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Abstract. Let X be a compact connected Riemann surface. Let ξ1 : E1 −→ X and ξ2 : E2 −→ X be
holomorphic vector bundles of rank at least two. Given these together with a λ ∈ C with positive imaginary part, we

construct a holomorphic fiber bundle S
ξ1,ξ2
λ over X whose fibers are the Calabi–Eckmann manifolds. We compute

the Picard group of the total space of S
ξ1,ξ2
λ . We also compute the infinitesimal deformations of the total space of

S
ξ1,ξ2
λ . The cohomological Brauer group of S

ξ1,ξ2
λ is shown to be zero. In particular, the Brauer group of S

ξ1,ξ2
λ

vanishes.

1. Introduction

Let X be compact connected Riemann surface. Let ξ1 : E1 −→ X and ξ2 : E2 −→ X be

holomorphic vector bundles of rank m and n respectively, with m,n ≥ 2. Let E0
1 (respectively,

E0
2) be the complement of the image of the zero section in E1 (respectively, E2). Fix a

complex number λ with positive imaginary part.

The group C acts on the fiber product E0
1 ×X E0

2 as follows:

t · (z,w) = (exp(t) · z, exp(t (λ − 1)/λ) · w) , t ∈ C, (z,w) ∈ E0
1 ×X E0

2 .

The quotient for this action is a compact complex manifold; we denote this complex manifold

by S
ξ1,ξ2
λ . Each fiber of the natural projection p : S

ξ1,ξ2
λ −→ X is a Calabi–Eckmann

manifold.
Define the elliptic curve T := C/(Z ⊕ λ · Z).
We prove the following (see Theorem 3.6 and Corollary 5.2):

THEOREM 1.1. The Picard group of S
ξ1,ξ2
λ fits in a short exact sequence

0 −→ Pic(X) −→ Pic(Sξ1,ξ2
λ ) −→ H 1(T , OT ) −→ 0 .
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The injective homomorphism Pic(X) −→ Pic(Sξ1,ξ2
λ ) sends any holomorphic line bundle L

to its pullback p∗L.

THEOREM 1.2. The cohomological Brauer group Br′(Sξ1,ξ2
λ ) vanishes. In particular,

the Brauer group Br(Sξ1,ξ2
λ ) vanishes.

Assume that all endomorphisms of the holomorphic vector bundles E1 and E2 are scalar
multiplications. Also, assume that the genus of X is at least two. We prove the following (see
Corollary 4.4):

THEOREM 1.3. The dimension of the space of all infinitesimal deformations of the

complex manifold S
ξ1,ξ2
λ is (m2 + n2 + 2)(g − 1) + 2, where g is the genus of X.

In fact we compute the infinitesimal deformations of S
ξ1,ξ2
λ explicitly.

The infinitesimal deformations of Calabi–Eckmann manifolds were computed by Akao
in [1].

2. Generalized Calabi–Eckmann manifolds

We briefly recall the construction of the Calabi-Eckmann manifolds (see [2]). Take inte-
gers m,n ≥ 2, and take λ ∈ C with Imλ > 0. Consider (Cm \ {0}) × (Cn \ {0}). The additive
group C acts on this product as follows:

t · (z,w) = (exp(t)z, exp(t (λ − 1)/λ)w), t ∈ C, (z,w) ∈ (Cm \ {0}) × (Cn \ {0}) .

