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Abstract. In this paper, we consider the combinatorial formula for the Schur coefficients of the integral form

of the Macdonald polynomials. As an attempt to prove Haglund’s conjecture that

〈
Jμ(X;q,qk)

(1−q)|μ| , sλ(X)

〉
∈ N[q],

we have found explicit combinatorial formulas for the Schur coefficients in one row case, two column case and
certain hook shape cases [Yoo12]. A result of Egge-Loehr-Warrington [ELW10] gives a combinatorial way of getting
Schur expansion of symmetric functions when the expansion of the function in terms of Gessel’s fundamental quasi
symmetric functions is known. We apply this result to the combinatorial formula for the integral form Macdonald
polynomials of Haglund [Hag08] in quasi symmetric functions to prove the Haglund’s conjecture in more general
cases.

1. Introduction

In 1988, I. G. Macdonald [Mac95] introduced a remarkable new basis for the space
of symmetric functions. The elements of this basis are denoted Pμ(X; q, t) where μ is a
partition, X = (x1, x2, . . .), and q, t are two free parameters. The Pμ(X; q, t)’s, which
are now called Macdonald polynomials, specialize to many of the well-known bases for the
symmetric functions by suitable choices of the parameters q and t . They were immediately
hailed as a breakthrough in symmetric function theory as well as special functions, as they
contained most of the previously studied families of symmetric functions as special cases, and
yet satisfied many interesting properties, such as a multivariate orthogonality relation. Upon
the introduction, Macdonald also defined the integral forms Jμ(X; q, t) of Pμ by multiplying
certain polynomial of q and t , and conjectured that they can be expanded in terms of modified
Schur functions sλ[X(1 − t)] with coefficients in N[q, t]. This is known as the Macdonald
positivity conjecture and it has been proved by Haiman [Hai01] algebraically, and by Assaf
[Ass07] combinatorially.

On the other hand, Haglund noticed and conjectured that for any k ∈ N,

(1.1)

〈
Jμ(X; q, qk)

(1 − q)|μ| , sλ(X)

〉
∈ N[q]
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and the conjecture has been verified by the author [Yoo12] in one-row case, two column case
and certain hook shape cases by finding explicit combinatorial descriptions for the Schur co-
efficients. In this paper, to further investigate Haglund’s conjecture, we apply the combinato-
rial method of Egge-Loehr-Warrington [ELW10] to get the Schur coefficients of Jμ(X; q, t),
given the combinatorial formula for Jμ(X; q, t) in terms of the fundamental quasisymmetric
functions [Hag08].

2. Background

For a permutation σ ∈ Sn, let Des(σ ) denote the set of i ∈ {1, 2, . . . , n − 1} such that
i +1 appears to the left of i in σ . If Des(σ ) = {i1 < i2 < · · · < ik}, then we define Des′(σ ) to
be the corresponding composition (i1, i2 − i1, . . . , n− ik) � n. Given a partition λ, a standard
Young tableau of shape λ is a bijection T : dg(λ) → {1, 2, . . . , n} for which T values are
increasing along the rows and up the columns of dg(λ), where dg(λ) is the left-south justified
Young diagram of λ. We let SYT(λ) denote the set of standard Young tableaux of shape λ.
Given T ∈ SYT(λ), define the reading word rw(T ) by reading the values of T along the
rows from left to right, starting from top to bottom. Then define Des(T ) and Des′(T ) to be
Des(rw(T )) and Des′(rw(T )). Note that the Schur function can be expanded in terms of the
fundamental quasisymmetric functions as a sum over the set of standard Young tableaux.

THEOREM 2.1 [Ges84, Sta99].

sλ =
∑

T ∈SYT(λ)

FDes′(T ) .

2.1. Schur versus quasisymmetric expansion. A skew diagram λ/μ is a rim-hook
of λ if λ/μ does not contain any 2×2 subdiagram and any two consecutive cells of λ/μ share
an edge. A rim-hook is special if it starts from the cell in the first column. The number of
rows of a rim hook H is referred to as its height, denoted by ht(H). The sign of a rim hook

H is defined to be (−1)ht(H)−1. A special rim-hook tableau S of shape λ and content α is a
partition of the diagram of λ using special rim-hooks such that the length of the i-th rim-hook
from the bottom is αi . The sign of S is the product of the signs of the rim hooks of S. For
more details about rim-hook tableaux, see [ER90].

FIGURE 1. Examples of special rim hook tableaux of shape λ = (5, 5, 3, 2)
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Egge-Loehr-Warrington [ELW10] gives a combinatorial description of Schur coeffi-
cients, given a fundamental quasisymmetric expansion of any symmetric functions.

THEOREM 2.2 [ELW10, Theorem 11]. Suppose F is a field, and we have a symmetric
function

f =
∑
λ�n

cλsλ =
∑
α|�n

dαFα (cλ, dα ∈ F).

Then we have

cλ =
∑
α|�n

dαK∗
n(α, λ)

for all λ � n, where

K∗
n(α, λ) =

∑
β finer than α

K ′
n(β, λ) ,

and K ′
n is a right inverse of the Kostka matrix Kn with entries K ′

n(α, λ), the sum of the signs
of the special rim-hook tableaux of shape λ and content α.

If each rim-hook contains exactly one cell in the first column of the Ferrers diagram of
λ, then we say that the rim-hook tableau S of shape λ and content α (or equivalently, (α, λ))
is flat. Then we can simplify the description of K∗

n(α, λ) even more.

THEOREM 2.3 [ELW10, Theorem 15]. Let α |� n, λ � n. If (α, λ) is flat, then
K∗

n(α, λ) = K ′
n(α, λ) = ±1. Otherwise, K∗

n(α, λ) = 0. In particular, K∗
n(α, λ) = χ(α = λ)

when λ is a hook.

