Fourier Multipliers from L^{p}-spaces to Morrey Spaces on the Unit Circle

Takashi IZUMI and Enji SATO

Yamagata University
(Communicated by K. Takemura)

Abstract

Let p, λ be real numbers such that $1 \leq p \leq \infty$, and $0 \leq \lambda \leq 1$. Also we let L^{p} (T) be the L^{p}-spaces on the unit circle $\mathbf{T}, L^{p, \lambda}(\mathbf{T})$ Morrey spaces on \mathbf{T} (cf. [14]), and $M\left(L^{p}, L^{p, \lambda}\right)$ the set of all translation invariant bounded linear operators from $L^{p}(\mathbf{T})$ to $L^{p, \lambda}(\mathbf{T})$. Figa-Talamanca and Gaudry [2] showed $M\left(L^{p}, L^{p}\right) \neq$ $M\left(L^{q}, L^{q}\right)(1<p<q \leq 2)$. In this paper, we generalize Gaudry's result. Our main results are $M\left(L^{p}, L^{p, \lambda}\right) \neq$ $M\left(L^{q}, L^{q, v}\right)$ for $\lambda / p \neq v / q(1<p, q<\infty, 0<\lambda, v<1)$, and $M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, v}\right)$ for $2<p<q$ and $\lambda / p=v / q(0<\lambda, v<1)$. Moreover, we show a relation between $M\left(L^{p}, L^{p, \lambda}\right)$ and the measure whose distribution function satisfies a Lipschitz condition (cf. [4]).

1. Introduction

Let $1 \leq p \leq \infty$ and $0 \leq \lambda \leq 1$. Then $L^{p}(\mathbf{T})$ denotes the L^{p}-spaces on the unit circle \mathbf{T} and $L^{p, \lambda}(\mathbf{T})$ denotes Morrey spaces defined by

$$
L^{p, \lambda}(\mathbf{T})=\left\{f \mid\|f\|_{p, \lambda}:=\sup _{\substack{I \subset \mathbf{T}=[-\pi, \pi) \\ I \neq \phi: \text { interval }}}\left(\frac{1}{|I|^{\lambda}} \int_{I}|f|^{p} \frac{d x}{2 \pi}\right)^{\frac{1}{p}}<\infty\right\}
$$

We note $L^{p, 0}(\mathbf{T})=L^{p}(\mathbf{T}), L^{p, 1}(\mathbf{T})=L^{\infty}(\mathbf{T})$ and $L^{p, \lambda}(\mathbf{T})$ is a Banach space (cf. [10], [14; p.215]). We remark $L^{p, \lambda}(\mathbf{T}) \neq L^{p}(\mathbf{T})$ for $0<\lambda<1$ ([15]).

For Banach spaces X and Y which are translation invariant function spaces in $L^{1}(\mathbf{T})$, we denote by $M(X, Y)$ the set of all operators which are translation invariant bounded linear operators from X to Y. We note $M(X, Y)$ is a Banach space with respect to the operator norm $\|\cdot\|_{M(X, Y)}$. An element of $M(X, Y)$ is called a Fourier multiplier (operator). When $X=L^{p}$ and $Y=L^{q}$, an element of $M\left(L^{p}, L^{q}\right) \cap M(\mathbf{T})$ for $1 \leq p<q$ is called an L^{p}-improving measure ([6] cf. [5], [7]), where $M(\mathbf{T})$ is the set of all bounded regular Borel measures on T. Let μ be a non-negative measure on \mathbf{T}. For $0<\alpha<1$, we denote $\mu \in \operatorname{Lip}_{\alpha}(M(\mathbf{T}))$,

Received April 8, 2013; revised August 20, 2013
2010 Mathematics Subject Classification: 42A45, 42A55
Key words and phrases: Fourier multipliers, Morrey spaces
The second author was supported in part by Grant-in-Aid for Scientific Research (C).
if there exists a positive constant C such that $\mu(I) \leq C|I|^{\alpha}$ for any non-empty interval $I \subset \mathbf{T} . \mu_{f}$ is called that the distribution function of μ_{f} satisfies the Lipschitz condition, if $\mu_{f} \in \operatorname{Lip}_{\alpha}(M(\mathbf{T}))$ for some $0<\alpha<1$, where $\mu_{f}(E)=\int_{E} f(x) \frac{d x}{2 \pi}$ for a measurable set E on \mathbf{T} and a nonnegative function $f \in L^{1}(\mathbf{T})$. For $M\left(L^{p}, L^{q}\right)$ and $\operatorname{Lip} p_{\alpha}(M(\mathbf{T}))$, the following results are known.

Theorem A ([2] cf. [3], [11]). Let $1<p<q \leq 2$. Then we have

$$
M\left(L^{p}, L^{p}\right) \neq M\left(L^{q}, L^{q}\right) .
$$

Theorem B ([4]). There exists $f \in L^{1}(\mathbf{T})$ with $f \geq 0$ such that

$$
T_{f} \notin \bigcup_{1 \leq p<q<\infty} M\left(L^{p}, L^{q}\right), \mu_{f} \in \bigcap_{0<\alpha<1} \operatorname{Lip}_{\alpha}(M(\mathbf{T})) .
$$

Then we study those results in Morrey spaces.
Our main results are as follows:
Theorem 1.1. Let $1 \leq p, q<\infty$ and $0<\lambda, v<1$. Suppose $\frac{\lambda}{p} \neq \frac{\nu}{q}$. Then we have

$$
M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, \nu}\right)
$$

THEOREM 1.2. Let $0<\lambda, v<1$. Also let p, q be positive numbers with $1+\lambda<p<$ q and $\frac{1}{p}+\frac{1}{q}<1$. Suppose $\frac{\lambda}{p}=\frac{\nu}{q}$. Then we have

$$
M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, \nu}\right)
$$

THEOREM 1.3. Let $f \in L^{1}(\mathbf{T})$ be a non-negative function. Then we have that μ_{f} is in Lip $(M(\mathbf{T}))$ for some $0<\alpha<1$, if and only if $T_{f} \in M\left(L^{p}, L^{p, \lambda}\right)$ for some $1<p<\infty$ and $0<\lambda<1$, where $T_{f} g=f * g$.

