A Class Number Problem for the Cyclotomic \mathbf{Z}_{2}-extension of $\mathbf{Q}(\sqrt{5})$

Takuya AOKI
Waseda University
(Communicated by M. Kurihara)

Abstract

Let K_{n} be the n-th layer of the cyclotomic \mathbf{Z}_{2}-extension of $\mathbf{Q}(\sqrt{5})$ and h_{n} the class number of K_{n}. We prove that, if ℓ is a prime number less than $6 \cdot 10^{4}$, then ℓ does not divide h_{n} for any non-negative integer n.

1. Introduction

Let \mathbf{B}_{n} be the n-th layer of the cyclotomic \mathbf{Z}_{2}-extension of \mathbf{Q} and $h\left(\mathbf{B}_{n}\right)$ the class number of \mathbf{B}_{n}. Weber [8] showed that $h\left(\mathbf{B}_{n}\right)$ is odd for any non-negative integer n. Iwasawa [3] gave another proof in a more general situation. It is a natural question whether an odd prime number ℓ divides $h\left(\mathbf{B}_{n}\right)$ or not. Fukuda and Komatsu [5] showed that ℓ does not divide $h\left(\mathbf{B}_{n}\right)$ for any non-negative integer n if ℓ is less than 10^{9}.

Let ℓ be an odd prime number and $2^{c \ell}$ the exact power of 2 dividing $\ell-1$ or $\ell^{2}-1$ according as $\ell \equiv 1(\bmod 4)$ or not. For a real number $x,[x]$ denotes the greatest integer not exceeding x. Let δ_{ℓ} be 0 or 1 according as $\ell \equiv 1(\bmod 4)$ or not. Then the following are the results of Fukuda and Komatsu [4], [5].

Theorem 1 (Fukuda and Komatsu [4]; Theorem 1.2). Let ℓ be an odd prime number and put

$$
m:=3 c_{\ell}-1+2\left[\log _{2}(\ell-1)\right]-2 \delta_{\ell} .
$$

If ℓ does not divide $h\left(\mathbf{B}_{m}\right)$, then ℓ does not divide $h\left(\mathbf{B}_{n}\right)$ for any non-negative integer n.
Theorem 2 (Fukuda and Komatsu [5]; Theorem 1.1). Let ℓ be an odd prime number and put

$$
\begin{equation*}
m_{0}:=2 c_{\ell}-1+\left[\frac{1}{2} \log _{2} \ell\right] . \tag{1}
\end{equation*}
$$

Then ℓ does not divide $h\left(\mathbf{B}_{n}\right) / h\left(\mathbf{B}_{m_{0}}\right)$ for any $n \geq m_{0}$.
In this paper, we consider the case that the base field is $\mathbf{Q}(\sqrt{5})$, and investigate the class numbers of the intermediate fields of the cyclotomic \mathbf{Z}_{2}-extension of $\mathbf{Q}(\sqrt{5})$. The reason why

[^0]we study the cyclotomic \mathbf{Z}_{2}-extension of $\mathbf{Q}(\sqrt{5})$ is that $\mathbf{Q}(\sqrt{5})$ has the minimal discriminant in all real quadratic fields. Our arguments in this paper can be applied to $\mathbf{Q}(\sqrt{3})$ and $\mathbf{Q}(\sqrt{6})$, but more difficulty occurs when we study quadratic fields with larger discriminant.

We put $K=\mathbf{Q}(\sqrt{5})$ and $K_{n}=K \cdot \mathbf{B}_{n}$. Then K_{n} is the n-th layer of the cyclotomic \mathbf{Z}_{2} extension of K. We denote by h_{n} the class number of K_{n}. It is well known that $h_{0}=h_{1}=1$. Applying the result of Iwasawa [3], we obtain the fact that h_{n} is odd for any non-negative integer n. So we are interested in whether an odd prime number ℓ divides h_{n} or not. We have the following result.

THEOREM 3. Let ℓ be an odd prime. Put

$$
m_{\ell}:= \begin{cases}2 c_{\ell}+\left[\log _{2}(5 \ell-1)\right]-\delta_{\ell}-2 & \text { if } \ell \neq 5 \\ 4 & \text { if } \ell=5\end{cases}
$$

Then ℓ does not divide $h_{n} / h_{m_{\ell}}$ for any $n \geq m_{\ell}$.
We remark that $m_{\ell} \geq m_{0}$ for each odd prime number ℓ. In particular, $m_{\ell}=m_{0}=4$ for $\ell=5$. We prove Theorem 3 in Section 2. As a corollary of Theorem 3, we obtain the following result.

COROLLARY 1. If ℓ is a prime number less than $6 \cdot 10^{4}$, then ℓ does not divide h_{n} for any non-negative integer n.

2. Proof of Theorem 3

Let n be a non-negative integer, ℓ an odd prime number, $\overline{\mathbf{Q}}_{\ell}$ the algebraic closure of the ℓ-adic number field $\mathbf{Q}_{\ell}, v_{\ell}$ the additive ℓ-adic valuation normalized by $v_{\ell}(\ell)=1$ and ζ_{ℓ} a primitive ℓ-th root of unity in \mathbf{C}. We put $K_{n}^{\prime}=K_{n}\left(\zeta_{\ell}\right)$. Let A_{n} and A_{n}^{\prime} be the ℓ-Sylow subgroup of the ideal class group of K_{n} and K_{n}^{\prime}, respectively. We abbreviate c_{ℓ} as c.

Let Γ_{n} be the Galois group of $\mathbf{B}_{n} / \mathbf{Q}, G_{n}$ the Galois group of K_{n} / \mathbf{Q} and G_{n}^{\prime} the Galois group of $K_{n}^{\prime} / \mathbf{Q}$. We denote by $\widehat{G_{n}}$ and $\widehat{G_{n}^{\prime}}$ the character group of G_{n} and G_{n}^{\prime}, respectively. We also denote by ψ_{n} an even character $\bmod 2^{n+2}$ whose order is 2^{n}. Then ψ_{n} generates the character group of Γ_{n}.

