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Abstract. In this paper we give a geometric characterization of non-Hopf hypersurfaces in the complex space

form M2(c) under a condition on the shape operator. We also classify pseudo-parallel real hypersurfaces of M2(c).

1. Introduction

It is an interesting problem to study real hypersurfaces immersed in the complex space
form Mn(c) under a condition on curvature tensor, or the Ricci tensor, or sectional curvature.
In this paper we consider the case of the 2-dimensional complex space form M2(c). In [3],
Ivey and Ryan constructed some examples of non-Hopf real hypersurfaces in the non-flat

complex space form M2(c). Let M be a real hypersurface in the complex hyperbolic space

CH 2 or the complex projective space CP 2. We denote by (φ, ξ, η, g) an almost contact
metric structure. At each p ∈ M , we define a subspace Hp ⊂ TpM as the smallest subspace
that contains the structure vector field ξ and that is invariant under the shape operator A. We
assume that H = �pHp is a smooth two-dimensional distribution on M . Then we obtain an
adapted orthonormal frame {ξ,X, φX} with respect to which the shape operator has the form

A =
⎛
⎝

α h 0
h λ 0
0 0 ν

⎞
⎠ , (1)

where H is spanned by ξ and X at each point.

THEOREM A ([3]). Let α(t), h(t), λ(t), ν(t) be analytic functions on an open interval
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I ⊂ R satisfying the underdetermined ODE system

α′ = h(α + λ − 3ν) ,

h′ = h2 + λ2 − 2λν + αν + c ,

λ′ = (2λ + ν)h2 + (ν − λ)(αλ − λ2 + c)

h
,

(2)

with h(t) nowhere zero. Let γ (t) be a unit-speed analytic framed curve in M2(c), defined
for t ∈ I , with transverse curvature ν(t), zero holomorphic curvature and zero torsion. Then

there exists a non-Hopf hypersurface M3 such that

(i) the distribution H is rank 2 and integrable;
(ii) M has a globally defined frame {ξ,X, φX} with respect to which the shape oper-

ator has the form (1), such that α, h, λ and ν are constant along the leaves of H,
and

(iii) M contains γ as a principal curve to which the vector field Y = φX is tangent,
and along which the restricted components of A coincide with the given solution
of the ODE system.

In section 3, we consider a condition on the shape operator that contains the totally η-
umbilical condition. We show that some non-Hopf hypersurfaces related to Theorem A also
satisfy this condition. We shall prove

THEOREM 1. Let M be a real hypersurface in M2(c), c �= 0. Suppose there exists a
smooth function a : M → R such that g(AX, Y ) = ag(X, Y ) for any vector fields X and Y

orthogonal to the structure vector field ξ . Then M is locally congruent to one of the following;

(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface,
(c) a real hypersurface with the shape operator

A =
⎛
⎝

α h 0
h a 0
0 0 a

⎞
⎠

with respect to an orthonormal frame {ξ, e1, φe1}, and for a principal curve γ (t)

(t ∈ I , γ ′ = φe1), satisfying

α′ = hα − 2ha,

h′ = c − a2 + aα + h2,

a′ = 3ha.

(3)

The corresponding result for a real hypersurface of Mn(c), n ≥ 3, c �= 0, is given by
Ortega [11].
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THEOREM B ([11]). Let M be a real hypersurface of Mn(c), n ≥ 3, c �= 0. Suppose
there exists a smooth function a : M → R such that g(AX, Y ) = ag(X, Y ) for any vector
fields X and Y orthogonal to ξ . Then M is locally congruent to one of the following:

(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface.

If the curvature tensor R and the Ricci operator S satisfy R(X, Y ) · S = 0 for any vector
fields X and Y , then M is called a pseudo-Ryan hypersurface. In [3], as a result of Theorem
A, Ivey and Ryan gave an example of a pseudo-Ryan hypersurface in M2(c).

