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Abstract. We study geometric structures of rank two prolongations of implicit second-order partial differential
equations (PDEs) for two independent and one dependent variables and characterize the type of these PDEs by the
topology of fibers of the rank two prolongations. Moreover, by using properties of these prolongations, we give
explicit expressions of geometric singular solutions of second-order PDEs from the point of view of contact geometry
of second order.

1. Introduction

Let us start by recalling the geometric construction of the 2-jet bundle for two indepen-
dent and one dependent variables, following [15], [16] and [18].

First, let M be a manifold of dimension 3. We consider the space of 2-dimensional con-
tact elements to M , i.e., the Grassmann bundle J (M, 2) over M consisting of 2-dimensional
subspaces of tangent spaces to M , namely, J (M, 2) is defined by

J (M, 2) =
⋃

x∈M

Jx , Jx = Gr(Tx(M), 2) ,

where Gr(Tx(M), 2) denotes the Grassmann manifold of 2-dimensional subspaces in Tx(M).
Let π : J (M, 2) → M be the bundle projection. The canonical system C on J (M, 2) is, by
definition, the differential system of codimension 1 on J (M, 2) defined by

C(u) = π−1∗ (u) = {v ∈ Tu(J (M, 2)) | π∗(v) ∈ u} ⊂ Tu(J (M, 2))
π∗−→ Tx(M) ,

where π(u) = x for u ∈ J (M, 2). The differential system (J (M, 2), C) is the (geometric)
1-jet space, also called contact manifold of dimension 5. In general, by a differential system
(R,D), we mean a distribution D on a manifold R, that is, D is a subbundle of the tangent
bundle T R of R.
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Next, we should start from a contact manifold (J, C) of dimension 5, which is locally a
space of 1-jet for two independent and one dependent variables. Then we can construct the
geometric second-order jet space (L(J ),E) as follows: We consider the Lagrange-Grassmann
bundle L(J ) over J consisting of all 2-dimensional integral elements of (J, C), namely,

L(J ) =
⋃

u∈J

Lu ⊂ J (J, 2) ,

where Lu is the Grassmann manifold of all Lagrangian (or Legendrian) subspaces of the
symplectic vector space (C(u), d�) for any u ∈ J . Here � is a local contact form on J .
Namely, v ∈ J (J, 2) is an integral element if and only if v ⊂ C(u) and d� |v = 0, where
u = π(v). Then the canonical system E on L(J ) is defined by

E(v) = π−1∗ (v) ⊂ Tv(L(J ))
π∗−→ Tu(J ) ,

where π(v) = u for v ∈ L(J ) and π : L(J ) → J is the projection. The geometric jet space
of second order (L(J ),E) is locally a space of 2-jets for two independent and one dependent

variables (J 2(R2, R), C2). Here, the 2-jet space (J 2(R2, R), C2) is defined as follows:

J 2(R2, R) := {
(x, y, z, p, q, r, s, t)

}
(1)

and C2 := {�0 = �1 = �2 = 0} is given by the following 1-forms:

�0 := dz − pdx − qdy , �1 := dp − rdx − sdy , �2 := dq − sdx − tdy .

In this paper, we identify (L(J ),E) with (J 2(R2, R), C2) since we only consider the local
geometry of jet spaces.

Now we consider single PDEs F(x, y, z, p, q, r, s, t) = 0, where F is a smooth function

on J 2(R2, R). We set R = {F = 0} ⊂ J 2(R2, R), and restrict the canonical differential
system C2 to R. We denote it by D(:= C2|R). We consider a PDE R = {F = 0} with
the condition (Fr , Fs, Ft ) �= (0, 0, 0) which we call the regularity condition. Thus, R is a
smooth hypersurface, and also the restriction π2

1 |R : R → J 1(R2, R) of the natural projection

π2
1 : J 2(R2, R) → J 1(R2, R) is a submersion. Due to the regularity condition, restricted 1-

forms �i |R (i = 0, 1, 2) on R are linearly independent. Therefore, we have the induced
differential system D = {

�0|R = �1|R = �2|R = 0
}

on R. Then, D is a vector bundle of
rank 4 on R. For brevity, we denote each restricted generator 1-form �i |R of D by �i in the

following. For such an equation F = 0, we consider the discriminant Δ := FrFt − Fs
2/4.

DEFINITION 1. Let R = {F = 0} be a single second-order regular PDE. For the dis-
criminant Δ of F , a point w ∈ R is said to be hyperbolic or elliptic if Δ(w) < 0 or Δ(w) > 0,
respectively. Moreover, a point w ∈ R is said to be parabolic if (Fr(w), Fs(w), Ft (w)) �=
(0, 0, 0) and Δ(w) = 0.

For second-order regular PDEs, we are interested in geometric singular solutions. Here,
the notion of geometric solutions including singular solutions is defined as follows (see [8]).



RANK TWO PROLONGATIONS OF SECOND-ORDER PDE 75

DEFINITION 2. Let (R,D) be a second-order regular PDE. For a 2-dimensional inte-

gral manifold S of R, if the restriction π2
1 |R : R → J 1 of the natural projection π2

1 : J 2 → J 1

is an immersion on an open dense subset in S, then we call S a geometric solution of (R,D).
If all points of a geometric solution S are immersive points, then we call S a regular solution.
On the other hand, a geometric solution S have a singular point, then we call S a singular
solution.

From the definition, images π2
1 (S) of geometric solutions S by the projection π2

1 are

Legendrian in J 1(R2, R), i.e., �0|π2
1 (S) = d�0|π2

1 (S) = 0. We will investigate the method of

the construction of these singular solutions. For this purpose, we define the notion of rank n

prolongations of differential systems, in general, as follows:

DEFINITION 3. Let (R,D) be a differential system given by D = {�1 = · · · = �s =
0}. An n-dimensional integral element of D at x ∈ R is an n-dimensional subspace v of TxR

such that �i |v = d�i |v = 0 (i = 1, . . . , s). Namely, n-dimensional integral elements are
candidates for the tangent spaces at x to n-dimensional integral manifolds of D. It follows
that the rank n prolongation of (R,D) is defined by

Σ(R) :=
⋃

x∈R

Σx , (2)

where Σx = {v ⊂ TxR | v is an n-dimensional integral element of (R,D) }. We define the

canonical system D̂ on Σ(R) by

D̂(u) : = p−1∗ (u) = {v ∈ Tu(Σ(R)) | p∗(v) ∈ u} ,

where u ∈ Σ(R) is a smooth point of Σ(R) and p : Σ(R) → R is the projection.

This space Σ(R) is a subset of the Grassmann bundle over R

J(D, n) :=
⋃

x∈R

Jx (3)

where Jx := {v ⊂ TxR | v is an n-dimensional subspace of D(x)} . In general, the rank n

prolongations Σ(R) have singular points, that is, Σ(R) is not a smooth manifold. This kind
of prolongation is very useful to study geometric structures of equations (R,D) or their solu-
tions. In this paper, we only consider in the case of n = 2.

Let us now proceed to the description of the various sections and explain the main results
in the present paper. In section 2, we investigate the fiber topology of rank 2 prolongations

(Σ(R), D̂) of differential systems (R,D) induced by hyperbolic, parabolic and elliptic equa-
tions. One of the main results of this paper is that the type of equations defined by local
structure is characterized by the topology of fibers of the prolongation p : Σ(R) → R.
Namely, we obtain that the topology of fibers of the prolongations p : Σ(R) → R of dif-
ferential systems (R,D) associated with hyperbolic, parabolic or elliptic equations is torus,
pinched torus or sphere, respectively (Corollary 1). In section 3, we study structures of the
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canonical systems D̂ on the rank 2 prolongations Σ(R) for hyperbolic, parabolic and elliptic
equations (R,D) as differential systems. More precisely, obtained results in this section clar-
ify the structure of nilpotent graded Lie algebras (symbol algebras) of the canonical systems
on the rank 2 prolongations for hyperbolic, parabolic and elliptic equations. Here, the symbol
algebra is a fundamental invariant of differential systems under contact transformations (see
section 3.2). In section 4, we research an approach to construct geometric singular solutions
of hyperbolic, parabolic, elliptic equations defined by Definition 2. Especially, we give the
explicit integral representation of these singular solutions of model equations for each class
of single equations. In section 5, we introduce hyperbolic, parabolic and elliptic rank 4 dis-
tributions which are generalizations of hyperbolic, parabolic and elliptic PDEs and prove the
topology of fibers of the prolongation of these rank 4 distributions is torus, pinched torus or
sphere, respectively (Proposition 9). This result is a generalization of a part of Theorem 18 in
[3], [4], [5]. We also prove that the procedure of prolongations of these distributions preserves
their types, namely, the rank 2 prolongation of hyperbolic, parabolic or elliptic rank 4 distri-
butions is also a rank 4 distribution of the type of hyperbolic, parabolic or elliptic, respectively
(Theorem 4). It follows that, by successive prolongations of these rank 4 distributions, we can
define the notion of k-th rank 2 prolongations as a generalization of k-th rank 1 prolongations
introduced previously in [7] or [11] (these are called “Monster Goursat manifolds” in [7]).

2. Rank 2 prolongations of regular PDEs

In this section, we show that the types of equations are characterized by the topology
of fibers of the rank 2 prolongations of equations. For this purpose, we provide the rank 2
prolongations of hyperbolic, parabolic and elliptic PDEs by using inhomogeneous Grassmann
coordinates.

2.1. Rank 2 prolongations of hyperbolic equations. Let (R,D) be a locally hy-
perbolic equation. Then, there exists a local coframe {�0,�1,�2, ω1, ω2, π11, π22} around
x ∈ R such that D = {�0 = �1 = �2 = 0} and the following structure equation holds:

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2 mod �0 ,

d�1 ≡ ω1 ∧ π11 mod �0,�1,�2 , (4)

d�2 ≡ ω2 ∧ π22 mod �0,�1,�2 .

In terms of this structure equation, we construct the rank 2 prolongation of (R,D) by taking
integral elements.

THEOREM 1. Let (R,D) be a locally hyperbolic equation. Then, the rank 2 prolon-
gation Σ(R) is a smooth submanifold of J (D, 2), and it is a T 2 = S1 × S1-bundle over
R.

PROOF. First, we show that Σ(R) is a submanifold of J (D, 2). Let π : J (D, 2) → R
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be the projection and U an open set in R. Then π−1(U) is covered by 6 open sets in J (D, 2):

π−1(U) = Uω1ω2 ∪ Uω1π11 ∪ Uω1π22 ∪ Uω2π11 ∪ Uω2π22 ∪ Uπ11π22 , (5)

where

Uω1ω2 := {
v ∈ π−1(U) | ω1|v ∧ ω2|v �= 0

}
,

Uω1π11 := {
v ∈ π−1(U) | ω1|v ∧ π11|v �= 0

}
,

Uω1π22 := {
v ∈ π−1(U) | ω1|v ∧ π22|v �= 0

}
,

Uω2π11 := {
v ∈ π−1(U) | ω2|v ∧ π11|v �= 0

}
,

Uω2π22 := {
v ∈ π−1(U) | ω2|v ∧ π22|v �= 0

}
,

Uπ11π22 := {
v ∈ π−1(U) | π11|v ∧ π22|v �= 0

}
.

In the following, we explicitly describe the defining equation of Σ(R) in terms of the inho-
mogeneous Grassmann coordinate of fibers in Uω1ω2, . . . , Uπ11π22 .
(I) On Uω1ω2 :

For w ∈ Uω1ω2 , w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting

π11, π22 to w, we can introduce the inhomogeneous coordinate p1
ij of fibers of J (D, 2) around

w with π11|w = p1
11(w)ω1|w+p1

12(w)ω2|w, π22|w = p1
21(w)ω1|w+p1

22(w)ω2|w. Moreover,
w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ (p1
11(w)ω1|w + p1

12(w)ω2|w) ≡ p1
12(w)ω1|w ∧ ω2|w ,

d�2|w ≡ ω2|w ∧ (p1
21(w)ω1|w + p1

22(w)ω2|w) ≡ −p1
21(w)ω1|w ∧ ω2|w .

Hence, we obtain the defining equations f1 = f2 = 0 of Σ(R) in Uω1ω2 of J (D, 2), where

f1 = p1
12, f2 = p1

21, that is,
{
f1 = f2 = 0

} ⊂ Uω1ω2 . Then df1, df2 are independent on{
f1 = f2 = 0

}
.

