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Abstract. For a given étale quadratic algebra E over a p-adic field F , we establish a transfer of unramified
test functions on the symmetric space GL(2, F )\GL(2, E) to those on a unitary hyperbolic space so that the orbital
integrals match. This is an important step toward a comparison of relative trace formulas of these symmetric spaces,
which would yield an example of a non-tempered analogue of a refined global Gross-Prasad conjecture.

1. Introduction

1.1. Motivation. To explain the motivation of our study in this paper, we start with
a global setting. Let K/k be a CM-extension of a totally real number field k and oK , ok the
integer rings of K and k, respectively. The adele rings of K and k are denoted by AK and Ak ,
respectively. Let (V ,h) be a non-degenerate hermitian space over K of dimension m � 3 and
G = U(h) its unitary group viewed as an algebraic group over k. Let �0 ∈ V be a unit vector
(i.e., h(�0, �0) = 1) and H the stabilizer in G of the one dimensional subspace K�0; H is the
fixed point set of a k-involution of G, and is isomorphic to the direct product of the unitary
group of �⊥

0 and the k-anisotropic torus K1 of the norm 1 elements in K . A cuspidal auto-
morphic representation π of G(Ak) is called H -distinguished if π contains a cusp form ϕ on
G(Ak) such that the H -period integral PH(ϕ) = ∫

H(k)\H(Ak)
ϕ(h)dh is non-zero, where dh

is the Tamagawa measure on H(Ak). The totality of H -distinguished cuspidal automorphic

representations of G(Ak) is denoted by ΠH
cusp(G). The automorphic forms belonging to such

representations of G(Ak) have been studied in the context of the cycle geometry of the asso-
ciated unitary Shimura varieties by Kudla and Milson ([15], [16]), especially when the variety
is compact; the special cycles arising from the embedding H ↪→ G is an interesting and rich
source of H -distinguished automorphic representations. From those works, it is known that
the space of harmonic Poincaré dual forms of special cycles is exhausted by the image of
the theta lifting from a certain class of holomorphic cusp forms on U(2)K/k, the quasi-split
unitary group of degree 2. The lifting is studied by means of the Poincaré series dual to the
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Fourier coefficients, which are additive objects in nature. A multiplicative aspect of their
works in the context of the functorial transfer and Arthur’s classification of non-tempered au-
tomorphic spectrum is pursued in a recent work by Burgeron, Milson and Moeglin [2]. Invok-
ing a characterization of the image of the unstable base change fromU(2)K/k to RK/k(GL(2))
in terms of non-vanishing of GL(2)k-periods (Flicker [5]), we can expect a transfer map from
the GL(2)k-distinguished cuspidal representations of GL(2,AK) to theH -distinguished spec-
trum ΠH

cusp(G). We shall realize the transfer by means of a comparison of two relative trace

formulas on algebraic symmetric spaces S = GL(2)k\RK/k(GL(2)) and � = H\G follow-
ing a common strategy initiated by Jacquet ([11], [13]). The aim of this paper is to construct
a transfer of unramified test functions on S to those on � so that the orbital integrals match,
which plays a pivotal role in the comparison. If completed, the comparison will yield a yet
another example of a non-tempered analogue of the global Gross-Prasad conjecture refined by
Ichino and Ikeda [9] and Harris [10]. For a different possible approach, we refer to Flicker [6].
SupposeG is k-anisotropic and fix a maximal oK -lattice L in V . For any finite place v of k, set
Kv = K⊗k kv , oK,v = oK ⊗ok ok,v and Lv = L⊗oK oK,v. Then Uv = GLoK,v (Lv)∩G(kv) is
a maximal compact subgroup of G(kv). Let φ = ⊗vφv be a decomposable smooth compactly
supported function on H(Ak)\G(Ak) such that φv = φ◦

v for almost all v, where φ◦
v is the

characteristic function of H(kv)Uv . The relative trace formula for � is an identity equating
two expressions, referred as the spectral side and the geometric side, obtained by computing

the H -period integral PH(K�
φ ) of the Poincaré series K�

φ (g) = ∑
γ∈H(k)\G(k) φ(γ g) with

g ∈ G(Ak) in two different ways. By breaking the summation according to the H(k)-orbits
in H(k)\G(k) ([11, §2]), we have the expression which provides us with the geometric side
of the relative trace formula:

PH(K�
φ ) =

∑

γ∈H(k)\G(k)/H(k)

aH (γ ) J�
A
(γ ;φ) ,(1.1)

where aH (γ ) is the Tamagawa number of the group Hγ = H ∩ γ−1Hγ and

J�
A
(γ ;φ) =

∫

Hγ (Ak)\H(Ak)

φ(γ h) dOγ (h)(1.2)

is the orbital integral of φ with respect to the Tamagawa measure dOγ on Hγ (Ak)\H(Ak).
Let T and Z be the diagonal split torus and the center of GL(2), respectively. Let η be an

idele class character of K× such that η|A×
k = εm−1

K/k , where εK/k is the quadratic idele class

character of k× corresponding to the field extension K/k by the class field theory. We define
automorphic quasi-characters ω and Ω of Z(AK) and T (AK), respectively by

ω
([

τ 0
0 τ

]) = η2(τ ) , Ω
([

τα 0
0 τ

]) = η−2(τ ) |NK/k(α)|(m−2)/2
Ak

η−1(α) .

A function f on GL(2,Ak)\GL(2,AK) is said to have the central character ω if f (zg) =
ω(z)f (g) for all z ∈ Z(AK). Let f = ⊗vfv be a decomposable smooth function on
GL(2,Ak)\GL(2,AK) of the central character ω such that fv = f ◦

v for almost all v, where
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f ◦
v is the function on GL(2,Kv) defined by setting f ◦

v (zhk) = ωv(z) for z ∈ Z(Kv),
h ∈ GL(2, kv) and k ∈ GL(2, oK,v) and f ◦

v (g) = 0 for g �∈ Z(Kv)GL(2, kv)GL(2, oK,v).
The relative trace formula for S to be compared with the previous one is constructed by
computing the Hecke zeta integral Z(ϕ;Ω) = ∫

T (K)Z(AK)\T (AK)
ϕ(t)Ω(t)dt of the Poincaré

series KS
f (g) = ∑

γ∈Z(K)GL(2,k)\GL(2,K) f (γ g) with g ∈ GL(2,AK). Setting aside the is-

sue of convergence of integrals, we formally proceed as above to have the expression, the
geometric side of the relative trace formula:

Z(KS
f ;Ω) =

∑

δ∈GL(2,k)\GL(2,K)/T (K)

aT (δ) JS
A
(δ, f ;Ω) ,(1.3)

where aT (δ) denotes the integral of Ω on Z(AK)Tδ(K)\Tδ(AK) with Tδ(K) = T (K) ∩
δ−1GL(2, k)δ and JS

A
(δ, f ;Ω) is the orbital integral

JS
A
(δ, f ;Ω) =

∫

Tδ(AK)Z(AK)\T (AK)

f (δt)Ω(t) doδ(t) ,(1.4)

where doδ is the Tamagawa measure on Tδ(AK)\T (AK). From [12], we know that, ex-
cept for a finite number of singular ones, any T (K)-orbit in GL(2, k)\GL(2,K) is of the

form δb = GL(2, k)
[

1
√
θ b+1
b−1

1
√
θ

]−1
T (K) with b ∈ (K× − K1)/K1, where we fix θ ∈ k×

such that K = k[√θ ]; those cosets δb are referred as regular. It is known that the obvious
inclusion Z(k) ⊂ Tδ(K) becomes an equality if δ is regular. We say that an H(k)-orbit
γ ∈ (H(k)\G(k))/H(k) is regular if NK/k(h(γ−1�0, �0)) ∈ F× − {1}. A pair of regular
orbits (δb, γ ) from (GL(2, k)\GL(2,K)/T (K))× (H(k)\G(k)/H(k)) is said to be a match-
ing pair if NK/k(h(γ−1�0, �0)) = NK/k(b). Moreover, we say that test functions f and φ

as above match if J�
A
(γ ;φ) = JS

A
(δb; f,Ω) for all matching pairs of regular orbits (δb, γ ).

Since the singular orbital integrals are retrieved from the germ expansions of the orbital inte-
grals of regular orbits, to match up the geometric sides of two relative trace formulas (1.1) and
(1.3), one first needs to show the existence of abundant matching pairs (φ, f ) of test func-
tions, for which we should get the wanted coincidence of the spectral sides as a consequence.
Since the orbital integrals (1.2) and (1.4) are Euler products over all places of k, the search
for matching pairs of test functions boils down to a bunch of similar local tasks. For almost
all finite places v, where all the global objects we start with are unramified, we accomplish
those local tasks (so called the ‘fundamental lemma’) in this paper. Based on the results in
this paper, we shall discuss the full comparison of the geometric sides of the relative trace
formulas in the forthcoming works ([22], [23]).

1.2. Description of main result. In this article throughout, we consider only those
non-archimedean local fields of characteristic 0 whose residual characteristic is different from
2. For such a field F , we use the following notation and convention. The maximal order of
F is denoted by oF . We fix a prime element � of F once and for all. Let q denote the order
of the residue field of F . The Haar measure dx on F is supposed to be normalized so that oF
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has volume 1; dx is self-dual with respect to the duality considered by an additive character

ψ : F → C
1 such that ψ|oF = 1 and ψ|�−1oF �= 1, where C

1 = {z ∈ C| |z| = 1 }. The
modulus function of F is denoted by | |F .

Let KF = GL(2, oF ). We fix a Haar measure on GL(2, F ) such that KF has measure
1. Let Hur(GL(2, F )) denote the Hecke algebra of the pair (GL(2, F ),KF ), which is defined
to be the convolution algebra of finite C-linear combinations of characteristic functions of

KF -double cosets in GL(2, F ). Set XF = C/2π
√−1(log q)−1

Z.

Let E = F [X]/(X2 − θ) with θ ∈ o×
F . We have E = F [√θ ] with

√
θ the residue class

of the monomial X. The F -algebra E is an unramified quadratic extension or is isomorphic

to F ⊕ F according to X2 − θ is F -irreducible or not. The non-trivial F -automorphism of E
is denoted by x �→ x̄. For α ∈ E, we set |α|E = |Nα|F , where Nα = αᾱ denotes the norm
of α. Let E1 = {α ∈ E| Nα = 1 } be the subgroup of E× of norm 1 elements. The maximal

order of E is oE = oF + oF
√
θ . Let us define qE , εE and ζE(ν) by the following table.

x2 − θ qE εE ζE(ν)

F -irreducible q2 −1 (1 − q−2ν)−1

F -reducible q +1 (1 − q−ν)−2

Set

QE,m = 1 − εm−1
E q−(m−1) , XE = C/2π

√−1(log qE)−1
Z .

1.2.1. The GL(2)-side.
Let Z denote the center of GL(2). Given an unramified unitary character ω of Z(E) triv-

ial on Z(F), let Cc(Z(E)GL(2, F )\GL(2, E)/KE,ω) denote the space of all those complex-
valued functions f on GL(2, E) with compact support modulo Z(E)GL(2, F ) satisfying the
equivariance f (zhgk) = ω(z)f (g) for (z, h, k) ∈ Z(E)× GL(2, F )× KE .

For any b ∈ E× − E1 and an unramified quasi-character ξ : E× → C
×, we define

(1.5)
J(b; f, ξ) =

∫

E×
f

([
1

√
θ b+1
b−1

1
√
θ

]−1 [
τ 0
0 1

]
)

ξ(τ ) d×τ ,

f ∈ Cc(Z(E)GL(2, F )\GL(2, E)/KE,ω) ,

where d×τ is the Haar measure on E× such that vol(o×
E) = 1.

1.2.2. The unitary side.
Let V be a freeE-module of rankm � 4 and h : V ×V → E a non-degenerate hermitian

form on V (see [20]). For x ∈ V , we set h[x] = h(x, x). Let L be a unimodular oE-lattice in
V , i.e., L is a free oF -module stable by oE-multiplication such that {x ∈ V | h(x,L) ⊂ oE }
coincides with L. Let

G = U(h) = {g ∈ GL(V )| h(gx, gy) = h(x, y) for all x, y ∈ V }
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be the unitary group of h; then U = G ∩ GLoE (L) is a maximal compact subgroup of G. We
fix a vector �0 ∈ L such that h[�0] = 1 once and for all, and let H be the stabilizer in G of
the rank one submodule E�0. For γ ∈ G−H , set

b(γ ) = h(γ−1�0, �0) , �
γ

0 = γ−1�0 − b(γ ) �0 , Δγ = h[�γ0 ] .
A simple computation reveals that the vector �γ0 is orthogonal to �0 and Δγ = 1−Nb(γ ). Let
Cc(H\G/U) be the space of all the finite C-linear combinations of characteristic functions of
(H,U)-double cosets in G. For γ ∈ G−H such that Nb(γ ) �= 0, 1, we consider the integral

J
�0
h (γ ; f ) =

∫

H∩γ−1Hγ \H
f (γ h) dOγ (h) , f ∈ Cc(H\G/U) ,(1.6)

where dOγ is the H -invariant measure on H ∩ γ−1Hγ \H defined in §4.4.

1.2.3. The statement of the main result.
Let η : E× → C

1 be an unramified character of E× which extends the character a �→
ε
(m−1) ordF (a)
E of F×. Then we define unramified quasi-characters ξ : E× → C

× and ω :
Z(E) → C

× by the formulas

ξ(τ ) = |N(τ )|(m−2)/2
F η−1(τ ) , ω

([
τ 0
0 τ

]) = η2(τ ) , τ ∈ E× .

We note that ω is trivial on Z(F).
Let A denote the space of Laurent polynomials in z = q−s

E invariant by z �→ z−1. There

exists a unique involutive C-algebra automorphism ι of A such that ι(z) = εm−1
E z. We define

the transfer map

Transη : Cc(Z(E)GL(2, F )\GL(2, E)/KE;ω) −→ Cc(H\G/U)
as the composite F∗

h ◦ ι ◦ F , where F : Cc(Z(E)GL(2, F )\GL(2, E)/KE;ω) → A is the
Fourier transform on GL(2, E) to be defined in §2.2 and §3.2, and F∗

h : A −→ Cc(H\G/U)
is the inverse Fourier transform onG to be defined in §4.3. Our main theorem is the following.

THEOREM 1.1. (1) Let us define a function f ◦ : GL(2, E) → C by setting
f ◦(zhk) = ω(z) for all (z, h, k) ∈ Z(E) × GL(2, F ) × KE and f ◦(g) = 0 for all
g �∈ Z(E)GL(2, F )KE . Let φ◦ : G → C be the characteristic function of HU on G.
Then

Transη(f ◦) = φ◦.

(2) Let b ∈ E× − E1. Let γ ∈ G − H be such that N(h(γ−1�0, �0)) ∈ F× − {1}. The

integrals (1.5) and (1.6) converge absolutely. If Nb = N(h(γ−1�0, �0)), then we have

ξ(b − 1) J(b; f, ξ) = (1 − εm−1
E q−(m−1))−1

J
�0
h (γ ; Transη(f ))

for all f ∈ Cc(Z(E)GL(2, F )\GL(2, E)/KE;ω),
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1.3. Organization of paper. To prove Theorem 1.1, we compute explicitly the orbital
integrals (1.5) and (1.6). Our basic strategy for that is a thorough use of the Fourier inversion
formula for a symmetric space; the inversion formula is written by a contour integral of the
Fourier transform of a test function on the symmetric space along the purely imaginary locus

X
0
E of XE . We perform the orbital integral computation for the kernel function (the “Green

function”) which appears in the inversion formula when we shift the contourX0
E to X

δ
E = {s ∈

XE | Re s = δ} with a positive δ. The first two sections §2 and §3 after introduction are devoted
to the analysis of the integral (1.5). We discuss the inert case (i.e., E is a field) in §2 and the
split case (i.e., E ∼= F ⊕ F ) in §3. In §2, after recalling the basic facts on harmonic analysis

of GL(2, F )\GL(2, E) following [13], we introduce the Green function, denoted by Ψ S
s , to

write the spherical function explicitly as a linear combination of the Green functions Ψ S
s and

Ψ S−s as shown in (2.4). Then our main task is reduced to computations of the orbital integrals

for the Green function Ψ S
s , whose details are given in the proof of Theorems 2.2. The same

method is applied to the split case to prove Theorem 3.2 in §3. In §4, we solely work on the
unitary group G and its symmetric space H\G. For our purpose, we need an explicit formula
of the spherical function and an explicit Fourier inversion formula for unramified functions
on the hyperbolic space H\G, which may be deducible from a general theory developed in
[18], [19] for split groups and its expected extension to quasi-split groups. Due to a lack of
a proper reference and for the later convenience, we include a rather thorough treatment for
basic ingredients of harmonic analysis on H\G in §5 Appendix 1. We introduce the Green
function Ψν in §4.2 to write the spherical function as a linear combination of Ψν and Ψ−ν .
As in the case of GL(2), the problem is reduced to calculations of the orbital integrals of the
Green function Ψν , which are described in the proof of Theorems 4.8 and 4.9; in the course
of the proof, we need a Cartan type decomposition (4.2) of G, which is proved in [8] when E
is a field. In §6, we provide a proof of the decomposition (4.2) when E is not a field. In this
paper, the assumption m � 4 is made to simplify the exposition in §5, despite we believe the
final results are true even for m = 3.

NOTATION: In this paper throughout,N denotes the set of all non-negative integers and
N

∗ = N− {0}. For a given condition P, δ(P) is 1 if P is true and is 0 if P is false. The identity
matrix of degree 2 is denoted by 12.

2. Orbital integrals on GL(2, F )\GL(2, E): the inert case

In this section, we keep notation in §1.2 and suppose E = F [√θ] is a field; then �

is also a prime element of E and qE = q2 = |� |−1
E . We set G = GL(2) and B to be the

Borel subgroup of G of upper triangular matrices in G. We let Z denote the center of G, and
suppose ω = 1 to prevent the space Cc(Z(E)G(F)\G(E), ω) defined in §1.2.1 from being
{0} by a trivial reason. For any δ ∈ R, put Xδ

E = {s ∈ XE | Re s = δ}, which is mapped

homeomorphically to the circle |z| = qδE on the z-plane by the relation z = qsE .
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2.1. Spherical functions. Let us recall what we need on spherical functions on the
space of split hermitian forms of degree 2 ([13, §3]). Let H be the unitary similitude group of
the split hermitian form w = [ 0 1

1 0

]
. The F -points

H(F) = {h ∈ G(E)| t h̄wh = κ(h)w for some κ(h) ∈ F× }
is a subgroup of G(E) conjugate to Z(E)G(F) by

[√
θ 0

0 1

]
, i.e.,

[√
θ 0

0 1

]
Z(E)G(F)

[√
θ 0

0 1

]−1 = H(F) .(2.1)

The group G(E) acts from the right on the F -vector space of hermitian matrices Her2 =
{x ∈ M2(E)| t x̄ = x } by the rule

x • g = t ḡxg , g ∈ G(E), x ∈ Her2 .

For x ∈ Her2, let 〈x〉 denote the F×-homothety class of x. By passing to the quotient, G(E)
acts on the projective space P(Her2) = Her2/F

× naturally. The G(E) orbit of 〈w〉 is S/F×
with S = {x ∈ Her2| − det x ∈ NE/F (E

×) } and the stabilizer of 〈w〉 coincides with H(F).
By the theory of elementary divisors, we have the disjoint decomposition

S =
∞⋃

n=0

F× [−� 2n 0
0 1

]
• KE .

Let s ∈ XE . From [13, §3.1], there exists a unique functionΩS
s : S → C with the properties:

(a) ΩS
s (w) = 1.