THEOREM C ([3]). Let α(t), h(t), λ(t), ν(t) be analytic solutions defined on I of the
system (2), such that h is nowhere zero and the equation

h2ν2 + (4c + λν)(α(λ − ν) − h2) = 0

holds. Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-Ryan hy-
persurface.

In Section 4, we consider a condition that the Ricci operator S is pseudo-parallel, that is,

R(X, Y ) · S = F(X ∧ Y ) · S ,

where F is a function, which contains the pseudo-Ryan condition. We define the wedge
product X ∧ Y by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y

for vectors X and Y . It is shown that a ruled real hypersurface in non-flat complex space form

M2(c), c �= 0 cannot have a pseudo-parallel Ricci operator ([2], [6]). In [6], Inoguchi gave

a conjecture that real hypersurfaces in a non-flat complex space form M2(c) with pseudo-
parallel Ricci operator are Hopf. We prove the following theorem which gives the negative
result.

THEOREM 2. Let M be a real hypersurface in M2(c), c �= 0. If the Ricci operator S

is pseudo-parallel, then M is a Hopf hypersurface or a non-Hopf hypersurface such that the
shape operator has the form

A =
⎛
⎝

α h 0
h a1 0
0 0 a2

⎞
⎠

with respect to an orthonormal frame {ξ, e1, e2}, and

0 = (a2α − a1α + h2)(3c + a1a2 − a1α + h2) − a2
2h2 ,
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F = c + a1α − h2 .

If there exists a function F such that

g((R(X, Y )S)Z,W) = F g(((X ∧ Y )S)Z,W) ,

for all X, Y, Z and W orthogonal to ξ , then the real hypersurface is said to be pseudo η-
parallel, which is a weaker condition than pseudo-parallel. When M is a real hypersurface of
Mn(c), n ≥ 3, c �= 0, the author showed the following.

THEOREM D ([7]). Let M be a real hypersurface in a complex space form Mn(c),
c �= 0, n ≥ 3. Then the Ricci operator S is pseudo η-parallel if and only if M is pseudo-
Einstein.

We remark that a pseudo-Einstein real hypersurface is a Hopf hypersurface.

2. Preliminaries

Let Mn(c) denote the complex space form of complex dimension n (real dimension
2n) with constant holomorphic sectional curvature 4c. We denote by J the almost complex
structure of Mn(c). The Hermitian metric of Mn(c) will be denoted by G.

Let M be a real (2n − 1)-dimensional hypersurface immersed in Mn(c). We denote by
g the Riemannian metric induced on M from G. We take the unit normal vector field N of M

in Mn(c). For any vector field X tangent to M , we define φ, η and ξ by

JX = φX + η(X)N , JN = −ξ ,

where φX is the tangential part of JX, φ is a tensor field of type (1,1), η is a 1-form, and ξ is
the unit vector field on M . Then they satisfy

φ2X = −X + η(X)ξ , φξ = 0 , η(φX) = 0

for any vector field X tangent to M . Moreover, we have

g(φX, Y ) + g(X, φY ) = 0 , η(X) = g(X, ξ) ,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) .

Thus (φ, ξ, η, g) defines an almost contact metric structure on M .

We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇ the one
in M determined by the induced metric. Then the Gauss and Weingarten formulas are given
respectively by

∇̃XY = ∇XY + g(AX, Y )N , ∇̃XN = −AX

for any vector fields X and Y tangent to M . We call A the shape operator of M . If the
shape operator A of M satisfies Aξ = αξ for some functions α, then M is called a Hopf
hypersurface.
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For the almost contact metric structure on M , we have

∇Xξ = φAX , (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ .

If the shape operator A of a real hypersurface M is of the form A = aI , where I is the identity,
then M is said to be totally umbilical. In Tashiro-Tachibana [13], it was proved that any real
hypersurface of Mn(c), c �= 0, is not totally umbilical. So we need the notion of totally η-
umbilical real hypersurfaces, that is, the shape operator A is of the form A = aI + bη ⊗ ξ .

