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Abstract. Let S be a connected, compact and orientable surface of genus two having exactly one boundary
component. We describe any automorphism of the Torelli complex of S, and describe any automorphism of the
Torelli group of S. More generally, we study superinjective maps from the Torelli complex of S into itself, and show
that any finite index subgroup of the Torelli group of S is co-Hopfian.

1. Introduction

Let S = Sg,p be a connected, compact and orientable surface of genus g with p boundary
components. Let Mod∗(S) be the extended mapping class group of S, i.e., the group of
isotopy classes of homeomorphisms from S onto itself, where isotopy may move points of
the boundary of S. When p ≤ 1, the Torelli group of S, denoted by I(S), is defined as
the subgroup of Mod∗(S) consisting of all elements acting on the homology group H1(S, Z)

trivially. As a consequence of [3], [4], [5] and [12], if g ≥ 3 and p ≤ 1, then any isomorphism
between any two finite index subgroups of I(S) is the conjugation by an element of Mod∗(S).
One purpose of this paper is to show the same conclusion when g = 2 and p = 1. A key
step in the proof of these results is to describe any automorphism of the Torelli complex T (S)

of S, which is a simplicial complex on which Mod∗(S) naturally acts. The Torelli complex
(with a certain marking) of a closed surface was first introduced by Farb-Ivanov [5]. Our
computation of automorphisms of T (S2,1) is more delicate than those in the other cases. One
difficulty stems from lowness of the dimension of T (S2,1). In fact, T (S2,1) is of dimension
1, and for any surface S dealt with in the cited references, T (S) is of dimension at least 2. A
large part of this paper is dedicated to understanding which kind of simple cycles appears in
T (S2,1). This is a problem peculiar to our case. See also Remark 1.4 for difficulty in our case.

Let us introduce terminology and notation to define the Torelli complex. A simple closed
curve in S is called essential in S if it is neither homotopic to a single point of S nor isotopic
to a boundary component of S. Let V (S) denote the set of isotopy classes of essential simple
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FIGURE 1. The pair {a, b} is a BP. Any other pair of the four curves, a, b, c and d, is not a BP.

closed curves in S. For α, β ∈ V (S), we define i(α, β) to be the geometric intersection
number of α and β, i.e., the minimal cardinality of A ∩ B among representatives A and B

of α and β, respectively. Let Σ(S) denote the set of non-empty finite subsets σ of V (S)

with i(α, β) = 0 for any α, β ∈ σ . We extend i to the symmetric function on the square of
V (S)�Σ(S) with i(α, σ ) = ∑

β∈σ i(α, β) and i(σ, τ ) = ∑
β∈σ,γ∈τ i(β, γ ) for any α ∈ V (S)

and σ, τ ∈ Σ(S).
An essential simple closed curve a in S is called separating in S if S \a is not connected.

Otherwise, a is called non-separating in S. These properties depend only on the isotopy class
of a. Let Vs(S) be the subset of V (S) consisting of all elements whose representatives are
separating in S. We mean by a bounding pair (BP) in S a pair of essential simple closed
curves in S, {a, b}, such that

• a and b are disjoint and non-isotopic;
• each of a and b is non-separating in S; and
• the surface obtained by cutting S along a ∪ b is not connected

(see Figure 1). These conditions depend only on the isotopy classes of a and b. Let Vbp(S)

be the subset of Σ(S) consisting of all elements corresponding to a BP in S.

DEFINITION 1.1. The Torelli complex T (S) of S is defined as the abstract simplicial
complex so that the set of vertices of T (S) is the disjoint union Vs(S) � Vbp(S), and a non-
empty finite subset σ of Vs(S)�Vbp(S) is a simplex of T (S) if and only if we have i(α, β) = 0
for any α, β ∈ σ .

For α ∈ V (S), let tα ∈ Mod∗(S) denote the (left) Dehn twist about α. We note that
if p ≤ 1, then the Torelli group I(S) contains tα and tβ t−1

γ for any α ∈ Vs(S) and any

{β, γ } ∈ Vbp(S), and is generated by all elements of these forms as discussed by Johnson
[10]. This fact is a motivation for introducing the Torelli complex.

Note that Mod∗(S) naturally acts on T (S) by simplicial automorphisms. In this paper,
we study not only automorphisms of T (S2,1) but also simplicial maps from T (S2,1) into itself
satisfying strong injectivity, called superinjectivity. We mean by a superinjective map from
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T (S) into itself a simplicial map φ : T (S) → T (S) satisfying i(φ(α), φ(β)) 
= 0 for any
two vertices α, β of T (S) with i(α, β) 
= 0. Any superinjective map from T (S) into itself is
shown to be injective (see [12, Section 2.2]). Superinjectivity was first introduced by Irmak
[8] for simplicial maps between the complexes of curves to study injective homomorphisms
from a finite index subgroup of Mod∗(S) into Mod∗(S). Our main result is the following:

THEOREM 1.2. We set S = S2,1. Then the following assertions hold:
(i) Any superinjective map from T (S) into itself is induced by an element of Mod∗(S).

Namely, for any superinjective map φ : T (S) → T (S), there exists an element γ0

of Mod∗(S) such that φ(α) = γ0α for any vertex α of T (S).
(ii) Let Γ be a finite index subgroup of I(S). Let f : Γ → I(S) be an injective

homomorphism. Then there exists a unique element γ0 of Mod∗(S) such that

f (γ ) = γ0γ γ −1
0 for any γ ∈ Γ . In particular, any automorphism of I(S) is

the conjugation by an element of Mod∗(S).

We stress that even the description of any automorphism of I(S2,1) is new. A group
Γ is called co-Hopfian if any injective homomorphism from Γ into itself is surjective. By
assertion (ii), any finite index subgroup of I(S2,1) is co-Hopfian.

The process to derive assertion (ii) from assertion (i) is already discussed in [12, Section
6.3]. We thus omit the proof of assertion (ii).

REMARK 1.3. Farb-Ivanov [5] announced the computation of automorphisms of the
Torelli geometry for a closed surface, which is the Torelli complex with a certain marking.
As its consequence, they also announce the result that if S = Sg,0 is a surface with g ≥ 5,
then any isomorphism between finite index subgroups of I(S) is induced by an element of
Mod∗(S). McCarthy-Vautaw [16] computed automorphisms of I(S) for S = Sg,0 with g ≥
3. Brendle-Margalit [3], [4] showed that any automorphism of T (S) and any isomorphism
between finite index subgroups of I(S) are induced by an element of Mod∗(S) when S = Sg,0

with g ≥ 3. The same conclusion for S = Sg,p with either g = 1 and p ≥ 3; g = 2 and
p ≥ 2; or g ≥ 3 and p ≥ 0 as Theorem 1.2 was obtained by the first author [13], based on
[12], where the Torelli group I(S) is defined as the subgroup of Mod∗(S) generated by all
elements of the forms tα with α ∈ Vs(S) and tβ t−1

γ with {β, γ } ∈ Vbp(S).

If S = S2,0, then T (S) is zero-dimensional and consists of countably infinitely many
vertices. The group I(S) is known to be isomorphic to the free group of infinite rank, due to
Mess [17] (see [1] for another proof). It thus turns out that automorphisms of T (S) and I(S)

are not necessarily induced by an element of Mod∗(S).
If S = S2,1, then T (S) is one-dimensional and connected. The latter is proved by using

the technique in [19, Lemma 2.1] to obtain connectivity of a simplicial complex on which
Mod∗(S) acts. It also follows from Lemma 6.3.

REMARK 1.4. In [12], when either g = 1 and p ≥ 3; g = 2 and p ≥ 2; or g ≥ 3
and p ≥ 0, the first author observed simplices of T (S) of maximal dimension and the links of
simplices in T (S) to prove that any superinjective map from T (S) into itself preserves Vs(S)
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and Vbp(S), respectively. When g = 2 and p = 1, this assertion does not immediately follow
from only observations on simplices and their links because T (S) is one-dimensional. The
link of a vertex is then zero-dimensional and has little information for our purpose. This is a
substantial reason why our case is more delicate and difficult than the other cases.

We define Cs(S) as the full subcomplex of T (S) spanned by Vs(S), and call it the com-
plex of separating curves for S. This complex brings another difference between our case and
the other cases. In [3], [4] and [12], automorphisms of T (S) are described by showing that
any automorphism of Cs(S) is induced by an element of Mod∗(S). On the other hand, Cs(S2,1)

consists of countably infinitely many ℵ0-regular trees, and thus has continuously many auto-
morphisms. This follows from [11, Theorem 7.1] (see also Theorem 3.2). In this respect, our
computation of automorphisms of T (S2,1) takes a route completely different from those in
the other cases.

The paper is organized as follows. In Section 2, we collect terminology employed
throughout the paper. We recall the complex of curves for S, ideal triangulations of punctured
surfaces considered by Mosher [18] and basic results on them. Setting S = S2,1, through Sec-
tions 3–6, we observe hexagons in T (S), or equivalently, simple cycles in T (S) of length 6.
In Section 7, applying results in those sections, we show that any superinjective map φ from
T (S) into itself preserves Vs(S) and Vbp(S), respectively, and is surjective. We construct an
automorphism Φ of the complex of curves for S inducing φ. It is known that Φ is induced by
an element of Mod∗(S), due to Ivanov [9] (see Theorem 2.1). Theorem 1.2 (i) then follows. In
Appendix A, we prove that there exists no simple cycle in T (S) of length at most 5. Hexagons
in T (S) are thus simple cycles in T (S) of minimal length. This is a notable property of T (S)

although we do not use it to prove Theorem 1.2 (i).

2. Preliminaries

2.1. Terminology. Let S be a connected, compact and orientable surface. Unless
otherwise stated, we assume that a surface satisfies these conditions. Let us denote by Mod(S)

the mapping class group of S, i.e., the subgroup of Mod∗(S) consisting of isotopy classes
of orientation-preserving homeomorphisms from S onto itself. We define PMod(S) as the
pure mapping class group of S, i.e., the subgroup of Mod∗(S) consisting of isotopy classes
of homeomorphisms from S onto itself preserving an orientation of S and preserving each
boundary component of S as a set.

We mean by a curve in S either an essential simple closed curve in S or its isotopy
class if there is no confusion. A surface homeomorphic to S1,1 is called a handle. A surface
homeomorphic to S0,3 is called a pair of pants. Let a be a separating curve in S. If a cuts off
a handle from S, then a is called an h-curve in S. If a cuts off a pair of pants from S, then a is
called a p-curve in S. We call an element of Vs(S) corresponding to an h-curve and a p-curve
in S an h-vertex and a p-vertex, respectively, and call an element of Vbp(S) a BP-vertex.

Suppose that ∂S, the boundary of S, is non-empty. Let I be the closed unit interval. We
mean by an essential simple arc in S the image of an injective continuous map f : I → S
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such that

• we have f (∂I) ⊂ ∂S and f (I \ ∂I) ⊂ S \ ∂S; and
• there exists no closed disk D embedded in S and whose boundary is the union of f (I)

and an arc in ∂S.

The boundary of an essential simple arc l is denoted by ∂l. Let Va(S) denote the set of isotopy
classes of essential simple arcs in S, where isotopy may move the end points of arcs, keeping
them staying in ∂S. We often identify an element of Va(S) with its representative if there is
no confusion.

An essential simple arc l in S is called separating in S if the surface obtained by cutting S

along l is not connected. Otherwise, l is called non-separating in S. These properties depend
only on the isotopy class of l.