The paper is organized as follows: In §2, we investigate the inclusion relation between $L^{p}(\mathbf{T})$ and $L^{p, \lambda}(\mathbf{T})$. In $\S 3$, we prove Theorem 1.1 by the norm estimate of the Dirichlet kernel in $M\left(L^{p}, L^{p, \lambda}\right)$. In $\S 4$, we prove Theorem 1.2 by using the norm estimate of the Rudin-Shapiro polynomials in $M\left(L^{p}, L^{p, \lambda}\right)$. In $\S 5$, we prove Theorem 1.3. Throughout this paper, we denote by $|E|$ the normalized Haar measure of $E \subset \mathbf{T}$.

The letter C stands for a constant not necessarily the same at each occurrence. $A \sim B$ stands for $C^{-1} A \leq B \leq C A$ for some $C>0$.

2. $L^{p}(\mathbf{T})$ and $L^{p, \lambda}(\mathbf{T})$

In this section, we will consider the inclusion relation between the L^{p}-spaces and Morrey spaces on \mathbf{T}.

Proposition 2.1 (cf. [8; Proposition 5.1], [13; Lemma 1.3]). Let $1 \leq r, p<\infty$ and $0<\lambda<1$. Then, we have the following:
(1) $L^{p, \lambda}(\mathbf{T}) \subsetneq L^{r}(\mathbf{T})$ if $1 \leq r \leq p<\infty$;
(2) $L^{p, \lambda}$ ($\mathbf{T} \not \not \subset L^{r}$ ($\left.\mathbf{T}\right)$ and $L^{r}(\mathbf{T}) \not \subset L^{p, \lambda}(\mathbf{T})$ if $p<r<\frac{p}{1-\lambda}$;
(3) $L^{r}(\mathbf{T}) \subsetneq L^{p, \lambda}(\mathbf{T})$ if $r \geq \frac{p}{1-\lambda}$.

Proof. (1) Since $L^{p, \lambda}(\mathbf{T}) \subsetneq L^{p}(\mathbf{T})$ (see [15; p.587]), we get the desired result.
(2) By the assumption on r, we can choose $0<\lambda_{0}<\lambda$ as $r=\frac{p}{1-\lambda_{0}}$, and $\mu>0$ such that $\frac{1-\lambda}{p}<\mu<\frac{1}{r}$. Set $f(x)=\chi_{(0,1)}(x) x^{-\mu} \in L^{r}(\mathbf{T})$. Then we have $f \notin L^{p, \lambda}(\mathbf{T})$. Let $I=(a, b)$ for $0<a<b<1$. By the mean value theorem, we have

$$
\begin{aligned}
\frac{1}{|I|^{\lambda}} \int_{I}|f|^{p} \frac{d x}{2 \pi} & =(b-a)^{-\lambda} \int_{a}^{b} x^{-p \mu} \frac{d x}{2 \pi} \\
& =C(b-a)^{1-\lambda}(a+\theta(b-a))^{-p \mu} \\
& \geq C(b-a)^{1-\lambda} b^{-p \mu}
\end{aligned}
$$

for some $0<\theta<1$. So, putting $a=\frac{b}{2}$, we have

$$
\frac{1}{|I|^{\lambda}} \int_{I}|f|^{p} \frac{d x}{2 \pi} \geq C b^{1-\lambda-p \mu}
$$

for all $0<b<1$. Since $\mu>\frac{1-\lambda}{p}$, we have $f \notin L^{p, \lambda}(\mathbf{T})$. Therefore, we get $f \in L^{r}(\mathbf{T})$ and $f \notin L^{p, \lambda}(\mathbf{T})$.

Next we show $L^{p, \lambda}(\mathbf{T}) \not \subset L^{r}(\mathbf{T})$ for all $\lambda_{0}<\lambda<1$. Suppose $L^{p, \lambda}(\mathbf{T}) \subset L^{r}(\mathbf{T})$. By the closed graph theorem, there exists a constant C such that

$$
\|f\|_{r} \leq C\|f\|_{p, \lambda}
$$

for all $f \in L^{p, \lambda}(\mathbf{T})$. Now let δ be in $0<\delta<\frac{1}{10}$, and $N \in \mathbf{N}$. Also we denote $I(k, \delta)=\{x \in$ $\left.(0,1) \left\lvert\, \frac{k}{N}-\frac{\delta}{2}<x<\frac{k}{N}+\frac{\delta}{2}\right.\right\}$ for $k=1, \ldots, N-1, I(N, \delta)=\left\{x \in(0,1) \left\lvert\, 1-\frac{\delta}{2}<x<1\right.\right\}$, and $E=\cup_{k=1}^{N} I(k, \delta)$. Then we choose a natural number N such that $\delta N \sim \delta^{1-\lambda}$. Hence, we have $|E| \sim \delta N \sim \delta^{1-\lambda}$. When we define $g_{\delta}=\delta^{-\frac{1}{r}} \chi_{E}$. For any non-empty interval $I \subset \mathbf{T}$, we have

$$
\frac{1}{|I|^{\lambda}} \int_{I}\left|g_{\delta}\right|^{p} \frac{d x}{2 \pi} \leq|I|^{-\lambda} \delta^{-\frac{p}{r}}|E \cap I|
$$