PROPOSITION E ([12]). The only totally η-umbilical real hypersurfaces in CPn, n ≥
2, are geodesic hyperspheres.

PROPOSITION F ([9], [10]). The only totally η-umbilical real hypersurfaces in CHn,
n ≥ 2, are horospheres, geodesic hyperspheres and tubes over complex hyperbolic hyper-
plane.

We denote by R the Riemannian curvature tensor field of M . Then the equation of Gauss
is given by

R(X, Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX

− g(φX,Z)φY − 2g(φX, Y )φZ}
+ g(AY,Z)AX − g(AX,Z)AY ,

and the equation of Codazzi by

(∇XA)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ} .

From the equation of Gauss, the Ricci operator S of M satisfies

g(SX, Y ) = (2n + 1)cg(X, Y ) − 3cη(X)η(Y )

+ TrAg(AX, Y ) − g(AX,AY) ,
(4)

where TrA is the trace of A. The scalar curvature r is defined by

r = TrS .

EXAMPLE ([5], [8]). Let M be a real hypersurface of a complex space form Mn(c),
c �= 0, and let T0 be the distribution defined by T0(x) = {X ∈ Tx(M)|X ⊥ ξ} for x ∈ M . If

T0 is integrable and its integral manifold is a totally geodesic submanifold Mn−1(c), then M

is called a ruled real hypersurface. Let γ (t) (t ∈ I) be an arbitrary (regular) curve in Mn(c).
Then for every t ∈ I there exists a totally geodesic submanifold Mn−1(c) in Mn(c) which

is orthogonal to the plane τt spanned by {γ ′(t), J γ ′(t)}. Here we denote by Mn−1
t (c) such a

totally geodesic submanifold. Let M = {x ∈ Mn−1
t (c)|t ∈ I }. Then the construction of M

asserts that M is a ruled real hypersurface in Mn(c). Moreover, the construction of M tells
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that there are many ruled real hypersurfaces. The holomorphic sectional curvature H of a
ruled real hypersurface M is 4c (see [4]).

3. A condition of shape operator

In this section, we prove Theorem 1. As a consequence of this theorem, we have the
following.

COROLLARY 1. Let M be a real hypersurface in M2(c), c �= 0. Suppose there exists
a constant a : M → R such that g(AX, Y ) = ag(X, Y ) for any vector fields X and Y

orthogonal to ξ . Then M is locally congruent to one of the following:
(a) a totally η-umbilical real hypersurface,
(b) a ruled real hypersurface.

First we prove the following

LEMMA 1. Let M be a real hypersurface in M2(c). Suppose that there exists a smooth
function a : M → R such that g(AX, Y ) = ag(X, Y ) for any vector fields X and Y orthogo-
nal to ξ , then M is a Hopf hypersurface or the shape operator A is represented by a matrix

A =
⎛
⎝

α h 0
h a 0
0 0 a

⎞
⎠ (5)

with respect to a suitable orthonormal frame {ξ, u, φu}, locally.

PROOF. By the assumption, we can take an orthonormal frame {ξ, e1, e2 = φe1}, such
that A is represented by a matrix

A =
⎛
⎝

α k1 k2

k1 a 0
k2 0 a

⎞
⎠ ,

locally, for suitable functions k1, k2 and α. We take a unit vector u that satisfies

Aξ = αξ + hu , g(ξ, u) = 0 ,

where h is a function. Then {ξ, u, φu} is another orthonormal frame of Tx(M). We can
represent u as

u = u1e1 + u2e2 .

Using this, we have

g(Au, u) = g(A(u1e1 + u2e2), u1e1 + u2e2)

= u2
1g(Ae1, e1) + 2u1u2g(Ae1, e2) + u2

2g(Ae2, e2)



NON-HOPF HYPERSURFACE 379

= a(u2
1 + u2

2) = a .