The quotient

(2.1) M
m,n
λ := ((Cm \ {0}) × (Cn \ {0}))/C

is a Calabi–Eckmann manifold. Let S2m−1 and S2n−1 be the unit spheres in Cm and Cn

respectively. The composition of maps

S2m−1 × S2n−1 ↪→ (Cm \ {0}) × (Cn \ {0}) −→ M
m,n
λ

is a diffeomorphism. Let

(2.2) Tλ := C/(Z ⊕ λ · Z)

be the complex elliptic curve. The natural projection

(Cm \ {0}) × (Cn \ {0}) −→ CPm−1 × CPn−1

descends to a projection to CPm−1×CPn−1 of the above quotient space M
m,n
λ . This projection

M
m,n
λ −→ CPm−1 × CPn−1 makes M

m,n
λ a holomorphic principal Tλ–bundle over CPm−1 ×

CPn−1. We will extend this construction to a family parametrized by a Riemann surface.
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Let X be a compact connected Riemann surface of genus g . Let

ξ1 : E1 −→ X and ξ2 : E2 −→ X

be two holomorphic vector bundles over X of rank m and n respectively; as before, m,n ≥ 2.

Let E0
i , i = 1, 2, be the complement of the image of the zero section in the total space of Ei .

Take λ ∈ C as above. The additive group C acts on the fiber product E0
1 ×X E0

2 as follow:

t · (z,w) = (exp(t) · z, exp(t (λ − 1)/λ) · w), t ∈ C, (z,w) ∈ E0
1 ×X E0

2 .

It is easy to check that this C-action is free and proper. Hence the corresponding quotient

(2.3) S
ξ1,ξ2
λ := (E0

1 ×X E0
2)/C

is a compact complex manifold (see, for example, [5, Proposition 2.1.13]). The projection

(ξ1, ξ2)|E0
1×E0

2
: E0

1 × E0
2 −→ X descends to a holomorphic projection

(2.4) p : S
ξ1,ξ2
λ −→ X .

This projection makes S
ξ1,ξ2
λ a holomorphic fiber bundle over X with fiber M

m,n
λ (constructed

in (2.1)). The complex manifold M
m,n
λ is not Kähler because H 2(M

m,n
λ , R) = 0. Hence S

ξ1,ξ2
λ

is also not Kähler (any complex submanifold of a Kähler manifold is Kähler).
For i = 1, 2, let P(Ei) be the holomorphic projective bundles over X parametrizing

all the lines in Ei . The natural projection of E0
1 ×X E0

2 to P(E1) ×X P(E2) descends to a
projection

(2.5) ϕ : S
ξ1,ξ2
λ −→ P(E1) ×X P(E2).

We note that P(E1) ×X P(E2) is a complex projective manifold. The projection p in (2.4) is
the composition of ϕ with the natural projection

(2.6) q : P(E1) ×X P(E2) −→ X .

The projection ϕ makes S
ξ1,ξ2
λ a holomorphic principal Tλ bundle over P(E1)×X P(E2),

where Tλ is defined in (2.2). To see this, consider the action of the multiplicative group C∗ =
C/(2π

√−1·Z) on E0
1×XE0

2 defined by t ·(z,w) = (t ·z, t ·w). This action commutes with the

above action of C on E0
1 ×X E0

2. Therefore, we get an action of C∗ on the quotient Sξ1,ξ2
λ . This

action of C∗ on S
ξ1,ξ2
λ factors through the quotient group Tλ = C∗/〈exp(2π

√−1 · λ)〉. Using
this action of Tλ, the projection ϕ is a holomorphic principal Tλ–bundle over P(E1)×XP(E2).

Fix Hermitian structures h1 and h2 on the vector bundles E1 and E2 respectively. Let

S(ξ1) := {v ∈ E1|h1(v) = 1} and S(ξ2) := {v ∈ E2| h2(v) = 1}
be the corresponding unit sphere bundles over X. Let

S(ξi) −→ P(Ei) = E0
i /C∗



64 INDRANIL BISWAS, MAHAN MJ AND AJAY SINGH THAKUR

be the restriction of the quotient map E0
i −→ P(Ei). It makes S(ξi) a principal S1–bundle

over P(Ei) (in particular, S(ξi) is a circle bundle over P(Ei)). The composition of maps

S(ξ1) ×X S(ξ2) ↪→ E0
1 ×X E0

2 −→ S
ξ1,ξ2
λ

is a diffeomorphism of fiber bundles over X. The complex structure on S
ξ1,ξ2
λ produces a

complex structure on S(ξ1) ×X S(ξ2) using this diffeomorphism.