Here, we investigate the left-hand sides of the inequality for $k=\operatorname{Card}\{\ell \mid I(\ell, \delta) \cap(E \cap I) \neq$ $\phi\} \geq 4$. Since $\frac{k}{2 N} \leq|I| \leq \frac{k+1}{N}$ and $(k-2) \delta \leq|E \cap I| \leq k \delta$, we have

$$
|I|^{-\lambda} \delta^{-\frac{p}{r}}|E \cap I| \leq|I|^{-\lambda} \delta^{-\frac{p}{r}} k \delta \leq|I|^{-\lambda} \delta^{-\frac{p}{r}}(2 N|I|) \delta \leq C \delta^{\lambda_{0}-\lambda},
$$

and

$$
\frac{1}{|I|^{\lambda}} \int_{I}\left|g_{\delta}\right|^{p} \frac{d x}{2 \pi} \leq C \delta^{\lambda_{0}-\lambda}
$$

Next we estimate $\frac{1}{|I|^{\lambda}} \int_{I}\left|g_{\delta}\right|^{2} \frac{d x}{2 \pi}$ for $k=\operatorname{Card}\{\ell \mid I(\ell, \delta) \cap(E \cap I) \neq \phi\} \leq 3$. Since $|E \cap I| \leq C \min \{3 \delta,|I|\}$, we have

$$
\frac{1}{|I|^{\lambda}} \int_{I}\left|g_{\delta}\right|^{p} \frac{d x}{2 \pi} \leq C \min \left\{|I|^{1-\lambda} \delta^{-\frac{p}{r}},|I|^{-\lambda} \delta^{1-\frac{p}{r}}\right\} .
$$

Hence, we have $\frac{1}{|I|^{\lambda}} \int_{I}\left|g_{\delta}\right|^{p} \frac{d x}{2 \pi} \leq C \delta^{1-\lambda-\frac{p}{r}}$ by using the case $|I| \leq \delta$ or $|I|>\delta$. Thus, we obtain $\left\|g_{\delta}\right\|_{p, \lambda} \leq C \delta^{\frac{\lambda_{0}-\lambda}{p}}$ for sufficiently small $\delta>0$. By the assumption $L^{p, \lambda}(\mathbf{T}) \subset L^{r}(\mathbf{T})$, we have

$$
\delta^{-\frac{\lambda}{r}} \sim\left\|g_{\delta}\right\|_{r} \leq C\left\|g_{\delta}\right\|_{p, \lambda} \leq C \delta^{\frac{\lambda_{0}-\lambda}{p}} .
$$

This contradicts $\delta^{\frac{\lambda-\lambda_{0}}{p}-\frac{\lambda}{r}} \leq C$ with $\frac{\lambda-\lambda_{0}}{p}-\frac{\lambda}{r}=\frac{\lambda_{0}}{p}(\lambda-1)<0$ for $0<\lambda<1$. Hence we have $L^{p, \lambda}(\mathbf{T}) \not \subset L^{r}(\mathbf{T})$.
(3) By the Hölder inequality, we have $\|f\|_{p, \lambda} \leq C\|f\|_{r}$ for all $f \in L^{r}(\mathbf{T})$, and thus $L^{r}(\mathbf{T}) \subset L^{p, \lambda}(\mathbf{T})$. Suppose $r_{0}=\frac{p}{1-\lambda}$. When we define $f(x)=\chi_{(0,1)}(x) x^{-\frac{1}{r_{0}}}$, it is easy to show $f \notin L^{r_{0}}(\mathbf{T})$ and $f \in L^{p, \lambda}(\mathbf{T})$ similar to (1). Thus, we have $L^{r}(\mathbf{T}) \subsetneq L^{p, \lambda}(\mathbf{T})$ for $r \geq \frac{p}{1-\lambda}$.

Corollary 2.2. Let D_{N} be the Dirichlet kernel $D_{N}(x)=\sum_{k=-N}^{N} e^{i k x}$ of degree N. Then, we have

$$
\left\|D_{N}\right\|_{p, \lambda} \sim N^{\frac{\lambda}{p}+\frac{1}{p^{\prime}}}
$$

for any $1 \leq p<\infty$ and $0<\lambda<1$.
Proof. Since we have $L^{r}(\mathbf{T}) \subset L^{p, \lambda}(\mathbf{T})$ for $r=\frac{p}{1-\lambda}$ by Proposition 2.1 (3), there exists a constant $C>0$ such that $\left\|D_{N}\right\|_{p, \lambda} \leq C\left\|D_{N}\right\|_{r}$. By Edwards [1; Exercise 7.5], we have

$$
\left\|D_{N}\right\|_{p, \lambda} \leq C\left\|D_{N}\right\|_{r} \sim N^{\frac{1}{r^{\prime}}}=N^{\frac{\lambda}{p}+\frac{1}{p^{r}}} .
$$