For all $\psi \in \widehat{G_{n}^{\prime}}$, we define the idempotent $e_{\psi} \in \mathbf{Z}_{\ell}\left[G_{n}^{\prime}\right]$ by

$$
\begin{equation*}
e_{\psi}:=\frac{1}{\left|G_{n}^{\prime}\right|} \sum_{\sigma \in G_{n}^{\prime}} \operatorname{Tr}\left(\psi^{-1}(\sigma)\right) \sigma \tag{2}
\end{equation*}
$$

where Tr is the trace mapping from $\mathbf{Q}_{\ell}\left(\psi\left(G_{n}^{\prime}\right)\right)$ to \mathbf{Q}_{ℓ}. Then e_{ψ} can act on A_{n}^{\prime}. We call $A_{n, \psi}^{\prime}=e_{\psi} A_{n}^{\prime}$ the ψ-part of A_{n}^{\prime}.

Let Δ_{ℓ} be the Galois group of $\mathbf{Q}\left(\zeta_{\ell}\right) / \mathbf{Q}$. Then we have $\Delta_{\ell} \cong \mathbf{Z} /(\ell-1) \mathbf{Z}$ and

$$
G_{n}^{\prime} \cong \begin{cases}G_{n} \times \Delta_{\ell} & \text { if } \ell \neq 5 \\ \Gamma_{n} \times \Delta_{\ell} & \text { if } \ell=5\end{cases}
$$

for all non-negative integer n. We denote by $\omega_{\ell}: \Delta_{\ell} \rightarrow \mathbf{Q}_{\ell}^{\times}$the character such that $\zeta_{\ell}^{\omega_{\ell}(\delta)}=$ ζ_{ℓ}^{δ} for all $\delta \in \Delta_{\ell}$. Then ω_{5}^{2} generates the character group of $\operatorname{Gal}(K / \mathbf{Q})$.

If $\psi \in \widehat{G_{n}^{\prime}}$ is odd, then the following equality holds by [6].

$$
v_{\ell}\left(\left|A_{n, \psi}^{\prime}\right|\right)=\left(\mathbf{Z}_{\ell}\left[\psi\left(G_{n}^{\prime}\right)\right]: \mathbf{Z}_{\ell}\right) v_{\ell}\left(B_{1, \psi^{-1}}\right),
$$

where $B_{1, \psi}$ is the generalized Bernoulli number defined by

$$
B_{1, \psi}=\frac{1}{5 \ell \cdot 2^{n+2}} \sum_{b=1}^{5 \ell \cdot 2^{n+2}} \psi(b) b
$$

for all $\psi \in \widehat{G_{n}^{\prime}}$. We also define idempotents $e_{i}(0 \leq i \leq \ell-2)$ in $\mathbf{Z}_{\ell}\left[\Delta_{\ell}\right]$ by

$$
e_{i}:=\frac{1}{\ell-1} \sum_{\delta \in \Delta_{\ell}} \omega_{\ell}^{-i}(\delta) \delta
$$

Since

$$
\Delta_{\ell} \cong \begin{cases}\operatorname{Gal}\left(K_{n}^{\prime} / K_{n}\right) & \text { if } \ell \neq 5 \\ \operatorname{Gal}\left(K_{n}^{\prime} / \mathbf{B}_{n}\right) & \text { if } \ell=5\end{cases}
$$

canonically, we can act e_{i} on A_{n}^{\prime}. We abbreviate ω_{5} as ω. Then we have the following by [2].
Lemma 1. Let n be a positive integer.
(i) For $\ell \neq 5$, we have

$$
v_{\ell}\left(\left|e_{1} A_{n}^{\prime}\right|\right)-v_{\ell}\left(\left|e_{1} A_{n-1}^{\prime}\right|\right)=\sum_{j=1: \text { odd }}^{2^{n}-1}\left(v_{\ell}\left(B_{1, \omega_{\ell}^{-1} \psi_{n}^{-j}}\right)+v_{\ell}\left(B_{1, \omega_{\ell}^{-1} \omega^{-2} \psi_{n}^{-j}}\right)\right) .
$$

(ii) For $\ell=5$, we have

$$
v_{5}\left(\left|e_{3} A_{n}^{\prime}\right|\right)-v_{5}\left(\left|e_{3} A_{n-1}^{\prime}\right|\right)=\sum_{j=1: o d d}^{2^{n}-1} v_{5}\left(B_{1, \omega^{-3} \psi_{n}^{-j}}\right) .
$$

First, let $\ell \neq 5$. We have the following by [4]; pp. 219-221.
LEmma 2. If $n \geq m_{0}+1$, we have $v_{\ell}\left(B_{1, \omega_{\ell}^{-1} \psi_{n}^{-j}}\right)=0$ for all odd integer j with $1 \leq j \leq 2^{n}-1$.
Since $m_{\ell} \geq m_{0}$, Lemma 2 implies that $v_{\ell}\left(B_{1, \omega_{\ell}^{-1} \psi_{n}^{-j}}\right)=0$ for any $n \geq m_{\ell}+1$ and any odd integer j with $1 \leq j \leq 2^{n}-1$. Thus we study $B_{1, \omega_{\ell}^{-1} \omega^{-2} \psi_{n}^{-j}}$. For $B_{1, \omega_{\ell}^{-1} \omega^{-2} \psi_{n}^{-j}}$, we define
$f_{1}(T) \in \mathbf{Q}_{\ell}(T)$ by

$$
\begin{equation*}
f_{1}(T)=\left(\sum_{\substack{b=1(\bmod 2 c) \\ 0<b<5 \cdot \cdot 2 c+1}} \omega_{\ell}^{-1} \omega^{-2}(b) T^{b}\right)\left(T^{5 \ell \cdot 2^{c+1}}-1\right)^{-1} \tag{3}
\end{equation*}
$$

Then we have the following by [7]; pp. 386-387.
Lemma 3. Let $n \geq 2 c-1$. If $f_{1}(\eta) \not \equiv 0(\bmod \bar{\ell})$ for any primitive 2^{n+2}-th root of unity η in $\overline{\mathbf{Q}}_{\ell}$, then $B_{1, \omega_{\ell}^{-1} \omega^{-2} \psi_{n}^{-j}} \not \equiv 0(\bmod \bar{\ell})$ for any odd integer j, where $\bar{\ell}$ is the ideal of $\mathbf{Z}_{\ell}[\eta]$ generated by ℓ.