Similarly, we also have g(Aφu, φu) = a. Moreover, we obtain

g(Au, φu) = g(A(u1e1 + u2e2), u1φe1 + u2φe2)

= g(A(u1e1 + u2e2), u1e2 − u2e1)

= −u1u2a + u2u1a = 0 .

From these equations, there exists an orthonormal frame {ξ, u, φu} of Tx(M) such that the
shape operator A is of the form (5). �

Using the equation of Codazzi, we obtain

LEMMA 2. Let M be a real hypersurface in M2(c), c �= 0. If there exists an orthonor-
mal frame {ξ, e1, e2} on a sufficiently small neighborhood N of x ∈ M such that the shape
operator A can be represented as

A =
⎛
⎝

α h 0
h a 0
0 0 a

⎞
⎠ ,

then we have

(e1a) = 0 , (6)

(−2c + 2a2 − 2aα) + hg(∇e1e2, e1) + (e2h) = 0 , (7)

(e2a) = 3ha , (8)

(ξa) = hg(∇e2e1, e2) , (9)

(e2h) = c + aα − a2 + h2 , (10)

−h(α − 3a) + hg(∇ξ e2, e1) + (e2α) = 0 , (11)

(e1h) − (ξa) = 0 , (12)

(e1α) − (ξh) = 0 . (13)

PROOF. By the equation of Codazzi, we have

g((∇e2A)e1 − (∇e1A)e2, e2) = 0 .

On the other hand, we have

g((∇e2A)e1 − (∇e1A)e2, e2)

= g(∇e2(Ae1) − A∇e2e1 − ∇e1(Ae2) + A∇e1e2, e2)

= −(e1a) .

Thus we obtain (6). By the similar computation, we have our equations. �
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When M is not a Hopf hypersurface, then we can take x ∈ M and a sufficiently small
neighborhood of x, on which h �= 0. In the following, we consider the case that a �= 0 on the
neighborhood.

LEMMA 3. If h �= 0 and a �= 0, then,

∇e1e1 = −c + a2 − aα + h2

h
e2 ,

∇e1e2 = c − a2 + aα − h2

h
e1 − aξ ,

∇e2e1 = aξ, ∇e2e2 = 0 ,

∇ξ e1 = ae2, ∇ξ e2 = −ae1 − hξ .

Moreover, we have

e1a = 0 , e1h = 0 , e1α = 0 ,

e2a = 3ha , e2h = c − a2 + aα + h2 , e2α = hα − 2ha ,

ξa = 0 , ξh = 0 , ξα = 0 .

PROOF. First we compute ∇e1e2. Using (7) and (10), we have

g(∇e1e2, e1) = −g(∇e1e1, e2) = c − a2 + aα − h2

h
.

Moreover, we obtain g(∇e1e2, e2) = 0 and

g(∇e1e2, ξ) = −g(e2, φAe1) = −a .

So we have

∇e1e2 = c − a2 + aα − h2

h
e1 − aξ .

By the similar computation using Lemma 2, we obtain

∇e2e1 = (ξa)

h
e2 + aξ ,

∇e1e1 = −c + a2 − aα + h2

h
e2 ,

∇e2e2 = − (ξa)

h
e1 .

We put g(∇ξ e1, e2) = P . Then we have

∇ξ e1 = Pe2 ,

∇ξ e2 = −Pe1 − hξ .
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Since [X,Y ] = ∇XY − ∇Y X for any X and Y tangent to M , we have

[e1, e2]a = (∇e1e2 − ∇e2e1)a

= c − a2 + aα − h2

h
(e1a) − a(ξa) − (ξa)

h
(e2a) − a(ξa)

= −5a(ξa) .

For the last equality, we use (6) and (8). On the other hand, by (6) and (12), we obtain

[e1, e2]a = e1(e2a) − e2(e1a) = e1(3ha)

= 3(e1h)a + 3h(e1a) = 3(ξa)a .