2.2. Quasisymmetric expansion of Jμ(X; q, t). Given a diagram of a partition μ,
three cells u, v,w ∈ μ are said to form a triple if they are situated as shown below,

w
u v

including the case when u and v are in the first row. Given a standard filling σ of μ, we define
an orientation on such a triple by starting at the square containing the smallest element of σ ,
and going in a circular motion, towards the next largest and ending at the largest element.
We say that the triple is an inversion triple if this circular motion is counterclockwise, and
coinversion triple if the circular motion is clockwise. For the cases when u and v are in the
first row, we put −∞’s below the cells in the first row. Given a triple u, v,w in μ, we define
the middle square of the triple, with respect to σ , to be the square containing the middle
number of the three {σ(u), σ (v), σ (w)}. If u and v are in the first row, then we let the middle
square be u if σ(u) < σ(v), and v otherwise. Then define coinvs(σ, μ) to be the number
of coinversion triples for which s is the middle square, and invs (σ, μ) to be the number of
inversion triples for which s is the middle square.
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For a given filling σ of μ and s ∈ μ, let

nondess(σ, μ) =
{

leg(s) + 1 , if σ(South(s)) ≥ σ(s) and South(s) ∈ μ ,

0 , otherwise

majs(σ, μ) =
{

leg(s) , if σ(North(s)) > σ(s) (i.e., descent at North)

0 , otherwise,

where South(s) denotes the square below s and North(s) denotes the square above s.
We recall that Haglund [Hag08, Corollary A.12.1] derived the quasisymmetric expansion

of the integral form Macdonald polynomials from the combinatorial formula for the Macdon-
ald polynomials of Haglund-Haiman-Loehr [HHL05].

THEOREM 2.4 [Hag08].

(2.1) Jμ(X; q, t) =
∑
w∈Sn

primary

D(w,μ)(q, t)FDes′(w)(X) ,

where primary implies that i can occur in the bottom i rows, for 1 ≤ i ≤ n, and

D(w,μ)(q, t) =
∏
s∈μ

(
q invs (w,μ)tnondess (w,μ) − qcoinvs (w,μ)t1+majs (w,μ)

)
,

and we identify a permutation w with the standard filling of μ whose reading word is w.

Then by combining Theorem 2.2 and Theorem 2.3, we can get the Schur coefficients of
Jμ(X; q, t).

Jμ(X; q, t) =
∑
w∈Sn

primary

D(w,μ)(q, t)FDes′(w)(X)

=
∑
λ�n

( ∑
w∈Sn

primary

D(w,μ)(q, t)K ′
n(Des′(w), λ)

)
sλ ,(2.2)

where K ′
n(Des′(w), λ) is ±1 up to the sign of the special rim-hook tableau. In this paper, we

compute specific Schur coefficients of certain cases by using the combinatorial description of
K ′

n(Des′(w), λ).

REMARK 2.5. Note the following combinatorial formula for Jμ(X; q, t).

THEOREM 2.6 [HHL05].

Jμ(X; q, t) =
∑

nonattacking fillings
σ of μ′

Xσ qmaj(σ,μ′)tcoinv(σ,μ′)
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×
∏
u∈μ′

σ(u)=σ(South(u))

(1 − q leg(u)+1tarm(u)+1)
∏
u∈μ′

σ(u) �=σ(South(u))

(1 − t).

If we set t = qk and divide by (1 − q)|μ|, then we get

Jμ(X; q, qk)

(1 − q)|μ| =
∑

nonattacking fillings
σ of μ′

Xσ qmaj(σ,μ′)+kcoinv(σ,μ′)

×
∏
u∈μ′

σ(u)=σ(South(u))

[
leg(u) + k · arm(u) + k + 1

]
q

∏
u∈μ′

σ(u) �=σ(South(u))

[k]q ,

hence the q-positivity is obvious in the monomial expansion.

3. Computation

From now on, we use the notation A� B to denote a shuffle product of two sequences
of numbers A = (a1, . . . , ak) and B = (b1, . . . , br), and A‖B to denote the concatenation of
two sequences A and B. Also, given μ, |μ| = n, we identify a permutation w ∈ Sn with the
standard filling of μ whose reading word is w.

3.1. Computation of 〈Jμ(X; q, t), s(k+1,1n−k−1)〉. By Theorem 2.3, for λ = (k +
1, 1n−k−1), we know that K∗

n(α, λ) = χ(α = λ), and we can easily get that w ∈ Sn satisfying
Des′(w) = λ is of the form

(3.1) w ∈ F := {[(1, 2, . . . , k)� (n, n − 1, . . . , k + 2)]‖k + 1} .

Before we start with simple cases, define an operator φ by

φ((qat; −)n) = qn(qa−1t; −)n .

PROPOSITION 3.1.

〈J(n), s(k+1,1n−k−1)〉 = (q−(n−k−1)t; q)n · q(n−k
2 )

[
n − 1

k

]
q

,

where (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1).

PROOF. We calculate D(w,(n))(q, t) for w’s in (3.1) by induction. By considering w’s
in F as fillings of μ = (n), we can divide F into two subsets according to the element in the
first cell of μ : (i) when 1 is in the first cell and (ii) when n is in the first cell. We let

F1 = {1‖[(2, . . . , k)� (n, n − 1, . . . , k + 2)]‖k + 1} ,

F2 = {n‖[(1, . . . , k)� (n − 1, . . . , k + 2)]‖k + 1} .
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After fixing the first element of μ, we can use the induction hypothesis. In F1 case, if
we ignore the first 1 in the fillings, then the rest (say w′) forms the set of fillings for
〈J(n−1), s(k,1n−k−1)〉, i.e.,

w′ ∈ F ′
1 = {[(2, . . . , k)� (n, n − 1, . . . , k + 2)]‖k + 1} .

By the induction hypothesis, we know that
∑

w′∈F ′
1

D(w′,(n−1))(q, t) = 〈J(n−1), s(k,1n−k−1)〉(3.2)

= (q−(n−k−1)t; q)n−1 · q(n−k
2 )

[
n − 2
k − 1

]
q

.

If we put 1 in front of the the fillings in F ′
1, then it would not change the factors in

D(w′,(n−1))(q, t) and the cell with 1 itself contributes (1 − qn−1t) to D(w,(n))(q, t).
In the second case, if we let F ′

2 = {[(1, . . . , k)� (n − 1, . . . , k + 2)]‖k + 1}, then F ′
2 is

the set of fillings for 〈J(n−1), s(k+1,1n−k−2)〉 and again by the induction hypothesis, we have

(3.3) 〈J(n−1), s(k+1,1n−k−2)〉 = (q−(n−2−k)t; q)n−1 · q(n−k−1
2 )

[
n − 2

k

]
q

.