(II) On Uω1π11 :
For w ∈ Uω1π11 , by restricting ω2, π22 to w, we introduce the inhomogeneous coordinate

p2
ij of fibers of J (D, 2) around w with ω2|w = p2

11(w)ω1|w + p2
12(w)π11|w, π22|w =

p2
21(w)ω1|w + p2

22(w)π11|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0. However, we have
d�1|w ≡ ω1|w ∧ π11|w �≡ 0. Thus, there does not exist integral element, that is, Uω1π11 ∩
p−1(U) = ∅.
(III) On Uω1π22 :

For w ∈ Uω1π22 , by restricting ω2, π11 to w, we introduce the inhomogeneous coordinate

p3
ij of fibers of J (D, 2) around w with ω2|w = p3

11(w)ω1|w + p3
12(w)π22|w, π11|w =

p3
21(w)ω1|w + p3

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w ≡ p3
22(w)ω1|w ∧ π22|w ,

d�2|w ≡ ω2|w ∧ π22|w ≡ p3
11(w)ω1|w ∧ π22|w .
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Then the defining functions of Σ(R) are independent in the same as (I).
(IV) On Uω2π11 :

For w ∈ Uω2π11 , by restricting ω1, π22 to w, we introduce the inhomogeneous coordi-

nate p4
ij of fibers of J (D, 2) around w with ω1|w = p4

11(w)ω2|w + p4
12(w)π11|w, π22|w =

p4
21(w)ω2|w + p4

22(w)π11|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w ≡ p4
11(w)ω2|w ∧ π11|w ,

d�2|w ≡ ω2|w ∧ π22|w ≡ p4
22(w)ω2|w ∧ π11|w .

Then the defining functions of Σ(R) are independent in the same way as in (I).
(V) On Uω2π22 :

For w ∈ Uω2π22 , by restricting ω1, π11 to w, we introduce the inhomogeneous coordi-

nate p5
ij of fibers of J (D, 2) around w with ω1|w = p5

11(w)ω2|w + p5
12(w)π22|w, π11|w =

p5
21(w)ω2|w + p5

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0. However, we
have d�2|w ≡ ω2|w ∧ π22|w �≡ 0. Thus, there does not exist integral element, that is,

Uω2π22 ∩ p−1(U) = ∅.
(VI) On Uπ11π22 :
For w ∈ Uπ11π22 , by restricting ω1, ω2 to w, we introduce the inhomogeneous coordinate

p6
ij of fibers of J (D, 2) around w with ω1|w = p6

11(w)π11|w + p6
12(w)π22|w, ω2|w =

p6
21(w)π11|w + p6

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w ≡ p6
12(w)π22|w ∧ π11|w,

d�2|w ≡ ω2|w ∧ π22|w ≡ p6
21(w)π11|w ∧ π22|w .

Then the defining functions of Σ(R) are independent in the same way as in (I).
Under these discussions, the rank 2 prolongation Σ(R) is a smooth submanifold of

J (D, 2).
Next, we show that the topology of fibers of Σ(R) is torus. In the above discus-

sion, we have p−1(U) = Pω1ω2 ∪ Pω1π22 ∪ Pω2π11 ∪ Pπ11π22 , where Pω1ω2 := p−1(U) ∩
Uω1ω2, Pω1π22 := p−1(U) ∩ Uω1π22, Pω2π11 := p−1(U) ∩ Uω2π11, and Pπ11π22 := p−1(U) ∩
Uπ11π22 . From Definition 3, we have the canonical system D̂ on each open set. To prove our

assertion, we investigate the gluing of (Σ(R), D̂). For instance, we construct the transition

functions on Uω1ω2 ∩ Uω1π22 in the following. On Uω1ω2 , the canonical system D̂ = {
�0 =

�1 = �2 = �π11 = �π22 = 0
}

is given by �π11 := π11 − p1
11ω1, �π22 := π22 − p1

22ω2.

On the other hand, the canonical system D̂ = {
�0 = �1 = �2 = �ω2 = �π11 = 0

}

on Uω1π22 is given by �ω2 := ω2 − p3
12π22, �π11 := π11 − p3

21ω1. Then, the transition
functions φ : Uω1ω2 ∩ Uω1π22 → Uω1ω2 ∩ Uω1π22 is given by

φ(v, p1
11, p

1
22) =

(
v, p3

12 := 1

p1
22

, p3
21 := p1

11

)
for p1

22 �= 0 ,
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where v is a local coordinate on R. We also have similar transition functions for the other
intersection open sets Uω1ω2 ∩ Uω2π11 , Uω1π22 ∩ Uπ11π22 , Uω2π11 ∩ Uπ11π22 . Consequently, the

topological structure of fibers is T 2 = S1 × S1. �

REMARK 1. In fact, this result (i.e. Σ(R) is a torus bundle) is known by Bryant,
Griffiths and Hsu in [2]. They obtained this result for the hyperbolic exterior differential
system which is a generalization of distributions corresponding to hyperbolic equations (see
Remark 3). However, we will also consider parabolic and elliptic cases and our method is
distinct one. We will use the structure of this covering in Σ(R) when we will study singular
solutions (see, section 5). Thus, we need to prove in the above way.

2.2. Rank 2 prolongations of parabolic equations. Let (R,D) be a locally par-
abolic equation. Then, there exists a local coframe {�0,�1,�2, ω1, ω2, π12, π22} around
x ∈ R such that D = {�0 = �1 = �2 = 0} and the following structure equation holds:

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2 mod �0 ,

d�1 ≡ ω2 ∧ π12 mod �0,�1,�2 , (6)

d�2 ≡ ω1 ∧ π12 + ω2 ∧ π22 mod �0,�1,�2 .

From this structure equation, we clarify the rank 2 prolongation Σ(R).

LEMMA 1. Let (R,D) be a locally parabolic equation. Then, the rank 2 prolongation
Σ(R) has singular points, that is, Σ(R) is not a smooth manifold.

PROOF. Let U be an open set in R, and π : J (D, 2) → R be the projection. Then
π−1(U) is covered by 6 open sets in J (D, 2):

π−1(U) = Uω1ω2 ∪ Uω1π12 ∪ Uω1π22 ∪ Uω2π12 ∪ Uω2π22 ∪ Uπ12π22 , (7)

where each open set is given in the same way as the hyperbolic case (5). Now we explicitly
describe the defining equation of Σ(R) on each open set.
(I) On Uω1ω2 :

For w ∈ Uω1ω2 , w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting

π12, π22 to w, we can introduce the inhomogeneous coordinate p1
ij of fibers of J (D, 2) around

w with π12|w = p1
11(w)ω1|w+p1

12(w)ω2|w, π22|w = p1
21(w)ω1|w+p1

22(w)ω2|w. Moreover,
w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω2|w ∧ π12|w ≡ p1
11(w)ω2|w ∧ ω1|w ,

d�2|w ≡ ω1|w ∧ π12|w + ω2|w ∧ π22|w ≡ (p1
12(w) − p1

21(w))ω1|w ∧ ω2|w .

Hence we obtain the defining equations f1 = f2 = 0 of Σ(R) in Uω1ω2 of J (D, 2), where

f1 = p1
11, f2 = p1

12 − p1
21, that is, {f1 = f2 = 0} ⊂ Uω1ω2 . Then df1, df2 are independent

on {f1 = f2 = 0}.
(II) On Uω1π12 :
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For w ∈ Uω1π12 , by restricting ω2, π22 to w, we we introduce the inhomogeneous coordi-

nate p2
ij of fibers of J (D, 2) around w with ω2|w = p2

11(w)ω1|w + p2
12(w)π12|w, π22|w =

p2
21(w)ω1|w + p2

22(w)π12|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω2|w ∧ π12|w ≡ p2
11(w)ω1|w ∧ π12|w ,

d�2|w ≡ ω1|w ∧ π12|w + ω2|w ∧ π22|w
≡ (1 + p2

11(w)p2
22(w) − p2

12(w)p2
21(w))ω1|w ∧ π12|w .

Then the defining functions of Σ(R) are independent.
(III) On Uω1π22 :

For w ∈ Uω1π22 , by restricting ω2, π12 to w, we introduce the inhomogeneous coordi-

nate p3
ij of fibers of J (D, 2) around w with ω2|w = p3

11(w)ω1|w + p3
12(w)π22|w, π12|w =

p3
21(w)ω1|w + p3

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω2|w ∧ π12|w ≡ (p3
11(w)p3

22(w) − p3
12(w)p3

21(w))ω1|w ∧ π22|w ,

d�2|w ≡ ω1|w ∧ π12|w + ω2|w ∧ π22|w ≡ (p3
11(w) + p3

22(w))ω1|w ∧ π22|w .

Therefore, we obtain the defining equations f1 = f2 = 0 of Σ(R) in Uω1π22 of J (D, 2),

where f1 = p3
11p

3
22 − p3

12p
3
21, f2 = p3

11 + p3
22, that is, {f1 = f2 = 0} ⊂ Uω1π22 . Then,

df1, df2 are linearly dependent on S := {
p3

11 = p3
22, p

3
12 = p3

21 = 0
}
. Hence, S ∩ Σ(R) =

{p3
11 = p3

22 = p3
12 = p3

21 = 0} which is a point on each fiber is a singular subset in Σ(R) .
(IV) On Uω2π12 :

For w ∈ Uω2π12 , by restricting ω1, π22 to w, we introduce the inhomogeneous coordi-

nate p4
ij of fibers of J (D, 2) around w with ω1|w = p4

11(w)ω2|w + p4
12(w)π12|w, π22|w =

p4
21(w)ω2|w + p4

22(w)π12|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0. However, we
have d�1|w ≡ ω2|w ∧ π12|w �≡ 0. Hence, there does not exist integral element, that is,

Uω2π12 ∩ p−1(U) = ∅.
(V) On Uω2π22 :

For w ∈ Uω2π22 , by restricting ω1, π12 to w, we can introduce the inhomogeneous coor-

dinate p5
ij of fibers of J (D, 2) around w with ω1|w = p5

11(w)ω2|w + p5
12(w)π22|w, π12|w =

p5
21(w)ω2|w + p5

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω2|w ∧ π12|w ≡ p5
22(w)ω2|w ∧ π22|w ,

d�2|w ≡ ω1|w ∧ π12|w + ω2|w ∧ π22|w
≡ (1 + p5

11(w)p5
22(w) − p5

12(w)p5
21(w))ω2|w ∧ π22|w .

Then the defining functions of Σ(R) are independent in the same as (I).
(VI) On Uπ12π22 :

For w ∈ Uπ12π22 , by restricting ω1, ω2 to w, we introduce the inhomogeneous coordi-
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nate p6
ij of fibers of J (D, 2) around w with ω1|w = p6

11(w)π12|w + p6
12(w)π22|w, ω2|w =

p6
21(w)π12|w + p6

22(w)π22|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω2|w ∧ π12|w ≡ p6
22(w)π22|w ∧ π12|w ,

d�2|w ≡ ω1|w ∧ π12|w + ω2|w ∧ π22|w ≡ (p6
21(w) − p6

12(w))π12|w ∧ π22|w .

Then the defining functions of Σ(R) are also independent.
Summarizing these discussions, the rank 2 prolongations Σ(R) for locally parabolic

equations R has singular points, that is, these are not smooth. �

We set Pω1ω2 := p−1(U) ∩ Uω1ω2 , Pω1π12 := p−1(U) ∩ Uω1π12, Pω1π22 := p−1(U) ∩
Uω1π22, Pω2π22 := p−1(U) ∩ Uω2π22 , and Pπ12π22 := p−1(U) ∩ Uπ12π22 .

LEMMA 2. We have p−1(U) = Pω1ω2 ∪ Pω1π22 ∪ Pπ12π22 .

PROOF. From the discussion of the proof of the previous lemma, we have p−1(U) =
Pω1ω2 ∪ Pω1π12 ∪ Pω1π22 ∪ Pω2π22 ∪ Pπ12π22 . Hence, it is sufficient to prove Pω1π12, Pω2π22 ⊂
Pω1ω2 . For the open set Pω1π12 , we prove this property. Let w be any point in Pω1π12 ⊂
p−1(U). Here, if w �∈ Pω1ω2 , then ω1|w ∧ω2|w = 0. Hence, by ω1|w ∧ω2|w = p2

12(w)ω1|w ∧
π12|w , we have the condition p2

12(w) = 0. However, w is an integral element, and we have

p2
12(w) �= 0. Thus, we have Pω1π12 ⊂ Pω1ω2 . For the open set Pω2π22 , we also obtain the

statement from the same argument. �

THEOREM 2. Let (R,D) be a locally parabolic equation. Then, the rank 2 prolonga-
tion Σ(R) has singular points, and it has the structure of pinched torus fibration.

PROOF. By the above lemma, note that the fiber p−1(w) at w ∈ R decompose to the

disjoint union p−1(w) = R2 ∪ R ∪ {a point} as a set. Moreover, by gluing on p−1(U) =
Pω1ω2 ∪ Pω1π22 ∪ Pπ12π22 in the proof of Lemmas 1 and 2, we obtain the statement. �

2.3. Rank 2 prolongations of elliptic equations. Let (R,D) be a locally elliptic
equation. Then, there exists a local coframe {�0,�1,�2, ω1, ω2, π11, π12} around x ∈ R

such that D = {�0 = �1 = �2 = 0} and the following structure equation holds:

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2 mod �0 ,

d�1 ≡ ω1 ∧ π11 + ω2 ∧ π12 mod �0,�1,�2 , (8)
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d�2 ≡ ω1 ∧ π12 − ω2 ∧ π11 mod �0,�1,�2 .

