Intersection of Stable and Unstable Manifolds for Invariant Morse Function

Hitoshi YAMANAKA
Osaka City University
(Communicated by F. Nakano)

Abstract

We study the structure of the smooth manifold which is defined as the intersection of a stable manifold and an unstable manifold for an invariant Morse-Smale function.

1. Introduction

The aim of this paper is to investigate invariant Morse functions on compact smooth manifolds with action of compact Lie groups.

Let M be a compact n-dimensional Riemannian manifold, $\langle\cdot, \cdot\rangle$ its Riemannian metric, and Φ a Morse function on M. We denote by $-\nabla \Phi$ the negative gradient vector field of Φ with respect to the metric $\langle\cdot, \cdot\rangle$, and let $\gamma_{p}(t)$ be the corresponding negative gradient flow which passes through a point p of M at $t=0$. For a critical point p of Φ, the unstable manifold and the stable manifold of p are defined by

$$
\begin{gathered}
W^{u}(p)=\left\{x \in M \mid \lim _{t \rightarrow-\infty} \gamma_{x}(t)=p\right\}, \\
W^{s}(p)=\left\{x \in M \mid \lim _{t \rightarrow \infty} \gamma_{x}(t)=p\right\}
\end{gathered}
$$

respectively. Since Φ is a Morse function, $W^{u}(p)$ and $W^{s}(p)$ are smoothly embedded open disks of dimensions $n-\lambda(p), \lambda(p)$ respectively, where $\lambda(p)$ denotes the Morse index of p (see [2, Theorem 4.2]). We say that a Morse function Φ is Morse-Smale if $W^{u}(p)$ and $W^{s}(q)$ intersect transversally for all critical points p, q. If the Morse function Φ is MorseSmale, then $\widetilde{\mathcal{M}}(p, q):=W^{u}(p) \cap W^{s}(q)$ is also a submanifold of M which has dimension $\lambda(p)-\lambda(q)$.
$\widetilde{\mathcal{M}}(p, q)$ has a natural \mathbb{R}-action which is defined by $t \cdot x:=\gamma_{x}(t)$ where $t \in \mathbb{R}, x \in$ $\widetilde{\mathcal{M}}(p, q)$. The quotient space of $\widetilde{\mathcal{M}}(p, q)$ by the \mathbb{R}-action is denoted by $\mathcal{M}(p, q)$. Witten's

Morse theory [5] asserts that the homology group of M with integral coefficient is recovered from the structure of $\mathcal{M}(p, q)$'s such that $\lambda(p)-\lambda(q)=1$. However, there is a Morse function which has no critical points p, q such that $\lambda(p)-\lambda(q)=1$. For example, for a certain Morse function on the partial flag manifold, every unstable manifold is given by the Bruhat cell $B w P / P$. In particular, every Morse index is even (see [1]).

This phenomenon leads us to the study of the structure of $\widetilde{\mathcal{M}}(p, q)$ for $p, q \in$ $\operatorname{Cr}(\Phi), \lambda(p)-\lambda(q)=2$.

In this paper, we investigate the structure of $\widetilde{\mathcal{M}}(p, q)$ for $p, q \in \operatorname{Cr}(\Phi)$ such that $\lambda(p)-$ $\lambda(q)=2$ under the assumption that M admits an action of a compact connected Lie group G and Φ is G-invariant.

Our main theorem is the following.
Theorem 1. Let Φ be a G-invariant Bott-Morse function on M. Let p, q be G-fixed points. Assume the following conditions:
(1) $M^{G} \subset \operatorname{Cr}(\Phi)$.
(2) $\lambda(p)-\lambda(q)=2$.
(3) $W^{u}(p)$ and $W^{s}(q)$ intersect transversally.

Then every connected component of $\widetilde{\mathcal{M}}(p, q)$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
We also show that the action of G on $\widetilde{\mathcal{M}}(p, q)$ is given by the rotation of sphere (see Proposition 3.4 below). By these results geometric structure of $\widetilde{\mathcal{M}}(p, q)$ in our setting is similar to the one treated in the GKM theory [3].

