On Classification of Quandles of Cyclic Type

Seiichi KAMADA, Hiroshi TAMARU and Koshiro WADA
Osaka City University, Hiroshima University and Hiroshima University

(Communicated by K. Ahara)

Abstract

In this paper, we study quandles of cyclic type, which form a particular subclass of finite quandles. The main result of this paper describes the set of isomorphism classes of quandles of cyclic type in terms of certain cyclic permutations. By using our description, we give a direct classification of quandles of cyclic type with cardinality up to 12 .

1. Introduction

The notion of quandle was introduced by Joyce ([6]) as a set with a binary operator, satisfying three axioms corresponding to Reidemeister moves of a classical knot. In knot theory, quandles play a lot of important roles, and have provided several invariants of knots ($[2,3,5,8,10]$). For further information, we refer to [1, 7] and references therein. Among others, Carter, Jelsovsky, the first author, Langford and Saito ([2]) gave strong invariants, called quandle cocycle invariants, defined by quandle cocycles. For example, they gave a 3-cocycle of the dihedral quandle R_{3} with cardinality 3 , and apply it to prove the non-invertibility of the 2-twist spun trefoil.

Quandles provide several invariants of knots, but on the other hand, it is difficult to calculate these invariants explicitly, especially if the structure of the quandle is complicated. Therefore, it is of importance to study special classes of quandles, whose quandle structures are easy to handle. From this point of view, we study quandles of cyclic type, whose name was introduced in [11]. A quandle with cardinality n is said to be of cyclic type if all right multiplications are cyclic permutations of order $n-1$. Since this quandle structure is very tractable, quandles of cyclic type are potentially useful for applications in knot theory.

We here recall some known results on quandles of cyclic type. In [9], Lopes and Roseman essentially studied quandles of cyclic type, which they call quandles with constant profile ($\{1, n-1\}, \ldots,\{1, n-1\}$). They studied such quandles in terms of cyclic permutations, and classified those with cardinality up to 8. Subsequently, Hayashi ([4]) studied the structures of quandles of cyclic type, and gave a table of those with cardinality up to 35 . Note that his

[^0]table is obtained by using the list of connected quandles with cardinality up to 35 (called Vendramin's list [12]). Independently, the second author ([11]) studied quandles of cyclic type, and classified those with prime cardinality. In particular, for every prime number $p \geq 3$, there exists a quandle of cyclic type with cardinality p. This suggests that the class of quandles of cyclic type is fruitful.

In this paper, we study and describe the set C_{n} of isomorphism classes of quandles of cyclic type with cardinality n. In fact, our main theorem gives a bijection from C_{n} onto F_{n}, where F_{n} denotes the set of cyclic permutations of order $n-1$ satisfying two conditions. This bijection is useful for studying quandles of cyclic type, since such quandles can be characterized by certain cyclic permutations. We then apply our main theorem to the classification of quandles of cyclic type, and provide a list of those with cardinality up to 12 . Our study extends some of the results by Lopes and Roseman ([9]). In fact, they also studied cyclic permutations determined by quandles of cyclic type, which are similar to ours. Our new contribution is to show that it gives a well-defined and bijective map. Furthermore, our argument gives a direct and classification-free proof for a part of the table given by Hayashi ([4]).

This paper is organized as follows. In Section 2 we recall some fundamental notions on quandles. In Section 3, the definition and some properties of quandles of cyclic type are summarized. We state the main theorem in Section 4, and give a table of quandles of cyclic type with cardinality up to 12 . Section 5 contains the proof of the main theorem.

2. Preliminaries for quandles

In this section we recall some fundamental notions on quandles.
Definition 2.1. Let X be a set and $*: X \times X \rightarrow X$ be a binary operator. The pair $(X, *)$ is called a quandle if
(Q1) $\forall x \in X, x * x=x$,
(Q2) $\forall x, y \in X, \exists!z \in X: z * y=x$, and
(Q3) $\forall x, y, z \in X,(x * y) * z=(x * z) *(y * z)$.
If $(X, *)$ is a quandle, then $*$ is called a quandle structure on X. We restate the definition of a quandle as follows.

Proposition 2.2 ($[3,11])$. Let X be a set, and assume that there exists a map s_{x} : $X \rightarrow X$ for every $x \in X$. Then, the binary operator $*$ defined by $y * x:=s_{x}(y)$ is a quandle structure on X if and only if
(S1) $\forall x \in X, s_{x}(x)=x$,
(S2) $\forall x \in X, s_{x}$ is bijective, and
(S3) $\forall x, y \in X, s_{x} \circ s_{y}=s_{s_{x}(y)} \circ s_{x}$.
Instead of Definition 2.1, throughout this paper, we denote the quandle by $X=(X, s)$ with the quandle structure

$$
\begin{equation*}
s: X \rightarrow \operatorname{Map}(X, X): x \mapsto s_{x} . \tag{1}
\end{equation*}
$$

Here $\operatorname{Map}(X, X)$ denotes the set of all maps from X to X.
Example 2.3. The following (X, s) are quandles:
(1) Let X be any set and $s_{x}:=\operatorname{id}_{X}$ for every $x \in X$. Then the pair (X, s) is called the trivial quandle.
(2) Let $X:=\{1, \ldots, n\}$ and $s_{i}(j):=2 i-j(\bmod n)$ for any $i, j \in X$. Then the pair (X, s) is called the dihedral quandle with cardinality n.
(3) Let $X:=\{1,2,3,4\}$ and

$$
s_{1}:=(234), \quad s_{2}:=(143), \quad s_{3}:=(124), \quad s_{4}:=(132) .
$$

Then the pair (X, s) is called the tetrahedron quandle.
Note that (234), (143), and so on, denote the cyclic permutations. We use this symbol frequently in the later sections.

DEFINITION 2.4. Let $\left(X, s^{X}\right),\left(Y, s^{Y}\right)$ be quandles, and $f: X \rightarrow Y$ be a map.
(1) f is called a homomorphism if for every $x \in X, f \circ s_{x}^{X}=s_{f(x)}^{Y} \circ f$ holds.
(2) f is called an isomorphism if f is a bijective homomorphism.

An isomorphism from a quandle (X, s) onto itself is called an automorphism. The set of automorphisms of (X, s) forms a group, which is called the automorphism group and denoted by $\operatorname{Aut}(X, s)$.