(b) It has the invariance ΩS
s (zx • k) = ΩS

s (x) for all z ∈ F×, x ∈ S and k ∈ KE.

(c) It satisfies the Hecke eigenequation
∫

G(E)

ΩS
s (x • g)φ(g)dg = φ̂(s)Ω

S
s (x) , x ∈ S, φ ∈ Hur(G(E)) ,

where φ̂(s) denotes the Satake transform of φ on the spherical principal series

IndG(E)B(E)

(| |sE � | |−sE
)
.

From the property (b), the spherical function ΩS
s is determined by its values for the diagonal

matrix
[

−� 2n 0
0 1

]
(n � 0), which are given by

ΩS
s

([
−� 2n 0

0 1

])
= qX − 1

(X + 1)(q − 1)
(Xq−1)n + qX−1 − 1

(X−1 + 1)(q − 1)
(X−1q−1)n(2.2)

with X = q−s
E . If we define Ψ S

s : S → C by setting

Ψ S
s

(
z
[

−� 2n 0
0 1

]
• k
)

= q−s(1 − q−2s−1)−1 q−(2s+1)n , n ∈ N, z ∈ F×, k ∈ KE ,(2.3)
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then

ΩS
s = (1 − q−2s−1)(1 − q2s−1)

(1 − q−1)(q−s + qs)
(Ψ S

s + Ψ S−s ) .(2.4)

We admit an ambiguity of square root qs of q2s in Ψ S
s , which disappears in (2.4).

2.2. Spectral decomposition. We have a bijection from Z(E)G(F)\G(E)/KE

onto the KE-orbits in S/F× by sending the double coset Z(E)G(F)gKE to the

class F×w •
[√

θ 0
0 1

]
g
[√

θ 0
0 1

]−1
. By this identification of spaces, a function f :

Z(E)G(F)\G(E)/KE → C determines a KE-invariant and F×-invariant function on S,

which is denoted by f S ; explicitly, f S is defined by the relation

f S
(

w •
[√

θ 0
0 1

]
g
[√

θ 0
0 1

]−1
)

= f (g) , g ∈ G(E) .(2.5)

In particular, we have functions Ωs and Ψs on the group G(E) corresponding to ΩS
s and Ψ S

s ,
respectively. From (b) and (2.1), the function Ωs has the equivariance property

Ωs(zhgk) = Ωs(g) , z ∈ Z(E) , h ∈ G(F) , g ∈ G(E) , k ∈ KE .

From (a) and (c), we have Ωs(12) = 1 and the Hecke eigenequation

R(φ)Ωs = φ̂(s)Ωs , φ ∈ Hur(G(E)) ,

where R means the right translation on G(E). For a function f ∈ Cc(Z(E)G(F)\G(E)/
KE,ω), we define its Fourier transform Ff by setting

Ff (s) =
∫

Z(E)G(F )\G(E)
Ωs(g)f (g) dġ , s ∈ XE ,(2.6)

where dġ is the right G(E)-invariant measure on Z(E)G(F)\G(E) such that the measure of
the image of KE by the canonical surjection G(E) → Z(E)G(F)\G(E) equals 1. Since
f is of finite support on Z(E)G(F)\G(E)/KE , the integral reduces to a finite summation.
Indeed, by the integration formula [13, p. 320], we have

Ff (s) =
N∑

n=0

ΩS
s

([
−� 2n 0

0 1

])
f S ([−� 2n 0

0 1

])
γn with γn =

{
1 (n = 0) ,

q2n(1 − q−1) (n > 0) ,

where N is such that f S
([

−� 2n 0
0 1

])
= 0 for all n > N . By the formula (2.2), it is easily

confirmed that the values of ΩS
s occurring in the formula belong to the space

A = {α(s) ∈ C[qsE, q−s
E ]| α(s) = α(−s)} .
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As a finite linear combination of such, Ff (s) itself can be viewed as an element of A. For
α(s) ∈ A, we define

F∗α(g) =
∫

X
0
E

Ωs(g)α(s) dΛ(s) , g ∈ G(E) ,(2.7)

where X
0
E denotes the purely imaginary locus of XE and dΛ(s) is the Radon measure on X

0
E

given by

dΛ(
√−1y) = 1 − q−1

2π

∣
∣
∣
∣
∣
∣

1 + q
−√−1y
E

1 − q−1q
−√−1y
E

∣
∣
∣
∣
∣
∣

2

(log q) dy .

Since s �→ Ωs(g) is holomorphic on X
0
E , the integral converges absolutely defining a function

on G(E) which obviously has the left Z(E)G(F)-invariance and the right KE-invariance.

Let L2(Z(E)G(F)\G(E)/KE) be the Hilbert space completion of
Cc(Z(E)G(F)\G(E)/KE,ω) with respect to the inner-product

(f |f1)G(E) =
∫

Z(E)G(F )\G(E)
f (g)f1(g) dg .

(We remind readers that ω is trivial.) Let L2(X0
E; dΛ) be the L2-space of the compact space

X
0
E with the inner-product

(α|α1)X0
E

=
∫

X
0
E

α(s)α1(s) dΛ(s) .

THEOREM 2.1. The integrals (2.6) and (2.7) define linear bijections

F : Cc(Z(E)G(F)\G(E)/KE,ω) −→ A , F∗ : A −→ Cc(Z(E)G(F)\G(E)/KE,ω) ,

each of which inverts the other one. Moreover, F is extended to an isometry from

L2(Z(E)G(F)\G(E)/KE) onto L2(X0
E; dΛ), whose inverse isometry extends F∗. We have

(Ff |α)
X

0
E

= (f |F∗α)G(E) .

PROOF. We refer to §5.4. �

2.3. Orbital integrals. The following is the main result of this section.

THEOREM 2.2. Let b ∈ E× − E1 and ξ an unramified quasi-character of E× such

that ξ(�) �= 1. Then, for any f ∈ Cc(Z(E)GL(2, F )\GL(2, E)/KE,ω), the integral (1.5)
converges absolutely and has the contour integral expression

J(b; f, ξ) = 1

π
√−1

∫

X
δ
E

Ĵ(b; s, ξ)Ff (s) dμ(s)(2.8)
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with dμ(s) = (qs + q−s)(log q) ds, where δ > 0 is taken so that q−2δ−1 <

min{|ξ(�)|, |ξ(�)|−1} and Ĵ(b; s, ξ) is defined as follows. If ordE(b) � 0, then

Ĵ(b; s, ξ) = ξ(b − 1)−1q−s 1 − ξ(�(1 − Nb))− (ξ(�)− ξ(1 − Nb))q−2s−1

(1 − ξ−1(�)q−2s−1)(1 − ξ(�)q−2s−1)(1 − ξ(�))
.(2.9)

If ordE(b) < 0, then

Ĵ(b; s, ξ) = ξ(b − 1)−1ξ(b)q−s|b|−s−1/2
E

1 + q−2s−1

(1 − ξ−1(�)q−2s−1)(1 − ξ(�)q−2s−1)
.(2.10)

PROOF. Set α(s) = Ff (s). From Theorem 2.1, we have the first equality of

f (g) = F∗α(g) =
∫

X
0
E

α(s)Ωs(g)dΛ(s) = 1

π
√−1

∫

X
0
E

α(s)Ψs(g) dμ(s) ,

where the last equality follows from (2.4) by the invariance α(s) = α(−s). Since
α(s)Ψs(g)dμ(s) is a well-defined holomorphic 1-form on the region Re(s) > 0 of XE , we

can shift the contour X0
E rightward to X

δ
E (δ > 0) by Cauchy’s theorem. Thus the integral

(1.5) becomes

J(b; f, ξ) =
∫

E×

{
1

π
√−1

∫

X
δ
E

α(s)Ψs

([
1

√
θβ

1
√
θ

]−1 [
τ 0
0 1

]
)

dμ(s)

}

ξ(τ )d×τ.(2.11)

where we set β = (b + 1)/(b − 1). We shall show that the integral

Ĵ(b; s, ξ) =
∫

E×
Ψs

([
1

√
θβ

1
√
θ

]−1 [
τ 0
0 1

]
)

ξ(τ )d×τ

is absolutely convergent for all s in the region Re(s) � 0 and is evaluated as in the theorem.
Then, due to Fubini’s theorem, the formula (2.8) is obtained by changing the order of integrals

in (2.11). By (2.5) and by
[√

θ 0
0 1

]
∈ KE , we have

Ψs

([
1

√
θβ

1
√
θ

]−1 [
τ 0
0 1

]
)

= ΨS
s

(
[
τ̄ 0
0 1

]
t
[

1
√
θβ

1
√
θ

]−1 [
−√

θ 0
0 1

]
w
[√

θ 0
0 1

] [
1

√
θβ

1
√
θ

]−1 [
τ 0
0 1

]
)

= ΨS
s

(

N
(

τ

1 − β

)[
2 −(1+β)/τ

−(1+β̄)/τ̄ (β+β̄)/N(τ )

])

.

Since Ψ S
s is F×-invariant, the factor N(τ/(1 − β)) in the argument can be omitted. Thus,

Ĵ(b; s, ξ) =
∫

E×
Ψ S
s

([
2 −(1+β)/τ

−(1+β̄)/τ̄ (β+β̄)/N(τ )

])
ξ(τ )d×τ

=
∫

E×
Ψ S
s

(

2

[
1 −b

τ (b−1)
−b̄

τ̄ (b̄−1)
Nb−1

N(τ (b−1))

])

ξ(τ )d×τ

= ξ(b − 1)−1ξ(b)

∫

E×
Ψ S
s

([
1 τ
τ̄ (1−Nb−1)N(τ )

])
ξ−1(τ )d×τ,
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where the last equality is due to the obvious variable change. Note ξ(−1) = 1. We compute
the last integral by breaking it to the sum J1(b) + J2(b), where J1(b) and J2(b) denote the
integrals over |τ |E � inf(|b|E, 1) and over |τ |E > inf(|b|E, 1), respectively. In this proof, we
use the symbol ∼= in the following sense: for two hermitian matrices X and Y in S, X ∼= Y if
and only if X = zY • k with some z ∈ F× and k ∈ KE . For any τ ∈ oE ,

[
1 τ
τ̄ (1−Nb−1)N(τ )

] ∼=
[

1 τ
τ̄ (1−Nb−1)N(τ )

]
• [ 1 −τ

0 1

] =
[

1 0
0 −Nb−1 Nτ

] ∼=
[

−� 2n−2 ordE(b) 0
0 1

]

with n = ordE(τ). We first consider the case ordE(b) � 0. By (2.3),

J1(b) =
∞∑

n=ordE(b)

∫

τ∈�no×
E

Ψ S
s

([
−� 2n−2 ordE(b) 0

0 1

])
ξ(τ )−1d×τ

= vol(o×
E)q

−s

1 − q−2s−1

∞∑

n=ordE(b)

q−(n−ordE(b))(2s+1)ξ−1(�n)

= vol(o×
E)q

−s

1 − q−2s−1

ξ−1(b)

1 − q−(2s+1)ξ−1(�)
(for |q−2s−1ξ(�)−1| < 1) .

We have

J2(b) =
∫

|τ |E<|b−1|E
Ψ S
s

([
1 1/τ

1/τ̄ (1−Nb−1)/N(τ )

])
ξ(τ )d×τ = J ′

2(b)+ J ′′
2 (b) ,

where J ′
2(b) is the integral over |τ |E < |1 − Nb−1|2F |b|E and J ′′

2 (b) is the integral over

|1 − Nb−1|2F |b|E � |τ |E < |b|−1
E . Let |τ |E < |1 − Nb−1|2F |b|E. Then since the element

x = −τ/(1 − Nb−1) belongs to oE ,
[

1 1/τ
1/τ̄ (1−Nb−1)/N(τ )

] ∼=
[

Nτ τ̄
τ 1−Nb−1

]
• [ 1 0

x 1

] =
[

Nτ/(1−Nb) 0
0 1−Nb−1

] ∼=
[

−NτNb−1

(1−Nb−1)2
0

0 1

]

.

We have ordF
(

NτNb−1

(1−Nb−1)2

)
= 2{ordE(τ)−ordE(b)−ordF (1−Nb−1)} � 1. Hence by (2.3),

J ′
2(b) = q−s (1 − q−2s−1)−1

×
∞∑

n=ordE(b)+ordF (1−Nb−1)+1

∫

�no×
E

q−(2s+1)(n−ordE(b)−ordF (1−Nb−1)ξ(τ)d×τ

= vol(o×
E)

q−s (1 − q−2s−1)−1 q−(2s+1)ξ
(
�b(1 − Nb−1)

)

1 − q−(2s+1)ξ(�)
(for |q−2s−1ξ(�)| < 1) .

Let |1 − Nb−1|2F |b|E � |τ |E < |b|−1
E . If ordE(b) > 0, then there is no τ satisfying this

inequality; thus J ′′
2 (b) = 0. Suppose ordE(b) = 0. Then we can write τ = �lu and

1 − Nb−1 = �mu1 with m � l � 1, u ∈ o×
E and u1 ∈ o×

F . Suppose m > l. Then
[

1 1/τ
1/τ̄ (1−Nb−1)/N(τ )

] ∼=
[

Nτ τ̄
τ 1−Nb−1

] ∼=
[
�luū ū
u �m−lu1

] ∼=
[
�luū ū
u �m−lu1

]
• [ 1 0

u 1

]
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=
[

Nu(2+�l+u1�
m−l ) ū(1+u1�

m−l )
u(1+u1�

m−l ) �m−lu1

]
.

Then by multiplying the inverse of the upper-left entry, which is a unit due to 2 ∈ o×
F and

1 � l < m, we see that the last matrix is equivalent to a matrix of the form
[

1 u2
ū2 �m−lu3

]
with

u2, u3 ∈ o×
E . Since N(o×

E) = o×
F , we can write −(�m−lu3 − Nu2) = Nu4 with u4 ∈ o×

E .

By transforming by
[ 1 −u2

0 1

] [ 1 0
0 u−1

4

]
∈ KE , we have

[
1 u2
ū2 �m−lu3

] ∼= [
1 0
0 −1

] ∼= w. Suppose

l = m. Then
[

1 1/τ
1/τ̄ (1−Nb−1)/N(τ )

] ∼=
[
�luū ū
u u1

] ∼=
[
�luūu−1

1 ūu−1
1

uu−1
1 1

]

•
[

1 0
−uū−1

1 1

]
=
[
uūu−2

1 (u1�
l−1) 0

0 1

]
.

Since l � 1, the last matrix is equivalent to w. Therefore, noting ξ(�) �= 1, we obtain

J ′′
2 (b) =

∫

|1−Nb−1|E�|τ |E<1
ΨS
s

([
1 1/τ

1/τ̄ (1−Nb−1)/N(τ )

])
ξ(τ)d×τ

= ΨS
s (w)

∫

|1−Nb−1|2F�|τ |E<1
ξ(τ)d×τ

= vol(o×
E) q

−s (1 − q−2s−1)−1 ξ(�)− ξ
(
�(1 − Nb−1)

)

1 − ξ(�)
.

When ordE(b) = 0, Ĵ(b; s, ξ) equals

ξ(b − 1)−1ξ(b){J1(b)+ J ′
2(b) + J ′′

2 (b)}

= ξ(b − 1)−1 vol(o×
E)q

−s
1 − q−2s−1

×
{

1

1 − q−(2s+1)ξ−1(�)
+ q−(2s+1)ξ

(
�(1 − Nb−1)

)

1 − q−(2s+1)ξ(�)
+ ξ(�)− ξ

(
�(1 − Nb−1)

)

1 − ξ(�)

}

= vol(o×
E)ξ(b − 1)−1q−s 1 − ξ

(
�(1 − Nb−1)

)− (ξ(�)− ξ(1 − Nb−1)) q−(2s+1)

(1 − ξ(�)−1q−(2s+1))(1 − ξ(�)q−(2s+1))(1 − ξ(�))
.

To obtain (2.9), it suffices to apply the relation ξ(1−Nb−1) = ξ(1−Nb), which follows from

−Nb ∈ o×
F . When ordE(b) > 0, Ĵ(b; s, ξ) equals

ξ(b − 1)−1ξ(b){J1(b)+ J ′
2(b)}

= ξ(b − 1)−1ξ(b)
vol(o×

E)q
−s

1 − q−2s−1

{
ξ(b)−1

1 − q−(2s+1)ξ−1(�)
+ q−(2s+1)ξ

(
�b(1 − Nb−1)

)

1 − q−(2s+1)ξ(�)

}

= ξ(b − 1)−1vol(o×
E
)q−s 1 + q−(2s+1)

(
1 − ξ(�)−1q−(2s+1)

)(
1 − ξ(�)q−(2s+1)

)

due to the relation ξ(b) = ξ(b̄) valid for any unramified character ξ . Since ξ(1−Nb) = 1, this

agrees with (2.9). In the course of the proof, we see that |q−2s−1| < min{|ξ(�)|, |ξ(�)|−1}
is the absolute convergence region of the integral Ĵ(b; s, ξ).
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Let us consider the case ordE(b) < 0. In the same way as above, we have

J1(b) = vol(o×
E)q

−s

1 − q−2s−1

∞∑

n=0

q−(n−ordE(b))(2s+1)ξ−1(�n)

= vol(o×
E)q

−s

1 − q−2s−1

|b|−s−1/2
E

1 − q−(2s+1)ξ−1(�)

(
for |q−2s−1ξ(�)−1| < 1

)

and

J2(b) =
∫

|τ |E<1
Ψ S
s

([
1 1/τ

1/τ̄ (1−Nb−1)/N(τ )

])
ξ(τ )d×τ

= q−s(1 − q−2s−1)−1
∞∑

n=1

∫

�no×
E

q−(2s+1)(n−ordE(b)−ordF (1−Nb−1))ξ(τ )d×τ

= vol(o×
E)q

−s

1 − q−2s−1

q−(2s+1)|b|−s−1/2
E ξ(�)

1 − q−(2s+1)ξ(�)

(
for |q−2s−1ξ(�)| < 1

)

due to ordF (1 − Nb−1) = 0. Thus,

Ĵ(b; s, ξ) = ξ(b − 1)−1ξ(b){J1(b)+ J2(b)}

= vol(o×
E)q

−s
1 − q−2s−1

|b|−s−1/2
E

ξ(b − 1)−1ξ(b)

{
1

1 − q−(2s+1)ξ−1(�)
+ q−(2s+1)ξ(�)

1 − q−(2s+1)ξ(�)

}

= vol(o×
E
)ξ(b − 1)−1ξ(b)q−s |b|−s−1/2

E

1 + q−(2s+1)

(1 − q−(2s+1)ξ−1(�))(1 − q−(2s+1)ξ(�))

as desired. This completes the proof. �

3. Orbital integrals on GL(2, F )\GL(2, E): the split case

In this section, we suppose E = F [√θ ] is isomorphic to F ⊕F . We use the symbols G,
B, Z and X

δ
E by the same meaning as in §2. In particular, G = GL(2) in this section. We fix

a character ω : Z(E) → C
1 trivial on Z(F) and define Cc(Z(E)G(F)\G(E)/KE,ω) as in

§1.2.1.