LEMMA 4. If $n \geq m_{\ell}+1$, then $f_{1}(\eta) \not \equiv 0(\bmod \bar{\ell})$ for any primitive 2^{n+2}-th root of unity η in $\overline{\mathbf{Q}}_{\ell}$.

Proof. We put

$$
\begin{equation*}
g(T)=f_{1}(T)\left(T^{5 \ell \cdot 2^{c}}-1\right) T^{-1} . \tag{4}
\end{equation*}
$$

For convenience, we put $\chi=\omega_{\ell} \omega^{2}$. Since $\chi^{-1}(j)=\chi^{-1}(j+5 \ell)$ for any integer j, we have

$$
\begin{aligned}
g(T) & =\sum_{\substack{b \equiv 1 \\
0<b<5 \ell \cdot 2^{c+1}}} \chi^{-1}(b) T^{b} T^{-1}\left(T^{5 \ell \cdot 2^{c}}+1\right)^{-1} \\
& =\left(T^{5 \ell \cdot 2^{c}}+1\right)^{-1}\left(\chi^{-1}(1)+\cdots+\chi^{-1}\left(1+(5 \ell-1) 2^{c}\right) T^{(5 \ell-1) 2^{c}}\right. \\
& \left.+\chi^{-1}\left(1+5 \ell \cdot 2^{c}\right) T^{5 \ell \cdot 2^{c}}+\cdots+\chi^{-1}\left(1+(5 \ell-1) 2^{c}+5 \ell \cdot 2^{c}\right) T^{(5 \ell-1) 2^{c}+5 \ell \cdot 2^{c}}\right) \\
& =\left(T^{5 \ell \cdot 2^{c}}+1\right)^{-1}\left(\chi^{-1}(1)\left(1+T^{5 \ell \cdot 2^{c}}\right)+\ldots\right. \\
& \left.+\chi^{-1}\left(1+(5 \ell-1) 2^{c}\right) T^{(5 \ell-1) 2^{c}}\left(1+T^{5 \ell \cdot 2^{c}}\right)\right) \\
& =\sum_{\substack{b=1\left(\bmod 2^{c}\right) \\
0<b \leq 1+(5 \ell-1) \cdot 2^{c}}} \chi^{-1}(b) T^{b-1} \in \mathbf{Z}_{\ell}[T] .
\end{aligned}
$$

We denote by $\operatorname{deg}(g)$ the degree of $g(T)$. For all $n \geq m_{\ell}+1$ and any primitive 2^{n+2}-th root of unity η in $\overline{\mathbf{Q}}_{\ell}$, we have

$$
\begin{aligned}
{\left[\mathbf{Q}_{\ell}(\eta): \mathbf{Q}_{\ell}\right] } & =2^{n+2-c+\delta_{\ell}} \\
& \geq 2^{c+\left[\log _{2}(5 \ell-1)\right]+1} \\
& >2^{c}(5 \ell-1) \geq \operatorname{deg}(g)
\end{aligned}
$$

Hence we have $g(\eta) \not \equiv 0(\bmod \bar{\ell})$ for any primitive 2^{n+2}-th root of unity η in $\overline{\mathbf{Q}}_{\ell}$. Thus we have $f_{1}(\eta) \not \equiv 0(\bmod \bar{\ell})$ for any η.

Lemmas 3 and 4 allow us to obtain the following.
LEMMA 5. If $n \geq m_{\ell}+1$, then we have $v_{\ell}\left(B_{1, \omega_{\ell}^{-1} \omega^{-2} \psi_{n}^{-j}}\right)=0$ for all odd integer j with $0 \leq j \leq 2^{n}-1$.

Next, let $\ell=5$. For $B_{1, \omega^{-3} \psi_{n}^{-j}}$, we define $f_{1}(T)$ and $g(T)$ by replacing ω^{-3} with $\omega_{\ell}^{-1} \omega^{-2}$ and ℓ with 5ℓ in (3) and (4). Then we have the following by [7]; pp. 386-387.

Lemma 6. Let $n \geq 2 c-1$. If $f_{1}(\eta) \not \equiv 0(\bmod \bar{\ell})$ for any primitive 2^{n+2}-th root of unity η in $\overline{\mathbf{Q}}_{5}$, then $B_{1, \omega^{-3} \psi_{n}^{-j}} \not \equiv 0(\bmod \bar{\ell})$ for any odd integer j, where $\bar{\ell}$ is the ideal of $\mathbf{Z}_{\ell}[\eta]$ generated by 5 .

For $\ell=5$, we put $d=2 c+\left[\log _{2}(\ell-1)\right]-\delta_{\ell}-2=4=m_{\ell}$. Then we obtain the following by a similar argument in the proof of Lemma 4 .

LEMMA 7. If $n \geq m_{\ell}+1$, then we have $v_{5}\left(B_{1, \omega^{-3} \psi_{n}^{-j}}\right)=0$ for all odd integer j with $1 \leq j \leq 2^{n}-1$.