If we attach the cell with n in front of the fillings in F ′
2, then n does not create any inversion

or coinversion triples since n is the largest number, but every entry to the right of n gains one
inversion created with n. Thus, the contribution to D(w,(n))(q, t) in this case would be

(1 − t)φ
(
(q−(n−2−k)t; q)n−1

) · q(n−k−1
2 )

[
n − 2

k

]
q

.

Hence, we get

〈J(n), s(k+1,1n−k−1)〉 = (1 − qn−1t) ·
(

(q−(n−k−1)t; q)n−1 · q(n−k
2 )

[
n − 2
k − 1

]
q

)

+ (1 − t)φ

(
(q−(n−2−k)t; q)n−1

)
· q(n−k−1

2 )
[

n − 2
k

]
q

= (q−(n−k−1)t; q)n · q(n−k
2 )

[
n − 1

k

]
q

.

Note that φ((q−(n−2−k)t; q)n−1) = qn−1(q−(n−k−1)t; q)n−1. �

We apply a similar idea of using induction to find the Schur coefficient of Jμ when the
Schur function is indexed by hook shapes.
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THEOREM 3.2. For any μ � n,

〈Jμ, s(k+1,1n−k−1)〉 =
[ l∏

i=1

q(i−1)(μ′
i−1)(q−(i−1)t; t)μ′

i−1(1 − qk−i+1tμ
′
i )

]

× (q−(μ1−k)−1t; q)m · q(μ1−k

2 )
[

μ1 − 1
k

]
q

,

where l + m = μ1 and l is the number of i’s with μ′
i > 1 and m is the number of i’s with

μ′
i = 1.

PROOF. Recall that we are only considering the fillings of the form

w ∈ F = {[(1, 2, . . . , k)� (n, n − 1, . . . , k + 2)]‖k + 1}
which satisfy Des′(w) = λ for λ = (k + 1, 1n−k−1). Also, note that due to the primary
condition for the fillings of μ, the entry 1 should be in the first row, and since the numbers in
the set (1, 2, . . . , k) should be in that relative order in the fillings of μ, all the numbers in the
set (1, 2, . . . , k) come in the first row. Hence, we fill the cells in μ with numbers from n in
decreasing order, from left to right, starting from the top row (i.e., in reading order) up to the
second row. This part of the filling will be fixed. Then we only have to consider the fillings of
the first row which are of the form

{[(1, 2, . . . , k)� (μ1, μ1 − 1, . . . , k + 3, k + 2)]‖k + 1} .

Having this observation, we can divide the set of fillings F in two subsets: when 1 is in the
(1, 1) cell, and when μ1 (which is the largest possible entry in the first row) comes in the (1, 1)

cell. If we fix the entry in the (1, 1) cell, then consequently we get to fix all the elements in
the first column, so we can use the induction hypothesis for the parts to the right of the first
column. If we remove the first column of μ and let μ̃ = (μ1 − 1, μ2 − 1, . . . ), then by only
considering the relative order of fillings of μ̃, we get 〈Jμ̃, s(k,1n−μ1−k)〉 which is

n n-1

μ1+1
k+1

���
(1, 2, . . . , k)� (μ1, . . . , k + 2)

· · ·

FIGURE 2. Fillings of μ
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〈Jμ̃, s(k,1n−μ1−k)〉

=
[l−1∏

i=1

q(i−1)(μ′
i+1−1)(q−(i−1)t; t)μ′

i+1−1(1 − qk−i tμ
′
i+1)

]

× (q−(μ1−k)−1t; q)mq(μ1−k

2 )
[

μ1 − 2
k − 1

]
q

(3.4)

=
[ l∏

i=2

q(i−2)(μ′
i−1)(q−(i−2)t; t)μ′

i−1(1 − qk−i+1tμ
′
i )

]

× (q−(μ1−k)−1t; q)mq(μ1−k

2 )
[

μ1 − 2
k − 1

]
q

.

If we attach the first column containing 1 in the (1, 1) cell, then the first column itself gives

D
(w|

1
μ′

1
,1μ′

1 )
(q, t) = (t; t)μ′

1−1(1 − qμ1−1tμ
′
1)

and since the elements in the first column are the largest in each row, the entries above the
first row to the right of the first column would gain one inversion. Thus, this subset of fillings
contributes the following to D(w,μ)(q, t) :

(t; t)μ′
1−1(1 − qμ1−1tμ

′
1)

[∏l
i=2 q(i−2)(μ′

i−1)φ((q−(i−2)t; t)μ′
i−1)(1 − qk−i+1tμ

′
i )

]

×(q−(μ1−k)−1t; q)mq(
μ1−k

2 )
[

μ1 − 2
k − 1

]
q

= (t; t)μ′
1−1(1−qμ1−1tμ

′
1)

[∏l
i=2 q(i−1)(μ′

i−1)(q−(i−1)t; t)μ′
i−1(1 − qk−i+1tμ

′
i )

]
(3.5)

×(q−(μ1−k)−1t; q)mq(μ1−k

2 )
[

μ1 − 2
k − 1

]
q

.

Similarly, if we consider the subset of fillings with μ1 in the (1, 1) cell, the fillings of μ̃1

part would give 〈Jμ̃, s(k+1,1n−μ1−k−1)〉 and the first column itself gives (1 − tμ
′
1)(t; t)μ′

1−1.
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Attaching the first column to μ̃ would give

(3.6)

(1 − tμ
′
1)(t; t)μ′

1−1

[ l∏
i=2

q(i−2)(μ′
i−1)φ((q−(i−2)t; t)μ′

i−1)(q − qk−i+2tμ
′
i )

]

× φ((q−(μ1−k)t; q)m) · q(
μ1−k−1

2 )
[

μ1 − 2
k

]
q

= (1 − tμ
′
1)(t; t)μ′

1−1

[ l∏
i=2

q(i−1)(μ′
i−1)(q−(i−1)t; t)μ′

i−1(1 − qk−i+1tμ
′
i )

]

× (q−(μ1−k)−1t; q)m · qk+(
μ1−k

2 )
[

μ1 − 2
k

]
q

.