3.1. Spherical functions. For any (s, c) ∈ XF × 2XF , let Ωs,c(g) be the unramified

matrix coefficient for the principal series IndG(F)B(F )(| |s+c/2
F � | |−s+c/2

F ); c parametrizes the

central character of the representation. From the Cartan decomposition,

G(F) =
∞⋃

n=0

Z(F)KF
[
�n 0
0 1

]
KF ,(3.1)
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where the right-hand side is a disjoint union. We have the Macdonald formula

(3.2) Ωs,c

(
z
[
�n 0
0 1

])
= | det z|c/2

F

{
1 − qX2

(q + 1)(1 −X2)
(q−(c+1)/2X)n

+ 1 − qX−2

(q + 1)(1 −X−2)
(q−(c+1)/2X−1)n

}

for all z ∈ Z(F) and n ∈ N, where X = q−s ([1, Theorem 4.6.6]). Using (3.1), we define a
function Ψs,c : G(F) → C by the formula

(3.3) Ψs,c
(
zk
[
�n 0
0 1

]
k′) = | det z|c/2

F q−s(1 − q−(2s+1))−1(q−s−(c+1)/2)n ,

z ∈ Z(F) , k, k′ ∈ KF , n ∈ N .

Then from (3.2), we obtain

Ωs,c = (q2s−1 − 1)(q−2s−1 − 1)

(1 + q−1)(q−s − qs)
(Ψs,c − Ψ−s,c) .(3.4)

3.2. Spectral decomposition. For c ∈ 2X0
F , let Cc(Z(F )KF \G(F)/KF , c) denote

the space of all functions f : G(F) → C with compact support modulo Z(F) having the
equivariance

f (zkhk′) = | det z|−c/2
F f (h) , z ∈ Z(F), h ∈ G(F), k, k′ ∈ KF .

The space endowed with the hermitian inner-product

(f |f ′)G(F ) =
∫

Z(F )\G(F)
f (h)f ′(h) dh , f, f ′ ∈ Cc

(
Z(F)KF \G(F)/KF , c

)
,

is completed to the Hilbert space L2
(
Z(F)KF \G(F)/KF , c

)
. The Fourier transform of f ∈

Cc(Z(F )KF \G(F)/KF , c) is defined by

Ff (s) =
∫

Z(F )\G(F)
Ωs,c(h)f (h) dh , s ∈ XF ,(3.5)

where dh is the Haar measure on G(F) such that vol(KF ) = 1. As in §2.2, Ff (s) belongs

to the space of invariant Laurent polynomials A = {α(s) ∈ C[z, z−1]| α(s) = α(−s) } with
z = q−s . For any α ∈ A, define

F∗α(h) =
∫

X
0
F

Ωs,−c(h) α(s) dΛ(s) , h ∈ G(F) ,(3.6)

where dΛ(s) is a Radon measure on the purely imaginary locus X0
F of XF defined by

dΛ(
√−1y) = 1 + q−1

4π

∣
∣
∣
∣
∣

1 − q−2
√−1y

1 − q−2
√−1y−1

∣
∣
∣
∣
∣

2

(log q) dy .
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Let L2(X0
F ; dΛ) be the L2-space for the measure space (X0

F , dΛ), whose inner-product is
denoted by ( | )

X
0
F

.

THEOREM 3.1. Let c ∈ 2X0
F . The integrals (3.5) and (3.6) define linear bijections

F : Cc
(
Z(F)KF \G(F)/KF , c

) −→ A , F∗ : A −→ Cc
(
Z(F)KF \G(F)/KF , c

)
,

each of which inverts the other one. Moreover, F is extended to an isometry from

L2
(
Z(F)KF \G(F)/KF , c

)
onto L2(X0

F ; dΛ), whose inverse isometry extends F∗. We have

(Ff |α)
X

0
F

= (f |F∗α)G(F ) .

PROOF. This follows from [21, Theorem 4.7] immediately. Alternatively, a direct ar-
gument is possible along the same line as in §5.4. �

3.3. Orbital integrals. We identify G(F) with the diagonal subgroup of G(E) =
G(F) × G(F). Since ω|Z(F) = 1, the character ω is of the form ω

([
t 0
0 t

]) = |t1/t2|cF
(t = (t1, t2) ∈ E×) with a unique c ∈ X

0
F . We suppose c ∈ 2X0

F . For f ∈
Cc(Z(E)G(F)\G(E)/KE,ω), we define f0 : G(F) → C by setting

f0(h) = f (1, h) , h ∈ G(F) .

Then the mapping f �→ f0 is a linear bijection from Cc
(
Z(E)G(F)\G(E)/KE;ω) onto the

space Cc
(
Z(F)KF \G(F)/KF , c

)
. The following is the main result of this section.

THEOREM 3.2. Let ξ : E× → C
× be an unramified quasi-character such that

ξ(t1, t2) = |t1/t2|−c/2
F ξ0(t1t2) for all (t1, t2) ∈ E× with a quasi-character ξ0 of F× such

that ξ0(�) �= ±1. Then for any b = (b1, b2) ∈ E× − E1, the integral (1.5) converges
absolutely and has the contour integral expression

J(b; f, ξ) = 1

π
√−1

∫

X
δ
F

Ĵ(b; s, ξ)Ff0(s) dμ(s) ,

with dμ(s) = 2−1(qs − q−s)(log q)ds, where δ > 0 is taken so that q−δ−1/2 <

min
{|ξ0(�)|, |ξ0(�)|−1

}
, and Ĵ(b; s, ξ) is defined as follows. If e = ordF (Nb) > 0, then

Ĵ(b; s, ξ) = |b1/b2|c/2
F ξ(b − 1)−1ξ(b)

× q−sξ0(Nb)−1
{
(e − 1)q−2s−1 − e(ξ0(�)+ ξ0(�)−1)q−s−1/2 + (e + 1)

}

(
1 − ξ0(�)q−s−1/2

)2(
1 − ξ0(�)−1q−s−1/2

)2 .

If e = ordF (Nb) � 0, then

Ĵ(b; s, ξ) = |b1/b2|c/2
F ξ(b − 1)−1ξ(b)

× q−s |Nb|−s−1/2
F

1 − ξ0(�)2

{
1

(
1 − ξ0(�)−1q−s−1/2

)2 − ξ0
(
�(1 − Nb−1)

)2

(
1 − ξ0(�)q−s−1/2

)2

}

.
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PROOF. In the proof, we set
√
θ = (θ1,−θ1). Set α(s) = Ff0(s). By Theorem 3.1

and the formula (3.4), we have

f (h1, h2) = f0(h
−1
1 h2) =

∫

X
0
F

α(s)Ωs,−c(h−1
1 h2) dΛ(s)

= 1

π
√−1

∫

X
0
F

α(s)Ψs,−c(h−1
1 h2) dμ(s) .

Since the function α(s)Ψs,−c(h−1
1 h2)(q

s − q−s) is holomorphic on Re(s) > 0, we can shift

the contour X0
F rightward to X

δ
F (δ > 0). Plugging this contour integral representation of f ,

we obtain from (1.5)

J(b; f, ξ)

=
∫

E×

{
1

π
√−1

∫

X
δ
F

α(s)Ψs,−c
(
[
τ1 0
0 1

]−1
[

1 θ1
b1+1
b1−1

1 θ1

] [
1 −θ1

b2+1
b2−1

1 −θ1

]−1 [
τ2 0
0 1

]
)

dμ(s)

}

ξ(τ)d×τ

=
∫

E×

{
1

π
√−1

∫

X
δ
F

α(s)Ψs,−c
(−b2

t1

[
t2 Nb−1−1
t1t2 −t1

])
dμ(s)

}

ξ(τ)d×τ

= ξ(b − 1)−1ξ(b)

∫

E×

{
1

π
√−1

∫

X
δ
F

α(s)Ψs,−c
(−b2

t1

[
t2 Nb−1−1
t1t2 −t1

])
dμ(s)

}

ξ(t)d×t ,

where we made a variable change by setting τ1 = b1
b1−1 t1, τ2 = b2

b2−1 t2. To conclude the

proof, we have only to show that the integral

Ĵ(b; s, ξ) = ξ(b − 1)−1ξ(b)

∫

E×
Ψs,−c

(−b2
t1

[
t2 Nb−1−1
t1t2 −t1

])
ξ(t)d×t

converges absolutely for Re(s) � 0 and is evaluated as in the theorem. If we write

−b2
t1

[
t2 Nb−1−1
t1t2 −t1

]
= k

[
�n+l 0

0 �l

]
k′, k, k′ ∈ KF , n ∈ N , l ∈ Z ,

then it is easy to see that

n+ 2l = ordF
(
b2t2
b1t1

)
, n = ordF

(
t1t2
b1b2

(t1, t2, t1t2, 1 − Nb−1)−2
)
.

Hence from (3.3),

Ψs,−c
(−b2

t1

[
t2 Nb−1−1
t1t2 −t1

])

= q−s (1 − q−(2s+1))−1q(n+2l)c/2 q−n(s+1/2)

= q−s (1 − q−(2s+1))−1
∣
∣
∣ b2t2
b1t1

∣
∣
∣
−c/2

F
q

−(s+1/2) ordF
(
t1t2
b1b2

(t1,t2,t1t2,1−Nb−1)−2
)

.



ORBITAL INTEGRALS ON UNITARY HYPERBOLIC SPACES 939

Since ξ(t) = |t1/t2|−c/2
F ξ0(t1t2), we have that Ĵ(b; s, ξ) equals

ξ(b − 1)−1ξ(b)q−s(1 − q−(2s+1))−1
∣
∣
∣
∣
b2

b1

∣
∣
∣
∣

−c/2

F

×
∫∫

F××F×
q

−(s+1/2) ordF
(
t1t2
b1b2

(t1,t2,t1t2,1−Nb−1)−2
)

ξ0(t1t2)d×t1d×t2

= ξ(b − 1)−1ξ(b)q−svol(o×
F )

2

1 − q−(2s+1)
|b2/b1|−c/2

F J (b; ξ0, ξ0) ,

where we set

J (b; η1, η2) =
∑

l1,l2∈Z
q

−(s+1/2) ordF

(
�l1+l2
b1b2

(� l1 ,� l2 ,� l1+l2 ,1−Nb−1)−2
)

η1(�)l1η2(�)l2

for any pair (η1, η2) of unramified quasi-characters of F×. For l ∈ Z, set sgn(l) = + if l � 0
and sgn(l) = − if l < 0. For ε, ε′ ∈ {+,−}, let Jε,ε′ = Jε,ε′(b; η1, η2) denote the sub-series

of J (b; η1, η2) for terms with sgn(l1) = ε, sgn(l2) = ε′. Put β = 1 − Nb−1. A tedious but
straightforward computation reveals the following identities.

J++ = |b1b2|−s−1/2
F

(
1 − q−2s−1η1η2(�)

)

(
1 − q−s−1/2η1(�)

)(
1 − q−s−1/2η2(�)

)

×
{

δ(β ∈ oF )
1 − η1η2(β)

1 − η1η2(�)
+ |β|−2s−1

F

(|β|2s+1
F η1η2(β)

)δ(β∈oF )

1 − q−2s−1η1η2(�)

}

,

J−+ = |b1b2|−s−1/2
F q−s−1/2η1(β)

−1

1 − q−s−1/2η2(�)

×
{(|β|−s−1/2η1(β)

)δ(β �∈oF )

1 − q−s−1/2η1(�)−1 + δ(β �∈ oF )|β|−2s−1
F q2s+1

(
1 − |β|s+1/2

F η1(β)
)

1 − qs+1/2η1(�)−1

}

,

J+− = |b1b2|−s−1/2
F q−s−1/2η2(�)−1

1 − q−s−1/2η1(�)

×
{(|β|−s−1/2

F η2(β)
)δ(β �∈oF )

1 − q−s−1/2η2(�)−1 + δ(β �∈ oF )|β|−2s−1
F q2s+1

(
1 − |β|s+1/2

F η2(β)
)

1 − qs+1/2η2(�)−1

}

,

J−− = |b1b2|−s−1/2
F q−s−1/2η1(�)−1

1 − η−1
1 η2(�)

×
{((|β|−s−1/2

F η2(β)
)δ(β �∈oF )

1 − q−s−1/2η2(�)−1 + δ(β �∈ oF )|β|−2s−1
F q2s+1

(
1 − |β|s+1/2

F η2(β)
)

1 − qs+1/2η2(�)−1

)



940 MASAO TSUZUKI

−
(
(|β|−s−1/2

F η1(β))
δ(β �∈oF )

1 − q−s−1/2η1(�)−1
+ δ(β �∈ oF )|β|−2s−1

F q2s+1(1 − |β|s+1/2
F η1(β))

1 − qs+1/2η1(�)−1

)}

.

While the second and the third formulas are valid for all (η1, η2) satisfying

|q−s−1/2| max{|η1(�)|, |η1(�)−1|, |η2(�)|, |η2(�)−1|} < 1 ,(3.7)

the first and the last formulas are valid only for those (η1, η2) inside this region with η1 �=
η±1

2 . By summing up J++, J+−, J−+, and J−−, after a tedious computation, we have that
J (b; η1, η2) is equal to

|b1b2|−s−1/2
F

(1 − q−2s−1)

1 − η1η2(�)

×
{

1
(
1 − q−s−1/2η1(�)−1

)(
1 − q−s−1/2η2(�)−1

) − η1η2(�β)
(
1 − q−s−1/2η1(�)

)(
1 − q−s−1/2η2(�)

)

}

if β ∈ oF , and to

|b1b2|−s−1/2
F

|β|−s−1/2
F

(q−2s−1 − 1)

η1(�)− η2(�)

× (η1(�β)− η2(�β))q−2s−1 − (1 + η1η2(�))(η1(β)− η2(β))q
−s−1/2 + η1(β)η2(�)− η1(�)η2(β)(

1 − q−s−1/2η1(�)−1
)(

1 − q−s−1/2η2(�)−1
)(

1 − q−s−1/2η1(�)
)(

1 − q−s−1/2η2(�)
)

if β �∈ oF . These formulas are valid for all pairs (η1, η2) inside the region (3.7) with η1 �=
η±1

2 . Suppose ξ0 and s satisfy |q−s−1/2| max{|ξ0(�)|, |ξ0(�)|−1} < 1. We apply the above

evaluation of J (b; η1, η2) for (η1, η2) = (ξ0, ξ0| |λF ) (λ ∈ C) with sufficiently small |λ| > 0
and then take the limit as λ → 0. If β ∈ oF , we immediately have

J (b; ξ0, ξ0) = |b1b2|−s−1/2
F

(1 − q−2s−1)

1 − ξ0(�)2

{
1

(1 − q−s−1/2ξ0(�)−1)2
− ξ0(�β)2

(1 − q−s−1/2ξ0(�))2

}

.

If β �∈ oF , then by the relations

lim
λ→0

η1(�β) − η2(�β)

η1(�)− η2(�)
= ξ0(β)(1 − e) , lim

λ→0

η1(�)η2(β)− η1(β)η2(�)

η1(�)− η2(�)
= ξ0(β)(e + 1) ,

lim
λ→0

(1 + η1η2(�))(η2(β)− η1(β))

η1(�)− η2(�)
= ξ0(β)(ξ0(�)+ ξ0(�)−1)e

with e = − ordF (β) = ordF Nb, we have

J(b; ξ0, ξ0) = |b1b2|−s−1/2
F |β|−s−1/2

F ξ0(β){(e− 1)q−2s−1 − e(ξ0(�)+ ξ0(�)−1)q−s−1/2 + (e + 1)}
(1 − q−2s−1)−1(1 − q−s−1/2ξ0(�))2(1 − q−s−1/2ξ0(�)−1)2

.

Since β = 1 − Nb−1 ∈ Nb−1o×
F , this can be further simplified by the relations ξ0(β) =

ξ0(Nb)−1 and |b1b2|−s−1/2
F |β|−s−1/2

F = 1. �

4. Orbital integrals on a unitary hyperbolic space

In this section, we work with the notation in §1.2.2 keeping all the assumptions there. In
particular, G = U(h), H = StabG(E�0) in this section. We let H0 to be the stabilizer of �0 in
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G. We easily have the orthogonal decomposition L = oE�0 ⊕ (�⊥
0 ∩ L), from which �⊥

0 ∩ L
is seen to be a unimodular oE-lattice in the hermitian space �⊥

0 . If m is even, then we have

an orthogonal decomposition L = ⊕m/2
j=1(oEej + oEem−j+1) with an oE-basis B = {ej }mj=1

such that h(ej , em−j+1) = 1, h[ej ] = h[em−j+1] = 0 for all 1 � j � m/2. If m is odd,

we have an orthogonal decomposition L = oEe(m+1)/2 ⊕ {⊕(m−1)/2
j=1 (oEej + oEem−j+1)}

with an oE-basis B = {ej }mj=1 such that h(ej , em−j+1) = 1, h[ej ] = h[em−j+1] = 0 for all

1 � j � (m − 1)/2 and h[e(m+1)/2] ∈ o×
F . Since �0 ∈ L is a unit vector, it is primitive in L;

hence, we can choose B such that

�0 = ae1 + em(4.1)

with some a ∈ E such that a + ā = 1. We fix such an oE-basis B once and for all, and set
κ = h[e(m+1)/2] if m is odd.

For aj ∈ E× (1 � j � m), let d(a1, . . . , am) be the element of GLE(V ) defined by

d(a1, . . . , am)ej = ajej (1 � j � m) .

For t ∈ E×, we designate the element d(a1, . . . , am) with a1 = t , am = t̄−1 and aj = 1 (1 <
j < m) as d[t], which is indeed belongs to G. Let �E be � if E is a field and denote an
element of oE such that N�E = � if E ∼= F ⊕ F . We have the disjoint decomposition

G =
∞⋃

l=0

H d[�−l
E ]U .(4.2)

When E is a field, this decomposition follows from [8, Proposition 3.9] due to the fact that
the center ZG of G is contained in U and H = H0ZG. When E ∼= F ⊕ F , we give a proof in
§6 for completeness.

4.1. Hyperboloids. For Δ ∈ F , set

�(V ,Δ) = {x ∈ V − {0}|h[x] = Δ} ,
which we regard as an F -algebraic variety (identified with its F -points) with rational G-
action. Obviously �(V,Δ) is a G-stable subset of V ; Witt’s theorem tells us that it is a
G-orbit in V . Let G� be the stabilizer in G of a vector � ∈ �(V ,Δ). By sending a coset G�g

to the vector g−1�, we have a G-isomorphism

G�\G → �(V ,Δ) .

There exists a unique gauge form ωV on V ([24]), viewed as a 2m-dimensional affine space
over F , such that

ωV (ξ) = det
(
h(ξi , ξj )

) m∏

j=1

dzj ∧ dz̄j

2
√
θ

(4.3)
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for any E-basis {ξj } of V , where zj is the E-coordinate functions on V corresponding to the

basis {ξj }. Let V × = {ξ ∈ V | h[ξ ] �= 0 } and ν : V × → GL(1) the map ν(ξ) = h[ξ ].
Then there exists a unique G-invariant gauge form ωV,Δ on �(V ,Δ) such that ωV (ξ) =
ν∗(dt)ξ ∧ ωV,Δ(ξ) at all ξ ∈ �(V ,Δ), where ν∗(dt) denotes the pull-back of the differential
dt of the standard coordinate t on GL(1) by ν. Let |ωV |F and |ωV,Δ|F be the measures on V
and �(V ,Δ) defined by ωV and ωV,Δ, respectively. The image ν(V×) coincides with F×.
We have the integration formula

∫

V

f (ξ) |ωV |F =
∫

F×
dΔ
∫

�(V ,Δ)

f (ξ)|ωV,Δ|F(4.4)

for any f ∈ L1(V ).

LEMMA 4.1. For any α ∈ E×, we have
∫

�(V ,Δ)

f (ξ)|ωV,Δ|F = |α|1−m
E

∫

�(V ,ΔNα)
f (α−1ξ)|ωV,ΔNα|F

for any f ∈ C∞
c (V ).