These equations imply a(ξa) = 0, and hence

(ξa) = (e1h) = 0 . (14)

Similarly, we have

[e1, ξ ]a = (∇e1ξ − ∇ξ e1)a

= 3ha(a − P) .

Using (6) and (14), we obtain

[e1, ξ ]a = e1(ξa) − ξ(e1a) = 0 .

Since ha �= 0, we have a = P . Thus, by (11),

(e2α) = hα − 2ha .

By the similar computation for [e2, ξ ]a and [e2, ξ ]h, we also have

(ξh) = 0 , (e1α) = 0 , (ξα) = 0 .

Combining these results, we have our assertion. �

(Proof of Theorem 1)
When M is a Hopf hypersurface, then we have AX = aX + bη(X)ξ for some function

b. This means that M is totally η-umbilical.
Next we consider the case that M is not Hopf. Then we can take a point x and a suffi-

ciently small neighborhood of x, on which h �= 0. If a = 0 on the neighborhood, we see that
the real hypersurface is locally congruent to a ruled real hypersurface.

Finally, we suppose ha �= 0. We can take a unit-speed analytic framed curve γ (t) which
satisfy γ ′ = e2. Then Lemma 3 shows that a, h and α satisfy (3). We note that the existence
of this non-Hopf hypersurface is induced by Theorem A.

Conversely, such hypersurfaces satisfy the condition g(AX, Y ) = ag(X, Y ) for any vec-
tor fields X and Y orthogonal to ξ .
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4. 3-dimensional real hypersurfaces with pseudo-parallel Ricci operator

If the Ricci operator S of a real hypersurface M satisfies

R(X, Y ) · S = F(X ∧ Y ) · S ,

where F is a function, then the Ricci operator S is said to be pseudo-parallel.
To prove Theorem 2, first we show the following.

LEMMA 4. Let M be a real hypersurface in M2(c), c �= 0. If the Ricci operator S is
pseudo-parallel, then M is a Hopf hypersurface or the shape operator A is represented by the
matrix

A =
⎛
⎝

α h 0
h a1 0
0 0 a2

⎞
⎠

with respect to an orthonormal frame {ξ, e1, e2}, locally.

PROOF. Suppose that M is not a Hopf hypersurface. We take an orthonormal frame
{ξ, e1, e2}, where we have put e2 = φe1. Then there are smooth functions a1, a2, h1 and h2

such that A is represented by a matrix

A =
⎛
⎝

α h1 h2

h1 a1 0
h2 0 a2

⎞
⎠

with respect to {ξ, e1, e2}, locally. We remark that h1 �= 0 or h2 �= 0. From (4), we have

Se1 = (5c + a1a2 + a1α − h2
1)e1 − h1h2e2 + a2h1ξ ,

Se2 = (5c + a1a2 + a2α − h2
2)e2 − h1h2e1 + a1h2ξ ,

Sξ = a2h1e1 + a1h2e2 + (2c + a1α + a2α − h2
1 − h2

2)ξ .

(15)

Since S is symmetric, there exists an another orthonormal frame {v1, v2, v3} that satisfies
Sv1 = av1, Sv2 = bv2, Sv3 = dv3 for some functions a, b and d . Since S is pseudo-parallel,
we have

g(R(X, Y )SZ,W) − g(SR(X, Y )Z,W)

= F {g(Y, SZ)(X,W) − g(X, SZ)g(Y,W) − g(Y,Z)g(SX,W)

+ g(X,Z)g(SY,W)} .

(16)

Putting X = W = v1 and Y = Z = v2, we obtain

(b − a)(K(v1, v2) − F) = 0,

where the sectional curvature K for the plane spanned by v1 and v2 is denoted by

K(v1, v2) = g(R(v1, v2)v2, v1) .
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By the similar computation, we have

(d − a)(K(v1, v3) − F) = 0 ,

(d − b)(K(v2, v3) − F) = 0 .

