Fourier Multipliers from L^p-spaces to Morrey Spaces on the Unit Circle

Takashi IZUMI and Enji SATO

Yamagata University

(Communicated by K. Takemura)

Abstract. Let p, λ be real numbers such that $1 \le p \le \infty$, and $0 \le \lambda \le 1$. Also we let $L^p(\mathbf{T})$ be the L^p -spaces on the unit circle \mathbf{T} , $L^{p,\lambda}(\mathbf{T})$ Morrey spaces on \mathbf{T} (cf. [14]), and $M(L^p, L^{p,\lambda})$ the set of all translation invariant bounded linear operators from $L^p(\mathbf{T})$ to $L^{p,\lambda}(\mathbf{T})$. Figa-Talamanca and Gaudry [2] showed $M(L^p, L^p) \ne M(L^q, L^q)$ ($1). In this paper, we generalize Gaudry's result. Our main results are <math>M(L^p, L^{p,\lambda}) \ne M(L^q, L^{q,\nu})$ for $\lambda/p \ne \nu/q$ ($1 < p, q < \infty$, $0 < \lambda, \nu < 1$), and $M(L^p, L^{p,\lambda}) \ne M(L^q, L^{q,\nu})$ for $2 and <math>\lambda/p = \nu/q$ ($0 < \lambda, \nu < 1$). Moreover, we show a relation between $M(L^p, L^{p,\lambda})$ and the measure whose distribution function satisfies a Lipschitz condition (cf. [4]).

1. Introduction

Let $1 \le p \le \infty$ and $0 \le \lambda \le 1$. Then $L^p(\mathbf{T})$ denotes the L^p -spaces on the unit circle \mathbf{T} and $L^{p,\lambda}(\mathbf{T})$ denotes Morrey spaces defined by

$$L^{p,\lambda}(\mathbf{T}) = \left\{ f \mid ||f||_{p,\lambda} := \sup_{\substack{I \subset \mathbf{T} = [-\pi,\pi) \\ I \neq \phi: \text{interval}}} \left(\frac{1}{|I|^{\lambda}} \int_{I} |f|^{p} \frac{dx}{2\pi} \right)^{\frac{1}{p}} < \infty \right\}.$$

We note $L^{p,0}(\mathbf{T}) = L^p(\mathbf{T}), \ L^{p,1}(\mathbf{T}) = L^{\infty}(\mathbf{T})$ and $L^{p,\lambda}(\mathbf{T})$ is a Banach space (cf. [10], [14; p.215]). We remark $L^{p,\lambda}(\mathbf{T}) \neq L^p(\mathbf{T})$ for $0 < \lambda < 1$ ([15]).

For Banach spaces X and Y which are translation invariant function spaces in $L^1(\mathbf{T})$, we denote by M(X, Y) the set of all operators which are translation invariant bounded linear operators from X to Y. We note M(X, Y) is a Banach space with respect to the operator norm $\|\cdot\|_{M(X,Y)}$. An element of M(X, Y) is called a Fourier multiplier (operator). When $X = L^p$ and $Y = L^q$, an element of $M(L^p, L^q) \cap M(\mathbf{T})$ for $1 \le p < q$ is called an L^p -improving measure ([6] cf. [5], [7]), where $M(\mathbf{T})$ is the set of all bounded regular Borel measures on **T**. Let μ be a non-negative measure on **T**. For $0 < \alpha < 1$, we denote $\mu \in Lip_{\alpha}(M(\mathbf{T}))$,

Received April 8, 2013; revised August 20, 2013

²⁰¹⁰ Mathematics Subject Classification: 42A45, 42A55

Key words and phrases: Fourier multipliers, Morrey spaces

The second author was supported in part by Grant-in-Aid for Scientific Research (C).

if there exists a positive constant *C* such that $\mu(I) \leq C|I|^{\alpha}$ for any non-empty interval $I \subset \mathbf{T}$. μ_f is called that the distribution function of μ_f satisfies the Lipschitz condition, if $\mu_f \in Lip_{\alpha}(M(\mathbf{T}))$ for some $0 < \alpha < 1$, where $\mu_f(E) = \int_E f(x) \frac{dx}{2\pi}$ for a measurable set *E* on **T** and a nonnegative function $f \in L^1(\mathbf{T})$. For $M(L^p, L^q)$ and $Lip_{\alpha}(M(\mathbf{T}))$, the following results are known.

THEOREM A ([2] cf. [3], [11]). Let 1 . Then we have $<math>M(L^p, L^p) \ne M(L^q, L^q)$.

THEOREM B ([4]). There exists $f \in L^1(\mathbf{T})$ with $f \ge 0$ such that

$$T_f \notin \bigcup_{1 \le p < q < \infty} M(L^p, L^q), \ \mu_f \in \bigcap_{0 < \alpha < 1} Lip_{\alpha}(M(\mathbf{T})).$$

Then we study those results in Morrey spaces.

