](q)ξ(q), uh(g
[N](q))) ≤ ε

2D
as desired. Now, Lemma 4.5.3 is proved.
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Recall that in Section 4.4, we divided the iterations of g from q to g [κN](q) into three
parts. In the following, we will give perturbations of Dg in the central part of orb g (q). All of
them take place in Es while there is no perturbation in Eu. We point out that in this process,
the angle between Es and Eu need not to be considered, see Remark 4.4.4.

STEP 1. Write ω = Angle (Dg [N](q)ξ(q), uh(g
[N](q))). Under some standard or-

thogonal coordinate chart of Es(g [N](q)), the isotopic perturbation

(
cos tω − sin tω

sin tω cos tω

)
◦

Dg|Es (g [N](q)) of Dg|Es (g [N](q)) sends Dg [N](q)ξ(q) into uh(g
[N](q)), where t ∈ [0, 1]. It

can be easily verified as we did in the proof of Lemma 4.3.3 that the corresponding path of the
first return map keeps to be hyperbolic for all t ∈ [0, 1]. Thus, by the estimation in the previ-

ous lemma, there exists an ε-perturbation G1 of g , satisfying DG
[N]
1 (q)ξ(q) = uh(G

[N]
1 (q))

and q ∈ �(pG1). That is, DG
[N]
1 ξ(q) is exactly in the horizontal direction of Es(G

[N]
1 (q)).

STEP 2. In each of the following ([κN]−2[N]) iterations, we will contract DG1 in the
slope direction of Es by a factor (1 − ε

D
). More precisely, for i = [N] + 1, . . . , [κN] − [N],

under the coordinate chart {uh(G
i
1(q)), ul(G

i
1(q))} of Es(Gi

1(q)), we use(
1 0
0 1 − ε

D

)
◦ DG1|Es (Gi

1(q))

to replace DG1|Es (Gi
1(q)), and leave DG1|Eu(Gi

1(q)) unchanged. By the isotopic Franks’

Lemma, we get an ε-perturbation G2 of G1 such that from G
[N]
2 (q) to G

[κN]−[N]
2 (q), the

slope direction is contracted by (1 − ε
D

)[κN]−2[N]. Actually, the slope direction is mapped

to the slope direction, thus the (1 − ε
D

)-contraction in each iteration can be accumulated.

Clearly, q is still homoclinically related to pG2 . Finally, since DG
[N]
1 (q)ξ(q) is exactly the

horizontal direction of Es(G
[N]
1 (q)) and the above contraction in the slope direction does not

affect the horizontal direction, we see that DG
[κN]−[N]
2 ξ(q) is still in the horizontal direction

of Es(G
[κN]−[N]
2 (q)).

In what follows, we replace the notation G2 by g again. Let us summarize all the per-
turbations we did since Section 4.2. Starting from f with a homoclinic tangency, for any

ε > 0 fixed in advance, first, by an ε perturbation, a hyperbolic horseshoe �θ
H was con-

structed. Then, we selected q ∈ �θ
H . Finally, after the above two steps, we complete all the

perturbations, obtaining g with dist C1(f, g) < ε + 2ε = 3ε.

4.6. Proof of Proposition 2. Under the hypothesis of Proposition 2 with a fixed point
p, for any γ > 0 and any neighbourhood Up of p, take ε ∈ (0, γ /3), we apply the previous
construction for this ε, obtaining a γ perturbation g of f , such that g = f outside Up. To
finish the proof, it remains to check conditions (i)–(iv) of Proposition 1.
(i) λn < γ.
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Indeed, in the previous section, we see that θ is selected in Lemma 4.5.2 to get

Angle (ξ(q), uh(q)) <
ε

32cD
. But in fact, for λ = λ(ε) ∈ (0, 1) fixed, this θ can be taken

arbitrarily small in (0, ε), in particular, satisfying λn < γ . Recall that n = π(q) = [κN] + T

where N = N(θ) can be arbitrarily large as long as θ is selected small.
(ii) Angle (Dgn(q)ξ, ξ) > σ where σ does not depend on γ .