From this structure equation, we investigate the rank 2 prolongation Σ(R). Let U be an open

set in R, and π : J (D, 2) → R the projection. Then π−1(U) is covered by 6 open sets in
J (D, 2):

π−1(U) = Uω1ω2 ∪ Uω1π11 ∪ Uω1π12 ∪ Uω2π11 ∪ Uω2π12 ∪ Uπ11π12 , (9)

where each open set is also given in the same way as hyperbolic case (5). Now we explicitly
describe the defining equation of Σ(R) in terms of the inhomogeneous Grassmann coordinate
of fibers in Uω1ω2 , . . . , Uπ11π12 .
(I) On Uω1ω2 :

For w ∈ Uω1ω2 , w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting

π11, π12 to w, we introduce the inhomogeneous coordinate p1
ij of fibers of J (D, 2) around w

with π11|w = p1
11(w)ω1|w + p1

12(w)ω2|w, π12|w = p1
21(w)ω1|w + p1

22(w)ω2|w. Moreover
w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w ≡ (p1
12(w) − p1

21(w))ω1|w ∧ ω2|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w ≡ (p1
11(w) + p1

22(w))ω1|w ∧ ω2|w .

Hence we obtain the defining equations f1 = f2 = 0 of Σ(R) in Uω1ω2 of J (D, 2), where

f1 = p1
12 − p1

21, f2 = p1
11 + p1

22, that is, {f1 = f2 = 0} ⊂ Uω1ω2 . Then df1, df2 are inde-
pendent on {f1 = f2 = 0}.
(II) On Uω1π11 :

For w ∈ Uω1π11 , by restricting ω2, π12 to w, we introduce the inhomogeneous coordi-

nate p2
ij of fibers of J (D, 2) around w with ω2|w = p2

11(w)ω1|w + p2
12(w)π11|w, π12|w =

p2
21(w)ω1|w + p2

22(w)π11|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w
≡ (1 + p2

11(w)p2
22(w) − p2

12(w)p2
21(w))ω1|w ∧ π11|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w
≡ (−p2

11(w) + p2
22(w))ω1|w ∧ π11|w .

Then the defining functions of Σ(R) are independent in the same as (I).
(III) On Uω1π12 :

For w ∈ Uω1π12 , by restricting ω2, π11 to w, we introduce the inhomogeneous coordi-

nate p3
ij of fibers of J (D, 2) around w with ω2|w = p3

11(w)ω1|w + p3
12(w)π12|w, π11|w =

p3
21(w)ω1|w + p3

22(w)π12|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w ≡ (p3
11(w) + p3

22(w))ω1|w ∧ π12|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w
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≡ (1 − p3
11(w)p3

22(w) + p3
12(w)p3

21(w))ω1|w ∧ π12|w .

Then the defining functions of Σ(R) are also independent.
(IV) On Uω2π11 :

For w ∈ Uω2π11 , by restricting ω1, π12 to w, we introduce the inhomogeneous coordi-

nate p4
ij of fibers of J (D, 2) around w with ω1|w = p4

11(w)ω2|w + p4
12(w)π11|w, π12|w =

p4
21(w)ω2|w + p4

22(w)π11|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w ≡ (p4
11(w) + p4

22(w))ω2|w ∧ π11|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w
≡ (p4

11(w)p4
22(w) − p4

12(w)p4
21(w) − 1)ω2|w ∧ π11|w .

Then the defining functions of Σ(R) are also independent.
(V) On Uω2π12 :

For w ∈ Uω2π12 , by restricting ω1, π11 to w, we introduce the inhomogeneous coordi-

nate p5
ij of fibers of J (D, 2) around w with ω1|w = p5

11(w)ω2|w + p5
12(w)π12|w, π11|w =

p5
21(w)ω2|w + p5

22(w)π12|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w
≡ (1 + p5

11(w)p5
22(w) − p5

12(w)p5
21(w))ω2|w ∧ π12|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w ≡ (p5
11(w) − p5

22(w))ω2|w ∧ π12|w .

Then the defining functions of Σ(R) are also independent.
(VI) On Uπ11π12 :

For w ∈ Uπ11π12 , by restricting ω1, ω2 to w, we introduce the inhomogeneous coordi-

nate p6
ij of fibers of J (D, 2) around w with ω1|w = p6

11(w)π11|w + p6
12(w)π12|w, ω2|w =

p6
21(w)π11|w + p6

22(w)π12|w. Moreover, w satisfies d�1|w ≡ d�2|w ≡ 0:

d�1|w ≡ ω1|w ∧ π11|w + ω2|w ∧ π12|w ≡ (−p6
12(w) + p6

21(w))π11|w ∧ π12|w ,

d�2|w ≡ ω1|w ∧ π12|w − ω2|w ∧ π11|w ≡ (p6
11(w) + p6

22(w))π11|w ∧ π12|w .

Then the defining functions of Σ(R) are also independent.
Summarizing these discussions, the rank 2 prolongation Σ(R) of a locally elliptic equa-

tion R is smooth, and it has the covering p−1(U) = Pω1ω2 ∪ Pω1π11 ∪ Pω1π12 ∪ Pω2π11 ∪
Pω2π12 ∪ Pπ11π12, where Pω1ω2 := p−1(U) ∩ Uω1ω2 , Pω1π11 := p−1(U) ∩ Uω1π11, Pω1π12 :=
p−1(U) ∩Uω1π12, Pω2π11 := p−1(U) ∩Uω2π11, Pω2π12 := p−1(U)∩ Uω2π12 , and Pπ11π12 :=
p−1(U) ∩ Uπ11π12 . However, this covering is not essential in the following sense.

LEMMA 3. Let (R,D) be a locally elliptic equation and p : Σ(R) → R be the rank
2 prolongation. Then, for any open set U ⊂ R, we have p−1(U) = Pω1ω2 ∪ Pπ11π12 .
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PROOF. It is sufficient to prove Pω1π11, Pω1π12, Pω2π11, Pω2π12 ⊂ Pω1ω2 . For the open

set Pω1π11 , we prove this property. Let w be a point in Pω1π11 ⊂ p−1(U). Here, if w �∈ Pω1ω2 ,

then the condition ω1|w∧ω2|w = 0 is satisfied. Hence, by ω1|w∧ω2|w = p2
12(w)ω1|w∧π11|w,

we have p2
12(w) = 0. However, w is an integral element. In terms of f1 = f2 = 0, we have

(p2
11)

2 = −1. This is a contradiction. Thus, we have Pω1π11 ⊂ Pω1ω2 . For other open sets,
we also have the statement from the similar argument. �

THEOREM 3. Let (R,D) be a locally elliptic equation. Then, the rank 2 prolongation
Σ(R) is a smooth submanifold of J (D, 2), and it is an S2-bundle over R.

PROOF. By the above lemma, note that the fiber p−1(w) at w ∈ R decompose to the
disjoint union p−1(w) = R2 ∪ {a point} as a set. Moreover, we obtain the statement from the
same argument to the parabolic case. �

2.4. A characterization of equations by the fiber topology. We obtain one of the
main results by summarizing theorems of the previous part of this section.

COROLLARY 1. Let R = {F = 0} be a second-order regular PDE and Σ(R) be the
its prolongation. Let p : Σ(R) → R be the natural projection. Then,

(1) w ∈ R is hyperbolic ⇐⇒ p−1(w) is a topologically 2-dimensional torus T 2.

(2) w ∈ R is parabolic ⇐⇒ p−1(w) is a topologically pinched 2-dimensional torus.

(3) w ∈ R is elliptic ⇐⇒ p−1(w) is a topologically 2-dimensional sphere S2.

PROOF. Note that the fiber p−1(w) is defined by the structure equation of D at w as a
subset in the fiber Jw

∼= Gr(2, 4) of the fibration π : J (D, 2) → R. From this point of view,
the topology of the fiber p−1(w) depends only on the pointwise structure equations (4), (6)
and (8). �

3. Structures of the canonical systems on the rank 2 prolongations

In this section, we study the geometric structures of the rank 2 prolongations (Σ(R), D̂)

for each class of equations. We first recall Tanaka theory of weakly regular differential sys-
tems in this section. For more details, we refer to [12], [13], [14] and [17].

3.1. Derived system, Weak derived system. Let D be a differential system on a
manifold R. We denote by D = Γ (D) the sheaf of sections to D. The derived system
∂D of a differential system D is defined, in terms of sections, by ∂D := D + [D,D]. In
general, ∂D is obtained as a subsheaf of the tangent sheaf of R. Moreover, higher derived

systems ∂kD are defined successively by ∂kD := ∂(∂k−1D), where we set ∂0D = D by

convention. On the other hand, k-th weak derived systems ∂(k)D of D are defined inductively

by ∂(k)D := ∂(k−1)D + [D, ∂(k−1)D].
DEFINITION 4. A differential system D is called regular (respectively, weakly regu-

lar), if ∂kD (respectively, ∂(k)D) is a subbundle for each k.
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These derived systems are also interpreted by using annihilators as follows ([1], [9]): Let
D = {�1 = · · · = �s = 0} be a differential system on a manifold R. We denote by D⊥ the
annihilator subbundle of D in T ∗R, namely,

D⊥ =
⋃

x∈R

D⊥(x)

where

D⊥(x) = {ω ∈ T ∗
x R | ω(X) = 0 for any X ∈ D(x)} ⊂ T ∗

x R .

Then the annihilator (∂D)⊥ of the first derived system of D is given by

(∂D)⊥ = {� ∈ D⊥ | d� ≡ 0 (mod D⊥)} .

Moreover, the annihilator (∂(k+1)D)⊥ of the (k + 1)-th weak derived system of D is given by

(∂(k+1)D)⊥ = {� ∈ (∂(k)D)⊥ | d� ≡ 0 (mod (∂(k)D)⊥ ,

(∂(p)D)⊥ ∧ (∂(q)D)⊥, 2 ≤ p, q ≤ k − 1)} .

We set D−1 := D, D−k := ∂(k−1)D (k ≥ 2), for a weakly regular differential system D.
Then we have ([12, Proposition 1.1]):

(T1) There exists a unique positive integer μ such that

D−1 ⊂ D−2 ⊂ · · · ⊂ D−k ⊂ · · · ⊂ D−(μ−1) ⊂ D−μ = D−(μ+1) = · · ·
(T2) [Dp,Dq ] ⊂ Dp+q for all p, q < 0 .

3.2. Symbol algebra of differential system. Let (R,D) be a weakly regular differ-

ential system such that T R = D−μ ⊃ D−(μ−1) ⊃ · · · ⊃ D−1 =: D. For all x ∈ R, we
put g−1(x) := D−1(x) = D(x), gp(x) := Dp(x)/Dp+1(x), (p = −2,−3, . . . ,−μ) and

m(x) := ⊕−μ
p=−1 gp(x). Then, dim m(x) = dim R. We set gp(x) = {0} when p ≤ −μ − 1.

For X ∈ gp(x), Y ∈ gq(x), the Lie bracket [X,Y ] ∈ gp+q(x) is defined in the following

way: Let �p : Dp(x) → gp(x) be the projection of Dp(x) onto gp(x) and X̃ ∈ Dp, Ỹ ∈ Dq

be any extensions such that �p(X̃x) = X and �q(Ỹx) = Y . Then [X̃, Ỹ ] ∈ Dp+q , and we

set [X,Y ] := �p+q ([X̃, Ỹ ]x) ∈ gp+q(x). It does not depend on the choice of the extensions
because of the equation

[f X̃, gỸ ] = f g[X̃, Ỹ ] + f (X̃g)Ỹ − g(Ỹ f )X̃ (f, g ∈ C∞(R)) .

The Lie algebra m(x) is a nilpotent graded Lie algebra. we call (m(x), [ , ]) the symbol
algebra of (R,D) at x. Note that the symbol algebra (m(x), [ , ]) satisfies the generating
conditions [gp, g−1] = gp−1 (p < 0).

Later, Morimoto [6] introduced the notion of a filtered manifold as generalization of the
weakly regular differential system. We define a filtered manifold (R, F ) by a pair of a mani-
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fold R and a tangential filtration F . Here, a tangential filtration F on R is a sequence {Fp}p<0

of subbundles of the tangent bundle T R such that the following conditions are satisfied:

(M1) T R = Fk = · · · = F−μ ⊃ · · · ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ F 0 = {0} ,

(M2) [Fp,Fq ] ⊂ Fp+q for all p, q < 0,
where Fp = Γ (Fp) is the set of sections of Fp.

Let (R, F ) be a filtered manifold, for x ∈ R, we set fp(x) := Fp(x)/Fp+1(x), and
f(x) := ⊕

p<0 fp(x). For X ∈ fp(x), Y ∈ fq(x), Lie bracket [X,Y ] ∈ fp+q(x) is defined as

follows: Let �p : Fp(x) → fp(x) be the projection of Fp(x) onto fp(x), X̃ ∈ Fp, Ỹ ∈ Fq

be any extensions such that �p(X̃x) = X and �q(Ỹx) = Y . Then [X̃, Ỹ ] ∈ Fp+q , and we

set [X,Y ] := �p+q([X̃, Ỹ ]x) ∈ fp+q(x). It does not depend on the choice of the extensions.
The Lie algebra f(x) is also a nilpotent graded Lie algebra. We call (f(x), [ , ]) the symbol
algebra of (R, F ) at x. In general (f(x), [ , ]) does not satisfy the generating conditions.