For σ ∈ Σ(S), we mean by a representative of σ the union of mutually disjoint repre-
sentatives of elements in σ . Given two elements α, β ∈ V (S)�Σ(S) and their representatives
A, B, respectively, we say that A and B intersect minimally if we have |A∩B| = i(α, β). For
α, β ∈ V (S)�Σ(S), we say that α and β are disjoint if i(α, β) = 0. Otherwise, we say that α

and β intersect. For an element α of V (S) (or its representative), we denote by Sα the surface
obtained by cutting S along α. Similarly, for an element σ of Σ(S) (or its representative),
we denote by Sσ the surface obtained by cutting S along all curves in σ . Each component of
Sσ is often identified with a complementary component in S of a tubular neighborhood of a
one-dimensional submanifold representing σ if there is no confusion. For any component Q

of Sσ , the set V (Q) is naturally identified with a subset of V (S).

2.2. The complex of curves. In the proof of Theorem 1.2 (i), we use a result on
automorphisms of the complex of curves. The complex of curves for a surface S, denoted by
C(S), is defined as the abstract simplicial complex so that the sets of vertices and simplices of
C(S) are V (S) and Σ(S), respectively.

THEOREM 2.1 ([9, Theorem 1]). If S = Sg,p is a surface with g ≥ 2 and p ≥ 0, then
any automorphism of C(S) is induced by an element of Mod∗(S).

We refer to [14] and [15] for similar results for other surfaces. Theorem 1.2 (i) is obtained
by showing that when S = S2,1, for any superinjective map φ : T (S) → T (S), there exists an
automorphism Φ of C(S) inducing φ, that is, satisfying the equalities

Φ(α) = φ(α) and {Φ(β),Φ(γ )} = φ({β, γ })
for any α ∈ Vs(S) and any {β, γ } ∈ Vbp(S).

We note that the complex of separating curves for S, defined in Remark 1.4 and denoted
by Cs(S), is the full subcomplex of C(S) spanned by Vs(S).

2.3. Ideal triangulations of a punctured surface. We recall basic properties of ideal
triangulations of a punctured surface discussed by Mosher [18], which will be used only in the
proof of Lemma 7.6. Let S be a closed surface of positive genus g , and let P be a non-empty
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finite subset of S. The pair (S, P ) is then called a punctured surface. Let I be the closed unit
interval. We mean by an ideal arc in (S, P ) the image of a continuous map f : I → S such
that

• we have f (∂I) ⊂ P and f (I \ ∂I) ⊂ S \ P ;
• f is injective on I \ ∂I ; and
• there exists no closed disk D embedded in S such that ∂D = f (I) and (D\∂D)∩P =

∅.

Two ideal arcs l1, l2 in (S, P ) are called isotopic if we have l1 ∩ P = l2 ∩ P ; and l1 and l2 are
isotopic relative to l1 ∩ P as arcs in (S \ P) ∪ (l1 ∩ P). We mean by an ideal triangulation of
(S, P ) a cell division δ of S such that

(a) the set of 0-cells of δ is P ;
(b) any 1-cell of δ is an ideal arc in (S, P ); and
(c) any 2-cell of δ is a triangle, that is, it is obtained by attaching a Euclidean triangle τ

to the 1-skeleton of δ, mapping each vertex of τ to a 0-cell of δ, and each edge of τ

to a 1-cell of δ.
The following properties are noticed in [18, p. 14].

LEMMA 2.2. The following assertions hold:
(i) Any cell division of S satisfying conditions (a) and (c) in the definition of an ideal

triangulation necessarily satisfies condition (b).
(ii) Let δ be an ideal triangulation of (S, P ). Then any two distinct 1-cells of δ are not

isotopic.

Let R be a surface of genus g with |P | boundary components. Suppose that S is obtained
from R by shrinking each component of ∂R into a point, and that P is the set of points into
which components of ∂R are shrunken. The natural map from R onto S induces the bijection
from Va(R) onto the set of isotopy classes of ideal arcs in (S, P ).

3. Non-existence of some hexagons

Let G be a simplicial complex. We mean by a hexagon in G the full subcomplex of G
spanned by six vertices v1, . . . , v6 such that for any j mod 6, vj and vj+1 are adjacent; vj and
vj+2 are not adjacent; and vj and vj+3 are not adjacent. In this case, we say that the hexagon
is defined by the 6-tuple (v1, . . . , v6).

Throughout this section, we set S = S2,1. Examples of hexagons in T (S) are described
in Sections 4–6. In this section, we show that there exists no hexagon in T (S) containing at
most one BP-vertex. Note that any separating curve in S is an h-curve in S, and that any edge
of T (S) consists of either two h-vertices or an h-vertex and a BP-vertex (see Figure 2). It
follows that the number of BP-vertices of a hexagon in T (S) is at most 3.

LEMMA 3.1. There exists no hexagon in T (S) consisting of only h-vertices.

To prove this lemma, we use the following:
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FIGURE 2. Each of {α, β} and {α, b} is an edge of T (S).

FIGURE 3. The 6-tuple (a, b1, c, d, e, f1) of the above curves defines a hexagon in Cs (S1,3). Let S =
S2,1 be a surface, and let α be a non-separating curve in S. If Sα is drawn as above so that
∂1 and ∂3 correspond to α and ∂2 corresponds to ∂S, then the 6-tuple (a, b, c, d, e, f ) with
b = {α, b1} and f = {α, f1} defines a hexagon in T (S) of type 1.

THEOREM 3.2 ([11, Theorem 7.1]). Let S = S2,1 be a surface, and let S̄ denote the
closed surface obtained from S by attaching a disk to the boundary of S. We define

π : C(S) → C(S̄)

as the simplicial map associated to the inclusion of S into S̄. Then for any vertex α of C(S̄),
the full subcomplex of C(S) spanned by π−1(α) is a tree.

PROOF OF LEMMA 3.1. We note that π sends two adjacent h-vertices of C(S) to the
same vertex. If there were a hexagon Π in T (S) consisting of only h-vertices, then π would
send Π to a single vertex. This contradicts Theorem 3.2. �

LEMMA 3.3. There exists no hexagon in T (S) containing exactly one BP-vertex.

PROOF. Suppose that there exists such a hexagon Π in T (S). Let (a, b, c, d, e, f ) be
a 6-tuple defining Π with a a BP-vertex. We then have the equality π(b) = π(c) = π(d) =
π(e) = π(f ). The curves b and f are in the component of Sa that does not contain ∂S. The
equality π(b) = π(f ) thus implies the equality b = f . This is a contradiction. �
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4. Hexagons of type 1

Throughout this section, we set S = S2,1. We say that a hexagon in T (S) is of type 1 if
it is defined by a 6-tuple (v1, . . . , v6) such that v1, v3, v4 and v5 are h-vertices and v2 and v6

are BP-vertices. To construct such a hexagon in T (S), we recall a hexagon in Cs (S1,3) (see
Figure 3). A fundamental property of hexagons in Cs (S1,3) is the following:

THEOREM 4.1 ([12, Theorem 5.2]). We set X = S1,3. Then any two hexagons in
Cs (X) are sent to each other by an element of PMod(X).

We now present a hexagon in T (S) of type 1. Let α be a non-separating curve in S. Note
that Sα is homeomorphic to S1,3. We define a simplicial map

λα : Cs (Sα) → T (S)

as follows. Pick β ∈ Vs(Sα). If the two boundary components of Sα corresponding to α are
contained in distinct components of S{α,β}, then we have {α, β} ∈ Vbp(S) and set λα(β) =
{α, β}. Otherwise, we have β ∈ Vs(S) and set λα(β) = β. The map λα is superinjective, that
is, for any γ, δ ∈ Vs(Sα), we have i(λα(γ ), λα(δ)) = 0 if and only if i(γ, δ) = 0. Sending a
hexagon in Cs (Sα) through λα , we obtain a hexagon in T (S) of type 1 as precisely described
in Figure 3.

The following theorem says that any hexagon in T (S) of type 1 can be obtained through
the above procedure.

THEOREM 4.2. The following assertions hold:
(i) For any hexagon Π in T (S) of type 1, there exist a non-separating curve α in S

and a hexagon Π0 in Cs(Sα) with λα(Π0) = Π .
(ii) Any two hexagons in T (S) of type 1 are sent to each other by an element of Mod(S).

PROOF. Assertion (ii) follows from assertion (i) and Theorem 4.1. To prove assertion
(i), we pick a hexagon Π in T (S) of type 1. Let (a, b, c, d, e, f ) be a 6-tuple defining Π with
b and f BP-vertices. We choose representatives A, . . . , F of a, . . . , f , respectively, such that
any two of them intersect minimally.

Let R denote the component of SC that is not a handle. Since B is a BP in R and is
disjoint from A, the intersection A ∩ R consists of mutually isotopic, essential simple arcs
in R which are non-separating in R (see Figure 4 (a)). Since D is an h-curve in R and is
disjoint from E, the intersection E ∩ R consists of mutually isotopic, essential simple arcs in
R which are separating in R (see Figure 4 (b)). Let l1 be a component of A ∩ R, and let l2 be
a component of E ∩ R. If l1 and l2 could not be disjoint after isotopy which may move the
end points of arcs, keeping them staying in ∂R, then the union of a subarc of l1 and a subarc
of l2 would be a simple closed curve isotopic to ∂S. This is a contradiction because no simple
closed curve in the component of SF that is not a pair of pants is isotopic to ∂S as a curve
in S. It thus turns out that l1 and l2 can be disjoint after isotopy. Note that B consists of two
boundary components of a regular neighborhood of l1 ∪ C in R, and that D is a boundary
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FIGURE 4

component of a regular neighborhood of l2 ∪ C in R. It follows that exactly one component
of B is contained in the handle Q cut off by D from S. We denote by α the isotopy class of
that component of B.

Similarly, considering the component of SE that is not a handle, instead of that of SC , we
can show that exactly one component of F is contained in Q. Let β denote the isotopy class
of that component of F . Since B and F are disjoint from A ∩ Q, that consists of essential
simple arcs in the handle Q, we have α = β. We define two curves b1, f1 so that b = {α, b1}
and f = {α, f1}. Any of a, c and e is disjoint from α because any of them is disjoint from b

or f . The h-curve d is also disjoint from α because α is the isotopy class of a curve in Q. The
map λα sends the hexagon in Cs(Sα) defined by the 6-tuple (a, b1, c, d, e, f1) to Π . Assertion
(i) is proved. �

Let G be a simplicial graph and n a positive integer. We mean by an n-path in G a
subgraph of G obtained as the image of a simple path in G of length n starting and terminating
at vertices of G. In the rest of this section, we observe two hexagons in T (S) of type 1 sharing
a 3-path.

LEMMA 4.3. If Π and Ω are hexagons in T (S) of type 1 such that Π ∩ Ω contains a
3-path, then we have Π = Ω .

To prove this lemma, we make the following observation on hexagons in Cs(S1,3).

LEMMA 4.4. We set X = S1,3. Let H be a hexagon in Cs(X). Then for any 3-path L

in H , H is the only hexagon in Cs(X) containing L.

Before proving this lemma, we introduce terminology. Let Y = Sg,p be a surface with
p ≥ 2. For an essential simple arc l in Y and two distinct components ∂1, ∂2 of ∂Y , we say
that l connects ∂1 and ∂2 (or connects ∂1 with ∂2) if one of the end points of l lies in ∂1 and
another in ∂2.

Suppose either g ≥ 1 and p ≥ 2 or g = 0 and p ≥ 5. There is a one-to-one correspon-
dence between elements of Vs(Y ) whose representatives are p-curves in Y and elements of
Va(Y ) whose representatives connect two distinct components of ∂Y . More specifically, for
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any p-curve a in Y , we have an essential simple arc in Y contained in the pair of pants cut off
by a from Y and connecting two distinct components of ∂Y , which uniquely exists up to iso-
topy. Conversely, for any essential simple arc l in Y connecting two distinct components ∂1,
∂2 of ∂Y , we have the p-curve in Y that is a boundary component of a regular neighborhood
of l ∪ ∂1 ∪ ∂2 in Y (see Figure 4 (c)).