In fact, using the previous notations, by Step 2 in Section 4.5, Dg [κN]−[N](q)ξ(q) is
exactly in the horizontal direction of Es(g [κN]−[N](q)), hence Dg [κN](q)ξ(q) remains to
stay in the horizontal direction of Es(g [κN](q)). Then, DgT sends the slope direction of

Es(g [κN](q)) close to ξ(q) ∈ Es(q) (this is because before the perturbation, the tangent
direction of f −T (x) is sent to the tangent direction of x but θ > 0 is selected very small), and
the closeness only depends on T and a fixed neighbourhood of f , we obtain

Angle (Dgπ(q)(q)ξ(q), ξ(q)) ≥ π

4
CT > 0 ,

where CT > 0 is a constant that only depends on T and a fixed neighbourhood of f . This
estimation holds for every γ > 0 small.

(iii)
‖Dgn|Es (q)‖

λn
< γ .

Note that the expansion rate of DgT is bounded while that of Dg [κN] varies exponentially
fast when θ tends to zero. It is easy to see that for θ > 0 small enough, among all directions
in Es(q), the slope direction have the weakest contracting rate. Let ul denote the unit vector
in the slope direction of Es(q). By formula (10) in the proof of Lemma 4.3.3, the minimal

expansion rate of Dg−n|Es (q) is larger than
1

2DT |μu(μs)κ−1|N (recall that we have taken cT

equal to 1). Hence, the maximal expansion rate of Dgn|Es (q) can be bounded from above as
follows:

‖Dgn(q)ul‖ ≤ 2DT |μu(μs)κ−1|N
(

1 − ε

D

)[κN]−2[N]
,

where (1 − ε
D

)[κN]−2[N] comes from the additional contraction given by perturbations on the
center [κN] − 2[N] times iterations in Step 2 of the last subsection. Thus,

‖Dgn|Es (q)‖
λn

≤ (2D)T

∣∣∣∣∣μ
u(μs)κ−1(1 − ε

D
)κ−2

λκ

∣∣∣∣∣
N

< γ .

The last inequality holds because according to (7) in Lemma 4.1.1, we have∣∣∣∣∣μ
u(μs)κ−1(1 − ε

D
)κ−2

λκ

∣∣∣∣∣ < 1 ,

hence we can choose θ sufficiently small in (0, ε) (As a result, N becomes large enough) such
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that

∣∣∣∣∣μ
u(μs)κ−1(1 − ε

D
)κ−2

λκ

∣∣∣∣∣
N

<
γ

(2D)T
.

(iv)
λn � (Es(q),Eu(q))

‖Dgn(q)ξ‖ < γ .

By Lemma 4.4.2 (3),

� (Eu(q),Es(q)) = tan Angle (Eu(q),Es(q)) ≤ 4θ .

On the other hand, since Dg [κN]|Es (q) contracts the most in the horizontal direction, we have

‖Dgn(q)ξ‖ ≥ D−T |μs |[κN] .

Therefore,

λn � (Es(q),Eu(q))

‖Dgnξ‖ ≤ 4DT λ[κN]θ
|μs |[κN] ≤ 4DT

|μs |
∣∣∣∣ λκ

μu(μs)κ−1

∣∣∣∣
N

< γ .

The last inequality is obtained in a similar way as above: we only need to use (5) and choose

θ small enough in (0, ε) (hence N is very large) such that

∣∣∣∣ λκ

μu(μs)κ−1

∣∣∣∣
N

<
|μs |γ
4DT

.

REMARK 4.6.1. By investigating the previous proof carefully, it is easy to see that
we can require orb (q) spends a large proportion of its iterations in a small neighbourhood
of p, where the norms of its derivatives and the inverse are close to that of f at p. More
precisely, using the previous notations, for any neighbourhood Up ⊂ M of p, by decreasing

θ if necessary,
[κN]

[κN] + T
can be taken close to one as much as we want. This fact will be

useful in the proof of Theorem A.