Lemmas 1, 2, 5 and 7 allow us to obtain the following lemma.
Lemma 8. For all $n \geq m_{\ell}+1$, we have

$$
\begin{cases}\left|e_{1} A_{n}^{\prime}\right|=\left|e_{1} A_{n-1}^{\prime}\right| & \text { if } \ell \neq 5, \\ \left|e_{3} A_{n}^{\prime}\right|=\left|e_{3} A_{n-1}^{\prime}\right| & \text { if } \ell=5 .\end{cases}
$$

Now we prove Theorem 3. Since natural mappings $A_{n-1} \rightarrow A_{n}$ and $A_{n-1}^{\prime} \rightarrow A_{n}^{\prime}$ are injective by [7]; Lemma 16.15, we can regard A_{n-1}^{\prime} as G_{n}^{\prime}-submodule of A_{n}^{\prime}. Let D_{n} and D_{n}^{\prime} be the kernels of the norm mappings $A_{n} \rightarrow A_{n-1}$ and $A_{n}^{\prime} \rightarrow A_{n-1}^{\prime}$, respectively. Then we have $A_{n}=A_{n-1} \oplus D_{n}$ and $A_{n}^{\prime}=A_{n-1}^{\prime} \oplus D_{n}^{\prime}$ by [7]; Lemma 16.15. Let L_{n}^{\prime} be the maximal unramified elementary abelian ℓ-extension of K_{n}^{\prime}. Note that $L_{n}^{\prime} / \mathbf{Q}$ is a Galois extension since $K_{n}^{\prime} / \mathbf{Q}$ is a Galois extension. Since $\operatorname{Gal}\left(L_{n}^{\prime} / K_{n}^{\prime}\right)$ is a normal abelian subgroup of $\operatorname{Gal}\left(L_{n}^{\prime} / \mathbf{Q}\right)$, G_{n}^{\prime} can act on $\operatorname{Gal}\left(L_{n}^{\prime} / K_{n}^{\prime}\right)$. Therefore, $\operatorname{Gal}\left(L_{n}^{\prime} / K_{n}^{\prime}\right)$ is isomorphic to $A_{n}^{\prime} / \ell A_{n}^{\prime}$ as G_{n}^{\prime}-module by the Artin mapping. By class field theory, we have $\operatorname{Gal}\left(L_{n}^{\prime} / L_{n-1}^{\prime} K_{n}^{\prime}\right) \cong D_{n}^{\prime} / \ell D_{n}^{\prime}$. Since

$$
\operatorname{Gal}\left(L_{n}^{\prime} / K_{n}^{\prime}\right) \cong A_{n}^{\prime} / \ell A_{n}^{\prime} \cong A_{n-1}^{\prime} / \ell A_{n-1}^{\prime} \oplus D_{n}^{\prime} / \ell D_{n}^{\prime}
$$

there exists an intermediate field M_{n}^{\prime} of $L_{n}^{\prime} / K_{n}^{\prime}$ such that $\operatorname{Gal}\left(L_{n}^{\prime} / M_{n}^{\prime}\right) \cong A_{n-1}^{\prime} / \ell A_{n-1}^{\prime}$ by the Artin mapping. Note that D_{n}^{\prime} is a G_{n}^{\prime}-submodule of A_{n}^{\prime}. Then we have the following;

$$
\begin{aligned}
& L_{n}^{\prime}=M_{n}^{\prime} L_{n-1}^{\prime} \\
& L_{n-1}^{\prime} K_{n}^{\prime} \cap M_{n}^{\prime}=K_{n}^{\prime} \\
& \operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right) \cong D_{n}^{\prime} / \ell D_{n}^{\prime} \\
& M_{n}^{\prime} / \mathbf{Q} \text { is a Galois extension. }
\end{aligned}
$$

Since $\zeta_{\ell} \in K_{n}^{\prime}, M_{n}^{\prime} / K_{n}^{\prime}$ is a Kummer extension. Hence there exists a subgroup V of $K_{n}^{\prime \times} /\left(K_{n}^{\prime \times}\right)^{\ell}$ such that $M_{n}^{\prime}=K_{n}^{\prime}(\sqrt[\ell]{V})$ in the obvious notation. Let W be the subgroup in \mathbf{C}^{\times} generated by ζ_{ℓ}. Then there is a non-degenerate pairing

$$
\operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right) \times V \rightarrow W ;(h, \tilde{b}) \mapsto\langle h, \tilde{b}\rangle
$$

which is defined by

$$
\langle h, \tilde{b}\rangle=\frac{h(\sqrt[\ell]{b})}{\sqrt[\ell]{b}} \quad \text { for all } h \in \operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right) \text { and } \tilde{b}=b\left(K_{n}^{\prime \times}\right)^{\ell}
$$

and satisfies $\left\langle h^{g}, \tilde{b}^{g}\right\rangle=\langle h, \tilde{b}\rangle^{g}$ for all $g \in G_{n}^{\prime}$. Then the reflection theorem says $e_{j} V \cong$ $e_{i} \operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right)$ for i, j with $i+j \equiv 1(\bmod \ell-1)$. For $\ell \neq 5$, we have

$$
e_{1} V \cong e_{0} \operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right) \cong D_{n} / \ell D_{n} \cong\left(A_{n} / A_{n-1}\right) / \ell\left(A_{n} / A_{n-1}\right)
$$

For $\ell=5$, noting that the 5-Sylow subgroup of the ideal class group of \mathbf{B}_{n} is trivial for each non-negative integer n by [4], we have the following;

$$
e_{3} V \cong e_{2} \operatorname{Gal}\left(M_{n}^{\prime} / K_{n}^{\prime}\right) \cong D_{n} / 5 D_{n} \cong\left(A_{n} / A_{n-1}\right) / 5\left(A_{n} / A_{n-1}\right)
$$

We can prove the following in a similar method to prove [5]; Proposition 2.2.
Lemma 9. (i) Let $\ell \neq 5$. If $e_{1}\left(A_{n}^{\prime} / A_{n-1}^{\prime}\right)=0$, then $A_{n}=A_{n-1}$.
(ii) Let $\ell=5$. If $e_{3}\left(A_{n}^{\prime} / A_{n-1}^{\prime}\right)=0$, then $A_{n}=A_{n-1}$.