Adding (3.5) and (3.6) gives 〈Jμ, s(k+1,1n−k−1)〉. �

3.2. Two row case. We make the following observation which will be used to prove
several Schur coefficient formulas of J(b,a)(X; q, t). Let n = a + b.

LEMMA 3.3. Let μ = (b, a). Consider the following set of permutations (identified
with the standard fillings of μ whose reading words are corresponding permutations) for
r, s ≤ a

F = {[(n, n − 1, . . . , n − (a − s − 1))� (r + 1, . . . , r + s)]‖
[(1, 2, . . . , r)� (r + s + 1, r + s + 2, . . . , a + s)]‖(a + s + 1, a + s + 2, . . . , n − a + s)}.
If r < s, then for any w ∈ F ,

D(w,μ)(q, t) = 0 .

PROOF. Note that the elements of F fill the second row (top row) of μ with (n, n −
1, . . . , n−(a−s−1))�(r +1, . . . , r +s) and the first row (bottom row) with (1, 2, . . . , r)�

(r + s + 1, r + s + 2, . . . , a + s) from the left, and (a + s + 1, a + s + 2, . . . , n − a + s) will

be fixed in the tail part of the first row. We use the notation [α : β] to denote the domino
α
β

which is a column of μ. For any fixed s, s > r , we use the induction on r .
Let r = 1. If r = 1 is below one of the numbers (n, n−1, . . . , n−(a−s−1)), i.e., if we

have a domino of the form [n − α : 1] for 0 ≤ α ≤ a − s − 1, then there also exists a domino
[2 : s + β] for 2 ≤ β ≤ a. If the domino [n − α : 1] comes to the right of [2 : s + β], then
since 2 is the smallest number in any triples containing 2, if we let c be the cell containing 2,
then invc(w,μ) = coinvc(w,μ) = 0. Thus c contributes (t − t) = 0 to D(w,μ)(q, t) which
makes D(w,μ)(q, t) = 0. If [2 : s +β] is to the right of [n−α : 1], then the filling of μ would
have three dominos in the following order

n-α
1

. . . 2
s+β

. . . 3
s+γ
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where γ > β. The entries to the left of [3 : s + γ ] are all greater than 3 except 1 and 2, so
if we say the cell containing 3 is c, then invc(w,μ) = coinvc(w,μ) = 1. Hence the cell c

contributes (qt − qt) = 0 to D(w,μ)(q, t) which also makes D(w,μ)(q, t) zero. Now consider
the case when r = 1 is below one of the numbers in (r + 1, r + 2, . . . , r + s). If it is below
r +1, i.e., if there is a domino [r +1 : 1], then there would also be a domino [r +2 : r +s+α]
where 1 ≤ α ≤ a − r to the right of the domino [r +1 : 1]. Since r +2 is the smallest number
among the numbers consisting triples with it, the cell filled with r + 2 contributes (t − t) = 0
to D(w,μ)(q, t). If 1 is below r + β for β > 1, then r + 1 would be above a number of the
form r + s + β which is larger than r + 1. Also, r + 1 is the smallest among the numbers
consisting triples with it, so it contributes (t − t) = 0 to D(w,μ)(q, t). This proves the case
when r = 1.

Now we assume that the lemma is true for 1 ≤ r ≤ s − 2. We can divide F into four
subsets with respect to the form of the first column domino; (i) fillings starting with [n : 1],
(ii) fillings starting with [r + 1 : r + s + 1], (iii) fillings starting with [r + 1 : 1] and (iv)
fillings starting with [n : r + s + 1].

(i) If the first column of μ is [n : 1], then the rest part of μ would be filled with (n −
1, . . . , n−(a−s−1))�(r+1, . . . , r+s) in the second row to the right of n, and (2, . . . , r)�

(r + s + 1, r + s + 2, . . . , a + s) in the first row to the right of 1. If we let

F̃ = {[(n − 1, . . . , n − (a − s − 1))� (r + 1, . . . , r + s)]‖
[(2, . . . , r)� (r + s + 1, r + s + 2, . . . , a + s)]‖(a + s + 1, a + s + 2, . . . , n − a + s)} ,

and μ̃ = (b − 1, a − 1), then by the induction hypothesis, we have

D(w̃,μ̃)(q, t) = 0

for any w̃ ∈ F̃ . In fact, as we saw in r = 1 case, for each w̃ ∈ F̃ , we can find a domino
[r + α : r + s + β] which contributes 0 to D(w̃,μ̃)(q, t) due to the fact that the cell containing
r + α has the same coinversion and inversion statistics. Note that since the largest possible

coinv value is s − 2 in this case and s − 1 for inv, there exists a domino [r + α̃ : r + s + β̃] to
the right of [r + α : r + s + β] for which the cell with r + α̃ has one more inversion statistic
than r + α, having the same coinversion statistic. If we attach the domino [n : 1] in front of μ̃

filed with w̃ ∈ F̃ , then every entry in the set (r +1, . . . , r + s) gains one coinv, and so the cell
filled with r + α̃ gets to have the same number of coinversions and inversions. So this gives 0
to D(w,μ)(q, t). In case (ii), the cell containing r + 1 contributes (t − t) = 0 to D(w,μ)(q, t),
since r +1 is the smallest among the entries consisting triples with it, so it does not create any
coinversion or inversion statistics.

In cases (iii) and (iv), we cannot use the induction hypothesis. Say we make a filling of
μ by only using type (iii) or type (iv) dominos starting from the first column. Note that if we
put type (i) or type (ii) domino in this process, we can apply the induction hypothesis there
and derive D(w,μ) = 0. Type (iii) dominos pair the numbers in the set (r +1, r +2, . . . , r + s)

which has s elements and the set (1, 2, . . . , r) which has r = s − 1 elements. Also, type (ii)
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domino pairs the numbers in the set (n, n − 1, . . . , n − a + s + 1) with a − s elements and
the numbers in the set (r + s + 1, . . . , a + s) with a − r = a − s + 1 elements. Due to
the discrepancy of the number of elements in two sets, there should be a domino of the form
[r + α : r + s + β]. If there are only type (iii) or type (iv) dominos to the left of this one,
then the cell containing r + α has no coinversions or inversions, and so it contributes 0 to
D(w,μ)(q, t). Thus we prove the lemma. �

We start by considering the coefficients of the Schur functions indexed by two-row
shapes.