Note that $s_{x}(x \in X)$ is an automorphism of (X, s). The subgroup of $\operatorname{Aut}(X, s)$ generated by $\left\{s_{x} \mid x \in X\right\}$ is called the inner automorphism group of (X, s) and denoted by $\operatorname{Inn}(X, s)$.

DEFINITION 2.5. A quandle (X, s) is said to be connected $\operatorname{if} \operatorname{Inn}(X, s)$ acts transitively on X.

On the connectedness of the quandles in Example 2.3, the following is well-known. We denote by $\# X$ the cardinality of X.

Example 2.6. One has the following:
(1) The trivial quandle (X, s) is connected if and only if $\# X=1$.
(2) The dihedral quandle (X, s) is connected if and only if $\# X$ is odd.
(3) The tetrahedron quandle is connected.

3. Quandles of cyclic type

From now on we always assume that a quandle $X=(X, s)$ is finite and satisfies $\# X \geq 3$. In this section, we recall the definition and some properties of quandles of cyclic type given in [11].

Definition 3.1 ([11]). A quandle (X, s) with $\# X=n \geq 3$ is said to be of cyclic type if for every $x \in X, s_{x}$ acts on $X \backslash\{x\}$ as a cyclic permutation of order $n-1$.

This notion is closely related to the notion of two-point homogeneous quandle. A quandle (X, s) is said to be two-point homogeneous if for any $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in X \times X$ satisfying $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$, there exists $f \in \operatorname{Inn}(X, s)$ such that $\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)=\left(y_{1}, y_{2}\right)$. The second author studied quandles of cyclic type in [11] because of the following proposition.

Proposition 3.2 ([11]). Every quandle of cyclic type is two-point homogeneous.
The following is a characterization of quandles of cyclic type, which we use in the latter arguments. In particular, quandles of cyclic type must be connected.

Proposition 3.3 ([11]). Let $X=(X, s)$ be a quandle with $\# X=n \geq 3$. Then, X is of cyclic type if and only if
(i) X is connected, and
(ii) there exists $x \in X$ such that s_{x} acts on $X \backslash\{x\}$ as a cyclic permutation of order $n-1$.

If the structure of a quandle is given, then one can easily check whether it is of cyclic type or not. We here give some easy examples.

Example 3.4. One has the following:
(1) The trivial quandles are not of cyclic type.
(2) The dihedral quandle (X, s) is of cyclic type if and only if $\# X=3$.
(3) The tetrahedron quandle is of cyclic type.

4. Main Theorem

In this section, we state our main theorem, and give a table of quandles of cyclic type with cardinality up to 12 . The following notations will be used throughout the remaining of this paper:

- $X:=\{1,2, \ldots, n\}$ with $n \geq 3$,
- S_{n} denotes the symmetry group of order n,
- $\left(S_{n}\right)_{n-1}:=\left\{\sigma \in S_{n} \mid \sigma\right.$ is a cyclic permutation of order $\left.n-1\right\}$.

Definition 4.1. We denote by $C_{n}^{\#}$ the set of all quandle structures of cyclic type on X, that is,

$$
C_{n}^{\#}:=\left\{s: X \rightarrow\left(S_{n}\right)_{n-1} \mid s \text { satisfies (S1), (S3) }\right\}
$$

(Note that every $s \in C_{n}^{\#}$ automatically satisfies (S2).) We denote by C_{n} the set of isomorphism classes [s] of $s \in C_{n}^{\#}$.

Consider the inclusion map from $C_{n}^{\#}$ into the set of quandles of cyclic type with cardinality n. This induces a bijection from C_{n} to the set of isomorphism classes of quandles of cyclic type with cardinality n.

Definition 4.2. Let $s_{1}:=(23 \ldots n)$. We denote by F_{n} the set of $s_{2} \in\left(S_{n}\right)_{(n-1)}$ satisfying the following two conditions:
(F1) $s_{2}(2)=2$, and
(F2) $\left\{s_{2}^{m} s_{1} s_{2}^{-m} \mid m=1,2, \ldots, n-2\right\}=\left\{s_{1}^{m} s_{2} s_{1}^{-m} \mid m=1,2, \ldots, n-2\right\}$.
Recall that $(23 \ldots n)$ denotes the cyclic permutation. The following is the main theorem of this paper, which gives a one-to-one correspondence between C_{n} and F_{n}.

THEOREM 4.3. Let $s_{1}:=(23 \ldots n), s_{2} \in F_{n}$, and define $\varphi\left(s_{2}\right): X \rightarrow \operatorname{Map}(X, X)$ by

$$
\left(\varphi\left(s_{2}\right)\right)_{i}:= \begin{cases}s_{1} & (i=1) \\ s_{2} & (i=2) \\ s_{1}^{i-2} \circ s_{2} \circ s_{1}^{-i+2} & (i \in\{3, \ldots, n\})\end{cases}
$$

Then one has $\varphi\left(s_{2}\right) \in C_{n}^{\#}$, and hence give a map $\varphi: F_{n} \rightarrow C_{n}^{\#}$. This induces a bijection from F_{n} onto C_{n} by composing with the natural projection from $C_{n}^{\#}$ onto C_{n}.

The proof of this theorem will be given in the next section. In the remaining of this section, we provide a table of quandles of cyclic type with cardinality up to 12 . For the classification, we have only to determine the set F_{n}.

Proposition 4.4. We have $F_{3}=\{(13)\}$ and $F_{4}=\{(143)\}$.
Proof. The basic strategy is the following. First of all, we list up all elements in $\left(S_{n}\right)_{(n-1)}$ satisfying (F1). These elements are called the candidates for simplicity. We then check whether each candidate satisfies (F2) or not.

