TokYO J. MATH.
VoL. 37,No. 1,2014

Rank Two Prolongations of Second-order PDE
and Geometric Singular Solutions

Takahiro NODA and Kazuhiro SHIBUYA

Nagoya University and Hiroshima University

(Communicated by K. Yoshitomi)

Abstract. We study geometric structures of rank two prolongations of implicit second-order partial differential
equations (PDEs) for two independent and one dependent variables and characterize the type of these PDEs by the
topology of fibers of the rank two prolongations. Moreover, by using properties of these prolongations, we give
explicit expressions of geometric singular solutions of second-order PDEs from the point of view of contact geometry
of second order.

1. Introduction

Let us start by recalling the geometric construction of the 2-jet bundle for two indepen-
dent and one dependent variables, following [15], [16] and [18].

First, let M be a manifold of dimension 3. We consider the space of 2-dimensional con-
tact elements to M, i.e., the Grassmann bundle J (M, 2) over M consisting of 2-dimensional
subspaces of tangent spaces to M, namely, J (M, 2) is defined by

JM, 2= J, S =Gr(T(M),2),
xeM
where Gr(T, (M), 2) denotes the Grassmann manifold of 2-dimensional subspaces in Ty (M).
Letm : J(M,2) — M be the bundle projection. The canonical system C on J(M, 2) is, by
definition, the differential system of codimension 1 on J (M, 2) defined by

Cw) =" ) ={v € T,(J(M,2)) | m(v) € u} C T,(J(M,2)) => T (M),

where m(u) = x foru € J(M,?2). The differential system (J (M, 2), C) is the (geometric)
1-jet space, also called contact manifold of dimension 5. In general, by a differential system
(R, D), we mean a distribution D on a manifold R, that is, D is a subbundle of the tangent
bundle T'R of R.
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Next, we should start from a contact manifold (J, C) of dimension 5, which is locally a
space of 1-jet for two independent and one dependent variables. Then we can construct the
geometric second-order jet space (L(J), E) as follows: We consider the Lagrange-Grassmann
bundle L(J) over J consisting of all 2-dimensional integral elements of (J, C), namely,

L) =|JL.CcJ(U.2),
uelJ
where L, is the Grassmann manifold of all Lagrangian (or Legendrian) subspaces of the
symplectic vector space (C(u), dw) for any u € J. Here @ is a local contact form on J.
Namely, v € J(J,2) is an integral element if and only if v C C(u) and dw|, = 0, where
u = 1 (v). Then the canonical system E on L(J) is defined by

E@) =7 (v) C TW(L(J)) =5 Tu(J),

where 7 (v) = u forv € L(J) and 7 : L(J) — J is the projection. The geometric jet space
of second order (L(J), E) is locally a space of 2-jets for two independent and one dependent
variables (J2(R2, R), C?). Here, the 2-jet space (J 2(R2,R), C?) is defined as follows:

JPRER) = {(x,y,2,p.q. 1.5, 1)} 1)

and C? := {wy = w| = wy = 0} is given by the following 1-forms:

wo :=dz — pdx —qdy, w):=dp—rdx—sdy, wr:=dq—sdx—tdy.

In this paper, we identify (L(J), E) with (J 2(R2,R), C?) since we only consider the local
geometry of jet spaces.

Now we consider single PDEs F(x, y, z, p,q, 1, s, t) = 0, where F is a smooth function
on J2(R%,R). We set R = {F =0} c J*(R? R), and restrict the canonical differential
system C? to R. We denote it by D(:= C?%|g). We consider a PDE R = {F = 0} with
the condition (F;, Fy, Fy) # (0, 0,0) which we call the regularity condition. Thus, R is a
smooth hypersurface, and also the restriction 7112| g : R — J'(R?, R) of the natural projection
7'[12 J 2(R2, R)—>J 1(R2, R) is a submersion. Due to the regularity condition, restricted 1-
forms @;i|g (i = 0,1,2) on R are linearly independent. Therefore, we have the induced
differential system D = {ZIT0|R = wi|g = w2|gr = 0} on R. Then, D is a vector bundle of
rank 4 on R. For brevity, we denote each restricted generator 1-form @;|g of D by @ in the
following. For such an equation F' = 0, we consider the discriminant A := F, F; — F,2 /4.

DEFINITION 1. Let R = {F = 0} be a single second-order regular PDE. For the dis-
criminant A of F, apoint w € R is said to be hyperbolic or elliptic if A(w) < 0or A(w) > 0,
respectively. Moreover, a point w € R is said to be parabolic if (F,(w), Fy(w), Fy(w)) #
(0,0,0) and A(w) = 0.

For second-order regular PDEs, we are interested in geometric singular solutions. Here,
the notion of geometric solutions including singular solutions is defined as follows (see [8]).
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DEFINITION 2. Let (R, D) be a second-order regular PDE. For a 2-dimensional inte-
gral manifold S of R, if the restriction 7112| r : R — J! of the natural projection 7'[12 (I !
is an immersion on an open dense subset in S, then we call S a geometric solution of (R, D).
If all points of a geometric solution S are immersive points, then we call S a regular solution.
On the other hand, a geometric solution S have a singular point, then we call S a singular
solution.

From the definition, images nlz(S) of geometric solutions S by the projection 7r12 are

Legendrian in J1 (Rz, R),ie., zzrolnlz(s) = dwolﬂlz(s) = 0. We will investigate the method of
the construction of these singular solutions. For this purpose, we define the notion of rank n

prolongations of differential systems, in general, as follows:

DEFINITION 3. Let (R, D) be a differential system givenby D = {zo] = --- = @y =
0}. An n-dimensional integral element of D at x € R is an n-dimensional subspace v of T, R
such that w;|, = dw;|, = 0 (i = 1,...,s). Namely, n-dimensional integral elements are
candidates for the tangent spaces at x to n-dimensional integral manifolds of D. It follows
that the rank n prolongation of (R, D) is defined by

SR = =, )
xeR

where ¥, = {v C TR | v is an n-dimensional integral element of (R, D) }. We define the
canonical system Don X(R) by

D) : = p; () = {v € T(Z(R) | ps(v) € u},
where u € X' (R) is a smooth point of ¥ (R) and p : ¥ (R) — R is the projection.

This space X'(R) is a subset of the Grassmann bundle over R

J(D.n) =] J 3)
X€ER
where J, := {v C Ty R | v is an n-dimensional subspace of D(x)}. In general, the rank n

prolongations ¥ (R) have singular points, that is, X'(R) is not a smooth manifold. This kind
of prolongation is very useful to study geometric structures of equations (R, D) or their solu-
tions. In this paper, we only consider in the case of n = 2.

Let us now proceed to the description of the various sections and explain the main results
in the present paper. In section 2, we investigate the fiber topology of rank 2 prolongations
(X(R), ﬁ) of differential systems (R, D) induced by hyperbolic, parabolic and elliptic equa-
tions. One of the main results of this paper is that the type of equations defined by local
structure is characterized by the topology of fibers of the prolongation p : ¥(R) — R.
Namely, we obtain that the topology of fibers of the prolongations p : ¥ (R) — R of dif-
ferential systems (R, D) associated with hyperbolic, parabolic or elliptic equations is torus,
pinched torus or sphere, respectively (Corollary 1). In section 3, we study structures of the
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canonical systems D on the rank 2 prolongations X (R) for hyperbolic, parabolic and elliptic
equations (R, D) as differential systems. More precisely, obtained results in this section clar-
ify the structure of nilpotent graded Lie algebras (symbol algebras) of the canonical systems
on the rank 2 prolongations for hyperbolic, parabolic and elliptic equations. Here, the symbol
algebra is a fundamental invariant of differential systems under contact transformations (see
section 3.2). In section 4, we research an approach to construct geometric singular solutions
of hyperbolic, parabolic, elliptic equations defined by Definition 2. Especially, we give the
explicit integral representation of these singular solutions of model equations for each class
of single equations. In section 5, we introduce hyperbolic, parabolic and elliptic rank 4 dis-
tributions which are generalizations of hyperbolic, parabolic and elliptic PDEs and prove the
topology of fibers of the prolongation of these rank 4 distributions is torus, pinched torus or
sphere, respectively (Proposition 9). This result is a generalization of a part of Theorem 18 in
[3], [4], [5].- We also prove that the procedure of prolongations of these distributions preserves
their types, namely, the rank 2 prolongation of hyperbolic, parabolic or elliptic rank 4 distri-
butions is also a rank 4 distribution of the type of hyperbolic, parabolic or elliptic, respectively
(Theorem 4). It follows that, by successive prolongations of these rank 4 distributions, we can
define the notion of k-th rank 2 prolongations as a generalization of k-th rank 1 prolongations
introduced previously in [7] or [11] (these are called “Monster Goursat manifolds” in [7]).

2. Rank 2 prolongations of regular PDEs

In this section, we show that the types of equations are characterized by the topology
of fibers of the rank 2 prolongations of equations. For this purpose, we provide the rank 2
prolongations of hyperbolic, parabolic and elliptic PDEs by using inhomogeneous Grassmann
coordinates.

2.1. Rank 2 prolongations of hyperbolic equations. Let (R, D) be a locally hy-
perbolic equation. Then, there exists a local coframe {wy, @y, @2, w1, w2, 711, 722} around
x € R such that D = {wy = w1 = w2 = 0} and the following structure equation holds:

dog=w) ANw] + w2 Ay mod wp,
dw) =w; A mod wy, oy, w2, )
dwy = wy Ay mod wy, oy, @ .

In terms of this structure equation, we construct the rank 2 prolongation of (R, D) by taking
integral elements.

THEOREM 1. Let (R, D) be a locally hyperbolic equation. Then, the rank 2 prolon-
gation X (R) is a smooth submanifold of J(D,?2), and it is a T> = S' x S'-bundle over
R.

PROOF. First, we show that X' (R) is a submanifold of J(D, 2). Letw : J(D,2) - R
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be the projection and U an open set in R. Then 7~ Y1U) is covered by 6 open sets in J (D, 2):
”_I(U) = Uiy Y Uo7y YU Uwmyy U Uiy U Uayegy U Usyygy (5)

where

Uy, = {v e (U) | w1y A waly # 0},

Uoimy = {v € n7'U) | o1y Aiily # 0},
Unimyy = {v € 771 U) | 1]y A 2]y # 0},
Upyryy = {v € 771 (U) | 2]y Amtiily # 0},
Uiy, = {v € 771 U) | 2]y A 2]y # 0},

Uy, = {v € 771 U) | 711ly Aol # 0}

In the following, we explicitly describe the defining equation of ¥ (R) in terms of the inho-
mogeneous Grassmann coordinate of fibers in Uy, w,, - - -, U 7s-
@D On Uy, w,:

For w € Uy, w,, w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting
11, 22 to w, we can introduce the inhomogeneous coordinate pilj of fibers of J (D, 2) around
wwith 711w = ply (W1 lw+ plWo2lw, 7221w = pij(W)o1|w+ Py (W)®2|w. Moreover,
w satisfies dw |y = dw |y = 0:

dwilw = wilw A (Pl W1 [y + pla(w)@lw) = plywwilw A walw
dwaly = @2lw A (py(W)o1 Ly + phaW)oaly) = —pay (W1 |y A @21y -

Hence, we obtain the defining equations f; = f> = 0 of X (R) in Uy,, of J(D, 2), where
fi = piy. o = py. thatis, {fi = fo = 0} C Uy,w,. Then dfy, df; are independent on
{fi=f=0}
D) On Uy zy,

Forw € Uy, z,,, by restricting w,, 22 to w, we introduce the inhomogeneous coordinate
pl.zj of fibers of J(D,2) around w with waly = p?,(W)wilw + pLW 11w, 72lw =
p%l (w)w1|w + p%z(w)ml |w- Moreover, w satisfies dw1|,, = dws |, = 0. However, we have
dwily = wilw A mi1lw #Z 0. Thus, there does not exist integral element, that is, Uy, 7, N
P =0
(III) On Uy, zy,:

For w € Uy, r,,, by restricting w,, 711 to w, we introduce the inhomogeneous coordinate
p?j of fibers of J(D,2) around w with wy|, = pfl(w)a)1|w + pfz(w)rr22|w, T1lw =

pgl(w)a)l lw + pgz(w)nmw. Moreover, w satisfies dw1|y = dwa|y = 0:
_ _ 3
doi |y = o1lw ATi1lw = prrW)or|lw A 722w

dwaly = 02w A m22lw = Py (W01 A T22]y -
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Then the defining functions of X'(R) are independent in the same as (I).
(V) On Uy, 7y

For w € Ugy,x,,, by restricting w, w2, to w, we introduce the inhomogeneous coordi-
nate pfj. of fibers of J (D, 2) around w with w{|, = p‘l*l(w)a)2|w + p‘l‘z(w)mllw, T2 |w =

p‘Z‘1 (w)wa |y + pgz(w)ml |w. Moreover, w satisfies dw| |y = dw|y = 0:
A1y = o1lw ATl = piy ol AT ,
dwlw = o2lw A T22lw = pry(W)@lw AT w -
Then the defining functions of ¥'(R) are independent in the same way as in (I).
(V) On Uy, iy,

For w € Ugy,n,,, by restricting wy, 11 to w, we introduce the inhomogeneous coordi-
nate pfj of fibers of J (D, 2) around w with w{|, = pfl(w)a)zlw + pfz(w)n22|w, T w =
pgl(w)a)zlw + pgz(w)n22|w. Moreover, w satisfies dw|y, = dw2|y = 0. However, we
have dms |y = w2|w A m2lw # 0. Thus, there does not exist integral element, that is,
Ua)z]'[zz N P_l (U) = @

(VD) On Uy 7y
For w € Uy, ny,, by restricting wi, wz to w, we introduce the inhomogeneous coordinate
p?j of fibers of J(D,2) around w with wily, = p (Wmiilw + pSW)m2nlw, w2lw =

pgl (w)mr1lw + pgz(w)rrzzlw. Moreover, w satisfies dw |, = dwa|y = 0:
_ _ 6
dw |y = o1lw A T11lw = pPlo(WT2|w A Tt w,
dws |y = o2lw A T0lw = PS W11 w A T2lw -

Then the defining functions of ¥'(R) are independent in the same way as in (I).

Under these discussions, the rank 2 prolongation X'(R) is a smooth submanifold of
J(D,?2).

Next, we show that the topology of fibers of X'(R) is torus. In the above discus-
sion, we have p_l(U) = Pyop YU Py U Payryy U Pryynay» Where Py 1= p_l(U) N
Uoiwys Poymy = p_l(U) NUw iy Poyry = p_l(U) NUwyry,» and Pryymyy = p_l(U) N
Us\,7y,- From Definition 3, we have the canonical system D on each open set. To prove our
assertion, we investigate the gluing of (¥'(R), ﬁ). For instance, we construct the transition
functions on Uy, o, N Uy, 7, in the following. On U,,,«,, the canonical system D= (w0 =

W = W) = Wy, = Onyy = 0} is given by @y, 1= w1 — pha)l, Wiy, = M2 — péza)z.
On the other hand, the canonical system D = {wo =0 = ) = Wy, = Oy, = 0}
on Uy, xy, is given by @, 1= wy) — p},m, @x,, = 711 — p3,o;. Then, the transition

functions @ : Uw;wy N Uwinay = Uwyw, N Uy, 18 given by

11 3o b5y |
(v, pi1s P2p) = | Vs P1p = o Py = pyy ) for py #0,
2
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where v is a local coordinate on R. We also have similar transition functions for the other
intersection open sets Uy wy, N Uwsyry1s Uwymas N Unyyans Uwsmryy N Uryyay - Consequently, the
topological structure of fibers is 72 = §' x S'. 0

REMARK 1. In fact, this result (i.e. X'(R) is a torus bundle) is known by Bryant,
Griffiths and Hsu in [2]. They obtained this result for the hyperbolic exterior differential
system which is a generalization of distributions corresponding to hyperbolic equations (see
Remark 3). However, we will also consider parabolic and elliptic cases and our method is
distinct one. We will use the structure of this covering in X'(R) when we will study singular
solutions (see, section 5). Thus, we need to prove in the above way.

2.2. Rank 2 prolongations of parabolic equations. Let (R, D) be a locally par-
abolic equation. Then, there exists a local coframe {wy, @1, @2, w1, w2, 712, 722} around
x € R such that D = {my = @ = @, = 0} and the following structure equation holds:

dogy=wi Aw1 +wr) Awy mod @y,
do| = wy Ay mod wy, Wi, w2, (6)
dwy = w) A2 + wy Ay mod @y, wy, @) .

From this structure equation, we clarify the rank 2 prolongation X' (R).

LEMMA 1. Let (R, D) be alocally parabolic equation. Then, the rank 2 prolongation
Y (R) has singular points, that is, X (R) is not a smooth manifold.

PROOF. Let U be an open set in R, and 7 : J(D,2) — R be the projection. Then
7~ 1U) is covered by 6 open sets in J (D, 2):

n_l(U) = Ua’la’Z U Ua’l”lZ U Ua’l”ZZ U Ua’Z”lZ U Uw2”22 U Uﬂ127722 ’ (7)

where each open set is given in the same way as the hyperbolic case (5). Now we explicitly
describe the defining equation of X'(R) on each open set.
D On Uy, w,:

For w € Uy, w,, w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting
12, w22 to w, we can introduce the inhomogeneous coordinate pl.lj of fibers of J (D, 2) around
w with 12| = piy (W1 lw+ P WO w, 720w = Py (W)@1 |+ iy (W)@2 . Moreover,
w satisfies dw |y = dwa |y = 0:

dw1w = 02lw A T2l = Pl W@l A o1l

dmaly = 1lw A Tilw + O2lw AT2lw = (P1y(w) — Py W)o1 |y A @2l .
Hence we obtain the defining equations f; = f> = 0 of X (R) in Uy, «, of J(D, 2), where
fi = pl,. fo = pl, — piy, thatis, {fi = f» = 0} C Uy, Then df, df> are independent

on{fi = f =0}
D) On Uy, 745
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For w € Uy, z,,, by restricting wo, 22 to w, we we introduce the inhomogeneous coordi-
nate pfj of fibers of J (D, 2) around w with w; |, = p%l (w)o1|w + p%z(w)nmw, 720w =

p%l (w)w1 |y + p%z(w)nmw. Moreover, w satisfies dw|y = dwa|y = 0:
dwily = o2l ATl = P ot ATzl
dm |y = o1lw A T12lw + 020w A 722w
= (1+ pi (W) p3y(w) — pr(w) p3y (W)@1 |y A 712l -

Then the defining functions of X'(R) are independent.
(III) On Uy, zy,:

For w € Ugy,ny,, by restricting w», 712 to w, we introduce the inhomogeneous coordi-
nate pfj of fibers of J (D, 2) around w with wy|, = pfl(w)a)1|w + pfz(w)rrzzlw, 12w =

pgl(w)a)l lw + pgz(w)nmw. Moreover, w satisfies dw1|y = dwa|y = 0:
dwilw = w2lw A Ti2lw = (p]; (W) p3,(w) — pi, (W) p3; (WNw1lw A T22|w |
doolw = o1lw AT12lw + 2lw AT2|w = (p%l(w) + P;z(w))a)ﬂw ATy .

Therefore, we obtain the defining equations f; = f> = 0 of XY (R) in Uy, x,, of J(D,2),
where fi = pj,p3, — PPy for = D3y + Pay thatis, {fi = fo =0} C Uu,ry,. Then,
df1, df are linearly dependent on S := {pj, = p3,. p}, = p3; = 0}. Hence, SN Z(R) =
{p%1 = P%z = P?z = pgl = 0} which is a point on each fiber is a singular subset in X'(R) .
(V) On Uy zy,:

For w € Ugy,x,,, by restricting wi, 72, to w, we introduce the inhomogeneous coordi-
nate P?j of fibers of J (D, 2) around w with wq|, = p?l(w)a)2|w + p‘fz(w)mglw, 2|y =
pél (w)wz|w + p‘Z‘Z(w)mﬂw. Moreover, w satisfies dw1|y, = dws|, = 0. However, we
have dwi|y = wa|lw A T12lw # 0. Hence, there does not exist integral element, that is,
Upyr, N p~1(U) = 0.

(V) On Ugyyrpy:

For w € Uy, n,,, by restricting wy, 12 to w, we can introduce the inhomogeneous coor-

dinate pisj of fibers of J (D, 2) around w with |, = pfl(w)a)glw + p?z(w)ngglw, T2l =

pgl(w)a)zlw + pgz(w)nmw. Moreover, w satisfies dw |, = dwa|y = 0:
dwi |y = o2lw A Ti2lw = pra (W)@l A T2y,
dm |y = o1lw A T12lw + 02w A T22|w
= (1+ p1(w) p3r(w) — pir(w) p3y (W)@2luw A 722lw -

Then the defining functions of X'(R) are independent in the same as (I).
(VD) On Uy ypy:
For w € Uy yny,, by restricting wq, w; to w, we introduce the inhomogeneous coordi-
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nate piﬁj of fibers of J (D, 2) around w with wq|, = 1’?1 (w)m2|w + p?z(w)nzﬂw, |y =

pgl (w)r2lw + pg‘z(w)rrzzlw. Moreover, w satisfies dwi|y = dws |y = 0:
_ _ 6
do |y = 02lw A T12lw = P (W T2|w A T12]w
donlw = 01w A T12lw + 021w A T22lw = (p§ (W) — PO W) T12lw A T2lw -

Then the defining functions of X'(R) are also independent.
Summarizing these discussions, the rank 2 prolongations X' (R) for locally parabolic
equations R has singular points, that is, these are not smooth. O

We set Pwlwz = p_l(U) N lewz’ Pa’l”lZ = P_I(U) N le”lZ’ Pa)lﬂzz = P_l(U) N
Uculnzzv sznzz = P_I(U) N Uwznzz’ and sznzz = P_I(U) N Umznzz-

LEMMA 2. We have p~'(U) = Puwy U Poyniy U Py

PROOF. From the discussion of the proof of the previous lemma, we have p~!(U) =
Py U Poyrriy Y Pooy gy U Py sy U Pryy sy, - Hence, it is sufficient to prove Py ryy, Posymy C
Py, w,. For the open set P, ,,, we prove this property. Let w be any point in Py, 7, C
p‘l(U). Here, if w & Py, w,, then wi|y Aw2|y = 0. Hence, by w1 |y Awz |y = p%z(w)a)llw/\
12|w, We have the condition p%z(w) = 0. However, w is an integral element, and we have

p%z(w) # 0. Thus, we have Py 7, C Py w,. For the open set Py,z,,, we also obtain the
statement from the same argument. d

THEOREM 2. Let (R, D) be a locally parabolic equation. Then, the rank 2 prolonga-
tion X (R) has singular points, and it has the structure of pinched torus fibration.

PROOF. By the above lemma, note that the fiber p~!(w) at w € R decompose to the
disjoint union p~!(w) = R?> UR U {a point} as a set. Moreover, by gluing on p~!(U) =
Piywn U Py sy U Priyy, in the proof of Lemmas 1 and 2, we obtain the statement. a

2.3. Rank 2 prolongations of elliptic equations. Let (R, D) be a locally elliptic
equation. Then, there exists a local coframe {wy, w1, w2, w1, w2, 711, 712} around x € R
such that D = {wy = w1 = @, = 0} and the following structure equation holds:

dog=wi Ao +wr Ay mod @y,

dol =w) A1 +w2 A2 mod o, @1, D2, (8)
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dwoy) =wi Ao —wy Amyr mod wy, @y, W3 .