PROOF OF LEMMA 4.4. Let (a, b, c, d, e, f ) be a 6-tuple defining H such that a, c

and e are h-curves in X and b, d and f are p-curves in X. To prove the lemma, it is enough to
show that H is the only hexagon in Cs(X) containing a, b, c and d .

Choose representatives A, . . . , F of a, . . . , f , respectively, such that any two of them
intersect minimally. We can then find essential simple arcs lB , lD and lF in X such that

• for any G ∈ {B,D,F }, the arc lG lies in the pair of pants cut off by G from X, and
connects two distinct components of ∂X;

• the arcs lB , lD and lF are pairwise disjoint; and
• any of A ∩ lD , C ∩ lF and E ∩ lB consists of exactly two points

(see Figure 5 (a)). Label components of ∂X as ∂1, ∂2 and ∂3 so that lB connects ∂1 and ∂2

and lD connects ∂1 and ∂3. Let R denote the component of XA homeomorphic to S0,4, and
let ∂4 denote the component of ∂R corresponding to A (see Figure 5 (b)). The intersection
lD ∩ R then consists of an arc connecting ∂1 with ∂4 and an arc connecting ∂3 with ∂4. If we
cut R along lB and lD ∩ R, then we obtain a disk K such that each of ∂2 and ∂3 corresponds
to a single arc in ∂K . It follows that up to isotopy, there exists at most one simple arc in X

connecting ∂2 with ∂3, meeting ∂X only at its end points, and disjoint from A, lB and lD .
We proved that any hexagon in Cs(X) containing a, b, c and d contains f . The lemma

follows because e is the only separating curve in X disjoint from d and f . �

PROOF OF LEMMA 4.3. Let Π and Ω be hexagons in T (S) of type 1 such that Π ∩Ω

contains a 3-path. Let (a, b, c, d, e, f ) be a 6-tuple defining Π with b and f BP-vertices. We
define α as the curve contained in b and f . The number of BP-vertices in Π ∩ Ω is either 1

FIGURE 5
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or 2. If Π ∩ Ω has two BP-vertices, then both Π and Ω are hexagons in λα(Cs(Sα)), where
λα : Cs(Sα) → T (S) is the simplicial map defined right after Theorem 4.1. The equality
Π = Ω holds by Lemma 4.4.

Assuming that Π ∩ Ω contains only one BP-vertex, we deduce a contradiction. Without
loss of generality, we may assume that b is contained in Π ∩ Ω . It then follows that c and d

are also contained in Π ∩ Ω . Since α is determined as the curve in b disjoint from d , the two
BPs in Ω share α. Both Π and Ω are hexagons in λα(Cs(Sα)), and the equality Π = Ω holds
by Lemma 4.4. This contradicts our assumption. �

5. Hexagons of type 2

Throughout this section, we set S = S2,1. We say that a hexagon in T (S) is of type 2
if it is defined by a 6-tuple (v1, . . . , v6) such that v2, v3, v5 and v6 are h-vertices and v1 and
v4 are BP-vertices. We construct a hexagon of type 2 by gluing two pentagons in the Torelli
complex of S1,3.

Let G be a simplicial complex. We mean by a pentagon in G the full subcomplex of G
spanned by five vertices v1, . . . , v5 such that for any j mod 5, vj and vj+1 are adjacent, and
vj and vj+2 are not adjacent. In this case, we say that the pentagon is defined by the 5-tuple
(v1, . . . , v5).

Fix a non-separating curve δ in S, and let X be the surface obtained by cutting S along

δ, which is homeomorphic to S1,3. Let ∂1
δ and ∂2

δ denote the two boundary components of X

corresponding to δ. We have the pentagon in T (X) defined by the 5-tuple (a, b, c, d, z) in
Figure 6 (a), where we put a = {a0, a1} and z = {a0, ζ }.

Fix a non-zero integer m, and put b′ = tmζ (b) and c′ = tmζ (c). We then have the hexagon

Π in T (S) defined by the 6-tuple (a, b, c, {δ, d}, c′, b′), where a and {δ, d} are BPs in S, and
b, c, c′ and b′ are h-curves in S (see Figure 6 (b)). Note that z is not a vertex of T (S). Let
n be a non-zero integer distinct from m, and put b′′ = tnζ (b) and c′′ = tnζ (c). The hexagon

FIGURE 6
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in T (S) defined by the 6-tuple (a, b, c, {δ, d}, c′′, b′′) is distinct from Π and shares a 3-path
with Π . This property is in contrast with Lemma 4.3 on hexagons of type 1.

The aim of this section is to show that any hexagon in T (S) of type 2 can be obtained
through this construction, and to describe the number of hexagons sharing a 3-path with a
given hexagon of type 1 or type 2. Uniqueness of the pentagon in T (S1,3) in Figure 6 (a) is
proved in the following:

LEMMA 5.1. We set X = S1,3. Then the following assertions hold:
(i) Any pentagon in T (X) having exactly two BP-vertices is defined by a 5-tuple

(v1, . . . , v5) with v1 and v5 BP-vertices, v2 and v4 p-vertices, and v3 an h-vertex.
(ii) Any two pentagons in T (X) having exactly two BP-vertices are sent to each other

by an element of Mod(X).

To prove this lemma, we need uniqueness of pentagons in the one-dimensional complex
C(S0,5).

LEMMA 5.2. We set T = S0,5. Then for any two 5-tuples (u1, . . . , u5), (v1, . . . , v5)

defining pentagons in C(T ), there exists an element g of Mod(T ) with g(uj ) = vj for any
j = 1, . . . , 5.

PROOF. As noticed right before the proof of Lemma 4.4, there is a one-to-one cor-
respondence between isotopy classes of curves in T and isotopy classes of essential simple
arcs in T connecting two distinct components of ∂T . Let (u1, . . . , u5) be a 5-tuple defining a
pentagon in C(T ). For each j = 1, . . . , 5, let lj be an essential simple arc in T corresponding
to uj .

We claim that for any j mod 5, lj and lj+2 can be isotoped so that they are disjoint, and
exactly one component of ∂T , denoted by ∂j , contains a point of ∂lj and a point of ∂lj+2

(see Figure 7 (a)). Although this follows from [14, Theorem 3.2] or [15, Lemma 4.2], we
give a proof for the reader’s convenience. Fix j = 1, . . . , 5. The indices are regarded as
numbers modulo 5. Let Q be the component of Tuj+1 homeomorphic to S0,4. The curves
uj and uj+2 lie in Q. Since uj−1 is disjoint from uj , the intersection uj−1 ∩ Q consists of

FIGURE 7
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mutually isotopic, essential simple arcs in Q (see Figure 7 (b)). Since uj+3 is disjoint from
uj+2, the intersection uj+3 ∩ Q also consists of mutually isotopic, essential simple arcs in
Q. Any component of uj−1 ∩ Q and any component of uj+3 ∩ Q are not isotopic because
otherwise we would have uj = uj+2. The curves uj−1 and uj+3 are disjoint, and uj−1 ∩ Q

and uj+3 ∩ Q are therefore disjoint. It follows that lj and lj+2 can be isotoped so that they
are disjoint, as drawn in Figure 7 (a). The claim follows.

We may therefore assume that l1, . . . , l5 are mutually disjoint. We next claim that
∂1, . . . , ∂5 are mutually distinct. For any j mod 5, ∂j and ∂j+1 are distinct because they
are contained in the pairs of pants cut off by the curves uj and uj+1, respectively, that are
disjoint and distinct. For any j mod 5, ∂j and ∂j+2 are distinct because they are contained in
the pairs of pants cut off by the curves uj and uj+4, respectively, that are disjoint and distinct.
The claim follows.

Let (v1, . . . , v5) be a 5-tuple defining a pentagon in C(T ). For each j = 1, . . . , 5, we
choose an essential simple arc rj in T corresponding to vj so that r1, . . . , r5 are mutually
disjoint. Applying an element of Mod(T ) to (v1, . . . , v5), we may assume that for any j mod

5, ∂j contains a point of ∂rj and a point of ∂rj+2. Cutting T along
⋃5

j=1 lj , we obtain two

disks. The boundary of each of those disks consists of arcs contained in

∂1 , l1 , ∂4 , l4 , ∂2 , l2 , ∂5 , l5 , ∂3 , l3 ,

along the boundary (see Figure 7 (c)). The same property holds for the arcs r1, . . . , r5. We
can thus find a homeomorphism of T onto itself sending ∂j to itself and sending lj to rj for
any j = 1, . . . , 5. The lemma is proved. �

PROOF OF LEMMA 5.1. To prove assertion (i), we use the following properties:
(1) The link of any BP-vertex in T (X) consists of BP-vertices and p-vertices.
(2) The link of any p-vertex in T (X) consists of BP-vertices and h-vertices.

Let P be a pentagon in T (X) with exactly two BP-vertices. If the two BP-vertices of P were
not adjacent, then property (1) would imply that the other three vertices of P are p-vertices.
We then have two adjacent p-vertices of P , and this contradicts property (2). It follows that
the two BP-vertices of P are adjacent. Properties (1) and (2) imply assertion (i).

To prove assertion (ii), we pick two pentagons P , P ′ in T (X) having exactly two
BP-vertices. Let (a, b, c, d, e) be a 5-tuple defining P with a and e BP-vertices. Let
(a′, b′, c′, d ′, e′) be a 5-tuple defining P ′ with a′ and e′ BP-vertices. Any two distinct and
disjoint BPs in X have a common curve in X. Let α be the curve in a ∩ e. We define curves
a1 and e1 in X so that a = {α, a1} and e = {α, e1}. We may assume that α is also the curve in
a′ ∩ e′ after applying an element of PMod(X) to P ′. We define curves a′

1 and e′
1 in X so that

a′ = {α, a′
1} and e′ = {α, e′

1}. Let R denote the component of Sc homeomorphic to S0,4. The
two p-curves b and d fill R, i.e., there is no essential simple closed curve in R disjoint from
both b and d . Since α is disjoint from b and d , the curve α is disjoint from c. Similarly, α is
disjoint from b′, c′ and d ′.

Let Xα be the surface obtained by cutting X along α, which is homeomorphic to S0,5.
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Each of the 5-tuples (a1, b, c, d, e1) and (a′
1, b

′, c′, d ′, e′
1) defines a pentagon in C(Xα). By

Lemma 5.2, we obtain an element g of Mod(Xα) sending (a1, b, c, d, e1) to (a′
1, b

′, c′, d ′, e′
1).

The two boundary components of Xα corresponding to α lie in the pair of pants cut off by c

from Xα and in that cut off by c′ from Xα . The equality g(c) = c′ implies that g preserves
those two boundary components of Xα . Assertion (ii) follows. �

We now present several properties of hexagons in T (S) of type 2. Let S̄ denote the

closed surface obtained by attaching a disk to ∂S. Let π : C(S) → C(S̄) be the simplicial map

associated with the inclusion of S into S̄. The map π sends any BP in S to a non-separating
curve in S̄.

LEMMA 5.3. Let (a, b, c, d, e, f ) be a 6-tuple defining a hexagon in T (S) of type 2
with a and d BP-vertices. Then the equalities π(b) = π(c) and π(e) = π(f ) hold, and π(a)

and π(d) are disjoint and distinct.

PROOF. The first two equalities hold because any of b, c, e and f are h-vertices, b and
c are adjacent, and e and f are adjacent. Let A, B, C and D be representatives of a, b, c and
d , respectively, such that any two of them intersect minimally. We identify a curve in S with

a curve in S̄ through the inclusion of S into S̄. Let H denote the handle cut off by C from S̄

and containing ∂S. Let I denote another handle cut off by C from S̄. The BP A lies in the

handle cut off by B from S̄ and containing ∂S. This handle contains I , and the two curves B

and C are isotopic in S̄. It follows that in S̄, the two curves in A can be isotoped into curves
in I . On the other hand, the BP D lies in H . It turns out that π(a) and π(d) lie in distinct
components of S̄π(c). In particular, π(a) and π(d) are disjoint and distinct. �

LEMMA 5.4. Let (a, b, c, d, e, f ) be a 6-tuple defining a hexagon in T (S) of type 2
with a and d BP-vertices. Then there exist a curve a0 in a and a curve d0 in d such that each
of a0 and d0 is disjoint from any of a, . . . , f , and the surface obtained by cutting S along
a0 ∪ d0 is homeomorphic to S0,5.