We assume that $n \geq m_{\ell}+1$. Then Lemma 8 says that $\left|e_{k} A_{n}^{\prime}\right|=\left|e_{k} A_{n-1}^{\prime}\right|=\cdots=\left|e_{k} A_{m_{\ell}}^{\prime}\right|$, where k is 3 or 1 according as $\ell=5$ or not. Hence we have $\left|A_{n}\right|=\left|A_{n-1}\right|=\cdots=\left|A_{m_{\ell}}\right|$ by Lemma 9. Therefore ℓ does not divide $h_{n} / h_{m_{\ell}}$.

3. Calculation

In this section, we explain how to verify Corollary 1 numerically. We use notations defined in Section 2 and assume $\ell<10^{9}$. For all $\chi \in \widehat{G_{n}}$, we define the idempotent e_{χ} by replacing G_{n} with G_{n}^{\prime} in (2). The χ-part $A_{n, \chi}$ of A_{n} is also defined by $A_{n, \chi}=e_{\chi} A_{n}$. Then we have $A_{n}=\oplus_{\chi^{\prime}} A_{n, \chi^{\prime}}$, where χ^{\prime} runs over all representatives of \mathbf{Q}_{ℓ}-conjugacy classes of $\widehat{G_{n}}$.

For non-negative integer n, let $\zeta_{5 \cdot 2^{n+2}}$ be a primitive $5 \cdot 2^{n+2}$-th root of unity in \mathbf{C}. We put $\zeta_{2^{n+2}}=\zeta_{5 \cdot 2^{n+2}}^{5}$ and $\zeta_{5}=\zeta_{5 \cdot 2^{n+2}}^{2^{n+2}}$. We also put

$$
\xi_{n}=\left(\zeta_{5} \zeta_{2^{n+2}}-1\right)\left(\zeta_{5} \zeta_{2^{n+2}}^{-1}-1\right)\left(\zeta_{5}^{-1} \zeta_{2^{n+2}}-1\right)\left(\zeta_{5}^{-1} \zeta_{2^{n+2}}^{-1}-1\right) \in K_{n}
$$

We define a truncation $e_{\chi, \ell} \in \mathbf{Z}\left[G_{n}\right]$ of e_{χ} by

$$
e_{\chi, \ell} \equiv e_{\chi} \quad(\bmod \ell)
$$

Then we can act $e_{\chi, \ell}$ on ξ_{n}. The following is the special case of [1]; Lemma 1.
Lemma 10. If there exists a prime number p congruent to 1 modulo $5 \ell \cdot 2^{n+2}$ and satisfies

$$
\begin{equation*}
\left(\xi_{n}^{e_{\chi, \ell}}\right)^{\frac{p-1}{\ell}} \not \equiv 1 \quad(\bmod \mathfrak{p}) \tag{5}
\end{equation*}
$$

for some prime ideal \mathfrak{p} of K_{n} lying above p, then we have $\left|A_{n, \chi}\right|=1$.
Let $s=c-\delta_{\ell}$. Then 2^{s} is the exact power of 2 dividing $\ell-1$ or $\ell+1$ according as $\ell \equiv 1(\bmod 4)$ or not.

Owing to Lemma 10, we may regard χ as a character of G_{n} into $\overline{\mathbf{F}}_{\ell}$, where $\overline{\mathbf{F}}_{\ell}$ is the algebraic closure of $\mathbf{F}_{\ell}=\mathbf{Z} / \ell \mathbf{Z}$. Let η_{n} be a primitive 2^{n}-th root of unity in $\overline{\mathbf{F}}_{\ell}$ and $L=$ $\mathbf{F}_{\ell}\left(\eta_{n}\right)$. We may also define e_{χ} to be an element of $\mathbf{F}_{\ell}\left[G_{n}\right]$. Let ρ be the generator of Γ_{n} induced by $\zeta_{2^{n+2}} \mapsto \zeta_{2^{n+2}}^{5}, \sigma$ the generator of $\operatorname{Gal}(K / \mathbf{Q})$ induced by $\zeta_{5} \mapsto \zeta_{5}^{2}$ and ψ the character of Γ_{n} defined by $\psi(\rho)=\eta_{n}^{-1}$. We put $F_{n}=K_{n+1}^{\operatorname{Ker} \omega^{2} \psi}$ and $H_{n}=\operatorname{Gal}\left(F_{n} / \mathbf{Q}\right)$. We define $X \subset \mathbf{Z}$ to make $\left\{\psi^{j} \mid j \in X\right\}$ be a set of representatives of injective characters of Γ_{n}. Then $\left\{\omega^{2} \psi^{j} \mid j \in X\right\}$ is a set of representatives of injective characters of H_{n} and we have

$$
A_{n}=A_{n-1} \oplus \bigoplus_{j \in X} A_{n, \psi^{j}} \oplus \bigoplus_{j \in X} A_{n, \omega^{2} \psi^{j}}
$$

Note that $A_{n, \chi} \cong A_{\chi}$, where A_{χ} is the χ-part of the ℓ-Sylow subgroup of the ideal class group of the subfield of K_{n} corresponding to $\operatorname{Ker} \chi$. Hence for each $j \in X$, we have $\left|A_{n, \psi^{j}}\right|=1$ if $\ell<10^{9}$ by [5]. By induction, we may assume that $\chi=\omega^{2} \psi^{j}$ with $j \in X$. Then we have

$$
e_{\omega^{2} \psi^{j}}=\frac{1}{2^{n+1}} \sum_{i=0}^{2^{n}-1} \operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}^{i j}\right)\left(\rho^{i}-\sigma \rho^{i}\right)
$$