From this structure equation, we investigate the rank 2 prolongation X (R). Let U be an open
setin R, and = : J(D,2) — R the projection. Then n_l(U) is covered by 6 open sets in
J(D,?2):

”_I(U) = Uy Y Uo7y U Uwrpy U Uiy U Uiy U Usyyy )

where each open set is also given in the same way as hyperbolic case (5). Now we explicitly
describe the defining equation of X'(R) in terms of the inhomogeneous Grassmann coordinate
of fibers in Uy, oy - - - Unryy7ya-
D On Uy, w,:

For w € Uy, w,, w is a 2-dimensional subspace of D(v), p(w) = v. Hence, by restricting
711, 712 to w, we introduce the inhomogeneous coordinate pl.lj of fibers of J (D, 2) around w

with 711w = pl, (Wi lw + phW®2]w, Ti2lw = ph(W)wilw + piy(W)wsw. Moreover
w satisfies dw |y = dwn |y = 0:

— _ 1 1
doily = otlw ATy + @20w AT2lw = (P (W) — pyy(W)oilw A w2lw,
1 1
dos |y = o1lw AT12lw — ©2lw AT w = (Pu(w) + Pzz(w))w1|w ANy -

Hence we obtain the defining equations f; = f> = 0 of X (R) in Uy, of J(D, 2), where
fi = ply = Py, o = pl| + phy, thatis, {fi = fo = 0} C Uu,w,. Then dfi, df> are inde-
pendent on { f| = f> = 0}.

D) On Uy, 7y,

For w € Ugy,x,,, by restricting w;, 713 to w, we introduce the inhomogeneous coordi-
nate pizj of fibers of J (D, 2) around w with ws|, = p%l(w)a)l lw + p%z(w)mllw, T2y =
p%l (w)w1 |y + p%z(w)rm |w. Moreover, w satisfies dw |y, = dwy|y = 0:

dwily = o1|lw A T11lw + ©2lw A T12]w

= (14 pt1(w) p3y(w) — pir(w) p3; (W))@1lw A Tl ,
dw|y = ot|lw A712|lw — ©02|lw ATt w

= (=phi (W) + pHW)w1w ATl -

Then the defining functions of X'(R) are independent in the same as (I).
(III) On Uy, zy,:

For w € Ugy,x,,, by restricting w», 711 to w, we introduce the inhomogeneous coordi-
nate pfj of fibers of J (D, 2) around w with wy|, = pfl(w)a)l lw + pfz(w)mzlw, Tl w =

pgl(w)a)l |w + pgz(w)nmw. Moreover, w satisfies dw |, = dwa|y = 0:
dwi|w = 01lw ATl + @2lw A T2lw = (P (W) + P WO w A T12]w |

dos |y = o1lw AT12lw — 021w A T11w
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= (1 — p, (W) p3, (W) + pir(w) p3; (W)wi | A T12 ] -
Then the defining functions of X'(R) are also independent.
(AV) On Uy, 7y,

For w € Ugy,x,,, by restricting w1, 712 to w, we introduce the inhomogeneous coordi-
nate p?j of fibers of J(D, 2) around w with w1y, = p?l(w)a)zlw + p‘fz(w)mllw, T2lw =
p‘z‘1 (w)wa|w + p‘z‘z(w)ml |w. Moreover, w satisfies dw |y, = dwy|y = 0:

dwily = o1lw AT + 021w A 7120w = (1 (W) + Py Ww))w2lw ATy .
doo|y = o1|lw A12lw — ©2|lw AT w
= (p}) (w) pry(w) — plr(w)p3; (w) — Denlw A T11]w -

Then the defining functions of X'(R) are also independent.
(V) On Uy, ry,:

For w € Ugy,x,,, by restricting wy, 711 to w, we introduce the inhomogeneous coordi-
nate pfj of fibers of J (D, 2) around w with w{|, = pfl(w)a)2|w + pfz(w)mzlw, Tl w =
pgl(w)a)zlw + pgz(w)nmw. Moreover, w satisfies dw |y = dwz |y = 0:

doilw = 01w ATt lw + ©2lw A T12|0

(1+ pjy(w) 3y (w) — pih(w) p3; (W) @2|w A T12]w

dwly = o1lw A T2l — ©2lw AT = (P}, (W) = PR W)O2lw A T12lw -
Then the defining functions of X'(R) are also independent.
(VD) On Uy 7yy:

For w € Uy, zy,, by restricting oy, w2 to w, we introduce the inhomogeneous coordi-
nate p?j of fibers of J (D, 2) around w with w{|, = p?l(w)mllw + p?z(w)mﬂw, |y =
pgl (w)mr1|w + pgz(w)mglw. Moreover, w satisfies dw1|y = dwa|y = 0:

dwily = o1l ATitlw + o2lw A T12lw = (=) + pS )11 |w A T12]w |
dwaly = o1l ATl — 021w A Tl = (05 (W) + pSH )T A2l -
Then the defining functions of X'(R) are also independent.

Summarizing these discussions, the rank 2 prolongation ¥'(R) of a locally elliptic equa-
tion R is smooth, and it has the covering p_l(U) = Puiwy U Poynyy Y Poyrpy U Poyyy U
Pa)zﬂlz U P7T|17T|21 Where Pa)lwz = p_l(U) m Ua)la)zs Pa)|7T|1 = p_l(U) m Ua)|7'[1| ’ Pa)17‘[12 =
p_l(U) n Ua)lﬂlzs Pw2n11 = p_l(U) n Ua)z?'[“ ’ Pa)27T|2 = p_l(U) n Ua)zﬂlz’ and P7T1|7'[12 =
p_l (U) N Ugyyx,,- However, this covering is not essential in the following sense.

LEMMA 3. Let (R, D) be a locally elliptic equation and p : ¥ (R) — R be the rank
2 prolongation. Then, for any open set U C R, we have p~'(U) = Puy,w, U Pryynpy-
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PROOF. Itis sufficient to prove Py, 7,5 Pwm1as Posmyrs Paonniy C Poyw,- For the open
set Py, ,,» We prove this property. Let w be a pointin Py, C p~ ! (U). Here, if w & Poy, e,
then the condition wi |y Aw2 |y = 01is satisfied. Hence, by w1 |y Aw2 |y = p%z(w)a)l lwAT11w,
we have p%z(w) = (0. However, w is an integral element. In terms of f; = f> = 0, we have

(p%l)2 = —1. This is a contradiction. Thus, we have P, r,;, C Py, «,. For other open sets,
we also have the statement from the similar argument. O

THEOREM 3. Let (R, D) be a locally elliptic equation. Then, the rank 2 prolongation
X (R) is a smooth submanifold of J (D, 2), and it is an S2-bundle over R.

PROOF. By the above lemma, note that the fiber p~!(w) at w € R decompose to the
disjoint union p_l (w) =R?*U{a point} as a set. Moreover, we obtain the statement from the
same argument to the parabolic case. O

2.4. A characterization of equations by the fiber topology. We obtain one of the
main results by summarizing theorems of the previous part of this section.

COROLLARY 1. Let R = {F = 0} be a second-order regular PDE and X (R) be the
its prolongation. Let p : X (R) — R be the natural projection. Then,

(1) w € R is hyperbolic <= p~'(w) is a topologically 2-dimensional torus T?.

(2) w € R is parabolic <= p~'(w) is a topologically pinched 2-dimensional torus.

(3) w € Ris elliptic <= p~'(w) is a topologically 2-dimensional sphere S>.

PROOF. Note that the fiber p~!(w) is defined by the structure equation of D at w as a
subset in the fiber J,, = Gr(2, 4) of the fibration 7w : J(D, 2) — R. From this point of view,
the topology of the fiber p~!(w) depends only on the pointwise structure equations (4), (6)
and (8). |

3. Structures of the canonical systems on the rank 2 prolongations

In this section, we study the geometric structures of the rank 2 prolongations (X' (R), D)
for each class of equations. We first recall Tanaka theory of weakly regular differential sys-
tems in this section. For more details, we refer to [12], [13], [14] and [17].

3.1. Derived system, Weak derived system. Let D be a differential system on a
manifold R. We denote by D = ['(D) the sheaf of sections to D. The derived system
dD of a differential system D is defined, in terms of sections, by 0D := D + [D, D]. In
general, d D is obtained as a subsheaf of the tangent sheaf of R. Moreover, higher derived
systems 3*D are defined successively by 3D := 9(d*~!D), where we set 3D = D by
convention. On the other hand, k-th weak derived systems 3® D of D are defined inductively
by 0D := §*=DD 4 [D, a*~DD].

DEFINITION 4. A differential system D is called regular (respectively, weakly regu-
lar), if 3% D (respectively, 3©) D) is a subbundle for each k.
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These derived systems are also interpreted by using annihilators as follows ([1], [9]): Let

D = {w| = --- = wy = 0} be a differential system on a manifold R. We denote by D' the
annihilator subbundle of D in T* R, namely,
pt =] D @)
xeR
where

DY (x) ={w e TR | o(X) = 0forany X € D(x)} C T'R.
Then the annihilator (3 D) of the first derived system of D is given by
(D) = {w € D* | dw =0 (mod D1)}.
Moreover, the annihilator (%D D)+ of the (k + 1)-th weak derived system of D is given by

@ VD)t ={w € 0P D) | dw =0 (mod 3P D),
@Dy A @YD), 2 < p.g <k -1,
We set D! := D, D% := 3% =D D (k > 2), for a weakly regular differential system D.

Then we have ([12, Proposition 1.1]):
(T1) There exists a unique positive integer  such that

D'cp?c...cp*c...cD W Dcpr=p®h_...
(T2) [DP, D] c DP*4 forall p, g <O.

3.2. Symbol algebra of differential system. Let (R, D) be a weakly regular differ-
ential system such that TR = D™* D D~w=D 5 ... 5 p~! —. D Forall x € R, we
put g_1(x) := D~'(x) = D(x), gp(x) := DP(x)/DPT(x), (p = —2,-3,...,—p) and
m(x) := @;ﬁ_l gp(x). Then, dim m(x) = dim R. We set g,(x) = {0} when p < —u — 1.
For X € gp(x), Y € g4(x), the Lie bracket [X, Y] € gp44(x) is defined in the following
way: Letw ), : DP(x) — g, (x) be the projection of D (x) onto g,(x) and X eDP, Y eD4
be any extensions such that wp(f(x) = X and wq(?x) =Y. Then [X, Y] € DP9, and we

set [X, Y] =@y ([5(, I?]x) € gp+¢(x). It does not depend on the choice of the extensions
because of the equation

[fX,g¥]1= fglX, Y1+ f(X9)Y —g(Y )X (f. g€ CP(R)).

The Lie algebra m(x) is a nilpotent graded Lie algebra. we call (m(x), [, ]) the symbol
algebra of (R, D) at x. Note that the symbol algebra (m(x), [, ]) satisfies the generating
conditions [gp, g—1]1 = gp—1 (p <0).

Later, Morimoto [6] introduced the notion of a filtered manifold as generalization of the
weakly regular differential system. We define a filtered manifold (R, F) by a pair of a mani-
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fold R and a tangential filtration F'. Here, a tangential filtration F on R is a sequence {F"},
of subbundles of the tangent bundle 7' R such that the following conditions are satisfied:

M) TR=Ff=...=F#>...2FP > FPl 5...5 F0 = {0},

(M2) [FP,Fi] Cc FP*t4 forall p, g <0,
where FP = I'(FP) is the set of sections of F”.