PROOF. Choose representatives A, . . . , F of a, . . . , f , respectively, such that any two
of them intersect minimally. Let R denote the component of SB homeomorphic to S1,2. Since
A is a BP in R and is disjoint from F , the intersection F ∩ R consists of mutually isotopic,
essential simple arcs in R which are non-separating in R. Let lF be a component of F ∩ R.
Since C is an h-curve in R and is disjoint from D, the intersection D ∩R consists of mutually
isotopic, essential simple arcs in R which are separating in R. Let lD be a component of
D ∩ R. We find a desired curve a0 in the following two cases individually: (1) There exists a
component of E ∩ R which is separating in R. (2) There exists no component of E ∩ R that
is separating in R.

In case (1), since E∩R is disjoint from D∩R, any component of E∩R that is separating

in R is isotopic to lD . Let l0
E be a component of E ∩ R which is separating in R. Since E ∩ R

is disjoint from F ∩ R, the arc l0
E is disjoint from lF . As drawn in Figure 8 (a), we can find
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FIGURE 8

the unique component of A disjoint from l0
E . Let a0 be the isotopy class of that component

of A. The curve a0 is disjoint from any of b, d and f . Since C is a boundary component
of a regular neighborhood of B ∪ D, the curve a0 is disjoint from c. Similarly, since E is a
boundary component of a regular neighborhood of D ∪ F , the curve a0 is disjoint from e.

In case (2), E ∩ R consists of essential simple arcs in R which are non-separating in R.
Let S̄ be the closed surface obtained from S by attaching a disk to ∂S. We identify a curve

in S with a curve in S̄ through the inclusion of S into S̄. Let R̄ denote the component of S̄B

containing ∂S. Since any component of E∩R is non-separating in R, the two curves B and E

intersect minimally even as curves in S̄, by the criterion on minimal intersection in [6, Exposé
3, Proposition 10]. Similarly, B and F also intersect minimally even as curves in S̄. The two

curves E and F are isotopic in S̄ because they are disjoint h-curves in S. By [6, Exposé 3,

Proposition 12], there exists a homeomorphism of S̄ onto itself isotopic to the identity, fixing
B as a set and sending E ∩ R to F ∩ R. Any component of E ∩ R is thus isotopic to lF in R̄.

If any component of E ∩R were isotopic to lF in R, then e and a would be disjoint. This
is a contradiction. There thus exists a component of E ∩ R which is not isotopic to lF in R.

Let l1
E be such a component of E ∩ R.
Assuming that there exists no component of E ∩ R isotopic to lF in R, we deduce a

contradiction. Any component of E ∩ R is then isotopic to l1
E . Note that if r1 and r2 are

non-separating arcs in R which are disjoint and non-isotopic in R, but are isotopic in R̄, then

there exists a homeomorphism of R onto itself sending r1 and r2 to l1
E and lF , respectively.

It follows that as drawn in Figure 8 (b), there exists a non-separating curve A′
0 in R which is

disjoint from lF and E ∩R and is a boundary component of a regular neighborhood of lF ∪B

in R. This curve A′
0 is isotopic to a component of A. There exists a path in R connecting a

point of A′
0 with a point of lF without touching E ∩ R because any component of E ∩ R is

isotopic to l1
E . This contradicts the following:

CLAIM 5.5. Let α be a BP in S. Let β and γ be h-curves in S such that each of {α, β}
and {β, γ } is an edge of T (S). If a curve α0 in the BP α is disjoint from γ , then α0 lies in the
handle cut off by γ from S. In particular, there exists no path in S connecting a point of α0
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with a point of β without touching γ .

PROOF. Let α0 be a curve in the BP α disjoint from γ . Let Q be the component of Sβ

that is not a handle. Any BP in S disjoint from β lies in Q. The BP α thus lies in Q. The
curve γ is an h-curve in Q. Since α0 is disjoint from γ , the curve α0 lies in the handle cut off
by γ from Q. �

We have therefore proved that there exists a component of E ∩ R isotopic to lF in R.

Let l2
E be a component of E ∩ R isotopic to lF in R. Cutting R along l1

E ∪ l2
E , we obtain two

annuli, one of which contains ∂S. The arc lD lies in the annulus containing ∂S because lD

is disjoint from E ∩ R (see Figure 8 (c)). We have the unique component of A isotopic to a
curve lying in another annulus. Let a0 be the isotopy class of that component of A. The curve
a0 is disjoint from any of b, d and f , and is thus disjoint from any of a, . . . , f .

We obtained a curve a0 in a disjoint from any of a, . . . , f in both cases (1) and (2). By
symmetry, we can also find a curve d0 in d disjoint from any of a, . . . , f . By Lemma 5.3,

π(a0) and π(d0) lie in distinct components of S̄π(b). It turns out that a0 and d0 are distinct,
and the surface obtained by cutting S along a0 ∪ d0 is homeomorphic to S0,5. �

Let X be a surface. For a BP b in X and a boundary component ∂ of X, we say that b cuts
off ∂ if b cuts off a pair of pants containing ∂ from X. For two distinct boundary components
∂1, ∂2 of X and a p-curve α in X, we say that α cuts off ∂1 and ∂2 if α cuts off a pair of pants
containing ∂1 and ∂2 from X.

LEMMA 5.6. Let (a, b, c, d, e, f ) be a 6-tuple defining a hexagon in T (S) of type 2
with a and d BP-vertices. Let a0 and d0 be the curves obtained in Lemma 5.4. Then there
exists a non-separating curve ζ in S satisfying the following three conditions:

(a) The curve ζ is disjoint from a and d , and belongs to neither a nor d .
(b) Let Sd0 denote the surface obtained by cutting S along d0, which is homeomorphic

to S1,3. The pair {a0, ζ } is then a BP in Sd0 , and cuts off one of the two boundary
components of Sd0 corresponding to d0.

(c) The condition obtained by exchanging a0 and d0 in condition (b) holds.
Moreover, such a curve ζ uniquely exists up to isotopy.

Let Π be a hexagon in T (S) of type 2, and let (a, b, c, d, e, f ) be a 6-tuple defining Π

with a and d BP-vertices. We denote by ζ(Π) the curve ζ obtained by applying Lemma 5.6
to Π . Let d1 be the curve in d distinct from d0. In the surface Sd0 , a and {a0, ζ } are BPs, b

and d1 are p-curves, and c is an h-curve. The 5-tuple (a, b, c, d1, {a0, ζ }) defines a pentagon
in T (Sd0).

PROOF OF LEMMA 5.6. Choose representatives A, . . . , F of a, . . . , f , respectively,
such that any two of them intersect minimally. Let A0 and A1 denote the two components
of A so that the isotopy class of A0 is a0. Let D0 and D1 denote the two components of D

so that the isotopy class of D0 is d0. We define T as the surface obtained by cutting S along

A0 ∪ D0, which is homeomorphic to S0,5. We label boundary components of T as ∂ , ∂1
a , ∂2

a ,
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FIGURE 9. The arc l in (a) cuts off ∂2
d

.

∂1
d and ∂2

d so that ∂ corresponds to ∂S, ∂1
a and ∂2

a correspond to A0, and ∂1
d and ∂2

d correspond
to D0. Without loss of generality, we may assume that A1 is a p-curve in T cutting off ∂ and

∂2
a . Each of B and F is a p-curve in T cutting off ∂1

d and ∂2
d . Similarly, each of C and E is a

p-curve in T cutting off ∂1
a and ∂2

a .

Let R be the component of TA1 homeomorphic to S0,4. The surface R contains ∂1
a ,

∂1
d and ∂2

d . For each essential simple arc l in R whose boundary lies in A1 and for each

∂k
j ∈ {∂1

a , ∂1
d , ∂2

d }, we say that l cuts off ∂k
j if ∂k

j lies in the annulus cut off by l from R (see

Figure 9 (a)). Since B is a curve in R and is disjoint from C, the intersection C∩R consists of

mutually isotopic, essential simple arcs in R cutting off ∂1
a . Similarly, since F is a curve in R

and is disjoint from E, the intersection E ∩ R consists of mutually isotopic, essential simple

arcs in R cutting off ∂1
a . Pick a component lC of C ∩ R and a component lE of E ∩ R.

CLAIM 5.7. The two arcs lC and lE are non-isotopic, and cannot be isotoped so that
they are disjoint.

PROOF. The former assertion holds because otherwise B and F would be isotopic. The
latter assertion holds because lC and lE are non-isotopic and because both lC and lE cut off
∂1
a . �

CLAIM 5.8. The intersection D1 ∩ R consists of mutually isotopic, essential simple
arcs in R.

PROOF. Assuming the contrary, we deduce a contradiction. Any family of essential
simple arcs in R which are mutually disjoint and non-isotopic and whose boundaries lie in A1

has at most three elements. If D1 ∩R had three components which are mutually non-isotopic,
then lC and lE would be isotopic because lC and lE are disjoint from D1 ∩R. This contradicts
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Claim 5.7. We thus assume that D1 ∩ R contains exactly two essential simple arcs in R up to

isotopy. Let l1
D and l2

D be components of D1 ∩ R which are non-isotopic.

If either l1
D or l2

D cut off ∂1
a , then lC and lE would be isotopic to that arc. This also

contradicts Claim 5.7. It follows that one of l1
D and l2

D cuts off ∂1
d and another cuts off ∂2

d .

Without loss of generality, we may assume that l1
D cuts off ∂1

d , and l2
D cuts off ∂2

d . Claim 5.7
implies that lC and lE are drawn as in Figure 9 (b). For each k = 1, 2, there exists a path in R

connecting a point of ∂k
d with a point of lkD without touching neither C ∩ R nor E ∩ R.

The curve D1 is a p-curve in T cutting off ∂ and one of ∂1
d and ∂2

d . Suppose that D1 cuts

off ∂ and ∂2
d . We define U as the surface obtained from T by attaching a disk to ∂1

d . The two
curves C and D1 are isotopic in U because C and D1 are disjoint and the pair of pants cut off

from T by each of them does not contain ∂1
d . Similarly, D1 and E are also isotopic in U . It

turns out that C and E are isotopic in U . On the other hand, C and E intersect minimally as
curves in T , and C ∩ E is non-empty. By [6, Exposé 3, Proposition 10], there exist a subarc

in C and a subarc in E whose union is a simple closed curve in T isotopic to ∂1
d . The curve

D1 is disjoint from C and E. Any path in T connecting a point of ∂1
d with a point of D1

therefore intersects either C or E. This contradicts the property obtained in the end of the last

paragraph. Exchanging ∂1
d and ∂2

d , we can deduce a contradiction if we suppose that D1 cuts

off ∂ and ∂1
d . �

By Claim 5.8, there exists an essential simple closed curve in R disjoint from D1 ∩ R,
which is unique up to isotopy. Let ζ denote the isotopy class of that curve. This is a desired
one. In fact, condition (a) holds by definition. Claim 5.7 implies that any component of D1∩R

cuts off either ∂1
d or ∂2

d . The curve ζ is therefore a p-curve in R cutting off ∂1
a and one of ∂1

d

and ∂2
d . Conditions (b) and (c) follow. The uniqueness of ζ holds because there exists at most

one curve in T disjoint from the two curves a1 and d1 that intersect. �

In the proof of the subsequent two theorems, we use the following:

Graph F . Let R be a surface homeomorphic to S0,4. We define a simplicial graph F =
F(R) so that the set of vertices of F is V (R), and two vertices α, β of F are connected by an
edge of F if and only if i(α, β) = 2.