Our main results are as follows:

THEOREM 1.1. Let $1 \le p, q < \infty$ and $0 < \lambda, \nu < 1$. Suppose $\frac{\lambda}{p} \ne \frac{\nu}{q}$. Then we have

$$M(L^p, L^{p,\lambda}) \neq M(L^q, L^{q,\nu}).$$

THEOREM 1.2. Let $0 < \lambda$, $\nu < 1$. Also let p, q be positive numbers with $1 + \lambda and <math>\frac{1}{p} + \frac{1}{q} < 1$. Suppose $\frac{\lambda}{p} = \frac{\nu}{q}$. Then we have

$$M(L^p, L^{p,\lambda}) \neq M(L^q, L^{q,\nu})$$

THEOREM 1.3. Let $f \in L^1(\mathbf{T})$ be a non-negative function. Then we have that μ_f is in $Lip_{\alpha}(M(\mathbf{T}))$ for some $0 < \alpha < 1$, if and only if $T_f \in M(L^p, L^{p,\lambda})$ for some 1 $and <math>0 < \lambda < 1$, where $T_f g = f * g$.

The paper is organized as follows: In §2, we investigate the inclusion relation between $L^{p}(\mathbf{T})$ and $L^{p,\lambda}(\mathbf{T})$. In §3, we prove Theorem 1.1 by the norm estimate of the Dirichlet kernel in $M(L^{p}, L^{p,\lambda})$. In §4, we prove Theorem 1.2 by using the norm estimate of the Rudin-Shapiro polynomials in $M(L^{p}, L^{p,\lambda})$. In §5, we prove Theorem 1.3. Throughout this paper, we denote by |E| the normalized Haar measure of $E \subset \mathbf{T}$.

The letter *C* stands for a constant not necessarily the same at each occurrence. $A \sim B$ stands for $C^{-1}A \leq B \leq CA$ for some C > 0.

2. $L^p(\mathbf{T})$ and $L^{p,\lambda}(\mathbf{T})$

In this section, we will consider the inclusion relation between the L^p -spaces and Morrey spaces on **T**.

PROPOSITION 2.1 (cf. [8; Proposition 5.1], [13; Lemma 1.3]). Let $1 \le r, p < \infty$ and $0 < \lambda < 1$. Then, we have the following:

- (1) $L^{p,\lambda}(\mathbf{T}) \subsetneq L^r(\mathbf{T})$ if $1 \le r \le p < \infty$;
- (2) $L^{p,\lambda}(\mathbf{T}) \not\subset L^{r}(\mathbf{T})$ and $L^{r}(\mathbf{T}) \not\subset L^{p,\lambda}(\mathbf{T})$ if $p < r < \frac{p}{1-\lambda}$;
- (3) $L^{r}(\mathbf{T}) \subsetneq L^{p,\lambda}(\mathbf{T}) \text{ if } r \ge \frac{p}{1-\lambda}.$

PROOF. (1) Since $L^{p,\lambda}(\mathbf{T}) \subsetneq L^p(\mathbf{T})$ (see [15; p.587]), we get the desired result. (2) By the assumption on r, we can choose $0 < \lambda_0 < \lambda$ as $r = \frac{p}{1-\lambda_0}$, and $\mu > 0$ such that $\frac{1-\lambda}{p} < \mu < \frac{1}{r}$. Set $f(x) = \chi_{(0,1)}(x)x^{-\mu} \in L^r(\mathbf{T})$. Then we have $f \notin L^{p,\lambda}(\mathbf{T})$. Let I = (a, b) for 0 < a < b < 1. By the mean value theorem, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |f|^{p} \frac{dx}{2\pi} = (b-a)^{-\lambda} \int_{a}^{b} x^{-p\mu} \frac{dx}{2\pi}$$
$$= C(b-a)^{1-\lambda} (a+\theta(b-a))^{-p\mu}$$
$$\geq C(b-a)^{1-\lambda} b^{-p\mu}$$

for some $0 < \theta < 1$. So, putting $a = \frac{b}{2}$, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |f|^{p} \frac{dx}{2\pi} \ge Cb^{1-\lambda-p\mu}$$

for all 0 < b < 1. Since $\mu > \frac{1-\lambda}{p}$, we have $f \notin L^{p,\lambda}(\mathbf{T})$. Therefore, we get $f \in L^r(\mathbf{T})$ and $f \notin L^{p,\lambda}(\mathbf{T})$.

Next we show $L^{p,\lambda}(\mathbf{T}) \not\subset L^r(\mathbf{T})$ for all $\lambda_0 < \lambda < 1$. Suppose $L^{p,\lambda}(\mathbf{T}) \subset L^r(\mathbf{T})$. By the closed graph theorem, there exists a constant *C* such that

$$\|f\|_r \le C \|f\|_{p,\lambda}$$

for all $f \in L^{p,\lambda}(\mathbf{T})$. Now let δ be in $0 < \delta < \frac{1}{10}$, and $N \in \mathbf{N}$. Also we denote $I(k, \delta) = \{x \in (0, 1) | \frac{k}{N} - \frac{\delta}{2} < x < \frac{k}{N} + \frac{\delta}{2}\}$ for k = 1, ..., N - 1, $I(N, \delta) = \{x \in (0, 1) | 1 - \frac{\delta}{2} < x < 1\}$, and $E = \bigcup_{k=1}^{N} I(k, \delta)$. Then we choose a natural number N such that $\delta N \sim \delta^{1-\lambda}$. Hence, we have $|E| \sim \delta N \sim \delta^{1-\lambda}$. When we define $g_{\delta} = \delta^{-\frac{1}{r}} \chi_E$. For any non-empty interval $I \subset \mathbf{T}$, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |g_{\delta}|^{p} \frac{dx}{2\pi} \leq |I|^{-\lambda} \delta^{-\frac{p}{r}} |E \cap I|.$$