In the case of $n=3$, the only candidate is $s_{2}=(13)$. One can easily see that

$$
\begin{equation*}
s_{2} s_{1} s_{2}^{-1}=(12)=s_{1} s_{2} s_{1}^{-1} . \tag{2}
\end{equation*}
$$

Hence s_{2} satisfies (F2). This proves the first assertion.
In the case of $n=4$, there are two candidates, (143) and (134). For $s_{2}:=$ (143), we have

$$
\begin{array}{ll}
s_{1} s_{2} s_{1}^{-1}=(124), & s_{1}^{2} s_{2} s_{1}^{-2}=(132), \\
s_{2} s_{1} s_{2}^{-1}=(132), & s_{2}^{2} s_{1} s_{2}^{-2}=(124) . \tag{3}
\end{array}
$$

Thus $s_{2}=(143)$ satisfies (F2). On the other hand, $s_{2}:=$ (134) does not satisfy (F2). In fact, $s_{2} s_{1} s_{2}^{-1}=(124)$ is not an element of

$$
\begin{equation*}
\left\{s_{1}^{m} s_{2} s_{1}^{-m} \mid m=1,2\right\}=\{(142),(123)\} . \tag{4}
\end{equation*}
$$

This completes the proof of the second assertion.
When $n=3$, the quandle corresponding to $s_{2}=(13)$ is the dihedral quandle with cardinality 3 . When $n=4$, the quandle corresponding to $s_{2}=$ (143) is the tetrahedron quandle. When $n \geq 5$, the following lemma is useful to examine whether each candidate satisfies (F2) or not.

Lemma 4.5. Let $s_{2} \in F_{n}$, and assume that $m \in \mathbb{Z}$ satisfies $s_{2}(1)=s_{1}^{m}$ (2). Then we have

$$
s_{1}^{m} s_{2} s_{1}^{-m}=s_{2} s_{1} s_{2}^{-1} .
$$

Proof. Since $s_{2} \in F_{n}$ satisfies (F2), there exists $l \in\{1,2, \ldots, n-2\}$ such that

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=s_{2}^{l} s_{1} s_{2}^{-l} . \tag{5}
\end{equation*}
$$

Note that $s_{1}^{m} s_{2} s_{1}^{-m}$ is a cyclic permutation of order $n-1$, having the unique fixed point s_{1}^{m} (2). Similarly, $s_{2}^{l} s_{1} s_{2}^{-l}$ has the unique fixed point $s_{2}^{l}(1)$. Hence, combining with the assumption, one has

$$
\begin{equation*}
s_{2}(1)=s_{1}^{m}(2)=s_{2}^{l}(1) . \tag{6}
\end{equation*}
$$

Since $s_{2} \in\left(S_{n}\right)_{n-1}$ and it satisfies (F1), we conclude

$$
\begin{equation*}
l=1 . \tag{7}
\end{equation*}
$$

This completes the proof.
The above lemma is useful to determine the set F_{n} for any n. Here we apply it to the case of $n=5$.

Proposition 4.6. We have $F_{5}=\{(1354)$, (1435) $\}$.
Proof. As for the set F_{5}, there are six candidates,

$$
\begin{equation*}
s_{2}=(1345),(1354),(1435),(1453),(1534),(1543) \tag{8}
\end{equation*}
$$

One can directly see that (1354) and (1435) satisfy (F2). We omit the proof for these two cases.

We here show that the remaining four candidates do not satisfy (F2). For the proof, we use Lemma 4.5. In fact, we determine m satisfying $s_{1}^{m}(2)=s_{2}(1)$, and show that $s_{1}^{m} s_{2} s_{1}^{-m} \neq$ $s_{2} s_{1} s_{2}^{-1}$.

Case (1): $s_{2}:=(1345)$. Let $m=1$. Then one has $s_{1}^{m}(2)=3=s_{2}(1)$ and

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=(1452) \neq(1245)=s_{2} s_{1} s_{2}^{-1} . \tag{9}
\end{equation*}
$$

Case (2): $s_{2}:=(1453)$. Let $m=2$. Then one has $s_{1}^{m}(2)=4=s_{2}(1)$ and

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=(1235) \neq(1532)=s_{2} s_{1} s_{2}^{-1} \tag{10}
\end{equation*}
$$

Case (3): $s_{2}:=(1543)$. Let $m=3$. Then one has $s_{1}^{m}(2)=5=s_{2}(1)$ and

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=(1432) \neq(1342)=s_{2} s_{1} s_{2}^{-1} . \tag{11}
\end{equation*}
$$

Case (4): $s_{2}:=(1534)$. Let $m=3$. Then one has $s_{1}^{m}(2)=5=s_{2}(1)$ and

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=(1423) \neq(1324)=s_{2} s_{1} s_{2}^{-1} . \tag{12}
\end{equation*}
$$

We have thus proved that these four candidates do not satisfy (F2).

By the same arguments, we have determined F_{n} with $n \leq 12$. We omit the proof since it is long and the arguments are exactly same as above, and we have used some computer programs for calculations. The results are summarized in Table 1, which gives a classification of quandles of cyclic type with cardinality up to 12 . Note that $\# F_{n}$ denotes the cardinality of F_{n}.

TABLE 1. Quandles of cyclic type with cardinality up to 12

n	$\# F_{n}$	F_{n}
3	1	$\{(13)\}$
4	1	$\{(143)\}$
5	2	$\{(1354),(1435)\}$
6	0	\emptyset
7	2	$\{(174653),(175463)\}$
8	2	$\{(1583764),(1754836)\}$
9	2	$\{(14386957),(15736498)\}$
10	0	\emptyset
11	4	$\{(136841151097),(143710511968)$,
		$(168539471110),(175493106811)\}$
12	0	\emptyset

We note that Table 1 agrees with some previously known results ($[4,9,11]$) mentioned in Introduction. By looking at these classification lists, we conjecture the following.

CONJECTURE 4.7. Let $n \geq 3$. Then, there exists a quandle of cyclic type with cardinality n if and only if n is a power of a prime number.

Remark 4.8. We here note that, after we submitted the first version of this paper to the arXiv, Conjecture 4.7 is solved affirmatively. This follows from the recent results by Vendramin ([13]) and by the third author ([14]). However, we decided to keep the original formulation, since Conjecture 4.7 has inspired such studies and is referred in several papers.

5. Proof of Theorem 4.3

In this section, we prove Theorem 4.3, which gives a bijection from F_{n} onto C_{n}. For the proof, we define auxiliary sets E_{n} and D_{n}, and construct bijections

$$
\begin{equation*}
g_{3}: F_{n} \rightarrow E_{n}, \quad g_{2}: E_{n} \rightarrow D_{n}, \quad g_{1}: D_{n} \rightarrow C_{n} . \tag{13}
\end{equation*}
$$

5.1. A bijection from D_{n} onto C_{n}. In this subsection, we define a set D_{n}, and construct a bijection from D_{n} onto C_{n}. Recall that $X:=\{1, \ldots, n\}$, and $\left(S_{n}\right)_{n-1}$ is the subset of S_{n} consisting of all cyclic permutations of order $n-1$. Two subsets $\Sigma, \Sigma^{\prime} \subset S_{n}$ are said to be conjugate if there exists $g \in S_{n}$ such that $g^{-1} \Sigma g=\Sigma^{\prime}$.