For the interval $I_{N}=\left[-\frac{\pi}{2 N+1}, \frac{\pi}{2 N+1}\right]$, we have

$$
\left|I_{N}\right|^{-\lambda} \int_{I_{N}}\left|D_{N}\right|^{p} \frac{d x}{2 \pi} \geq\left|I_{N}\right|^{-\lambda} \int_{0}^{\frac{\pi}{2 N+1}}\left(\frac{\left(N+\frac{1}{2}\right) x \frac{2}{\pi}}{\frac{x}{2}}\right)^{p} \frac{d x}{2 \pi} \sim N^{p+\lambda-1},
$$

and $\left\|D_{N}\right\|_{p, \lambda} \geq C N^{\frac{\lambda}{p}+\frac{1}{p^{\prime}}}$. Therefore, we get the desired result.
REMARK 2.3. Similarly, for the Poisson kernel $P_{r}(x)=\frac{1-r^{2}}{1-2 r \cos x+r^{2}}(0<r<1)$, we have

$$
\left\|P_{r}\right\|_{p, \lambda} \sim\left((1-r)^{-1}\right)^{\frac{\lambda}{p}+\frac{1}{p^{\prime}}} .
$$

3. $M\left(L^{p}, L^{p, \lambda}\right)$ and $M\left(L^{q}, L^{q, v}\right)\left(\frac{\lambda}{p} \neq \frac{\nu}{q}\right)$

In this section, we consider between $M\left(L^{p}, L^{p, \lambda}\right)$ and $M\left(L^{q}, L^{q, \nu}\right)$.
First we obtain the following:
Lemma 3.1. Let $0<\lambda<1$ and $1 \leq p, q<\infty$. Suppose $q>p(1-\lambda)$. We define the operator $T \in M\left(L^{p}, L^{q, \lambda}\right)$ such that $T f=D_{N} * f$. Then, we have

$$
\left\|D_{N}\right\|_{M\left(L^{p}, L^{q, \lambda}\right)}=\|T\|_{M\left(L^{p}, L^{q, \lambda}\right)} \sim N^{\frac{1}{p}-\frac{1-\lambda}{q}} .
$$

In particular, $\left\|D_{N}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \sim N^{\frac{\lambda}{p}}$.
Proof. Since we have $L^{r}(\mathbf{T}) \subset L^{q, \lambda}(\mathbf{T})$ for $r=\frac{q}{1-\lambda}$ and $L^{r}(\mathbf{T}) \subset L^{p}(\mathbf{T})$ by the assumption, we obtain $\|T\|_{M\left(L^{p}, L^{q}, \lambda\right)} \leq\|T\|_{M\left(L^{p}, L^{r}\right)}$. By the norm estimate of D_{N} in $M\left(L^{p}, L^{r}\right)$ (cf. [1]), we get

$$
\|T\|_{M\left(L^{p}, L^{r}\right)} \leq C N^{\frac{1}{p}-\frac{1}{r}}
$$

Conversely, we have $\|T\|_{M\left(L^{p}, L^{q, \lambda}\right)} \geq C N^{\frac{1}{p}-\frac{1-\lambda}{q}}$, by $\left\|D_{N}\right\|_{q, \lambda} \leq\|T\|_{M\left(L^{p}, L^{q, \lambda}\right)}\left\|D_{N}\right\|_{p}$ and Corollary 2.2. Hence, we obtain

$$
\left\|D_{N}\right\|_{M\left(L^{p}, L^{q, \lambda}\right)}=\|T\|_{M\left(L^{p}, L^{q, \lambda}\right)} \sim N^{\frac{1}{p}-\frac{1-\lambda}{q}},
$$

and we get the desired result.
Now we can prove Theorem 1.1.
Proof of Theorem 1.1. Let $0<\lambda, \nu<1,1 \leq p, q<\infty$, and $\frac{\lambda}{p} \neq \frac{\nu}{q}$. By Lemma 3.1, we have $\left\|D_{N}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \sim N^{\frac{\lambda}{p}}$. Thus, we obtain $M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, \nu}\right)$.

Corollary 3.2. Let $0<\lambda, v<1$ and $1 \leq p, q<\infty$. Suppose $\frac{\lambda}{p}>\frac{v}{q}$. Then there exists $f \in L^{1}(\mathbf{T})$ such that $T_{f} \in M\left(L^{q}, L^{q, v}\right)$ and $T_{f} \notin M\left(L^{p}, L^{p, \lambda}\right)$, where $T_{f} g=f * g$.

Proof. Let a be a positive number with $\frac{v}{q}<a<\frac{\lambda}{p}$. Also we define $k_{n}=2^{n+4}$. Then, we have $k_{n}+2^{n}<k_{n+1}-2^{n+1}(n \geq 1)$. When we define

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{2^{a n}} D_{2^{n}}(x) e^{i k_{n} x},
$$

we show that T_{f} satisfies the desired conditions. When we choose r such that $\frac{1}{r^{\prime}}<\frac{v}{q}$ with $\frac{1}{r}+\frac{1}{r^{\prime}}=1$, we have

$$
\|f\|_{r} \leq C \sum_{n=1}^{\infty} \frac{1}{2^{a n}}\left\|D_{2^{n}}(x) e^{i k_{n} x}\right\|_{r}
$$

$$
\leq C \sum_{n=1}^{\infty} 2^{n\left(-a+\frac{1}{r}\right)}<\infty,
$$

and $f \in L^{r}(\mathbf{T}) \subset L^{1}(\mathbf{T})$. Also we obtain $T_{f} \in M\left(L^{q}, L^{q, v}\right)$, since

$$
\begin{aligned}
\|f * g\|_{q, v} & \leq C \sum_{n=1}^{\infty} \frac{1}{2^{a n}}\left\|D_{2^{n}}(x) e^{i k_{n} x} * g\right\|_{q, v} \\
& \leq C\|g\|_{q}
\end{aligned}
$$

by Lemma 3.1 and $a>\frac{\nu}{q}$. Similarly, since $T_{f}\left(D_{2^{n}}(x) e^{i k_{n} x}\right)=2^{-a n} D_{2^{n}}(x) e^{i k_{n} x}$, we have $T_{f} \notin M\left(L^{p}, L^{p, \lambda}\right)$. Thus, we get the desired result.