3.3. Structures of rank 2 prolongations for hyperbolic equations. Let (R,D) be

a locally hyperbolic equation, and (Σ(R), D̂) the rank 2 prolongation. We first explain the
geometric meaning of the open covering Pω1ω2 ∪ Pω1π22 ∪ Pω2π11 ∪ Pπ11π22 in the proof of
Theorem 1. The set Σ(R) has a geometric decomposition:

Σ(R) = Σ0 ∪ Σ1 ∪ Σ2 (disjoint union) . (10)

where Σi = {w ∈ Σ(R) | dim (w ∩ fiber) = i}, i = 0, 1, 2, and “fiber” means that the fiber
of T R ⊃ D → T J 1. Then, locally, we have Σ0|p−1(U) = Pω1ω2 , Σ1|p−1(U) = (Pω1π22 ∪
Pω2π11)\Pω1ω2 , Σ2|p−1(U) = Pπ11π22\(Pω1ω2 ∪Pω1π22 ∪Pω2π11). The set Σ0 is an open subset

in Σ(R), and is an R2–bundle over R. The set Σ1 is a codimension 1 submanifold in Σ(R),
and is a (R ∪ R)-bundle over R. The set Σ2 is a codimension 2 submanifold in Σ(R), and is
an section of Σ(R) → R.

PROPOSITION 1. The differential system D̂ on Σ(R) is regular, but is not weakly reg-

ular. More precisely, we obtain that D̂ ⊂ ∂D̂ ⊂ ∂2D̂ ⊂ ∂3D̂ = T Σ(R). Moreover, we have

∂2D̂ = ∂(2)D̂, ∂(3)D̂ = T Σ(R) on Σ0 ∪ Σ1, and ∂(3)D̂ = ∂(2)D̂ on Σ2.

PROOF. On each component Σi in the decomposition (10), we calculate the structure

equation of D̂. First, we consider it on Σ0. The canonical system D̂ on Uω1ω2 is given by D̂ ={
�0 = �1 = �2 = �π11 = �π22 = 0

}
, where �π11 := π11−p1

11ω1, �π22 := π22 −p1
22ω2.

The structure equation of D̂ on Σ0 is given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π11 , �π22 ,

d�π11 ≡ ω1 ∧ (dp1
11 + f ω2) mod �0, �1, �2, �π11, �π22 ,

d�π22 ≡ ω2 ∧ (dp1
22 + gω1) mod �0, �1, �2, �π11, �π22 ,

using by appropriate functions f and g since π11, π22, ω1, ω2 are 1-forms on the base mani-

fold R. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} = p−1∗ (D). The structure equation of
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∂D̂ is written as

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 mod �0, �1, �2,�π11 ∧ �π22 ,

d�2 ≡ ω2 ∧ �π22 mod �0, �1, �2,�π11 ∧ �π22 .

Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ is described by

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2 mod �0, �1 ∧ �2, �1 ∧ �π11, �1 ∧ �π22 ,

�2 ∧ �π11,�2 ∧ �π22,�π11 ∧ �π22 .

Therefore, we have ∂(3)D̂ = T Σ(R). Next, we consider on Σ1. It is sufficient to prove

on Uω1π22 because the differential system D̂ on Uω1π22 is contact equivalent to the dif-

ferential system D̂ on Uω2π11 . The canonical system D̂ on Uω1π22 is given by D̂ ={
�0 = �1 = �2 = �ω2 = �π11 = 0

}
, where �ω2 := ω2 − p3

12π22, �π11 := π11 − p3
21ω1.

For a point w ∈ Uω1π22 , w ∈ Σ1 if and only if p3
12(w) = 0. Therefore, it is enough to consider

at w in the hypersurface
{
p3

12 = 0
} ⊂ Σ(R). The structure equation at a point on

{
p3

12 = 0
}

is given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω2 , �π11 ,

d�ω2 ≡ π22 ∧ (dp3
12 + fω1) mod �0, �1, �2, �ω2 , �π11 ,

d�π11 ≡ ω1 ∧ (dp3
21 + gπ22) mod �0, �1, �2, �ω2 , �π11 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ at a point on

{
p3

12 = 0
}

is expressed as

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 mod �0, �1, �2,�ω2 ∧ �π11 ,

d�2 ≡ �ω2 ∧ π22 mod �0, �1, �2,�ω2 ∧ �π11 .

Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ at a point on{
p3

12 = 0
}

is described by

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2

≡ ω1 ∧ �1 + (�ω2 + p3
12π22) ∧ �2

≡ ω1 ∧ �1 + �ω2 ∧ �2

≡ ω1 ∧ �1 mod �0, �1 ∧ �2, �1 ∧ �ω2 , �1 ∧ �π11 ,

�2 ∧ �ω2, �2 ∧ �π11 , �ω2 ∧ �π11 .
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Thus, we have ∂(3)D̂ = T Σ(R). Finally, we consider on Σ2. The canonical system D̂

on Uπ11π22 is given by D̂ = {
�0 = �1 = �2 = �ω1 = �ω2 = 0

}
, where �ω1 := ω1 −

p6
11π11, �ω2 := ω2 − p6

22π22. For a point w ∈ Uπ11π22 , w ∈ Σ2 if and only if p6
11(w) =

p6
22(w) = 0. Therefore, we calculate the structure equation of D̂ at a point in codimension 2

submanifold
{
p6

11 = p6
22 = 0

} ⊂ Σ(R). The structure equation is given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1, �ω2 ,

d�ω1 ≡ π11 ∧ (dp6
11 + fπ22) mod �0, �1, �2, �ω1, �ω2 ,

d�ω2 ≡ π22 ∧ (dp6
22 + gπ11) mod �0, �1, �2, �ω1 , �ω2 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ at a point on

{
p6

11 = p6
22 = 0

}
is written as

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω1 ∧ π11 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 .

Hence, we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ at a point on{
p6

11 = p6
22 = 0

}
is described by

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1, �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Therefore we obtain ∂(3)D̂ = ∂(2)D̂. �

From the above proposition, (Σ(R), D̂) is locally weakly regular around w ∈ Σ0 ∪ Σ1.
So we can define the symbol algebra at w in the sense of Tanaka and the following holds:

PROPOSITION 2. For w ∈ Σ0, the symbol algebra m0(w) is isomorphic to m0, where
m0 = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1, whose bracket relations are given by

[Xp1
11

, Xω1] = Xπ11 , [Xp1
22

, Xω2 ] = Xπ22 , [Xπ11, Xω1 ] = X1 ,

[Xπ22, Xω2] = X2 , [X1, Xω1 ] = [X2, Xω2 ] = X0 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp1

11
, Xp1

22
, Xω1 , Xω2 , Xπ11, Xπ22

}
is a basis of m0 and

g−1 = {
Xω1, Xω2 , Xp1

11
, Xp1

22

}
, g−2 = {

Xπ11, Xπ22

}
,

g−3 = {X1, X2} , g−4 = {
X0

}
.
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For w ∈ Σ1, the symbol algebra m1(w) is isomorphic to m1, where m1 = g−4 ⊕g−3 ⊕g−2 ⊕
g−1 whose bracket relations are given by

[Xp3
12

, Xπ22] = Xω2 , [Xp3
21

, Xω1 ] = Xπ11 , [Xπ11, Xω1 ] = X1 ,

[Xπ22, Xω2 ] = X2 , [X1, Xω1] = X0 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp3

12
, Xp3

21
, Xω1 , Xω2 , Xπ11, Xπ22

}
is a basis of m1 and

g−1 = {
Xω1 , Xπ22, Xp3

12
, Xp3

21

}
, g−2 = {

Xω2 Xπ11

}
,

g−3 = {X1, X2} , g−4 = {X0} .

PROOF. We first show that m0(w) ∼= m0. On Uω1ω2 in the proof of Proposition 1, we

set �p1
11

:= dp1
11 + f ω2, �p1

22
:= dp1

22 + gω1 and take a coframe:
{
�0, �1, �2, �π11, �π22, ω1, ω2, �p1

11
, �p1

22

}
, then the structure equations are given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π11 , �π22 ,

d�π11 ≡ ω1 ∧ �p1
11

mod �0, �1, �2, �π11, �π22 ,

d�π22 ≡ ω2 ∧ �p1
22

mod �0, �1, �2, �π11, �π22 ,

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 mod �0, �1, �2,�π11 ∧ �π22 ,

d�2 ≡ ω2 ∧ �π22 mod �0, �1, �2,�π11 ∧ �π22 .

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2 mod �0, �1 ∧ �2, �1 ∧ �π11, �1 ∧ �π22 ,

�2 ∧ �π11,�2 ∧ �π22,�π11 ∧ �π22 .

We take the dual frame
{
X0, X1, X2, Xπ11, Xπ22, Xω1, Xω2 , Xp1

11
, Xp1

22

}
, and set

[Xω1 ,Xp1
11

] = A11Xπ11 + A22Xπ22, (Aii ∈ R). Then we have

d�π11(Xω1 ,Xp1
11

) = Xω1�π11(Xp1
11

) − Xp1
11

�π11(Xω1) − �π11([Xω1 ,Xp1
11

]) ,

= −�π11([Xω1,Xp1
11

]) = −A11 .

On the other hand, we have

d�π11(Xω1 ,Xp1
11

) = ω1(Xω1)�p1
11

(Xp1
11

) − �p1
11

(Xω1)ω1(Xp1
11

) = 1 .

Therefore A11 = −1. From the same argument for d�π22 , we get A22 = 0. Hence we have
[Xω1 ,Xp1

11
] = −Xπ11 . The other brackets are left to reader. Hence its dual frame satisfies the

relation with respect to the algebra m0.
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Next, we show that the isomorphism m1(w) ∼= m1. On Uω1π22 in the

proof of Proposition 1, we set �p3
12

:= dp3
12 + fω1, �p3

21
:= dp3

21 + gπ22,

and take a coframe and its dual frame
{
�0,�1,�2,�ω2 ,�π11, ω1, π22,�p3

12
,�p3

21

}
,

{
X0,X1,X2,Xω2 ,Xπ11,Xω1 ,Xπ22,Xp3

12
,Xp3

21

}
. From the proof of Proposition 1, the struc-

ture equations at a point on
{
p3

12 = 0
}

are

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω2 , �π11 ,

d�ω2 ≡ π22 ∧ �p3
12

mod �0, �1, �2, �ω2 , �π11 ,

d�π11 ≡ ω1 ∧ �p3
21

mod �0, �1, �2, �ω2 , �π11 ,

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 mod �0, �1, �2,�ω2 ∧ �π11 ,

d�2 ≡ �ω2 ∧ π22 mod �0, �1, �2,�ω2 ∧ �π11 .

d�0 ≡ ω1 ∧ �1 mod �0, �1 ∧ �2, �1 ∧ �ω2 , �1 ∧ �π11 ,

�2 ∧ �ω2 , �2 ∧ �π11, �ω2 ∧ �π11 .

Thus we obtain the statement for m1 from the same argument of the proof of m0. �

In the rest of this hyperbolic case, we calculate the symbol algebra at a point w in Σ2.
From Proposition 1, D is not weakly regular around w ∈ Σ2. Hence, at the point w, we
can not define the symbol algebra in the sense of Tanaka. However, by taking the following
filtration F on Σ(R), we can define the symbol algebra m2(w) of (Σ(R), F ) at w ∈ Σ2.

We set F−4(w) = Tw(Σ(R)), F−3(w) = ∂(2)D(w), F−2(w) = ∂D(w), F−1(w) =
D(w), where w ∈ Σ(R). Then, {Fp} defines the filtration on Σ(R). For w ∈ Σ2, we set
g−1(w) := F−1(w) = D(w), g−2(w) := F−2(w)/F−1(w), g−3(w) := F−3(w)/F−2(w),
g−4(w) := Tw(Σ(R))/F−3(w), and

m2(w) = g−1(w) ⊕ g−2(w) ⊕ g−3(w) ⊕ g−4(w) .

The way of the definition of the above symbol algebra in the sense of Morimoto coincides
with the usual symbol algebra except for [g−1, g−3].

PROPOSITION 3. For w ∈ Σ2, the symbol algebra m2(w) is isomorphic to m2, where
m2 = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1, whose bracket relations are given by

[Xp6
11

, Xπ11] = Xω1 , [Xp6
22

, Xπ22] = Xω2, [Xπ11, Xω1 ] = X1, [Xπ22, Xω2 ] = X2 ,

and the other brackets are trivial .
Here

{
X0, X1, X2, Xp6

11
, Xp6

22
, Xω1 , Xω2 , Xπ11, Xπ22

}
is a basis of m2 and

g−1 = {
Xπ11, Xπ22, Xp6

11
, Xp6

22

}
, g−2 = {

Xω1, Xω2

}
,
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g−3 = {X1, X2} , g−4 = {X0} .