Definition 5.1. We denote by $D_{n}^{\#}$ the set of $\Sigma \subset\left(S_{n}\right)_{n-1}$ satisfying
(D1) $\forall s \in \Sigma, s^{-1} \Sigma s \subset \Sigma$, and
(D2) $\forall x \in X, \exists!s \in \Sigma: s(x)=x$.
We also denote by D_{n} the set of conjugacy classes [Σ] of $\Sigma \in D_{n}^{\#}$.
First of all we study $D_{n}^{\#}$. Note that Conditions (D1) and (D2) are preserved by conjugation. Namely, if $\Sigma \in D_{n}^{\#}$ and Σ is conjugate to Σ^{\prime}, then one has $\Sigma^{\prime} \in D_{n}^{\#}$. Furthermore, the following lemma yields that every $\Sigma \in D_{n}^{\#}$ satisfies $\# \Sigma=n$.

Lemma 5.2. Let $\Sigma \in D_{n}^{\#}$. For each $x \in X$, denote by $s_{x}^{\Sigma} \in \Sigma$ the unique element with $s_{x}^{\Sigma}(x)=x$. Then, the obtained map $s^{\Sigma}: X \rightarrow \Sigma$ is bijective.

Proof. We show that s^{Σ} is surjective. Take any $s \in \Sigma$. Since $s \in\left(S_{n}\right)_{n-1}$, there exists $x \in X$ such that $s(x)=x$. Then, the uniqueness in (D2) shows $s=s_{x}^{\Sigma}$.

We next show that s^{Σ} is injective. Let $x, y \in X$ and assume that $s_{x}^{\Sigma}=s_{y}^{\Sigma}$. One knows $s_{x}^{\Sigma}(x)=x$ by definition. Thus x is the unique fixed point of $s_{x}^{\Sigma} \in\left(S_{n}\right)_{n-1}$. Similarly, y is the unique fixed point of s_{y}^{Σ}. This concludes $x=y$.

The aim of this subsection is to construct a bijection from D_{n} onto C_{n}. We here see that s^{Σ} defines a map from $D_{n}^{\#}$ onto $C_{n}^{\#}$. Recall that $\Sigma \subset\left(S_{n}\right)_{n-1}$.

Lemma 5.3. The above defined map $s^{\Sigma}: X \rightarrow\left(S_{n}\right)_{n-1}$ satisfies $s^{\Sigma} \in C_{n}^{\#}$, that is, $\left(X, s^{\Sigma}\right)$ is a quandle of cyclic type.

Proof. By definition, s^{Σ} satisfies (S1). Hence we have only to show (S3). Take any $y, z \in X$. Condition (D1) yields that

$$
\begin{equation*}
s_{z}^{\Sigma} \circ s_{y}^{\Sigma} \circ\left(s_{z}^{\Sigma}\right)^{-1} \in \Sigma . \tag{14}
\end{equation*}
$$

On the other hand, one has

$$
\begin{equation*}
s_{z}^{\Sigma} \circ s_{y}^{\Sigma} \circ\left(s_{z}^{\Sigma}\right)^{-1}\left(s_{z}^{\Sigma}(y)\right)=s_{z}^{\Sigma} \circ s_{y}^{\Sigma}(y)=s_{z}^{\Sigma}(y) . \tag{15}
\end{equation*}
$$

Therefore, from the uniqueness in (D2), one has

$$
\begin{equation*}
s_{z}^{\Sigma} \circ s_{y}^{\Sigma} \circ\left(s_{z}^{\Sigma}\right)^{-1}=s_{s_{z}^{\Sigma}(y)}^{\Sigma} . \tag{16}
\end{equation*}
$$

This proves (S3), which completes the proof.
One thus has obtained a map from $D_{n}^{\#}$ to $C_{n}^{\#}$. For the later use, we here show that this map is surjective.

LEMMA 5.4. The following map is surjective:

$$
\bar{g}_{1}: D_{n}^{\#} \rightarrow C_{n}^{\#}: \Sigma \mapsto s^{\Sigma} .
$$

Proof. Take any $s \in C_{n}^{\#}$. Let us put

$$
\begin{equation*}
\Sigma:=\left\{s_{x} \mid x \in X\right\} \subset\left(S_{n}\right)_{n-1} . \tag{17}
\end{equation*}
$$

We have only to prove that $\Sigma \in D_{n}^{\#}$ and $\bar{g}_{1}(\Sigma)=s$.
We show that Σ satisfies (D1). Take any $s_{x}, s_{y} \in \Sigma$. Since s_{x}^{-1} is an automorphism, one has

$$
\begin{equation*}
s_{x}^{-1} \circ s_{y} \circ s_{x}=s_{s_{x}^{-1}(y)} \in \Sigma . \tag{18}
\end{equation*}
$$

This proves $s_{x}^{-1} \Sigma s_{x} \subset \Sigma$.
We next show that Σ satisfies (D2). Take any $x \in X$. Since s satisfies (S1), $s_{x} \in \Sigma$ satisfies $s_{x}(x)=x$. This proves the existence. Next assume that $s_{y}(x)=x$. Since $s \in C_{n}^{\#}$, one has $s_{y} \in\left(S_{n}\right)_{n-1}$. Hence x is the unique fixed point of s_{y}. Thus (S1) yields that $x=y$, which proves the uniqueness.

We have proved $\Sigma \in D_{n}^{\#}$. Furthermore, by the definition of \bar{g}_{1}, it is easy to see that $\bar{g}_{1}(\Sigma)=s$. This completes the proof.

We here define a map from D_{n} to C_{n}. Recall that [Σ] denotes the conjugacy class of $\Sigma \in D_{n}^{\#}$, and $[s]$ denotes the isomorphism class of $s \in C_{n}^{\#}$.