Remark 3.3. We have $M\left(L^{p}, L^{p, \lambda}\right)=M\left(L^{p}, L_{0}^{p, \lambda}\right)(1 \leq p<\infty, 0<\lambda<1)$, where $L_{0}^{p, \lambda}(\mathbf{T})$ is the closure of $C(\mathbf{T})$ in $L^{p, \lambda}(\mathbf{T})$.

REmARK 3.4. We remark $M\left(L^{1}, L^{p, \lambda}\right)=L^{p, \lambda}(\mathbf{T})(1<p<\infty, 0<\lambda<1)$. In fact, let f_{0} be in $L^{p, \lambda}(\mathbf{T})$, and g in $L^{1}(\mathbf{T})$. Then we have $\left\|f_{0} * g\right\|_{p, \lambda} \leq\left\|f_{0}\right\|_{p, \lambda}\|g\|_{1}$ by the Hölder inequality, and $L^{p, \lambda}(\mathbf{T}) \subset M\left(L^{1}, L^{p, \lambda}\right)$. Conversely, let T be in $M\left(L^{1}, L^{p, \lambda}\right)$, and $K_{N}(x)=\sum_{j=-N}^{N}\left(1-\frac{|j|}{N+1}\right) e^{i j x}$ the Fejér kernel of degree N. Then we obtain $T K_{N} \in L^{p, \lambda}(\mathbf{T})$ and $\left\|T K_{N}\right\|_{p, \lambda} \leq\|T\|_{M\left(L^{1}, L^{p, \lambda}\right)}(N \geq 1)$. Hence, there exists $\left\{T K_{N_{j}}\right\}_{j}$, a subsequence of $\left\{T K_{N}\right\}_{N}$, such that $T K_{N_{j}}$ converges in the weak*-topology of $L^{p, \lambda}(\mathbf{T})$ for some $f \in L^{p, \lambda}(\mathbf{T})$. By the Banach-Alaoglu theorem, since we have the predual of $L^{p, \lambda}(\mathbf{T})$ ([15]), we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} T g(x) h(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f * g(x) h(x) d x
$$

for all $h \in C(\mathbf{T})$ and any trigonometric polynomial g. Therefore, we obtain $T g=f * g(g \in$ $\left.L^{1}(\mathbf{T})\right)$. Then we get $M\left(L^{1}, L^{p, \lambda}\right)=L^{p, \lambda}(\mathbf{T})$.

Proposition 3.5. Let $0<\lambda, v<1$ and $1<p, q<\infty$. Suppose $2<p<q$ or $q<p \leq 2$. For $\lambda=\frac{p-2}{q-2} v$, we have

$$
M\left(L^{q}, L^{q, v}\right) \subsetneq M\left(L^{p}, L^{p, \lambda}\right) .
$$

Proof. Since $L^{q, \nu}(\mathbf{T}) \subset L^{q}(\mathbf{T})$, we have $M\left(L^{q}, L^{q, v}\right) \subset M\left(L^{2}, L^{2}\right)$. First let $2<$ $p<q$, and $T \in M\left(L^{q}, L^{q, \nu}\right)$. Since T is bounded from $L^{q}(\mathbf{T})$ to $L^{q, \nu}(\mathbf{T})$ and from $L^{2}(\mathbf{T})$ to $L^{2}(\mathbf{T})$, we obtain that T is bounded from $L^{p}(\mathbf{T})$ to $L^{p, \kappa}(\mathbf{T})$ by the Peetre interpolation theorem [12; Theorem 4.1], where p and κ are defined by $\frac{1}{p}=\frac{\theta}{q}+\frac{1-\theta}{2}$ and $\frac{\kappa}{p}=\frac{\theta}{q} v+\frac{1-\theta}{2} 0$. Then an arithmetic shows $\kappa=\frac{p-2}{q-2} \nu$. Since $\frac{\lambda}{p} \neq \frac{v}{q}$, we have $M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, \nu}\right)$.
4. $M\left(L^{p}, L^{p, \lambda}\right)$ and $M\left(L^{q}, L^{q, \nu}\right)\left(\frac{\lambda}{p}=\frac{\nu}{q}\right)$

In this section, we consider the inclusion relation between $M\left(L^{p}, L^{p, \lambda}\right)$ and $M\left(L^{q}, L^{q, v}\right)$ for $\frac{\lambda}{p}=\frac{\nu}{q}$, and $0<\lambda, v<1,1<p<q<\infty$. For this, we recall the Rudin-Shapiro polynomials (cf. [9], [14]).

DEFINITION 4.1. Let m be a non-negative integer. We define trigonometric polynomials $P_{m}(x), Q_{m}(x)$ such that
(1) $P_{0}(x)=Q_{0}(x)=1$;
(2) $P_{m+1}(x)=P_{m}(x)+e^{i 2^{m} x} Q_{m}(x), Q_{m+1}(x)=P_{m}(x)-e^{i 2^{m} x} Q_{m}(x)$.