This paper is organized as follows. In Section 2, we study the critical point set of an invariant Morse function and apply it to an invariant Morse function on a homogenious space. In Section 3, we prove Theorem 1.

2. Critical points

Let G be a compact Lie group and M be a compact G-manifold. Denote by M^{G} the fixed point set of the action of G on M. We say a smooth function $\Phi: M \longrightarrow \mathbb{R}$ is G-invariant if it satisfies $\Phi(g \cdot p)=\Phi(p)$ for all $g \in G, p \in M$. For a smooth function Φ on M, we denote by $\operatorname{Cr}(\Phi)$ the critical point set of Φ.

Proposition 1. Let G be a compact connected Lie group, M be a compact smooth G-manifold, and $\Phi: M \longrightarrow \mathbb{R}$ be a G-invariant Morse function on M. Assume that there exist only finitely many G-fixed points on M. Then we have $\operatorname{Cr}(\Phi)=M^{G}$.
Since G and M are both compact, there exists a G-invariant metric $\langle\cdot, \cdot\rangle$ on M. Consider the negative gradient flow equation

$$
\gamma(0)=p, \quad \frac{d}{d t} \gamma(t)=-(\nabla \Phi)_{\gamma(t)} .
$$

Here, we denote by $\nabla \Phi$ the gradient vector field for Φ with respect to the G-invariant Riemannian metric $\langle\cdot, \cdot\rangle$ on M. Let $\gamma_{p}(t)$ be the unique solution of this equation. By the uniqueness of the solution we see easily the following.

Lemma 1. We have $\gamma_{g \cdot p}(t)=g \cdot \gamma_{p}(t)$ for all $g \in G, p \in M$.
Proof of Proposition 2.1. Take $p \in \operatorname{Cr}(\Phi)$. By Lemma 1, we have

$$
\lim _{t \rightarrow-\infty} \gamma_{g \cdot p}(t)=\lim _{t \rightarrow-\infty} g \cdot \gamma_{p}(t)=g \cdot p
$$

This means $g \cdot p$ is also a critical point for Φ, so we have $G \cdot p \subset \operatorname{Cr}(\Phi)$. However, since M is compact, $\operatorname{Cr}(\Phi)$ is a finite set. Thus by the connectedness of G, we have $G \cdot p=\{p\}$. This shows $p \in M^{G}$.

Take $p \in M^{G}$. By Lemma 1 we have

$$
g \cdot \gamma_{p}(t)=\gamma_{g \cdot p}(t)=\gamma_{p}(t)
$$

for all $g \in G$. This means $\left\{\gamma_{p}(t) \mid t \in \mathbb{R}\right\} \subset M^{G}$. Since M^{G} is a finite set, this implies $\left\{\gamma_{p}(t) \mid t \in \mathbb{R}\right\}=\{p\}$. Thus we have $p \in \operatorname{Cr}(\Phi)$.

Corollary 1. Let p_{0} be a point of M and H be its stabilizer. Assume the following three conditions:
(1) H is connected
(2) $W_{H}:=N_{G}(H) / H$ is a finite group.
(3) The fixed point set of the H-action on M is contained in the G-orbit of p_{0}.

Then, we have

$$
\operatorname{Cr}(\Phi)=W_{H} \cdot p_{0}
$$

for any H-invariant Morse function $\Phi: M \longrightarrow \mathbb{R}$.
Proof. First, we prove $M^{H}=W_{H} \cdot p_{0}$. The inclusion $M^{H} \supset W_{H} \cdot p_{0}$ is clear. Take $p \in M^{H}$. Then by the condition (3), it is contained in the G-orbit of p_{0}. So we can write $p=g \cdot p_{0}$ where g is an element of G. Since $p \in M^{H}$, we have $h \cdot\left(g \cdot p_{0}\right)=g \cdot p_{0}$ for all $h \in H$. So we have $g^{-1} H g \subset H$. Since $g^{-1} H g$ and H are connected Lie subgroups with the same Lie algebra, the inclusion implies $g^{-1} H g=H$. Thus we have $p=g \cdot p_{0} \in W_{H} \cdot p_{0}$, as desired.