Lemma 5.5. The following map is well-defined:

$$
g_{1}: D_{n} \rightarrow C_{n}:[\Sigma] \mapsto\left[s^{\Sigma}\right] .
$$

Proof. Let $\Sigma, \Sigma^{\prime} \in D_{n}^{\#}$, and assume that $[\Sigma]=\left[\Sigma^{\prime}\right]$. Hence there exists $g \in S_{n}$ such that $\Sigma=g^{-1} \Sigma^{\prime} g$. In order to show $\left[s^{\Sigma}\right]=\left[s^{\Sigma^{\prime}}\right]$, it is enough to prove that the following map is a quandle isomorphism:

$$
\begin{equation*}
g:\left(X, s^{\Sigma}\right) \rightarrow\left(X, s^{\Sigma^{\prime}}\right) . \tag{19}
\end{equation*}
$$

This is obviously bijective. We show that g is a quandle homomorphism. Take any $x \in X$. By definition, one has

$$
\begin{equation*}
s_{g(x)}^{\Sigma^{\prime}}(g(x))=g(x) . \tag{20}
\end{equation*}
$$

This means that

$$
\begin{equation*}
g^{-1} \circ s_{g(x)}^{\Sigma^{\prime}} \circ g(x)=x \tag{21}
\end{equation*}
$$

On the other hand, one has

$$
\begin{equation*}
g^{-1} \circ s_{g(x)}^{\Sigma^{\prime}} \circ g \in g^{-1} \Sigma^{\prime} g=\Sigma . \tag{22}
\end{equation*}
$$

Hence, from the uniqueness in (D2), we have

$$
\begin{equation*}
g^{-1} \circ s_{g(x)}^{\Sigma^{\prime}} \circ g=s_{x}^{\Sigma} . \tag{23}
\end{equation*}
$$

This proves that g is a quandle homomorphism.

We now show that the above defined map g_{1} is bijective. The following is the main result of this subsection.

Proposition 5.6. The map $g_{1}: D_{n} \rightarrow C_{n}$ is bijective.
Proof. One knows that g_{1} is surjective, since so is \bar{g}_{1} from Lemma 5.4. It remains to show that g_{1} is injective. Let $[\Sigma],\left[\Sigma^{\prime}\right] \in D_{n}$, and assume that $g_{1}([\Sigma])=g_{1}\left(\left[\Sigma^{\prime}\right]\right)$. By definition, one has $\left[s^{\Sigma}\right]=\left[s^{\Sigma^{\prime}}\right]$, that is, there exists a quandle isomorphism

$$
\begin{equation*}
g:\left(X, s^{\Sigma}\right) \rightarrow\left(X, s^{\Sigma^{\prime}}\right) . \tag{24}
\end{equation*}
$$

Since g is bijective, one has $g \in S_{n}$. Since g is a homomorphism, one has for any $x \in X$ that

$$
\begin{equation*}
s_{x}^{\Sigma}=g^{-1} \circ s_{g(x)}^{\Sigma^{\prime}} \circ g \in g^{-1} \Sigma^{\prime} g . \tag{25}
\end{equation*}
$$

This proves $\Sigma \subset g^{-1} \Sigma^{\prime} g$. Recall that \# $\Sigma=n=\# \Sigma^{\prime}$ holds from Lemma 5.2. Therefore, we have $\Sigma=g^{-1} \Sigma^{\prime} g$, and thus $[\Sigma]=\left[\Sigma^{\prime}\right]$. This concludes that g_{1} is injective.
5.2. A bijection from E_{n} onto D_{n}. In this subsection, we define a set E_{n}, and construct a bijection from E_{n} onto D_{n}. We denote by

$$
\begin{equation*}
S_{n,(1,2)}:=\left\{u \in S_{n} \mid u(1)=1, u(2)=2\right\} . \tag{26}
\end{equation*}
$$

Two elements $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in\left(S_{n}\right)_{n-1} \times\left(S_{n}\right)_{n-1}$ are said to be $S_{n,(1,2)}$-conjugate if $\left(u_{1}, u_{2}\right)=\left(w^{-1} v_{1} w, w^{-1} v_{2} w\right)$ for some $w \in S_{n,(1,2)}$.

DEFINITION 5.7. We denote by $E_{n}^{\#}$ the set of $\left(u_{1}, u_{2}\right) \in\left(S_{n}\right)_{n-1} \times\left(S_{n}\right)_{n-1}$ satisfying
(E1) $u_{1}(1)=1, u_{2}(2)=2$, and
(E2) $\left\{u_{1}^{m} u_{2} u_{1}^{-m} \mid m=1,2, \ldots, n-2\right\}=\left\{u_{2}^{m} u_{1} u_{2}^{-m} \mid m=1,2, \ldots, n-2\right\}$.
We also denote by E_{n} the set of $S_{n,(1,2)}$-conjugacy classes $\left[\left(u_{1}, u_{2}\right)\right]$ of $\left(u_{1}, u_{2}\right) \in E_{n}^{\#}$.
First of all, we construct a map from $E_{n}^{\#}$ to $D_{n}^{\#}$.
Lemma 5.8. Let $\left(u_{1}, u_{2}\right) \in E_{n}^{\#}$. Then one has

$$
\begin{equation*}
\Sigma_{\left(u_{1}, u_{2}\right)}:=\left\{u_{1}, u_{2}\right\} \cup\left\{u_{1}^{m} u_{2} u_{1}^{-m} \mid m=1,2, \ldots, n-2\right\} \in D_{n}^{\#} . \tag{27}
\end{equation*}
$$

Proof. We have only to show that $\Sigma_{\left(u_{1}, u_{2}\right)}$ satisfies (D1) and (D2). In order to show (D1), it is enough to prove

$$
\begin{equation*}
u_{1}^{-1} \Sigma_{\left(u_{1}, u_{2}\right)} u_{1} \subset \Sigma_{\left(u_{1}, u_{2}\right)}, \quad u_{2}^{-1} \Sigma_{\left(u_{1}, u_{2}\right)} u_{2} \subset \Sigma_{\left(u_{1}, u_{2}\right)} . \tag{28}
\end{equation*}
$$