Now, let p be a prime number satisfying $p \equiv 1\left(\bmod 5 \ell \cdot 2^{n+2}\right)$ and g_{p} a primitive root modulo p. Since p is totally decomposed in $\mathbf{Q}\left(\zeta_{5 \cdot 2^{n+2}}\right) / \mathbf{Q}$, there exists a prime ideal \mathfrak{P} in $\mathbf{Q}\left(\zeta_{5 \cdot 2^{n+2}}\right)$ lying above p which satisfies

$$
\zeta_{5 \cdot 2^{n+2}} \equiv g_{p}^{\frac{p-1}{5 \cdot 2^{n+2}}} \quad(\bmod \mathfrak{P})
$$

We put $e_{\omega^{2} \psi^{j}, \ell}=\sum_{i=0}^{2^{n}-1} \alpha_{i j}\left(\rho^{i}-\sigma \rho^{i}\right)$ and fix non-negative integers $z_{1}, z_{2}, z_{3}, z_{4}$ satisfying

$$
\begin{aligned}
& z_{1} \equiv g_{p}^{\frac{p-1}{5}} \quad(\bmod p), \\
& z_{2} z_{1} \equiv 1 \quad(\bmod p), \\
& z_{3} \equiv g_{p}^{\frac{p-1}{2 n+2}} \quad(\bmod p), \\
& z_{4} z_{3} \equiv 1 \quad(\bmod p) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\xi_{n}^{e}{ }_{\omega^{2} \psi j}{ }^{j}, \ell & =\prod_{i=0}^{2^{n}-1}\left(\frac{\left(\zeta_{5} \zeta_{2^{n+2}}^{5^{i}}-1\right)\left(\zeta_{5} \zeta_{2^{n+2}}^{-5^{i}}-1\right)\left(\zeta_{5}^{-1} \zeta_{2^{n+2}}^{5^{i}}-1\right)\left(\zeta_{5}^{-1} \zeta_{2^{n+2}}^{-5^{i}}-1\right)}{\left(\zeta_{5}^{2} \zeta_{2^{n+2}}^{5^{i}}-1\right)\left(\zeta_{5}^{2} \zeta_{2^{n+2}}^{-5 i}-1\right)\left(\zeta_{5}^{-2} \zeta_{2^{n+2}}^{5^{i}}-1\right)\left(\zeta_{5}^{-2} \zeta_{2^{n+2}}^{-5 i}-1\right)}\right)^{\alpha_{i j}} \\
& \equiv \prod_{i=0}^{2^{n}-1}\left(\frac{\left(z_{1} z_{3}^{5^{i}}-1\right)\left(z_{1} z_{4}^{5^{i}}-1\right)\left(z_{2} z_{3}^{5^{i}}-1\right)\left(z_{2} z_{4}^{5^{i}}-1\right)}{\left(z_{1}^{2} z_{3}^{5^{i}}-1\right)\left(z_{1}^{2} z_{4}^{5^{i}}-1\right)\left(z_{2}^{2} z_{3}^{\alpha_{i j}^{i}}-1\right)\left(z_{2}^{2} z_{4}^{5^{i}}-1\right)}\right)^{(\bmod \mathfrak{p})}
\end{aligned}
$$

with $\mathfrak{p}=\mathfrak{P} \cap K_{n}$. For convenience, we fix $\zeta\left(b^{i}\right) \in \mathbf{Z}$ satisfying $0 \leq \zeta\left(b^{i}\right) \leq p-1$ and

$$
\zeta\left(b^{i}\right) \equiv \frac{\left(z_{1} z_{3}^{b^{i}}-1\right)\left(z_{1} z_{4}^{b^{i}}-1\right)\left(z_{2} z_{3}^{b^{i}}-1\right)\left(z_{2} z_{4}^{b^{i}}-1\right)}{\left(z_{1}^{2} z_{3}^{b^{i}}-1\right)\left(z_{1}^{2} z_{4}^{b^{i}}-1\right)\left(z_{2}^{2} z_{3}^{b^{i}}-1\right)\left(z_{2}^{2} z_{4}^{b^{i}}-1\right)} \quad(\bmod p)
$$

for each integer $b \geq 1$ and $i \geq 0$. Since $h_{1}=1$, we may assume that $n \geq 2$.
3.1. The case $\ell \equiv 1(\bmod 4)$ and $2 \leq n \leq s$. In this case, we have $L=\mathbf{F}_{\ell}$. Hence $\operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}\right)=\eta_{n}$. Since the choice of η_{n} is arbitrary, we may assume that

$$
\eta_{n} \equiv g_{\ell}^{\frac{\ell-1}{2^{n}}} \quad(\bmod \ell)
$$

where g_{ℓ} is a primitive root modulo ℓ. Since there are 2^{n-1} non-conjugate primitive 2^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are also $2^{n-1} \mathbf{F}_{\ell}$-conjugacy classes of injective characters of H_{n}. We put

$$
X=\left\{j \in \mathbf{Z} \mid 1 \leq j \leq 2^{n}-1, j \text { is odd }\right\} .
$$

Then $\left\{\omega^{2} \psi^{j} \mid j \in X\right\}$ is a set of representatives of the \mathbf{F}_{ℓ}-conjugacy classes of injective characters of H_{n}. We fix non-negative integers $a_{i j}$'s by

$$
a_{i j} \equiv g_{\ell}^{\frac{\ell-1}{2^{n}} i j} \quad(\bmod \ell)
$$

for each $0 \leq i \leq 2^{n}-1$ and $j \in X$. Then we have the following criterion.
CRITERION 1. If for each $j \in X$, there exists a prime number p congruent to 1 modulo
$5 \ell \cdot 2^{n+2}$ satisfying

$$
\left(\prod_{i=0}^{2^{n}-1} \zeta\left(5^{i}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1 \quad(\bmod p)
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.2. The case $\ell \equiv 1(\bmod 4)$ and $s+1 \leq n . \quad$ In this case, we have $\left[L: \mathbf{F}_{\ell}\right]=2^{n-s}$. The minimal polynomial of η_{n} over \mathbf{F}_{ℓ} is