PROPOSITION 3.4. For 0 ≤ k ≤ b−a
2 ,

(3.7)

〈J(b,a)(X; q, t), s(b−k,a+k)〉

= (t; q)a(q
b−at2; q)a(q

−1t; q)k(t; q)b−a−kq
k

[
b − a + 1

k

]
q

.

PROOF. There are two special flat rim-hook tableaux of shape λ = (b − k, a + k) :

The composition αl corresponding to the left rim-hook tableau is (b − k, a + k) and the set of
w ∈ Sn satisfying Des′(w) = αl is

Fl = {(1, 2, . . . , b − k)� (b − k + 1, b − k + 2, . . . , n) | b − k + 1 precedes b − k} .

Similarly, the right rim-hook tableau gives αr = (a + k − 1, b − k + 1) and the set of w ∈ Sn

satisfying Des′(w) = αr is

Fr = {(1, 2, . . . , a + k − 1)� (a + k, a + k + 1, . . . , n) | a + k precedes a + k − 1}.
Note that due to the primary condition, the elements in the set (1, 2, . . . ) should be in the first
row, so the filling in the second row would be fixed, for any w ∈ Fl ∪ Fr , by the elements if
the second set of the shuffle product. Also, since the entries in the second row are increasing
from the left, notice that if we have a triple

a b
c

with a < b < c, a gets to have no coinversions or inversions, so the cell containing a

contributes 0 to D(w,μ)(q, t). This implies that we cannot have a domino of the form [α : β]
with β > α, hence the first a entries of the first row would be also fixed by (1, 2, . . . , a). So

the entries in the part with column height 2 are fixed and they contribute (t; q)a(q
b−at2; q)a

to D(w,μ)(q, t) for w ∈ Fl ∪Fr . Having the fillings of the two-rowed part fixed, we only have
to consider the factors from the tail part of size b − a.

Let

F̃l = {(a + 1, a + 2, . . . , b − k)� (a + b − k + 1, a + b − k + 2, . . . , a + b)} ,
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F̃r = {(a + 1, a + 2, . . . , a + k − 1)� (2a + k, 2a + k + 1, . . . , a + b)} .

By using induction, it is not too hard to show that

∑
w̃∈F̃l

D(w̃,(b−a))(q, t) = (t; q)k(t; q)b−a−k

[
b − a

k

]
q

,

∑
w̃∈F̃r

D(w̃,(b−a))(q, t) = (t; q)k−1(t; q)b−a−k+1

[
b − a

k − 1

]
q

.

Since K∗
n(αl , λ) = +1 and K∗

n(αr , λ) = −1, we have

〈J(b,a)(X; q, t), s(b−k,a+k)〉

= (t; q)a(q
b−at2; q)a

( ∑
w̃∈F̃l

D(w̃,(b−a))(q, t) −
∑
w̃∈F̃r

D(w̃,(b−a))(q, t)

)

= (t; q)a(q
b−at2; q)a

(
(t; q)k(t; q)b−a−k

[
b − a

k

]
q

− (t; q)k−1(t; q)b−a−k+1

[
b − a

k − 1

]
q

)

= (t; q)a(q
b−at2; q)a(q

−1t; q)k(t; q)b−a−kq
k

[
b − a + 1

k

]
q

.

�

Now we consider the case when the Schur functions are indexed by λ = (r, s, 1k) shapes.
Note that there are two special flat rim-hook tableaux of shape λ as in Figure 3.

··· ···

FIGURE 3. Two special flat rim-hook tableaux of shape λ = (r, s, 1k)

The tableau in the left hand side has K∗
n(α, λ) = +1 and the right hand side one has

K∗
n(α, λ) = −1.

PROPOSITION 3.5.

〈J(b,a)(X, q, t), s(b,a−k,1k)〉 = (q−kt; q)a(q
b−at2; q)a(t; q)b−a · q(k+1

2 )
[

a − 1
k

]
q

.
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PROOF. Let n = a + b. Let F1(λ) be the set of fillings w for which Des′(w) corre-
sponds to the first special rim-hook tableaux of Figure 3. That is,

F1(λ) = {(1, 2, . . . , b)� (b + 1, . . . , n − k)� (n, n − 1, . . . , n − k + 1)

such that b + 1 precedes b, and n − k + 1 precedes n − k} .

Similarly, we define the set of the fillings, F2(λ), corresponding to the second special rim-
hook tableau of Figure 3.

F2(λ) = {(1, 2, . . . , a − k − 1)� (a − k, . . . , n − k)� (n, n − 1, . . . , n − k + 1)

such that a − k precedes a − k − 1, and n − k + 1 precedes n − k} .

We first consider w ∈ F2(λ). Due to the primary condition, the elements in the set
(1, 2, . . . , a − k − 1) should be in the first row, and so the numbers in the second and the
third set which are larger than the numbers in the set (1, 2, . . . , a − k − 1) get to fill the
second row. Then in the language of Lemma 3.3, this is the case when r ≤ a − k − 1 and
s ≥ a − k, and so r < s. Hence, by Lemma 3.3, D(w,(b,a))(q, t) = 0 for any w ∈ F2(λ). So
we only have to compute D(w,(b,a))(q, t) for w ∈ F1(λ), and the primary condition fixes the
entries in the first row by (1, 2, . . . , b) in this case. Then in the second row, we have

F̃1(λ) = {(a + b, a + b − 1, . . . , a + b − k + 1)� (b + 1, b + 2, . . . , a + b − k)

such that a + b − k + 1 precedes a + b − k} .