5. Index change: Proof of Theorem A and Corollary B

First, we cite several lemmas for the proof. Relative definitions can be found in Section 2.

LEMMA 5.1 ([BCDG, Proposition 7.1]). For every D > 1, ε > 0, and d ≥ 2, there

exists a constant k = k(D, ε, d) with the following property. Consider f ∈ Diff 1(M),
dim M = d , such that the norms of Df and Df −1 are bounded by D from above, p is a
periodic point of f with index i which satisfies 2 ≤ i ≤ d such that H(p) is non-trivial and
has no k-dominated splitting of dimension (i − 1), then there exists an ε-perturbation g of f

and q(g) ∈ �(pg ) such that q(g) has a central contracting eigenvalue with multiplicity one
and Wss

i−1(q(g)) ∩ Wu(q(g)) \ {q(g)} �= ∅.

LEMMA 5.2 ([PPV, Proposition 4.3] or [BCDG, Claim 8.3]). Let δ > 0, f ∈
Diff 1(M) and p be a periodic point of f with ind (p) = i ≥ 2. Suppose
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• there exists q1 ∈ �(p) satisfying |λcs(q1)| > (1 − δ)π(q1);
• there exists q2 ∈ �(p) satisfying Wss

i−1(q2) ∩ Wu(q2) \ {q2} �= ∅.

Then, there is an arbitrarily small C1 perturbation g of f which has a periodic point q(g) ∈
�(pg ) such that q(g) inherits both of the above properties of q1 and q2. That is,

• |λcs(q(g))| > (1 − δ)π(q(g));
• Wss

i−1(q(g)) ∩ Wu(q(g)) \ {q(g)} �= ∅.

LEMMA 5.3 (Connecting Lemma ([H, Theorem A])). Let af and bf be a pair of sad-

dles of f ∈ Diff 1(M) such that there are sequences of points yn and of natural numbers kn

satisfying:

• yn → y ∈ Wu
loc(af ) (n → ∞), y �= af ; and

• f kn(yn) → z ∈ Ws
loc(bf ) (n → ∞), z �= bf .

Then there is a diffeomorphism g arbitrarily C1-close to f such that Wu(ag) and Ws(bg)

have a non-empty intersection. This point of intersection can be taken arbitrarily close to
y by changing g . In particular, Ws

loc(bf ) and Ws
loc(bg ) can be replaced by Wss

loc(bf ) and
Wss

loc(bg), respectively.

To prove Theorem A, firstly, under the assumption of non-existence of dominated split-
tings of dimension one, we construct a strong homoclinic intersection using Lemma 5.1 and
transport this strong homoclinic intersection to periodic points with weak contracting eigen-
values using Lemma 5.2. Secondly, we apply the Connecting Lemma (Lemma 5.3) to create
a strong heteroclinic intersection. Thirdly, we perturb the heteroclinic cycle to a heterodimen-
sional cycle. Finally, by stabilizing this heterodimensional cycle, we obtain periodic points of
different indices in H(pg), by which robust homoclinic tangencies follow immediately.

PROOF OF THEOREM A. Given any a > 1, let us fix constants b and δ0 such that

1 < b < a and 0 < δ0 < 1 − b

a
.

Obviously, δ0 → 0 as a → 1. For any δ ∈ (0, δ0), take ε > 0 satisfying 3ε < δ(a −
b

1−δ
)‖Df ±(p)‖. Fix neighbourhoods U ⊂ Diff 1(M) of f and U ⊂ M of orb (p) such that

‖Dgβ (x)‖ ≤ b‖Df ±(p)‖ for all g ∈ U and x ∈ U where β = ±1. By Theorem C, there

exist an ε-perturbation g1 ∈ U of f and r ∈ �(pg1) admitting contracting eigenvalue λ2(r)

satisfying |λ2(r)| > (1 − δ)π(r). With an additional arbitrarily small perturbation and replace

r if necessary, we can assume that λ2(r) is central contracting, having multiplicity one (see
Remark 3.0.1). Moreover, by Remark 4.6.1, the orbit of r spends a large proportion (close to
one as much as we want) of time in U . By continuity, there is a neighbourhood W1 ⊂ U of
g1 such that