It is well known that this graph is isomorphic to the Farey graph realized as an ideal
triangulation of the Poincaré disk (see [15, Section 3.2] or Figure 11 (a)). We mean by a
triangle in F a subgraph of F consisting of exactly three vertices and exactly three edges.
Note that for any two ordered triples of vertices in F defining triangles in F , there exists a
unique simplicial automorphism of F sending the first triple to the second one.

The following theorem characterizes hexagons in T (S) of type 2.

THEOREM 5.9. Let Π be a hexagon in T (S) of type 2, and let (a, b, c, d, e, f ) be a
6-tuple defining Π with a and d BP-vertices. Put ζ = ζ(Π). Then there exists a unique
non-zero integer m with f = tmζ (b) and e = tmζ (c).
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FIGURE 10

PROOF. Let a0 and d0 be the curves in the BPs a and d , respectively, obtained in
Lemma 5.4. The surface Sd0 is homeomorphic to S1,3. In Sd0 , the curve in d distinct from
d0, denoted by d1, is a p-curve, b is a p-curve, c is an h-curve, and a and {a0, ζ } are BPs.
The 5-tuple (a, b, c, d1, {a0, ζ }) defines a pentagon in T (Sd0) (see Figure 10). Similarly, the
5-tuple (a, f, e, d1, {a0, ζ }) also defines a pentagon in T (Sd0) such that in Sd0 , e is an h-curve
and f is a p-curve. Cut Sd0 along a. The obtained surface consists of a pair of pants and a
surface homeomorphic to S0,4. Let R denote the latter component.

Let ∂1
d and ∂2

d denote the two boundary components of R corresponding to d0. The

curves b and f lie in R and cut off ∂1
d and ∂2

d . The curve ζ cuts off a pair of pants from R

containing exactly one of ∂1
d and ∂2

d . By Lemma 5.1 (ii), we have i(ζ, b) = i(ζ, f ) = 2.
Looking at the action of the Dehn twist tζ on the graph F(R), we see that tζ acts on the link
of ζ in F(R) freely. Moreover, tζ transitively acts on the set of all vertices in the link of ζ that

correspond to curves in R cutting off ∂1
d and ∂2

d . It follows that there exists a unique integer m

with tmζ (b) = f . Since b and f are distinct, the integer m is non-zero.

The 6-tuple (a, b, c, d, tmζ (c), tmζ (b)) defines a hexagon in T (S), as shown in the begin-

ning of this section. There exists at most one h-curve in S disjoint from the BP d and the
h-curve tmζ (b) = f . We therefore have tmζ (c) = e. �

THEOREM 5.10. Let Π be a hexagon in T (S) of type 2, and let (a, b, c, d, e, f ) be a
6-tuple defining Π with a and d BP-vertices. Put ζ = ζ(Π). Then the following assertions
hold:

(i) If neither f = tζ (b) nor f = t−1
ζ (b), then Π is the only hexagon in T (S) of type 2

containing f , a, b and c.

(ii) If either f = tζ (b) or f = t−1
ζ (b), then there exists exactly one hexagon in T (S) of
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type 2 that is distinct from Π and contains f , a, b and c.

Before proving Theorem 5.10, we prepare two lemmas.

LEMMA 5.11. Let Π be a hexagon in T (S) of type 2, and let (a, b, c, d, e, f ) be a 6-
tuple defining Π with a and d BP-vertices. Let Ω be a hexagon in T (S) of type 2 containing
f , a, b and c. If ζ(Π) = ζ(Ω), then Π = Ω .

PROOF. Put ζ = ζ(Π) = ζ(Ω). By Theorem 5.9, there exists a unique integer m with
tmζ (b) = f and tmζ (c) = e. Let (a, b, c, d ′, e′, f ) be the 6-tuple defining Ω . Applying the

same theorem to Ω , we obtain a unique integer n with tnζ (b) = f and tnζ (c) = e′. The equality

tmζ (b) = tnζ (b) then holds. We thus have m = n and e = e′. Since at most one BP in S disjoint

from c and e exists, we have d = d ′. �

We set R = S0,4. For any edge τ of the graphF = F(R), the complement of τ∪∂τ in the
geometric realization of F has exactly two connected components. We call those components
sides of τ .

LEMMA 5.12. We set R = S0,4 and F = F(R). Let α and β be curves in R with
i(α, β) = 2. We denote by γ the only curve in R such that each of {α, β, γ } and {α, β, tα(γ )}
defines a triangle in F . Let δ be a curve in R with δ 
= α and i(β, δ) = 2. Let m and n be non-
zero integers. If the equality tmα (β) = tnδ (β) holds, then either δ = γ and (m, n) = (−1, 1)

or δ = tα(γ ) and (m, n) = (1,−1).

PROOF. Realize the graph F geometrically as an ideal triangulation of the Poincaré
disk D. The set ∂D \ {α, β, γ, tα(γ )} consists of the four connected components L1, L2, L3

and L4 as in Figure 11 (b). For any positive integer j , t
j
α (β) lies in L4. For any negative

integer k, tkα(β) lies in L3.
The vertex δ is in the link of β in F and distinct from α. Assuming that δ is equal to

neither γ nor tα(γ ), we deduce a contradiction. The vertex δ then lies in either L1 or L2.
We have the two triangles in F containing the edge {β, δ}. Each of those triangles has the
edge containing δ and distinct from {β, δ}. Let τ and σ denote those edges. If δ lies in L1,
then the interior of τ and that of σ lie in the side of the edge {β, tα(γ )} containing δ. The

argument in the previous paragraph shows that for any non-zero integer j , t
j
δ (β) lies in L1.

This contradicts the equality tmα (β) = tnδ (β). We can deduce a contradiction similarly if we
assume that δ lies in L2. It turns out that δ is equal to either γ or tα(γ ).

We first suppose the equality δ = γ . Let ε denote the vertex t−1
α (β) = tγ (β), which lies

in L3 and forms a triangle in F together with α and γ . Let L31 and L32 be the two components
of L3 \ {ε} so that the closure of L31 contains γ and that of L32 contains α (see Figure 11 (c)).

For any positive integer j , t
j
α (β) lies in L4. For any integer k with k < −1, tkα(β) lies in L32.

For any integer j with j > 1, t
j
γ (β) lies in L31. For any negative integer k, tkγ (β) lies in L2.

The equality tmα (β) = tnγ (β) therefore implies (m, n) = (−1, 1). If we suppose the equality
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δ = tα(γ ) in place of the equality δ = γ , then we obtain (m, n) = (1,−1) along a similar
argument. �

We are now ready to prove Theorem 5.10.

PROOF OF THEOREM 5.10 (i). Let Π be a hexagon in T (S) of type 2. Let
(a, b, c, d, e, f ) be a 6-tuple defining Π with a and d BP-vertices. Pick a hexagon Ω in
T (S) of type 2 containing f , a, b and c. Let (a, b, c, d ′, e′, f ) be the 6-tuple defining Ω . We
put ζ = ζ(Π) and η = ζ(Ω). By Theorem 5.9, we have the non-zero integers m, n with

f = tmζ (b) = tnη (b) , e = tmζ (c) and e′ = tnη (c) .

Applying Lemma 5.4 to Π , we obtain the curve a0 in a and the curve d0 in d that are disjoint
from any of a, . . . , f . In the component of Sa homeomorphic to S1,2, the curve d0 is the only
curve disjoint from b and f . Applying Lemma 5.4 to the hexagon Ω , which contains a, b and
f , we see that d0 is also contained in the BP d ′. Let R denote the subsurface of S filled by b

and f , which is homeomorphic to S0,4. Any of b, f , ζ and η is a curve in R. By Lemmas 5.1
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and 5.6, we have i(b, ζ ) = i(b, η) = 2.
If ζ and η are distinct, then by Lemma 5.12, the equality tmζ (b) = tnη (b) implies that

either (m, n) = (1,−1) or (m, n) = (−1, 1). It follows that either f = tζ (b) or f = t−1
ζ (b).

Under the assumption that neither f = tζ (b) nor f = t−1
ζ (b) holds, we therefore have the

equality ζ = η. By Lemma 5.11, we then have Π = Ω . Theorem 5.10 (i) is proved. �

PROOF OF THEOREM 5.10 (ii). Let Π be a hexagon in T (S) of type 2. Let
(a, b, c, d, e, f ) be a 6-tuple defining Π with a and d BP-vertices. Put ζ = ζ(Π). Let
a0 and d0 be the curves in the BPs a and d , respectively, obtained in Lemma 5.4. We define
curves a1 and d1 so that a = {a0, a1} and d = {d0, d1}. Let R denote the subsurface of S

filled by b and f , which is homeomorphic to S0,4 because b and f are disjoint from a and d0.
We set F = F(R). Any of b, f and ζ is a curve in R. By Lemmas 5.1 and 5.6, the curves

a0, a1, b, c, d1 and ζ in Sd0 are drawn as in Figure 12 (a), where ∂1
d and ∂2

d denote the two
boundary components of Sd0 corresponding to d0.

We first suppose the equality f = tζ (b). We construct a hexagon in T (S) of type 2
containing f , a, b and c and distinct from Π . The assumption f = tζ (b) implies that there
exists a unique curve η+ in R such that each of the triples {b, ζ, η+} and {f, ζ, η+} forms a

triangle in F , as in Figure 13 (a). We have the equality f = tζ (b) = t−1
η+ (b). The curve η+

is then determined as in Figure 12 (b). We define x1 as the curve drawn in Figure 12 (c), and
set x = {d0, x1}. The 5-tuple (a, b, c, x1, {a0, η+}) defines a pentagon in T (Sd0). The 6-tuple
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(a, b, c, x, t−1
η+ (c), f ) therefore defines a hexagon in T (S) of type 2, denoted by Ω+.

Let Ω be a hexagon in T (S) of type 2 containing f , a, b and c. Put η = ζ(Ω). Applying
Theorem 5.9 to Ω , we have a non-zero integer n with f = tnη (b). In the first paragraph in

the proof of Theorem 5.10 (i), we showed that η is also a curve in R, and we have i(b, ζ ) =
i(b, η) = 2. The equality f = tζ (b) = tnη (b) and Lemma 5.12 imply that either η = ζ or

η = η+ and n = −1. By Lemma 5.11, we have either Ω = Π or Ω = Ω+. Theorem 5.10
(ii) is therefore proved if f = tζ (b).

We next suppose the equality f = t−1
ζ (b). There exists a unique curve η− in R such that

each of the triples {b, ζ, η−} and {f, ζ, η−} forms a triangle in F , as in Figure 13 (b). We have

the equality f = t−1
ζ (b) = tη−(b). The curve η− is then determined as in Figure 12 (d). We

define a curve y1 as in Figure 12 (e), and set y = {d0, y1}. The 5-tuple (a, b, c, y1, {a0, η−})
defines a pentagon in T (Sd0). The 6-tuple (a, b, c, y, tη−(c), f ) defines a hexagon in T (S) of
type 2, denoted by Ω−. As in the previous paragraph, we can show that if Ω is a hexagon in
T (S) of type 2 containing f , a, b and c, then either Ω = Π or Ω = Ω−. �

In the rest of this section, we observe hexagons in T (S) sharing a 3-path with a given
hexagon of type 1 or type 2. Note that a hexagon in T (S) has exactly two BP-vertices if and
only if it is of either type 1 or type 2.

LEMMA 5.13. Let Π be a hexagon in T (S) of type 1, and let (a, b, c, d, e, f ) be a
6-tuple defining Π with b and f BP-vertices. Let Ω be a hexagon in T (S) such that Π ∩ Ω

contains a 3-path. Then the following assertions hold:
(i) The hexagon Ω contains at least one of b and f .