PROOF. From (4.4), replacing f (ξ) with f (ξ)ψ(h[ξ ]τ ), we have
∫

V

f (ξ)ψ(h[ξ ]τ ) |ωV |F =
∫

F×

{∫

�(V ,Δ)

f (ξ)|ωV,Δ|F
}

ψ(Δτ)dΔ

for any τ ∈ F . By the Fourier inversion formula,
∫

�(V ,Δ)

f (ξ)|ωV,Δ|F =
∫

F

{∫

V

f (ξ)ψ(h[ξ ]τ ) |ωV |F
}

ψ(−τΔ)dτ.

We have |ωV |F (αξ) = |α|mE |ωV |F (ξ) and d(
(
Nα
)−1

τ ) = |α|−1
E dτ . From these, the desired

formula follows immediately. �

LEMMA 4.2. Let L be any self-dual oE-lattice in V . For any Δ ∈ F×, we have

vol(�(V ,Δ) ∩ L; |ωV,Δ|F ) = δ(Δ ∈ oF )
1 − εmEq

−m

1−εmEq
−(m−1)

(1 − ε
m ordF (�Δ)
E q−(m−1)|Δ|m−1

F ) .

PROOF. Since h[L] ⊂ oF , the intersection �(V ,Δ) ∩ L is empty unless Δ ∈ oF . In
the remaining part of the proof, we suppose Δ ∈ oF . If we write a general point ξ ∈ V

in the form ξ = ∑m
j=1 zj ej with (zj ) ∈ Em, then ξ ∈ L if and only if zj ∈ oE for all j .

From (4.3), we have |ωV |F = ∏m
j=1 dμ(zj ) with dμ(z) = |dz ∧ dz̄|F . For any t ∈ F×, set

v(t) = vol(�(V , t) ∩ L; |ωV,t |F ) and v̂(τ ) its Fourier transform. Suppose m is even. From
(4.4),

v̂(τ ) =
∫

F×

∫

�(V ,Δ)∩L
ψ(τh[ξ ]) |ωV,Δ|F dΔ =

∫

L
ψ(τh[ξ ])|ωV |F
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=
m/2∏

j=1

∫

o2
E

ψ(τ trE/F (zj z̄m−j+1)) dμ(zj )dμ(zm−j+1)

=
m/2∏

j=1

∫

zj∈oE
δ(τzj ∈ oE) dμ(zj ) =

m/2∏

j=1

vol(oE ∩ τ−1oE) = inf(1, |τ |−1
E )m/2 .

Note that dμ(z) coincides with the Haar measure on E such that vol(oE) = 1. By the Fourier
inversion formula,

v(Δ) =
∫

F

v̂(τ )ψ(−Δτ)dτ =
∫

F

inf(1, |τ |−1
E )m/2ψ(−Δτ)dτ

=
∫

τ∈oF
ψ(−Δτ)dτ +

∫

τ∈F−oF

|τ |−m/2
E ψ(−Δτ)dτ

= 1 +
∞∑

l=1

q−(m−1)l
∫

o×
F

ψ(−Δ�−lu)du .

The u-integral is computed as δ(Δ�−l ∈ oF )− q−1δ(Δ�−l+1 ∈ oF ). By this,

v(Δ) = 1 +
ordF (Δ)∑

l=1

(1 − q−1)q−l(m−1) + (−q−1) q−(m−1)(ordF (Δ)+1)

= 1 − q−m

1 − q−(m−1)
(1 − q−(m−1)|Δ|m−1

F )

as desired for an even m. Suppose m is odd. Since h[ξ ] = ∑(m−1)/2
j=1 trE/F (zj z̄m−j+1) +

κz(m+1)/2z̄(m+1)/2 with κ = h[e(m+1)/2], in the same way as above, we have

v̂(τ ) =
⎧
⎨

⎩

(m−1)/2∏

j=1

∫

o2
E

ψ(τ trE/F (zj z̄m−j+1)) dμ(zj )dμ(zm−j+1)

⎫
⎬

⎭

∫

oE

ψ(κzz̄τ ) dμ(z)

= inf(1, |τ |−1
E )(m−1)/2

∫

oE

ψ(κzz̄τ ) dμ(z) .

When E = F ⊕ F and oE = oF ⊕ oF , then the last integral is easily seen to be equal to

inf(1, |τ |−1
F ). Thus, v̂(τ ) = inf(1, |τ |−1

F )(m+1)/2 in this case. In the same way as above, by
the Fourier inversion, we have the formula of v(Δ) as desired. In the remaining part of the
proof, we assume that E is a field. By the Fourier inversion,

v(Δ) =
∫

F
inf(1, |τ |−1

E )(m−1)/2
{∫

oE
ψ(κzz̄τ ) dμ(z)

}

ψ(−Δτ)dτ

=
∫

oF

∫

oE
ψ(−τ(Δ− κzz̄))dτdμ(z)
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+
∫

z∈oE

{∫

τ∈F−oF
|τ |−(m−1)/2

E ψ(−τ(Δ− κzz̄)) dτ

}

dμ(z)

= 1 +
∫

z∈oE
dμ(z)

∞∑

l=1

q−(m−1)l+l
∫

o×
F

ψ(−(Δ− κzz̄)�−lu)du

= 1 +
∫

z∈oE

⎧
⎨

⎩

ordF (Δ−κzz̄)∑

l=1

(1 − q−1)q−(m−2)l + (−q−1) q−(m−2)(ordF (Δ−κzz̄)+1)

⎫
⎬

⎭
dμ(z)

= 1 +
∫

z∈oE
1 − q−1 − (1 − q−(m−1))|Δ− κzz̄|m−2

F

qm−2 − 1
dμ(z)

= 1 − q−(m−1)

1 − q−(m−2)

(

1 − q−(m−2)
∫

z∈oE
|Δ− κzz̄|m−2

F
dμ(z)

)

.

By Lemma 4.3, we are done. �

LEMMA 4.3. Suppose E is a field and m is odd. For Δ ∈ oF − {0},
∫

z∈oE
|Δ− κzz̄|m−2

F dμ(z)

= −(−1)ordF (Δ)|Δ|m−1
F

q−1(1 − q−m+2)(1 + q−m)
1 − q−2(m−1)

+ 1 − q−2

1 − q−2(m−1)
,

where dμ(z) = |dz ∧ dz̄|F .

PROOF. Since κ ∈ o×
F , by replacing Δ with −κΔ, we may suppose κ = −1. Set

l = ordF (Δ). Let I1, I2 and I3 be the integrals of |Δ+ zz̄|m−2
F over the subsets of oE defined

by |z|E < |Δ|F , |z|E = |Δ|F and |z|E > |Δ|F , respectively. We have

I1 =
∫

|z|E<|Δ|F
|Δ|m−2

F dμ(z)=|Δ|m−2
F vol{z∈oE | |z|E < |Δ|F }=|Δ|m−1

F

{
q−2 (l is even) ,

q−1 (l is odd) ,

and

I3 =
∫

|Δ|F<|z|E�1
|zz̄|m−2

F dμ(z) =
[ l−1

2 ]∑

k=0

q−2k(m−2) vol(�ko×
E)

= 1 − q−2

1 − q−2(m−1)

{
1 − q−l(m−1) (l is even) ,

1 − q−(l+1)(m−1) (l is odd) .

Since |z|E is an even power of q , the set |z|E = |Δ|F is empty unless l = ordF (Δ) is even.
Thus I2 = 0 if l is odd. Suppose l is even and set Δ = �lΔ0 with Δ0 ∈ o×

F . Then

I2 =
∫

�l/2o×
E

|Δ+ zz̄|m−2
F dμ(z) = q−(m−1)l

∫

o×
E

|Δ0 + uū|m−2
F du ,
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where du is the Haar measure on oE such that vol(oE) = 1. Since E/F is unramified, the
map u �→ v = uū from o×

E to o×
F is surjective. If dv denotes the Haar measure on oF such

that vol(oF ) = 1, then there exists a Haar measure d1z on E1 = {z ∈ oE| zz̄ = 1} such that
du/d1z = dv and vol(E1; d1z) = vol(o×

E)/vol(o×
F ) = (1−q−2)/(1−q−1) = 1+q−1. Thus

I2 = q−(m−1)l
∫

o×
F

∫

E1
|Δ0 + v|m−2

F d1z dv = q−(m−1)l(1 + q−1)

∫

o×
F

|Δ0 + v|m−2
F dv .

In the last integral, by a variable change, we may assume Δ0 = 1. Then,
∫

o×
F

|1 + v|m−2
F dv =

∑

η∈o×
F /(1+�oF )

∫

1+�oF

|1 + ηv|m−2
F dv

= q−1
∑

η∈o×
F /(1+�oF )

∫

oF

|1 + η(1 +�x)|m−2
F dx .

If η is not the class −1 (mod �), then the integral becomes vol(oF ) = 1; the number of
such η is q − 2. If η ≡ −1 (mod �), then the x-integral is

∫

oF

|�x|m−2
F dx = q−(m−2)

∞∑

j=0

q−j (m−2) q−j (1 − q−1) = q−(m−2)(1 − q−1)

1 − q−(m−1)
.

Hence for an even l,

I2 = (1 + q−1)q−(m−1)l
∫

o×
F

|1 + v|m−2
F

dv

= (1 + q−1)q−(m−1)l × q−1

{

(q − 2)+ q−(m−2)(1 − q−1)

1 − q−(m−1)

}

= q−(m−1)l(q−1 + q−2)
q − 2 + q−(m−1)

1 − q−(m−1)
.

The formula in the lemma is obtained as I1 + I2 + I3 by using the above evaluation of each
summand. �

4.2. Spherical functions. Let P be an F -parabolic subgroup of G defined as the
stabilizer of the rank one submodule Ee1, and N the unipotent radical of P . Let P 1 be the

stabilizer in G of e1; then P 1 is a subgroup of P and P = {d[t]| t ∈ E×}P 1. For any ν ∈ XE ,
by letting the group G act by the right translation on the C-vector space Iν of all smooth
functions f : G → C such that

f (d[t]pg) = |t|ν+(m−1)/2
E f (g) , t ∈ E× , p ∈ P 1 , g ∈ G,

we define a smooth representation ofG, denoted by (πν, Iν). By the decompositionG = PU ,

we have IUν = Cf
(ν)
0 with f (ν)

0 the unique element of Iν such that f (ν)0 (k) = 1 for all k ∈ U .
Let us recall that a smooth G-module π is said to be H -distinguished if HomH(π,C) �= {0}.



946 MASAO TSUZUKI

The representation Iν is H -distinguished for all ν in an open and dense subset of XE . Indeed,
we have

THEOREM 4.4. There exists a unique meromorphic family Ξ0(ν) ∈ HomH(Iν ,C)

over ν ∈ XE such that
〈
Ξ0(ν), f

(ν)
0

〉 = 1.

PROOF. We refer to § 5.3. �

Now, we define the spherical function Ων : G → C by

Ων(g) = 〈Ξ0(ν), πν(g) f
(ν)
0

〉
, g ∈ G .(4.5)

Obviously, Ων is left H -invariant and right U-invariant. By the decomposition (4.2), we have
a well-defined smooth function Ψν on G by requiring that it is left H -invariant and right
U-invariant, and that it satisfies

Ψν(d[�−l
E ]) = q−νζE(ν + (m− 1)/2) q

−l(ν+m−1
2 )

E , l ∈ N .(4.6)

We admit an ambiguity of the choice of a square root qν of qνE when E is a field, which
disappears in the following formula.

THEOREM 4.5. For ν ∈ XE and g ∈ Hd[�−l
E ]U (l ∈ N), we have

Ων(g) = 1

QE,m

{
ζE(−ν + (m− 1)/2)−1

1 − εmEq
2ν

(q
−ν−m−1

2
E )l + ζE(ν + (m− 1)/2)−1

1 − εmEq
−2ν

(q
ν−m−1

2
E )l

}

= ζE(ν + (m − 1)/2)−1ζE(−ν + (m− 1)/2)−1

QE,m(qν − εmEq
−ν)

{−εmEΨν(g)+ Ψ−ν(g)} .

PROOF. We refer to § 5.4. �

4.3. Spectral decomposition. Let Cc(H\G/U) be the space of all the finite C-linear
combinations of characteristic functions of double (H,U)-cosets. The spherical Fourier trans-
form of a function f ∈ Cc(H\G/U) is defined to be the integral

Fhf (ν) =
∫

H\G
f (g)Ων(g) dġ , ν ∈ X

0
E(4.7)

with dġ the G-invariant measure on H\G such that vol(H\HU) = 1. By (4.2), the integral

Fhf (ν) reduces to a sum of f (d[�−l])Ων(d[�−l]) vol(H\Hd[�−l]U) for 0 � l � N ,
where N is an integer such that f (d[�−l]) = 0 for all l > N . From the first expression of
Ων in Theorem 4.5, the values Ων(d[�−l]) are seen to be Laurent polynomials of X = q−ν

E

invariant by X �→ X−1. Hence Fhf (ν) also can be viewed as an element of A = {α(ν) ∈
C[X,X−1]| α(ν) = α(−ν) }. Conversely, for any α ∈ A, we set

F∗
hα(g) =

∫

X
0
E

α(ν)Ων(g) dΛh(ν) , g ∈ G,(4.8)
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where dΛh is a positive Radon measure on the imaginary axis X0
E defined as

dΛh(
√−1y) = QE,m

4π

∣
∣
∣
∣
∣

1 − εmEq
2
√−1y

ζE(
√−1y + (m − 1)/2)−1

∣
∣
∣
∣
∣

2

(log qE) dy .(4.9)

Let L2(X0
E; dΛh) be the L2-space for the measure space (X0

E, dΛh).

THEOREM 4.6. The integrals (4.7) and (4.8) define C-linear bijections

Fh : Cc(H\G/U) → A , F∗
h : A → Cc(H\G/U) ,

each of which inverts the other one. Moreover, Fh extends to an isometry from the

Hilbert space L2(H\G/U) onto the Hilbert space L2(X0
E; dΛh). We have (Fhf |α)

X
0
E

=
(f |F∗

hα)H\G for all f ∈ L2(H\G/U) and α ∈ L2(X0
E; dΛh).

PROOF. See § 5.4. �

4.4. Orbital integrals. Recall that H = {g ∈ G| g�0 ∈ E�0}, H0 = {g ∈ G| g�0 =
�0}. As in § 1.2.2, we set b(γ ) = h(γ−1�0, �0), �

γ

0 = γ−1�0 − b(γ )�0, and Δγ = h[�γ0 ] for
γ ∈ G−H .

LEMMA 4.7. Suppose Nb(γ ) �= 0. Then H ∩ γ−1Hγ consists of all g ∈ G such that

g�0 = a�0, g�γ0 = a�
γ

0 with some a ∈ E1. The subgroup H0 ∩ γ−1H0γ consists of g ∈ G

such that g�0 = �0 and g�
γ

0 = �
γ

0 . In particular, the inclusion H0 ↪→ H induces a bijection

H0 ∩ γ−1H0γ \H0 ∼= H ∩ γ−1Hγ \H .

PROOF. For g ∈ G to belong to γ−1Hγ ∩H is equivalent to the condition

g�0 = a�0 , gγ−1�0 = a1γ
−1�0 for some a, a1 ∈ E1.

The first equation implies that g preserves the decomposition V = E�0 ⊕ �⊥
0 . From γ−1�0 =

b(γ )�0 + �
γ

0 and Nb(γ ) �= 0, the equation gγ−1�0 = a1γ
−1�0 yields g�0 = a1�0 and g�

γ

0 =
a1�

γ

0 . Hence a = a1. This shows the first two claims, which impliesH ∩γ−1Hγ = ZG(H0 ∩
γ−1H0γ ) with ZG the center of G. Since H = ZGH0, we have the last assertion. �

The unitary group U(h|�⊥
0 ) of the hermitian space (�⊥

0 ,h|�⊥
0 ) is identified with H0. The

stabilizer H0(�
γ

0 ) in H0 of �γ0 coincides with H0 ∩ γ−1H0γ . By the H0-isomorphism

H0(�
γ

0 )\H0 � H(�
γ

0 )h �→ h−1�
γ

0 ∈ �(�⊥
0 ,Δγ ) ,

we transport the measure |ω�⊥0 ,Δγ
|F on �(�⊥

0 ,Δγ ) to H0(�
γ

0 )\H0. By Lemma 4.7, we have

an H -invariant measure on H ∩ γ−1Hγ \H to be denoted by dOγ (h) when Nb(γ ) �= 0.
For any γ ∈ G− H such that Nb(γ ) �= 0, 1 and for any function f ∈ Cc(H\G/U), we

consider the integral (1.6)
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THEOREM 4.8. Suppose E is a field. Let γ ∈ G − H with Nb(γ ) �= 0, 1. Then for
any f ∈ Cc(H\G/U), the integral (1.6) converges absolutely and has the contour integral
expression

J
�0
h (γ ; f ) = 1

π
√−1

∫

X
δ
E

Ĵ
�0
h (γ ; ν)Fhf (ν) dμm(ν)

with dμm(ν) = (qν−(−1)mq−ν)(log q)dν, where δ > m−3
2 and Ĵ

�0
h (γ ; ν) is given as follows.

If ordF Nb(γ ) � 0, then

Ĵ
�0
h (γ ; ν) = q−ν{1 − εγ q

−(m−2)|1 − Nb(γ )|m−2
F − (q−(m−2) − εγ |1 − Nb(γ )|m−2

F

)
X}

(1 − εq−(m−1))−1(1 − εq−(m−2))(1 − q−(m−2)X)(1 − qm−2X)
,

and if ordF Nb(γ ) < 0, then

Ĵ
�0
h (γ ; ν) = q−ν |Nb(γ )|(m−2)/2−ν−1/2

F

(1 − εq−(m−1))−1

1 + εX

(1 − qm−2X)(1 − q−(m−2)X)
,

where X = q−(2ν+1), ε = (−1)m−1 and εγ = εordF (�(1−Nb(γ )).

PROOF. Set α = Fhf . Then from Theorem 4.6 and Lemma 4.5,

f (g) =
∫

X
0
E

α(ν)Ων(g)dΛh(ν) = 1

π
√−1

∫

X
0
E

α(ν)Ψν(g)dμm(ν) .

Since the integrand is holomorphic on Re(ν) > 0, we shift the contour X0
E to X

δ
E for any

δ > 0. By substituting the contour integral expression, we have

J
�0
h (γ ; f ) =

∫

H∩γ−1Hγ \H

{
1

π
√−1

∫

X
δ
E

α(ν)Ψν(γ h)dμm(ν)

}

dOγ (h) .

We shall show that the integral

Ĵ
�0
h (γ ; ν) =

∫

H∩γ−1Hγ \H
Ψν(γ h) dOγ (h)

converges absolutely for Re(ν) > m−3
2 and is evaluated as in the theorem. From the proof

of [8, Proposition 3.9], an element g ∈ G belongs to Hd[�−l]U if and only if g−1�0 ∈
�−lLprim, where Lprim = L − �L is the set of primitive vectors in L. Thus, by (4.2) and
(4.6),

Ĵh�0 (γ ; ν) = q−ν(1 − q
−ν−(m−1)/2
E )−1

∞∑

l=0

q
−l(ν+(m−1)/2)
E Al(4.10)

with

Al = vol({h ∈ H0 ∩ γ−1H0γ \H0| h−1γ−1�0 ∈ �−lLprim }; dOγ ) .
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Set M = �⊥
0 ∩ L. From γ−1�0 = b(γ )�0 + �

γ

0 and L = oE�0 ⊕ M, for h ∈ H0, we have

that h−1γ−1�0 ∈ �−lLprim if and only if

(i) b(γ ) ∈ �−lo×
E, h−1�

γ

0 ∈ �−lM, or

(ii) b(γ ) ∈ �−loE, h−1�
γ

0 ∈ �−lMprim, where Mprim = M − �M.