Let (R, F) be a filtered manifold, for x € R, we set §,(x) := FP(x)/FPt1(x), and
fx) == ®p<0 fp(x). For X € j,(x), Y € f4(x), Lie bracket [X, Y] € fp44(x) is defined as
follows: Let @), : F?(x) — f,(x) be the projection of F¥(x) onto f,(x), XeFP, YeFu
be any extensions such that wp(f(x) = X and wq(ix) = Y. Then [X, Y] € FPt4 and we
set [X, Y] :=w@p4y ([5(, f]x) € fp+q(x). It does not depend on the choice of the extensions.
The Lie algebra f(x) is also a nilpotent graded Lie algebra. We call (f(x), [, 1) the symbol
algebra of (R, F) at x. In general (f(x), [, ]) does not satisfy the generating conditions.

3.3. Structures of rank 2 prolongations for hyperbolic equations. Let (R, D) be
a locally hyperbolic equation, and (X'(R), ﬁ) the rank 2 prolongation. We first explain the
geometric meaning of the open covering Py, U Piyy YU Poyryy U Py, in the proof of
Theorem 1. The set ¥'(R) has a geometric decomposition:

Y(R)=XpU X UZX, (disjointunion). (10)
where X; = {w € X (R) | dim (w N fiber) = i},i = 0, 1, 2, and “fiber” means that the fiber
of TR > D — TJ'. Then, locally, we have 0| -1y = Poywy> Z1lp-1(7y = (Poymy U
Py )\ Poywys 221 -1y = Prjimnn \(Powywy Y Py U Payry ). The set X is an open subset
in X' (R), and is an R2?-bundle over R. The set X is a codimension 1 submanifold in X (R),

and is a (R U R)-bundle over R. The set X, is a codimension 2 submanifold in X' (R), and is
an section of X (R) — R.

PROPOSITION 1. The differential system Don Y (R) is regular, but is not weakly reg-
ular. More precisely, we obtain that Dcabcd?’Dcd’b= T X (R). Moreover, we have
2D=0@D,d¥D=TX(R) on ZyU X1,and ¥ D = 9@ D on .

PROOF. On each component X; in the decomposition (10), we calculate the structure
equation of D. First, we consider it on X. The canonical system Don Uy, o, 18 given by D=
{wo =W =02 =WVpy = Opyy = 0} » Where @, = 7T11—17%1601, Dy = 7T22—P52602-

The structure equation of Don X is given by

do;j=0 ((=0,1,2) mod @y, @i, D2, Dry, Dy s
— 1

dwy, = w1 A(dpy + fon)  mod @y, @1, W2, Dryys Ty s
_ 1

dwﬂzz =a)2/\(dp22+ga)1) mOd wo, w1, W2, wn”s wﬂzzv

using by appropriate functions f and g since w11, 722, @1, wy are 1-forms on the base mani-
fold R. Hence we have 3D = {wo = @ = wr =0} = Dy 1(D). The structure equation of
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aD is written as

dwy=0 mod wy, @y, @3,
dw| = w1 A oy, mod @y, @1, W2, Tr; A Doy
dw) = 0y A @y, mod @y, @1, W2, Tr;; A Doy -

Hence we have 32D = 0@ D = {wo = 0} . The structure equation of 32D is described by
dog=w| A +wr Awy mod @y, W AD2, T A Dy, DA Dy,

W2 N Wy, W2 A Wy Oy N Oy -

Therefore, we have a¥D = T X (R). Next, we consider on Y. It is sufficient to prove
on Uy, n,, because the differential system D on Uy, is contact equivalent to the dif-
ferential system D on Uw,n;,- The canonical system D on Uw,ry, 1s given by b =
{wo = w1 = 22 = W, = o, =0}, where @y, == w3 — P2, @y, = T — 3,01
For apointw € Uy, ny,, w € X7 if and only if pfz(w) = 0. Therefore, it is enough to consider

at w in the hypersurface {p}, = 0} C X(R). The structure equation at a point on { pj, = 0}
is given by

do;=0 (i=0,1,2) mod @y, @1, B2, Dw,, Dy »
— 3

dwa)z =7T22/\(dp12+fa)1) mOd wo, w1, W2, wa)zv wn” b
— 3

dw—”ll = w) /\(dp21 +gﬂ22) mOd wy, w1, W2, w_wza wﬂ]] )

where f and g are appropriate functions. Hence we have 3D = {wo=w =wr =0} =
Dy (D). The structure equation of dD ata point on { P?z = O} is expressed as

dop=0 mod @y, w1, @2,
dw| = w1 AN @y, mod @y, @1, W2, Tw, N Tgy;
dwy = Wy, A 722 mod @y, W1, W2, TVw, A Ty, -

Hence we have 32D = 0@ D = {wy = 0}. The structure equation of 32D at a point on
{p3, = 0} is described by

doyg=w) AN@| +wy AN
=wi AN@| + (Do, —i—p%znzz)/\wz
=w| AND| + Wy, N D2
=w| N D] mod @y, W A @2, W A Wy, T A Dy, ,

W2 N Wy, W2 AWy, B N Ty -
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Thus, we have D =Tx (R). Finally, we consider on X,. The canonical system D
on Uy, ny, is given by D = (w0 = @1 = 2 = @0, = By, =0}, where w,, = 0 —
p?lml, Dy = W2 — pgzrrzz. For a point w € Uy, 7y, w € X if and only if p?l (w) =
pgz(w) = 0. Therefore, we calculate the structure equation of Data point in codimension 2
submanifold { p?l = pgz = 0} C XY(R). The structure equation is given by

do;=0 (i =0,1,2) mod @y, @i, W2, Wy, Dw,

_ 6
dwy, =711 Adpy; + fr2) mod @y, @), @2, Bw, Du, >

— 6
dwy, =12 A (dpy, + gm11)  mod @y, @y, @2, Bu), Do, ,

where f and g are appropriate functions. Hence we have 3D = {wo=w =wr =0} =
p; (D). The structure equation of 3D at a point on {p%, = p§, = 0} is written as

doy=0 mod @y, @, @2,
dwl = Oy, AT mod W, W1, W2, Wey; N\ D, »
dzzrz = O, N T2 mod w(, W1, W2, Wy, N\ Dy, -

Hence, we have 32D = d@D = {wy = 0}. The structure equation of 32D ata point on
{p8, = pS, = 0} is described by

dwg=0 mod @, @ A D2, T A By, D1 A Dy, ,

TN Dy TN By, Ty A Dy -
Therefore we obtain 9D = §@ D. O

From the above proposition, (X (R), ﬁ) is locally weakly regular around w € X U X.
So we can define the symbol algebra at w in the sense of Tanaka and the following holds:

PROPOSITION 2. Forw € Xy, the symbol algebra my(w) is isomorphic to mgp, where
mo = g_4 D g—3 D g—2 ® g_1, whose bracket relations are given by

[Xplll’ Xa)]]:XJT” ’ [XP%Q’ sz]ZXﬂzz’ [XJ'[”a le]ZXla

[X7T227 Xa)z] = X2 ’ [Xls Xa)l] = [X27 Xa)z] = XO 9

and the other brackets are trivial.
Here {Xo, X1, X2, Xyt Xpt, Xoys Xoyo Xy, Xory, } is a basis of mg and

g-1= {X‘“l’ X, Xph’ Xpéz}’ g-2= {Xﬂn’ Xﬂzz}7

g3 =1{X1. X2}, g4 = {Xo}.
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For w € X, the symbol algebra m(w) is isomorphic to my, wherem; = g_4Dg_3Dg_2 D
g—1 whose bracket relations are given by

[XP?Z’ X?Tzz]:Xa)zv [Xp%l, Xa)l]:Xﬂ”s [X7T1|v le]:X1,

[Xﬂzza sz] = XQ.’ [Xla le] = XOa
and the other brackets are trivial.
Here {XO, X1, X»p, Xp?z’ Xp%], Xoy Xonr Xayps anz} is a basis of mj and
g-1= {le’ Xﬂzz’ prz’ ngl}’ g2 = {Xw2 Xn”},

g-3 = {X1, X2}, g-4 ={Xo} .

PROOF. We first show that mo(w) = mgp. On Uy, «, in the proof of Proposition 1, we

1 1
setw 1 =d + fwr, w1 =d + gw; and take a coframe:
»l P11 Sfwn, Pl Py T gwi
{0, @1, @2, D)), Tryys 01, @2, @, W }. then the structure equations are given by
11 22
dw_i EO (l =07 152) mOd w-Oa w_la w-Za wﬂ]]a w_ﬂzz 9
dwy, = w) /\zzrpll1 mod @g, @1, @2, Bry, By »
Ay, = w2 A @0 mod @g, @1, W2, Bryy, By »
dwy=0 mod wy, @, @3,
dw| = w1 A @y, mod @y, @1, @2, Tr;; A Dy,
dw) = wy AN @y, mod @y, @1, @2, Tr;; A Dy, -

dog=w) A +wr Awy  mod @y, W A D2, T A Dy, DA Dy,
W2 A @y, @2 A Dryyy Dryy A Dy -

We take the dual frame {Xo, X1, X2, Xz, Xnp. Xops Xon, XI’}I’ Xpéz},and set
[le’XPh] = AnXn + A2nXy,,, (A € R). Then we have

Ao, (Xoy. X1 ) = Xoy@n (X 1) = X1 @y (X)) = Ty, (Ko X1 1)

= —@g, ([Xo» X,,}l]) =—A1.
On the other hand, we have
dor, (Xe,, XI’}I) = Q)](le)wplll(Xplll) — wplll(le)a)l(Xp}l) =1.

Therefore Aj; = —1. From the same argument for dwy,,, we get A2> = 0. Hence we have

[Xo, X p! ] = —X4,,. The other brackets are left to reader. Hence its dual frame satisfies the
11

relation with respect to the algebra my.
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Next, we show that the isomorphism mj(w) = mj. On Uy ny in the
proof of Proposition 1, we set Wy = dp%z + foi, Wy = dpg1 + gmo,
and take a coframe and its dual frame {wo, @1, @2, Ww,, Tx,,, ©1, T2, wp?z,wpgl},

{X0, X1, X2, Xar» X1+ Xoors Xy Xﬂ?z’ XI’%: }. From the proof of Proposition 1, the struc-

ture equations at a point on {p}, = 0} are

dw; =0 i=0,1,2) mod @y, @1, W2, Dy, Dy »
dwy,, =m0 ANw 3 mod @y, @1, W2, By, Dy »
Pi2
dwy,, = wi N3 mod @y, @i, W2, Way, Dy »
21
dopy=0 mod @y, @i, @2,
dw| = w1 AN @y, mod @y, @1, W2, Tw, N Tgy;
dwy = Wy, A 722 mod @y, @1, W2, TVw, A Ty, -

doyg=w; Ay mod @y, W A@D2, T A By, T ADg,,
W2 N Wy, WA Dy, By A\ Ty, -
Thus we obtain the statement for m; from the same argument of the proof of my. O

In the rest of this hyperbolic case, we calculate the symbol algebra at a point w in X».
From Proposition 1, D is not weakly regular around w € X,. Hence, at the point w, we
can not define the symbol algebra in the sense of Tanaka. However, by taking the following
filtration F on X' (R), we can define the symbol algebra my(w) of (¥'(R), F) at w € X.
We set F~4(w) = T, (X (R)), F3w) = dPD(w), F2(w) = aD(w), F~l(w) =
D(w), where w € X'(R). Then, {FP} defines the filtration on X' (R). For w € X;, we set
g-1(w) = F~'(w) = D(w), g—2(w) 1= F>w)/F~'(w), g-3(w) := F>(w)/F>(w),
g-4(w) = Ty(Z(R))/F*(w), and

ma(w) = g—1(w) ® g—2(w) ® g—3(w) ® g—4(w).

The way of the definition of the above symbol algebra in the sense of Morimoto coincides
with the usual symbol algebra except for [g_1, g—3].