In particular, by the condition (2), $M^{H}=W_{H} \cdot p_{0}$ is a finite set. Thus by Proposition 1, we have $\operatorname{Cr}(\Phi)=W_{H} \cdot p_{0}$.

As an application to homogeneous spaces, we have the following corollaries:
Corollary 2. Let G be a compact Lie group and H be its connected closed subgroup. If $N_{G}(H) / H$ is a finite group, we have

$$
\operatorname{Cr}(\Phi)=N_{G}(H) / H
$$

for any H-invariant Morse function $\Phi: G / H \longrightarrow \mathbb{R}$.

Corollary 3. Let G be a compact Lie group and T be a maximal torus. Then, the critical point set of any T-invariant Morse function on the flag manifold G / T is given by its Weyl group.

3. Intersections

Let G be a compact connected Lie group and M be a compact smooth G-manifold. The following is our main result in this paper.

Theorem 2. Let Φ be a G-invariant Bott-Morse function on M. Let p, q be G-fixed points. Assume the following conditions:
(1) $M^{G} \subset \operatorname{Cr}(\Phi)$.
(2) $\lambda(p)-\lambda(q)=2$.
(3) $W^{u}(p)$ and $W^{s}(q)$ intersect transversally.

Then every connected component of $\widetilde{\mathcal{M}}(p, q)$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
Proof. Let C be a connected component of $\widetilde{\mathcal{M}}(p, q)$. By Lemma 1 and the connectedness of G, C is a G-invariant subset of $\widetilde{\mathcal{M}}(p, q)$. We note that C is non-compact. To see this, assume that C is compact. Take $c^{\prime} \in C$. Since the negative gradient flow $\gamma_{c^{\prime}}(\mathbb{R})$ is connected, it must be contained in C. Therefore the assumption implies that $p=\lim _{t \rightarrow-\infty} \gamma_{c}(t) \in C$. This is a contradiction, because $p \notin \widetilde{\mathcal{M}}(p, q)$. So C is non-compact. Since $\operatorname{Cr}(\Phi) \cap C=\emptyset$, the assumption (1) implies that $M^{G} \cap C=\emptyset$. Let us show the following.
(3.1) $\operatorname{dim} G \cdot c=1$.

Assume that $\operatorname{dim} G \cdot c=2$. Then $G \cdot c$ is a codimension 0 submanifold of C. Therefore $G \cdot c$ is an open subset of C. On the other hand, by the compactness of $G, G \cdot c$ is a closed subset of C. So we have $C=G \cdot c$ since C is connected. This is a contradiction, because C is non-compact. Assume that $\operatorname{dim} G \cdot c=0$. Then by the connectedness of G, we have $G \cdot c=\{c\}$. This is also a contradiction, because $c \notin M^{G}$. Hence we have $\operatorname{dim} G \cdot c=1$. The proof of (3.1) is complete.

Define an action of $G \times \mathbb{R}$ on C by $(g, t) \cdot c=g \cdot \gamma_{c}(t)$. In fact, this gives an action on C, because

$$
\begin{aligned}
\left(g g^{\prime}, t+t^{\prime}\right) \cdot c & =g g^{\prime} \cdot \gamma_{c}\left(t+t^{\prime}\right) \\
& =g \cdot \gamma_{g^{\prime} \cdot c}\left(t+t^{\prime}\right) \\
& =g \cdot \gamma_{\gamma_{g^{\prime} \cdot c}\left(t^{\prime}\right)}(t) \\
& =(g, t) \cdot \gamma_{g^{\prime} \cdot c}\left(t^{\prime}\right) \\
& =(g, t) \cdot\left(\left(g^{\prime}, t^{\prime}\right) \cdot c\right)
\end{aligned}
$$

for all $(g, t),\left(g^{\prime}, t^{\prime}\right) \in G \times \mathbb{R}$. We next show the following.
(3.2) $(G \times \mathbb{R})_{c}=G_{c} \times\{0\}$.