If a �= b, b �= c and c �= a, then we see that

F = K(v1, v2) = K(v1, v3) = K(v2, v3) .

Thus we obtain

a = g(Se1, e1) = K(v1, v2) + K(v1, v3)

= K(v1, v2) + K(v2, v3)

= g(Se2, e2) = b .

This is a contradiction. From the fact that no real hypersurfaces of M2(c) are Einstein, it is
sufficient to consider the case that a = b �= d . Then we have

F = K(v1, v3) = K(v2, v3) ,

from which

g(Sv3, v3) = K(v1, v3) + K(v2, v3) = d = 2F .

So the Ricci operator S is represented by a matrix

S =
⎛
⎝

a 0 0
0 a 0
0 0 2F

⎞
⎠ (17)

with respect to {v1, v2, v3}.
On the other hand, from the assumption, we have

g((R(e1, e2)S)e1, e1) = F g(((e1 ∧ e2) · S)e1, e1).

By the equation of Gauss and (15), we obtain

g((R(e1, e2)S)e1, e1) = g(R(e1, e2)Se1, e1) − g(R(e1, e2)e1, Se1)

= 2c(g(e2, Se1)g(e1, e1) − g(φe1, Se1)(φe2, e1)

−2g(φe1, e2)g(φSe1, e1))

+2g(Ae2, Se1)g(Ae1, e1)

= −8ch1h2 .

By (15), we have

F g(((e1 ∧ e2) · S)e1, e1) = F(g(e2, Se1)(e1, e1) − g(Se1, e1)g(e2, e1) − g(e2, e1)g(Se1, e1)

+g(e1, e1)g(Se2, e1))
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= 2F(Se1, e2) = −2Fh1h2 .

From these equations, we see that

(4c − F)h1h2 = 0 . (18)

Similarly, substituting X = Z = e1, Y = ξ , W = e2 and X = Z = e2, Y = ξ , W = e1, we
obtain

0 = h2{(c − F)a1 − a2h
2
1 + a1a2α − a1h

2
2} ,

0 = h1{(c − F)a2 − a1h
2
2 + a1a2α − a2h

2
1} ,

(19)

respectively.
To prove the lemma, it is sufficient to consider the case that h1h2 �= 0. From (18) and

(19), we have 4c = F and

(c − F)(a1 − a2) = 0 .

Since c−F = −3c �= 0, we obtain a1 = a2. By Lemma 1, the shape operator A is represented
as

A =
⎛
⎝

α h 0
h k 0
0 0 k

⎞
⎠ (20)

with respect to an orthonormal frame {ξ, u, φu}. Thus we have our assertion. �

(Proof of Theorem 2)
Suppose that M is not a Hopf hypersurface. We put h1 = h �= 0, locally. Then the Ricci

operator S is represented by a matrix

S =
⎛
⎝

2c + a1α + a2α − h2 a2h 0
a2h 5c + a1a2 + a1α − h2 0
0 0 5c + a1a2 + a2α

⎞
⎠ (21)

with respect to {ξ, e1, e2}. By (17), we see that 5c+a1a2 +a2α = 2F or 5c+a1a2+a2α = a.
First we suppose 5c + a1a2 + a2α = 2F . From (17) and (21), taking a trace of S, the

scalar curvature r satisfies

r = 2(a + F) = 12c + 2a1a2 + 2a1α + 2a2α − 2h2 .

So we have

a = F + c + a1α − h2 . (22)

We put

S′ =
(

2c + a1α + a2α − h2 a2h

a2h 5c + a1a2 + a1α − h2

)
.
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Then the eigenvalues of S′ are solutions of the equation

0 = det(xI − S′)

= (x − 5c − a1a2 − a1α + h2)(x − 2c − a1α − a2α + h2)

− a2
2h2 .

(23)

Since a is an eigenvalue of S′, using (22), we have

0 = (F − 4c − a1a2)(F − c − a2α) − a2
2h2 .