We prepare the following lemmas which will be used in the proof of Theorem 1.2.
LEMMA 4.2 (cf. [9], [14]). The Rudin-Shapiro polynomials P_{m}, Q_{m} have the following properties:
(1) $P_{m}(x)=\sum_{k=0}^{2^{m}-1} \varepsilon_{k} e^{i k x}, Q_{m}(x)=\sum_{k=0}^{2^{m}-1} \eta_{k} e^{i k x}$ for some $\varepsilon_{k}, \eta_{k} \in\{-1,1\}$;
(2) $\left|P_{m}(x)\right| \leq C\left(2^{m}\right)^{\frac{1}{2}}(x \in \mathbf{T})$;
(3) $\left\|T_{m}\right\|_{M\left(L^{q}, L^{q}\right)} \sim\left(2^{m}\right)^{\left|\frac{1}{2}-\frac{1}{q}\right|}(1<q<\infty)$, where $T_{m} f=P_{m} * f$.

By Lemma 4.2 and the Peetre interpolation theorem [12], we obtain the following:
LEMMA 4.3. Let $0<\lambda<1$, and $p>1+\lambda$. Then we have the estimates:

$$
\begin{gathered}
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}} \quad(p \geq 2) \\
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \leq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{p}-\frac{1}{2}} \quad(1+\lambda<p<2) \\
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \geq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}} \quad(1+\lambda<p<2)
\end{gathered}
$$

where $T_{m} f=P_{m} * f$.
PROOF. Step 1. We show $\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{2}}$. Let P be a trigonometric polynomial such that $P(x)=\sum_{k=-n}^{n} a_{k} e^{i k x}$ for any positive integer n. Since $P_{m} * P(x)=$ $\sum_{k=0}^{\min \left(2^{m}-1, n\right)} \varepsilon_{k} a_{k} e^{i k x}$, we have $\left|P_{m} * P(x)\right|^{2} \leq C 2^{m}\|P\|_{2}^{2}$ by the Schwarz inequality. Then for any interval I with $|I|<2^{-m}$, we have

$$
\frac{1}{|I|^{\lambda}} \int_{I}\left|P_{m} * P\right|^{2} \frac{d x}{2 \pi} \leq C 2^{m \lambda}\|P\|_{2}^{2}
$$

by the Parseval inequality. When $|I| \geq 2^{-m}$, we obtain

$$
\frac{1}{|I|^{\lambda}} \int_{I}\left|P_{m} * P\right|^{2} \frac{d x}{2 \pi} \leq \frac{1}{|I|^{\lambda}} \int_{-\pi}^{\pi}\left|P_{m} * P\right|^{2} \frac{d x}{2 \pi}
$$

$$
\begin{aligned}
& \leq \frac{1}{|I|^{\lambda}} \sum_{k=0}^{2^{m}-1}\left|a_{k}\right|^{2} \\
& \leq C 2^{m \lambda}\|P\|_{2}^{2}
\end{aligned}
$$

by the Parseval inequality. Hence, we get $\left\|T_{m} P\right\|_{2, \lambda} \leq C\left(2^{m}\right)^{\frac{\lambda}{2}}\|P\|_{2}$, and $\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)} \leq$ $C\left(2^{m}\right)^{\frac{\lambda}{2}}$. On the other hand, since

$$
\begin{aligned}
\left\|P_{m} * P_{m}\right\|_{2, \lambda} & \leq\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)}\left\|P_{m}\right\|_{2} \\
& \leq C\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)}\left(2^{m}\right)^{\frac{1}{2}}
\end{aligned}
$$

and $\left\|P_{m} * P_{m}\right\|_{2, \lambda} \sim\left(2^{m}\right)^{\frac{\lambda}{2}+\frac{1}{2}}$ by Lemma 4.2, we obtain $\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{2}}$.
Step 2. When $p>2$ and $0<\lambda<1$, we have

$$
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}} .
$$

In fact, let $r>2$ and $0<\theta, \kappa<1$ such that $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r}$ and $\frac{\lambda}{p}=\frac{\theta}{2} \kappa$. By Lemma 4.2, we have $\left\|T_{m}\right\|_{M\left(L^{r}, L^{r}\right)} \sim\left(2^{m}\right)^{\frac{1}{2}-\frac{1}{r}}$. Applying Step 1 and the Peetre interpolation theorem, we have

$$
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \leq C\left(2^{m}\right)^{\frac{\theta \kappa}{2}}\left(2^{m}\right)^{\left(\frac{1}{2}-\frac{1}{r}\right)(1-\theta)} .
$$

Hence, we obtain $\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \leq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}$. Conversely, we get

$$
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \geq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{p^{p}}-\frac{1}{2}} \sim\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}
$$

by Corollary 2.2 and Lemma 4.2. Therefore we have $\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}$.
Step 3. We show $\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \leq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{p}-\frac{1}{2}}$ for $1+\lambda<p<2$. First, we choose $1<r<p$ and $0<\theta, \kappa<1$ such that $\frac{1}{p}=\frac{\theta}{2}+\frac{1-\theta}{r}$ and $\frac{\lambda}{p}=\frac{\theta}{2} \kappa$. Then, we can show that

$$
\begin{aligned}
\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} & \leq C\left\|T_{m}\right\|_{M\left(L^{2}, L^{2, \lambda}\right)}^{\theta}\left\|T_{m}\right\|_{M\left(L^{r}, L^{r}\right)}^{1-\theta} \\
& \leq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{p}-\frac{1}{2}}
\end{aligned}
$$

by applying the Peetre interpolation theorem. On the other hand, by $\left\|T_{m}\left(P_{m}\right)\right\|_{p, \lambda} \sim$ $\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{p^{\prime}}}$ we have $\left\|T_{m}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \geq C\left(2^{m}\right)^{\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}}$, similarly in Step 2. After all, we get the desired result.