(ii) If Ω contains exactly one of b and f , then Ω has exactly two BP-vertices.
(iii) If Ω contains both b and f , then the equality Ω = Π holds.

PROOF. Assertion (i) holds because any 3-path in Π contains at least one of b and f .
If Ω contains exactly one of b and f , then Ω contains two adjacent h-vertices, and thus has
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exactly two BP-vertices by Lemmas 3.1 and 3.3. Assertion (ii) follows.
Assuming that Ω contains b and f , we prove assertion (iii). Without loss of generality,

we may assume that Π and Ω contain f , a, b and c. Let (a, b, c, d ′, e′, f ) be the 6-tuple
defining Ω . The vertex e′ is an h-vertex because f is a BP-vertex. Assuming that d ′ is a
BP-vertex, we deduce a contradiction. Let α be the curve contained in b and f .

Choose representatives A, . . . , F , D′ and E′ of a, . . . , f , d ′ and e′, respectively, such
that any two of them intersect minimally. Let a denote the component of F whose isotopy
class is α. Let R denote the component of SC that is not a handle. Note that a is a curve in R.
Since D′ is a BP in R, the intersection E′ ∩ R consists of mutually isotopic, essential simple
arcs in R which are non-separating in R (see Figure 14). It follows from E′ ∩ F = ∅ that
E′ ∩ R is disjoint from a. Since the two components of D′ are boundary components of a
regular neighborhood of (E′ ∩ R) ∪ C in R, one of components of D′ is isotopic to a. It turns
out that d ′ contains α.

We define curves b1, d ′
1 and f1 so that b = {α, b1}, d ′ = {α, d ′

1} and f = {α, f1}. The

6-tuple (a, b1, c, d
′
1, e, f1) then defines a hexagon in Cs(Sα) such that each of the curves b1,

d ′
1 and f1 in Sα cuts off a pair of pants containing ∂S from Sα . This is a contradiction because

by Theorem 4.1, for any hexagon H in Cs(Sα), there is a p-curve in H cutting off a pair of
pants containing the two boundary components of Sα that correspond to α, from Sα .

We proved that d ′ is an h-vertex. It follows that Ω is of type 1. By Lemma 4.3, we have
the equality Ω = Π . �

Finally, we obtain the following:

THEOREM 5.14. Let Π be a hexagon in T (S). Then the following assertions hold:
(i) If Π is of type 1, then for any 3-path K in Π containing the two BP-vertices of Π ,

there exists no hexagon in T (S) distinct from Π and containing K .
(ii) If Π is of type 2, then for any 3-path L in Π containing exactly one BP-vertex of Π ,

there exist at most two hexagons in T (S) distinct from Π and containing L.

PROOF. Assertion (i) follows from Lemma 5.13 (iii). Suppose that Π is of type 2, and
pick a 3-path L in Π containing exactly one BP-vertex of Π . By Lemmas 3.1 and 3.3, any
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hexagon in T (S) has at least two BP-vertices. Any hexagon in T (S) containing L is thus of
either type 1 or type 2 because L contains two adjacent h-vertices. By Lemma 4.3, the number
of hexagons in T (S) of type 1 containing L is at most 1. By Theorem 5.10, the number of
hexagons in T (S) of type 2 distinct from Π and containing L is at most 1. Assertion (ii) is
therefore proved. �

REMARK 5.15. In addition to Theorem 5.14, we have the following description of the
number of hexagons sharing a 3-path with a given hexagon of type 1 or type 2, whose proof
is not presented here because it is not used in the rest of the paper.

Let Π be a hexagon in T (S) defined by a 6-tuple (a, b, c, d, e, f ). Assume that Π is of
type 1 with b and f BP-vertices. Let K be a 3-path in Π containing exactly one of b and f .
If K does not contain a, then Π is the only hexagon in T (S) containing K by Lemma 4.3.
If K contains a, then any hexagon in T (S) distinct from Π and containing K is of type 2 by
Lemma 4.3, and there exist exactly two hexagons in T (S) of type 2 containing K .

Those two hexagons are drawn in Figure 15. Let α and β be disjoint and non-isotopic
curves in S such that the surface obtained by cutting S along α∪β, denoted by T , is connected.
Any essential simple arc l in T connecting two distinct boundary components ∂1, ∂2 associates
a curve c(l) in T . Namely, c(l) is defined as a boundary component of a regular neighborhood
of l ∪ ∂1 ∪ ∂2 in T . In Figure 15, the surface T is drawn, and in place of curves, essential
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simple arcs associating them are drawn. Given a hexagon Π in T (S) of type 1 and a 3-path
K in Π as drawn in Figure 15, we have the two hexagons Ω , Υ in T (S) of type 2 containing
K . It follows from Theorem 5.14 (ii) that there is no other hexagon in T (S) containing K .

We next assume that Π is of type 2 with a and d BP-vertices. Let ζ be the curve ζ(Π)

obtained in Lemma 5.6. Let L be a 3-path in Π . Any hexagon in T (S) containing L is
either of type 1 or type 2 because L contains two adjacent h-vertices. We first suppose that

L contains exactly one of a and d . If either f = tζ (b) or f = t−1
ζ (b), then there exist

exactly two hexagons in T (S) distinct from Π and containing L, one of which is of type 1
and another of which is of type 2. We omit to describe those two hexagons because they are
obtained by using Figure 15 after exchanging symbols appropriately. If neither f = tζ (b)

nor f = t−1
ζ (b), then Π is the only hexagon in T (S) containing L. Finally, we suppose that

L contains a and d . In the fourth paragraph of this section, we have observed that there are
infinitely many hexagons in T (S) of type 2 containing L.

6. Hexagons of type 3

Throughout this section, we set S = S2,1. We say that a hexagon in T (S) is of type 3 if it
contains exactly three BP-vertices. In this section, we focus on the hexagons of type 3 drawn
in Figure 16, and present their property that no hexagon of type 1 or type 2 satisfies.

We note that there is a one-to-one correspondence between elements of Vbp(S) and el-
ements of Va(S) whose representatives are non-separating in S. In fact, each BP b in S

associates an essential simple arc in S contained in the pair of pants cut off by b from S,
which is non-separating in S and is uniquely determined up to isotopy. Conversely, given an
essential simple arc l in S which is non-separating in S, one obtains the BP in S whose curves
are boundary components of a regular neighborhood of l ∪ ∂S in S.

In Figure 16, in place of BPs, essential simple arcs corresponding to them are drawn.
This replacement makes the drawing much plainer. We define a, c and e as the h-curves in S

in Figure 16, and define b, d and f as the BPs in S corresponding to the arcs in Figure 16. Let
Θ denote the hexagon in T (S) of type 3 defined by the 6-tuple (a, b, c, d, e, f ). Let α, β and
γ be the non-separating curves in Figure 17. The curve α is disjoint from a and d , the curve
β is disjoint from b and e, and the curve γ is disjoint from c and f . The following lemma is
in contrast with Theorem 5.14 on hexagons of type 1 and type 2.

PROPOSITION 6.1. For any 3-path L in Θ , there exist infinitely many hexagons in
T (S) containing L.

Before proving this proposition, we show the following:

LEMMA 6.2. Let v1, v3 and v5 be h-vertices of T (S), and v2, v4 and v6 BP-vertices
of T (S) such that

• for any j mod 6, vj and vj+1 are adjacent, for any k = 1, 2, vk and vk+2 are distinct
and not adjacent, and v1 and v4 are not adjacent; and



TORELLI COMPLEX FOR THE ONE-HOLED GENUS TWO SURFACE 361

FIGURE 16

FIGURE 17

• we have v6 
= v2.

Then the 6-tuple (v1, . . . , v6) defines a hexagon in T (S).

PROOF. The assumption v6 
= v2 implies that v6 and v2 intersect. Since v1 is disjoint
from v6, but intersects v4, the BPs v6 and v4 are distinct, and thus intersect. In general, for
any two distinct h-curves x, y in S, there exists at most one BP in S disjoint from x and y if it
exists. If v6 and v3 were disjoint, then the two BPs v6 and v2 would be disjoint from the two
distinct h-curves v1 and v3. This contradicts v6 
= v2. It follows that v6 and v3 intersect.

Since v6 is disjoint from v5, but intersects v3, the h-curves v5 and v3 are distinct. The
curves v5 and v3 intersect because they are disjoint from the BP v4. Since v4 is disjoint from
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v5, but intersects v1, the h-curves v5 and v1 are distinct. The curves v5 and v1 intersect because
they are disjoint from the BP v6. If v5 and v2 were disjoint, then the two BPs v6 and v2 would
be disjoint from the two distinct h-curves v1 and v5. As noted in the previous paragraph, this
contradicts v6 
= v2. It follows that v5 and v2 intersect. �

PROOF OF PROPOSITION 6.1. We prove the proposition in the case where L consists
of a, b, c and d . The proof of the other cases are obtained along a verbatim argument after
exchanging symbols appropriately. We show that for all but one of integers n, the 6-tuple
(a, b, c, d, tnα(e), tnα (f )) defines a hexagon in T (S). For any integer n, the pair {tnα (e), tnα (f )}
is an edge of T (S). Since α is disjoint from a and d , we have tnα (a) = a and tnα (d) = d . Each
of {d, tnα (e)} and {tnα (f ), a} is thus an edge of T (S). To prove the proposition, it suffices to
show the following three assertions:

(1) At most one integer n satisfies the equality tnα (f ) = b.
(2) For any integer n with tnα (f ) 
= b, the 6-tuple (a, b, c, d, tnα(e), tnα(f )) defines a

hexagon in T (S).
(3) For any integers n1, n2 with n1 
= n2, we have t

n1
α (f ) 
= t

n2
α (f ).

Assertions (1) and (3) hold because α and f intersect. Applying Lemma 6.2 when
(v1, . . . , v6) = (a, b, c, d, tnα(e), tnα (f )), we obtain assertion (2). �

The following lemma will be used in Section 7.

LEMMA 6.3. Let Θ be the hexagon in T (S) drawn in Figure 16. For any two vertices
u, v of T (S), there exists a sequence of hexagons in T (S), Π1,Π2, . . . ,Πn, satisfying the
following three conditions:

• For any k = 1, . . . , n, there exists γ ∈ Mod(S) with Πk = γ (Θ).
• We have u ∈ Π1 and v ∈ Πn.
• For any k = 1, . . . , n − 1, the intersection Πk ∩ Πk+1 contains a 2-path.

PROOF. Pick two vertices u, v of T (S). For any γ ∈ Mod(S), the lemma holds for u

and v if and only if it holds for γ u and γ v. To prove the lemma, we may therefore assume

FIGURE 18
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that u is a vertex of Θ . For j = 1, . . . , 5, let tj denote the Dehn twist about the curve αj

drawn in Figure 18. We set T = {t±1
1 , . . . , t±1

5 }. The group Mod(S) is known to be generated
by elements of T (see [7]). Since Mod(S) transitively acts on Vs(S) and on Vbp(S), we can
find an element h of Mod(S) with v ∈ {h(a), h(b)}, where a and b are the h-vertex and the
BP-vertex of Θ , respectively, drawn in Figure 16. Write h as a product h = h1 · · ·hn so that
hj ∈ T for any j . For any r ∈ T , the intersection r(Θ) ∩ Θ contains a 2-path. The sequence
of hexagons in T (S),

Θ, h1(Θ) , h1h2(Θ), . . . , h1 · · · hn(Θ) = h(Θ) ,

is thus a desired one. �

7. Construction of an automorphism of the complex of curves

Throughout this section, we set S = S2,1. For any superinjective map φ from T (S) into
itself, we construct an automorphism of C(S) inducing φ.