Note that u_{1} has order $n-1$. Then one has

$$
\begin{align*}
u_{1}^{-1} u_{1} u_{1} & =u_{1} \in \Sigma_{\left(u_{1}, u_{2}\right)}, \\
u_{1}^{-1} u_{2} u_{1} & =u_{1}^{n-2} u_{2} u_{1}^{-(n-2)} \in \Sigma_{\left(u_{1}, u_{2}\right)}, \tag{29}\\
u_{1}^{-1}\left(u_{1}^{m} u_{2} u_{1}^{-m}\right) u_{1} & =u_{1}^{m-1} u_{2} u_{1}^{-(m-1)} \in \Sigma_{\left(u_{1}, u_{2}\right)} \quad(\text { for } m=1, \ldots, n-2) .
\end{align*}
$$

This proves the former claim of (28). On the other hand, (E2) yields that

$$
\begin{equation*}
\Sigma_{\left(u_{1}, u_{2}\right)}=\left\{u_{1}, u_{2}\right\} \cup\left\{u_{2}^{m} u_{1} u_{2}^{-m} \mid m=1,2, \ldots, n-2\right\} . \tag{30}
\end{equation*}
$$

Hence, a similar calculation proves the latter claim of (28).
We next show (D2). Take any $x \in X$. If $x=1,2$, then it is fixed by $u_{1}, u_{2} \in \Sigma_{\left(u_{1}, u_{2}\right)}$, respectively. Assume that $x \neq 1,2$. By (E1) and $u_{1} \in\left(S_{n}\right)_{n-1}$, there exists $m \in\{1, \ldots, n-2\}$ such that $x=u_{1}^{m}(2)$. Then one has

$$
\begin{equation*}
u_{1}^{m} u_{2} u_{1}^{-m}(x)=u_{1}^{m} u_{2} u_{1}^{-m}\left(u_{1}^{m}(2)\right)=u_{1}^{m} u_{2}(2)=u_{1}^{m}(2)=x . \tag{31}
\end{equation*}
$$

This completes the proof of the existence. On the other hand, by definition one has $\# \Sigma_{\left(u_{1}, u_{2}\right)} \leq n$. This shows the uniqueness.

This lemma constructs a map from $E_{n}^{\#}$ to $D_{n}^{\#}$. We next show that this induces a map from E_{n} to D_{n}.

Lemma 5.9. The following map is well-defined:

$$
g_{2}: E_{n} \rightarrow D_{n}:\left[\left(u_{1}, u_{2}\right)\right] \mapsto\left[\Sigma_{\left(u_{1}, u_{2}\right)}\right] .
$$

Proof. Let $\left[\left(u_{1}, u_{2}\right)\right],\left[\left(u_{1}^{\prime}, u_{2}^{\prime}\right)\right] \in E_{n}$, and assume that $\left[\left(u_{1}, u_{2}\right)\right]=\left[\left(u_{1}^{\prime}, u_{2}^{\prime}\right)\right]$. Then there exists $w \in S_{n,(1,2)}$ such that

$$
\begin{equation*}
u_{1}=w^{-1} u_{1}^{\prime} w, \quad u_{2}=w^{-1} u_{2}^{\prime} w . \tag{32}
\end{equation*}
$$

Furthermore, for every $m \in\{1, \ldots, n-2\}$, one has

$$
\begin{equation*}
w^{-1}\left(u_{1}^{\prime m} u_{2}^{\prime} u_{1}^{\prime-m}\right) w=\left(w^{-1} u_{1}^{\prime} w\right)^{m}\left(w^{-1} u_{2}^{\prime} w\right)\left(w^{-1} u_{1}^{\prime} w\right)^{-m}=u_{1}^{m} u_{2} u_{1}^{-m} . \tag{33}
\end{equation*}
$$

We thus have $w^{-1} \Sigma_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)} w \subset \Sigma_{\left(u_{1}, u_{2}\right)}$. This proves

$$
\begin{equation*}
w^{-1} \Sigma_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)} w=\Sigma_{\left(u_{1}, u_{2}\right)} \tag{34}
\end{equation*}
$$

since $\Sigma_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}, \Sigma_{\left(u_{1}, u_{2}\right)} \in D_{n}^{\#}$, and hence $\# \Sigma_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}=n=\# \Sigma_{\left(u_{1}, u_{2}\right)}$ by Lemma 5.2. This completes the proof of $\left[\Sigma_{\left(u_{1}, u_{2}\right)}\right]=\left[\Sigma_{\left(u_{1}^{\prime}, u_{2}^{\prime}\right)}\right]$.

The aim of this subsection is to prove that g_{2} is bijective, by constructing the inverse map. For this purpose, we construct a map from $D_{n}^{\#}$ to $E_{n}^{\#}$. Recall that we have a map

$$
\begin{equation*}
\bar{g}_{1}: D_{n}^{\#} \rightarrow C_{n}^{\#}: \Sigma \mapsto s^{\Sigma} \tag{35}
\end{equation*}
$$

Lemma 5.10. Let $\Sigma \in D_{n}^{\#}$. Then one has $\left(s_{1}^{\Sigma}, s_{2}^{\Sigma}\right) \in E_{n}^{\#}$.
Proof. For simplicity of the notations, we put $s_{x}:=s_{x}^{\Sigma}$ for each $x \in X$. By definition, (s_{1}, s_{2}) obviously satisfies (E1). We have only to show (E2).

First of all, we claim that

$$
\begin{equation*}
\left\{s_{1}^{m} s_{2} s_{1}^{-m} \mid m=1,2, \ldots, n-2\right\}=\left\{s_{x} \mid x=3,4, \ldots, n\right\} . \tag{36}
\end{equation*}
$$

Let $m \in\{1,2, \ldots n-2\}$. Since Σ satisfies (D1), one has

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m} \in s_{1}^{m} \Sigma s_{1}^{-m} \subset \Sigma . \tag{37}
\end{equation*}
$$

Thus, it follows from $s_{1}^{m} s_{2} s_{1}^{-m}\left(s_{1}^{m}(2)\right)=s_{1}^{m}(2)$ and the uniqueness in (D2) that

$$
\begin{equation*}
s_{1}^{m} s_{2} s_{1}^{-m}=s_{s_{1}^{m}(2)} \tag{38}
\end{equation*}
$$

Since $s_{1}(1)=1$ and $s_{1} \in\left(S_{n}\right)_{n-1}$, one has

$$
\begin{equation*}
\left\{s_{1}^{m}(2) \mid m=1,2, \ldots, n-2\right\}=\{3,4, \ldots, n\} . \tag{39}
\end{equation*}
$$

This completes the proof of the claim.
By the same argument, one can see that

$$
\begin{equation*}
\left\{s_{2}^{m} s_{1} s_{2}^{-m} \mid m=1,2, \ldots, n-2\right\}=\left\{s_{x} \mid x=3,4, \ldots, n\right\} . \tag{40}
\end{equation*}
$$

This and the above claim prove (D2).
The above lemma gives a map from $D_{n}^{\#}$ to $E_{n}^{\#}$. We next show that this map induces a map from D_{n} to E_{n}.