(F1) For every g ∈ W1, we have rg ∈ �(pg) and |λ2(rg )| > (1 − δ)π(rg).
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Shrinking W1 if necessary, we can always assume dist C1(f, g) < 2ε whenever g ∈ W1.
On the other hand, since pg1 has non-real contracting eigenvalue, H(pg1) does not have
dominated splitting of dimension one. Applying Lemma 5.1 to H(pg1), we get a pertur-
bation g2 ∈ W1 of g1 which admits a strong homoclinic intersection associated to some
s(g2) ∈ �(pg2), that is

(F2) Wss
1 (s(g2)) ∩ Wu(s(g2)) \ {s(g2)} �= ∅.

Recall that Wss
1 (s(g2)) is the 1-strong stable manifold of s(g2) (see Section 2 for the definition

of i-strong stable manifolds). Since g2 ∈ W1, combining facts (F1) and (F2) above, we
conclude by Lemma 5.2 that there exist g3 ∈ W1 arbitrarily close to g2 and q(g3) ∈ �(pg3)

satisfying

• |λ2(q(g3))| > (1 − δ)π(q(g3));
• ∃x ∈ Wss

1 (q(g3)) ∩ Wu(q(g3)) \ {q(g3)}.
Note that q(g3) can also be taken such that its orbit spends a large proportion in U . Since
q(g3) �= x ∈ H(pg3) and H(pg3) is transitive, using the Connecting Lemma, we ob-
tain an arbitrarily small perturbation g4 ∈ W1 of g3 satisfying Wss

1 (qg4) ∩ Wu(pg4) �= ∅.
Moreover, since q(g3) is homoclinically related to pg3 , by robustness of transversal intersec-
tions, Ws(pg4) ∩ Wu(qg4) remains non-empty. Now, we apply Lemma 2.6 to orb (qg4). For
l = 0, . . . , π(qg4) − 1 and t ∈ [0, 1], let

• Al,t = ((1 − t) + tλ−1) ◦ Dg4(g
l
4(qg4)) if g l

4(qg4) ∈ U ;

• Al,t = Dg4(g
l
4(qg4)) if g l

4(qg4) /∈ U ,

where λ ∈ (0, 1) is selected satisfying

max

{
|λ1(qg4)|

1
π(qg4 ) , (1 − δ)

}
< λ < |λ2(qg4)|

1
π(qg4 ) .

Here, λ1 denote the other contracting eigenvalue of qg4 . By this definition and Re-

mark 4.6.1, (1 − δ)−1-perturbations of Dg4 in the tangent spaces over points of orb (qg4)

inside U are sufficient for index change. Slightly different from before, this time we will pay
attention to the behaviour of one dimensional strong stable manifold under the perturbation.

By the choice of λ, one can easily verify that
∏π(qg4 )−1

l=1 Al,t keeps having a 1-dimensional

strong stable direction for all t ∈ [0, 1] and its endpoint
∏π(qg4)−1

l=1 Al,1 is a hyperbolic matrix
with index one. Moreover, we have:

max
l=0,...,π(qg4 )−1

t∈[0,1]

{‖Al,t − Al,0‖
}

< b‖Df ±(p)‖
(

1

λ
− 1

)
<

bδ

1 − δ
‖Df ±(p)‖ .

Similar estimation also works for the inverse. Thus, by Lemma 2.6 we get a perturbation
g5 of g4 such that:
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• dist C1(g5, g4) <
bδ

1 − δ
‖Df ±(p)‖;

• qg5 is periodic with ind (qg5) = ind (qg4) − 1 = 2 − 1 = 1;
• Wu(pg5) ∩ Ws(qg5) �= ∅ and Wu(qg5) ∩ Ws(pg5) �= ∅.