3. The Picard group

For notational conveniences, Tλ, M
m,n
λ and S

ξ1,ξ2
λ will be denoted by T , M and S respec-

tively. The fiber product P(E1) ×X P(E2) will be denoted by Y .
Fix a point of S. Let i : T ↪→ S be the orbit of this point (recall that S is a principal

T –bundle over Y ).

PROPOSITION 3.1. Let T
i

↪→ S
ϕ−→ Y be the principal bundle in (2.5). Then we have

the following short exact sequence:

0 −→ H 1(Y,OY )
ϕ∗

−→ H 1(S,OS)
i∗−→ H 1(T ,OT ) −→ 0 ,

where ϕ∗ and i∗ are induced homomorphisms of cohomologies.

PROOF. Consider the Borel spectral sequence (see Appendix 2 (page 202) of [4]) as-
sociated with the above principal bundle

T
i

↪→ S
ϕ−→ Y

for the trivial holomorphic line bundle over Y . We have

0,1E
1,0
2

d2−−−−−−→ 0,2E
3,−1
2 = 0

0,1E
0,1
2

d2−−−−−−→ 0,2E
2,0
2 = H 0,2(Y,OY ) .

From the Leray–Hirsch theorem for the fiber bundle in (2.6) it follows that the cohomology
algebra H ∗(Y, C) is generated by H 2(X, C) together with c1(OP(E1)) and c1(OP(E2)) (see

[3, p. 432, Theorem 4D.1] for the Leray–Hirsch theorem). Therefore, H 2(Y, C) = H 1,1(Y ).

In other words, H 0,2(Y,OY ) = 0.

As no element of 0,1E
1,0
r and 0,1E

0,1
r is dr -boundary for r ≥ 2, we have 0,1E

1,0
2 =

0,1E
1,0∞ and 0,1E

0,1
2 = 0,1E

0,1∞ . We have a filtration

H 1(S,OS) = D1 ⊃ D0 ⊃ 0 ,

where D0 = 0,1E
1,0∞ and D1/D0 = 0,1E

0,1∞ . The corresponding graded object is

GrH 1(S,OS) = 0,1E1,0∞ ⊕ 0,1E0,1∞ .
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Hence, the natural homomorphism

ϕ∗ : H 1(Y,OY ) = 0,1E
1,0
2 −→ 0,1E1,0∞ = D0 ⊆ H 1(S,OS)

is injective, and the natural homomorphism

i∗ : H 1(S,OS) = D1 −→ D1/D0 = 0,1E0,1∞ = 0,1E
0,1
2 = H 1(T ,O)

is surjective. So we have the exact sequence

0 −→ H 1(Y,OY )
ϕ∗

−→ H 1(S,OS)
i∗−→ H 1(T ,OT ) −→ 0.

This completes the proof. �

LEMMA 3.2. For the projection q in (2.6), the homomorphism

q∗ : H 1(X,OX) −→ H 1(Y,OY )

is an isomorphism. In particular, dim H 1(Y,OY ) = g .

PROOF. Since the fibers of q are connected and simply connected, the long exact se-
quence of homotopy groups for q gives that the homomorphism π1(Y ) −→ π1(X) induced

by q is an isomorphism. Hence q∗ : H 1(X, Q) −→ H 1(Y, Q) is an isomorphism. Since both
X and Y are Kähler, this implies the lemma. �

Proposition 3.1 and Lemma 3.2 together have the following corollary:

COROLLARY 3.3. The dimension of H 1(S,OS) is g + 1.

LEMMA 3.4. For the projection p in (2.4), the homomorphism

p∗ : π1(S) −→ π1(X)

is an isomorphism. In particular, the pullback homomorphism

p∗ : H 1(X, Z) −→ H 1(S, Z)

is an isomorphism.