PROOF. On Uπ11π22 in the proof of Proposition 1, we set �p6
11

:= dp6
11 +

f π22, �p6
22

:= dp6
22 + gπ11 and take a coframe:

{
�0, �1, �2, �ω1 , �ω2, π11, π22, �π6

11
, �π6

22

}
and its dual frame:

{
X0, X1, X2, Xω1 , Xω2, Xπ11, Xπ22, Xp6

11
, Xp6

22

}
. From the proof of Proposition 1, the

structure equations at a point on
{
p6

11 = p6
22 = 0

}
are

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω1 ≡ π11 ∧ �p6
11

mod �0, �1, �2, �ω1 , �ω2 ,

d�ω2 ≡ π22 ∧ �p6
22

mod �0, �1, �2, �ω1 , �ω2 .

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω1 ∧ π11 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 .

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1 , �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Thus we have the assertion by the same argument in the proof of Proposition 2. �

3.4. Structures of rank 2 prolongations for parabolic equations. Let (R,D) be a

locally parabolic equation, and (Σ(R), D̂) be the rank 2 prolongation. We use the geometric
decomposition (10) of Σ(R) which is similar to the hyperbolic case. From Lemma 2, locally,
we have Σ0|p−1(U) = Pω1ω2, Σ1|p−1(U) = Pω1π22\Pω1ω2 , and Σ2|p−1(U) = Pπ12π22\(Pω1ω2 ∪
Pω1π22), where p is the projection of the fibration Σ(R) → R. The set Σ0 is an open set in

Σ(R), and is an R2–bundle over R. The set Σ1 is a submanifold in J (D, 2) and contains
singular points of Σ(R) in J (D, 2) and is an R-bundle over R. The set Σ2 is codimension 2
submanifold in Σ(R), and is a section of Σ(R) → R. We investigate the geometric structures

of (Σ(R), D̂) on a domain except for singular points in Σ1.

PROPOSITION 4. The differential system D̂ on Σ(R) is regular, but is not weakly reg-

ular. More precisely, we obtain that D̂ ⊂ ∂D̂ ⊂ ∂2D̂ ⊂ ∂3D̂ = T Σ(R). Moreover, we have

∂2D̂ = ∂(2)D̂, ∂(3)D̂ = T Σ(R) on Σ0 ∪ Σ1, and ∂(3)D̂ = ∂(2)D̂ on Σ2.

PROOF. On each component Σi in the decomposition, we calculate the structure equa-

tion of D̂. First, we consider it on Σ0. The canonical system D̂ on Uω1ω2 is given by

D̂ = {
�0 = �1 = �2 = �π12 = �π22 = 0

}
, where �π12 := π12 − p1

12ω2, �π22 :=
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π22 − p1
12ω1 − p1

22ω2. The structure equation of D̂ on Σ0 is written as

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π12 , �π22 ,

d�π12 ≡ ω2 ∧ (dp1
12 + f ω1) mod �0, �1, �2, �π12, �π22 ,

d�π22 ≡ gω1 ∧ ω2 − dp1
12 ∧ ω1 − dp1

22 ∧ ω2 mod �0, �1, �2, �π12, �π22 .

≡ −(dp1
12 + f ω1) ∧ ω1 − (dp1

22 − gω1) ∧ ω2 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ is expressed as

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω2 ∧ �π12 mod �0, �1, �2,�π12 ∧ �π22 ,

d�2 ≡ ω1 ∧ �π12 + ω2 ∧ �π22 mod �0, �1, �2,�π12 ∧ �π22 .

Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ is described by

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2, mod �0, �1 ∧ �2, �1 ∧ �π12, �1 ∧ �π22 ,

�2 ∧ �π12, �2 ∧ �π22, �π12 ∧ �π22 .

Therefore, we obtain ∂(3)D̂ = T Σ(R). Next, we consider on Σ1. It is enough to work on

Uπ12π22 since Σ1\{singular points} is covered by Uπ12π22 . The canonical system D̂ on Uπ12π22

is given by D̂ = {
�0 = �1 = �2 = �ω1 = �ω2 = 0

}
, where �ω1 := ω1 − p6

11π12 −
p6

12π22, �ω2 := ω2 − p6
12π12. For w ∈ Uπ12π22 , w ∈ Σ1 if and only if p6

11(w) �=
0, p6

12(w) = 0. Because, w ∈ Σ2 is given by the coordinate p6
11(w) = 0, p6

12(w) = 0,

and w ∈ Σ1\Σ0 is given by p6
12(w) = 0. Therefore, we calculate the structure equation

at w in the hypersurface
{
p6

11 �= 0, p6
12 = 0

} ⊂ Σ(R). The structure equation at a point on
{
p6

11 �= 0, p6
12 = 0

}
is

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω1 ≡ π12 ∧ (dp6
11 + fπ22) + π22 ∧ (dp6

12 + gπ22) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω2 ≡ π12 ∧ (dp6
12 + gπ22) mod �0, �1, �2, �ω1, �ω2 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ is given by

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 + �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 .
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Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0}. The structure equation of ∂2D̂ is written as

d�0 ≡ p6
11π12 ∧ �1 mod �0, �1 ∧ �2, �1 ∧ �ω1, �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Here, if we set � ′
0 := �0/p

6
11, then structure equation is rewritten in the form:

d� ′
0 ≡ π12 ∧ �1 mod � ′

0, �1 ∧ �2, �1 ∧ �ω1 , �1 ∧ �ω2 ,

�2 ∧ �ω1 , �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Hence we have ∂(3)D̂ = T Σ(R). Finally, we consider on Σ2. We use the coordinate on

Uπ12π22 . For w ∈ Uπ12π22 , w ∈ Σ2 if and only if p6
11(w) = p6

12(w) = 0. Therefore, we

calculate the structure equation at w in the codimension 2 submanifold
{
p6

11 = p6
12 = 0

} ⊂
Σ(R). The structure equation at a point on

{
p6

11 = p6
12 = 0

}
is described by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω1 ≡ π12 ∧ (dp6
11 + fπ22) + π22 ∧ (dp6

12 + gπ22) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω2 ≡ π12 ∧ (dp6
12 + gπ22) mod �0, �1, �2, �ω1, �ω2 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ is given by

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 + �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 .

Therefore, we get ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ is expressed as

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1, �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Hence we have ∂(3)D̂ = ∂(2)D̂. �

From the above proposition, (Σ(R), D̂) is locally weakly regular around w ∈ Σ0 ∪ Σ1.

So we define the symbol algebra at w. On the other hand, for a point w on Σ2, (Σ(R), D̂) is
not weakly regular around w. However, by taking the filtration on Σ(R) which is same to the
hyperbolic case, we can define the symbol algebra at w. Each structure of symbol algebras is
given in the following.

PROPOSITION 5. For w ∈ Σ0, the symbol algebra m0(w) is isomorphic to m0, where
m0 = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1, whose bracket relations are given by

[Xp1
12

, Xω2] = Xπ12 , [Xp1
12

, Xω1 ] = [Xp1
22

, Xω2] = Xπ22 , [Xπ12, Xω2 ] = X1 ,
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[Xπ12, Xω1 ] = [Xπ22, Xω2 ] = X2 , [X1, Xω1] = [X2, Xω2 ] = X0 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp1

12
, Xp1

22
, Xω1 , Xω2 , Xπ12, Xπ22

}
is a basis of m0 and

g−1 = {
Xω1, Xω2 , Xp1

12
, Xp1

22

}
, g−2 = {

Xπ12, Xπ22

}
,

g−3 = {X1, X2} , g−4 = {X0} .

For w ∈ Σ1, the symbol algebra m1(w) is isomorphic to m1, where m1 = g−4 ⊕g−3 ⊕g−2 ⊕
g−1, whose bracket relations are given by

[Xp6
11

, Xπ12] = [Xp6
12

, Xπ22] = Xω1 , [Xp6
12

, Xπ12] = Xω2 ,

[Xπ12, Xω2 ] = X1 , [Xπ12, Xω1 ] = [Xπ22, Xω2 ] = X2 , [X1,Xπ12] = X0 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp6

11
, Xp6

12
, Xω1 , Xω2 , Xπ12, Xπ22

}
is a basis of m1 and

g−1 = {
Xπ12, Xπ22, Xp6

11
, Xp6

12

}
, g−2 = {

Xω1, Xω2

}
,

g−3 = {X1, X2} , g−4 = {X0} .

For w ∈ Σ2, the symbol algebra m2(w) is isomorphic to m2, where m2 = g−4 ⊕g−3 ⊕g−2 ⊕
g−1, whose bracket relations are given by

[Xp6
11

, Xπ12] = [Xp6
12

, Xπ22] = Xω1, [Xp6
12

, Xπ12] = Xω2 ,

[Xπ12, Xω2 ] = X1 , [Xπ12, Xω1 ] = [Xπ22, Xω2 ] = X2 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp6

11
, Xp6

12
, Xω1 , Xω2 , Xπ12, Xπ22

}
is a basis of m2 and

g−1 = {
Xπ12, Xπ22, Xp6

11
, Xp6

12

}
, g−2 = {

Xω1, Xω2

}
,

g−3 = {X1, X2} , g−4 = {X0} .

PROOF. We first show that m0(w) ∼= m0 for w ∈ Σ0. On Uω1ω2 in the proof of

Proposition 4, we set �p1
12

:= dp1
12 + f ω1, �p1

22
:= dp1

22 − gω2, and take a coframe:
{
�0,�1,�2,�π12 ,�π22, ω1, ω2,�p1

12
,�p1

22

}
, then the structure equations are given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π12, �π22,

d�π12 ≡ ω2 ∧ �p1
12

mod �0, �1, �2, �π12, �π22 ,

d�π22 ≡ −�p1
12

∧ ω1 − �p1
22

∧ ω2 mod �0, �1, �2, �π12, �π22 .

d�0 ≡ 0 mod �0, �1, �2 ,
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d�1 ≡ ω2 ∧ �π12 mod �0, �1, �2,�π12 ∧ �π22 ,

d�2 ≡ ω1 ∧ �π12 + ω2 ∧ �π22 mod �0, �1, �2,�π12 ∧ �π22 ,

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2, mod �0, �1 ∧ �2 , �1 ∧ �π12, �1 ∧ �π22 ,

�2 ∧ �π12, �2 ∧ �π22, �π12 ∧ �π22 .

We take the dual frame:
{
X0, X1, X2, Xπ12, Xπ22, Xω1 , Xω2 , Xp1

12
, Xp1

22

}
. Then, by

using the same argument to the hyperbolic case, we have the bracket relations of m0.
Next, we show that the isomorphism m1(w) ∼= m1 for a point on Σ1. On Uπ12π22 in

the proof of Proposition 4, we set �p6
11

:= dp6
11 + f π22, �p6

12
:= dp6

12 + gπ22, and

take a coframe
{
� ′

0, �1, �2, �ω1 , �ω2 , π12, π22, �p6
11

, �p6
12

}
. and its dual frame

{
X0, X1, X2, Xω1, Xω2 , Xπ12, Xπ22, Xp6

11
, Xp6

12

}
. From the proof of Proposition 4, the

structure equations at a point on
{
p6

11 �= 0, p6
12 = 0

}
are described by

d� ′
0 ≡ 0 mod � ′

0, �1, �2, �ω1, �ω2 ,

d�i ≡ 0 (i = 1, 2) mod � ′
0, �1, �2, �ω1, �ω2 ,

d�ω1 ≡ π12 ∧ �p6
11

+ π22 ∧ �p6
12

mod �0, �1, �2, �ω1, �ω2 ,

d�ω2 ≡ π12 ∧ �p6
12

mod � ′
0, �1, �2, �ω1 , �ω2 .

d� ′
0 ≡ 0 mod � ′

0, �1, �2 ,

d�1 ≡ �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 + �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d� ′
0 ≡ π12 ∧�1 mod � ′

0, �1 ∧�2, �1 ∧�ω1 , �1 ∧�ω2 , �2 ∧�ω1 , �2 ∧�ω2 , �ω1 ∧
�ω2 .

Then, by using the same argument to the hyperbolic case, we have the bracket relations
of m1.