Lemma 5.11. The following map is well-defined:

$$
\begin{equation*}
f_{2}: D_{n} \rightarrow E_{n}:[\Sigma] \mapsto\left[\left(s_{1}^{\Sigma}, s_{2}^{\Sigma}\right)\right] . \tag{41}
\end{equation*}
$$

Proof. Let $[\Sigma],\left[\Sigma^{\prime}\right] \in D_{n}$, and assume that $[\Sigma]=\left[\Sigma^{\prime}\right]$. By definition, there exists $g \in S_{n}$ such that $\Sigma=g^{-1} \Sigma^{\prime} g$. It then follows from Lemma 5.5 that

$$
\begin{equation*}
g:\left(X, s^{\Sigma}\right) \rightarrow\left(X, s^{\Sigma^{\prime}}\right) \tag{42}
\end{equation*}
$$

is a quandle isomorphism. Note that $\left(X, s^{\Sigma^{\prime}}\right)$ is of cyclic type, and hence two-point homogeneous. Therefore, since $g(1) \neq g(2)$, there exists $h \in \operatorname{Inn}\left(X, s^{\Sigma^{\prime}}\right)$ such that

$$
\begin{equation*}
(h \circ g(1), h \circ g(2))=(1,2) . \tag{43}
\end{equation*}
$$

This yields $h \circ g \in S_{n,(1,2)}$. Note that $h \circ g$ is a quandle isomorphism from (X, s^{Σ}) onto $\left(X, s^{\Sigma^{\prime}}\right)$. Thus one has

$$
\begin{align*}
& (h \circ g) \circ s_{1}^{\Sigma} \circ(h \circ g)^{-1}=s_{h \circ g(1)}^{\Sigma^{\prime}}=s_{1}^{\Sigma^{\prime}}, \\
& (h \circ g) \circ s_{2}^{\Sigma} \circ(h \circ g)^{-1}=s_{h \circ g(2)}^{\Sigma^{\prime}}=s_{2}^{\Sigma^{\prime}} . \tag{44}
\end{align*}
$$

This completes the proof of $\left[\left(s_{1}^{\Sigma}, s_{2}^{\Sigma}\right)\right]=\left[\left(s_{1}^{\Sigma^{\prime}}, s_{2}^{\Sigma^{\prime}}\right)\right]$.
By showing that f_{2} is the inverse map of g_{2}, we have the following main result of this subsection.

PROPOSITION 5.12. The map $g_{2}: E_{n} \rightarrow D_{n}$ is bijective.

Proof. We show that f_{2} is the inverse map of g_{2}. It is clear that the composition $f_{2} \circ g_{2}$ is the identity mapping. Consider $g_{2} \circ f_{2}: D_{n} \rightarrow D_{n}$, and take any $[\Sigma] \in D_{n}$. Then one has $f_{2}([\Sigma])=\left[\left(s_{1}^{\Sigma}, s_{2}^{\Sigma}\right)\right]$. One also has $g_{2} \circ f_{2}([\Sigma])=\left[\Sigma^{\prime}\right]$, where

$$
\begin{equation*}
\Sigma^{\prime}:=\left\{s_{1}^{\Sigma}, s_{2}^{\Sigma}\right\} \cup\left\{\left(s_{1}^{\Sigma}\right)^{m} s_{2}^{\Sigma}\left(s_{1}^{\Sigma}\right)^{-m} \mid m=1, \ldots, n-2\right\} . \tag{45}
\end{equation*}
$$

Since s^{Σ} is a quandle structure, one can see $\Sigma^{\prime} \subset \Sigma$. Thus we have $\Sigma^{\prime}=\Sigma$ for cardinality reason. This shows that $g_{2} \circ f_{2}$ is the identity mapping.
5.3. A bijection from F_{n} onto E_{n}. We lastly construct a bijection from F_{n} onto E_{n}. Let $s_{1}:=(23 \ldots n)$, and recall that F_{n} is the set of $s_{2} \in\left(S_{n}\right)_{n-1}$ satisfying (F1) and (F2).

Proposition 5.13. The following map is bijective:

$$
g_{3}: F_{n} \rightarrow E_{n}: s_{2} \mapsto\left[\left(s_{1}, s_{2}\right)\right] .
$$

Proof. We show that g_{3} is surjective. Take any $\left[\left(u_{1}, u_{2}\right)\right] \in E_{n}$. Since $u_{1} \in\left(S_{n}\right)_{n-1}$ and $u_{1}(1)=1$, we can write $u_{1}=\left(2 a_{3} a_{4} \ldots a_{n}\right)$. Let us define $g \in S_{n,(1,2)}$ by

$$
g:=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \tag{46}\\
1 & 2 & a_{3} & \cdots & a_{n}
\end{array}\right) .
$$

An easy computation shows $g^{-1} \circ u_{1} \circ g=s_{1}$. Let $s_{2}:=g^{-1} \circ u_{2} \circ g$. Then s_{2} obviously satisfies (F1). Furthermore, since (u_{1}, u_{2}) satisfies (E2), one can see that s_{2} satisfies (F2). We thus have $s_{2} \in F_{n}$. This concludes that g_{3} is surjective, since

$$
\begin{equation*}
g_{3}\left(s_{2}\right)=\left[\left(s_{1}, s_{2}\right)\right]=\left[\left(g^{-1} \circ u_{1} \circ g, g^{-1} \circ u_{2} \circ g\right)\right]=\left[\left(u_{1}, u_{2}\right)\right] . \tag{47}
\end{equation*}
$$

We show that g_{3} is injective. Let $s_{2}, s_{2}^{\prime} \in F_{n}$, and suppose that $g_{3}\left(s_{2}\right)=g_{3}\left(s_{2}^{\prime}\right)$. Hence there exists $h \in S_{n,(1,2)}$ such that

$$
\begin{equation*}
\left(s_{1}, s_{2}^{\prime}\right)=\left(h \circ s_{1} \circ h^{-1}, h \circ s_{2} \circ h^{-1}\right) . \tag{48}
\end{equation*}
$$