7.1. Surjectivity of a superinjective map. In this subsection, we show that any su-
perinjective map from T (S) into itself preserves h-vertices and BP-vertices, respectively, and
is surjective.

LEMMA 7.1. Let Θ be the hexagon in T (S) drawn in Figure 16. Then for any super-
injective map φ : T (S) → T (S) and any γ ∈ Mod(S), the hexagon φ(γ (Θ)) in T (S) is of
type 3.

PROOF. Pick γ ∈ Mod(S). The same property as that in Proposition 6.1 is satisfied
by the hexagon γ (Θ), and hence by the image φ(γ (Θ)) because φ is superinjective. By
Theorem 5.14, the hexagon φ(γ (Θ)) is of neither type 1 nor type 2, and is thus of type 3. �

LEMMA 7.2. Any superinjective map from T (S) into itself preserves h-vertices and
BP-vertices of T (S), respectively.

PROOF. Let φ : T (S) → T (S) be a superinjective map. Assuming that there exists an
h-vertex u of T (S) with φ(u) a BP-vertex, we deduce a contradiction. Pick an h-vertex v of
T (S). By Lemma 6.3, there exists a sequence of hexagons in T (S), Π1,Π2, . . . ,Πn, such
that

• any Πk is of the form γ (Θ) for some γ ∈ Mod(S);
• we have u ∈ Π1 and v ∈ Πn; and
• the intersection Πk ∩ Πk+1 contains a 2-path for any k = 1, . . . , n − 1.

We note that for any k = 1, . . . , n, the hexagon φ(Πk) is of type 3 by Lemma 7.1, and that
any edge of a hexagon in T (S) of type 3 consists of an h-vertex and a BP-vertex. Since u is an
h-vertex and φ(u) is a BP-vertex, the map φ sends h-vertices of Π1 to BP-vertices of φ(Π1),
and sends BP-vertices of Π1 to h-vertices of φ(Π1). Using the property that Πk ∩ Πk+1

contains a 2-path for any k = 1, . . . , n − 1, we inductively see that for any k = 1, . . . , n,
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the map φ sends h-vertices of Πk to BP-vertices of φ(Πk), and sends BP-vertices of Πk to
h-vertices of φ(Πk). It turns out that φ(v) is a BP-vertex.

We have shown that φ sends any h-vertex to a BP-vertex. It therefore follows that φ

sends an edge consisting of two h-vertices to an edge consisting of two BP-vertices. This is a
contradiction because T (S) contains no edge consisting of two BP-vertices.

We can also deduce a contradiction along a verbatim argument if we assume that there
exists a BP-vertex u of T (S) with φ(u) an h-vertex. �

We set Y = S1,2. To prove surjectivity of a superinjective map from T (S) into itself, we
recall the following simplicial complexes associated to Y .

Complex A(Y ). We define A(Y ) to be the abstract simplicial complex such that the set of
vertices of A(Y ) is Va(Y ), and a non-empty finite subset σ of Va(Y ) is a simplex of A(Y ) if
and only if there exist mutually disjoint representatives of elements of σ .

Complex D(Y ). We define D(Y ) to be the full subcomplex of A(Y ) spanned by all vertices
that correspond to essential simple arcs in Y connecting the two boundary components of Y .

REMARK 7.3. Let us describe simplices of D(Y ) of maximal dimension. We denote
by Y0 the surface obtained from Y by shrinking each component of ∂Y to a point. Let P =
{x1, x2} denote the set of the two points of Y0 into which components of ∂Y are shrunken. The
natural map from Y onto Y0 induces the bijection from Va(Y ) onto the set of isotopy classes
of ideal arcs in the punctured surface (Y0, P ). It turns out that a simplex of A(Y ) of maximal
dimension corresponds to an ideal triangulation of (Y0, P ), and that a simplex of D(Y ) of
maximal dimension corresponds to an ideal squaring of (Y0, P ) defined as follows. We mean
by an ideal squaring of (Y0, P ) a cell division δ of Y0 such that

• the set of 0-cells of δ is P ;
• any 1-cell of δ is an ideal arc in (Y0, P ) connecting x1 and x2; and
• any 2-cell of δ is a square, that is, it is obtained by attaching a Euclidean square τ to

the 1-skeleton of δ, mapping each vertex of τ to a 0-cell of δ, and each edge of τ to a
1-cell of δ.

By argument on the Euler characteristic of Y0, for any ideal squaring δ of (Y0, P ), the numbers
of 1-cells and 2-cells of δ are equal to 4 and 2, respectively.

We will use the following:

PROPOSITION 7.4. We set Y = S1,2. Then any injective simplicial map from D(Y )

into itself is surjective.

This proposition follows from [13, Proposition 3.1 and Lemma 3.2]. For a vertex v of
T (S), we denote by Lk(v) the link of v in T (S).

LEMMA 7.5. Let b be a BP-vertex of T (S) and φ : T (S) → T (S) a superinjective
map. Then the equality φ(Lk(b)) = Lk(φ(b)) holds.
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PROOF. We may assume φ(b) = b. Let Y denote the component of Sb homeomorphic
to S1,2. As noted right after Lemma 4.4, there is a one-to-one correspondence between ele-
ments of Vs(Y ) and elements of Va(Y ) whose representatives connect the two components of
∂Y . For α ∈ Vs(Y ), we denote by lα the element of Va(Y ) corresponding to α. By Theo-
rem 4.2 (ii), for any two distinct vertices α, β ∈ Vs(Y ), there is a hexagon in T (S) of type
1 containing b, α and β if and only if lα and lβ are disjoint (see Figure 19 (a) for such two
disjoint arcs). The map φ induces an injective simplicial map from D(Y ) into itself because
φ preserves hexagons in T (S) of type 1 by Lemma 7.2. Proposition 7.4 implies the equality
in the lemma. �

LEMMA 7.6. Let a be an h-vertex of T (S) and φ : T (S) → T (S) a superinjective
map. Then the equality φ(Lk(a)) = Lk(φ(a)) holds.

PROOF. We may assume φ(a) = a. Let Y denote the component of Sa homeomorphic
to S1,2. Note that Vs(Y ) and Vbp(Y ) are naturally identified with sets of vertices of Lk(a). An
argument similar to the proof of Lemma 7.5 shows that φ induces an injective simplicial map

φ̃ : D(Y ) → D(Y ), which is surjective by Proposition 7.4. It follows that φ sends Vs(Y ) onto
itself.

We prove that φ sends Vbp(Y ) onto itself. As noted in the second paragraph of Section
6, there is a one-to-one correspondence between elements of Vbp(Y ) and elements of Va(Y )

whose representatives are non-separating in Y and connect two points in the component of ∂Y

corresponding to ∂S. For b ∈ Vbp(Y ), we denote by lb the element of Va(Y ) corresponding to
b. We use the same symbol as in the proof of Lemma 7.5. Namely, for α ∈ Vs(Y ), we denote
by lα the element of Va(Y ) corresponding to α. By Theorem 4.2 (ii), for any b ∈ Vbp(Y ) and
α ∈ Vs(Y ), there exists a hexagon in T (S) of type 1 containing a, b and α if and only if lb

and lα are disjoint (see Figure 19 (b) for such two disjoint arcs).
Pick a simplex σ of D(Y ) of maximal dimension. Let Y0 denote the surface obtained

from Y by shrinking each component of ∂Y to a point. Let P denote the set of points of Y0
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into which components of ∂Y are shrunken. We then obtain the punctured surface (Y0, P ).
Let p0 denote the point of P into which ∂S is shrunken. Let p1 denote the other point of P .
As discussed in Remark 7.3, we have the ideal squaring of (Y0, P ) corresponding to σ , and
the set of whose 2-cells consists of two squares. In each of those two squares, as in Figure
19 (c), two opposite vertices correspond to p0, the other two vertices correspond to p1, and
we have an arc connecting the two vertices corresponding to p0 and dividing the square into
two triangles. It follows from Lemma 2.2 that up to isotopy, there exist exactly two ideal arcs
in (Y0, P ) disjoint from any ideal arc corresponding to an element of σ and both of whose
end points are p0. We define L(σ) as the subset of Va(Y ) consisting of the two elements
that correspond to those ideal arcs. Any arc in L(σ) is non-separating in Y because for any
essential simple arc l in Y that is separating in Y , a vertex of D(Y ) whose representative is
disjoint from l uniquely exists and because we have |σ | = 4.

The claim in the end of the second paragraph of the proof and injectivity of φ imply that
for any simplex σ of D(Y ) of maximal dimension, the map φ induces a bijection from L(σ)

onto L(φ̃(σ )). For any b ∈ Vbp(Y ), there exists a simplex of D(Y ) of maximal dimension any

of whose arcs is disjoint from lb. Surjectivity of the map φ̃ : D(Y ) → D(Y ) therefore implies
that φ sends Vbp(Y ) onto itself. �

The last two lemmas and connectivity of T (S) imply the following:

THEOREM 7.7. Any superinjective map from T (S) into itself is surjective and is thus
an automorphism of T (S).

7.2. Construction of a map from V (S) into itself. Let φ be an automorphism of
T (S). We define a map Φ : V (S) → V (S) as follows. Pick an element α of V (S). If α is
separating in S, then we set Φ(α) = φ(α). If α is non-separating in S, then pick a hexagon
Π in T (S) of type 1 such that α is contained in the two BP-vertices of Π , and define Φ(α)

to be the non-separating curve in S contained in the two BP-vertices of the hexagon φ(Π) of
type 1.

We will prove that Φ is well-defined as a consequence of Lemma 7.9. To prove it, let us
introduce the following:

Graph E . We define E to be the simplicial graph so that the set of vertices of E is Vbp(S),
and two distinct vertices u, v of E are connected by an edge of E if and only if there exists a
hexagon in T (S) of type 1 containing u and v.

We mean by a square in E the full subgraph of E spanned by exactly four vertices
v1, . . . , v4 such that for any k mod 4, vk and vk+1 are adjacent, and vk and vk+2 are not
adjacent. In this case, let us say that the square is defined by the 4-tuple (v1, . . . , v4).

LEMMA 7.8. Let (v1, . . . , v4) be a 4-tuple defining a square in E . Then there exists a
non-separating curve α in S with α ∈ vk for any k = 1, . . . , 4.

PROOF. By the definition of E , for any two adjacent vertices of E , the two BPs in S

corresponding to them share a non-separating curve in S. For each k mod 4, let βk denote the
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non-separating curve in S contained in vk and vk+1. Without loss of generality, it suffices to
deduce a contradiction under the assumption β1 
= β2.

Let S̄ denote the closed surface obtained from S by attaching a disk to ∂S, and let
π : C(S) → C(S̄) be the simplicial map associated with the inclusion of S into S̄. Since

π sends the two curves in any BP in S to the same curve in S̄, all curves in the BPs v1, . . . , v4

are sent to the same curve in S̄, denoted by α0. In other words, all curves in the BPs v1, . . . , v4

are in π−1(α0). Let T denote the full subcomplex of C(S) spanned by π−1(α0), which is a
tree by Theorem 3.2. The sequence, β1, β2, β3, β4, β1, forms a closed path in T .

We assume β1 
= β2. The equality v2 = {β1, β2} then holds. We have β3 
= β1 and
β4 
= β2 because v3 
= v2 and v1 
= v2. Let γ and δ denote the curves in S with v1 = {β1, γ }
and v3 = {β2, δ}. Each of γ and δ is equal to neither β1 nor β2 because v1 
= v2 and v3 
= v2.
We have either β4 = γ or β3 = δ because otherwise we would have v2 = v4.

If β4 = γ , then we have β3 
= β2 and β3 
= γ because otherwise the sequence, β1, β2,
γ , β1, would form a simple closed path in T . It turns out that β1, β2, β3 and β4 are mutually
distinct. This is a contradiction.