Finally, we prove the statement for m2. We use the coordinate on Uπ12π22 which is same
to the case of Σ1. From the proof of Proposition 4, the structure equations at a point on{
p6

11 = p6
12 = 0

}
are expressed as

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1, �ω2 ,

d�ω1 ≡ π12 ∧ �p6
11

+ π22 ∧ �p6
12

mod �0, �1, �2, �ω1 , �ω2 ,

d�ω2 ≡ π12 ∧ �p6
12

mod �0, �1, �2, �ω1 , �ω2 .

d�0 ≡ 0 mod �0, �1, �2,
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d�1 ≡ �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 + �ω2 ∧ π22 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1 , �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Thus we have the statement for m2(w) from the same argument. �

3.5. Structures of rank 2 prolongations for elliptic equations. Let (R,D) be a

locally elliptic equation and (Σ(R), D̂) the rank 2 prolongation. We use the geometric de-
composition (10) of Σ(R) which is similar to the hyperbolic case. From Lemma 3, locally,
we have Σ0|p−1(U) = Pω1ω2 , Σ2|p−1(U) = Pπ11π12\Pω1ω2 , where p is the projection of the

fibration Σ(R) → R. The set Σ0 is an open set in Σ(R), and is an R2–bundle over R. The
set Σ2 is a codimension 2 submanifold of Σ(R) and is a section of Σ(R) → R.

PROPOSITION 6. The differential system D̂ on Σ(R) is regular, but is not weakly reg-

ular. More precisely, we obtain that D̂ ⊂ ∂D̂ ⊂ ∂2D̂ ⊂ ∂3D̂ = T Σ(R). Moreover, we have

∂2D̂ = ∂(2)D̂, ∂(3)D̂ = T Σ(R) on Σ0, and ∂(3)D̂ = ∂(2)D̂ on Σ2.

PROOF. On each component Σi in the decomposition, we calculate the structure equa-

tion of D̂. First, we consider it on Σ0. The canonical system D̂ on Uω1ω2 is given by D̂ ={
�0 = �1 = �2 = �π11 = �π12 = 0

}
, where �π11 := π11 − p1

11ω1 − p1
12ω2 , �π12 :=

π12 − p1
12ω1 + p1

11ω2. The structure equation of D̂ on Σ0 is given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π11, �π12,

d�π11 ≡ ω1 ∧ (dp1
11 + f ω2) + ω2 ∧ (dp1

12 + gω2) mod �0, �1, �2, �π11, �π12 ,

d�π12 ≡ ω1 ∧ (dp1
12 + gω2) − ω2 ∧ (dp1

11 + f ω2) mod �0, �1, �2, �π11, �π12 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ is written as

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 + ω2 ∧ �π12 mod �0, �1, �2,�π11 ∧ �π12 ,

d�2 ≡ ω1 ∧ �π12 − ω2 ∧ �π11 mod �0, �1, �2,�π11 ∧ �π12 .

Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ is expressed as

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2, mod �0, �1 ∧ �2, �1 ∧ �π11, �1 ∧ �π12 ,

�2 ∧ �π11, �2 ∧ �π12 , �π11 ∧ �π12 .

Hence, we have ∂(3)D̂ = T Σ(R). Next we consider on Σ2. The canonical system D̂

on Uπ11π12 is given by D̂ = {
�0 = �1 = �2 = �ω1 = �ω2 = 0

}
, where �ω1 := ω1 −
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p6
11π11 − p6

12π12, �ω2 := ω2 − p6
12π11 + p6

11π12. For w ∈ Uπ11π12 , w ∈ Σ2 if and only

if p6
11(w) = p6

12(w) = 0. Therefore, we calculate the structure equation at w in the codi-

mension 2 submanifold
{
p6

11 = p6
12 = 0

} ⊂ Σ(R). The structure equation at a point on
{
p6

11 = p6
12 = 0

}
is described by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω1 ≡ π11 ∧ (dp6
11 + fπ12) + π12 ∧ (dp6

12 + gπ12) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω2 ≡ π11 ∧ (dp6
12 + gπ12) − π12 ∧ (dp6

11 + f π12) mod �0, �1, �2, �ω1 , �ω2 ,

where f and g are appropriate functions. Hence we have ∂D̂ = {�0 = �1 = �2 = 0} =
p−1∗ (D). The structure equation of ∂D̂ is

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω1 ∧ π11 + �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 − �ω2 ∧ π11 mod �0, �1, �2,�ω1 ∧ �ω2 .

Hence we have ∂2D̂ = ∂(2)D̂ = {�0 = 0} . The structure equation of ∂2D̂ is given by

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1, �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Thus, we have ∂(3)D̂ = ∂(2)D̂. �

From the above proposition, (Σ(R), D̂) is locally weakly regular around w ∈ Σ0. So we
can define the symbol algebra at w in the sense of Tanaka. On the other hand, for a point w

on Σ2, (Σ(R), D̂) is not weakly regular around w. However, by taking the filtration on Σ(R)

which is same to the hyperbolic case, we can define the symbol algebra at w. Each structure
of symbol algebras is given in the following.

PROPOSITION 7. For w ∈ Σ0, the symbol algebra m0(w) is isomorphic to m0, where
m0 = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1, whose bracket relations are given by

[Xp1
11

, Xω1] = [Xp1
12

, Xω2] = Xπ11 , [Xp1
12

, Xω1] = [Xω2, Xp1
11

] = Xπ12 ,

[Xπ11, Xω1 ] = [Xπ12, Xω2 ] = X1 , [Xπ12, Xω1] = [Xω2, Xπ11] = X2 ,

[X1, Xω1] = [X2, Xω2 ] = X0, and the other brackets are trivial.

Here
{
X0, X1, X2, Xp1

11
, Xp1

12
, Xω1 , Xω2 , Xπ11, Xπ12

}
is a basis of m0 and

g−1 = {
Xω1, Xω2 , Xp1

11
, Xp1

12

}
, g−2 = {

Xπ11, Xπ12

}
,

g−3 = {X1, X2} , g−4 = {X0} .
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For w ∈ Σ2, the symbol algebra m2(w) is isomorphic to m2, where m2 = g−4 ⊕g−3 ⊕g−2 ⊕
g−1, whose bracket relations are given by

[Xp6
11

, Xπ11] = [Xp6
12

, Xπ12] = Xω1 , [Xp6
12

, Xπ11] = [Xπ12, Xp6
11

] = Xω2 ,

[Xπ11, Xω1 ] = [Xπ12, Xω2 ] = X1 , [Xπ12, Xω1] = [Xω2, Xπ11] = X2 ,

and the other brackets are trivial.
Here

{
X0, X1, X2, Xp6

11
, Xp6

12
, Xω1 , Xω2 , Xπ11, Xπ12

}
is a basis of m2 and

g−1 = {
Xπ11, Xπ12, Xp6

11
, Xp6

12

}
, g−2 = {

Xω1, Xω2

}
,

g−3 = {X1, X2} , g−4 = {X0} .

PROOF. We first show that m0(m) ∼= m0. On Uω1ω2 in the proof of Proposition 6, if

we set �p1
11

:= dp1
11 + fω2, �p1

12
:= dp1

12 + gω2 and take a coframe:

{
�0, �1, �2, �π11, �π12, ω1, ω2, �p1

11
, �p1

12

}
,

then the structure equations are written as

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �π11 , �π12 ,

d�π11 ≡ ω1 ∧ �p1
11

+ ω2 ∧ �p1
12

mod �0, �1, �2, �π11, �π12 ,

d�π12 ≡ ω1 ∧ �p1
12

− ω2 ∧ �p1
11

mod �0, �1, �2, �π11, �π12 .

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ ω1 ∧ �π11 + ω2 ∧ �π12 mod �0, �1, �2,�π11 ∧ �π12 ,

d�2 ≡ ω1 ∧ �π12 − ω2 ∧ �π11 mod �0, �1, �2,�π11 ∧ �π12 ,

d�0 ≡ ω1 ∧ �1 + ω2 ∧ �2, mod �0, �1 ∧ �2, �1 ∧ �π11, �1 ∧ �π12 ,

�2 ∧ �π11, �2 ∧ �π12, �π11 ∧ �π12 .

We take the dual frame
{
X0, X1, X2, Xπ11, Xπ12, Xω1, Xω2 , Xp1

11
, Xp1

12

}
. Then, by the

same argument to the hyperbolic case, we have the bracket relations of m0.
Next, we prove the statement for the algebra m2. On Uπ11π12 in the proof of Proposition

6, we set �p6
11

:= dp6
11 + fπ12, �p6

12
:= dp6

12 + gπ12 and take a coframe:
{
�0, �1, �2, �ω1 , �ω2 , π11, π12, �p6

11
, �p6

12

}
, then the structure equations at a point

on Σ2 are given by

d�i ≡ 0 (i = 0, 1, 2) mod �0, �1, �2, �ω1 , �ω2 ,

d�ω1 ≡ π11 ∧ (dp6
11 + fπ12) + π12 ∧ (dp6

12 + gπ12) mod �0, �1, �2, �ω1 , �ω2 ,
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d�ω2 ≡ π11 ∧ (dp6
12 + gπ12) − π12 ∧ (dp6

11 + f π12) mod �0, �1, �2, �ω1 , �ω2 .

d�0 ≡ 0 mod �0, �1, �2 ,

d�1 ≡ �ω1 ∧ π11 + �ω2 ∧ π12 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�2 ≡ �ω1 ∧ π12 − �ω2 ∧ π11 mod �0, �1, �2,�ω1 ∧ �ω2 ,

d�0 ≡ 0 mod �0, �1 ∧ �2, �1 ∧ �ω1, �1 ∧ �ω2 ,

�2 ∧ �ω1, �2 ∧ �ω2 , �ω1 ∧ �ω2 .

Let
{
X0, X1, X2, Xω1 , Xω2, Xπ11, Xπ12, Xp6

11
, Xp6

12

}
be the dual frame. Then, by using

the same argument to the hyperbolic case, we have the bracket relations of m2. �

4. Construction of singular solutions and the theory of submanifold of the rank 2
prolongation of the Second Jet space

In sections 2 and 3, we studied various properties of the rank 2 prolongations (Σ(R), D̂)

of single equations (R,D). Under these prolongations, we mention the strategy of the con-
struction of the geometric singular solutions for each class of equations (R,D). Moreover, we
construct singular solutions for model equations belonging to each class. For this purpose, we

first consider the rank 2 prolongation Σ(J 2) of the second jet space J 2(R2, R). For the 2-jet

space J 2(R2, R), we denote the rank 2 prolongation of J 2(R2, R) by (Σ(J 2), Ĉ2). This space

Σ(J 2) is a submanifold of the Grassmann bundle J (C2, 2). The geometry of (Σ(J 2), Ĉ2) in

J (C2, 2) is studied in [9]. From now on, we refer to [9] for the obtained results. For an open

set V ⊂ J 2(R2, R), Π2
1

−1
(V ) is covered by 6 open sets:

Π2
1

−1
(V ) = Vxy ∪ Vxt ∪ Vyr ∪ Vrs ∪ Vrt ∪ Vst ,

where Π2
1 : Σ(J 2) → J 2 is the projection and each open set is given by

Vxy :={
w ∈ Π2

1
−1

(V ) | dx ∧ dy|w �= 0
}
, Vxt := {

w ∈ Π2
1

−1
(V ) | dx ∧ dt|w �= 0

}
,

Vyr :={
w ∈ Π2

1
−1

(V ) | dy ∧ dr|w �= 0
}
, Vrs := {

w ∈ Π2
1

−1
(V ) | dr ∧ ds|w �= 0

}
,

Vrt :={
w ∈ Π2

1
−1

(V ) | dr ∧ dt|w �= 0
}
, Vst := {

w ∈ Π2
1

−1
(V ) | ds ∧ dt|w �= 0

}
.

The prolongation Σ(J 2) has the similar geometric decomposition: Σ(J 2) = Σ0 ∪ Σ1 ∪ Σ2,

where Σi = {
w ∈ Σ(J 2) | dim(w ∩ fiber) = i

}
(i = 0, 1, 2), and “fiber” means that the fiber

of T (J 2) ⊃ C2 → T (J 1). Then, locally,

Σ0|
Π2

1
−1

(V )
= Vxy |

Π2
1

−1
(V )

, Σ1|
Π2

1
−1

(V )
= {

(Vxt ∪ Vyr)\Vxy

} |
Π2

1
−1

(V )
,

Σ2|
Π2

1
−1

(V )
= {

(Vrs ∪ Vrt ∪ Vst )\(Vxy ∪ Vxt ∪ Vyr)
} |

Π2
1

−1
(V )

,
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The set Σ0 = J 3 is an open set in Σ(J 2) and is an R4-bundle over J 2. The set Σ1 is a

codimension 1 submanifold in Σ(J 2). The set Σ2 is a codimension 2 submanifold in Σ(J 2)

and is a P2-bundle over J 2. In the following, we give the description of the canonical system

(Σ(J 2), Ĉ2) on each coordinate.
(A) Vxy

∼= J 3, (x, y, z, p, q, r, s, t, p111, p112, p122, p222):

Ĉ2 = {�0 = �1 = �2 = �r = �s = �t = 0} , where �r = dr − p111dx −
p112dy, �s = ds − p112dx − p122dy, �t = dt − p122dx − p222dy.

(B) Vxt, (x, y, z, p, q, r, s, t, a, B, c, e):

Ĉ2 = {
�0 = �1 = �2 = �y = �r = �s = 0

}
, where �y = dy − adx −

Bdt, �r = dr − cdx − (a2 + eB)dt, �s = ds − edx − adt .
(C) Vyr, (x, y, z, p, q, r, s, t, a, B, c, e):

Ĉ2 = {�0 = �1 = �2 = �x = �s = �t = 0} , where �x = dx − ady −
Bdr, �s = ds − cdy + adr, �t = dt − edy − (a2 + Bc)dr .