From assumption, b(γ ) �= 0 andΔγ = 1−Nb(γ ) �= 0. Set e = ordE b(γ ). From this,Al = 0
for 0 � l < −e is obvious. If l = −e, then we have the case (i); thus from the construction of
the measure dOγ and by Lemma 4.2 applied to the unimodular lattice M (⊂ �⊥

0 ),

A−e = vol
(
�(�⊥0 ,Δγ ) ∩�eM; |ω

�⊥0 ,Δγ
|F
)

= q−2e(m−2) vol
(
�(�⊥0 , �−2eΔγ ) ∩ M; |ω

�⊥0 ,�−2eΔγ
|F
)

(by Lemma 4.1)

= q−2e(m−2) δ(�−2eΔγ ∈ oF )
1 − εq−(m−1)

1 − εq−(m−2)

(

1 − εordF (�Δγ )q−(m−2)|�−2eΔγ |m−2
F

)

,

= q−2e(m−2) δ(�−2eΔγ ∈ oF )
1 − εq−(m−1)

1 − εq−(m−2)

(

1 − εordF (�Δγ )q(2e−1)(m−2)|Δγ |m−2
F

)

,

where ε = (−1)m−1. If l > −e, then we have the case (ii); thus in the same way as above,

Al = vol(�(�⊥0 , Δγ ) ∩�−lM; |ω
�⊥0 ,Δγ

|F )− vol(�(�⊥0 ,Δγ ) ∩�−(l−1)M; |ω
�⊥0 ,Δγ

|F )

= q2l(m−2)vol(�(�⊥0 ,� 2lΔγ ) ∩ M; |ω
�⊥0 ,� 2lΔγ

|F )

− q2(l−1)(m−2)vol(�(�⊥0 , � 2(l−1)Δγ ) ∩ M; |ω�⊥0 ,� 2(l−1)Δγ
|F ) (by Lemma 4.1)

= 1 − εq−(m−1)

1 − εq−(m−2)

{

q2l(m−2)δ(� 2lΔγ ∈ oF )

(

1 − εordF (�Δγ )q−(m−2)|� 2lΔγ |m−2
F

)

− q2(l−1)(m−2)δ(� 2(l−1)Δγ ∈ oF )

(

1 − εordF (�Δγ )q−(m−2)|� 2(l−1)Δγ |m−2
F

)}

.

If e = ordE b(γ ) < 0, then ordF (Δγ ) = ordF (1 − Nb(γ )) = 2e and ordF (� 2lΔγ ) = 2(l +
e) � 0 for l > −e. If e � 0, then ordF (Δγ ) = ordF (1 − Nb(γ )) � 0 and ordF (� 2lΔγ ) �
2l � 0. Thus, ordF (� 2(l−1)Δγ ) (l ∈ N, l > −e) is negative only when Δγ ∈ o×

F , e > 0,
l = 0. Hence, for l ∈ N with l > −e, Al is equal to

1 − εq−(m−1)

1 − εq−(m−2)

{

q2l(m−2)
(

1 − εordF (�Δγ )q−(m−2)|� 2lΔγ |m−2
F

)

− q2(l−1)(m−2)
(

1 − εordF (�Δγ )q−(m−2)|� 2(l−1)Δγ |m−2
F

)

+ δ(e > 0, l = 0,Δγ ∈ o×
F
)q−2(m−2)(1 − εqm−2)

}

= 1 − εq−(m−1)

1 − εq−(m−2)

{

(1 − q−2(m−2))q2l(m−2) + δ(e > 0, l = 0, Δγ ∈ o×
F )q

−2(m−2)(1 − εqm−2)

}

.
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Suppose e > 0. Then Nb(γ ) ∈ �oF and Δγ = 1 − Nb(γ ) ∈ o×
F . Hence,

∞∑

l=0

q
−l(ν+(m−1)/2)
E Al

= 1 − εq−(m−1)

1 − εq−(m−2)

∞∑

l=0

q−2l(ν+(m−1)/2)

×
{

(1 − q−2(m−2))q2l(m−2) + δ(l = 0)q−2(m−2)(1 − εqm−2)

}

= 1 − εq−(m−1)

1 − εq−(m−2)

{
1 − q−2(m−2)

1 − q−2(ν−(m−3)/2)
+ q−2(m−2)(1 − εqm−2)

}

= 1 − εq−(m−1)

1 − εq−(m−2)
× (1 − εq−(m−2))(1 + εq−2ν−1)

1 − q−2(ν−(m−3)/2)
= (1 − εq−(m−1))(1 + εq−2ν−1)

1 − q−2(ν−(m−3)/2)
.

By plugging this to (4.10), we obtain the formula of Ĵ
�0
h (γ ; ν) as desired. Suppose e =

ordE b(γ ) � 0. Then
∞∑

l=0

q
−l(ν+(m−1)/2)
E

Al

= 1 − εq−(m−1)

1 − εq−(m−2)

{

q2e(ν−(m−3)/2)
(

1 − εordF (�Δγ )q(2e−1)(m−2)|Δγ |m−2
F

)

+
∞∑

l=−e+1

q−2l(ν+(m−1)/2)(1 − q−2(m−2))q2l(m−2)
}

= 1 − εq−(m−1)

1 − εq−(m−2)

{

q2e(ν−(m−3)/2)
(

1 − εordF (�Δγ )q(2e−1)(m−2)|Δγ |m−2
F

)

+ (1 − q−2(m−2))q2(ν−(m−3)/2)(e−1)

1 − q−2(ν−(m−3)/2)

}

= 1 − εq−(m−1)

1 − εq−(m−2)

{
q2(ν−(m−3)/2)e

1 − q−2(ν−(m−3)/2)
− q−(m−2)εordF (�Δγ )|Δγ |m−2

F

q2(ν+(m−1)/2)e

1 − q−2(ν+(m−1)/2)

}

× (1 − q−2(ν+(m−1)/2)) .

By plugging this to (4.10), we obtain the formula of Ĵ�0
h (γ ; ν) as desired. We note that when

e < 0, then ordF Nb(γ ) = ordF (Δγ ) ∈ 2Z and |Δγ |m−2
F = q−2e(m−2). �

THEOREM 4.9. SupposeE is isomorphic to F⊕F . Let γ ∈ G−H with Nb(γ ) �= 0, 1.
Then for any f ∈ Cc(H\G/U), the integral (1.6) converges absolutely and has the contour
integral expression

J
�0
h (γ ; f ) = 1

π
√−1

∫

X
δ
E

Ĵ
�0
h (γ ; ν)Fhf (ν) dμ(ν)
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with dμ(ν) = 2−1(qν − q−ν)(log q)dν, where δ > m−3
2 and Ĵ

�0
h (γ ; ν) is defined as follows:

If e = ordF Nb(γ ) > 0,

Ĵ
�0
h (γ ; ν) = q−ν(1 − q−(m−1))

(e − 1)X2 − e(q(m−2)/2 + q−(m−2)/2)X + (e + 1)

(1 − q(m−2)/2X)2(1 − q−(m−2)/2X)2
,

and if e = ordF Nb(γ ) � 0,

Ĵ
�0
h (γ ; ν)= q−ν 1 − q−(m−1)

1 − q−(m−2)
(q(m−2)/2X)−e

×
{

1

(1 − q(m−2)/2X)2
− q−(m−2)|1 − Nb(γ )−1|m−2

F

(1 − q−(m−2)/2X)2

}

,

where X = q−(ν+1/2).

PROOF. In the same way as the proof of the previous theorem, we have

J
�0
h (γ ; f ) =

∫

H∩γ−1Hγ \H

{
1

π
√−1

∫

X
δ
E

α(ν)Ψν(γ h)dμ(ν)

}

dOγ (h) ,

where α = Fhf (ν). By Lemma 4.7, in the h-integral, we may replace the integration domain
with H0 ∩ γ−1H0γ \H0. We shall show that the integral

Ĵ
�0
h (γ ; ν) =

∫

H0∩γ−1H0γ \H0

Ψν(γ h) dOγ (h)

converges absolutely for Re(ν) > m−3
2 and is evaluated as in the theorem. We may take

our �0 of the form �0 = ae1 + em with a ∈ oE . Let θ1 ∈ oF be a square root of θ in

F . Then we fix the identification E = F [√θ ] ∼= F ⊕ F by the map sending a + b
√
θ to

(a + θ1b, a − θ1b); thus
√
θ = (θ1,−θ1) and the norm of b = (b1, b2) ∈ E is given as

Nb = b1b2. Set �1 = (�, 1) and �2 = (1,�). Then, from the proof of Lemma 6.2,

g ∈ G belongs to the coset H0d[�−l1
1 �

−l2
2 ]U if and only if g−1�0 ∈ �

−l1
1 �

−l2
2 Lprim, where

Lprim = L − (�1L ∪ �2L). Since G is a disjoint union of H0d[�−l1
1 �

−l2
2 ]U (l1, l2 ∈

Z, l1 + l2 � 0) and since H0d[�−l1
1 �

−l2
2 ]U = {g ∈ G| g−1�0 ∈ �

−l1
1 �

−l2
2 Lprim } as seen

in §6, we have

Ĵ
�0
h (γ ; ν) = q−ν(1 − q−(ν+(m−1)/2))−2

∞∑

l=0

q−l(ν+(m−1)/2)
∑

(l1,l2)∈Z2

l1+l2=l

Al1,l2(4.11)

with

Al1,l2 = vol
(
{h ∈ H0 ∩ γ−1H0γ \H0| h−1γ−1�0 ∈ �

−l1
1 �

−l2
2 Lprim }; dOγ

)
.
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Set n = �
l1
1 �

l2
2 oE and M = �⊥

0 ∩L. Since h−1γ−1�0 = b(γ )�0 + h−1�
γ

0 is the decomposi-

tion by the direct sum L = oE�0 ⊕ M, the vector h−1γ−1�0 belongs to n−1Lprim if and only
if one of the following 4 conditions is satisfied.

(i) b(γ ) ∈ n−1o×
E , h−1�

γ

0 ∈ n−1M,

(ii) b(γ ) ∈ n−1(�1oE ∩�2oE), h−1�
γ

0 ∈ n−1(M − �1M −�2M),

(iii) b(γ ) ∈ n−1(�1oE −�2oE), h−1�
γ

0 ∈ n−1(M −�1M),

(iv) b(γ ) ∈ n−1(�2oE −�1oE), h−1�
γ

0 ∈ n−1(M −�2M).

Set b(γ ) = (b1, b2) and ej = ordF (bj ) (j = 1, 2); then Nb(γ ) = b1b2 �= 0, Δγ =
1 − b1b2 �= 0 from assumption, and e = ordF Nb(γ ) = e1 + e2. Set l = l1 + l2. The case (i)
occurs if and only if l1 = −e1, l2 = −e2. By Lemmas 4.1 and 4.2, we have

A−e1,−e2 = vol
(
�(�⊥

0 ,Δγ ) ∩�
e1
1 �

e2
2 M; |ω�⊥0 ,Δγ

|F
)

= q−e(m−2)δ(�−eΔγ ∈ oF )
1 − q−(m−1)

1 − q−(m−2)

(
1 − q−(m−2)|�−eΔγ |m−2

F

)
.

If e > 0, then ordF (Δγ ) = ordF (1 − Nb(γ )) = 0; thus δ(�−eΔγ ∈ oF ) = 0 in this case. If

e � 0, then ordF (Δγ ) � ordF Nb(γ ) = e and δ(�−eΔγ ∈ oF ) = 1.
The case (ii) occurs if and only if l1 � −e1 + 1, l2 � −e2 + 1. By Lemmas 4.1 and 4.2,

Al1,l2 = ql(m−2)
{∫

�(�⊥0 ,� lΔγ )∩M
|ω
�⊥0 ,� lΔγ

|F − q−(m−2)
∫

�(�⊥0 ,� l−1Δγ )∩M
|ω
�⊥0 ,� l−1Δγ

|F

− q−(m−2)
∫

�(�⊥0 ,� l−1Δγ )∩M
|ω
�⊥0 ,� l−1Δγ

|F + q−2(m−2)

×
∫

�(�⊥0 ,� l−2Δγ )∩M
|ω
�⊥0 ,� l−2Δγ

|F
}

= ql(m−2) 1 − q−(m−1)

1 − q−(m−2)

{

δ(� lΔγ ∈ oF )

(

1 − q−(m−2)|�lΔγ |m−2
F

)

− 2q−(m−2)δ(� l−1Δγ ∈ oF )

(

1 − q−(m−2)|�l−1Δγ |m−2
F

)

+ q−2(m−2)δ(� l−2Δγ ∈ oF )

(

1 − q−(m−2)|�l−2Δγ |m−2
F

)}

.

The case (iii) occurs if and only if l1 � −e1 + 1, l2 = −e2; the case (iv) occurs if and only if
l1 = −e1, l2 � −e2 + 1. In the same way as above, we have

Al1,l2 = ql(m−2)
{∫

�(�⊥0 ,� lΔγ )∩M
|ω
�⊥0 ,� lΔγ

|F − q−(m−2)
∫

�(�⊥0 ,� l−1Δγ )∩M
|ω
�⊥0 ,� l−1Δγ

|F
}

= ql(m−2) 1 − q−(m−1)

1 − q−(m−2)

{

δ(� lΔγ ∈ oF )

(

1 − q−(m−2)|�lΔγ |m−2
F

)

− q−(m−2)δ(� l−1Δγ ∈ oF )

(

1 − q−(m−2)|�l−1Δγ |m−2
F

)}

.
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Thus,
∞∑

l=0

q−l(ν+(m−1)/2)
∑

(l1,l2)∈Z2

l1+l2=l

Al1,l2 = 1 − q−(m−1)

1 − q−(m−2) (I1 + I2 + I3 + I4),(4.12)

where

I1 = qe(ν−(m−3)/2)δ(e � 0)

(

1 − q−(m−2)|�−eΔγ |m−2
F

)

,

I2 =
∑

l1>−e1,l2>−e2
l=l1+l2�0

q−l(ν−(m−3)/2)
{

δ(� lΔγ ∈ oF )

(

1 − q−(m−2)|�lΔγ |m−2
F

)

− 2q−(m−2)δ(� l−1Δγ ∈ oF )

(

1 − q−(m−2)|�l−1Δγ |m−2
F

)

+ q−2(m−2)δ(� l−2Δγ ∈ oF )

(

1 − q−(m−2)|�l−2Δγ |m−2
F

)}

,

I3 =
∑

l1>−e1,
l=l1−e2�0

q−(l1−e2)(ν−(m−3)/2)
{

δ(� l1−e2Δγ ∈ oF )

(

1 − q−(m−2)|�l1−e2Δγ |m−2
F

)

− q−(m−2)δ(� l1−e2−1Δγ ∈ oF )

(

1 − q−(m−2)|�l1−e2−1Δγ |m−2
F

)}

,

I4 =
∑

l2>−e2,
l=l2−e1�0

q−(l2−e1)(ν−(m−3)/2)
{

δ(� l2−e1Δγ ∈ oF )

(

1 − q−(m−2)|�l2−e1Δγ |m−2
F

)

− q−(m−2)δ(� l2−e1−1Δγ ∈ oF )

(

1 − q−(m−2)|�l2−e1−1Δγ |m−2
F

)}

.

Suppose e = ordF Nb(γ ) > 0. Then I1 = 0 obviously, and ordF Δγ = ordF (1−Nb(γ )) = 0.
Hence

I2 =
∑

l1>−e1,l2>−e2
l=l1+l2�0

q−l(ν−(m−3)/2)
{

(1 − q−(l+1)(m−2))− 2q−(m−2)δ(l � 1)(1 − q−l(m−2))

+ q−2(m−2)δ(l � 2)(1 − q−(l−1)(m−2))

}

=
∑

l1>−e1,l2>−e2
l=l1+l2�0

q−l(ν−(m−3)/2)
{

δ(l = 0)(1 − q−(m−2))+ δ(l � 1)(1 − q−(m−2))2
}

= (e − 1)(1 − q−(m−2))+ (1 − q−(m−2))2
∑

l�1

(l + e − 1)Y l



954 MASAO TSUZUKI

with Y = q−(ν−(m−3)/2). By applying the formula
∞∑

l=a
(l + e − 1)Y l = (e − 1)Y a

1 − Y
+ Y {(1 − a)Y a + aY a−1}

(1 − Y )2
, (|Y | < 1, a ∈ N) ,

we obtain

I2 =(e − 1)(1 − q−(m−2))+
{
(e − 1)Y

1 − Y
+ Y

(1 − Y)2

}

(1 − q−(m−2))2 .

It is evident that I3 = I4. Since l1 � e2 implies l1 > −e1 for e > 0, we have that I3 equals
∑

l1>−e1,
l=l1−e2�0

q−(l1−e2)(ν−(m−3)/2)
{

δ(l1 � e2)(1 − q−(l1−e2+1)(m−2))

− q−(m−2)δ(l1 � e2 + 1)(1 − q−(l1−e2)(m−2))

}

=
∑

l�0

Y l(1 − q−(l+1)(m−2))− q−(m−2)
∑

l�1

Y l(1 − q−l(m−2))

= 1

1 − Y
− q−(m−2)

1 − q−(m−2)Y
− q−(m−2)Y

1 − Y
+ q−2(m−2)Y

1 − q−(m−2)Y
= −q−(m−2) + 1 − q−(m−2)Y

1 − Y
.

Hence I1 + I2 + I3 + I4 becomes

(1 − q−(m−2))(e − 1)+
{
(e − 1)Y

1 − Y
+ Y

(1 − Y)2

}

(1 − q−(m−2))2

+ 2

(

−q−(m−2) + 1 − q−(m−2)Y

1 − Y

)

= (1 − q−(m−2))
(e − 1)q−(m−2)Y 2 − e(1 + q−(m−2))Y + (e + 1)

(1 − Y)2
.

From this, combined with (4.11) and (4.12), we have the desired formula.
Consider the case when e = ordF Nb(γ ) < 0. Then ordF (Δγ ) = e. In the same way as

before, we have I1 = (1 − q−(m−2))Y−e,

I2 =
∑

l1>−e1,l2>−e2
l=l1+l2�−e

q−l(ν−(m−3)/2)
{

δ(l = −e)(1 − q−(m−2))+ δ(l � −e + 1)(1 − q−(m−2))2
}

= (1 − q−(m−2))2
∑

l�−e+1

(l + e − 1)Y l

=
{
(e − 1)Y−e+1

1 − Y
+ Y {eY−e+1 + (−e + 1)Y−e}

(1 − Y)2

}

(1 − q−(m−2))2 .
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and

I3 = I4 =
∑

l�−e+1

Y l
{
(1 − q−(l+e+1)(m−2))− q−(m−2)(1 − q−(l+e)(m−2))

}

= (1 − q−(m−2))
Y−e+1

1 − Y
.

Hence, I1 + I2 + I3 + I4 becomes

(1 − q−(m−2))

{

2
Y−e+1

1 − Y
+ Y−e+

(
(e − 1)Y−e+1

1 − Y
+ Y {eY−e+1+(−e + 1)Y−e}

(1 − Y)2

)

(1 − q−(m−2))

}

= (1 − q−(m−2))Y−e 1 − q−(m−2)Y 2

(1 − Y)2
.

From this, combined with (4.11) and (4.12), we have the following as desired:

Ĵ
�0
h (γ ; ν) = q−ν(1 − q−(m−1))

Y−e(1 − q−(m−2)Y 2)

(1 − q−(m−2)Y )2(1 − Y )2

= q−ν 1 − q−(m−1)

1 − q−(m−2)
Y−e

{
1

(1 − Y )2
− q−(m−2)

(1 − q−(m−2)Y )2

}

.