By definition one has $h(1)=1$ and $h(2)=2$. Then it follows from $h(2)=2$ that

$$
\begin{equation*}
3=s_{1}(2)=h \circ s_{1} \circ h^{-1}(2)=h \circ s_{1}(2)=h(3) . \tag{49}
\end{equation*}
$$

Similarly, this yields that

$$
\begin{equation*}
4=s_{1}(3)=h \circ s_{1} \circ h^{-1}(3)=h \circ s_{1}(3)=h(4) . \tag{50}
\end{equation*}
$$

One can show inductively that $x=h(x)$ for any $x \in X$. This means that $h=\mathrm{id}$, and thus $s_{2}^{\prime}=s_{2}$. This shows that g_{3} is injective.
5.4. Constructing quandles of cyclic type from F_{n}. In the previous subsections, we have constructed the following bijections:

$$
\begin{equation*}
g_{3}: F_{n} \rightarrow E_{n}, \quad g_{2}: E_{n} \rightarrow D_{n}, \quad g_{1}: D_{n} \rightarrow C_{n} . \tag{51}
\end{equation*}
$$

In this subsection, we describe $g_{1} \circ g_{2} \circ g_{3}\left(s_{2}\right)$ for each $s_{2} \in F_{n}$.

Take any $s_{2} \in F_{n}$. Recall that $s_{1}:=(23 \ldots n)$ and

$$
\begin{equation*}
\Sigma_{\left(s_{1}, s_{2}\right)}:=\left\{s_{1}, s_{2}\right\} \cup\left\{s_{1}^{m} s_{2} s_{1}^{-m} \mid m=1,2, \ldots, n-2\right\} \in D_{n}^{\#} . \tag{52}
\end{equation*}
$$

Then one has $g_{2} \circ g_{3}(s)=\left[\Sigma_{\left(s_{1}, s_{2}\right)}\right]$. We put

$$
\begin{equation*}
\varphi\left(s_{2}\right):=s^{\Sigma\left(s_{1}, s_{2}\right)} \in C_{n}^{\#} . \tag{53}
\end{equation*}
$$

This means $g_{1} \circ g_{2} \circ g_{3}\left(s_{2}\right)=\left[\varphi\left(s_{2}\right)\right]$. Note that $\left(\varphi\left(s_{2}\right)\right)_{i} \in \Sigma_{\left(s_{1}, s_{2}\right)}$ is defined as the unique element fixing $i \in X$. This immediately yields

$$
\begin{equation*}
\left(\varphi\left(s_{2}\right)\right)_{1}=s_{1}, \quad\left(\varphi\left(s_{2}\right)\right)_{2}=s_{2} . \tag{54}
\end{equation*}
$$

Let $i \in\{3, \ldots, n\}$. Then one has $i=s_{1}^{i-2}(2)$, and hence

$$
\begin{equation*}
s_{1}^{i-2} s_{2} s_{1}^{-(i-2)}(i)=s_{1}^{i-2} s_{2}(2)=s_{1}^{i-2}(2)=i \tag{55}
\end{equation*}
$$

This concludes that

$$
\begin{equation*}
\left(\varphi\left(s_{2}\right)\right)_{i}=s_{1}^{i-2} s_{2} s_{1}^{-(i-2)} \quad(\text { for } i \in\{3, \ldots, n\}), \tag{56}
\end{equation*}
$$

which completes the proof of Theorem 4.3.
Acknowledgment. The authors would like to express our gratitude to Chuichiro Hayashi for valuable comments, which lead us to [4, 9]. The first author was partially supported by KAKENHI $(21340015,23654027,26287013)$. The second author was partially supported by KAKENHI (24654012, 26287012).

References

[1] J. S. CARTER, A Survey of Quandle Ideas, Introductory Lectures on Knot Theory, eds. L. H. Kauffman et al., Ser. Knots Everything 46, World Sci. Publ., 2012, 22-53.
[2] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford and M. Saito, Quandle cohomology and statesum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), 3947-3989.
[3] R. Fenn and C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406.
[4] C. HAYASHI, Canonical forms for operation tables of finite connected quandles, Comm. Algebra 41 (2013), 3340-3349.
[5] A. ISHiI, M. IWAKIRI, Y. JANG and K. Oshiro, A G-family of quandles and handlebody-knots, Illinois J. Math. 57 (2013), 817-838.
[6] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
[7] S. KAMADA, Kyokumen musubime riron (Surface-knot theory) (in Japanese), Springer Gendai Sugaku Series 16, Maruzen Publishing Co. Ltd., 2012.
[8] S. KAMADA and K. OSHIRO, Homology groups of symmetric quandles and cocycle invariants of links and surface-links, Trans. Amer. Math. Soc. 362 (2010), 5501-5527.
[9] P. Lopes and D. Roseman, On finite racks and quandles, Comm. Algebra 34 (2006), 371-406.
[10] T. NosaKa, Quandle cocycles from invariant theory, Adv. Math. 245 (2013), 423-438.
[11] H. TAmARU, Two-point homogeneous quandles with prime cardinally, J. Math. Soc. Japan 65 (2013), 11171134.
[12] L. Vendramin, On the classification of quandles of low order, J. Knot Theory Ramifications 21 (2012), 1250088, 10 pp.
[13] L. Vendramin, Doubly transitive groups and cyclic quandles, J. Math. Soc. Japan, to appear.
[14] K. WADA, Two-point homogeneous quandles with cardinality of prime power, Hiroshima Math. J. 45 (2015), 165-174.

Present Addresses:

Seiichi Kamada Department of Mathematics, Osaka City University, OSAKA 558-8585, JAPAN. e-mail: skamada@sci.osaka-cu.ac.jp Hiroshi Tamaru
Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan. e-mail: tamaru@math.sci.hiroshima-u.ac.jp

Koshiro Wada
Digital Solutions inc.,
Asaminami-ku, Hiroshima 731-0122, Japan.

[^0]: Received January 5, 2015
 Mathematics Subject Classification: 57M25, 53C35
 Key words and phrases: Finite quandles, two-point homogeneous quandles, quandles of cyclic type