In particular, g5 has a co-index one heterodimensional cycle associated to pg5 and qg5 . Notic-
ing that H(pg5) is non-trivial, by Lemma 2.4 there exists g arbitrarily close to g5, admitting
robust heterodimensional cycle associated to transitive hyperbolic sets �g � pg and �g � qg .
By robustness, we are allowed to select g in the residual set R of Lemma 2.3 and satisfying
dist (g5, g) < ε. Therefore, by Lemma 2.1, H(pg) = C(pg ) which contains periodic points
of index one and two. Moreover, note that pg has complex contracting eigenvalues, H(pg)

does not have dominated splittings of dimension one. Now, by applying Lemma 2.3 to H(qg),
it follows that g exhibits a robust homoclinic tangency. Finally,

dist C1(g, f ) ≤ dist C1(g, g5) + dist C1(g5, g4) + dist C1(g4, f )

≤ ε + bδ

1 − δ
‖Df ±(p)‖ + 2ε < aδ‖Df ±(p)‖

as desired. This completes the proof of Theorem A.

PROOF OF COROLLARY B. It suffices to notice that, in the proof of Theorem A, at the
last moment, we obtain an aδ‖Df ±(p)‖-perturbation g of f such that H(pg) contains peri-
odic points of index one and two. Thus, under the additional assumption, we are allowed to
apply Lemma 2.3 to H(pg ), obtaining a robust homoclinic tangency associated to a hyper-
bolic set containing pg .

ACKNOWLEDGEMENTS. I would like to express my sincere gratitude to Prof. S.
Hayashi, my supervisor, for his constant encouragement and guidance, who give me many
valuable suggestions, especially in the preparation of this paper. Also I would like to thank
Prof. L. J. Díaz for his helpful comments. Special thanks should also go to Prof. K. Shinohara
for many useful discussions. I thank the reviewer for his/her review and highly appreciate the
comments and suggestions, which significantly contributed to improving the quality of the
publication. Finally, I thank the financial support of Japanese Government Scholarship.

References

[AS] R. ABRAHAM and S. SMALE, Nongenericity of �-stability, Global Analysis I (Proceedings of Symposia
in Pure Mathematics, 14) American Mathematical Society, Providence, RI, 1968. pp. 5–8.

[A] M. ASAOKA, Hyperbolic sets exhibiting C1-persistent homoclinic tangency for higher dimensions, Proc.
Amer. Math. Soc. 136 (2008), 677–686.

[B] C. BONATTI, Towards a global view of dynamical systems, for the C1-topology, Ergod. Th. & Dynam.
Sys. 31 (2011), 959–993.

[BB] J. BOCHI and C. BONATTI, Perturbation on the Lyapunov spectra of periodic orbits, Proc. Lond. Math.
Soc. (3)105 (2012), 1–48.

[BC1] C. BONATTI and S. CROVISIER, Recurrence and genericity, Invent. Math. 158 (2004), 33–104.



42 XIAOLONG LI

[BC2] C. BONATTI and S. CROVISIER, Center manifolds for partially hyperbolic set without strong unstable
connections, arXiv: 1401.2452 (2014).

[BCDG] C. BONATTI, S. CROVISIER, L. J. DÍAZ and N. GOURMELON, Internal perturbations of homoclinic
classes: non-domination, cycles, and self-replication, Ergod. Th. & Dynam. Sys. 33 (2013), 739–776.

[BCGP] C. BONATTI, S. CROVISIER, N. GOURMELON and R. POTRIE, Tame dynamics and robust transitivity
chain-recurrence classes versus homoclinic classes, Tran. Amer. Math. Soc. 366 (2014), 4849–4871.

[BD1] C. BONATTI and L. J. DÍAZ, Robust heterodimensional cycles and C1-generic dynamics, J. Inst. Math.
Jussieu 73 (2008), 469–525.

[BD2] C. BONATTI and L. J. DÍAZ, Fragile cycles, J. Diff. Eq. 252 (2012), 4176–4199.