Consider the case e = ordF Nb(γ ) = 0. Set a = ordF (Δγ ); then a � 0. We have I1 =
1 − q−(a+1)(m−2),

I2 =
∑

l1>−e1,l2>−e2
l=l1+l2�0

Y l
{

1 − q−(l+a+1)(m−2) − 2δ(l + a � 1)q−(m−2)(1 − q−(l+a)(m−2))

+ δ(l + a � 2)q−2(m−2)(1 − q−(l+a−1)(m−2))

}

=
∑

l1>−e1,l2>−e2
l=l1+l2�0

Y l
{

δ(l + a = 0)(1 − q−(m−2))+ δ(l + a � 1)(1 − q−(m−2))2
}

= (1 − q−(m−2))2
∑

l�1

(l − 1)Y l = (1 − q−(m−2))2
{ −Y

1 − Y
+ Y

(1 − Y )2

}

,

and

I3 =I4 =
∑

l�1

Y l{δ(l+a � 0)(1−q−(m−2)(l+a+1))−q−2(m−1)δ(l + a�1)(1−q−(m−2)(l+a))}

=(1 − q−(m−2))
∑

l�1

Y l = (1 − q−(m−2))
Y

1 − Y
.
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Thus I1 + I2 + I3 + I4 becomes

1 − q−(a+1)(m−2) + (1 − q−(m−2))2
{ −Y

1 − Y
+ Y

(1 − Y )2

}

+ 2(1 − q−(m−2))
Y

1 − Y

= −q−(a+1)(m−2) + (1 − q−(m−2)Y )2

(1 − Y )2
.

From this, combined with (4.11) and (4.12), we have the following as desired:

Ĵ
�0
h (γ ; ν) = q−ν 1 − q−(m−1)

1 − q−(m−2)

{

− q−(a+1)(m−2)

(1 − q−(m−2)Y )2
+ 1

(1 − Y)2

}

.

�

4.5. The proof of Theorem 1.1. We work with notation in §1.2.3, holding all the
assumptions made there. Due to the normalization of measures, it is easy to have Ff ◦ = 1
and Fhφ

◦ = 1, which evidently yields the identity Transη(f ◦) = φ◦ by definition. From the

definitions, we have ξ(�) = εm−1
E q−(m−2), z = q−s

E and ι(z) = εm−1
E z. Note that ξ(�) �= 1

from m � 4. The required relation reduces to the identity

ξ(b − 1) qs Ĵ(b; s, ξ) = (1 − εm−1
E q−(m−1))−1 qν Ĵ

�0
h (γ ; ν)

for all (s, ν) ∈ XE × XE such that q−ν
E = εm−1

E q−s
E . This in turn follows from Theorems 2.2

and 4.8 if E is a field and from Theorems 3.2 and 4.9 is E ∼= F ⊕ F .

5. Appendix 1 : Harmonic analysis on hyperboloids

In this section, we use the same symbols and notation for objects introduced in §1.2.2

and §4. Beside these, we further need the following ingredients. Set V1 = ∑m−1
j=2 Eej ; then

V is decomposed to orthogonal direct sum of Ee1 + Eem and V1. Let G1 denote the unitary
group U(h|V1). For X ∈ V1 and b ∈ F , let n(X; b) be the element of G defined by

n(X; b)e1 = e1 , n(X; b)ej = ej − h(ej ,X)e1 (1 < j < m) ,

n(X; b)em = em +X + (−2−1h[X] + √
θb)e1 .

For h ∈ G1, let us define m[h] ∈ G by

m[h]e1 = e1 , m[h]em = em , m[h]|V1 = h .

Then N = {n(X; b)|X ∈ V1, b ∈ F } is the unipotent radical of P and M = {m[h]d[t]| h ∈
G1, t ∈ E× } is a Levi subgroup of P with the Levi decomposition P = MN . Moreover,

P 1 = {m[h]| h ∈ G1 }N . Let w0 and w1 be the elements of G defined by

w0(e1) = em , w0(em) = e1 , w0(ej ) = ej (1 < j < m) ,

w1(e1) = e2 , w1(e2) = e1 , w1(em−1) = em , w1(em) = em−1 ,
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w1(ej ) = ej (2 < j < m− 1) .

Set n̄(X; b) = w0n(X; b)w0 for (X, b) ∈ V1 × F and N̄ = w0Nw0. Then P̄ = MN̄ is
the parabolic subgroup opposite to P . Let s�0 be the reflexion of the hermitian space V with

respect to the vector �0 and σ : G → G denote the inner automorphism g �→ s−1
�0

gs�0 of G.

It turns out that the F -torus S0 = {d[τ ]| τ ∈ F×} is a (σ, F )-split torus and P is σ -split in
the sense that P ∩ σ(P ) = M = ZG(S0) ([14]). The diagonal elements of G with entries
from F form a maximal F -split torus, say T , containing S0. Let � be the root system of
(G, T ) and �M that of (M, T ). Let εj (1 � j � [m2 ]) be the character of T which sends a
diagonal matrix to its j -th diagonal entry. Then the character group of T is a free Z-module

with basis {εj }[
m
2 ]
j=1. Set �+

(l) = {εi ± εj |1 � i < j � [m2 ]} ∪ {2εi|1 � i � [m2 ]} and

�+
(s) = {εj |1 � j � [m2 ]}. Then �+ = �+

(l) is a positive system of �, a root system of type

Cn if m = 2n, and �+ = �+
(l) ∪�+

(s) is a positive system of �, a root system of type BCn if

m = 2n + 1 is odd. Note that any T -root occurring in N belongs to �+. Set �− = −�+,

�±
M = �M ∩�±. For α ∈ �, let m(α) denote its multiplicity. Let WG be the Weyl group of

(G, T ) and WM that of (M, T ).
To make the presentation clear, we solely describe proofs for the case when E is a field.

In the remark in §5.3, we indicate necessary modifications to treat the case when E ∼= F ⊕F .

5.1. Hecke operators in paraboric level. Set

C = {u ∈ U | u(e1)− te1 ∈ �L for some t ∈ o×
E } .

Then C is an open subgroup of U admitting the Iwahori factorization C = N−
1 MN0 =

N0MN−
1 with N−

1 = {n̄(X; b)|X ∈ �L ∩ V1, b ∈ �oF }, N0 = N ∩ U and M = M ∩ U .
Let dc be the restriction to C of the Haar measure on G. Then dc = vol(C; dg) dv dm du =
vol(C; dg)du dm dv with the probability Haar measures du, dv and dm on N−

1 , N and M,

respectively. For a ∈ E×, we set

γa = vol(Cd[a]C)−11Cd[a]C ,

where 1Y denotes the characteristic function of Y ⊂ G. Then the operator πν(γa) on the

principal series (πν, Iν) (see §4.2) preserves its C-invariant vectors ICν , which is a three di-

mensional space with basis ϕ(ν)e , ϕ(ν)w0 and ϕ
(ν)
w1 whose restrictions to U are the characteris-

tic functions of C = CeC, Cw0C and Cw1C, respectively, where e denotes the identity el-
ement of G. We confirm the latter fact by the disjoint decomposition U = ⋃

w∈W CwC
with W = {e,w0, w1}. (For this decomposition to be true, the condition m � 4 is neces-

sary.) Moreover, the operators πν(γa) (a ∈ E − oE) on ICν are mutually commuting ([4,

Lemma 4.1.5]). By the theory of canonical lifting [4, §4], there exists a subspace IC,can
ν of

ICν such that IC,can
ν = πν(γa)I

C
ν for all a ∈ E× with sufficiently large |a|E , and the canoni-

cal map jP̄ : Iν → (Iν)N̄ yields a bijection IC,can
ν

∼= (Iν)
M̄
N

([4, Proposition 4.1.4]), where
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((πν)P̄ , (Iν)N̄ ) denotes the (unnormalized) Jacquet module of (πν, Iν) along the parabolic P̄
([4, §6]). If we define the G-invariant pairing 〈 , 〉U : Iν × I−ν → C by

〈ϕ, ϕ′〉U =
∫

U
ϕ(k)ϕ′(k) dk , ϕ ∈ Iν , ϕ

′ ∈ I−ν ,

with dk being the Haar measure on U such that vol(U) = 1, then

〈πν(γa)ϕ, ϕ′〉U = 〈ϕ, π−ν (γa−1)ϕ′〉U , ϕ ∈ Iν, ϕ
′ ∈ I−ν , a ∈ E× ,(5.1)

〈ϕ(ν)w , ϕ
(−ν)
w′ 〉U = δ(w = w′) vol(CwC; dg) , w, w′ ∈ W .(5.2)

LEMMA 5.1. There exists l0 ∈ N such that the operator πν(γa) (a ∈ E − �−l0oE)
acting on ICν is diagonalizable with eigenvalues |a|ν−(m−1)/2

E , |a|−ν−(m−1)/2
E and |a|−1

E .

PROOF. First, we compute the Jacquet module of π−ν along P instead of P̄ . The set
W = {e,w0, w1} is a complete system of representatives of the double coset space P\G/P ∼=
WM\WG/WM . The coset Pw0P is Zariski open in G; the Zariski closure of the coset Pw1P

is Pw1P ∪ P . We have the obvious isomorphism M ∼= E× ×G1. From [4, §6], the Jacquet
module (I−ν)N , viewed as an M-module, has a filtration {0} ⊂ Jw0 ⊂ Jw1 ⊂ Je = (I−ν)N
with the successive quotients isomorphic to the (unnormalized) parabolic inductions

Ind(x−1(σM∩xNx−1)δ1/2|x−1Px ∩M,M) , (x ∈ W) ,

where σ is the quasi-character m[h] d[t] �→ |t|−νE of M , δ is the modulus character whose

restriction to T is
∏

α α
m(α)

∏
β β

−m(β) with α ∈ �+ − �+
M , xα ∈ �− − �−

M and β �∈
�+ −�+

M , xβ ∈ �− −�−
M . By explicating these, we have M(= E× ×G1)-isomorphisms

Je/Jw1
∼= | |−ν+(m−1)/2

E � 1G1 , Jw1/Jw0
∼= | |E � IndG1

P1
(| |−ν−1/2

E ) ,

Jw0
∼= | |ν+(m−1)/2

E � 1G1 ,

where P1 is the maximal F -parabolic subgroup of G1 stabilizing the one dimensional sub-

space Ee2 and IndG1
P1
(| |sE) is the normalized parabolic induction from the character h �→

|h(he2, em−1)|sE of P1. Since there is a perfect M-invariant pairing between (I−ν)N and

(Iν)N̄ ([4, Theorem 4.2.4]), we have an M-filtration J⊥
w (w ∈ W) of (Iν)N̄ such that

(Iν)N̄ /J
⊥
w0

∼= | |−ν−(m−1)/2
E � 1G1 , J⊥

w0
/J⊥

w1
∼= | |−1

E � IndG1
P1
(| |ν+1/2

E ) ,

J⊥
w1

∼= | |ν−(m−1)/2
E � 1G1 .

By [4, Lemma 4.1.1], there exists l0 ∈ N such that

jP̄ (πν(γa)v) = (πν)P̄ (d[a])(jP̄ (v)) , v ∈ IC,can
ν(5.3)

for all a ∈ E − �l0oE . From the above description of Jacquet modules, the M-invariant

parts ((Iν)N̄/J
⊥
w0
)M, (J⊥

w0
/J⊥

w1
)M and (J⊥

w1
)M are one dimensional with (πν)P̄ (d[a]) acting
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on by the scalar |a|ν−(m−1)/2
E , |a|−1

E and |a|−ν−(m−1)/2
E , respectively. Hence ((Iν)N̄ )

M is a

3-dimensional space. Since ICν is also 3-dimensional as we remarked above, the composite of
two surjections

ICν
πν(γa)−→ IC,can

ν

jP̄−→ ((Iν)N̄ )
M

with a ∈ E − �l0oE is a linear bijection. Hence, by (5.3), the operator πν(γa) with a ∈
E−�l0oE on (Iν)C has the eigenvalues |a|−ν−(m−1)/2

E , |a|−1
E and |a|ν−(m−1)/2

E as desired. �

Let T (ν) : Iν → I−ν be the standard G-intertwining operator, which is defined by an
analytic continuation of the integral

[T (ν)ϕ](g) =
∫

N̄

ϕ(n̄w0g) dn̄ , g ∈ G

absolutely convergent for Re(ν) � 0, where dn̄ is the Haar measure on N̄ such that

vol(N−
1 ; dn̄) = 1. We note that vol(N̄ ∩ U; dn̄) = q2m−3.

LEMMA 5.2. Let ϕ ∈ ICν with Re(ν) � 0. Then

lim
l→∞ q

−l(ν−(m−1)/2)
E [πν(γ�−l )ϕ)](e) = [T (ν)ϕ](w0) .

PROOF. From definition,

[πν(γ�−l )ϕ](e) = vol(Cd[�−l]C)−1
∫

g∈Cd[�−l]C
ϕ(g)dg = vol(C)−1

∫

C
ϕ(cd[�−l])dc .

We have the Iwahori factorization c = umv with m ∈ M, v ∈ N0 and u ∈ N−
1 . The measure

is decomposed to dc = vol(C)du dm dv as before. Since d[�−l]−1mvd[�−l ] ∈ C,

[πν(γ�−l )ϕ](e) =
∫

N−
1

ϕ(ud[�−l])du = |�−l |ν+(m−1)/2
E

∫

N−
1

ϕ(d[�l]ud[�−l])du

= |�−l |ν−(m−1)/2
E

∫

N̄[l]
ϕ(n̄)dn̄

with N̄[l] = {n(�−l+1X;�−2l+1b)|X ∈ L ∩ V1, b ∈ oF }. Hence

lim
l→∞ q

−l(ν−(m−1)/2)
E [πν(γ�−l )ϕ)](e) =

∫

N̄

ϕ(n̄)dn̄ = [T (ν)ϕ](w0) .

�

The C-function is defined by the relation T (ν)f (ν)
0 = C(ν) f

(−ν)
0 . We have the explicit

formula

C(ν) = vol(N̄ ∩ U; dn̄)
1 − q−(m−1)q−ν

E

1 − qm−3q−ν
E

1 − (−1)mq−1q−ν
E

1 − (−1)mq−ν
E

.(5.4)
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In what follows, we use the phrase “for a generic ν” to mean “for all ν in an open dense
subset of XE”. For a generic ν, set

(5.5)
ψ
(ν)
+ = vol(C)−1ϕ(ν)e , ψ

(ν)
− = T (−ν)(ψ(−ν)

+ ) ,

ψ
(ν)
0 = f

(ν)
0 − vol(C){C(ν)ψ(ν)

+ + ψ
(ν)
− } .

LEMMA 5.3. For all l ∈ N
∗,

πν(γ�−l )ψ(ν)
+ = q

l(ν−(m−1)/2)
E ψ

(ν)
+ , πν(γ�−l )ψ(ν)

− = q
l(−ν−(m−1)/2)
E ψ

(ν)
− ,

πν(γ�−l )ψ(ν)
0 = q−l

E ψ
(ν)
0 .

PROOF. Consider the function f (g) = ∫
C ϕ

(−ν)
w (cg) dc in g ∈ G. Since f (d[�l]) =

f (g) for all g ∈ Cd[�l]C,

f (d[�l]) = vol(Cd[�l]C)−1
∫

G
f (x)1Cd[�l ]C(x) dx

= vol(Cd[�l]C)−1
∫

G

∫

C
ϕ
(−ν)
w (cg) 1Cd[�l ]C(g) dg dc

= vol(Cd[�l]C)−1
∫

G

∫

C
ϕ
(−ν)
w (g) 1Cd[�l]C(c−1g) dg dc

= vol(Cd[�l]C)−1vol(C)
∫

G
ϕ
(−ν)
w (g) 1Cd[�l ]C(g) dg = vol(C) [π−ν(γ�l )ϕ

(−ν)
w ](e) .

On the other hand, we compute f (d[�l]) by the Iwahori factorization dc = vol(C)dvdmdu.

Since d[�l]−1N−
1 d[�l] ⊂ C, we have

f (d[�l]) = vol(C)
∫

N
ϕ(−ν)w (vd[�l ])dv = vol(C)|�l|−ν+(m−1)/2

E vol(N ) ϕ(−ν)w (e)

= vol(C)ql(ν−(m−1)/2)
E δ(w = e) .

Thus we obtain [π−ν(γ�l )ϕ
(−ν)
w ](e) = q

l(ν−(m−1)/2)
E δ(w = e) for w ∈ {e,w0, w1}. From

this, by (5.1),

(5.6)
〈πν(γ�−l )ϕ(ν)e , ϕ(−ν)w 〉U = 〈ϕ(ν)e , π−ν(γ�l )ϕ(−ν)w 〉U = vol(C)[π−ν(γl)ϕ(−ν)w ](e)

= q
l(ν−(m−1)/2)
E vol(C) δ(w = e) .

By (5.2), we obtain πν(γ�−l )ϕ(ν)e = q
l(ν−(m−1)/2)
E ϕ

(ν)
e as desired. Then

πν(γ�−l )ψ(ν)
− = πν(γ�−l ) ◦ T (−ν)ψ(−ν)

+ = T (−ν) ◦ π−ν(γ�−l )ψ(−ν)
+

= q
l(−ν−(m−1)/2)
E T (−ν)ψ(−ν)

+

= q
l(−ν−(m−1)/2)
E ψ

(ν)
− .
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By Lemma 5.1, there exists a projector Pr(ν)0 from ICν (depending meromorphically on ν) onto

the |a|−1
E -eigenspace of πν(γa) (a ∈ E − �−l0oE). Set ψ(ν)

0 = Pr(ν)0 (f
(ν)
0 ). Since ψ(ν)

±
(for generic ν) is |a|±ν−(m−1)/2

E -eigenvector of πν(γa) (a ∈ E − �l0oE) as shown above,

from Lemma 5.1 the space ICν is a direct sum of Cψ(ν)
+ , Cψ(ν)

− and Im(Pr(ν)0 ). We have the

expression f (ν)
0 = b+(ν)ψ(ν)

+ +b−(ν)ψ(ν)
− +ψ

(ν)
0 with some b±(ν) ∈ C. Thus for Re(ν) � 0,

q
−l(ν−(m−1)/2)
E [πν(γ�−l )f (ν)

0 ](e)= b+(ν)ψ(ν)
+ (e)+ q−2lν

E b−(ν)ψ(ν)
− (e)

+q−l(ν−(m−1)/2)−l
E ψ

(ν)
0 (e) ,

which yields

[T (ν)f (ν)
0 ](w0) = b+(ν)ψ(ν)

+ (e)

in the limit l → ∞ by Lemma 5.2. The left-hand side equals C(ν) and the right-hand

side b+(ν)vol(C)−1. Thus b+(ν) = vol(C) C(ν) for Re(ν) � 0. The relation T (ν)f
(ν)
0 =

C(ν)f
(−ν)
0 yields

b+(ν)T (ν)ψ(ν)
+ + b−(ν)T (ν)ψ(ν)

− + T (ν)ψ
(ν)
0 =C(ν)

{
b+(−ν)ψ(−ν)

+
+b−(−ν)ψ(−ν)

− + ψ
(−ν)
0

}
.

Since T (ν) preserves the eigenspace decomposition of πν(γa), we obtain b+(ν)T (ν)ψ(ν)
+ =

C(ν)b−(−ν)ψ(−ν)
− . Since T (ν)ψ(ν)

+ = ψ
(−ν)
− , we have b−(−ν) = C(ν)−1b+(ν) = vol(C).