PROPOSITION 3. Forw € X3, the symbol algebra ma(w) is isomorphic to my, where
my =94 g-3PD g—2 P g—1, whose bracket relations are given by

[Xp?l’ Xﬂ]]] = Xa)], [ngza Xﬂzz] = Xa)za [Xﬂ”a Xa)]] = Xla [Xﬂzza Xa)z] = X27

and the other brackets are trivial.
Here {Xo, X1, X2, X0 Xpo o Xoys Xoyo Xy, Xory, | is a basis of my and

g—l = {Xﬂ”s X7T227 X[’?]’ X 6 }7 g—2: {lev Xa)z} 9

Py
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g-3 ={X1, Xo}, g4 = {Xo} .
PROOF. On Uy, x,, in the proof of Proposition 1, we set Wpe = dp?1 +

frn, @,

{0, @1, 2, @w,, By, T11, T2, @ s wngz} and its dual frame:

6, 1= d p(z’2 + g1 and take a coframe:

(X0, X1, X2, Xoys Xenns Xriys X XP?:’ ngz}. From the proof of Proposition 1, the

structure equations at a point on { p$, = p$, = 0} are

do;i=0 (=0,1,2) mod @y, @1, T2, B, Day
dw,, = m /\w'pls1 mod @y, @, W2, Tw, Du,
dw,, =m0 A @8 mod @y, @i, W2, We,, D, -
dop=0 mod @y, wi, w3,
dw| = @y, AT mod @y, @1, W2, T N By »
dwy = Wy, A7 mod @y, @1, W2, Wy, A B, -

doy=0 mod @y, @ A @2, W AWy, B N Dg,,
W2 N Wy, W2 AWy, W A D,y -
Thus we have the assertion by the same argument in the proof of Proposition 2. O

3.4. Structures of rank 2 prolongations for parabolic equations. Let (R, D) be a
locally parabolic equation, and (X'(R), ﬁ) be the rank 2 prolongation. We use the geometric
decomposition (10) of X'(R) which is similar to the hyperbolic case. From Lemma 2, locally,
we have 20|p*1(U) = Pow,» 21 |p’1(U) = Pom\ Poyan» and 22|p*1(U) = Pryy \(Poyr U
Py, 72,), Where p is the projection of the fibration X (R) — R. The set X is an open set in
Y (R), and is an R%2-bundle over R. The set X is a submanifold in J(D, 2) and contains
singular points of X' (R) in J(D, 2) and is an R-bundle over R. The set X is codimension 2
submanifold in X'(R), and is a section of X' (R) — R. We investigate the geometric structures
of (¥(R), 15) on a domain except for singular points in Y.

PROPOSITION 4. The differential system Don Y (R) is regular, but is not weakly reg-
ular. More precisely, we obtain that Dcabcd?’Dcd’b= T X (R). Moreover, we have
2D=0@D,d¥D=TX(R) on ZyU X1,and ¥ D = 9@ D on .

PROOF. On each component X; in the decomposition, we calculate the structure equa-
tion of D. First, we consider it on Y. The canonical system D on Uw,w, 18 given by

A

. 1 .
D = {wo =W = W) = Bp, = Onyy = 0}, where @y, = W2 — ppw2, Ty =
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T — p%za)l — p%za)z. The structure equation of D on X is written as

doi=0 (=0,1,2) mod @y, @i, W2, Wryy, Ty
— 1
dw—”lZ 2602/\(dp12~|-fa)1) mOd wy, w1, W2, w_ﬂlza w]‘[zza
— 1 1
dw—”ZZ = gwi /\CUZ_dplz/\CUl _dp22/\w2 mOd wp, w1, W2, w]‘[]za wj‘[22'

= —(dpl,+ fo1) Awr — (dpy — gw1) A w2,

where f and g are appropriate functions. Hence we have 3D = {mo=w| =wr =0} =
p> (D). The structure equation of aD is expressed as

dwo=0 mod wy, w1, @2,
dw| = wy ANy, mod @y, @i, @2, Tr;, A Dy,
dw) = w1 AN @y, + w2 A Ty, mod @y, @1, @2, Dr;y A Dy, -

Hence we have 32D = 0 D = {wy = 0} . The structure equation of 32D is described by
dwyg = w) AN +wy Ay, mod @y, W A D2, T A Dy, D1 A Dy,
T2 N Wryy, W2 A Drgy, Dy A Dy -
Therefore, we obtain a®D = T X (R). Next, we consider on Y. It is enough to work on
Us o7y, since X1\ {singular points} is covered by Uy, ,,. The canonical system D on U oy
is given by D = {0 = @1 = @) = By, = Wa, =0}, Where @, = @ — p§ w12 —
p?zrrzz, Wy, = W) — p?zmz. For w € Ugpyny, w € Xy if and only if p?l(w) =
0, p?z(w) = 0. Because, w € X is given by the coordinate p?l (w) = 0, p(fz(w) = 0,
and w € X1\Xy is given by p?z(w) = 0. Therefore, we calculate the structure equation

at w in the hypersurface { p?l #0, 1’?2 = O} C X (R). The structure equation at a point on
{ph) #0, p}, =0}is
doi=0 ((=0,1,2) mod @y, @i, W2, Wy, Dw,

dw, =m A (dp?l + fmn) + w0 A (dp?2 + gm22) mod @y, @i, B2, By, D,
dwy, =112 A (dp?2 + gm22) mod @y, @1, W2, B, Da,
where f and g are appropriate functions. Hence we have 3D = {wy=w =@ =0} =
pz (D). The structure equation of aD is given by

dwy =0 mod @y, wi, w3,

dw| =y, A7T12 mod @y, @i, W2, Tw; A By, »

dw) = Wy, A2 + We, A T2 mod @y, W1, W2, Ty, A B, -
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Hence we have 32D = 0® D = {wy = 0}. The structure equation of 32D is written as
dwy = P(f17712 A mod @y, W A D2, T A Dy, T A Dy, ,
TN Wy, W2 A By Ty A D,y -
Here, if we set wé = wo/ p? |» then structure equation is rewritten in the form:
doj=nnA@ mod @), W A®, T ABy, Tl ADy,,
TN Wy, D2NA Dy, Dy A Doy -
Hence we have @D = T X (R). Finally, we consider on X>. We use the coordinate on
Uriyrzs- FOr w € Uzpyryy, w € X5 if and only if p& (w) = pS,(w) = 0. Therefore, we

calculate the structure equation at w in the codimension 2 submanifold { p?l = p?z = O} C

X (R). The structure equation at a point on { p$, = p%, = 0} is described by

doi=0 ((=0,1,2) mod @o, @1, T2, Bw;, Dy,
dwy, = w2 APy + fT22) + 70 A (dpfy + g70)  mod @y, @1, @, By, Doy s
dw,, = T2 A (dp?z + gm22) mod @y, @i, 2, Be,, D,

where f and g are appropriate functions. Hence we have 3D = {wo=w =wr =0} =
Dy (D). The structure equation of aD is given by

dwyg =0 mod @y, @i, @2,
dwl =Ww, NT12 mod W), U1, W2, Dy, AN Dy, 5
dw) = @y, A2+ W, ATT22 mod @y, @i, W2, T, A Dy, -

Therefore, we get 32D = 3@ D = {wy = 0} . The structure equation of 32D is expressed as
dwg=0 mod @, @ A2, T A By, B ADgy,,

W2 N Wy, W2NA Wy, Wy A Dy -

Hence we have @D = §@D. O

From the above proposition, (X' (R), D) is locally weakly regular around w € Xp U X.
So we define the symbol algebra at w. On the other hand, for a point w on X3, (X' (R), ﬁ) is
not weakly regular around w. However, by taking the filtration on X' (R) which is same to the
hyperbolic case, we can define the symbol algebra at w. Each structure of symbol algebras is
given in the following.

PROPOSITION 5. Forw € Xy, the symbol algebra mo(w) is isomorphic to mg, where
mo =g_4 D g—3 D g—2 ® g_1, whose bracket relations are given by

[Xpllzv Xa)z] = X7T|2 ’ [XPIIZ’ Xa)l] = [Xpézs Xa)z] = X7T22 ) [X7T|21 Xa)z] = Xl )
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[Xﬂlza Xa)]] = [Xﬂzza sz] = X2 ’ [Xla Xa)]] = [XQ.a sz] = XO’

and the other brackets are trivial.
Here {XO, X1, Xo, Xl’}z’ Xl’iz’ Xoy Xonr Xapp, anz} is a basis of mg and

g1 = {Xu Xon, Xm'z’ Xﬁéz}’ 92 = {Xmpp, Xmp} .
g-3 =1{X1, X2},9-4={Xo} .

For w € X, the symbol algebra m(w) is isomorphic to my, wherem; = g_4Dg_3Dg_2 D
g—1, whose bracket relations are given by

[Xp?l7 Xﬂ]z] = [Xp?z’ Xﬂzz] = Xa)] ’ [Xp?z’ Xﬂ]z] = sz ’

[X”12’ sz] =Xi, [X7T12’ le] = [anzf sz] =X, [X1, sz] = Xo,
and the other brackets are trivial.
Here {XO’ Xl’ X2’ Xp?lv Xp?zv Xa)lv Xa)27 anzg X7722} isabasis Ofml and
g1 = {X?lev X7T221 Xp?l, Xp?z}, g2 = {le’ sz} ,
g3 =1{X1, X2}, g-4={Xo}.

For w € Xy, the symbol algebra my(w) is isomorphic to mp, where my = g_4 D g_3Dg_2 D
g—1, whose bracket relations are given by

[Xp?l’ Xﬂ]z] = [Xp?z’ Xﬂzz] = Xa)], [Xp?z’ Xﬂ]z] = Xa)z ’

[X7T121 Xa)z] = Xl ’ [X7T121 Xa)l] = [X7T227 Xa)z] = X2 9
and the other brackets are trivial.
Here {Xo, X1, X2, X0 Xpo o Xoys Xoye Xy, Xory, | is a basis of my and

g_l = {XHIZ’ X7T22’ X[)%’ Xp?2}7 9—2 = {lev Xa)z} )

g3 =1{X1, X2}, g-4=1{Xo}.

~

PROOF. We first show that mg(w) = mg for w € Xy. On Uy, e, in the proof of

Proposition 4, we set W= dpf2 + for, @1 = dpé2 — gw, and take a coframe:

1
Py

(@0, @1, @2, Ty Bayy, 01, 2, @, wpzlz}, then the structure equations are given by
do;j=0 ((=0,1,2) mod @y, W1, W2, Wryy, Drys
dwg, =w A @, mod @y, Wi, @2, Drpys Dry
dwy,, = _wl’{z Aw] — zzrpéz A w2 mod @y, @i, W2, Dry, Dy -

doy=0 mod @y, wi, w3,
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dw| = wy N @y, mod @y, @1, @2, Br;y A By

dw) = 0| N @y, + 02 ATy, mod @y, @i, @2, Tr;, A Dy,

dog= w1 A@1 +wxy A, mod @y, W AD2, W ATy, 1A Dy, ,
W2 A @Bryys 2N Brgy, Drpy A Dy -

We take the dual frame: {Xo, X1, X2, Xrpy, Xnp Xops Xop, Xl’}z’ Xl’%z}' Then, by

using the same argument to the hyperbolic case, we have the bracket relations of my.
Next, we show that the isomorphism m;(w) = my for a point on ¥j. On Upg,,z,, in
the proof of Proposition 4, we set Wy = dp?1 + fmao, wpe = dp(f2 + gma, and
1
take a coframe {w|, @i, @2, Wo, Bw,, T12, T2, @6 wp?z}. and its dual frame
{Xo, X1, X2, Xoys Xayy Xapy Xa, Xpo , Xpo } From the proof of Proposition 4, the
11 12
structure equations at a point on { p? 1 0, p?z = O} are described by
dowy=0 mod @), Wi, W2, Te,, Ty,
do;=0 (i=1,2) mod @), Wi, @2, Bw,, T,

dwy, =72 A Wye IR AT mod @y, @1, T2, Ty, Do,

dw,, =712 AN mod @), Wi, @2, Be,, D, -
dwi=0 mod @), wi, @2,
dw| = w,, AT12 mod @y, @1, W2, T, A By »
dw) = Wy, A2+ e, A T2 mod @y, @i, W2, Wy, A By, »

dw(’) =mppAw] mod zzré, W AW, B ATy, B ADwy, D2ADy,, D2NA Dy, Dy A
Wy, -

Then, by using the same argument to the hyperbolic case, we have the bracket relations
of my.