By a1a2 = 2F − 5c − a2α, we obtain

0 = −(F − c − a2α)2 − a2
2h2 ,

which induces F − c − a2α = 0 and a2
2h2 = 0. Since h �= 0, we have a2 = 0 and F = c. By

5c + a1a2 + a2α = 2F , we have

0 = 2F − 5c = −3c .

This is a contradiction.
Next, we suppose 5c + a1a2 + a2α = a. Then we have

r = 2(a + F) = 2(6c + a1a2 + a1α + a2α − h2) .

From these equations, we have

F = c + a1α − h2 . (24)

Since a and 2F are the solutions of (23), we obtain

0 = (a2α − a1α + h2)(3c + a1a2 − a1α + h2) − a2
2h2 . (25)

So we see that if S is pseudo-parallel, then M is a Hopf hypersurface or the shape operator A

is represented by

A =
⎛
⎝

α h 0
h a1 0
0 0 a2

⎞
⎠ (26)

with respect to an orthonormal frame {ξ, e1, e2} and satisfies (24), (25). So we have our
theorem. �

In [2], Cho, Hamada and Inoguchi gave a classification of pseudo-parallel Hopf hyper-
surfaces.

THEOREM G ([2]). The Hopf hypersurfaces in CP 2(c) or CH 2(c) with pseudo-
parallel Ricci operator are locally holomorphically congruent to a horosphere in CH 2(c),

a geodesic hypersphere in CP 2(c) or CH 2(c), a homogeneous tube over CH 1(c) in CH 2, a
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non-homogeneous real hypersurface which is realized as a tube over a certain holomorphic

curve in CP 2(c) with radius π/
√

4c, or a Hopf hypersurface in CH 2(c) with Aξ = 0.

Using Theorem A, we see the following result (see Corollary 3 in [3]).

COROLLARY 2. Let α(t), h(t), λ(t), ν(t) be analytic solutions defined for t ∈ I of the
system (2), such that h is nowhere zero and

0 = (να − λα + h2)(3c + λν − λα + h2) − ν2h2 .

Then the hypersurface M constructed by Theorem A is a non-Hopf pseudo-parallel hypersur-
face with F = c + λα − h2.

PROOF. We suppose that A satisfies (24)–(26) and a1 = λ, a2 = ν. It is sufficient to
show that

g((R(X, Y )S)Z,W) − F g(((X ∧ Y )S)Z,W) = 0

for all X = ei , Y = ej , Z = ek and W = el , 1 ≤ i, j, k, l ≤ 3, where e3 = ξ . Using (15),
(24)–(26) and the equation of Gauss, we have

g((R(e1, e2)S)e1, e2) − F g(((e1 ∧ e2)S)e1, e2)

= g(R(e1, e2)Se1, e2) − g(R(e1, e2)e1, Se2)

− F(−g(Se1, e1) + g(Se2, e2))

= −4cg(Se1, e1) + g(Ae2, Se1)g(Ae1, e2) − g(Ae1, Se1)g(Ae2, e2)

+ 4cg(Se2, e2) − g(Ae1, Se2)g(Ae2, e1) + g(Ae1, e1)g(Ae2, Se2)

− F(−g(Se1, e1) + g(Se2, e2))

= (a2α − a1α + h2)(4c − F + a1a2) − a2
2h2

= (a2α − a1α + h2)(3c + a1a2 − a1α + h2) − a2
2h2

= 0 .

Similarly, for all X = ei , Y = ej , Z = ek and W = el , we can show that

g((R(X, Y )S)Z,W) − F g(((X ∧ Y )S)Z,W) = 0

by the straightforward computation. �

REMARK. If the shape operator A satisfies (25), (26) and a1 = a2 = 0, then we have
c = h = 0 by (10). Thus a ruled real hypersurface is not pseudo-parallel (see [2] and [6]).
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