Notice that
∑

w∈F̃1(λ)
D(w,μ)(q, t) is nothing but 〈J(a), s(a−k,1k)〉 and by Proposition 3.1, we

know that

〈J(a), s(a−k,1k)〉 = (q−kt; q)a · q(k+1
2 )

[
a − 1

k

]
q

.

Combining the factors from the first row, we get

〈J(b,a)(X, q, t), s(b,a−k,1k)〉 = (q−kt; q)a(q
b−at2; q)a(t; q)b−a · q(k+1

2 )
[

a − 1
k

]
q

.

�

PROPOSITION 3.6. For 0 ≤ k ≤ a − 1,

〈J(b,a)(X; q, t), s(b−1,a−k,1k+1)〉 = (t; q−1)k+1(t; q)a−k−1(q
b−at2; q)a−1(q

−1t; q)b−a

×(1 − qb−k−2t2)q(k+1
2 )+1[b − a + k]q

[
a

k + 1

]
q

.

PROOF. We also have two special flat rim-hook tableaux of shape λ = (b − 1, a −
k, 1k+1) as in Figure 3. Considering the primary condition for the fillings, we get the set of
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fillings corresponding to the special rim-hook tableaux from the left

Fl = {(1, 2, . . . , b − 1)� (b, b + 1, . . . , n − k − 1)� (n, n − 1, . . . , n − k)

such that b precedes b − 1 and n − k precedes n − k − 1} ,

Fr = {(1, 2, . . . , a − k − 1)� (a − k, a − k + 1, . . . , n − k − 1)� (n, n − 1, . . . , n − k)

such that a − k precedes a − k − 1 and n − k precedes n − k − 1} .

Note that due to Lemma 3.3, we only have to consider the following subsets of Fl and Fr :

F1
l = {[(n, n − 1, . . . , n − k)� (b, b + 1, . . . , n − k − 2)]

‖(1, 2, . . . , a)‖[(a + 1, . . . , b − 1)� n − k − 1]} ,

F2
l = {[(n, n − 1, . . . , n − k)� (b, b + 1, . . . , n − k − 2)]

‖[(1, 2, . . . , a − 1)� n − k − 1]‖(a, a + 1, . . . , b − 1)} ,

F̃r = {[(n, n − 1, . . . , n − k)� (a − k, a − k + 1, . . . , 2a − 2k − 2)]
‖[(1, 2, . . . , a − k − 1)� (2a − 2k − 1, . . . , 2a − k − 1)]‖(2a − k, . . . , n − k − 1)} .

The fillings in Fl ∪ Fr which are not contained in the above three subsets are w’s satisfying
D(w,μ)(q, t) = 0. The computation of D(w,μ)(q, t) is a routine.∑

w∈F1
l

D(w,μ)(q, t) = (1 − t)(t; q−1)k+1(t; q)a−k−1(q
b−at2; q)a(t; q)b−a−1

× q(k+1
2 )[b − a]q

[
a

k + 1

]
q

,(3.8)

∑
w∈F2

l

D(w,μ)(q, t) = (t; q−1)k+1(t; q)a−k−1(q
b−at2; q)a−1(q

−1t; q)b−a

× (1 − qa−k−1t2)q(k+1
2 )+b−a[k + 1]q

[
a

k + 1

]
q

,(3.9)

∑
w∈F̃r

D(w,μ)(q, t) = (t; q−1)k+1(t; q)a−k−1(q
b−at2; q)a(t; q)b−aq

(k+1
2 )

[
a

k + 1

]
q

.

(3.10)

Considering the values of K∗
n(α, λ), we get

〈J(b,a)(X; q, t), s(b−1,a−k,1k+1)〉 = (3.8) + (3.9) − (3.10)

= (t; q−1)k+1(t; q)a−k−1(q
b−at2; q)a−1(q

−1t; q)b−a

× (1 − qb−k−2t2)q(k+1
2 )+1[b − a + k]q

[
a

k + 1

]
q

.

�
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PROPOSITION 3.7. For 0 ≤ k ≤ b−a−1
2 ,

〈J(b,a)(X, q, t), s(b−k−1,a+k,1)〉=(1 − t)(t;q)a−1(t;q)k−1(q
b−at2;q)a−1(q

−1t;q)b−a−k

× qk+1[a]q
[

b − a

k

]
q

[b − a − 2k]q
[b − a − k + 1]q [k + 1]q

× {(1 − qb−a−k−1t)(1 − qb−1t2)[k]q + qk−1(q − t)(1 − qb−k−2t2)[b − a − k + 1]q}

+(t;q)a(q
b−at2;q)a(t;q)k−1(t;q)b−a−k−1(q−t)(q2−t)qk−1 [k]q[b−a−2k]q

[b−a−k+1]q
[

b−a

k+1

]
q

.

PROOF. There are two special flat rim-hook tableaux of shape (b − k − 1, a + k, 1).
Each gives the following set of fillings:

FIGURE 4. Two special flat rim-hook tableaux of shape λ = (b − k − 1, a + k, 1)

F1 = {(1, 2, . . . , b − k − 1)� (b − k, b − k + 1, . . . , n − 1)� n

such that b − k precedes b − k − 1 and n precedes n − 1} ,

F2 = {(1, 2, . . . , a + k − 1)� (a + k, a + k + 1, . . . , n − 1)� n

such that a + k precedes a + k − 1 and n precedes n − 1} .