If β3 = δ, then we have β4 
= β1 and β4 
= δ because otherwise the sequence, β1, β2,
δ, β1, would form a simple closed path in T . It turns out that β1, β2, β3 and β4 are mutually
distinct. This is also a contradiction. �

LEMMA 7.9. Let φ be an automorphism of T (S). Let α be a non-separating curve in
S. Pick two hexagons Π , Ω in T (S) of type 1 such that any BP-vertex of Π and Ω contains
α. Then the non-separating curve in S contained in the two BP-vertices of φ(Π) is equal to
that of φ(Ω).

PROOF. Let a1 and a2 denote the two BP-vertices of Π . Let b1 and b2 denote the two
BP-vertices of Ω .

CLAIM 7.10. There exists a sequence of squares in E , Δ1, . . . ,Δn, satisfying the fol-
lowing three conditions:

• The square Δ1 contains a1 and a2, and the square Δn contains b1 and b2.
• For any k = 1, . . . , n, any vertex of Δk contains α.
• For any k = 1, . . . , n − 1, the intersection Δk ∩ Δk+1 contains an edge of E .

PROOF. Let α1, α2, β1 and β2 be the curves in S with aj = {α, αj } and bj = {α, βj }
for j = 1, 2. The curves α1 and α2 can be drawn as in Figure 20 (a), where the surface Sα

obtained by cutting S along α is drawn. We define γ1, . . . , γ4 as the curves in S drawn in
Figure 20 (b). The equality i(α1, γ1) = i(α2, γ2) = 0 then holds. For j = 1, . . . , 4, let
tj ∈ Mod(S) denote the Dehn twist about γj . Let Mod(S)α denote the stabilizer of α in
Mod(S), and define

q : Mod(S)α → Mod(Sα)

as the natural homomorphism. The group PMod(Sα) is known to be generated by
q(t1), . . . , q(t4) (see [7]). By Theorem 4.1, there exists an element h of PMod(Sα) with
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FIGURE 20

{h(α1), h(α2)} = {β1, β2}. Write h as a product h = q(h1) · · · q(hn) so that hj ∈
{t±1

1 , . . . , t±1
4 } for any j .

The 4-tuple (a1, a2, t2(a1), t1(a2)) defines a square in E . We denote it by Δ. For any

w ∈ {t±1
1 , . . . , t±1

4 }, the intersection Δ ∩ w(Δ) contains an edge of E . The sequence of
squares in E ,

Δ , h1(Δ) , h1h2(Δ), . . . , h1h2 · · · hn(Δ) = h(Δ) ,

is therefore a desired one. �

By the definition of E , the automorphism φ of T (S) induces an automorphism of E .
If Δ1, . . . ,Δn are the squares in E chosen in Claim 7.10, then φ(Δ1), . . . , φ(Δn) are also
squares in E such that

• φ(Δ1) contains φ(a1) and φ(a2), and φ(Δn) contains φ(b1) and φ(b2); and
• for any k = 1, . . . , n − 1, the intersection φ(Δk) ∩ φ(Δk+1) contains an edge of E .

It follows from Lemma 7.8 that for any k = 1, . . . , n, there exists a non-separating curve in
S contained in any vertex of φ(Δk). The above second condition implies that this curve does
not depend on k. In particular, the curve shared by φ(a1) and φ(a2) is equal to the curve
shared by φ(b1) and φ(b2). �

Lemma 7.9 implies that the map Φ : V (S) → V (S) constructed in the beginning of this
subsection is well-defined.

LEMMA 7.11. Let φ be an automorphism of T (S), and let Φ : V (S) → V (S) be the
map defined in the beginning of this subsection. Then Φ defines a simplicial map from C(S)

into itself.

PROOF. Let α and β be distinct elements of V (S) with i(α, β) = 0. We have to show
i(Φ(α),Φ(β)) = 0. If both α and β are separating in S, then this equality follows from the
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definition of Φ and simpliciality of φ. If α and β are non-separating curves in S with {α, β}
a BP in S, then Φ(α) and Φ(β) are curves in the BP φ({α, β}) by the definition of Φ. The
equality i(Φ(α),Φ(β)) = 0 thus holds.

For γ ∈ Vs(S), we denote by Hγ the component of Sγ that is a handle. If α and β are
non-separating curves in S such that {α, β} is not a BP in S, then there exist γ, δ ∈ Vs(S) with
γ 
= δ, i(γ, δ) = 0, α ∈ V (Hγ ) and β ∈ V (Hδ). We can then find two hexagons Π , Ω in
T (S) of type 1 such that

• the two BP-vertices of Π contain α, and those of Ω contain β; and
• both Π and Ω contain the h-vertices γ and δ.

By the definition of Φ, we have Φ(α) ∈ V (Hφ(γ )) and Φ(β) ∈ V (Hφ(δ)). Since we have
φ(γ ) 
= φ(δ) and i(φ(γ ), φ(δ)) = 0, the equality i(Φ(α),Φ(β)) = 0 holds.

If α is non-separating in S and β is separating in S, then one can find two distinct BPs a1,
a2 in S containing α and a hexagon Π in T (S) of type 1 such that Π contains a1, a2 and β as
its vertices. By the definition of Φ, the curve Φ(α) is disjoint from any curve corresponding
to an h-vertex of φ(Π). We therefore have i(Φ(α),Φ(β)) = 0. �

Let φ be an automorphism of T (S). We have constructed the simplicial map Φ : C(S) →
C(S) associated to φ. The simplicial map from C(S) into itself associated to φ−1 is then the
inverse of Φ. The map Φ is therefore an automorphism of C(S) and is induced by an element
of Mod∗(S) by Theorem 2.1. If {α, β} is a BP in S, then Φ(α) and Φ(β) are curves in the BP
φ({α, β}) by the definition of Φ, and are distinct because Φ is an automorphism of C(S). We
thus have the equality {Φ(α),Φ(β)} = φ({α, β}). It follows that φ is induced by an element
of Mod∗(S). Combining this with Theorem 7.7, we obtain the following:

THEOREM 7.12. Any superinjective map from T (S) into itself is induced by an ele-
ment of Mod∗(S).

A. The minimal length of simple cycles

Let G be a simplicial graph. We mean by a simple cycle in G a subgraph of G obtained as
the image of a simple closed path in G. A simple cycle in G is called non-trivial if its length
is positive, where any edge of G is defined to be of length 1.

Throughout this appendix, we set S = S2,1. We aim to show the following:

PROPOSITION A.1. There exists no non-trivial simple cycle in T (S) of length at most
5.

It turns out that hexagons in T (S) are simple cycles in T (S) of minimal positive length.
We first prove the following:

LEMMA A.2. There exists no non-trivial simple cycle in T (S) of length at most 4.
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PROOF. Since T (S) is one-dimensional, there exists no simple cycle in T (S) of
length 3. Assume that there are four vertices v1, . . . , v4 of T (S) with i(vj , vj+1) = 0 and
i(vj , vj+2) 
= 0 for any j mod 4. We can find α1, . . . , α4 ∈ V (S) such that

• for any j = 1, . . . , 4, we have either αj = vj ∈ Vs(S) or vj ∈ Vbp(S) and αj ∈ vj ;
and

• for any k = 1, 2, we have i(αk, αk+2) 
= 0.

For a surface X, we denote by χ(X) the Euler characteristic of X. For k = 1, 2, we define
Qk as the subsurface of S filled by αk and αk+2. If |χ(Qk)| ≥ 2, then set Rk = Qk . If
|χ(Qk)| = 1, then Qk is a handle, and αk and αk+2 are non-separating in S. It follows that vk

and vk+2 are BPs in S. The curve in vk distinct from αk , denoted by βk, intersects the h-curve
in S corresponding to the boundary of Qk . In the case of |χ(Qk)| = 1, we define Rk as the
subsurface of S filled by the three curves αk , βk and αk+2. In both cases, R1 and R2 can be
realized so that they are disjoint, and we have |χ(R1)| ≥ 2 and |χ(R2)| ≥ 2. This contradicts
|χ(S)| = 3. The lemma follows. �

The proof of Proposition A.1 reduces to showing the following:

LEMMA A.3. There exists no pentagon in T (S).

PROOF. Let S̄ denote the closed surface obtained from S by attaching a disk to ∂S. We
have the simplicial maps

π : C(S) → C(S̄) , θ : T (S) → C(S̄)

associated with the inclusion of S into S̄. Note that θ sends each BP-vertex of T (S) to a
vertex of C(S̄) corresponding to a non-separating curve in S̄, and that both π and θ send any

two adjacent h-vertices to the same h-vertex of C(S̄). Since the fiber of π over each vertex of
C(S̄) is a tree by Theorem 3.2, there exists no pentagon in T (S) consisting of only h-vertices.
We thus have to show non-existence of pentagons in T (S) having one or two BP-vertices.

CLAIM A.4. There exists no pentagon in T (S) defined by a 5-tuple (a, b, c, d, e) such
that a, c and e are h-vertices and b and d are BP-vertices.

PROOF. Assuming that such a 5-tuple (a, b, c, d, e) exists, we deduce a contradiction.
Choose representatives A, . . . , E of a, . . . , e, respectively, such that any two of them intersect
minimally. Let R denote the component of SC that is not a handle. Since B is a BP disjoint
from A and C, the intersection A ∩R consists of mutually isotopic, essential simple arcs in R

which are non-separating in R. Similarly, E ∩ R also consists of mutually isotopic, essential
simple arcs in R which are non-separating in R. Let lA be a component of A ∩ R, and let lE

be a component of E ∩ R. The arcs lA and lE are not isotopic because otherwise the equality
b = d would hold. Since A and E are disjoint, lA and lE are also disjoint.

We first assume that along C, the end points of lA first appear, and those of lE then
appear. Cut R along lA. We then obtain a pair of pants. Up to a homeomorphism of that pair
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FIGURE 21. The pair of pants obtained by cutting R along lA.

of pants fixing points of its boundary, the arc lE is drawn as in Figure 21 (a) or (b). In Figure
21 (b), the union of lE and a subarc of C cuts off an annulus containing ∂S from S, and this
contradicts that lE is non-separating in R. The arc lE is thus drawn as in Figure 21 (a). The
curve a in Figure 21 (a) is a boundary component of a regular neighborhood of lA ∪ C in S,
and is also that of lE ∪ C. It follows that the isotopy class of a is contained in b and d . The
surface Sa obtained by cutting S along a is homeomorphic to S1,3. The curve A is an h-curve
in Sa because A is disjoint from the BP B in S. Similarly, E is also an h-curve in Sa because
E is disjoint from the BP D in S. Since A and E are disjoint h-curves in Sa, they have to be
isotopic. This is a contradiction.

We next assume that along C, the end points of lA and lE appear alternately. Cut R along
lA. We then obtain a pair of pants. Up to a homeomorphism of that pair of pants fixing points
of its boundary, the arc lE is drawn as in Figure 21 (c). We then have i(θ(b), θ(d)) = 1. The

curves θ(b) and θ(d) fill a component of S̄θ(c). The equality θ(a) = θ(e) holds because a

and e are adjacent h-vertices. It follows that θ(a) is an h-curve in S̄ disjoint from θ(b) and
θ(d). We thus have the equality θ(a) = θ(c). On the other hand, A and C are curves in the
component of SB that does not contain ∂S. The equality θ(a) = θ(c) implies the equality
a = c. This is a contradiction. �

CLAIM A.5. There exists no pentagon in T (S) defined by a 5-tuple (a, b, c, d, e) such
that a, c, d and e are h-vertices and b is a BP-vertex.

PROOF. Assume that such a 5-tuple (a, b, c, d, e) exists. We have the equality θ(a) =
θ(e) = θ(d) = θ(c). We can deduce a contradiction along the argument in the end of the
proof of Claim A.4. �

Claims A.4 and A.5 complete the proof of Lemma A.3. �
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