PROOF. The fiber M
m,n
λ of p is connected and simply connected (it is a product of two

spheres of dimensions at least three). Hence from the homotopy exact sequence it follows that
the above homomorphism p∗ is an isomorphism. Therefore, the homomorphism

H1(S, Z) −→ H1(X, Z)

given by p is an isomorphism. Now from the universal coefficient theorem for cohomologies
it follows that the homomorphism p∗ in the lemma is an isomorphism. �
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PROPOSITION 3.5. The pullback homomorphism

p∗ : H 2(X, Z) −→ H 2(S, Z)

is an isomorphism.

PROOF. Let

M
ι

↪→ S
p−→ X

be the fiber bundle in (2.4). Consider the Serre spectral sequence associated to this fiber
bundle for the constant sheaf Z. We will show that the local system Rip∗Z is constant for

all i. Recall that the fibers of p are M = S2m−1 × S2n−1. For the action of U(m) on
S2m−1 = {v ∈ Cm|||v||2 = 1}, the action of U(m) on H ∗(S2m−1, Z) is trivial. Similarly,

U(n) acts trivially on H ∗(S2n−1, Z). Therefore, the local system Rip∗Z is constant for all i.
Consequently, we have

E
0,2
2 = H 0(X, Z) ⊗ H 2(M, Z) = 0 ,

E
1,1
2 = H 1(X, Z) ⊗ H 1(M, Z) = 0 ,

E
2,0
2 = H 2(X, Z) ⊗ H 0(M, Z) = H 2(X, Z) .

Further,

d2 : E
0,1
2 = 0 −→ E2.0

2 .

is a zero map. This implies that

E0,2∞ = 0, E1,1∞ = 0 and E2,0∞ = H 2(X, Z) .

Hence the pullback homomorphism

p∗ : H 2(X, Z) = E2,0∞ −→ H 2(S, Z)

is an isomorphism. �

THEOREM 3.6. The Picard group of S fits in a short exact sequence

0 −→ Pic(X) −→ Pic(S) −→ H 1(T ,OT ) −→ 0 .

The injective homomorphism Pic(X) −→ Pic(S) sends any holomorphic line bundle L to
p∗L.

PROOF. Let O∗
S be the multiplicative sheaf on S of nowhere zero holomorphic func-

tions. Consider the following short exact sequence of sheaves on S

0 −→ Z −→ OS −→ O∗
S −→ 0 ,
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where the surjective homomorphism is f �−→ exp(2π
√−1·f ). From the long exact sequence

of cohomologies associated to it we conclude that Pic(S) fits in the exact sequence

H 1(S, Z) −→ H 1(S,OS) −→ Pic(S) −→ H 2(S, Z) −→ H 1(S,OS) .

We have the exact sequence

H 1(X, Z) −→ H 1(X,OX) −→ Pic(X) −→ H 2(X, Z) −→ 0

which is constructed from the short exact sequence

0 −→ Z −→ OX −→ O∗
X −→ 0

on X.
Consider the pullback homomorphism p∗ : Pic(X) −→ Pic(S) defined by L �−→

p∗L. Since H 1(X,OX) ⊂ H 1(S,OS) (see Proposition 3.1 and Lemma 3.2), H 1(S, Z) =
H 1(X, Z) (see Lemma 3.4) and H 2(S, Z) = H 2(X, Z) (see Proposition 3.5) with the ho-
momorphisms given by pullback, we conclude from the above two exact sequences that the

homomorphism p∗ makes Pic(X) a subgroup of Pic(S). Since H 1(S,OS)/H 1(X,OX) =
H 1(T ,OT ) by Proposition 3.1 and Lemma 3.2, we conclude that Pic(S)/p∗(Pic(X)) =
H 1(T ,OT ). (The argument is same as the proof of five lemma.) �

4. Infinitesimal deformations of the complex structure

In this section, we make the following assumptions:
(1) The two holomorphic vector bundles E1 and E2 are simple, meaning

H 0(X,End(E1)) = C = H 0(X,End(E2)) .