[BD3] C. BONATTI and L. J. DÍAZ, Abundance of C1-robust homoclinic tangencies, Tran. Amer. Math. Soc.
364 (2012), 5111–5148.

[BDF] C. BONATTI, L. J. DÍAZ and T. FISHER, Super-exponential growth of the number of periodic points
inside homoclinic classes, Discrete Contin. Dyn. Syst. 20 (2008), 589–604.

[BDK] C. BONATTI, L. J. DÍAZ and S. KIRIKI, Stabilization of heterodimensional cycles, Nonlinearity 25
(2012), 930–960.

[BDP] C. BONATTI, L. J. DÍAZ and E. R. PUJALS, A C1-generic dichotomy for diffeomorphisms: weak forms
of hyperbolicity or infinitely many sink or sourses, Ann. of Math. 158 (2003), 355–418.

[BDPR] C. BONATTI, L. J. DÍAZ, E. PUJALS and J. ROCHA, Robustly transitive sets and heterodimensional
cycles, Geometric methods in dynamics I Astérisque 286 (2003), 187–222.

[BS] M. BRIN and G. STUCK, Introduction to dynamical systems, Cambridge University Press, 2002.
[F] J. FRANKS, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971),

301–308.
[G1] N. GOURMELON, A Franks’ Lemma that preserves invariant manifolds, arXiv: 0912.1121 (2009).
[G2] N. GOURMELON, An isotopic perturbation lemma along periodic orbits, arXiv: 1212.6638 (2012).
[GY] S. GAN and D. YANG, Expansive homoclinic classes, Nonlinearity 22 (2009), 729–733.

[H] S. HAYASHI, Connecting invariant manifolds and the solution of the C1 stability and �-stability conjec-
tures for flows, Ann. of Math. 116 (1997), 81–137.

[KY] J. KENNEDY and J. YORKE, Topological horseshoes, Trans. Amer. Math. Soc. 353 (2001), 2513–2530.
[LVY] G. LIAO, M. VIANA and J. YANG, The entropy conjecture for diffeomorphisms away from tangencies,

J. Eur. Math. Soc. 15 (2013), 2043–2060.
[M] R. MAÑÉ, An ergodic closing lemma, Ann. of Math. 145 (1982), 503–540.

[Mo] C. G. MOREIRA, There are no C1-stable intersections of regular Cantor sets, Acta Math. 206 (2011),
311–323.

[N1] S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9–18.
[N2] S. NEWHOUSE, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms,

Publ. Math. Inst. Hautes. Etudes Sci. 50 (1979), 101–151.
[PPV] M. J. PACIFICO, E. R. PUJALS and J. L. VIEITEZ, Robustly expansive homoclinic classes, Ergod. Th. &

Dynam. Sys. 25 (2005), 271–300.
[PV] M. PALIS and M. VIANA, High dimension diffeomorphisms displaying infinitely many periodic attrac-

tors, Ann. of Math. 140 (1994), 207–250.
[PdM] J. PALIS and W. DE MELO, Geometric theory of dynamical systems, Springer-Verlag, 1982.
[PT] J. PALIS and F. TAKENS, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cam-

bridge University Press, 1993.

[S] K. SHINOHARA, On the index problem of C1-generic wild homoclinic classes in dimension three, Dis-
crete Contin. Dyn. Syst. 31 (2011), 913–940.

[W] L. WEN, Homoclinic tangencies and dominated splittings, Nonlinearity 15 (2002), 1445–1469.



GEOMETRIC MODEL OF MIXING LYAPUNOV EXPONENTS 43

Present Address:
SCHOOL OF MATHEMATICS AND STATISTICS,
HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY,
WUHAN 430074, P. R. CHINA.
e-mail: lixl@hust.edu.cn

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES,
THE UNIVERSITY OF TOKYO,
3–8–1 KOMABA, TOKYO, JAPAN.
e-mail: lixl@ms.u-tokyo.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