Proof of Theorem 1.2. By the assumption, we have $q>2$, and $\left\|T_{m}\right\|_{M\left(L^{q}, L^{q, v}\right)} \sim\left(2^{m}\right)^{\frac{\lambda}{q}+\frac{1}{2}-\frac{1}{q}}$ for m. If we have $M\left(L^{p}, L^{p, \lambda}\right)=M\left(L^{q}, L^{q, v}\right)$, we obtain the
contradiction to $p<q$ for $p>2$. For $1+\lambda<p \leq 2$, we have $M\left(L^{p}, L^{p, \lambda}\right) \neq M\left(L^{q}, L^{q, v}\right)$ by the estimate in Lemma 4.3. Then we get the desired result.

Corollary 4.4. Let $0<\lambda, v<1,1+\lambda<p<q$, and $\frac{1}{p}+\frac{1}{q}<1$. Suppose $\frac{\lambda}{p}=\frac{v}{q}$. Then there exists $T \in M\left(L^{p}, L^{p, \lambda}\right)$ such that $T \notin M\left(L^{q}, L^{q, \nu}\right)$.

Proof. Let $2<p<q$. Then there exists a in $\frac{\lambda}{p}+\frac{1}{2}-\frac{1}{p}<a<\frac{v}{q}+\frac{1}{2}-\frac{1}{q}$. Also we define $k_{n}=2^{n+4}$. Then, we have $k_{n}+2^{n+1}<k_{n+1}-2^{n+2}$. We define

$$
S_{N}(x)=\sum_{m=1}^{N} \frac{1}{2^{a m}} P_{m}(x) e^{i k_{m} x}
$$

for any $N \in \mathbf{N}$. Then, $\left\{S_{N}\right\}_{N}$ is a Cauchy sequence in $M\left(L^{p}, L^{p, \lambda}\right)$ by the choice of a and Lemma 4.3, and there exists $S \in M\left(L^{p}, L^{p, \lambda}\right)$ such that $\left\|S_{N}-S\right\|_{M\left(L^{p}, L^{p, \lambda}\right)} \rightarrow 0$ as $N \rightarrow \infty$. Also let g be a function such that $g(x)=P_{m}(x) e^{i k_{m} x}$. We consider $\left\{S_{N} * g\right\}_{N>m}$. Then we can prove $S \notin M\left(L^{q}, L^{q, v}\right)$ by the way similar to Corollary 3.2 in view of the choice of a. In case of $p \leq 2 \leq q$, we omit the details, since the proof is similar to it of the case $2<p<q$.

5. $M\left(L^{p}, L^{p, \lambda}\right)$ and the Lipschitz conditions

Definition 5.1. Let μ be in $M(\mathbf{T})$ and $0<\alpha<1$. We say that $\mu \in \operatorname{Lip}_{\alpha}(M(\mathbf{T}))$ for $\mu \in M(\mathbf{T})$ with $\mu \geq 0$ if for any interval $I=[x, x+h]$,

$$
\mu(I) \leq C|I|^{\alpha}=C|h|^{\alpha}
$$

for some constant $C>0$ independent of I. For $f \in L^{1}(\mathbf{T})$ with $f \geq 0$, we denote $\mu_{f}(E)=$ $\frac{1}{2 \pi} \int_{E} f(x) d x$ for any measurable set $E \subset \mathbf{T}$.

It is easy to prove the following:
Proposition 5.2. Let f be in $L^{1}(\mathbf{T})$ with $f \geq 0$. Then we have that μ_{f} is in $\operatorname{Lip}_{\alpha}(M(\mathbf{T}))$ if and only if $f \in L^{1, \alpha}(\mathbf{T})$.

By applying Proposition 5.2, we can show the following:
Proposition 5.3. Suppose $f \in L^{1}(\mathbf{T})$ and $f \geq 0$. Then we have the following:
(1) If $\mu_{f} \in \operatorname{Lip} p_{\alpha}(M(\mathbf{T}))$ for $0<\alpha<1$, then $T_{f} \in M\left(L^{p}, L^{p, \alpha}\right)$ for all $1<p<\infty$.
(2) If $T_{f} \in M\left(L^{p}, L^{p, \lambda}\right)$ for some $1<p<\infty$ and $0<\lambda<1$, then $\mu_{f} \in$ $\operatorname{Lip}_{\frac{\lambda}{p}}(M(\mathbf{T}))$.
Proof. (1) Since $\mu_{f} \in \operatorname{Lip}(M(\mathbf{T}))$ for all $0<\alpha<1$, we get $f \in L^{1, \alpha}(\mathbf{T})$ by Proposition 5.2. Let $I \subset \mathbf{T}$ be a nonempty interval. For $g \in L^{p}(\mathbf{T})$, we have

$$
\frac{1}{|I|^{\alpha}} \int_{I}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y\right|^{p} \frac{d x}{2 \pi}
$$