(2) genus(X) = g ≥ 2.
We note that any stable holomorphic vector bundle is simple.

LEMMA 4.1. Let θY be the holomorphic tangent bundles of Y = P(E1) ×X P(E2).

Then H 0(Y, θY ) = 0.

PROOF. For i = 1, 2, let ad(Ei) ⊂ End(Ei) be the holomorphic subbundle of co-rank
one defined by the sheaf of endomorphisms of Ei of trace zero. So, End(Ei) = ad(Ei)⊕OX.
We note that

(4.1) H 0(X, ad(Ei)) = 0

because Ei is simple.
Consider the projection q in (2.6). Let θY/X ⊂ θY be the relative holomorphic tangent

bundle for q . We note that

(4.2) q∗θY/X = ad(E1) ⊕ ad(E2) .
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The short exact sequence of holomorphic vector bundles

(4.3) 0 −→ θY/X −→ θY −→ q∗θX −→ 0 ,

where θX is the holomorphic tangent bundle of X, produces a short exact sequence

(4.4) 0 −→ q∗θY/X −→ q∗θY −→ θX −→ 0

on X because R1q∗θY/X = 0.

From (4.1) and (4.2) it follows that H 0(X, q∗θY/X) = 0. We also have H 0(X, θX) = 0
because g ≥ 2. Therefore, from the long exact sequence of cohomologies associated to (4.4)

it follows that H 0(X, q∗θY ) = 0. This implies that H 0(Y, θY ) = 0. �

LEMMA 4.2. The cohomology H 1(Y, θY ) fits in a natural short exact sequence

0 −→ H 1(X, ad(E1)) ⊕ H 1(X, ad(E2)) −→ H 1(Y, θY ) −→ H 1(X, θX) −→ 0 .

PROOF. Consider the short exact sequence in (4.3). We note that Riq∗θY/X = 0 for all

i ≥ 1. From the projection formula, and the fact that Hi(CPN,OCPN ) = 0 for all i ≥ 1 and
all N , we conclude that

Riq∗q∗θX = θX ⊗ Riq∗OY = 0

for all i ≥ 1. Therefore,

Hj(Y, θY/X) = Hj(X, q∗θY/X) = Hj(X, ad(E1) ⊕ ad(E2))

(see (4.2) for the second equality) and

Hj(Y, q∗θX) = Hj(X, q∗q∗θX) = Hj(X, θX)

for all j ≥ 0. In particular, H 0(Y, q∗θX) = H 0(X, θX) = 0 (because g ≥ 2), and

H 2(Y, θY/X) = H 2(X, q∗θY/X) = 0. Therefore, the long exact sequence of cohomologies
for (4.3) gives the short exact sequence

0 −→ H 1(Y, θY/X) = H 1(X, ad(E1) ⊕ ad(E2)) −→ H 1(Y, θY )

−→ H 1(Y, q∗θX) = H 1(X, θX) −→ 0 .

From this the lemma follows because H 1(X, ad(E1) ⊕ ad(E2)) = H 1(X, ad(E1)) ⊕
H 1(X, ad(E2)). �

PROPOSITION 4.3. Let θS be the holomorphic tangent bundles of S. Then

H 0(S, θS) = C.
The cohomology H 1(S, θS) fits in a natural short exact sequence

0 −→ H 1(S,OS) −→ H 1(S, θS) −→ H 1(Y, θY ) −→ 0 .
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PROOF. Consider the Borel spectral sequence associated to ϕ for the tangent bundle
T Y . We have

0,0E0,0∞ = 0,0E
0,0
2 = H 0(Y, θY ) .

Now, Lemma 4.1 says that H 0(Y, θY ) = 0. Hence

(4.5) H 0(S, ϕ∗θY ) = 0,0E0,0∞ = 0 .

Let θS/Y ⊂ θS be the relative tangent bundle for the projection ϕ. We note that θS/Y =
OS using the action of T on S. Consider the long exact sequence of cohomologies associated
to the short exact sequence of vector bundles

(4.6) 0 −→ θS/Y = OS −→ θS −→ ϕ∗θY −→ 0 .