We consider the following three subsets of F1 :

F1
1 = {(b − k, b − k + 1, . . . , n − k − 1)‖(1, 2, . . . , a)‖

[(a + 1, a + 2, . . . , b − k − 1)� (n − k, n − k + 1, . . . , n − 1)� n]
such that n precedes n − 1} ,

F2
1 = {[(b − k, b − k + 1, . . . , n − k − 2)� (a + b)]‖(1, 2, . . . , a)‖

[(a + 1, a + 2, . . . , b − k − 1)� (n − k − 1, n − k, . . . , n − 1)]} ,

F3
1 = {[(b − k, b − k + 1, . . . , n − k − 2)� n]‖[(1, 2, . . . , a − 1)� (n − k − 1)]‖

[(a, a + 1, . . . , b − k − 1)� (n − k, n − k + 1, . . . , n − 1)]} .
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Note that the fillings in F1 which are not contained in any of F i
1 for i = 1, 2, 3 make

D(w,μ)(q, t) zero by Lemma 3.3. By computation, we get

(3.11)
∑

w∈F1
1

D(w,μ)(q, t) = (t; q)a(q
b−at2; q)a(t; q)k(q

−1t; q)b−a−kq[k]q
[

b − a

k + 1

]
q

,

(3.12)

∑
w∈F2

1

D(w,μ)(q, t)

= (1 − t)(t; q)a−1(q
b−at2; q)a(t; q)k+1(t; q)b−a−k−1[a]q

[
b − a

k + 1

]
q

,

and

(3.13)
∑

w∈F3
1

D(w,μ)(q, t)

=(1−t)(t;q)a−1(1−qa+k−1t2)(qb−at2;q)a−1(q
−1t;q)b−a−k(t;q)kq

b−a−k[a]q
[

b − a

k

]
q

.

Similarly, we divide F2 into three subsets :

F1
2 = {(a + k, a + k + 1, . . . , a + k + a − 1)‖(1, 2, . . . , a)‖

[(a + 1, a + 2, . . . , a + k − 1)� (2a + k, 2a + k + 1, . . . , n − 1)� n]
such that n precedes n − 1} ,

F2
2 = {[(a + k, a + k + 1, . . . , 2a + k − 2)� n]‖(1, 2, . . . , a)‖

[(a + 1, a + 2, . . . , a + k − 1)� (2a + k − 1, . . . , n − 1)]} ,

F3
2 = {[(a + k, a + k + 1, . . . , 2a + k − 2)� n]‖[(1, 2, . . . , a − 1)� (2a + k − 1)]‖

[(a, a + 1, . . . , a + k − 1)� (2a + k, 2a + k + 1 . . . , n − 1)]} .

Again, the fillings in F2 which are not considered in the above subsets F i
2, for i = 1, 2, 3, are

those which make D(w,μ)(q, t) zero by Lemma 3.3. By computation, we get
(3.14)∑
w∈F1

2

D(w,μ)(q, t) = (t; q)a(q
b−at2; q)a(q− t)(t; q)k−1(t; q)b−a−k[b−a−k]q

[
b − a

k − 1

]
q

,
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(3.15)∑
w∈F2

2

D(w,μ)(q, t) = (1 − t)(t; q)a−1(q
b−at2; q)a(t; q)k−1(t; q)b−a−k+1[a]q

[
b − a

k − 1

]
q

,

and

(3.16)
∑

w∈F3
2

D(w,μ)(q, t)

= (1−t)(t; q)a−1(1−qb−k−1t2)(qb−at2; q)a−1(t; q)b−a−k(q
−1t; q)kq

k[a]q
[

b − a

k

]
q

.

We get 〈J(b,a)[X, q, t], s(b−k−1,a+k,1)〉 by simplifying (3.11) + (3.12) + (3.13) − (3.14) −
(3.15) − (3.16). �

3.3. Rectangular shapes. Here, we consider the case when μ = (bm), for m ≥ 2.
We make an observation which enables us to obtain the Schur coefficients indexed by the
partition of the form (b − r, b − s, 1k) of J(bm) from the Schur coefficients of a similar form
in the expansion of J(b,b).

PROPOSITION 3.8. For m ≥ 2,

〈J(bm)(X; q, t), s(b−r,b−s,1(r+s+b(m−2)))〉

=
(m−2∏

i=1

(q−b+1t i; q)b · q(b
2)

)
〈J(b,b), s(b−r,b−s,1r+s)〉

∣∣∣∣
t→tm−1

t2→tm

,

where ·
∣∣∣∣
t→tm−1

t2→tm

means to replace a single t by tm−1 and t2 by tm.

PROOF. Let λ = (b−r, b−s, 1(r+s+b(m−2))). There are two special rim-hook tableaux
of shape λ, of sign +1 and −1, each. See Figure 3. The special rim-hook tableaux give the
following set of fillings

F1 = {(1, 2, . . . , b − r)� (b − r + 1, b − r + 2, . . . , b − r + b − s)

� (bm, bm − 1, . . . , b − r + b − s + 1)

such that b − r + 1 precedes b − r and b − r + b − s + 1 precedes b − r + b − s},

F2 = {(1, 2, . . . , b − s − 1)� (b − s, b − s + 1, . . . , b − r + b − s)

� (bm, bm − 1, . . . , b − r + b − s + 1)

such that b − s precedes b − s − 1 and b − r + b − s + 1 precedes b − r + b − s}.
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We want to compute D(w,μ)(q, t) over the two sets of fillings F1 and F2. Note that the set
of numbers (1, 2, . . . , b − r) in F1 and (1, 2, . . . , b − s − 1) in F2 should be in the first row
of μ = (bm) due to the primary condition. Now we claim that the second set of numbers
(b − r + 1, . . . , b − r + b − s) in F1 and (b − s, b − s + 1, . . . , b − r + b − s) in F2 should
be in the first two rows. Say b − r + 1 (or b − s in F2 case) comes in higher rows than
the first two rows. Then since b − r + 1 is the smallest number in any triple containing it,
inversion and coinversion statistics are zero and hence the cell (say c) containing b − r + 1

contributes t leg(c)+1 − t leg(c)+1 = 0 to D(w,μ)(q, t). Hence, to fill μ with F1 or F2, we fill
the top (m − 2) rows with bm, bm − 1, . . . in decreasing order, from left to right, starting

from the top row. These cells contribute
(∏m−2

i=1 (q−b+1t i; q)b · q(b
2)

)
to D(w,μ)(q, t). The

rest of the fillings in the remaining two rows will be the same to that we consider to compute

〈J(b,b), s(b−r,b−s,1r+s)〉. The replacements of t and t2 are due to the difference of the leg
lengths. �

When μ = (b, b), we have an explicit expression for 〈J(b,b), s(b−r,b−s,1r+s)〉.
PROPOSITION 3.9. For μ = (b, b), 0 ≤ r ≤ s ≤ b − 1,

(3.17)

〈J(b,b)(X, q, t), s(b−r,b−s,1r+s )〉

=
r∑

k=1

(
(t; q−1)s+k(t; q)b−s−k(q

b−s−r−1t2; q)s+1(t
2; q)b−s−1

×qr+(s+k
2 )+(r−k+1

2 ) [s − r + 1]q
[r]q

[
b

s + k

]
q

[
s + k

s + 1

]
q

[
s

r − k

]
q

)

+ χ(r + s > b)(t; q−1)b(t
2; q)b−s−1(q

b−r−s−1t2; q)s+1q
r+(b

2)+(r+s−b+1
2 )

× [s − r + 1]q
[s + 1]q

[
b

r

]
q

[
r − 1

b − s − 1

]
q

where χ(A) = 1 if A is true and 0 otherwise.