Here, we investigate the left-hand sides of the inequality for $k = Card\{\ell | I(\ell, \delta) \cap (E \cap I) \neq \phi\} \ge 4$. Since $\frac{k}{2N} \le |I| \le \frac{k+1}{N}$ and $(k-2)\delta \le |E \cap I| \le k\delta$, we have

$$|I|^{-\lambda}\delta^{-\frac{p}{r}}|E\cap I| \leq |I|^{-\lambda}\delta^{-\frac{p}{r}}k\delta \leq |I|^{-\lambda}\delta^{-\frac{p}{r}}(2N|I|)\delta \leq C\delta^{\lambda_0-\lambda},$$

and

$$\frac{1}{|I|^{\lambda}} \int_{I} |g_{\delta}|^{p} \frac{dx}{2\pi} \leq C \delta^{\lambda_{0}-\lambda} \,.$$

Next we estimate $\frac{1}{|I|^{\lambda}} \int_{I} |g_{\delta}|^{p} \frac{dx}{2\pi}$ for $k = Card\{\ell | I(\ell, \delta) \cap (E \cap I) \neq \phi\} \leq 3$. Since $|E \cap I| \leq C \min\{3\delta, |I|\}$, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |g_{\delta}|^{p} \frac{dx}{2\pi} \leq C \min\{|I|^{1-\lambda} \delta^{-\frac{p}{r}}, |I|^{-\lambda} \delta^{1-\frac{p}{r}}\}.$$

Hence, we have $\frac{1}{|I|^{\lambda}} \int_{I} |g_{\delta}|^{p} \frac{dx}{2\pi} \leq C \delta^{1-\lambda-\frac{p}{r}}$ by using the case $|I| \leq \delta$ or $|I| > \delta$. Thus, we obtain $\|g_{\delta}\|_{p,\lambda} \leq C \delta^{\frac{\lambda_{0}-\lambda}{p}}$ for sufficiently small $\delta > 0$. By the assumption $L^{p,\lambda}(\mathbf{T}) \subset L^{r}(\mathbf{T})$, we have

$$\delta^{-\frac{\lambda}{r}} \sim \|g_{\delta}\|_{r} \leq C \|g_{\delta}\|_{p,\lambda} \leq C \delta^{\frac{\lambda_{0}-\lambda}{p}}$$

This contradicts $\delta^{\frac{\lambda-\lambda_0}{p}-\frac{\lambda}{r}} \leq C$ with $\frac{\lambda-\lambda_0}{p}-\frac{\lambda}{r}=\frac{\lambda_0}{p}(\lambda-1)<0$ for $0<\lambda<1$. Hence we have $L^{p,\lambda}(\mathbf{T}) \not\subset L^r(\mathbf{T})$.

(3) By the Hölder inequality, we have $||f||_{p,\lambda} \leq C ||f||_r$ for all $f \in L^r(\mathbf{T})$, and thus $L^r(\mathbf{T}) \subset L^{p,\lambda}(\mathbf{T})$. Suppose $r_0 = \frac{p}{1-\lambda}$. When we define $f(x) = \chi_{(0,1)}(x)x^{-\frac{1}{r_0}}$, it is easy to show $f \notin L^{r_0}(\mathbf{T})$ and $f \in L^{p,\lambda}(\mathbf{T})$ similar to (1). Thus, we have $L^r(\mathbf{T}) \subsetneq L^{p,\lambda}(\mathbf{T})$ for $r \geq \frac{p}{1-\lambda}$.

COROLLARY 2.2. Let D_N be the Dirichlet kernel $D_N(x) = \sum_{k=-N}^{N} e^{ikx}$ of degree N. Then, we have

$$\|D_N\|_{p,\lambda} \sim N^{\frac{\lambda}{p} + \frac{1}{p'}}$$

for any $1 \le p < \infty$ and $0 < \lambda < 1$.

PROOF. Since we have $L^{r}(\mathbf{T}) \subset L^{p,\lambda}(\mathbf{T})$ for $r = \frac{p}{1-\lambda}$ by Proposition 2.1 (3), there exists a constant C > 0 such that $||D_N||_{p,\lambda} \leq C ||D_N||_r$. By Edwards [1; Exercise 7.5], we have

$$||D_N||_{p,\lambda} \le C ||D_N||_r \sim N^{\frac{1}{r'}} = N^{\frac{\lambda}{p} + \frac{1}{p'}}.$$

For the interval $I_N = \left[-\frac{\pi}{2N+1}, \frac{\pi}{2N+1}\right]$, we have

$$|I_N|^{-\lambda} \int_{I_N} |D_N|^p \frac{dx}{2\pi} \ge |I_N|^{-\lambda} \int_0^{\frac{\pi}{2N+1}} \left(\frac{(N+\frac{1}{2})x\frac{2}{\pi}}{\frac{x}{2}}\right)^p \frac{dx}{2\pi} \sim N^{p+\lambda-1},$$

and $||D_N||_{p,\lambda} \ge CN^{\frac{\lambda}{p} + \frac{1}{p'}}$. Therefore, we get the desired result.