Therefore, ψ(ν)
0 = f

(ν)
0 − b+(ν)ψ(ν)

+ − ψ
(ν)
− = f

(ν)
0 − vol(C){C(ν)ψ(ν)

+ + ψ
(ν)
−
}
. �

5.2. Poisson integrals on unitary hyperbolic spaces.

LEMMA 5.4. For ν ∈ XE such that q−ν
E �= q

−(m−3)/2
E , we have dimC HomH (Iν,C) �

1.

PROOF. We regard G as an H × P -space by letting H and P act on G by the right
translation and by the left translation, respectively. Let χν be the character of H × P defined

by χν(h,m[g1]d[t]n) = |t|−ν+(m−1)/2
E (h ∈ H , g1 ∈ G1, t ∈ E×, n ∈ N). The space

HomH (Iν,C) is isomorphic to HomH×P (C∞
c (G), χν), the space of distributions on G with

an H × P -equivariance. Set O1 = {g ∈ G| h(g−1�0, e1) �= 0 } and O2 = G − O1. Then
we see that O1 = HP is an open H × P -orbit in G and O2 is a closed orbit. From the exact
sequence of smooth H × P -modules

0 → C∞
c (O1) → C∞

c (G) → C∞
c (O2) → 0 ,

we have an exact sequence of vector spaces

(5.7) 0 → HomH×P (C∞
c (O2), χν) → HomH×P (C∞

c (G), χν)

→ HomH×P (C∞
c (O1), χν) .
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Let O ⊂ G be the H × P -orbit of a point x0 ∈ O . Then the space HomH×P (C∞
c (O), χν)

is zero unless the character ξx0 = (χν |P ∩ x0Hx−1
0 ) · δ

P∩x0Hx−1
0

· (δP |P ∩ x0Hx−1
0 )−1

of the stabilizer P ∩ x0Hx−1
0 is trivial, in which case the space is one dimensional ([3,

Proposition 3.2 (p. 30)]). Here δ
P∩x0Hx−1

0
is the modulus character of the stabilizer. For

x0 = e, then O = O1 and χν is trivial on P ∩ H = {m[g1]|g1 ∈ G1}. We may
suppose �0 = ae1 + em with a + ā = 1. Then, the element w1 belongs to O2 and

P ∩ w1Hw−1
1 = {d[t]m[h]n(X; b)| t ∈ E×, hw1�0 = w1�0, h(X,w1�0) = 0, b ∈ F×}.

We have ξw1(h,d[t]m[h]n) = |t|−ν+(m−3)/2
E . For ν such that qν−(m−3)/2

E �= 1, the character
ξw1 is non trivial, and thus HomH×P (C∞

c (O2), χν) = {0} for such ν. Hence, from (5.7), we
have

dimC HomH×P (C∞
c (G), χν) � dimC HomH×P (C∞

c (O1), χν) = 1 if q
ν−(m−3)/2
E �= 1 .

�

Let Yν (ν ∈ XE) be a function on G define by

Yν(g) =
{

0 , (g ∈ G−HP),

|h(g−1�0, e1)|ν−(m−1)/2
E , (g ∈ HP) .

SinceHP = {g ∈ G| h(g−1�0, e1) �= 0 }, the function Yν is continuous onG if Re(ν) � m−1
2 .

Therefore, we can define a C-linear form Ξ(ν) : Iν → C (Re(ν) � m−1
2 ) by the Poisson

integral

〈Ξ(ν), f 〉 =
∫

U
Yν(k)f (k) dk , f ∈ Iν ,

where dk is the Haar measure on U such that vol(U) = 1. For any f ∈ I0, let f (ν) ∈ Iν

denote its flat extension. We define an action π0
ν (g) of g ∈ G on I0 by setting [π0

ν (g)f ](k) =
f (ν)(kg) for f ∈ I0.

LEMMA 5.5. There exists Ξ ν ∈ I∗
0 ⊗C C(q−ν

E ) such that, for all f ∈ I0, we have

〈Ξ ν, π
0
ν (h)f 〉 = 〈Ξ ν, f 〉 for all h ∈ H and for a generic ν, and 〈Ξ ν, f 〉 = 〈Ξ(ν), f (ν)〉 for

Re(ν) � (m − 1)/2.

PROOF. This follows from Lemma 5.4 by Bernstein’s theorem [7, §12.2 (p. 127)]. �

From this lemma, there exists a polynomial R(z) ∈ C[z] such that ν �→ R(q−ν
E )Ξ(ν)

(Re(ν) > (m − 1)/2) extends to an entire family of H -invariant functional on Iν defined
for all ν ∈ C.

Recall the U-spherical vector f (ν)0 ∈ IUν . Set

a(ν) = 〈Ξ(ν), f (ν)
0 〉 , Re(ν) � m−1

2 .
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LEMMA 5.6. We have

a(ν) = 1 − q−2

1 − (−1)mq−m
1 − (−1)mq−2ν−1

1 − q−2ν+m−3
, Re(ν) � m−1

2 .

PROOF. Since the groupU acts transitively on Lprim, we have U/(P 1∩U) ∼= �(V , 0)∩
Lprim by mapping a class k(P 1 ∩ U) to the vector ke1. Thus

a(ν) =
∫

U/(P 1∩U)
|h(�0, ke1)|ν−(m−1)/2

E dk =
∫

�(V ,0)∩Lprim

|h(�0, Z)|ν−(m−1)/2
E d0Z ,

where d0Z is the U-invariant measure on �(V , 0) such that vol(�(V , 0)∩Lprim) = 1, which
should be proportional to the restriction of the measure |ωV,0|F to �(V , 0) ∩ Lprim; let C

denote the proportionality constant. Let a1(ν) be the integral of |h(�0, Z)|ν−(m−1)/2
E over

�(V , 0)∩L with respect to the measure |ωV,0|F . Since Lprim = L−�L, Lemma 4.1 yields
the relation

a(ν) = C a1(ν)(1 − |� |m−1
E |� |ν−(m−1)/2

E ) = C a1(ν)(1 − q−2ν−m+1) .(5.8)

Recall V1 = (Ee1 +Eem)
⊥. Set L1 = L ∩ V1. If we write a general point Z ∈ L in the form

Z = z1e1 +X + z2em (z1, z2 ∈ oE,X ∈ L1), then h(�0, Z) = az̄2 + z̄1. Thus,

(5.9) a1(ν) =
∫

z1,z2∈oE
|az̄2 + z̄1|ν−(m−1)/2

E v1
(−trE/F (z1z̄2)

)
dμ(z1) dμ(z2)

=
∑

l∈N
v1(�

l) A(l) ,

where

A(l) =
∫

z1,z2∈oE
trE/F (z1z̄2)∈�lo×

F

|az̄1 + z̄2|ν−(m−1)/2
E dμ(z1)dμ(z2) ,

v1(t) = vol(�(V1, t) ∩ L1; |ωV1,t |F ) .
From Lemma 4.2,

v1(�
l) = 1 − (−1)m−1q−(m−1)

1 − (−1)m−1q−(m−2)
(1 − (−1)m(l+1)q−(m−2)(l+1)) .(5.10)

To compute the integral A(l), we further set

Aij (l) =
∫

u1,u2∈o×
E

trE/F (u1ū2)∈�l−i−jo×
F

|a�i ū1 +�j ū2|ν−(m−1)/2
E dμ(u1)dμ(u2) .

The evaluation of these integrals is given in Lemma 5.7 below. Plugging (5.10) and (5.11) to
(5.9) and noting (5.8), by a direct computation, we obtain

a(ν) = C(1 − q−2(m−2)T )

∞∑

l=0

v1(�
l)A(l)
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= C (1 − q−2)(1 − (−1)m−1q−(m−1))
1 − (−1)mq−(m−2)T

1 − T
,

with T = q−2ν+m−3 if Re ν > m−3
2 . The constant C can be determined by setting ν =

(m − 1)/2 and using the relation a((m− 1)/2) = 1. �

LEMMA 5.7. We have Aij (l) = 0 unless i + j � l. Set T = q−2ν+m−3. Then

Ai,j (l) = (q2T )inf(i,j)(1 − q−2)

×

⎧
⎪⎪⎨

⎪⎪⎩

qi+j−l(1 − q−1)1+δ(i+j>l) , (l � i + j, i �= j) ,

q2i−l(1 − q−1)2 , (l > 2i, i = j) ,

(1 − q−1 − q−2 + q−1T )(1 − T )−1 , (l = 2i, i = j) .

We have

(5.11) A(l) =
∑

i∈N

∑

j∈N
q−2(i+j)Aij (l)

= q−l(1 − q−2)

1 − T

{
(1 − q−2)(1 − T (l+1)/2) , (l ≡ 1 (mod 2)) ,

1 − q−2 − q−1T l/2(1 − T ) , (l ≡ 0 (mod 2)) .

PROOF. A direct computation. �

5.3. Spherical functions. We define the normalized Poisson integral by Ξ0(ν) =
a(ν)−1Ξ(ν) and set

Ων(g) = 〈Ξ0(ν), πν(g)f
(ν)
0

〉
, g ∈ G .

LEMMA 5.8. For a generic ν,

Ξ0(−ν) ◦ T (ν) = C(ν)Ξ0(ν) .

PROOF. For a generic ν ∈ XE , the functional Ξ0(−ν) ◦ T (ν) belongs to the space

HomH (Iν,C), which is one dimensional with the basis Ξ0(ν) by Lemma 5.4. Thus there

exists b(ν) ∈ C such that Ξ0(−ν) ◦ T (−ν) = b(ν)Ξ0(ν). Apply this to the vector f (ν)
0 ∈ Iν

and use the relation T (ν)f (ν)0 = C(ν)f
(−ν)
0 . Then b(ν) = C(ν) is obtained. �

LEMMA 5.9. We have

Ων(d[�−l]) = 〈Ξ0(ν), πν(γ�−l )f (ν)0

〉
, l ∈ N .

PROOF. It suffices to show the inclusion Cd[�−l]C ⊂ H0d[�−l]U . Let c, c1 ∈ C. If

we set c−1
1 �0 =∑m

j=1 aj ej with aj ∈ oE , then, for any ξ ∈ L, we have
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h(� l(c1d[�−l]c)−1�0, ξ)

= �lh(d[�l]c−1
1 �0, c(ξ)) =

m∑

j=1

�laj h(d[�l]ej , c(ξ))

= � 2la1 h(e1, c(ξ))+
m−1∑

j=2

�laj h(ej , c(ξ))+ am h(em, c(ξ)) ∈ L .

Hence �l(c1d[�−l]c)−1�0 ∈ L. Since there exist t ∈ o×
E and e ∈ L such that c1(e1) =

te1 +�e,

am = h(c−1
1 �0, e1) = h(�0, c1(e1)) = h(�0, te1 + �e) = th(�0, e1)+�h(�0, e) .

By h(�0, e1) = 1 and h(�0, e) ∈ oE , we have am ∈ o×
E . This shows (c1d[�−l]c)−1�0 ∈

�−lLprim, or equivalently c1d[�−l]c ∈ H0d[�−l]U as desired. �

LEMMA 5.10. For a generic ν, we have
〈
Ξ0(ν), ψ

(ν)
+
〉 = a(ν)−1 ,

〈
Ξ0(ν), ψ

(ν)
−
〉 = C(−ν)a(−ν)−1 ,

〈
Ξ0(ν), ψ

(ν)
0

〉 = 0 .

PROOF. Let c ∈ C. By definition, we have c−1�0 = t�0 + �e with some t ∈ o×
E and

e ∈ L. Hence Yν(c) = |h(c−1�0, e1)|ν−(m−1)/2
E = |t + �h(e, e1)|ν−(m−1)/2

E = 1. Thus

〈Ξ0(ν), ψ
(ν)
+ 〉 = a(ν)−1

∫

U
Yν(k)ψ

(ν)
+ (k)dk = a(ν)−1vol(C)−1

∫

C
Yν(c)dc = a(ν)−1 .

This proves the first formula. To have the second one, we start with Lemma 5.8. Since

ψ
(−ν)
− = T (ν)ψ

(ν)
+ , we have
〈
Ξ0(−ν), ψ(−ν)

−
〉 = C(ν)

〈
Ξ0(ν), ψ

(ν)
+
〉 = C(ν)a(ν)−1 .

To prove the assertion forψ(ν)
0 we use the theory developed in [14], which asserts the existence

of a linear map

rP̄ : HomH(Iν ,C) −→ HomH∩M((Iν)N̄ ,C)

such that

〈Ξ, f 〉 = 〈rP̄ (Ξ), f̄ 〉(5.12)

for any f̄ ∈ ((Iν)N̄ )
M and its canonical lifting f ∈ ICν . For a ∈ E×, let τ ∗

a ∈ Hom((Iν)N̄ ,C)
be the dual of the operator (πν)P̄ (d[a]) on (Iν)N̄ . Since H ∩ M = {m[h]|h ∈ G1}, the
operators τ ∗

a preserve the space of H ∩ M-invariant linear functionals HomH∩M((Iν)N̄ ,C).
Recall theM-filtration J⊥

w (w ∈ {e,w1, w0}) of (Iν)N̄ constructed in the proof of Lemma 5.1.

From what we had shown there, for a ∈ E×, HomH∩M(Iν)N̄ /J⊥
w0
,C) ∼= C with τ ∗

a acting by
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the scalar |a|ν−(m−1)/2
E , HomH∩M(J⊥

w1
,C) ∼= C with τ ∗

a acting by the scalar |a|−ν−(m−1)/2
E

and HomH∩M(J⊥
w0
/J⊥

w1
,C) ∼= HomG1

(
IndG1

P1
(| |ν+1/2

E ),C
)

with τ ∗
a acting by the scalar |a|−1

E .

For a generic value of ν, we have HomG1

(
IndG1

P1
(| |ν+1/2

E ),C
) = {0}. Hence, for such ν,

HomH∩M
(
(Iν)N̄ ,C

)
is an at most two dimensional space on which the operators τ ∗

a (a ∈
E×) has a multiplicity free spectrum contained in the set

{|a|ν−(m−1)/2
E , |a|−ν−(m−1)/2

E

}
. Let

rP̄ (Ξ(ν)) = ξ+ + ξ− with ξ± such that τ ∗
a (ξ±) = |a|±ν−(m−1)/2

E ξ± for all a ∈ E×. From

Lemma 5.3, ψ(ν)
0 is an eigenvector of πν(γa) for all a ∈ E − oE with non-zero eigenvalues.

Hence, by [4, Lemma 4.3.2], ψ(ν)
0 ∈ ICν is the canonical lifting of jP̄ (ψ

(ν)
0 ) ∈ ((Iν)N̄

)M in
the sense of [4, §4.1.6]. Applying (5.12), we have

〈
Ξ0(ν), ψ

(ν)
0

〉 = 〈rP̄ (Ξ0(ν)), jP̄ (ψ
(ν)
0 )
〉 = 〈ξ+, jP̄ (ψ(ν)

0 )
〉+ 〈ξ−, jP̄ (ψ(ν)

0 )
〉
.

The two summands in the right-hand side both vanish for a generic ν, due to the relation
(|a|±ν−(m−1)/2

E − |a|−1
E

)〈
ξ±, jP̄ (ψ

(ν)
0 )
〉 = 0 (a ∈ E −�l0oE) obtained from the computation

|a|±ν−(m−1)/2
E

〈
ξ±, jP̄ (ψ

(ν)
0 )
〉 = 〈τ ∗

a (ξ±), jP̄ (ψ
(ν)
0 )
〉

= 〈ξ±, πP̄ (d[a]) jP̄ (ψ(ν)
0 )
〉

= 〈ξ±, jP̄ (πν(γa)ψ(ν)
0 )
〉 = |a|−1

E

〈
ξ±, jP̄ (ψ

(ν)
0 )
〉
.

We note that the third equality is due to (5.3) and the last one is from Lemma 5.3. �

LEMMA 5.11. For a generic ν,

Ων(d[�−l]) = C(ν)a(−ν) ql(ν−(m−1)/2)
E + C(−ν)a(ν) ql(−ν−(m−1)/2)

E

C(ν)a(−ν)+ C(−ν)a(ν) , l ∈ N .

PROOF. From Lemmas 5.9, 5.3, (5.5) and Lemma 5.10, we have

Ων(d[�−l]) = vol(C){C(ν)ql(ν−(m−1)/2)
E 〈Ξ0(ν), ψ

(ν)
+ 〉 + q

l(−ν−(m−1)/2)
E 〈Ξ0(ν), ψ

(ν)
− 〉}

+ q−l
E

〈
Ξ0(ν), ψ

(ν)
0

〉

=vol(C)a(ν)−1a(−ν)−1{C(ν)a(−ν)ql(ν−(m−1)/2)
E +C(−ν)a(ν)ql(−ν−(m−1)/2)

E

}
.

Since Ων(e) = 1, we have the desired formula from this. �

From (5.4) and Lemma 5.6, we have that C(ν)a(−ν)+ C(−ν)a(ν) is equal to

vol(N̄ ∩ U; dn̄)
1 − q−2

1 − (−1)mq−m QE,m
(1 − (−1)mq−2ν−1)(1 − (−1)mq2ν−1)

(1 − q−2ν+m−3)(1 − q2ν+m−3)
.

By using this, we have the first formula of Theorem 4.5 from Lemma 5.11.

REMARK: Let E ∼= F ⊕ F . In this case, the explicit formula of Ων may be de-
ducible from [19, Theorem 1.2.1]; although it is a far reaching result, its proof requires a
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bunch of sophisticated techniques. Our direct argument described above works with some
modifications in this case also. All objects we introduced above make sense. We can iden-
tify G ∼= GLm(F) so that U corresponds to GLm(oF ) and P to a standard parabolic sub-
group with Levi subgroup GL1 × GLm−2 × GL1. Let w0, w1 and w2 denote the transpo-
sitions (1m), (12), (m − 1m) belonging to Sm, the symmetric group of degree m; then 7
elements e,w0, w1, w2, w1w0, w2w0, w1w2 form a complete system of representatives from
the double cosets in Sm−2\Sm/Sm−2 ∼= C\U/C. Instead of Lemma 5.1, we have that the op-

erator πν(γ(�−l1 ,�−l2 )) (l1, l2 ∈ N) acting on the 7-dimensional space ICν has eigenvalues

q(l1+l2)(ν−m−1
2 ), q(l1+l2)(−ν−m−1

2 ), q−l1+l2(ν−m−1
2 ), ql1(ν−m−1

2 )−l2 , q−(l1+l2), ql1(−ν− ν−1
2 )−l2 ,

q−l1+l2(−ν−m−1
2 ). Lemma 5.2 and the formula (5.4) hold true as they are with � replaced

with �E . With ψ(ν)
± defined as in (5.5), we have the first two formulas in Lemma 5.3 as they

are with � replaced with �E ; instead of the third one, we claim that there exists a projector

Pr(ν) from ICν onto the annihilator of Cψ(−ν)
+ + Cψ

(−ν)
− with respect to the pairing 〈 , 〉U , de-

pending meromorphically on ν. Lemma 5.4 holds true with larger exceptions of ν, because the
complement of the unique open double coset HP has 3 low dimensional ones. The statement
of Lemma 5.6 should be modified as

a(ν) = (1 − q−1)2

1 − q−m
1 − q−2ν−1

(1 − q−ν+(m−3)/2)2
.