(D) Vrs, (x, y, z, p, q, r, s, t, B,D,E,F ):

Ĉ2 = {
�0 = �1 = �2 = �x = �y = �t = 0

}
, where �x = dx − (DE −

BF)dr − Bds, �y = dy − Bdr − Dds, �t = dt − Edr − Fds.
(E) Vrt , (x, y, z, p, q, r, s, t, A,D,E,F ):

Ĉ2 = {
�0 = �1 = �2 = �x = �y = �s = 0

}
, where �x = dx−Adr+(DE−

CF)dt, �y = dy + (AF − (DE − CF)E)dr − Ddt ,
�s = ds − Edr − Fdt .

(F) Vst , (x, y, z, p, q, r, s, t, A,B,E,F ):

Ĉ2 = {
�0 = �1 = �2 = �x = �y = �r = 0

}
, where �x = dx − Ads −

Bdt, �y = dy − Bds + (BE − AF)dt, �r = dr − Eds − Fdt .

The reason we introduced Σ(J 2) is that Σ(R) is regarded as the subset in Σ(J 2). More
precisely, we need to construct the equivariant embedding ι : Σ(R) ↪→ Σ(J 2) which give
the following commutative diagram:

Σ(R) ↪→ Σ(J 2)

↓ ↓ (11)

R ↪→ J 2(R2, R) .

Here, the correspondences except for ι are already given. This diagram is an extension of the
following commutative diagram.

R(1) ↪→ J 3(R2, R)

↓ ↓ (12)

R ↪→ J 2(R2, R) .
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where R(1) is the prolongation of (R,D) with independence condition. In general, for given

second order PDE R = {F = 0} with independent variables x, y, this prolongation R(1)

corresponds to a third order PDE system which is obtained by partial derivation of F = 0 for

the two variables x, y. Hence, R(1) can be regarded naturally as a submanifold in J 3 which is

also the prolongation of J 2 with the independence condition.
Let us return to the diagram (11). If we can construct the equivariant embedding ι :

Σ(R) ↪→ Σ(J 2), then we can obtain singular solutions L by the following strategy:

Find an integral manifold L of (Σ(R), D̂) ⊂ (Σ(J 2), Ĉ2) passing through the Σ1 ∪ Σ2.

Indeed, in the rest of this section, we construct all singular solutions for model equations
belonging to the each class. However, we do not discuss the construction of the singular
solutions passing through singular points of Σ(R) (see Lemma 1).

4.1. Singular solutions of a hyperbolic equation. We consider the wave equation
R = {s = 0} as a model equation. The differential system D = { �0 = �1 = �2 = 0} is
given by �0 = dz − pdx − qdy, �1 = dp − rdx, �2 = dq − tdy. The structure equation
of D is written as

d�0 = −dp ∧ dx − dq ∧ dy , d�1 = −dr ∧ dx , d�2 = −dt ∧ dy .

For an open set U in R, we have the covering p−1(U) = Pxy ∪Pxt ∪Pyr ∪Prt of the fibration
p : Σ(R) → R followed by Theorem 1, where

Uxy : = {
v ∈ π−1(U) | dx|v ∧ dy|v �= 0

}
, Uxt := {

v ∈ π−1(U) | dx|v ∧ dt|v �= 0
}
,

Uyr : = {
v ∈ π−1(U) | dy|v ∧ dr|v �= 0

}
, Urt := {

v ∈ π−1(U) | dr|v ∧ dt|v �= 0
}
,

Pxy : = p−1(U) ∩ Uxy , Pxt := p−1(U) ∩ Uxt ,

Pyr : = p−1(U) ∩ Uyr , Prt := p−1(U) ∩ Urt .

The geometric decomposition Σ(R) = Σ0 ∪ Σ1 ∪ Σ2 is given by Σ0|p−1(U) =
Pxy, Σ1|p−1(U) = (Pxt ∪Pyr)\Pxy, Σ2|p−1(U) = Prt\(Pxy ∪Pxt ∪Pyr). Now, by using this

decomposition, we consider embeddings from Σ(R) into Σ(J 2).
(i) On the open set Vxy = J 3 ⊂ Σ(J 2).

On Vxy , we consider the submanifold Σxy = {s = p112 = p122 = 0} . On Σxy , we
have the induced differential system DΣxy

= {�0 = �1 = �2 = �r = �t = 0} , where

�r = dr − p111dx, �t = dt − p222dx. Clearly, this system (Σxy,DΣxy
) is isomorphic

to (Pxy, D̂) ⊂ (Σ(R), D̂). Indeed, this system is equal to the third order PDE which is ob-
tained by partial derivation of the original equation s = 0 for the independent variables x, y.
The projection to R of these integral manifolds are regular solutions of the wave equation
s = 0.

(ii) On the open set Vxt ⊂ Σ(J 2).
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We consider singular solutions of corank 1 which are the projections of inte-

gral manifolds of Σ(J 2) passing through Σ1. On Vxt , we consider the submani-

fold Σxt = {s = a = e = 0} . On Σxt , we have the differential system DΣxt
=

{
�0 = �1 = �2 = �y = �r = 0

}
, where �y = dy − Bdt, �r = dr − cdx. Note

that w ∈ Σ1 ⇐⇒ B(w) = 0. Clearly, this system (Σxt ,DΣxt
) is isomorphic to

(Pxt , D̂) ⊂ (Σ(R), D̂). We construct integral manifolds of this system in the following.

Let ι : S ↪→ Σxt ⊂ Σ(J 2) be a graph defined by

(x, y(x, t), z(x, t), p(x, t), q(x, t), r(x, t), t, B(x, t), c(x, t)) around (x0, t0) .

If S is an integral submanifold of (Σxt ,DΣxt
), then the following conditions are satisfied:

ι∗�0 = ι∗(dz − pdx − qdy) = (zx − p − qyx)dx + (zt − qyt )dt = 0 , (13)

ι∗�1 = ι∗(dp − rdx) = (px − r)dx + ptdt = 0 , (14)

ι∗�2 = ι∗(dq − tdy) = (qx − tyx)dx + (qt − tyt )dt = 0 , (15)

ι∗�y = ι∗(dy − Bdt) = yxdx + (yt − B)dt = 0 , (16)

ι∗�r = ι∗(dr − cdx) = (rx − c)dx + rtdt = 0 . (17)

We have y(x, t) = y(t), B(x, t) = y ′(t) from (16), and note that the condition passing
through Σ1 is B(t0) = y ′(t0) = 0. From (15), we have q = ∫

tytdt = ty − Y where

Y := ∫
ydt . From (13), z = ∫

(ty − Y )ytdt + z0(x) = ty2

2 + 1
2

∫
y2dt − Yy + z0(x) where

z0(x) is a function on S depending only x, and p = zx = z′
0(x). For (14), the function p

satisfies pt = 0 and we have r = z′′
0(x). For (17), the function r satisfies rt = 0 and we have

c = z′′′
0 (x). Therefore, we obtain the solution of s = 0 around (x0, t0) given by

(x, y(x, t), z(x, t), p(x, t), q(x, t), r(x, t), t, B(x, t), c(x, t))

=
(

x, y(t),
ty2

2
+ 1

2

∫
y2dt − y

∫
ydt + z0(x), z′

0(x), ty

−
∫

ydt, z′′
0(x), t, y ′, z′′′

0 (x)

)
.

for arbitrary functions y(t) and z0(x). These integral surfaces with the condition y ′(t0) = 0
are geometric singular solutions of corank 1.

(iii) On the open set Vyr ⊂ Σ(J 2).
We omit this case since Vyr is isomorphic to Vxt by the symmetry for x and y.

(iv) On the open set Vrt ⊂ Σ(J 2).
We will consider singular solutions of corank 2 which are the projections of integral

manifolds of Σ(J 2) passing through Σ2. On Vrt , we consider the submanifold Σrt =
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{s = E = F = 0} . On Σrt , we have the induced differential system:

DΣrt
= {

�0 = �1 = �2 = �x = �y = 0
}
,

where �x = dx −Adr, �y = dy −Ddt. Note that w ∈ Σ2 ⇐⇒ A(w) = D(w) = 0. This

system (Σrt ,DΣrt
) is isomorphic to (Prt , D̂) ⊂ (Σ(R), D̂). We construct integral manifolds

of this system in the following. Let ι : S ↪→ Σrt ⊂ Σ(J 2) be a graph defined by

(x(r, t), y(r, t), z(r, t), p(r, t), q(r, t), r, t, A(r, t), D(r, t)) around (r0, t0) .

If S is an integral submanifold of (Σrt ,DΣrt
), then the following conditions are satisfied:

ι∗�0 = ι∗(dz − pdx − qdy) = (zr − pxr − qyr)dr + (zt − pxt − qyt )dt = 0 , (18)

ι∗�1 = ι∗(dp − rdx) = (pr − rxr)dr + (pt − rxt )dt = 0 , (19)

ι∗�2 = ι∗(dq − tdy) = (qr − tyr )dr + (qt − tyt )dt = 0 , (20)

ι∗�y = ι∗(dx − Adr) = (xr − A)dr + xtdt = 0 , (21)

ι∗�r = ι∗(dy − Ddt) = yrdr + (yt − D)dt = 0 . (22)

From (22), we have y(r, t) = y(t), D(x, t) = y ′(t). From (21), we have x(r, t) =
x(r), A(x, t) = x ′(r). From (20), q = ∫

ty ′dt = ty − Y where Y := ∫
ydt. From (19), p =∫

rx ′dr = rx − X where X := ∫
xdr. From (18), z = 1

2

(
rx2 + ty2 + ∫

x2dr + ∫
y2dt

) −(
x

∫
xdr + y

∫
ydt

)
. Hence, we get the solution of s = 0 around (x0, t0) on Urt given by

(x(r, t), y(r, t), z(r, t), p(r, t), q(r, t), r, t, A(r, t), D(r, t))

=
(

x(r), y(t),
1

2

(
rx2 + ty2 +

∫
x2dr +

∫
y2dt

)
−

(
x

∫
xdr + y

∫
ydt

)
,

rx −
∫

xdr, ty −
∫

ydt, r, t, x ′(r), y ′(t)
)

.

for arbitrary functions x(r) and y(t). These integral surfaces with the condition x ′(r0) =
y ′(t0) = 0 are geometric singular solutions of corank 2.

4.2. Singular solutions of a parabolic equation. We consider the equation R =
{r = 0}. The differential system D = { �0 = �1 = �2 = 0} is given by �0 = dz − pdx −
qdy, �1 = dp − sdy, �2 = dq − sdx − tdy. The structure equation of D is written as

d�0 = −dp ∧ dx − dq ∧ dy , d�1 = −ds ∧ dy , d�2 = −ds ∧ dx − dt ∧ dy .

Let U be an open set in R. We have the covering p−1(U) = Pxy ∪ Pxt ∪ Pst of the fibration

p : Σ(R) → R from Lemma 2, where Uxy := {
v ∈ π−1(U) | dx|v ∧ dy|v �= 0

}
, Uxt :=

{
v ∈ π−1(U) | dx|v ∧ dt|v �= 0

}
, Ust := {

v ∈ π−1(U) | ds|v ∧ dt|v �= 0
}
, Pxy :=

p−1(U) ∩ Uxy, Pxt := p−1(U) ∩ Uxt, Pst := p−1(U) ∩ Ust . The geometric decomposition
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Σ(R) = Σ0∪Σ1∪Σ2 is given by Σ0|p−1(U) = Pxy, Σ1|p−1(U) = Pxt\Pxy, Σ2|p−1(U) =
Pst\(Pxy ∪ Pxt ). This prolongation Σ(R) is realized as a submanifold of Σ(J 2) as follows:

(i) On the open set J 3 = Vxy ⊂ Σ(J 2).

On Vxy in Σ(J 2), we consider the submanifold given by Σxy = {r = p111 = p112 = 0} .

We have the induced differential system DΣxy
= {�0 = �1 = �2 = �s = �t = 0} on Σxy ,

where �s = ds − p122dy, �t = dt − p122dx − p222dy. This system (Σxy,DΣxy
) is

isomorphic to (Pxy, D̂) ⊂ (Σ(R), D̂). Indeed, this system is equal to the third order PDE
which is obtained by partial derivation of the original equation r = 0 for the independent
variables x, y. The projection to R of these integral manifolds are regular solutions of the
equation r = 0.

(ii) On the open set Vst ⊂ Σ(J 2).
We will consider singular solutions of corank 1 and 2 which are obtained by the pro-

jections of integral manifolds of Σ(J 2) passing through smooth points in Σ(R). Recall that
Σ1\{singular points} ⊂ Σ(R) is covered by Pst . Hence, we work on Vst and consider the

submanifold given by Σst = {r = E = F = 0} . We have the induced differential system

DΣst
= {

�0 = �1 = �2 = �x = �y = 0
}

on Σst , where �x = dx − Ads − Bdt, �y =
dy − Bds. Note that

w ∈ Σ1\{singular points} ⇐⇒ A(w) �= 0, B(w) = 0

w ∈ Σ2 ⇐⇒ A(w) = B(w) = 0 .