REMARK 2.3. Similarly, for the Poisson kernel $P_r(x) = \frac{1-r^2}{1-2r\cos x+r^2}$ (0 < r < 1), we have

$$||P_r||_{p,\lambda} \sim ((1-r)^{-1})^{\frac{\lambda}{p}+\frac{1}{p'}}$$

3.
$$M(L^p, L^{p,\lambda})$$
 and $M(L^q, L^{q,\nu})$ $(\frac{\lambda}{p} \neq \frac{\nu}{q})$

In this section, we consider between $M(L^p, L^{p,\lambda})$ and $M(L^q, L^{q,\nu})$. First we obtain the following:

LEMMA 3.1. Let $0 < \lambda < 1$ and $1 \le p, q < \infty$. Suppose $q > p(1 - \lambda)$. We define the operator $T \in M(L^p, L^{q,\lambda})$ such that $Tf = D_N * f$. Then, we have

$$||D_N||_{M(L^p, L^{q,\lambda})} = ||T||_{M(L^p, L^{q,\lambda})} \sim N^{\frac{1}{p} - \frac{1-\lambda}{q}}$$

In particular, $\|D_N\|_{M(L^p, L^{p,\lambda})} \sim N^{\frac{\lambda}{p}}$.

PROOF. Since we have $L^{r}(\mathbf{T}) \subset L^{q,\lambda}(\mathbf{T})$ for $r = \frac{q}{1-\lambda}$ and $L^{r}(\mathbf{T}) \subset L^{p}(\mathbf{T})$ by the assumption, we obtain $||T||_{M(L^{p},L^{q,\lambda})} \leq ||T||_{M(L^{p},L^{r})}$. By the norm estimate of D_{N} in $M(L^{p}, L^{r})$ (cf. [1]), we get

$$||T||_{M(L^p,L^r)} \leq CN^{\frac{1}{p}-\frac{1}{r}}.$$

Conversely, we have $||T||_{M(L^p, L^{q,\lambda})} \ge CN^{\frac{1}{p} - \frac{1-\lambda}{q}}$, by $||D_N||_{q,\lambda} \le ||T||_{M(L^p, L^{q,\lambda})} ||D_N||_p$ and Corollary 2.2. Hence, we obtain

$$\|D_N\|_{M(L^p, L^{q,\lambda})} = \|T\|_{M(L^p, L^{q,\lambda})} \sim N^{\frac{1}{p} - \frac{1-\lambda}{q}}$$

and we get the desired result.

Now we can prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let $0 < \lambda, \nu < 1, 1 \le p, q < \infty$, and $\frac{\lambda}{p} \neq \frac{\nu}{q}$. By Lemma 3.1, we have $||D_N||_{M(L^p, L^{p,\lambda})} \sim N^{\frac{\lambda}{p}}$. Thus, we obtain $M(L^p, L^{p,\lambda}) \neq M(L^q, L^{q,\nu})$.

COROLLARY 3.2. Let $0 < \lambda, \nu < 1$ and $1 \le p, q < \infty$. Suppose $\frac{\lambda}{p} > \frac{\nu}{q}$. Then there exists $f \in L^1(\mathbf{T})$ such that $T_f \in M(L^q, L^{q,\nu})$ and $T_f \notin M(L^p, L^{p,\lambda})$, where $T_f g = f * g$.

PROOF. Let *a* be a positive number with $\frac{\nu}{q} < a < \frac{\lambda}{p}$. Also we define $k_n = 2^{n+4}$. Then, we have $k_n + 2^n < k_{n+1} - 2^{n+1}$ $(n \ge 1)$. When we define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{2^{an}} D_{2^n}(x) e^{ik_n x},$$

we show that T_f satisfies the desired conditions. When we choose r such that $\frac{1}{r'} < \frac{v}{q}$ with $\frac{1}{r} + \frac{1}{r'} = 1$, we have

$$||f||_r \le C \sum_{n=1}^{\infty} \frac{1}{2^{an}} ||D_{2^n}(x)e^{ik_n x}||_r$$

$$\leq C \sum_{n=1}^{\infty} 2^{n(-a+\frac{1}{r'})} < \infty \,,$$

and $f \in L^r(\mathbf{T}) \subset L^1(\mathbf{T})$. Also we obtain $T_f \in M(L^q, L^{q,\nu})$, since

$$\|f * g\|_{q,\nu} \le C \sum_{n=1}^{\infty} \frac{1}{2^{an}} \|D_{2^n}(x)e^{ik_nx} * g\|_{q,\nu}$$
$$\le C \|g\|_q$$

by Lemma 3.1 and $a > \frac{\nu}{q}$. Similarly, since $T_f(D_{2^n}(x)e^{ik_nx}) = 2^{-an}D_{2^n}(x)e^{ik_nx}$, we have $T_f \notin M(L^p, L^{p,\lambda})$. Thus, we get the desired result.