$$
\begin{aligned}
& \leq \frac{1}{|I|^{\alpha}} \int_{I}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(y)|^{p}|f(x-y)| d y\right)\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)| d y\right)^{\frac{p}{p^{\prime}}} \frac{d x}{2 \pi} \\
& \leq\|f\|_{1, \alpha}^{p}\|g\|_{p}^{p}
\end{aligned}
$$

by the Hölder inequality. Hence, we obtain $\|f * g\|_{p, \alpha} \leq\|f\|_{1, \alpha}\|g\|_{p}$ and $T_{f} \in M\left(L^{p}, L^{p, \alpha}\right)$.
(2) Let f be in $L^{1}(\mathbf{T})$ with $f \geq 0$, and $T_{f} \in M\left(L^{p}, L^{p, \lambda}\right)$. Now, let $I_{\delta}=[-\delta, \delta](0<$ $\delta<1$) and $g=\chi_{I_{\delta}}$. It is sufficient to show $\mu_{f}\left(I_{\eta}\right) \leq C\left|I_{\eta}\right|^{\frac{\lambda}{p}}$ for sufficiently small $\eta>0$. First we remark

$$
f * g(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(x-y) f(y) d y=\mu_{f}\left(I_{\delta}+x\right)
$$

and $I_{\frac{\delta}{2}} \subset I_{\delta}+x$ for $x \in I_{\frac{\delta}{2}}$. Hence, we obtain

$$
\frac{1}{\left|I_{\delta}\right|^{\lambda}} \int_{I_{\delta}}|f * g|^{p} \frac{d x}{2 \pi} \geq \frac{1}{\left|I_{\delta}\right|^{\lambda}} \int_{I_{\frac{\delta}{2}}} \mu_{f\left(I_{\frac{\delta}{2}}\right)^{p}} \frac{d x}{2 \pi}
$$

and

$$
\begin{aligned}
\left|I_{\delta}\right|^{-\lambda} \mu_{f}\left(I_{\frac{\delta}{2}}\right)^{p}\left|I_{\frac{\delta}{2}}\right| & \leq\left|I_{\delta}\right|^{-\lambda} \int_{I_{\delta}}|f * g|^{p} \frac{d x}{2 \pi} \\
& \leq\|f * g\|_{p, \lambda}^{p} \\
& \leq\left\|T_{f}\right\|_{M\left(L^{p}, L^{p, \lambda}\right)}^{p}\|g\|_{p}^{p} \\
& \leq C\left|I_{\delta}\right|
\end{aligned}
$$

Therefore, we get $\mu_{f}\left(I_{\frac{\delta}{2}}\right) \leq C\left|I_{\frac{\delta}{2}}\right|^{\frac{\lambda}{p}}$, and the desired result.
As a corollary of Proposition 5.3, we have Theorem 1.3.
Moreover, by Theorem B and Proposition 5.3, we conclude that $M\left(L^{r}, L^{r, \lambda}\right)$ are different from $M\left(L^{p}, L^{q}\right)(1 \leq p<q<\infty)$. Precisely, we obtain the following corollary:

COROLLARY 5.4. Let $1 \leq p<q<\infty, 1 \leq r<\infty$, and $0<\lambda<1$. Then we have

$$
M\left(L^{p}, L^{q}\right) \neq M\left(L^{r}, L^{r, \lambda}\right)
$$

References

[1] R. E. Edwards, Fourier Series: A Modern Introduction, Vol. I. Holt, Rinehard and Winston, Inc., New York-Montreal, Que.-London, 1967.
[2] A. Figa-TALAMANCA and G. I. GaUdry, Multipliers and sets of uniqueness of L^{p}, Michigan Math. J. 17 (1970), 179-191.
[3] G. I. Gaudry, Multipliers of type (p, q), Pacific J. Math. 18 (1966), 477-488.
[4] C. C. Graham, K. E. Hare and D. L. Ritter, The size of L^{p}-improving measures, J. Funct. Anal. 84 (1989), 472-495.
[5] R. J. Grinnell and K. E. Hare, Lorentz-improving measures, Illinois J. Math. 38 (1994), 366-389.
[6] K. E. Hare, A characterization of L^{p}-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299.
[7] K. E. Hare, Properties and examples of (L^{p}, L^{q}) multipliers, Indiana Univ. Math. J. 38 (1989), 211-227.
[8] T. Iida, E. Sato, Y. Sawano and H. Tanaka, Multilinear fractional integrals on Morrey spaces, Acta Math. Sin. 28 (2012), 1375-1384.
[9] Y. KatZnelson, An Introduction to Harmonic Analysis, Dover publications, Inc., 1968.
[10] A. Kufner et AL., Function spaces, Academia Publishing House of the Czechoslovak Academy of Sciences, 1977.
[11] R. LARSEN, An Introduction to the Theory of Multipliers, Springer-Verlag, 1971.
[12] J. Peetre, On the theory of $\mathcal{L}_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[13] Y. Sawano, T. Sobukawa and H. TANAKa, Limiting case of the boundedness of fractional integral operators on nonhomogeneous space, J. Inequal. Appl. 2006.
[14] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., 1986.
[15] C. T. Zorko, Morrey spaces, Proc. Amer. Math. Soc. 98 (1986), 586-592.

Present Addresses:
Takashi Izumi
Kojirakawa-machi 1-5-18, Yamagata, 990-0021 Japan.
Enji Sato Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata, 990-8560 Japan.
e-mail: esato@ sci.kj.yamagata-u.ac.jp