Finally, we prove the statement for m,. We use the coordinate on Uy, ,z,, Which is same
to the case of X|. From the proof of Proposition 4, the structure equations at a point on
{p%, = p$, = 0} are expressed as

do;j=0 (i =0,1,2) mod @y, @, W2, T, Day
dw, =mp A 2 + 10 A @8 mod @y, @1, W2, Wy, D,
dw,, =T A wp?z mod @y, @1, W2, Wy, D, -

dwy =0 mod @y, wi, W7,
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dwl = Wo, AN T2 mod wp, W1, W2, Wy, N Wy, »

dw) = @y, A2+ W, A2 mod @y, @i, W2, By, A Dy, ,

dowy=0 mod @y, @ A @2, W AWy, B N Dg,,
TN Wy, D2NA Ty, Ty A Dy -
Thus we have the statement for m(w) from the same argument. d

3.5. Structures of rank 2 prolongations for elliptic equations. Let (R, D) be a
locally elliptic equation and (X' (R), D) the rank 2 prolongation. We use the geometric de-
composition (10) of X'(R) which is similar to the hyperbolic case. From Lemma 3, locally,
we have Eolp—l(u) = Pyiwn> 22|p71(U) = Pry1715 \ Po,wy» Where p is the projection of the

fibration X (R) — R. The set X is an open set in X'(R), and is an R”2-bundle over R. The
set X is a codimension 2 submanifold of X' (R) and is a section of X (R) — R.

PROPOSITION 6. The differential system Don X (R) is regular, but is not weakly reg-
ular. More precisely, we obtain that Dcabca’Dc D= T X (R). Moreover, we have
2D =30PD,9®D =TX(R) on Xy, and 3D = 3P D on %,.

PROOF. On each component X; in the decomposition, we calculate the structure equa-
tion of D. First, we consider it on Xy. The canonical system D on Uw,w, 18 given by D=
{wo = @1 = @2 = @), = @y, =0}, where @y, = w11 — pj 01 — Phwn, g, =
T — p}zwl + p}lwz. The structure equation of D on X is given by

do;=0 (i =0,1,2) mod @y, @1, W2, Trys Drpos
— 1 1
dwyr, = w1 A(dpy, + fon) + w2 A (dpj, + gw)  mod @y, @i, @2, Tr,,, Tryy
— 1 1
don, = w1 A(dpjy + gw2) —wa Adpy; + fw2)  mod wo, w1, @2, Tryyy Dy,
where f and g are appropriate functions. Hence we have 0D = {mg = o1 = wr =0} =
Dy 1(D). The structure equation of d D is written as
dwy =0 mod wy, wi, w2,
dw) =w) ANy, + 02 ATy, mod Wy, W, T2, By A Dryy
dw) = w1 Ny, — w2 A Dy, mod @y, @1, W2, Wr;, A Ty -
Hence we have 3°D = 3 D = {@ = 0} . The structure equation of 32D is expressed as
dwy = w1 A @) + 0y Ay, mod @y, W A @2, W A Dy, T1ADg,,
@) N W)y, T2 A Dy, Oy A Dy -

Hence, we have adD = T X (R). Next we consider on X». The canonical system D

on Uy, x, is given by D = {mo = @1 = w2 = we, = @, =0}, where @, = w1 —
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p?lml — p?zmg, Wy, ‘= w2 — p?zml + p?lmg. For w € Uy z,, w € X3 if and only
if p?l(w) = p?z(w) = 0. Therefore, we calculate the structure equation at w in the codi-
mension 2 submanifold { p?l = p?z = 0} C X (R). The structure equation at a point on
{ P8, = p%, = 0} is described by

dow; =0 (i =0,1,2) mod @y, @i, B2, We, Du,
dwe, = A AP + fr12) + 712 A (dpS, + gmi2) mod @y, @i, W2, B, Do,
dwe, = 111 A (dpSy + gmin) — o A (dpS) + fri2) mod @y, @1, B2, Bw, D,

where f and g are appropriate functions. Hence we have 3D = (wo=w =wr =0} =
Dy L(D). The structure equation of aD is

dwy=0 mod wy, @i, @3,
dw| = @y, AT+ Wy, AT12 mod @y, @i, W2, By, A Dy ,
dw) = Wy, A2 — Wy, AT mod @y, @i, W2, Ty, A Dy, -

Hence we have 32D = 0@ D = {wwo = 0} . The structure equation of 32D is given by
dwg=0 mod @, @ A2, T A By, B ADgy,,

T2 A Doy TN By, Ty A Dy -
Thus, we have 93D = §@ D. O

From the above proposition, (X¥'(R), ﬁ) is locally weakly regular around w € Xy. So we
can define the symbol algebra at w in the sense of Tanaka. On the other hand, for a point w

on Xy, (¥(R), 13) is not weakly regular around w. However, by taking the filtration on X' (R)
which is same to the hyperbolic case, we can define the symbol algebra at w. Each structure
of symbol algebras is given in the following.

PROPOSITION 7. Forw € Xy, the symbol algebra my(w) is isomorphic to mgp, where
mo = g_4 D g—3 D g—2 ® g_1, whose bracket relations are given by

[Xp}l7 X!A)]] = [X[’}z’ sz] = Xﬂ]] ’ [XPIIZ’ Xa)]] = [Xa)za X 1 ] = Xﬂ]z ’

[X7T|11 Xa)l] = [X7T127 Xa)z] = Xl 9 [X7T127 Xcul] = [Xa)zs X?T]]] = X2 ’

[X1, X1 =1[X2, Xu,] = Xo, and the other brackets are trivial.
Here {Xo, X1, X2, Xyt Xpt s Xoyn Xoyo Xy, X, } is a basis of mg and

g-1= {le, Xw2’ Xplll’ Xpllz}’ g-2= {X7T|1s Xﬂlz} s

g-3 ={X1, X2}, g-4 ={Xo} .
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For w € Xy, the symbol algebra my(w) is isomorphic to mp, where my = g_4 D g_3Dg_2 D
g—1, whose bracket relations are given by

[Xp?l7 Xﬂ]]] = [Xp?z’ Xﬂ]z] = Xa)] ’ [XP?Z’ XJ'[]]] = [Xﬂlza Xp?l] = sz ’

[Xﬂ”a Xa)]] = [Xﬂlza sz] = Xl ’ [Xﬂlza le] = [sza XJ'[]]] = X2 ’

and the other brackets are trivial.
Here {Xo, X1, Xo, Xl’?l’ Xﬂ?z’ Xoy Xonr Xnyys sz} is a basis of mp and

g-1= {Xﬂlla Xﬂlza Xp?]a Xp?z}’ g-2= {Xa)la sz} )
g-3 = {X1, X2}, g4 ={Xo} .
PROOF. We first show that mp(m) = mg. On Uy, «, in the proof of Proposition 6, if
we set W= dp%1 + fw2, Dyl = dp%2 + gw> and take a coframe:

{w()s w1, W2, w?'l,’l]v wﬂlZ’ wi, @2, wp}lv wp}z}s

then the structure equations are written as

do;j=0 (i =0,1,2) mod @y, @i, W2, Wr, Ty
dwy,, = w1 AT+ AT mod @y, @1, D2, Bryys Dy s
dwy, = w1 /\arp{2 o AT, mod @y, @i, W2, Dry, Tryy -
doop=0 mod @y, wi, w3,
dwi = w1 A g, + 02 ATy, mod @y, @1, @2, Tr; A Dy
dwr = w1 A Wy, — 02 A Ty, mod @y, @1, @2, Tr;; A Dy

dwyg = w) AN +wy Ay, mod @y, W A D2, T A Dryy, DA Dry,y,

W) A Wy, W2 A Dy, Oy A Dy -

We take the dual frame {Xo, X1, X2, Xz, Xnppe Xops Xop XI’}I , Xpllz }. Then, by the
same argument to the hyperbolic case, we have the bracket relations of my.
Next, we prove the statement for the algebra mz. On Uy, ,, in the proof of Proposition

6, we set W6 = dp?l + fmi2, e = dp?2 + g2 and take a coframe:
1 1

{wo, W1, W2, Wy Days Ty T2, Do o W6 }, then the structure equations at a point
11 12

on X, are given by
do; =0 (i =0,1,2) mod @y, @i, W2, Ve, D,

dwy,, = A AP + fr12) + 712 A (dpS, + gmi2) mod @y, @i, W2, Bw, Do,
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dwe, =11 A (dpSy + gm12) — w12 A (dpS) + fr12) mod @y, @1, B2, Dw, Do, -

dwy=0 mod wy, @y, @3,
dw| = Wy, AT+ W, AT12 mod @y, @i, W2, Wy, A B, »
dowy = Wy N2 — D, NT11 mod @y, wi, W7, Wy N\ Dy, ,

dwg=0 mod @, @ A2, T A By, B ADgy,,
TN Wy W2 AWy Ty A Dy -

Let {Xo, X1, X2, Xop. Xons Xrips Xopos Xplsl, Xp?z}be the dual frame. Then, by using

the same argument to the hyperbolic case, we have the bracket relations of my. O

4. Construction of singular solutions and the theory of submanifold of the rank 2
prolongation of the Second Jet space

In sections 2 and 3, we studied various properties of the rank 2 prolongations (¥ (R), D)
of single equations (R, D). Under these prolongations, we mention the strategy of the con-
struction of the geometric singular solutions for each class of equations (R, D). Moreover, we
construct singular solutions for model equations belonging to each class. For this purpose, we
first consider the rank 2 prolongation X (J?) of the second jet space J2(R?, R). For the 2-jet
space J 2(R2, R), we denote the rank 2 prolongation of J 2(R%,R) by (X' (J 2, 6‘2). This space
X (J?) is a submanifold of the Grassmann bundle J(C?, 2). The geometry of (X(J?), ¢ 2y in
J(C 2 2) is studied in [9]. From now on, we refer to [9] for the obtained results. For an open

set V. C J2(RZ,R), le_l(V) is covered by 6 open sets:

-1
H12 V)= nyU thUVyrU Vis UV U Vi,

where IT? : ¥ (J%) — J? is the projection and each open set is given by

—1 1
Viy i={w € I} (V) |dx Adylw # 0}, Vo :={w e I} (V)| dx Adtl, # 0},
Vir i={w € I} (V) | dy Adrly # 0}, Vi := {w € 7' (V) | dr Adsl, # 0},
Ve i={w € 77 (V) | dr Adtly # 0}, Ve i= {we IF (V) | ds Adt]u #0).