REMARK 3.3. We have $M(L^p, L^{p,\lambda}) = M(L^p, L_0^{p,\lambda})$ $(1 \le p < \infty, 0 < \lambda < 1)$, where $L_0^{p,\lambda}(\mathbf{T})$ is the closure of $C(\mathbf{T})$ in $L^{p,\lambda}(\mathbf{T})$.

REMARK 3.4. We remark $M(L^1, L^{p,\lambda}) = L^{p,\lambda}(\mathbf{T})$ (1 . In $fact, let <math>f_0$ be in $L^{p,\lambda}(\mathbf{T})$, and g in $L^1(\mathbf{T})$. Then we have $||f_0 * g||_{p,\lambda} \leq ||f_0||_{p,\lambda} ||g||_1$ by the Hölder inequality, and $L^{p,\lambda}(\mathbf{T}) \subset M(L^1, L^{p,\lambda})$. Conversely, let T be in $M(L^1, L^{p,\lambda})$, and $K_N(x) = \sum_{j=-N}^N (1 - \frac{|j|}{N+1})e^{ijx}$ the Fejér kernel of degree N. Then we obtain $TK_N \in L^{p,\lambda}(\mathbf{T})$ and $||TK_N||_{p,\lambda} \leq ||T||_{M(L^1,L^{p,\lambda})}$ $(N \geq 1)$. Hence, there exists $\{TK_{N_j}\}_j$, a subsequence of $\{TK_N\}_N$, such that TK_{N_j} converges in the weak*-topology of $L^{p,\lambda}(\mathbf{T})$ for some $f \in L^{p,\lambda}(\mathbf{T})$. By the Banach-Alaoglu theorem, since we have the predual of $L^{p,\lambda}(\mathbf{T})$ ([15]), we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} Tg(x)h(x)dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f * g(x)h(x)dx$$

for all $h \in C(\mathbf{T})$ and any trigonometric polynomial g. Therefore, we obtain $Tg = f * g \ (g \in L^1(\mathbf{T}))$. Then we get $M(L^1, L^{p,\lambda}) = L^{p,\lambda}(\mathbf{T})$.

PROPOSITION 3.5. Let $0 < \lambda, \nu < 1$ and $1 < p, q < \infty$. Suppose $2 or <math>q . For <math>\lambda = \frac{p-2}{q-2}\nu$, we have

$$M(L^q, L^{q,\nu}) \subseteq M(L^p, L^{p,\lambda})$$

PROOF. Since $L^{q,\nu}(\mathbf{T}) \subset L^q(\mathbf{T})$, we have $M(L^q, L^{q,\nu}) \subset M(L^2, L^2)$. First let $2 , and <math>T \in M(L^q, L^{q,\nu})$. Since T is bounded from $L^q(\mathbf{T})$ to $L^{q,\nu}(\mathbf{T})$ and from $L^2(\mathbf{T})$ to $L^2(\mathbf{T})$, we obtain that T is bounded from $L^p(\mathbf{T})$ to $L^{p,\kappa}(\mathbf{T})$ by the Peetre interpolation theorem [12; Theorem 4.1], where p and κ are defined by $\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{2}$ and $\frac{\kappa}{p} = \frac{\theta}{q}\nu + \frac{1-\theta}{2}0$. Then an arithmetic shows $\kappa = \frac{p-2}{q-2}\nu$. Since $\frac{\lambda}{p} \neq \frac{\nu}{q}$, we have $M(L^p, L^{p,\lambda}) \neq M(L^q, L^{q,\nu})$.

4. $M(L^p, L^{p,\lambda})$ and $M(L^q, L^{q,\nu})$ $(\frac{\lambda}{p} = \frac{\nu}{q})$

In this section, we consider the inclusion relation between $M(L^p, L^{p,\lambda})$ and $M(L^q, L^{q,\nu})$ for $\frac{\lambda}{p} = \frac{\nu}{q}$, and $0 < \lambda, \nu < 1$, 1 . For this, we recall the Rudin-Shapiro polynomials (cf. [9], [14]).

DEFINITION 4.1. Let *m* be a non-negative integer. We define trigonometric polynomials $P_m(x)$, $Q_m(x)$ such that

- (1) $P_0(x) = Q_0(x) = 1;$
- (2) $P_{m+1}(x) = P_m(x) + e^{i2^m x} Q_m(x), \ Q_{m+1}(x) = P_m(x) e^{i2^m x} Q_m(x).$

We prepare the following lemmas which will be used in the proof of Theorem 1.2.

LEMMA 4.2 (cf. [9], [14]). The Rudin-Shapiro polynomials P_m , Q_m have the following properties:

(1) $P_m(x) = \sum_{k=0}^{2^m-1} \varepsilon_k e^{ikx}, \ Q_m(x) = \sum_{k=0}^{2^m-1} \eta_k e^{ikx} \text{ for some } \varepsilon_k, \eta_k \in \{-1, 1\};$

(2)
$$|P_m(x)| \le C(2^m)^{\frac{1}{2}} \ (x \in \mathbf{T});$$

(3) $||T_m||_{M(L^q,L^q)} \sim (2^m)^{|\frac{1}{2} - \frac{1}{q}|} (1 < q < \infty)$, where $T_m f = P_m * f$.