$$
T^{2^{n-s}}-\eta_{n}^{2^{n-s}}
$$

Therefore, if 2^{n-s} does not divide i, then $\operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}^{i}\right)=0$. So we have

$$
\begin{aligned}
e_{\omega^{2} \psi^{j}} & =\frac{1}{2^{n+1}} \sum_{i=0}^{2^{s}-1} \operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}^{2^{n-s} i j}\right)\left(\rho^{2^{n-s} i}-\sigma \rho^{2^{n-s} i}\right) \\
& =\frac{1}{2^{n+1}} \sum_{i=0}^{2^{s}-1} \operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{s}^{i j}\right)\left(\rho^{2^{n-s} i}-\sigma \rho^{2^{n-s} i}\right) \\
& =\frac{1}{2^{s+1}} \sum_{i=0}^{2^{s}-1} \eta_{s}^{i j}\left(\rho^{2^{n-s} i}-\sigma \rho^{2^{n-s} i}\right)
\end{aligned}
$$

Since there are 2^{s-1} non-conjugate primitive 2^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are also 2^{s-1}

$$
X=\left\{j \in \mathbf{Z} \mid 1 \leq j \leq 2^{s}-1, j \text { is odd }\right\}
$$

Then $\left\{\omega^{2} \psi^{j} \mid j \in X\right\}$ is a set of representatives of the $\mathbf{F}_{\ell \text {-conjugacy classes of injective char- }}$ acters of H_{n}. We fix non-negative integers $a_{i j}$'s satisfying

$$
a_{i j} \equiv g_{\ell}^{\frac{p-1}{2^{s}} i j} \quad(\bmod \ell)
$$

for each $0 \leq i \leq 2^{s}-1$ and $j \in X$. Then we have the following criterion.

CRITERION 2. If for each $j \in X$, there exists a prime number p congruent to 1 modulo $5 \ell \cdot 2^{n+2}$ satisfying

$$
\left(\prod_{i=0}^{2^{s}-1} \zeta\left(5^{2^{n-s} i}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1 \quad(\bmod p)
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.3. The case $\ell \equiv 3(\bmod 4)$ and $2 \leq n \leq s$. In this case, we have $\left[L: \mathbf{F}_{\ell}\right]=2$. Hence we obtain

$$
\operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}\right)=\eta_{n}+\eta_{n}^{\ell}
$$

Since there are 2^{n-2} non-conjugate primitive 2^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are also 2^{n-2}

$$
X=\left\{j \in \mathbf{Z} \mid 1 \leq j \leq 2^{n-1}-1, j \text { is odd }\right\} .
$$

Then $\left\{\omega^{2} \psi^{j} \mid j \in X\right\}$ is a set of representatives of the \mathbf{F}_{ℓ}-conjugacy classes of injective characters of H_{n}. We fix non-negative integers $a_{i j}$'s satisfying

$$
a_{i j} \equiv t_{2^{s+1-n_{i j}}} \quad(\bmod \ell)
$$

for each $0 \leq i \leq 2^{n}-1$ and $j \in X$, where t_{i} 's are elements in \mathbf{F}_{ℓ} defined in (6) in subsection 3.4. Then we have the following criterion.

Criterion 3. If for each $j \in X$, there exists a prime number p congruent to 1 modulo $5 \ell \cdot 2^{n+2}$ satisfying

$$
\left(\prod_{i=0}^{2^{n}-1} \zeta\left(5^{i}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1 \quad(\bmod p)
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.4. The case $\ell \equiv 3(\bmod 4)$ and $s+1 \leq n$. In this case, we have $\left[L: \mathbf{F}_{\ell}\right]=2^{n-s}$. Let

$$
T^{2}-a T-1
$$

be the minimal polynomial of η_{s+1} over \mathbf{F}_{ℓ}. Then the minimal polynomial of η_{n} over \mathbf{F}_{ℓ} is

$$
T^{2^{n-s}}-a T^{2^{n-s-1}}-1
$$

Thus if 2^{n-s-1} does not divide i, then $\operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}^{i}\right)=0$. Therefore, we have

$$
\begin{aligned}
e_{\omega^{2} \psi^{j}} & =\frac{1}{2^{n+1}} \sum_{i=0}^{2^{s+1}-1} \operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{n}^{2^{n-s-1} i j}\right)\left(\rho^{2^{n-s-1} i}-\sigma \rho^{2^{n-s-1} i}\right) \\
& =\frac{1}{2^{n+1}} \sum_{i=0}^{2^{s+1}-1} \operatorname{Tr}_{L / \mathbf{F}_{\ell}}\left(\eta_{s+1}^{i j}\right)\left(\rho^{2^{n-s-1} i}-\sigma \rho^{2^{n-s-1} i}\right) \\
& =\frac{1}{2^{s+2}} \sum_{i=0}^{2^{s+1}-1} \operatorname{Tr}_{\mathbf{F}_{\ell}\left(\eta_{s+1}\right) / \mathbf{F}_{\ell}}\left(\eta_{s+1}^{i j}\right)\left(\rho^{2^{n-s-1} i}-\sigma \rho^{2^{n-s-1} i}\right)
\end{aligned}
$$

We put

$$
\begin{equation*}
t_{i}=\operatorname{Tr}_{\mathbf{F}_{\ell}\left(\eta_{s+1}\right) / \mathbf{F}_{\ell}}\left(\eta_{s+1}^{i}\right) \tag{6}
\end{equation*}
$$

We need to calculate t_{i} 's. But the calculation of them is done in [4].
Lemma 11 (Fukuda and Komatsu [4]; Lemma 3.3). Put $a_{2}=0 \in \mathbf{F}_{\ell}$ and define $a_{i} \in$ \mathbf{F}_{ℓ} for all $3 \leq i \leq s+1$ by the recursive formula

$$
\begin{aligned}
a_{i} & =\sqrt{2+a_{i-1}} \quad(3 \leq i \leq s), \\
a_{s+1} & =\sqrt{-2+a_{s}} .
\end{aligned}
$$

Then we have $t_{1}=a_{s+1}$.
We remark that for each step, we have two square roots. So we have just 2^{s-1} instances of t_{1}. Since they correspond to the 2^{s-1} non-conjugate primitive 2^{s+1}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, we fix an arbitrary one.