Since H 0(S, ϕ∗θY ) = 0, we conclude that the homomorphism

H 0(S, θS/Y ) = H 0(S,OS) −→ H 0(S, θS)

in the long exact sequence is an isomorphism. Therefore, the first statement of the proposition
is proved.

To prove the second part of the proposition, first note that

0,1E
0,1
2 = H 0,0(Y, θY ) ⊗ H 0,1(T ,OT ) = 0

because H 0(Y, θY ) = 0. Hence 0,1E
0,1∞ = 0. Further, since

0,1E
1,0
2 = H 0,1(Y, θY )

d2−−−−−−→ 0,2E
3,−1
2 = 0 ,

we conclude that 0,1E
1,0∞ = H 0,1(Y, θY ).

Now, let

H 1(S, ϕ∗θY ) = D1 ⊃ D0 ⊃ 0

be the natural filtration for which the corresponding graded object is

GrH 1(S, ϕ∗θX) = 0,1E1,0∞ ⊕ 0,1E0,1∞ ,

more precisely, D0 = 0,1E
1,0∞ and D1/D0 = 0,1E

0,1∞ . Since 0,1E
0,1∞ = 0, we have D1 = D0.

This implies that the natural homomorphism

(4.7) ϕ∗ : H 1(Y, θY ) = 0,1E
1,0
2 −→ 0,1E1,0∞ = D0 = D1 = H 1(S, ϕ∗θY )

is an isomorphism.
Consider the long exact sequence of cohomologies

(4.8) H 0(S, ϕ∗θY ) −→ H 1(S,OS) −→ H 1(S, θS)
φ−→ H 1(S, ϕ∗θY )
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associated to the short exact sequence in (4.6). Since H 0(S, ϕ∗θY ) = 0 (see (4.5)) and

H 1(S, ϕ∗θY ) = H 1(Y, θY ) (see (4.7)), to prove the second part of the proposition it suffices
to show that the homomorphism φ in (4.8) is surjective.

From Lemma 4.2 we know that all the infinitesimal deformations of Y are given by
the infinitesimal deformations of the two vector bundles E1 and E2 and the infinitesimal
deformations of the Riemann surface X. The subspaces

H 1(X, ad(E1)) ⊂ H 1(Y, θY ) and H 1(X, ad(E2)) ⊂ H 1(Y, θY )

in Lemma 4.2 correspond to the infinitesimal deformations of the projective bundle P(E1)

and P(E2) respectively (keeping the Riemann surface X fixed). The infinitesimal deforma-

tions of E1 (respectively, E2) is given by H 1(X,End(E1)) (respectively, H 1(X,End(E2))).
The natural map from the infinitesimal deformations of Ei to the infinitesimal deformations

of P(Ei) corresponds to the projection H 1(X,End(Ei)) −→ H 1(X, ad(Ei)) given by the

decomposition End(Ei) = ad(Ei) ⊕ OX. The projection H 1(Y, θY ) −→ H 1(X, θX) corre-
sponds to the infinitesimal deformations of X. All these infinitesimal deformations give rise
to infinitesimal deformations of S. Hence the homomorphism φ in (4.8) is surjective. �

COROLLARY 4.4. The dimension of H 1(S, θS) is (m2 + n2 + 2)(g − 1) + 2.

PROOF. Since H 0(X, ad(E1)) = 0 = H 0(X, ad(E2)) (recall that E1 and E2 are both
simple), from the Riemann–Roch theorem we have

dim H 1(X, ad(E1)) = (m2 − 1)(g − 1) and dim H 1(X, ad(E2)) = (n2 − 1)(g − 1) .

Therefore, Proposition 4.3 and Lemma 4.2,

dim H 1(S, θS) = (m2 + n2 + 1)(g − 1) + dim H 1(S,OS) .