By Lemma 4.2 and the Peetre interpolation theorem [12], we obtain the following:

LEMMA 4.3. Let $0 < \lambda < 1$, and $p > 1 + \lambda$. Then we have the estimates:

$$||T_m||_{M(L^p, L^{p,\lambda})} \sim (2^m)^{\frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p}} \quad (p \ge 2);$$

$$\|T_m\|_{M(L^p, L^{p,\lambda})} \le C(2^m)^{\frac{\lambda}{p} + \frac{1}{p} - \frac{1}{2}} \quad (1 + \lambda$$

$$\|T_m\|_{M(L^p, L^{p, \lambda})} \ge C(2^m)^{\frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p}} \quad (1 + \lambda$$

where $T_m f = P_m * f$.

PROOF. Step 1. We show $||T_m||_{M(L^2, L^{2,\lambda})} \sim (2^m)^{\frac{\lambda}{2}}$. Let *P* be a trigonometric polynomial such that $P(x) = \sum_{k=-n}^{n} a_k e^{ikx}$ for any positive integer *n*. Since $P_m * P(x) = \sum_{k=0}^{\min(2^m-1,n)} \varepsilon_k a_k e^{ikx}$, we have $|P_m * P(x)|^2 \leq C2^m ||P||_2^2$ by the Schwarz inequality. Then for any interval *I* with $|I| < 2^{-m}$, we have

$$\frac{1}{|I|^{\lambda}} \int_{I} |P_m * P|^2 \frac{dx}{2\pi} \le C 2^{m\lambda} \|P\|_2^2$$

by the Parseval inequality. When $|I| \ge 2^{-m}$, we obtain

$$\frac{1}{|I|^{\lambda}} \int_{I} |P_m * P|^2 \frac{dx}{2\pi} \le \frac{1}{|I|^{\lambda}} \int_{-\pi}^{\pi} |P_m * P|^2 \frac{dx}{2\pi}$$

$$\leq \frac{1}{|I|^{\lambda}} \sum_{k=0}^{2^m-1} |a_k|^2$$
$$\leq C 2^{m\lambda} \|P\|_2^2$$

by the Parseval inequality. Hence, we get $||T_m P||_{2,\lambda} \leq C(2^m)^{\frac{\lambda}{2}} ||P||_2$, and $||T_m||_{M(L^2,L^{2,\lambda})} \leq C(2^m)^{\frac{\lambda}{2}}$. On the other hand, since

$$\|P_m * P_m\|_{2,\lambda} \le \|T_m\|_{M(L^2, L^{2,\lambda})} \|P_m\|_2$$
$$\le C \|T_m\|_{M(L^2, L^{2,\lambda})} (2^m)^{\frac{1}{2}}$$

and $||P_m * P_m||_{2,\lambda} \sim (2^m)^{\frac{\lambda}{2} + \frac{1}{2}}$ by Lemma 4.2, we obtain $||T_m||_{M(L^2, L^{2,\lambda})} \sim (2^m)^{\frac{\lambda}{2}}$. Step 2. When p > 2 and $0 < \lambda < 1$, we have

$$||T_m||_{M(L^p,L^{p,\lambda})} \sim (2^m)^{\frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p}}$$

In fact, let r > 2 and $0 < \theta, \kappa < 1$ such that $\frac{1}{p} = \frac{\theta}{2} + \frac{1-\theta}{r}$ and $\frac{\lambda}{p} = \frac{\theta}{2}\kappa$. By Lemma 4.2, we have $||T_m||_{M(L^r,L^r)} \sim (2^m)^{\frac{1}{2}-\frac{1}{r}}$. Applying Step 1 and the Peetre interpolation theorem, we have

$$\|T_m\|_{M(L^p,L^{p,\lambda})} \le C(2^m)^{\frac{\theta_{\kappa}}{2}} (2^m)^{(\frac{1}{2}-\frac{1}{r})(1-\theta)}.$$

Hence, we obtain $||T_m||_{M(L^p, L^{p,\lambda})} \le C(2^m)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}$. Conversely, we get

$$\|T_m\|_{M(L^p, L^{p,\lambda})} \ge C(2^m)^{\frac{\lambda}{p} + \frac{1}{p'} - \frac{1}{2}} \sim (2^m)^{\frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p}}$$

by Corollary 2.2 and Lemma 4.2. Therefore we have $||T_m||_{M(L^p,L^{p,\lambda})} \sim (2^m)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}$.