Lemma 12 (Fukuda and Komatsu [4]; Lemma 3.6). We have $t_{i+2}=t_{1} t_{i+1}+t_{i}$ for all $i \geq 0$.

Since there are 2^{s-1} non-conjugate primitive 2^{n}-th roots of unity in $\overline{\mathbf{F}}_{\ell}$, there are also 2^{s-1} \mathbf{F}_{ℓ}-conjugacy classes of injective characters of H_{n}. We put

$$
X=\left\{j \in \mathbf{Z}: \text { odd } \mid 1 \leq j \leq 2^{s-1} \text { or } 2^{s}+1 \leq j \leq 2^{s}+2^{s-1}-1\right\}
$$

Then $\left\{\omega^{2} \psi^{j} \mid j \in X\right\}$ is a set of representatives of the \mathbf{F}_{ℓ}-conjugacy classes of injective characters of H_{n}. We fix non-negative integers $a_{i j}$'s satisfying

$$
a_{i j} \equiv t_{i j} \quad(\bmod \ell)
$$

for each $0 \leq i \leq 2^{s+1}-1$ and $j \in X$. Then we have the following criterion.
Criterion 4. If for each $j \in X$, there exists a prime number p congruent to 1 modulo $5 \ell \cdot 2^{n+2}$ satisfying

$$
\left(\prod_{i=0}^{2^{s+1}-1} \zeta\left(5^{2^{n-s-1} i}\right)^{a_{i j}}\right)^{\frac{p-1}{\ell}} \not \equiv 1 \quad(\bmod p)
$$

then ℓ does not divide h_{n} / h_{n-1}.
3.5. The Logarithmic Algorithm. It takes too much time to verify that an odd prime number ℓ with large s does not divide $h_{m_{\ell}}$ with the previous criteria. For example, it takes more than 3 weeks on a computer with Mathematica 9 to verify that $6143=3 \cdot 2^{11}-1$ does not divide h_{35}.

To obtain Corollary 1 , we need to verify that $8191=2^{13}-1$ does not divide h_{40}. Thus we are led to a logarithmic version of the previous criteria.

For $x \in \mathbf{F}_{p}^{\times}$, let $v_{p}(x)$ be the unique non-negative integer less than p satisfying

$$
x=g_{p}^{v_{p}(x)} .
$$

The calculation of $v_{p}(x)$ is considered hard for large p. But $v_{p}(x)$ modulo ℓ is enough for our purpose. Let $v_{p}(x)=i+j \ell$ with $0 \leq i<\ell$. Then we can determine i by

$$
x^{\frac{p-1}{\ell}}=\left(g_{p}^{i+j \ell}\right)^{\frac{p-1}{\ell}}=\left(g_{p}^{\frac{p-1}{\ell}}\right)^{i} .
$$

Hence we can fix $x_{i} \in \mathbf{Z}$ satisfying $0 \leq x_{i}<\ell$ and

$$
x_{i} \equiv v_{p}\left(\zeta\left(b^{i}\right)\right) \quad(\bmod \ell)
$$

where b is defined by

$$
b= \begin{cases}5 & \text { if } 2 \leq n \leq s \\ 5^{2 n^{-c}} & \text { if } s+1 \leq n\end{cases}
$$

We also put r by

$$
r= \begin{cases}n & \text { if } 2 \leq n \leq s, \\ c & \text { if } s+1 \leq n\end{cases}
$$

Then Criteria 1 through 4 shift to the following form.
Criterion 5. If for each $j \in X$, there exists a prime number p congruent to 1 modulo $5 \ell \cdot 2^{n+2}$ satisfying

$$
\sum_{i=0}^{2^{r}-1} a_{i j} x_{i} \not \equiv 0 \quad(\bmod \ell)
$$

then ℓ does not divide h_{n} / h_{n-1}.
Criterion 5 allows us to verify that $8191=2^{13}-1$ does not divide h_{n} for any nonnegative integer n in two days. Moreover, we can verify that, if $10^{4}<\ell<6 \cdot 10^{4}$, then ℓ does not divide h_{n} for any non-negative integer n with this criterion.

References

[1] M. Aoki and T. Fukuda, An Algorithm for Computing p-Class Groups of Abelian Number Fields, Algorithmic number theory, Lecture Notes in Comput. Sci., 4076, Springer, Berlin, 2006, 56-71.
[2] G. Gras, Classes d'idéaux des corps abéliens et nombres de Bernoulli généralisés, Ann. Inst. Fourier 27-1 (1977), 1-66.
[3] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[4] T. FuKuda and K. Komatsu, Weber's class number problem in the cyclotomic \mathbf{Z}_{2}-extension of \mathbf{Q}, Experiment. Math. 18(2) (2009), 213-222.
[5] T. Fukuda and K. Komatsu, Weber's class number problem in the cyclotomic \mathbf{Z}_{2}-extension of \mathbf{Q}, III, International Journal of Number Theory Vol. 7, No. 6 (2011), 1627-1635.
[6] B. MaZUR and A. Wiles, Class fields of abelian extension of Q, Invent. Math. 76 (1984), 179-330.
[7] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, 83. SpringerVerlag, New York, 1997.
[8] H. Weber, Theorie der Abel'schen Zahlkörper, Acta Math. 8 (1886), 193-263.

Present Address:

Department of Mathematics, School of Fundamental Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
e-mail: takuya4869aoki@toki.waseda.jp

[^0]: Received December 9, 2014; revised June 5, 2015