The proof of Lemma 5.6 should be changed as follows. Let a1(ν) be as in the proof; then in

place of (5.8), we have a(ν) = C(1 − q−ν−(m−1)/2)2a1(ν). Writing a general point Z ∈ L
as Z = z1e1 + X + z2em (z1, z2 ∈ oE,X ∈ L1), we have the formula (5.9) as it is. Set
a = (a′, a′′) and zj = (z′j , z′′j ) with a′, a′′, z′j , z′′j ∈ oF . Making the variable change u′ =
z′1 − a′′z′2, u′′ = z′′1 − a′z′′2 to get rid of z′1, z′′1, we see

A(l) =
∫

(u′,u′′,z′2,z′′2)∈o4
F ,

u′′z2+u′z′′2+trE/F (a) z′2z′′2∈�lo×
F

|u′|ν−(m−1)/2
F |u′′|ν−(m−1)/2

F du′du′′ dz′2dz′′2

By the variable change z′2 = −trE/F (a) u′ + v′, z′′2 = −trE/F (a) u′′ − v′′, noting trE/F (a) ∈
o×
F , we get

A(l) =
∫

(u′,u′′,v′,v′′)∈o4
F

u′u′′+v′v′′∈�lo×
F

|u′|ν−(m−1)/2
F |u′′|ν−(m−1)/2

F du′du′′ dv′dv′′

=
∫

t∈oF
|t|ν−(m−1)/2

F v1(t)v2(t)dt

with v2(t) = vol
{
(v′, v′′) ∈ o2

F |v′v′′ ∈ −t + �lo×
F

}
and v1(t) = vol

({
(u′, u′′) ∈ o2

F |u′u′′ =
t
}; dtu

)
, where dtu is the fiber measure on γ−1(t) of the mapping γ : (u′, u′′) �→ t = u′u′′.
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Since
∫

F
v1(t)ψ(tτ)dt =

∫

u′,u′′∈oF
ψ(u′u′′τ)du′du′′ = inf

(
1, |τ |−1

F

)
,

we easily have v1(t) = (1 − q−1)(1 + ordF (t)) (t ∈ oF ) by the Fourier inversion formula.
By using this,

v2(t) =
∫

y∈oF
v∈−t+�lo×

F

v1(y)dy =
∞∑

k=0

(1 − q−1)(1 + k)

∫

y∈�ko×
F

v∈−t+�lo×
F

dy .

By evaluating the y-integral, we obtain

v2(t) = (1 − q−1)2q−l

⎧
⎪⎪⎨

⎪⎪⎩

1 + ordF (t) , (l > ordF (t)) ,

(l + 1)+ q−1(1 − q−1)−2 , (l = ordF (t)) ,

1 + l , (l < ordF (t)) .

Set T = q−(ν−(m−1)/2+1). By plugging the values v1(t) and v2(t) computed above,

A(l) =
∞∑

k=0

q−k(s−(m−1)/2)−k(1 − q−1)v1(�
k)v2(�

k)

= (1 − q−1)4q−l
{ ∞∑

k=0

(k + 1)2T k +
∞∑

k=l
((1 + k)(1 + l)− (1 + k)2)T k

+ (1 + l)(1 − q−1)−2q−1T l

}

= (1 − q−1)4q−l { 1+T
(1−T )3 − (l + 2) T l+1

(1−T )2 − 2T l+2

(1−T )3 + q−1(l+1)T l

(1−q−1)2

}
.

A computation reveals

a1(ν) =
∞∑

l=0

1 − q−(m−1)

1 − q−(m−2)
(1 − q−(l+1)(m−2))A(l)

= (1 − q−1)2(1 − q−(m−1))
1 − q−(m−2)T 2

(1 − T )2(1 − q−(m−2)T )2
.

The remaining part of the proof is similar. Lemmas 5.8, 5.9 and 5.10 hold true as they are.

Then we complete the evaluation of Ων(d[�−l
E ]) as in Lemma 5.11.

5.4. The proof of the Fourier inversion formulas. The aim of this subsection is to
provide a proof of Theorems 2.1, 3.1 and 4.6. Our argument relies on the explicit formulas
of spherical functions recalled in §2.2, §3.1 for GL(2) case and given in Theorem 4.5 for the
unitary case. A strong resemblance of the formulas for these cases is evident. We describe the
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argument only for the unitary group over a quadratic field E for clarity of argument leaving
the remaining cases for the readers, because the necessary modifications are immediate.

THEOREM 5.12. For any f ∈ Cc(H\G/U), we have the inversion formula

[F∗
hFhf ](g) = f (g) , g ∈ G .

PROOF. Let l ∈ N and fl the characteristic function of Hd[�−l]U . Since fl’s form a
C-basis of Cc(H\G/U), it suffices to show the formula for those functions. As in the proof
of Theorem 4.8, we have

[F∗
hFhfl](d[�−k]) =

∫

X
0
E

[Fhfl ](ν)Ων(d[�−k]) dΛh(ν)

= 1

π
√−1

∫

X
0
E

{∫

H\G
fl(g)Ψν(g)dg

}

Ων(d[�−k])dμm(ν)

= 1

π
√−1

∫

X
0
E

v(�−l )Ψν(d[�−l])Ων(d[�−k]) dμm(ν) ,(5.13)

where we set v(�−l ) = vol(H\Hd[�−l]U). By plugging the formulas (4.6) and the first
formula in Theorem 4.5, we have the following expression for (5.13):

v(�−l )Q−1
E,m q

−(k+l)(m−1)/2
E

π
√−1

∫

X
0
E

{

q
−ν(l−k)
E +(−1)m−1 1 − q

ν−(m−1)/2
E

1 − q
−(ν+(m−1)/2)
E

q
−ν(l+k+1)
E

}

log q dν.

By the change of variables z = q−ν
E = q−2ν , this becomes

v(�−l )Q−1
E,m q

−(k+l)(m−1)/2
E

2π
√−1

∮

|z|=1

{

zl−k + (−1)m−1 1 − q
−(m−1)/2
E z−1

1 − q
−(m−1)/2
E z

zk+l+1

}
dz

z

= v(�−l )Q−1
E,m q

−(k+l)(m−1)/2
E

{
δ(k = l)− (−1)m−1q

−(m−1)/2
E δ(k = l = 0)

}

= v(�−l )Q−1
E,m q

−l(m−1)
E δ(k = l)

{
1 + (−1)mq−(m−1)/2

E

}δ(l=0)
.

The last expression is equal to δ(l = k) by the relation v(�−l ) = q
l(m−1)
E (1 +

(−1)mq−(m−1)/2
E )δ(l>0) from [8, Lemma 1.12]. Thus

[F∗
hFhfl](d[�−k]) = δ(k = l) = fl(d[�−k])

as desired. �

For 1 � j � [m2 ], let ε̌j be a cocharacter of T defined as ε̌j (t) = d(t1, . . . , tm) with

tj = t , tm−j+1 = t−1 and ti = 1 (i �= j,m − j + 1). If we identify the dual torus T̂ (C) =
Hom(X∗(T ),C×) with (C×)[m2 ] by the map T̂ (C) � λ �→ (λ(ε̌j ))

[m2 ]
j=1 ∈ (C×)[m2 ], then

the maximal spectrum of the Hecke algebra H(G,U) for the pair (G,U) is parametrized by
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the orbit space (C×)[m2 ]/WG through the Satake isomorphism. By definition, the spherical
function Ων satisfies the Hecke eigenequation

Ων ∗ φ = Ων ∗ φ̌ = Ωνφ̂(ν) , φ ∈ H(G,U) ,(5.14)

where φ̌(g) = φ(g−1), and φ̂(ν) denote the image of φ under the C-algebra homomorphism

H(G,U) → C with the Satake parameter
(
q−ν
E ,

{
q

−m−2j−1
2

E

}m−2
j=1

)
WG. Let PH : H(G,U) →

Cc(H\G/U) be the linear map defined by

[PH(φ)](g) =
∫

H

φ(hg) dh , φ ∈ H(G,U) ,

where dh is the Haar measure on H such that vol(H ∩ U) = 1.

LEMMA 5.13. (1) For φ ∈ H(G,U), [Fh(PH(φ))](ν) = φ̂(ν).

(2) For f ∈ Cc(H\G/U), we have

[Fh(f ∗ φ)](ν) = [Fhf ](ν) φ̂(ν) , φ ∈ H(G,U) .(5.15)

PROOF. This follows from (5.14) by a straightforward computation. �

The sign change ν → −ν on X
0
E defines an action of the group S = {±1} on the space

X
0
E . The space of S-invariant Laurent polynomials C[z, z−1]S is embedded to the space of

continuous functions C(X0
E/S) by z �→ q−ν

E .

LEMMA 5.14. For any f ∈ Cc(H\G/U), we have Fhf ∈ C[z, z−1]S .

PROOF. It suffices to show that Fhfl ∈ C[z, z−1]S for any l ∈ N, where fl denotes the
characteristic function of the double coset Hd[�−l]U on G. We have

Fhfl(ν) = Ων(d[�−l]) vol(Hd[�−l]U) ,
which is seen to belong to C[z, z−1]S from the formula in Theorem 4.5. �

LEMMA 5.15. The linear map PH : H(G,U) → Cc(H\G/U) is surjective.

PROOF. Let f ∈ Cc(H\G/U). Then Fhf (ν) ∈ C[z, z−1]S from Lemma 5.14. By

using the Satake isomorphism, we can find a function φ ∈ H(G,U) such thatFhf (ν) = φ̂(ν).
For such φ, from Lemma 5.13 (1) and Theorem 5.12,

f = F∗
hFhf = F∗

h (φ̂) = F∗
hFh(PH(φ)) = PH(φ)

as desired. �

LEMMA 5.16. Let A be the image of Cc(H\G/U) by the transform Fh. The subspace

A is everywhere dense in C(X0
E/S) with respect to the topology of uniform convergence.
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PROOF. Obviously A is a C-subspace of C(X0
E/S). Moreover, Lemmas 5.13 and 5.15

combined show that A is closed under the pointwise product of functions. Since Fh maps

the characteristic function of H\HU to 1, A contains the unit element of C(X0
E/S). Since

Ων(g) = Ω−ν(g) = Ων(g) for ν ∈ X
0
E , the space A is stable under the complex conjuga-

tion. We shall show that A separates the points of X0
E/S, i.e., for any two different points

ν and ν′ in X
0
E/S, there exists some f ∈ Cc(H\G/U) such that [Fhf ](ν) �= [Fhf ](ν′).

Suppose [Fhf ](ν) = [Fhf ](ν′) for all f contrarily. Then Ων(g) = Ων ′(g) on G. From

the Hecke eigenequation (5.14) , we have φ̂(ν) = φ̂(ν′) for all φ ∈ H(G,U), which implies

(q−ν
E , {q−m−2j−1

2
E }m−2

j=1 )WG = (q−ν ′
E , {q−m−2j−1

2
E }m−2

j=1 )WG. Since ν, ν′ are purely imaginary,

this forces us to have ν = ±ν′, a contradiction. Now we apply the Stone-Weierstrass theorem

[17, Theorem 7.31] to conclude that A is everywhere dense in C(X0
E/S). �

We endow the spaces Cc(H\G/U) and C(X0
E/S) with hermitian inner-products defined

by

(f |f1)H\G =
∫

H\G
f (g)f1(g) dg , (α|α1)X0

E
=
∫

X
0
E

α(ν)α1(ν) dΛh(ν) ,

respectively. We consider the first inner-product for functions outside compactly supported
ones as long as it makes sense.

LEMMA 5.17. Let α ∈ C[z, z−1]S . Then F∗
hα ∈ Cc(H\G/U).

PROOF. We use the notation introduced in the proof of Theorem 5.12. In the same way
as there, we have the contour integral expression

[F∗
hα](d[�−l]) = 1

π
√−1

∫

X
δ
E

α(ν)Ψν(d[�−l]) dμm(ν) .

For l ∈ N, set αl(ν) = zl + z−l with z = q−ν
E . Then αl ’s form a linear basis of C[z, z−1]S .

We have

[F∗
hαl](d[�−l′ ]) = 1

π
√−1

∫

X
δ
E

αl(ν)Ψν(d[�−l′ ]) dμm(ν)

= 1

2π
√−1

∮

|z|=q−δ
E

q−l′(m−1) z
l′−l−1(z2l + 1)(1 − (−1)mz)

1 − q−(m−1)z
dz .

If l′ � l + 1, then the integrand is evidently holomorphic in z on the disc |z| < q−δ
E . Thus the

integral vanishes by Cauchy’s theorem. Hence the support of the function F∗
hαl is contained

in the union of finite number of cosets Hd[�−l′ ]U (0 � l′ � l). �

LEMMA 5.18. The mapping f �→ Fhf from Cc(H\G/U) to C(X0
E/S) preserves the

inner-products. The mapping α �→ F∗
hα from C[z, z−1]S to Cc(H\G/U) preserves the inner-
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products. Moreover,

(Fhf |α)
X

0
E

= (f |F∗
hα)H\G(5.16)

for any f ∈ Cc(H\G/U) and α ∈ C(X0
E/S).

PROOF. The formula (5.16) is proved by a direct application of Fubini’s theorem. Then
by applying the formula (5.16) and using Theorem 5.12, we have

(Fhf1|Fhf )X0
E

= (f1|F∗
hFf )H\G = (f1|f )H\G for all f1, f ∈ Cc(H\G/U).

This shows the first assertion. It remains to prove the second assertion. To argue, let f, f1 ∈
Cc(H\G/U) and set α = Fhf , α1 = Fhf1. Then by Theorem 5.12 and by the first assertion
we just established,

(F∗
hα|F∗

hα1)H\G = (F∗
hFhf |F∗

hFhα1)H\G = (f |f1)H\G = (α|α1)X0
E
.

This shows (F∗
hα|F∗

hα1)H\G = (α|α1)X0
E

for any α, α1 belonging to the space A defined

in Lemma 5.16. By Lemma 5.16 (i), the same formula remains valid for all elements of

L2(X0
E/S; dΛh), in particular for those from C[z, z−1]S . �

The following lemma shows the space A in Lemma 5.16 coincides with C[z, z−1]S .

THEOREM 5.19. For any α ∈ C[z, z−1]S , the integral F∗
hα belongs to Cc(H\G/U),

and

[FhF∗
hα](ν) = α(ν) , ν ∈ X

0
E .(5.17)

PROOF. Let α, β ∈ C[z, z−1]S . Then by (5.16) and by the second assertion of
Lemma 5.18, we have (FhF∗

hα|β)
X

0
E

= (F∗
hα|F∗

hβ)H\G = (α|β)
X

0
E
. Lemma 5.16 tells that

C[z, z−1]S is dense in L2(X0
E/S; dΛh). Thus we should have the identity FhF∗

hα = α in

the L2-space. Since both sides of the equality are continuous (for the left-hand side, use
Lemmas 5.16 and 5.17), we have the point-wise equality (5.17). �

6. Appendix 2: A Cartan type decomposition for unitary groups (the split case)

We continue to hold all the notation and assumptions in §1.2.2. The aim of this subsec-
tion is to give a proof of the decomposition (4.2) for the case E = F ⊕ F . A vector � ∈ L is
called to be primitive in L if � �∈ mL for any maximal ideal m ⊂ oE; the set of all such vectors
is denoted by Lprim. If we set�1 = (�, 1) and�2 = (1,�), thenLprim = L−(�1L∪�2L).

LEMMA 6.1. For any primitive vector � ∈ L, there exists k ∈ U such that
h(k(�), e1) = 1.
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PROOF. By the oE-basis of L fixed in §4, we identify L = omE = omF ⊕ omF and realize
G as a matrix group

G = {(g, T −1tg−1T )| g ∈ GLm(F)} ,
where T = (h(ei, ej ))1�i,j�m. Then U = {(g, T −1tg−1T )| g ∈ GLm(oF ) }. Set � = (x, y)

with x, y ∈ omF . Since x is a primitive vector of omF , by transforming by a suitable element in

GLm(oF ), we may suppose x =
[

0
0m−2

1

]

. Set y =
[ y1
y2
y3

]
with y1, y3 ∈ oF and y2 ∈ om−2

F . If

y3 ∈ o×
F , then the element k = (d(y3, 1, . . . , 1), T −1d(y−1

3 , 1, . . . , 1)T ) belongs to U and

k(�) =
([

0
0m−2

1

]

,

[
y ′

1
y ′

2
1

])

with some y ′
1 ∈ oF and y ′

2 ∈ om−2
F .

Hence h(k(�), e1) = 1. If y3 �∈ o×
F , then (y2, y3) is a primitive vector of om−1

F . Therefore,
there exists A12 ∈ M1,m−1(oF ) and a13 ∈ oF such that A12T0y2 + a13y1 = 1 − y3, where

T0 = (h(ei, ej ))2�i,j�m−1. Set u =
[

1 A12 a13
0 1m−2 0
0 0 1

]

and k = (tu−1, T −1uT ). Then k ∈ U and

k(�) =
([

0
0m−2

1

]

,
[ y1
y2
1

])

. Thus h(k(�), e1) = 1. �

LEMMA 6.2. Suppose �0 = ae1 + em with h[�0] = a + ā = 1. Let �1 be a primitive
vector of L such that h[�1] = �lh[�0] with l ∈ N. Then, there exists k ∈ U such that
k�1 = a�le1 + em.

PROOF. By Lemma 6.1, we may assume h(�1, e1) = 1. Then there exist aj ∈
oE (1 � j � m − 1) such that �1 = ∑m−1

j=1 aj ej + em. Set ξ = ∑m−1
j=2 aj ej

and b = 2−1trE/F
(
�la+ā1√

θ

)
. The element k = n(−ξ; b) ∈ G belongs to U , and

k(�1) =
(
a1 + 2−1h[ξ ] + b

√
θ
)
e1 + em. From h[�1] = �lh[�0] = �l(a + ā), we have

a1 + 2−1h[ξ ] + b
√
θ = �la. �

For any (l1, l2) ∈ Z
2, set

Gl1,l2 = {g ∈ G| g−1�0 ∈ �
−l1
1 �

−l2
2 Lprim} .

If g ∈ Gl1,l2 , then �
l1
1 �

l2
2 g−1�0 ∈ L; since h[L] ⊂ oF , we have �l1+l2 =

h[�l1
1 �

l2
2 g−1�0] ∈ oF and thus l1 + l2 � 0. Hence G is a disjoint union of Gl1,l2 with

(l1, l2) ∈ Z
2, l1 + l2 � 0. Let us show Gl1,l2 = H0d[�−l1

1 �
−l2
2 ]U for any (l1, l2) ∈ Z

2,

l1 + l2 � 0. We have d[�−l1
1 �

−l2
2 ] ∈ Gl1,l2 because

�
l1
1 �

l2
2 d[�−l1

1 �
−l2
2 ]�0 = �l1+l2ae1 + em ∈ Lprim .



974 MASAO TSUZUKI

Since H0Gl1,l2U ⊂ Gl1,l2 , we obtain the inclusion H0d[�−l1
1 �

−l2
2 ]U ⊂ Gl1,l2 . To have the

converse inclusion, we let g be any element from Gl1,l2 . Then �1 = �
l1
1 �

l2
2 g−1�0 belongs

to Lprim and h[�1] = �l1+l2h[�0]. By Lemma 6.2, there exists k ∈ U such that k�1 =
�l1+l2ae1 + em = �

l1
1 �

l2
2 d[�−l1

1 �
−l2
2 ]�0. Thus g−1�0 = d[�−l1

1 �
−l2
2 ]�0, or equivalently

d[�−l1
1 �

−l2
2 ]−1g ∈ H0. This shows g ∈ H0d[�−l1

1 �
−l2
2 ]�0]U . We proved the disjoint

decomposition

G =
⋃

l1,l2∈Z,l1+l2�0

H0d[�−l1
1 �

−l2
2 ]U .

To deduce (4.2) from this, it remains to note the equality
⋃

l1+l2=l H0d[�−l1
1 �

−l2
2 ]U =

Hd[�−l
1 ]U for any l ∈ N, which follows from the relation d[(�1�

−1
2 )l2] ∈ H .
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