Step 3. We show $||T_m||_{M(L^p, L^{p,\lambda})} \le C(2^m)^{\frac{\lambda}{p} + \frac{1}{p} - \frac{1}{2}}$ for $1 + \lambda . First, we choose <math>1 < r < p$ and $0 < \theta, \kappa < 1$ such that $\frac{1}{p} = \frac{\theta}{2} + \frac{1-\theta}{r}$ and $\frac{\lambda}{p} = \frac{\theta}{2}\kappa$. Then, we can show that

$$\|T_m\|_{M(L^p, L^{p,\lambda})} \le C \|T_m\|_{M(L^2, L^{2,\lambda})}^{\theta} \|T_m\|_{M(L^r, L^r)}^{1-\theta}$$

< $C(2^m)^{\frac{\lambda}{p} + \frac{1}{p} - \frac{1}{2}}$

by applying the Peetre interpolation theorem. On the other hand, by $||T_m(P_m)||_{p,\lambda} \sim (2^m)^{\frac{\lambda}{p} + \frac{1}{p'}}$ we have $||T_m||_{M(L^p, L^{p,\lambda})} \geq C(2^m)^{\frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p}}$, similarly in Step 2. After all, we get the desired result.

PROOF OF THEOREM 1.2. By the assumption, we have q > 2, and $\|T_m\|_{M(L^q, L^{q,\nu})} \sim (2^m)^{\frac{\lambda}{q} + \frac{1}{2} - \frac{1}{q}}$ for *m*. If we have $M(L^p, L^{p,\lambda}) = M(L^q, L^{q,\nu})$, we obtain the

contradiction to p < q for p > 2. For $1 + \lambda , we have <math>M(L^p, L^{p,\lambda}) \ne M(L^q, L^{q,\nu})$ by the estimate in Lemma 4.3. Then we get the desired result.

COROLLARY 4.4. Let $0 < \lambda, \nu < 1, 1+\lambda < p < q$, and $\frac{1}{p} + \frac{1}{q} < 1$. Suppose $\frac{\lambda}{p} = \frac{\nu}{q}$. Then there exists $T \in M(L^p, L^{p,\lambda})$ such that $T \notin M(L^q, L^{q,\nu})$.

PROOF. Let $2 . Then there exists <math>a \text{ in } \frac{\lambda}{p} + \frac{1}{2} - \frac{1}{p} < a < \frac{\nu}{q} + \frac{1}{2} - \frac{1}{q}$. Also we define $k_n = 2^{n+4}$. Then, we have $k_n + 2^{n+1} < k_{n+1} - 2^{n+2}$. We define

$$S_N(x) = \sum_{m=1}^N \frac{1}{2^{am}} P_m(x) e^{ik_m x}$$

for any $N \in \mathbb{N}$. Then, $\{S_N\}_N$ is a Cauchy sequence in $M(L^p, L^{p,\lambda})$ by the choice of a and Lemma 4.3, and there exists $S \in M(L^p, L^{p,\lambda})$ such that $||S_N - S||_{M(L^p, L^{p,\lambda})} \to 0$ as $N \to \infty$. Also let g be a function such that $g(x) = P_m(x)e^{ik_mx}$. We consider $\{S_N * g\}_{N>m}$. Then we can prove $S \notin M(L^q, L^{q,\nu})$ by the way similar to Corollary 3.2 in view of the choice of a. In case of $p \le 2 \le q$, we omit the details, since the proof is similar to it of the case 2 .

5. $M(L^p, L^{p,\lambda})$ and the Lipschitz conditions

DEFINITION 5.1. Let μ be in $M(\mathbf{T})$ and $0 < \alpha < 1$. We say that $\mu \in Lip_{\alpha}(M(\mathbf{T}))$ for $\mu \in M(\mathbf{T})$ with $\mu \ge 0$ if for any interval I = [x, x + h],

$$\mu(I) \le C|I|^{\alpha} = C|h|^{\alpha}$$

for some constant C > 0 independent of I. For $f \in L^1(\mathbf{T})$ with $f \ge 0$, we denote $\mu_f(E) = \frac{1}{2\pi} \int_E f(x) dx$ for any measurable set $E \subset \mathbf{T}$.

It is easy to prove the following:

PROPOSITION 5.2. Let f be in $L^1(\mathbf{T})$ with $f \ge 0$. Then we have that μ_f is in $Lip_{\alpha}(M(\mathbf{T}))$ if and only if $f \in L^{1,\alpha}(\mathbf{T})$.

By applying Proposition 5.2, we can show the following:

PROPOSITION 5.3. Suppose $f \in L^1(\mathbf{T})$ and $f \ge 0$. Then we have the following:

- (1) If $\mu_f \in Lip_{\alpha}(M(\mathbf{T}))$ for $0 < \alpha < 1$, then $T_f \in M(L^p, L^{p,\alpha})$ for all 1 .
- (2) If $T_f \in M(L^p, L^{p,\lambda})$ for some $1 and <math>0 < \lambda < 1$, then $\mu_f \in Lip_{\underline{\lambda}}(M(\mathbf{T}))$.

PROOF. (1) Since $\mu_f \in Lip_{\alpha}(M(\mathbf{T}))$ for all $0 < \alpha < 1$, we get $f \in L^{1,\alpha}(\mathbf{T})$ by Proposition 5.2. Let $I \subset \mathbf{T}$ be a nonempty interval. For $g \in L^p(\mathbf{T})$, we have

$$\frac{1}{|I|^{\alpha}} \int_{I} \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y)g(y)dy \right|^{p} \frac{dx}{2\pi}$$

$$\leq \frac{1}{|I|^{\alpha}} \int_{I} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(y)|^{p} |f(x-y)| dy \right) \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x-y)| dy \right)^{\frac{p}{p'}} \frac{dx}{2\pi}$$

$$\leq \|f\|_{1,\alpha}^{p} \|g\|_{p}^{p}$$

by the Hölder inequality. Hence, we obtain $||f * g||_{p,\alpha} \le ||f||_{1,\alpha} ||g||_p$ and $T_f \in M(L^p, L^{p,\alpha})$.