Here, $(G \times \mathbb{R})_{c}$ (resp. G_{c}) is the stabilizer of c for the action of $G \times \mathbb{R}$ (resp. G) on C. It is enough to show that $(G \times \mathbb{R})_{c} \subset G_{c} \times\{0\}$. Let (g, t) be an element of $(G \times \mathbb{R})_{c}$. It is sufficient to show $t=0$. Assume that $t>0$. Since $\left(g^{n}, n t\right) \in(G \times \mathbb{R})_{c}$ for all $n \in \mathbb{N}$, we have $\lim _{n \rightarrow \infty} g^{n} \cdot c=\lim _{n \rightarrow \infty} \gamma_{c}(-n t)=p$. This implies that $p \in C$ since $G \cdot c$ is a closed subset of C. This is a contradiction. If we assume that $t<0$, a similar argument implies the same contradiction. The proof of (3.2) is complete.

Let us consider the natural embedding $G \times \mathbb{R} /(G \times \mathbb{R})_{c} \longrightarrow \widetilde{\mathcal{M}}(p, q)$. By (3.1) and (3.2), we have $\operatorname{dim} G \times \mathbb{R} /(G \times \mathbb{R})_{c}=\operatorname{dim} \widetilde{\mathcal{M}}(p, q)=2$. Thus $G \cdot \gamma_{c}(\mathbb{R})$ is open in $\widetilde{\mathcal{M}}(p, q)$. In particular, every orbit of the action of $G \times \mathbb{R}$ on C is open. Since C is connected, this implies that $C=G \cdot \gamma_{c}(\mathbb{R})$. Therefore we obtain the following isomorphisms:

$$
C \cong G \times \mathbb{R} / G_{c} \times\{0\} \cong G / G_{c} \times \mathbb{R} \cong G \cdot c \times \mathbb{R}
$$

By (3.1), $G \cdot c$ is a compact connected 1-dimensional manifold. Thus $G \cdot c$ is diffeomorphic to S^{1}. Hence C is diffeomorphic to $S^{1} \times \mathbb{R}$.

The proof is complete.

Corollary 4. Let Φ be a G-invariant Morse-Smale function on M. Let p, q be critical points of Φ such that $\lambda(p)-\lambda(q)=2$. If M^{G} is a finite set, every connected component of $\widetilde{\mathcal{M}}(p, q)$ is diffeomorphic to $S^{1} \times \mathbb{R}$.

Proof. By Proposition 1, we have $M^{G}=\operatorname{Cr}(\Phi)$. So this corollary follows from Theorem 2.

REMARK 1. If the function Φ is not invariant under the group action, Theorem 2 and Corollary 4 do not hold. For example, let us consider the 2-torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with the standard metric. We define a smooth function $\Phi: T^{2} \longrightarrow \mathbb{R}$ by $\Phi(x, y)=\cos (2 \pi x)+$ $\cos (2 \pi y)$. Then the function Φ gives a counter example.

In the rest of this section, we study the stabilizer G_{c}. Let G be a compact connected Lie group which acts smoothly on S^{1}. We denote by \mathfrak{g} the Lie algebra of G. Consider the following commutative diagram:

$$
\begin{array}{cc}
G \rightarrow \operatorname{Diff}\left(S^{1}\right) \\
\uparrow & \uparrow \\
\mathfrak{g} \rightarrow & \Gamma\left(T S^{1}\right) .
\end{array}
$$

Here, vertical arrows are exponential maps and horizontal arrows are induced by the action of G on S^{1}. Since G is a compact connected Lie group, the exponential map $\mathfrak{g} \longrightarrow G$
is surjective. Thus the image of $G \longrightarrow \operatorname{Diff}\left(S^{1}\right)$ is completely determined by the image of $\mathfrak{g} \longrightarrow \Gamma\left(T S^{1}\right)$. We need the following result of Plante [5, Theorem 1.2].