The prolongation X (J 2) has the similar geometric decomposition: X'(J 2) =XoU X U2,
where X; = {w € X£(J?) | dim(w N fiber) =i} (i =0, 1, 2), and “fiber” means that the fiber
of T(J?) D C? — T(J"). Then, locally,

20'172 1 nylnz 1 21|n2 1 = {(th ) Vyr)\vxy} |171271(V) ,

22'172 ! %) = {(Vrs U Ve U V) \(Viey U Vi, U Vyr)} |H12_1(V) s
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The set ¥y = J3 is an open set in X(J?%) and is an R*-bundle over J2. The set ¥ is a
codimension 1 submanifold in X (J?). The set X, is a codimension 2 submanifold in X (J2)
and is a P>-bundle over J2. In the following, we give the description of the canonical system
(X (J?), 6‘2) on each coordinate.
(A) Voy = J3, (x, 9,2, p.q. 1.5, 1, 111, Pl12, P122, P222):
c? = {mg = w1 = o» = w, = wy = @y =0}, where @, = dr — p111dx —
priady, s =ds — priadx — pio2dy, @ = dt — pindx — paody.
B) Vi, (x,v,2,p,9,1,8,t,a,B,c,e):
c? = {zzr():zzn =zzr2=zzry=zzr,=ws=0}, where wy, = dy — adx —
Bdt, w, =dr — cdx — (at2 + eB)dt, wy, =ds — edx — adt.
© Vyr, (x,¥,2,p,9,1,5,t,a,B,c,e):
C? = {wy=w = = oy =w; = w; =0}, where @y = dx — ady —
Bdr, wy =ds — cdy + adr, w; = dt — edy — (at2 + Bc)dr.
D) V., (x,v,2,p,9,1,8,t,B,D,E, F):
C? = {wo =1 = w2 = @y = wy =w; =0}, where w, = dx — (DE —
BF)dr — Bds, wy =dy — Bdr — Dds, w; =dt — Edr — Fds.
EB) Vi, x,y,z,p,q,1,8,t,A, D, E, F):
C? = {wo =W =0 =Wy = Wy = W = 0} , where w, = dx —Adr+ (DE —
CF)dt, wy =dy + (AF — (DE — CF)E)dr — Ddt,
ws =ds — Edr — Fdzt.
¥ Vi, (x,y,z,p,q,1,8,t, A, B, E, F):
c? = {wozwlzwzzwxzwyzw,=0}, where w, = dx — Ads —
Bdt, wy =dy — Bds + (BE — AF)dt, @, =dr — Eds — Fdt.
The reason we introduced X (J2) is that X (R) is regarded as the subset in X'(J 2). More
precisely, we need to construct the equivariant embedding ¢ : X' (R) — X'(J 2) which give
the following commutative diagram:

I(R) — ¥(J?
\ \ (11)
R < J2(R%,R).

Here, the correspondences except for ¢ are already given. This diagram is an extension of the
following commutative diagram.

RY — J*(R* R)
\ \ (12)
R < J’(R%,R).
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where RV is the prolongation of (R, D) with independence condition. In general, for given
second order PDE R = {F = 0} with independent variables x, y, this prolongation R‘"
corresponds to a third order PDE system which is obtained by partial derivation of ¥ = 0 for
the two variables x, y. Hence, RM can be regarded naturally as a submanifold in J 3 which is
also the prolongation of J? with the independence condition.

Let us return to the diagram (11). If we can construct the equivariant embedding ¢ :
X (R) — X (J?), then we can obtain singular solutions L by the following strategy:

Find an integral manifold L of (¥'(R), ﬁ) c (Z(J?), 6’2) passing through the X} U X».

Indeed, in the rest of this section, we construct all singular solutions for model equations
belonging to the each class. However, we do not discuss the construction of the singular
solutions passing through singular points of X' (R) (see Lemma 1).

4.1. Singular solutions of a hyperbolic equation. We consider the wave equation
R = {s = 0} as a model equation. The differential system D = { wg = @] = @y = 0} is
given by wg = dz — pdx — qdy, @) = dp —rdx, @y = dq — tdy. The structure equation
of D is written as

dog=—dpndx —dgAndy, doy=-drAndx, doy=—-dtAdy.

For an open set U in R, we have the covering p_l (U) = PxyU Py U Py, U Py, of the fibration
p: X (R) — R followed by Theorem 1, where

U :={v e ' (U) | dx|y Adyly #0}, Ux:={v e x7'(U) | dx|y Adt]y # 0},

Uy :={v ex 'U) |dyly Adrly #0}, Uy :={v ex '(U) | drly Adtl]y # 0},

Pyy : :p_l(U)ﬂny, Py = P_l(U)mUxta

Py :=p ' U)NUy, Pu=p ' (U)NUy.
The geometric decomposition X'(R) = Xp U X U X5 is given by Xo|,-1yy =
ny, Ellp—l(U) = (th @) Pyr)\ny, 22'177]([]) = Prt\(ny @) th U Pyr). NOW, by uSing this
decomposition, we consider embeddings from X' (R) into X'(J 2).

(i) On the open set Vyy = J3c 2.

On Vy,, we consider the submanifold Xy, = {s = p112 = piz2 = 0}. On X, we
have the induced differential system Dfxy = {wo = w| = wyp = o, = w; = 0}, where

@, = dr — p111dx, @y = dt — pandx. Clearly, this system (fxy, Dfxy) is isomorphic

to (Pyy, 15) C (¥(R), ﬁ). Indeed, this system is equal to the third order PDE which is ob-
tained by partial derivation of the original equation s = 0 for the independent variables x, y.
The projection to R of these integral manifolds are regular solutions of the wave equation
s =0.

(i1) On the open set V,; C >(J?).
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We consider singular solutions of corank 1 which are the projections of inte-
gral manifolds of X'(J 2) passing through X¥;. On V,;, we consider the submani-
fold ¥,;, = {s=a=e=0}. On X,;, we have the differential system Dy =
{wo = w1 =@y =@y =@, =0}, where w, = dy — Bdt, @, = dr — cdx. Note
that w € ¥y <<= B(w) = 0. Clearly, this system (Xt Dfxt) is isomorphic to
(Pyy, ﬁ) C (X(R), ﬁ). We construct integral manifolds of this system in the following.
Lett: S < X, C ¥(J?) be a graph defined by

(x, y(x,0), z(x,1), p(x,t), g(x,1), r(x,t), t, B(x,1), c(x,t)) around (xg, tp) .

If S is an integral submanifold of (X1, Dfxt)’ then the following conditions are satisfied:

Cwo = 1"(dz — pdx — qdy) = (zx — p — qyx)dx + (zr — qy)dt =0, (13)
Fo = 1"(dp — rdx) = (px — r)dx + p:dt =0, (14)
Gy = 1"(dq — tdy) = (qx — tyx)dx + (q; — ty)dt =0, (15)
oy = 1"(dy — Bdt) = yydx + (y, — B)dt =0, (16)
Cw, =0 dr —cdx) = (ry —c)dx +rdt =0. (17)

We have y(x,7) = y(), B(x,t) = y'(¢t) from (16), and note that the condition passing
through Xy is B(t9) = y'(fp) = 0. From (15), we have ¢ = [ty,dt = ty — Y where

Y := [ ydt. From (13),z = [(ty — Y)y;dt 4+ zo(x) = ? +1 [ y*dt — Yy + zo(x) where
: . 5 2 2

Zo(x) is a function on § depending only x, and p = z,x = z(’)(x). For (14), the function p

satisfies p; = 0 and we have r = zg (x). For (17), the function r satisfies r; = 0 and we have

c= zg’ (x). Therefore, we obtain the solution of s = 0 around (xp, 7o) given by

(x, y(x,1), z(x,1), p(x,t), g(x,t), r(x,t), t, B(x,t), c(x,1))

tyz 1 2 /
=[x, y@. > + 5| dt —y | ydt + zo(x), z(x), ty

—/ydt, Z20(x), 1,y z{)”(X))-

for arbitrary functions y(z) and zo(x). These integral surfaces with the condition y’(z9) = 0
are geometric singular solutions of corank 1.
(iii) On the open set Vy,, C X(J?).
We omit this case since Vy, is isomorphic to V,; by the symmetry for x and y.
(iv) On the open set V,; C > (J?).
We will consider singular solutions of corank 2 which are the projections of integral
manifolds of E(JZ) passing through ¥,. On V,;, we consider the submanifold PO
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{s = E = F =0}.0n X,;, we have the induced differential system:
D, = (mo=m = m = e = 0, = 0]

where w, = dx — Adr, wy = dy— Ddt. Note thatw € X <= A(w) = D(w) = 0. This
system (X, Dy ) is isomorphic to (P, ﬁ) C (X (R), ﬁ). We construct integral manifolds
of this system in the following. Let ¢ : S < X,; C X (J?) be a graph defined by

x(r,t), y(r,1), z(r,t), p(r,t), q(r, 1), r, t, A(r, 1), D(r, 1)) around (ro, to) .
If S is an integral submanifold of (X4, Df”), then the following conditions are satisfied:

Cwy = 1"(dz — pdx — qdy) = (zr — pxy — qyr)dr + (z; — px; —qy)dt =0,  (18)

oy = "(dp — rdx) = (pr — rx;)dr + (p; — rx;)dt =0, (19)
Vo =" (dg — tdy) = (qr — ty,)dr + (q: — ty)dt =0, (20
Cwy =1"(dx — Adr) = (x, — A)dr + x,dt =0, (21)
o, =" (dy — Ddt) = y,dr + (yy — D)dt = 0. (22)

From (22), we have y(r,t) = y(t), D(x,t) = y'(¢). From (21), we have x(r,t) =
x(r), A(x,t) =x'(r). From (20),q = [ty'dt =ty —Y where Y := [ ydt. From (19), p =
[rx'dr = rx — X where X := [ xdr. From (18), z = 4 (rx*> +ty> + [ x2dr + [ y?dt) —
(x [xdr +y [ ydt) . Hence, we get the solution of s = 0 around (xo, 7o) on Uy, given by

x(r,t), y(r,t), z(r, 1), p(r,t), q(r,t), r, t, A(r,t), D(r, 1))

1 2 2 2 2
= (x(r), (1), §<rx +ty +/x dr+/y dt)—(x/xdr+y/ydt> ,
rx —/xdr, ty —/ydt, rot, x'(r), y/(t)) .

for arbitrary functions x (r) and y(r). These integral surfaces with the condition x’(rg) =
y'(to) = 0 are geometric singular solutions of corank 2.

4.2. Singular solutions of a parabolic equation. We consider the equation R =

{r = 0}. The differential system D = { wy = @] = @ = 0} is given by @y = dz — pdx —
qdy, w1 =dp — sdy, @y = dq — sdx — tdy. The structure equation of D is written as

dog=—dpndx —dgAndy, doy=-dsAndy, dwoy=—-dsAdx—dtArdy.

Let U be an open set in R. We have the covering p_l (U) = Pyy U Py; U Py, of the fibration
p : £(R) — R from Lemma 2, where Uy, := {v € 771 (U) | dx|y Ady|y # O}, Uy =
{ven'(U)|dxly Adtly # 0}, Uy == {v € n7'(U) | dsly Adt]y # 0}, Pyy =
p~ ' U)NUyy, Py = p~'(U)N Uy, Py := p~'(U) N Us. The geometric decomposition
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Y(R) = YpUX1UX; is given by EOlp*I(U) = Pyy, 21|p*1(U) = Py\Pyy, Elefl(U) =
Py \(Pyy U Py;). This prolongation X'(R) is realized as a submanifold of X'(J 2 as follows:

(1) On the open set J3 = Viy C >(J?).

On V,yin 2(]2), we consider the submanifold given by fxy ={r = p111 = p112 = 0}.
We have the induced differential system Dfxv ={wy =) = oy = wy, = w; =0} on fxy,
where @y, = ds — pioady, @w; = dt — piapdx — pandy. This system (Zyy, Dg ) is
isomorphic to (Pyxy, ﬁ) C (X(R), ﬁ). Indeed, this system is equal to the third order PDE
which is obtained by partial derivation of the original equation r = 0 for the independent
variables x, y. The projection to R of these integral manifolds are regular solutions of the
equation r = 0.

(i) On the open set Vi, C X(J?).