Now the corollary follows from Corollary 3.3. �

5. Computation of the Brauer group

Let M be a compact connected complex manifold. Let O∗
M be the multiplicative sheaf

on M of nowhere zero holomorphic functions. The cohomological Brauer group Br′(M) is

the group of torsion elements in H 2(M,O∗
M).

To define the Brauer group of M , consider all holomorphic principal PGL(r, C)–bundles
on M for all r ≥ 1. Let

GL(r, C) × GL(r ′, C) −→ GL(rr ′, C)

be the homomorphism given by the natural action of any A × B ∈ GL(r, C) × GL(r ′, C) on

Cr ⊗ Cr ′
. This homomorphism descends to a homomorphism

γ : PGL(r, C) × PGL(r ′, C) −→ PGL(rr ′, C) .
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Given a holomorphic principal PGL(r, C)–bundle A on M and a holomorphic princi-
pal PGL(r ′, C)–bundle B on M , the homomorphism γ produces a holomorphic principal
PGL(rr ′, C)–bundle on M by extension of structure group. This holomorphic principal
PGL(rr ′, C)–bundle will be denoted by A ⊗ B. The two principal bundles A and B will be
called equivalent if there are holomorphic vector bundles V and W on M such that A⊗P(V )

is holomorphically isomorphic to B ⊗ P(W).
The equivalence classes of projective bundles form a group. The addition operation is

given by the tensor product, and the inverse is given by the automorphism A �−→ (At )−1 of
PGL(r, C) (it corresponds to taking the dual projective bundles). (See [6, Section 1] for the
details.) This group is called the Brauer group of M , and it is denoted by Br(M).

The Brauer group Br(M) is a subgroup of the cohomological Brauer group Br′(M) [6,
p. 878].

Let T denote the torsion part of H 3(M, Z). Let

γ : H 1(M,O∗
M) −→ H 2(M, Z)

be the homomorphism that sends any holomorphic line bundle on M to its first Chern class.
Let

A := H 2(M, Z)/γ (H 1(M,O∗
M))

be the quotient. The cohomological Brauer group Br′(M) fits in a short exact sequence

(5.1) 0 −→ A ⊗ (Q/Z) −→ Br′(M) −→ T −→ 0

(see [6, p. 878, Proposition 1.1]).

PROPOSITION 5.1. Let M
ι

↪→ S
p−→ X be the holomorphic fiber bundle in (2.4).

Then the cohomology group H 3(S, Z) is torsionfree.

PROOF. The proof is similar to the proof of Proposition 3.5. Consider the Serre spectral
sequence associated to the fiber bundle

M
ι

↪→ S
p−→ X

for the constant sheaf Z. We have seen in the proof of Proposition 3.5 that the local system
Rip∗Z is constant for all i.

We have

E
0,3
2 = H 0(X, Z) ⊗ H 3(M, Z) = H 3(M, Z) ,

E
2,1
2 = H 2(X, Z) ⊗ H 1(M, Z) = 0 ,

E
1,2
2 = H 1(X, Z) ⊗ H 2(M, Z) = 0 ,

E
3,0
2 = H 3(X, Z) ⊗ H 0(M, Z) = 0 .
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With a similar argument as above, we can conclude that

H 3(S, Z) = E0,3∞ = E
0,3
2 = H 3(M, Z) .

Since M = S2m−1 × S2n−1 with m,n ≥ 2, it thus follows that H 3(S, Z) is torsionfree. �

COROLLARY 5.2. The cohomological Brauer group Br′(S) vanishes. The Brauer
group Br(S) vanishes.

PROOF. Every element of H 2(X, Z) is the first Chern class of a holomorphic line bun-

dle on X. Therefore, from Proposition 3.5 it follows that each element of H 2(S, Z) is the
first Chern class of a holomorphic line bundle on S. Now the first statement follows from
(5.1) and Proposition 5.1. The second statement follows from the first statement because
Br(S) ⊂ Br′(S). �
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