Lemma 2. Let G be a Lie group and \mathfrak{g} be its Lie algebra. Assume that G acts smoothly and transitively on S^{1}. Then the image of $\mathfrak{g} \longrightarrow \Gamma\left(T S^{1}\right)$ is conjugate via a diffeomorphism to one of the following subalgebras of $\Gamma\left(T S^{1}\right)$
(1) $\left\langle\frac{\partial}{\partial x}\right\rangle$,
(2) $\left\langle(1+\cos x) \frac{\partial}{\partial x},(\sin x) \frac{\partial}{\partial x},(1-\cos x) \frac{\partial}{\partial x}\right\rangle$.

Note that we have the isomorphism

$$
\left\langle(1+\cos x) \frac{\partial}{\partial x},(\sin x) \frac{\partial}{\partial x},(1-\cos x) \frac{\partial}{\partial x}\right\rangle \cong \mathfrak{s l}_{2}(\mathbb{R})
$$

of Lie algebras.
Proposition 2. In the setting of Theorem 2, let C be a connected component of $\widetilde{\mathcal{M}}(p, q)$. Then there is a surjective group homomorphism $\alpha: G \longrightarrow S^{1}$ and a diffeomorphism $C \cong S^{1} \times \mathbb{R}$ such that the action of $G \times \mathbb{R}$ on $C \cong S^{1} \times \mathbb{R}$ is given by

$$
(g, t) \cdot(x, s)=(\alpha(g) x, t+s)
$$

for all $(g, t) \in G \times \mathbb{R},(x, s) \in S^{1} \times \mathbb{R}$.
Proof. Take $c \in C$. We consider the action of G on $G \cdot c$ and identify $G \cdot c$ with S^{1}. Let $\alpha_{0}: G \longrightarrow \operatorname{Diff}\left(S^{1}\right)$ be the representation of the action of G on $S^{1}, \alpha_{0}^{\prime}: \mathfrak{g} \longrightarrow \Gamma\left(T S^{1}\right)$ the corresponding Lie algebra homomorphism.

Since \mathfrak{g} is the Lie algebra of the compact Lie group G, it does not admit $\mathfrak{s l}_{2}$ as a quotient Lie algebra. Hence by Lemma 2 we can take $\varphi \in \operatorname{Diff}\left(S^{1}\right)$ such that

$$
\varphi_{*}\left(\alpha_{0}^{\prime}(\mathfrak{g})\right)=\left\langle\frac{\partial}{\partial x}\right\rangle
$$

This shows that $\varphi\left(\alpha_{0}(G)\right) \varphi^{-1}$ consists of rotations of S^{1}. Now we define a group homomorphism $\alpha: G \longrightarrow S^{1}$ by $\alpha(g):=\varphi \circ \alpha_{0}(g) \circ \varphi^{-1}$. This map satisfies the required properties.

Corollary 5. In the setting of Theorem 2 , let C be a connected component of $\widetilde{\mathcal{M}}(p, q)$. Then the stabilizer of $c \in C$ is independent of choice of c and is a codimension 1 closed normal Lie subgroup of G.

References

[1] M. AtiYah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1-15.
[2] A. Banyaga and D. Hurtubise, Lectures on Morse Homology, Kluwer Texts in the Mathematical Sciences, Volume 29 (2004).
[3] M. Goresky, R. Kottwitz and MacPherson, Equivariant cohomology, Koszul duality and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83.
[4] J. F. Plante, Fixed points of Lie group actions on surfaces, Ergod. Th. and Dyn. Sys. 6 (1986), 149-161.
[5] E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692.

Present Address:
Graduate School of Science,
Osaka City University,
Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan.
e-mail: d09saq0L05@ex.media.osaka-cu.ac.jp