(2) Let f be in
$$L^1(\mathbf{T})$$
 with $f \ge 0$, and $T_f \in M(L^p, L^{p,\lambda})$. Now, let $I_{\delta} = [-\delta, \delta] (0 < 0)$

 $\delta < 1$) and $g = \chi_{I_{\delta}}$. It is sufficient to show $\mu_f(I_{\eta}) \leq C |I_{\eta}|^{\frac{\lambda}{p}}$ for sufficiently small $\eta > 0$. First we remark

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(x - y) f(y) dy = \mu_f (I_{\delta} + x),$$

and $I_{\frac{\delta}{2}} \subset I_{\delta} + x$ for $x \in I_{\frac{\delta}{2}}$. Hence, we obtain

$$\frac{1}{|I_{\delta}|^{\lambda}}\int_{I_{\delta}}|f\ast g|^{p}\frac{dx}{2\pi}\geq\frac{1}{|I_{\delta}|^{\lambda}}\int_{I_{\frac{\delta}{2}}}\mu_{f}(I_{\frac{\delta}{2}})^{p}\frac{dx}{2\pi},$$

and

$$|I_{\delta}|^{-\lambda} \mu_{f}(I_{\frac{\delta}{2}})^{p} |I_{\frac{\delta}{2}}| \leq |I_{\delta}|^{-\lambda} \int_{I_{\delta}} |f * g|^{p} \frac{dx}{2\pi}$$
$$\leq ||f * g||_{p,\lambda}^{p}$$
$$\leq ||T_{f}||_{M(L^{p},L^{p,\lambda})}^{p} ||g||_{p}^{p}$$
$$\leq C|I_{\delta}|.$$

Therefore, we get $\mu_f(I_{\frac{\delta}{2}}) \leq C |I_{\frac{\delta}{2}}|^{\frac{\lambda}{p}}$, and the desired result.

As a corollary of Proposition 5.3, we have Theorem 1.3.

Moreover, by Theorem B and Proposition 5.3, we conclude that $M(L^r, L^{r,\lambda})$ are different from $M(L^p, L^q)$ $(1 \le p < q < \infty)$. Precisely, we obtain the following corollary:

COROLLARY 5.4. Let $1 \le p < q < \infty$, $1 \le r < \infty$, and $0 < \lambda < 1$. Then we have $M(L^p, L^q) \ne M(L^r, L^{r,\lambda})$.

References

- R. E. EDWARDS, Fourier Series: A Modern Introduction, Vol. I. Holt, Rinehard and Winston, Inc., New York-Montreal, Que.-London, 1967.
- [2] A. FIGA-TALAMANCA and G. I. GAUDRY, Multipliers and sets of uniqueness of L^p, Michigan Math. J. 17 (1970), 179–191.
- [3] G. I. GAUDRY, Multipliers of type (p, q), Pacific J. Math. 18 (1966), 477–488.
- [4] C. C. GRAHAM, K. E. HARE and D. L. RITTER, The size of L^p-improving measures, J. Funct. Anal. 84 (1989), 472–495.

FOURIER MULTIPLIERS FROM L^p-SPACES TO MORREY SPACES

- [5] R. J. GRINNELL and K. E. HARE, Lorentz-improving measures, Illinois J. Math. 38 (1994), 366–389.
- [6] K. E. HARE, A characterization of L^p-improving measures, Proc. Amer. Math. Soc. **102** (1988), 295–299.
- [7] K. E. HARE, Properties and examples of (L^p, L^q) multipliers, Indiana Univ. Math. J. **38** (1989), 211–227.
- [8] T. IIDA, E. SATO, Y. SAWANO and H. TANAKA, Multilinear fractional integrals on Morrey spaces, Acta Math. Sin. 28 (2012), 1375–1384.
- [9] Y. KATZNELSON, An Introduction to Harmonic Analysis, Dover publications, Inc., 1968.
- [10] A. KUFNER ET AL., Function spaces, Academia Publishing House of the Czechoslovak Academy of Sciences, 1977.
- [11] R. LARSEN, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.
- [12] J. PEETRE, On the theory of $\mathcal{L}_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71–87.
- [13] Y. SAWANO, T. SOBUKAWA and H. TANAKA, Limiting case of the boundedness of fractional integral operators on nonhomogeneous space, J. Inequal. Appl. 2006.
- [14] A. TORCHINSKY, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., 1986.
- [15] C. T. ZORKO, Morrey spaces, Proc. Amer. Math. Soc. 98 (1986), 586–592.

Present Addresses: Takashi Izumi Kojirakawa-machi 1–5–18, Yamagata, 990–0021 Japan.

ENJI SATO DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, YAMAGATA UNIVERSITY, YAMAGATA, 990–8560 JAPAN. *e-mail*: esato@sci.kj.yamagata-u.ac.jp