We will consider singular solutions of corank 1 and 2 which are obtained by the pro-
jections of integral manifolds of X (J?2) passing through smooth points in X' (R). Recall that
X1 \{singular points} C X'(R) is covered by Pg;. Hence, we work on Vj; and consider the
submanifold given by X, = {r = E = F = 0}. We have the induced differential system
Dy = {wo = w1 = w3 = @y = w, =0} on Xy, where w, = dx — Ads — Bdt, wy =
dy — Bds. Note that

w € X \{singular points} <= A(w) # 0, B(w) =0
w e Xy <— A(w) = B(w) =0.

This system s, Dfst) is isomorphic to (Py;, ﬁ) C (¥(R), ﬁ). We construct integral
manifolds of this system. Let¢ : § < X, C X(J?) be a graph defined by
(x(s, 1), y(s,1), z(s,1), p(s,t), q(s,1), s, t, A(s,t), B(x,t)) around (so, tp) .

If § is an integral manifold of Dy , then the following conditions are satisfied:

Cwo i =(zg — pxs — qys)ds + (2t — pxi — qy)dt =0, (23)
oy i=(ps — sys)ds + (pr — sy;)dt =0, (24)
K i =(gs; — sxg — tys)ds + (qr — sx; — ty;)dt =0, (25)
Gy i=(xy — A)ds + (x;, — B)dt =0, (26)
Uy i=(ys — B)ds + y;dt = 0. 27

We have y(s, 1) = y(s), B(s,t) = y'(s) from (27). From (26), x = ty’(s) + xo(s), where
xo(s) is a function on S depending only s, and A = x; = ry”(s) + x((s). From (24),
p = [sysds =sy—Y where Y := [ yds. From (25), we also have g = sy’ + sxo — [ xods.
Similarly, from (23), z = t(sy — Y)y' + syxo + [ (yxo)ds — xo [ yds — y [ xods. Hence we
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have solutions of » = 0 given by
(x(s, 1), y(s,0), z(s,1), p(s,1), q(s,1), s, t, A(s, 1), B(s,1))

= (ty'(s) + x0(s), y(s), t(sy—/de)y’+Syxo+/(yxo)ds —xo/yds —y/xods,

sy — / yds, tsy' + sxo — /xods, s, 1, ty" + x5, Y.
for arbitrary functions y(s) and xo(s). These integral surfaces which satisfy the condition

A(so, to) = toy" (s0) + x((s0) # 0, B(so) = y'(s0) =0
are geometric singular solutions of corank 1. On the other hand, these integral with the con-
dition
A(s0, 10) = 10y" (s0) + x(s0) =0, B(so) =y (s0) =0
are geometric singular solutions of corank 2.
4.3. Singular solutions of an elliptic equation. We consider the Laplace equation
R = {r +t = 0}. The differential system D = {wy = w| = w» = 0} is given by wy =
dz — pdx — qdy, w1 = dp —rdx — sdy, wy = dq — sdx + rdy. The structure equation
of D is expressed as
doo=—dp ANdx —dg Ndy, do)=—dr Adx —dsAdy,
doy=—ds Ndx +dr ANdy.
Then, for an open set U C R, we have the covering p‘l(U ) = Pyxy U Py of the fibration
p: XY(R) — R, where
U : = {vex (U) | dx|y Adyly #0}, Uy :={vex ' (U)|drly Adsly # 0},
Pyy ;:p_l(U)ﬂny, Prg = P_I(U)mUrs'

The geometric decomposition X' (R) = Xo U X is given by 2o| -1y = Pxy, 22,11y =
Prs\ Pyy. This prolongation X'(R) is realized as a submanifold of X'(J 2y as follows:

() J3 = Vi C 2.

On Vyy, we consider the submanifold given by
Xy = {r+t=0, pi11 = —p122, pii2 = —pa22}. We have the induced differential sys-
tem Dfxv = {wp=w| =wy) =@, = w; =0} on fxy, where @, = dr — pi11dx —
p112dy, @y = ds — p112dx + p111dy. This system (fxy, Df”) is isomorphic to (Pyy, 15) C
(X(R), ﬁ). Indeed, this system is equal to the third order PDE which is obtained by partial
derivation of the original equation r +¢ = 0 for the independent variables x, y. The projection

to R of integral manifolds are regular solutions of the wave equation r 4t = 0.
(i) On V,5 C Z(J?).
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We will consider singular solutions of corank 2 which are the projections of inte-
gral manifolds of X'(J 2) passing through X¥>. On V,;, we consider the submanifold
given by ¥,s = {r+t=0,E =—1,F =0}. We have the induced differential system
Dy = {wo = w1 = w2 = @y = w, =0} on X, where w, = dx + Ddr — Bds, wy, =
dy — Bdr — Dds. Recall that w € ¥ <= B(w) = D(w) = 0. This system (X, Dfm)
is isomorphic to (P, ﬁ) C (¥ (R), ﬁ). We construct integral manifolds of this system. Let
1:8 < X,; C ¥(J?) be a graph defined by

(x(r,s), y(@,s),z(r,s), p(r,s),q(r,s),r,s, B(r,s), D(r, s)) around (rg, so) .

If § is an integral manifold of Dy , then the following conditions are satisfied:

Cwo =z — pxr — qyr)dr + (zs — pxg — qys)ds =0, (28)
Cwy i=(pr —rx, — sy,)dr + (ps —rxg — sys)ds =0, (29)
oy i=(qr — sxp +ry.)dr + (qs — sxs +rys)ds =0, (30)
Fwy :=(x, + D)dr + (xg — B)ds =0, 31
U@y :=(y, — B)dr + (ys — D)ds = 0. (32)

From (31) and (32), a complex function f(z) := y(r,s) +ix(r,s) (z :=r + is) must be a
holomorphic function. From (29) and (30), p(r, s), q(r, s) are considered as solutions of a
differential equation

gs =SXs — 1Yy, Dr=TrX +5y (33)
qr =SXp —Fyr, Ps=TXs+SYs. (34)
for given functions x, = —y;, y» = x5. Then, we also get Cauchy-Riemann equation g, =

—Pss gs = pr from Cauchy-Riemann equation for y(r, s), x(r, s). Hence a complex function
g(2) := p(r,s) +iq(r,s) (z :=r +is) is also holomorphic. From (28), z(r, s) is considered
as a solution of a differential equation

Zr = PpXr +qYr, Zs = PXs +qYs (35)

for given functions p, g, x, = —ys, yr = X;.

Conversely, for a given holomorphic function f(z) = y(r,s) +ix(r,s) (z :=r +is) we
consider the differential equation (33), (34) for p, g where x, y are given functions. Then, the
differential equation is Frobenius since y(r, s) and x(r, s) satisfy Cauchy-Riemann equation.
Therefore, the existence of the solution of (33), (34) is guaranteed and g(z) = p(r,s) +
iq(r,s) (z :=r +is) is holomorphic. Next, we consider the differential equation (35) for z
where x, y, p, g are given. Then, this differential equation is Frobenius since f(z) and g(z)
are holomorphic functions and have solutions. Finally, let f(z) = y(r,s) + ix(r,s) (z :=
r +is) be a holomorphic function and p(r, s), g(r, s), z(r, s) be the functions obtained by the
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above construction. Then,

(x(r,s), y(r,s), z(r,s), p(r,s), q(r,s), r, s, yr(s,1), ys(s,1))

is an integral surface. These integral surfaces which satisfy the condition y,(sg,f)) =
vs(s0, to) = 0 are geometric singular solutions of corank 2.

5. Tower constructions of special rank 4 distributions

In sections 2 and 3, we studied geometric structures of rank 2 prolongations for each
class of equations. In this section, we define special rank 4 distributions which are general-
ization of distributions induced by PDEs and construct tower structures of these distributions
by successive rank 2 prolongations.

DEFINITION 5. Let R be a k+ 6 dimensional manifold (k > 0), and D be a differential
system of rank 4 on R. Then,

(i) (R, D) is hyperbolic type at w € R if there exists a local coframe {@;,6;, w;, 7}
(i=1,...,k, j=1,2)around w € R such that D = {w; = 6; = 0} around w € R and the
following structure equation holds at w:

dwi =0 mod w,»,ej
do = w1 ATy mod @;, 6;, (36)
dbr = wy Ao mod @;, ;.

(i) (R, D) is parabolic type at w € R if there exists a local coframe {@;,6;, w;, 7;}
i=1,...,k j=1,2)around w € R such that D = {w; = 6; = 0} around w € R and the
following structure equation holds at w:

dwi =0 mod ZZT,',@j
do; = wy AT mod @;, 6}, (37)
do) = w1 AT+ w2 AT mod wi,éj.

(iii) (R, D) is elliptic type at w € R if there exists a local coframe {@;,6;, wj, 7;}
(i=1,...,k, j=1,2)around w € R such that D = {@; = 0; = 0} around w € R and the
following structure equation holds at w:

dwl- =0 mod w’,',ej
do = w1 AT +wr AT mod w;j, 6;, (38)
dbr = w1 AT — wy AT mod w;, 0; .

PROPOSITION 8. Let (R, D) be a hyperbolic type, parabolic type or elliptic type. Then
the first derived system d D of D is a subbundle of rank 6 and the Cauchy characteristic system
Ch(D) of D is trivial, that is Ch(D) = {0}.
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Here, the Cauchy characteristic system Ch(D) of a differential system (R, D) is defined
by

Ch(D)(x)={XeDx)| X|dwj=0 (mod wi,...,ws) fori=1,...,s},
where D = {w] = - -- = wy = 0} is defined locally by defining 1-forms {wy, ..., ws}.
PROOF. This statement is obtained by the very definitions. O

REMARK 2. In fact, the converse of the above proposition also holds. Namely, let D
be a differential system of rank 4 on a k + 6 dimensional manifold R with rank D = 6,
Ch(D) = {0}. Then, for any w € R, (R, D) is a hyperbolic type, parabolic type or elliptic
type at w ([10]).

PROPOSITION 9.
(i) If (R, D) is locally hyperbolic, then the rank 2 prolongation (X (R), ﬁ) of (R, D)

is also hyperbolic at any point in X (R). Moreover, X (R) is a T*-bundle over R.

(i) If (R, D) is locally parabolic, then (X (R)\{singular points}, IS) is also
parabolic at any point in X (R)\ {singular points}. Moreover, X(R)\
{singular points) is an S' x R-bundle over R.

@iii) If (R, D) is locally elliptic, then the rank 2 prolongation (¥ (R), ﬁ) of (R, D) is
also elliptic at any point in X (R). Moreover, X (R) is an S2-bundle over R.

PROOF. These statements are obtained by the same arguments of the proof of Theorem
1, Proposition 2, 3 for the hyperbolic case, Theorem 2, Proposition 5 for the parabolic case
and Theorem 3, Proposition 7 for the elliptic case. O

For the locally hyperbolic, locally parabolic or locally elliptic type distribution (R, D),

we can define k-th rank 2 prolongation (ZK(R), ﬁk) of (R, D) by the above Proposition,
successively. For hyperbolic and elliptic type (R, D), we define

(ZX(R), D¥) := (Z(Z*1(R)), f)"—l) k=1,2,..),

where (ZO(R), ﬁo) := (R, D). For parabolic type (R, D), we define

(ZK(R), DY) = (Z(EFV(R)\ {singular pointsy, D1y (k=1,2,..))
where (2°(R), D°) := (R, D).

THEOREM 4. If (R, D) is locally hyperbolic, locally parabolic or locally elliptic then
the k-th rank 2 prolongation (X*(R), ﬁk) of (R, D) is also hyperbolic, parabolic or elliptic
at any point in Z*(R), respectively.

PROOF. This theorem is obtained from the successive applications of Proposition 9.
a



RANK TWO PROLONGATIONS OF SECOND-ORDER PDE 109

REMARK 3. For the hyperbolic case, Bryant, Griffiths and Hsu proved the above the-
orem for the exterior differential systems in [2]. By our argument, for parabolic and elliptic
cases, one can show that Theorem 4 have the similar extension for the exterior differential
system ([10]).
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