PROOF. There are two special rim-hook tableaux of shape λ = (b − r, b − s, 1r+s) as
it is shown in Figure 3. The set of fillings of the given descent set corresponding to the special
rim-hook tableaux with sign +1 is

F1 =
r⋃

k=1

{(n, n − 1, . . . , n − s − k + 1)� (b − r + 1, b − r + 2, . . . , n − r − s − k)‖

(1, 2, . . . , b − r)� (n − r − s − k + 1, n − r − s − k + 2, . . . , n − r − s)

� (n − s − k, n − s − k − 1, . . . , n − r − s + 1)

such that n − r − s + 1 precedes n − r − s in the bottom row}
∪ χ(r + s > b){(n, n − 1, . . . , n − b + 1)‖
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[(1, 2, . . . , b − r)� (b − r + 1, . . . , 2b − r − s)� (b, b − 1, . . . , 2b − r − s + 1)]
such that b − r + 1 precedes b − r and 2b − r − s + 1 precedes 2b − r − s}.

Note that the first union of sets should stop when k = b−s if r+s > b. Then by computation,
we get

(3.18)
∑

w∈F1

D(w,μ)(q, t)

=
r∑

k=1

(
(t; q−1)s+k(t; q)b−s−k(q

b−s−r t2; q)r(t
2; q)b−rq

(s+k
2 )+(r−k+1

2 )

×
[

b − r

b − s − k

]
q

[
r − 1
k − 1

]
q

[
b

r

]
q

)

+ χ(r + s > b)(t; q−1)b(t
2; q)b−r(q

b−r−s t2; q)rq
(b

2)+(r+s−b+1
2 )

[
b

r

]
q

[
r − 1

b − s − 1

]
q

.

Similarly, from the tableaux of sign −1, we have

F2 =
r⋃

k=1

{(n, n − 1, . . . , n − s − k + 1)� (b − s, b − s + 1, . . . , n − 2s − k − 1)‖

(1, 2, . . . , b − s − 1)� (n − 2s − k, n − 2s − k + 1, . . . , n − r − s)�

(n − s − k, n − s − k − 1, . . . , n − r − s + 1)

such that n − r − s + 1 precedes n − r − s in the bottom row}
∪ χ(r + s > b){(n, n − 1, . . . , n − b + 1)‖

[(1, 2, . . . , b− s − 1)� (b− s, b− s + 1, . . . , 2b− r − s)� (2b, 2b− 1, . . . , 2b− r − s + 1)]
such that b − s precedes b − s − 1 and 2b − r − s + 1 precedes 2b − r − s} ,

(3.19)
∑

w∈F2

D(w,μ)(q, t)

=
r∑

k=1

(
(q−s−k+1t; q)s+k(t; q)b−s−k(q

b−s−r t2; q)s+1(t
2; q)b−s−1q

(s+k
2 )+(r−k+1

2 )

×
[

b − s − 1
k − 1

]
q

[
s

r − k

]
q

[
b

s + 1

]
q

)

+ χ(r + s > b)(q−b+1t; q)b(t
2; q)b−s−1(q

b−r−s t2; q)s+1q
(b

2)+(r+s−b+1
2 )
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×
[

b

s + 1

]
q

[
s

b − r

]
q

.

〈J(b,b)(X, q, t), s(b−r,b−s,1r+s)〉 is the result of simplifying (3.18)–(3.19). �

Combining Proposition 3.8 and Proposition 3.9 gives the coefficient of the Schur function
s(b−r,b−s,1(r+s+b(m−2))) in J(bm)(X; q, t) for any valid r, s values, m > 2.

REMARK 3.10. The idea used to prove Proposition 3.8 can be applied to more general
situation finding the s(b+α−r,b+β−s,1(r+s+b(m−2))) coefficient of Jμ when μ = (b+α, b+β, bm):

〈J(b+α,b+β,bm)(X; q, t), s(b+α−r,b+β−s,1(r+s+bm))〉

=
( m∏

i=1

(q−b+1t i; q)b · q(b
2)

)
〈J(b+α,b+β), s(b+α−r,b+β−s,1r+s)〉

∣∣∣∣
t→tm+1

t2→tm+2

.

REMARK 3.11. Note the q, t-Kostka polynomials Kλμ(q, t) of Macdonald’s defined
by

Jμ(X; q, t) =
∑
λ�|μ|

Kλμ(q, t)sλ[X(1 − t)] ,

where the square bracket implies the plethystic substitution. For the details of it, see [Hai99].
When t = 0, sλ[X] is just the ordinary Schur function sλ(X), and by the property of the
q, t-Kostka polynomials that

Kλμ(q, t) = Kλ′μ′ (t, q) ,

and

Kλμ(0, q) = Kλμ(q) =
∑

T ∈SSYT(λ,μ)

qch(T ) ,

where Kλμ(q) is the Kostka-Foulkes polynomial and ch(T ) is the charge statistic of Lascoux
and Schützenberger [LS78], we have

Jμ(X; q, 0) =
∑
λ�|μ|

Kλμ(q, 0)sλ[X]

=
∑
λ�|μ|

Kλ′μ′(0, q)sλ(X)

=
∑
λ�|μ|

Kλ′μ′(q)sλ(X) .

Hence, we can get some information about the Kostka-Foulkes polynomials from the explicit
expressions for the Schur coefficients of Jμ(X; q, 0).
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