This system (Σst ,DΣst
) is isomorphic to (Pst , D̂) ⊂ (Σ(R), D̂). We construct integral

manifolds of this system. Let ι : S ↪→ Σst ⊂ Σ(J 2) be a graph defined by

(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t), s, t, A(s, t), B(x, t)) around (s0, t0) .

If S is an integral manifold of DΣst
, then the following conditions are satisfied:

ι∗�0 :=(zs − pxs − qys)ds + (zt − pxt − qyt)dt = 0 , (23)

ι∗�1 :=(ps − sys)ds + (pt − syt )dt = 0 , (24)

ι∗�2 :=(qs − sxs − tys)ds + (qt − sxt − tyt )dt = 0 , (25)

ι∗�x :=(xs − A)ds + (xt − B)dt = 0 , (26)

ι∗�y :=(ys − B)ds + ytdt = 0 . (27)

We have y(s, t) = y(s), B(s, t) = y ′(s) from (27). From (26), x = ty ′(s) + x0(s), where
x0(s) is a function on S depending only s, and A = xs = ty ′′(s) + x ′

0(s). From (24),

p = ∫
sysds = sy −Y where Y := ∫

yds. From (25), we also have q = tsy ′ + sx0 −∫
x0ds.

Similarly, from (23), z = t (sy − Y )y ′ + syx0 + ∫
(yx0)ds − x0

∫
yds − y

∫
x0ds. Hence we
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have solutions of r = 0 given by

(x(s, t), y(s, t), z(s, t), p(s, t), q(s, t), s, t, A(s, t), B(s, t))

= (ty ′(s) + x0(s), y(s), t (sy −
∫

yds)y ′ + syx0 +
∫

(yx0)ds − x0

∫
yds − y

∫
x0ds ,

sy −
∫

yds, tsy ′ + sx0 −
∫

x0ds, s, t, ty ′′ + x ′
0, y ′) .

for arbitrary functions y(s) and x0(s). These integral surfaces which satisfy the condition

A(s0, t0) = t0y
′′(s0) + x ′

0(s0) �= 0 , B(s0) = y ′(s0) = 0

are geometric singular solutions of corank 1. On the other hand, these integral with the con-
dition

A(s0, t0) = t0y
′′(s0) + x ′

0(s0) = 0 , B(s0) = y ′(s0) = 0

are geometric singular solutions of corank 2.

4.3. Singular solutions of an elliptic equation. We consider the Laplace equation
R = {r + t = 0}. The differential system D = {�0 = �1 = �2 = 0} is given by �0 =
dz − pdx − qdy, �1 = dp − rdx − sdy, �2 = dq − sdx + rdy. The structure equation
of D is expressed as

d�0 = −dp ∧ dx − dq ∧ dy , d�1 = −dr ∧ dx − ds ∧ dy ,

d�2 = −ds ∧ dx + dr ∧ dy .

Then, for an open set U ⊂ R, we have the covering p−1(U) = Pxy ∪ Prs of the fibration
p : Σ(R) → R, where

Uxy : = {
v ∈ π−1(U) | dx|v ∧ dy|v �= 0

}
, Urs := {

v ∈ π−1(U) | dr|v ∧ ds|v �= 0
}
,

Pxy : = p−1(U) ∩ Uxy , Prs := p−1(U) ∩ Urs .

The geometric decomposition Σ(R) = Σ0 ∪ Σ2 is given by Σ0|p−1(U) = Pxy, Σ2|p−1(U) =
Prs\Pxy . This prolongation Σ(R) is realized as a submanifold of Σ(J 2) as follows:

(i) J 3 = Vxy ⊂ Σ(J 2).
On Vxy , we consider the submanifold given by

Σxy = {r + t = 0, p111 = −p122, p112 = −p222} . We have the induced differential sys-

tem DΣxy
= {�0 = �1 = �2 = �r = �s = 0} on Σxy , where �r = dr − p111dx −

p112dy, �s = ds−p112dx +p111dy. This system (Σxy,DΣxy
) is isomorphic to (Pxy, D̂) ⊂

(Σ(R), D̂). Indeed, this system is equal to the third order PDE which is obtained by partial
derivation of the original equation r+ t = 0 for the independent variables x, y. The projection
to R of integral manifolds are regular solutions of the wave equation r + t = 0.

(ii) On Vrs ⊂ Σ(J 2).
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We will consider singular solutions of corank 2 which are the projections of inte-

gral manifolds of Σ(J 2) passing through Σ2. On Vrs , we consider the submanifold

given by Σrs = {r + t = 0, E = −1, F = 0} . We have the induced differential system

DΣrs
= {

�0 = �1 = �2 = �x = �y = 0
}

on Σrs , where �x = dx + Ddr − Bds, �y =
dy − Bdr − Dds. Recall that w ∈ Σ2 ⇐⇒ B(w) = D(w) = 0. This system (Σrs,DΣrs

)

is isomorphic to (Prs , D̂) ⊂ (Σ(R), D̂). We construct integral manifolds of this system. Let

ι : S ↪→ Σrs ⊂ Σ(J 2) be a graph defined by

(x(r, s), y(r, s), z(r, s), p(r, s), q(r, s), r, s, B(r, s),D(r, s)) around (r0, s0) .

If S is an integral manifold of DΣrs
, then the following conditions are satisfied:

ι∗�0 :=(zr − pxr − qyr)dr + (zs − pxs − qys)ds = 0 , (28)

ι∗�1 :=(pr − rxr − syr)dr + (ps − rxs − sys)ds = 0 , (29)

ι∗�2 :=(qr − sxr + ryr )dr + (qs − sxs + rys)ds = 0 , (30)

ι∗�x :=(xr + D)dr + (xs − B)ds = 0 , (31)

ι∗�y :=(yr − B)dr + (ys − D)ds = 0 . (32)

From (31) and (32), a complex function f (z) := y(r, s) + ix(r, s) (z := r + is) must be a
holomorphic function. From (29) and (30), p(r, s), q(r, s) are considered as solutions of a
differential equation

qs = sxs − rys , pr = rxr + syr (33)

qr = sxr − ryr , ps = rxs + sys. (34)

for given functions xr = −ys, yr = xs . Then, we also get Cauchy-Riemann equation qr =
−ps, qs = pr from Cauchy-Riemann equation for y(r, s), x(r, s). Hence a complex function
g(z) := p(r, s) + iq(r, s) (z := r + is) is also holomorphic. From (28), z(r, s) is considered
as a solution of a differential equation

zr = pxr + qyr , zs = pxs + qys (35)

for given functions p, q, xr = −ys, yr = xs .
Conversely, for a given holomorphic function f (z) = y(r, s) + ix(r, s) (z := r + is) we

consider the differential equation (33), (34) for p, q where x, y are given functions. Then, the
differential equation is Frobenius since y(r, s) and x(r, s) satisfy Cauchy-Riemann equation.
Therefore, the existence of the solution of (33), (34) is guaranteed and g(z) := p(r, s) +
iq(r, s) (z := r + is) is holomorphic. Next, we consider the differential equation (35) for z

where x, y, p, q are given. Then, this differential equation is Frobenius since f (z) and g(z)

are holomorphic functions and have solutions. Finally, let f (z) = y(r, s) + ix(r, s) (z :=
r + is) be a holomorphic function and p(r, s), q(r, s), z(r, s) be the functions obtained by the
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above construction. Then,

(x(r, s), y(r, s), z(r, s), p(r, s), q(r, s), r, s, yr(s, t), ys(s, t))

is an integral surface. These integral surfaces which satisfy the condition yr(s0, t0) =
ys(s0, t0) = 0 are geometric singular solutions of corank 2.

5. Tower constructions of special rank 4 distributions

In sections 2 and 3, we studied geometric structures of rank 2 prolongations for each
class of equations. In this section, we define special rank 4 distributions which are general-
ization of distributions induced by PDEs and construct tower structures of these distributions
by successive rank 2 prolongations.

DEFINITION 5. Let R be a k+6 dimensional manifold (k ≥ 0), and D be a differential
system of rank 4 on R. Then,

(i) (R,D) is hyperbolic type at w ∈ R if there exists a local coframe
{
�i, θj , ωj , πj

}

(i = 1, . . . , k, j = 1, 2) around w ∈ R such that D = {�i = θj = 0} around w ∈ R and the
following structure equation holds at w:

d�i ≡ 0 mod �i, θj

dθ1 ≡ ω1 ∧ π1 mod �i, θj , (36)

dθ2 ≡ ω2 ∧ π2 mod �i, θj .

(ii) (R,D) is parabolic type at w ∈ R if there exists a local coframe
{
�i, θj , ωj , πj

}

(i = 1, . . . , k, j = 1, 2) around w ∈ R such that D = {�i = θj = 0} around w ∈ R and the
following structure equation holds at w:

d�i ≡ 0 mod �i, θj

dθ1 ≡ ω2 ∧ π1 mod �i, θj , (37)

dθ2 ≡ ω1 ∧ π1 + ω2 ∧ π2 mod �i, θj .

(iii) (R,D) is elliptic type at w ∈ R if there exists a local coframe
{
�i, θj , ωj , πj

}

(i = 1, . . . , k, j = 1, 2) around w ∈ R such that D = {�i = θj = 0} around w ∈ R and the
following structure equation holds at w:

d�i ≡ 0 mod �i, θj

dθ1 ≡ ω1 ∧ π1 + ω2 ∧ π2 mod �i, θj , (38)

dθ2 ≡ ω1 ∧ π2 − ω2 ∧ π1 mod �i, θj .

PROPOSITION 8. Let (R,D) be a hyperbolic type, parabolic type or elliptic type. Then
the first derived system ∂D of D is a subbundle of rank 6 and the Cauchy characteristic system
Ch(D) of D is trivial, that is Ch(D) = {0}.
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Here, the Cauchy characteristic system Ch(D) of a differential system (R,D) is defined
by

Ch(D)(x) = {X ∈ D(x) | X�dωi ≡ 0 (mod ω1, . . . , ωs) for i = 1, . . . , s} ,

where D = { ω1 = · · · = ωs = 0 } is defined locally by defining 1-forms {ω1, . . . , ωs}.
PROOF. This statement is obtained by the very definitions. �

REMARK 2. In fact, the converse of the above proposition also holds. Namely, let D

be a differential system of rank 4 on a k + 6 dimensional manifold R with rank ∂D = 6,
Ch(D) = {0}. Then, for any w ∈ R, (R,D) is a hyperbolic type, parabolic type or elliptic
type at w ([10]).

PROPOSITION 9.
(i) If (R,D) is locally hyperbolic, then the rank 2 prolongation (Σ(R), D̂) of (R,D)

is also hyperbolic at any point in Σ(R). Moreover, Σ(R) is a T 2-bundle over R.

(ii) If (R,D) is locally parabolic, then (Σ(R)\ {singular points} , D̂) is also
parabolic at any point in Σ(R)\ {singular points}. Moreover, Σ(R)\
{singular points} is an S1 × R-bundle over R.

(iii) If (R,D) is locally elliptic, then the rank 2 prolongation (Σ(R), D̂) of (R,D) is

also elliptic at any point in Σ(R). Moreover, Σ(R) is an S2-bundle over R.

PROOF. These statements are obtained by the same arguments of the proof of Theorem
1, Proposition 2, 3 for the hyperbolic case, Theorem 2, Proposition 5 for the parabolic case
and Theorem 3, Proposition 7 for the elliptic case. �

For the locally hyperbolic, locally parabolic or locally elliptic type distribution (R,D),

we can define k-th rank 2 prolongation (Σk(R), D̂k) of (R,D) by the above Proposition,
successively. For hyperbolic and elliptic type (R,D), we define

(Σk(R), D̂k) := (Σ(Σk−1(R)),
ˆ̂
Dk−1) (k = 1, 2, . . .) ,

where (Σ0(R), D̂0) := (R,D). For parabolic type (R,D), we define

(Σk(R), D̂k) := (Σ(Σk−1(R))\ {singular points} ,
ˆ̂
Dk−1) (k = 1, 2, . . .)

where (Σ0(R), D̂0) := (R,D).

THEOREM 4. If (R,D) is locally hyperbolic, locally parabolic or locally elliptic then

the k-th rank 2 prolongation (Σk(R), D̂k) of (R,D) is also hyperbolic, parabolic or elliptic

at any point in Σk(R), respectively.

PROOF. This theorem is obtained from the successive applications of Proposition 9.
�
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REMARK 3. For the hyperbolic case, Bryant, Griffiths and Hsu proved the above the-
orem for the exterior differential systems in [2]. By our argument, for parabolic and elliptic
cases, one can show that Theorem 4 have the similar extension for the exterior differential
system ([10]).
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